WorldWideScience

Sample records for production rice fields

  1. Rice Production without Insecticide in Smallholder Farmer's Field

    Directory of Open Access Journals (Sweden)

    M. P. Ali

    2017-05-01

    Full Text Available Highlights:Use of perching, sweeping, and need based insecticide (IPM technique useage produce at par yields compared to prophylactic insecticide useage in rice fields.There exists a technique that can reduce 75% of insecticide useage in rice field.The results were obtained in cooperation between smallholder rice farmers and researchers of Bangladesh.Currently rice protection from insect pests solely depends on chemical pesticides which have tremendous impact on biodiversity, environment, animal, and human health. To reduce their impact from our society we need to cut pesticide use from agricultural practices. To address this issue, we did an experiment to identify realistic solutions that could help farmers build sustainable crop protection systems and minimize useage of insecticides and thus reduce the impact of pesticides in the environment. Innovations developed jointly by farmers and researchers and evaluated for their potential to be adopted by more farmers. In this paper we tested four management practices jointly with smallholder farmer fields in order to select the best one. Four management practices were used namely, T1 = Prophylactic use of insecticide where insecticide was applied in rice field at every 15 days interval without judging the infestation level; T2 = Perching (that is, placing roosting (perching sites for insectivorous birds within the rice field and concurrent sweep net samples along with need-based insecticide application; T3 = Perching only; and T4 = Farmer's own practices. The results revealed that routine application of insecticides for crop protection is not mandatory which is commonly found at use in rice farmers. In our experiment, where prophylactic method or farmers used 3–4 times insecticides without judging the insect pests infestation level, the similar pest population was found when compared to the field where insecticide was not applied. Our management system reduced by 75% the use of insecticides even

  2. Ethanol production from rice on radioactively contaminated field toward sustainable rice farming

    International Nuclear Information System (INIS)

    Yokoyama, Shinya; Izumi, Bintaro; Oki, Kazuo

    2011-01-01

    Radioactive species such as 137 Cs were discharged from Fukushima Daiichi Nuclear Power Plant which was severely damaged by the enormous earthquake and tsunami. Cropland has been radioactively contaminated by 137 Cs etc. and it seems impossible to plant rice due to the non-suitability for food. According to the reports, 137 Cs transferred into the rice from soil is less than 1% on the average. Therefore, it is expected that the concentration of 137 Cs in bioethanol will be well below the tentative restriction value even if bioethanol could be produced from the rice. It is proposed that the rice field should be filled with water to avoid the flow of runoff contaminated by radioactive cesium compounds because they are insoluble in aqueous phase and that bioethanol should be produced from the rice in order to maintain the multifunction of rice field and to continue the agriculture. If rice farming is halted and neglected, agricultural function of rice field as well as local community will be permanently destroyed. (author)

  3. Mosquito larval productivity in rice-fields infested with Azolla in Mvomero District, Tanzania.

    Science.gov (United States)

    Mwingira, V S; Mayala, B K; Senkoro, K P; Rumisha, S F; Shayo, E H; Mlozi, M R S; Mboera, L E G

    2009-01-01

    Azolla (Salviniales: Azollaceae) is known to reduce oviposition and adult emergence of a number of mosquito species. Several species of Azolla are reportedly indigenous to Tanzania. However, the potential of Azolla as a biocontrol agent against malaria mosquitoes has not been evaluated in the country. This cross-sectional study was carried out to assess mosquito larval productivity in irrigated rice-fields infested with Azolla in Mvomero District, Tanzania. A systematic larval sampling covering all open water bodies along designed transect was carried in rice-fields. Larval density was estimated by dipping water bodies with or without Azolla. The degree of Azolla coverage was categorized as 0%, 80%. Larvae densities were categorised as low ( or = 500/m2) productivity. A total of 120 water bodies were surveyed and 105 (87.5%) had Azolla microphyla and A. pinnata at varying degrees of coverage. Of the total 105 water bodies with Azolla, 80 (76.2%) had a green Azolla mat, and 25 (23.8%) a brown Azolla mat. Eighty-eight (73.3%) of the sites were infested with anophelines and 109 (90.8%) with culicine larvae. Seventy percent of all water bodies contained anophelines and culicines in sympatric breeding, while 20.8% and 3.3% had only culicines and anophelines, respectively. The majority (82%) of mosquito breeding sites were found in area with Azolla substrate. Mosquito larva productivity was low in sites with highest (>80%) Azolla coverage. Seventy-two (81.8%) of the anopheline and 90 (82.6%) culicine breeding sites were infested with Azolla. Water bodies infested with green Azolla were more productive than those covered by brown coloured Azolla substrates for both culicines (13%) and anophelines (8%). Of the 1537 field collected larvae that hatched to adult stage, 646 (42.03%) were Anopheles gambiae s.l., 42 (2.73%) were An. funestus and 769 (50.03%) were Culex quinquefasciatus. These findings suggest that the mosquito productivity is low when the Azolla coverage is high

  4. Characterization of isolates of meloidogyne from rice-wheat production fields in Nepal.

    Science.gov (United States)

    Pokharel, Ramesh R; Abawi, George S; Zhang, Ning; Duxbury, John M; Smart, Christine D

    2007-09-01

    Thirty-three isolates of root-knot nematode were recovered from soil samples from rice-wheat fields in Nepal and maintained on rice cv. BR 11. The isolates were characterized using morphology, host range and DNA sequence analyses in order to ascertain their identity. Results indicated phenotypic similarity (juvenile measurements, perennial pattern, host range and gall shape) of the Nepalese isolates with Meloidogyne graminicola, with minor variations. The rice varieties LA 110 and Labelle were susceptible to all of the Nepalese isolates, but differences in the aggressiveness of the isolates were observed. Phylogenetic analyses based on the sequences of partial internal transcribed spacer (ITS) of the rRNA genes indicated that all Nepalese isolates formed a distinct clade with known isolates of M. graminicola with high bootstrap support. Furthermore, two groups were identified within the M. graminicola clade. No correlation between ITS haplotype and aggressiveness or host range was found among the tested isolates.

  5. Production Cost Efficiency and Profitability of Abakaliki Rice in ...

    African Journals Online (AJOL)

    acer

    2014-11-17

    Nov 17, 2014 ... positive and significant effect on the total cost of rice production. They were all significant ... failure is experienced due to the flooded rice field. In addition ... for random effects on production beyond the control .... Standard error.

  6. Using farmer knowledge to combat low productive spots in rice fields of a Sahelian irrigation scheme

    NARCIS (Netherlands)

    Asten, van P.J.A.; Barro, S.E.; Wopereis, M.C.S.; Defoer, T.

    2004-01-01

    In the oldest sections of Burkina Faso's largest irrigation scheme in the Sourou Valley (13degrees 10'N, 03degrees 30'W) rice (Oryza sativa L.) yields dropped from about 5 to 6 t ha(-1) in the early 1990s, shortly after establishment of the scheme, to 2 to 4 t ha(-1) from 1995 onwards. Farmers

  7. Application of Radiation Degraded Chitosan as Plant Growth Promoter. A Pilot Scale Production and Field Trial Study of Radiation Processed Chitosan as Plant Growth Promoter for Rice Crops

    International Nuclear Information System (INIS)

    Dahlan, Khairul Zaman Hj Mohd; Hashim, Kamaruddin; Bahari, Kamarudin

    2010-01-01

    The application of radiation processed chitosan as plant growth promoter has been carried out in the 24 hectares of rice crops. For the field trial, a pilot scale production of oligochitosan was established using gamma irradiation for partial degradation of chitosan powder of DDA 90% and followed by gamma irradiation of aqueous solution of 3% irradiated chitosan powder in 2% lactic acids (3CL2). Radiation dose of 50 kGy was selected for initial degradation of chitosan powder and followed by 12 kGy irradiation of 3CL2. A viscosity average molecular weight of ~10,000 of oligochitosan was obtained and subsequently used in the field trial of MR219 type of rice seeds on 24 hectares of rice plots. The seedlings were carried out after the rice seeds were soaked 24hrs in water and 30 minutes in 200ppm oligochitosan. The rice plots that were sprayed with oligochitosan were found to have higher resistant towards blast diseases. Oligochitosan of 40ppm was found to be effective as fungicides and resulted in the increase of yield of rice seeds of about 5%. (author)

  8. Humic Acid and Water Management to Decrease Ferro (Fe2+ Solution and Increase Productivity of Established New Rice Field

    Directory of Open Access Journals (Sweden)

    Amrizal Saidi

    2012-01-01

    Full Text Available The purpose of this research was to gain a technological breakthrough in controlling Fe toxicity (Fe2+ on Ultisol ina new established rice field by using humic acid from rice straw compost and water management, so that optimalproduction of rice plants could be achieved. The experiment was designed using a 2 × 4 factorials with 3 replicationsin a split plot design. The main plot was water management consists of 2 levels: continuous and intermittentirrigation (2 weeks flooded and 2 weeks field capacity. Small plot was humic acid which was extracted from ricestraw compost by NaOH 0.5 N which consists of 4 levels: 0, 200, 400, and 600 mg kg-1. The results showed thatapplications of humic acid from 0 to 600 mg kg-1 that was followed by 2 weeks of intermittent irrigation decreasedFe2+ concentration. It was approaching levels that were not toxic to plants, with soil Fe2+ between 180-250 mg kg-1.The best treatment was found at the application of 600 mg kg-1 humic acid extracted from rice straw compostcombined with 2 week flooded – 2 weeks field capacity of water management. Those treatment decreased Fe2+concentration from 1,614 to 180 mg kg-1 and increased the dry weight of grain from 5.15 to 16.73 g pot-1 compared tocontinuous flooding and without humic acid application.

  9. Integrated Emergy, Energy and Economic Evaluation of Rice and Vegetable Production Systems in Alluvial Paddy Fields: Implications for Agricultural Policy in China

    Science.gov (United States)

    China is the largest rice producing and consuming country in the world, but rice production has given way to the production of vegetables during the past twenty years. The government has been trying to stop this land-use conversion and increase the area in rice-vegetable rotation...

  10. Avian foods, foraging and habitat conservation in world rice fields

    Science.gov (United States)

    Stafford, J.D.; Kaminski, R.M.; Reinecke, K.J.

    2010-01-01

    Worldwide, rice (Oryza sativa) agriculture typically involves seasonal flooding and soil tillage, which provides a variety of microhabitats and potential food for birds. Water management in rice fields creates conditions ranging from saturated mud flats to shallow (seed mass from North America ranging from 66672 kg/ha. Although initially abundant after harvest, waste rice availability can be temporally limited. Few abundance estimates for other foods, such as vertebrate prey or forage vegetation, exist for rice fields. Outside North America, Europe and Japan, little is known about abundance and importance of any avian food in rice fields. Currently, flooding rice fields after harvest is the best known management practice to attract and benefit birds. Studies from North America indicate specific agricultural practices (e.g. burning stubble) may increase use and improve access to food resources. Evaluating and implementing management practices that are ecologically sustainable, increase food for birds and are agronomically beneficial should be global priorities to integrate rice production and avian conservation. Finally, land area devoted to rice agriculture appears to be stable in the USA, declining in China, and largely unquantified in many regions. Monitoring trends in riceland area may provide information to guide avian conservation planning in rice-agriculture ecosystems.

  11. Making Rice Production More Environmentally-Friendly

    Directory of Open Access Journals (Sweden)

    Norman Uphoff

    2016-05-01

    Full Text Available Irrigated rice production is one of the most essential agricultural activities for sustaining our global population, and at the same time, one of the agricultural sectors considered most eco-unfriendly. This is because it consumes a larger share of available freshwater resources, competing with varied ecosystems as well as other economic sectors; its paddy fields are responsible for significant emission of greenhouse gases; and the reliance on chemical fertilizers and various agrochemicals contributes to pollution of soils and water systems. These stresses on soils, hydrology and atmosphere are actually not necessary for rice production, which can be increased by modifying agronomic practices though more agroecologically-sound management practices. These, combined under the rubric of the System of Rice Intensification (SRI, can reduce requirements of irrigation water, chemical fertilizer and agrochemicals while increasing paddy yields and farmer’s net incomes. Here we discuss how irrigated rice production can be made more eco-friendly for the benefit of farmers, consumers and the environment. This is achieved by introducing practices that improve the growth and functioning of rice plants’ root systems and enhance the abundance, diversity and activity of beneficial soil organisms that live around plant roots and within the plants themselves as symbiotic endophytes.

  12. Rice production in relation to soil quality under different rice-based cropping systems

    Science.gov (United States)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  13. The land use potential of flood-prone rice fields using floating rice system in Bojonegoro regency in East Java

    Science.gov (United States)

    Irianto, H.; Mujiyo; Riptanti, E. W.; Qonita, A.

    2018-03-01

    Bojonegoro regency occupies the largest flood-prone rice fields of about 14,198 hectares, in East Java province. Floods commonly occur due to Bengawan Solo river over-burst, particularly in rainy season. The fields are potential for cultivating rice, but floods lasting for months causing these areas to be unproductive. The objective of this article is to examine the potential land use of flood prone rice fields in Bojonegoro regency using floating rice system as an effort to maintain productivity in rainy season. The method of this study is referential study about the rice production using floating cultivation system in other regions, which are later compared with the physical condition of the fields in Bojonegoro. The results of analysis show that rice cultivation using floating system can maintain rice production in flood prone areas during rainy season. The potential production of rice is 5-6 tons/ha. However, technical problems for cultivating rice cannot be ignored since farmers are not familiar with cultivating flooded fields. This article also explains alternatives of floating rice cultivation technique, which can be implemented effectively and efficiently. Pioneer work of developing floating rice in Bojonegoro that has been done by the Team of Faculty of Agriculture of UNS, Surakarta, is expected to serve as a medium for accelerating the adoption of cultivation technology innovation to farmers.

  14. Effects of Position of Rainfed Rice Field in a Toposequence on Water Availability and Rice Yield in Central Java, Indonesia

    OpenAIRE

    SUGANDA, HUSEIN; PANINGBATAN, E.P; GUERRA, L.C; TUONG, T.P

    2003-01-01

    The productivity of rainfed rice needs to be increased in order to support the Indonesian Food Security programs, especially rice. Rainfall is one of the main sources of the water availability on the rainfed rice field. This research was conducted from October 2000 to February 2001 at four sites in Central Java Province. The objectives of this research were to study thevariability of water availability that influenced by toposequen's position and to analyze the rice yields due to treatments o...

  15. Benthic macroinvertebrates in Italian rice fields

    Directory of Open Access Journals (Sweden)

    Daniela Lupi

    2013-02-01

    Full Text Available Rice fields can be considered man-managed temporary wetlands. Five rice fields handled with different management strategies, their adjacent channels, and a spring were analysed by their benthic macroinvertebrate community to i evaluate the role of rice agroe- cosystem in biodiversity conservation; ii find indicator species which can be used to compare the ecological status of natural wetlands with rice agroecosystems; and iii find the influence of environmental variables on biodiversity. Different methods of data analysis with increasing degree of complexity – from diversity index up to sophisticated multivariate analysis – were used. The investigation provided a picture of benthic macroinvertebrates inhabiting rice agroecosystems where 173 taxa were identified, 89 of which detected in rice paddies. Among them, 4 phyla (Mollusca, Annelida, Nematomorpha, and Arthropoda, 8 classes (Bivalvia, Gastropoda, Oligochaeta, Hirudinea, Gordioida, Insecta, Branchiopoda, and Malacostraca, 24 orders, 68 families, 127 genera and 159 species have been found. Ten threatened and 3 invasive species were detected in the habitats examined. The information obtained by the different methods of data analysis allowed a more comprehensive view on the value of the components of rice agroecosystems. Data analyses highlighted significant differences between habitats (feeding channel and rice field, with higher diversity observed in channels, and emphasised the role of the water chemical-physical parameters. The period of water permanence in rice fields resulted to be only one of the factors influencing the community of benthic macroinvertebrates. The presence of rare/endangered species allowed characterising some stations, but it was less informative about management strategies in rice paddies because most of these species were absent in rice fields.

  16. Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: implications for agricultural policy in China.

    Science.gov (United States)

    Lu, Hongfang; Bai, Yu; Ren, Hai; Campbell, Daniel E

    2010-12-01

    China is the largest rice producing and consuming country in the world, but rice production has given way to the production of vegetables during the past twenty years. The government has been trying to stop this land-use conversion and increase the area in rice-vegetable rotation. Important questions that must be answered to determine what strategy is best for society are, "What is the reason behind this conversion?"; "Which system is more productive and which is more sustainable?"; and "How can economic policy be used to adjust the pattern of farmland use to attain sustainable development?" To answer these questions, a combined evaluation of these agricultural production systems was done using emergy, energy and economic methods. An economic analysis clearly showed that the reason for this conversion was simply that the economic output/input ratio and the benefit density of the vegetable production system were greater than that of rice. However, both energy and emergy evaluations showed that long-term rice was the best choice for sustainable development, followed by rotation systems. The current price of rice is lower than the em-value of rice produced from the long-term rice system, but higher than that of rice produced from the rotation system. Scenario analysis showed that if the government increases the price of rice to the em-value of rice produced from the long-term rice system, US$0.4/kg, and takes the value of soil organic matter into account, the economic output/input ratios of both the rice and rotation systems will be higher than that of the vegetable system. The three methods, energy, emergy and economics, are different but complementary, each revealing a different aspect of the same system. Their combined use shows not only the reasons behind a system's current state or condition, but also the way to adjust these systems to move toward more sustainable states. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Consumer preference mapping for rice product concepts

    NARCIS (Netherlands)

    Suwannaporn, P.; Linnemann, A.R.; Chaveesuk, R.

    2008-01-01

    Purpose - Rice consumption per capita in many Asian countries is decreasing constantly, but American and European citizens are eating more rice nowadays. A preference study among consumers was carried out with the aim of determining new rice product characteristics in order to support export of Thai

  18. Photodegradation of clothianidin under simulated California rice field conditions.

    Science.gov (United States)

    Mulligan, Rebecca A; Redman, Zachary C; Keener, Megan R; Ball, David B; Tjeerdema, Ronald S

    2016-07-01

    Photodegradation can be a major route of dissipation for pesticides applied to shallow rice field water, leading to diminished persistence and reducing the risk of offsite transport. The objective of this study was to characterize the aqueous-phase photodegradation of clothianidin under simulated California rice field conditions. Photodegradation of clothianidin was characterized in deionized, Sacramento River and rice field water samples. Pseudo-first-order rate constants and DT50 values in rice field water (mean k = 0.0158 min(-1) ; mean DT50 = 18.0 equivalent days) were significantly slower than in deionized water (k = 0.0167 min(-1) ; DT50 = 14.7 equivalent days) and river water (k = 0.0146 min(-1) ; DT50 = 16.6 equivalent days) samples. Quantum yield ϕc values demonstrate that approximately 1 and 0.5% of the light energy absorbed results in photochemical transformation in pure and field water respectively. Concentrations of the photodegradation product thiazolymethylurea in aqueous photolysis samples were determined using liquid chromatography-tandem mass spectrometry and accounted for ≤17% in deionized water and ≤8% in natural water. Photodegradation rates of clothianidin in flooded rice fields will be controlled by turbidity and light attenuation. Aqueous-phase photodegradation may reduce the risk of offsite transport of clothianidin from flooded rice fields (via drainage) and mitigate exposure to non-target organisms. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Transfer of radioactive and chemical pollutants into irrigated rice fields

    International Nuclear Information System (INIS)

    Myttenaere, C.; Mousny, J.-M.; Dabin, P.; Bittel, R.

    1975-01-01

    In a general study on the consequences of radioactive and chemical releases in continental waters, flooded rice fields must be considered as a very important ecosystem due to the very large quantities of water used. In order to approach as much as possible to the natural conditions (irrigated rice fields of Northern Italy) ''mini-rice fields'' were built and local practices were respected. The behavior of activation and fission products ( 137 Cs, 60 Co, 65 Zn, 51 Cr...) and heavy metals pollutants (Cd, Cr, Sn) was studied and the transfer from water to soil and plant was followed. Concentration factors were calculated for the different organs of the plant and the impact of rice ingested to the dose delivered to man was evaluated [fr

  20. Nutrient management for rice production

    International Nuclear Information System (INIS)

    Khan, A.R.; Chandra, D.; Nanda, P.; Singh, S.S.; Singh, S.R.; Ghorai, A.K.

    2002-06-01

    The nutrient removed by the crops far exceeds the amounts replenished through fertilizer, causing a much greater strain on the native soil reserves. The situation is further aggravated in countries like India, where sub-optimal fertilizer used by the farmers is a common phenomenon rather than an exception. The total consumption of nutrients of all crops in India, even though reached 15 million tons in 1997, remains much below the estimated nutrient removal of 25 million tons (Swarup and Goneshamurthy, 1998). The gap between nutrient removal supplied through fertilizer has widened further in 2000 to 34 million tons of plant nutrients from the soil against an estimated fertilizer availability of 18 million tons (Singh and Dwivedi, 1996). Nitrogen is the nutrient which limits the most the rice production worldwide. In Asia, where more than 90 percent of the world's rice is produced, about 60 percent of the N fertilizer consumed is used on rice (Stangel and De Dutta, 1985). Conjunctive use of organic material along with fertilizer has been proved an efficient source of nitrogen. Organic residue recycling is becoming an increasingly important aspect of environmentally sound sustainable agriculture. Returning residues like green manure to the soil is necessary for maintaining soil organic matter, which is important for favourable soil structure, soil water retention and soil microbial flora and fauna activities. Use of organic manures in conjunction or as an alternative to chemical fertilizer is receiving attention. Green manure, addition to some extent, helps not only in enhancing the yield but also in improving the physical and chemical nature of soils. The excessive application of chemical fertilizers made it imperative that a part of inorganic fertilizer may be substituted with the recycling of organic wastes. Organic manure has been recorded to enhance the efficiency and reduce the requirement of chemical fertilizers. Partial nitrogen substitution through organic

  1. Sustainable rice production in Malaysia beyond 2000

    International Nuclear Information System (INIS)

    Nashriyah Mat; Ho Nai Kin; Ismail Sahid; Ahyaudin Ali; Lum Keng Yeang; Mashhor Mansor

    2002-01-01

    This book is a compendium of works carried out by various institutions on subjects related to sustainable rice production. The institutions comprise Department of Agriculture, Malaysian Agricultural Research and Development Institute, Malaysian Institute for Nuclear Technology Research, Muda Agricultural Development Authority, Universiti Kebangsaan Malaysia, Universiti Putra Malaysia, Universiti Sains Malaysia, International Islamic University of Malaysia and the Agrochemical Company Mosanto. Integrated Biodiversity Management parallel with the Integrated Weed / Pest / Disease Management, rice-fish farming networking, agrochemical residue monitoring in rice and marine ecosystems, and application of biotechnology in rice productivity are taken as the future direction towards achieving sustainable rice production beyond 2000. Challenges from social and technical agroecosystem constraints, agricultural input management and maintenance of agroecosystem biodiversity are highlighted. It is imperative that the challenges are surmounted to attain the target that would be reflected by tangible rice output of 10 t/ha, and at the same time maintaining the well-being of rice-farmers. (Author)

  2. International tourist preference of Lodok Rice Field natural elements, the cultural rice field from Manggarai - Indonesia

    Science.gov (United States)

    March Syahadat, Ray; Trie Putra, Priambudi; Nuraini; Nailufar, Balqis; Fatmala Makhmud, Desy

    2017-10-01

    Lodok Rice Field or usually known as spiderweb rice field is a system of land division. It cultural rice field only found on Manggarai, Province of East Nusa Tenggara, Indonesia. The landscape of Lodok Rice Field was aesthetic and it has big potential for tourism development. The aim of this study was to know the perception of natural elements of Lodok Rice Field landscape that could influence international tourist to visited Lodok Rice Field. If we know the elements that could influenced the international tourist, we could used the landscape image for tourism media promotion. The methods of this study used scenic beauty estimation (SBE) by 85 respondents from 34 countries and Kruskal Wallis H test. The countries grouped by five continents (Asia, America, Europe, Africa, and Oceania). The result showed that the Asian respondents liked the elements of sky, mountain, and the rice field. Then, the other respondent from another continent liked the elements of sunshine, mountain, and the rice field. Although the Asian had different perception about landscape elements of rice field’s good view, it’s not differ significantly by Kruskal Wallis H test.

  3. Increasing rice production in Malaysia: Department of Agriculture approach

    International Nuclear Information System (INIS)

    Asna Booty Othman; Chua Lee Kiang; Rathinam Thiagarajan; Aziziah Md Jan

    2002-01-01

    Increasing rice productivity will continue to be an important agenda in the agricultural development program of the country. This represents a challenge to the Department of Agriculture. To address this challenge, it calls for creativity, innovation, ideas and initiatives in the use of technologies that consist of land leveling, in the field water management, Integrated Pest Management (IPM), production and distribution of quality seeds, effective fertilizer usage and value added activities. Rice areas which have been leveled using laser guided technology have shown yield increase from 3.3 t/ha to 5.1 t/ha. In-field water management increases rice yield, reduces water wastage and ensures timeliness of operations and improve soil water bearing capacity. IPM has proven highly beneficial in the control of field rats, reducing the incidence of diseases such as rice blast, lowering the occurrence of insect pest outbreaks and weed infestation. Fish rearing and fattening of ducklings to adulthood in the rice fields have also been undertaken as profitable enterprises in the rice farming system. In its effort to modernise and increase rice productivity, the Department of Agriculture approach in acquisition of technology from research agencies, and its adaptation and adoption are discussed. Any technology promoted must be economically viable, socially acceptable and technologically feasible for effective implementation. (Author)

  4. Climate variability impacts on rice crop production in pakistan

    International Nuclear Information System (INIS)

    Shakoor, U.; Saboor, A.; Baig, I.

    2015-01-01

    The climate variability has affected the agriculture production all over the globe. This concern has motivated important changes in the field of research during the last decade. Climate changes are believed to have declining effects towards crop production in Pakistan. This study carries an empirical investigation of the effects of climate change on rice crop of Pakistan by employing Vector Auto Regression (VAR) model. Annual seasonal data of the climatic variables from 1980 to 2013 has been used. Results confirmed that rising mean maximum temperature would lead to reduction in rice production while increase in mean minimum temperature would be advantageous towards rice production. Variation in mean minimum temperature brought about seven percent increase in rice productivity as shown by Variance Decomposition. Mean precipitation and mean temperature would increase rice production but simulations scenarios for 2030 confirmed that much increase in rainfall and mean temperature in long run will negatively affect rice production in future. It is therefore important to follow adequate policy action to safeguard crop productions from disastrous effects. Development of varieties resistant to high temperatures as well as droughts will definitely enhance resilience of rice crop in Pakistan. (author)

  5. Occurrence of Aspergillus section Flavi and aflatoxins in Brazilian rice: From field to market

    DEFF Research Database (Denmark)

    Katsurayama, Aline M.; Martins, Ligia Manoel; Iamanaka, Beatriz T.

    2018-01-01

    The guarantee of the high quality of rice is of utmost importance because any toxic contaminant may affect consumer health, especially in countries such as Brazil where rice is part of the daily diet. A total of 187 rice samples, from field, processing and market from two different production sys...

  6. Rice Cluster I, an Important Group of Archaea Producing Methane in Rice Fields

    Science.gov (United States)

    Conrad, R.

    2006-12-01

    Rice fields are an important source for the greenhouse gas methane. Methane is a major degradation product of organic matter in the anoxic soil, is partially oxidized in the rhizosphere and is emitted into the atmosphere through the aerenchyma system of the plants. Anaerobic degradation of organic matter by fermenting bacteria eventually results in the production of acetate and hydrogen, the two major substrates for microbial methanogenesis. The community of methanogenic archaea consists of several major orders or families including hydrogen-utilizing Rice Cluster-I (RC-I). Environmental conditions affect the methanogenic degradation process and the community structure of the methanogenic archaea in soil and rhizosphere. For example, populations of acetoclastic Methanosaetaceae and Methanosarcinaceae are enhanced by low and high acetate concentrations, respectively. Stable isotope probing of 16S rRNA showed that RC-I methanogens are mainly active on rice roots and at low H2 concentrations. Growth and population size is largely consistent with energetic conditions. RC-I methanogens on roots seem to be responsible for methane production from plant photosynthates that account for a major part of the emitted methane. Populations of RC-I methanogens in rice field soil are also enhanced at elevated temperatures (40-50°C). Moderately thermophilic members of RC-I methanogens or other methanogenic families were found to be ubiquitously present in soils from rice fields and river marshes. The genome of a RC-I methanogen was completely sequenced out of an enrichment culture using a metagenome approach. Genes found are consistent with life in the rhizosphere and in temporarily drained, oxic soil. We found that the methanogenic community structure on the rice roots is mainly determined by the respective community structure of the soil, but is in addition affected by the rice cultivar. Rice microcosms in which soil and rice roots are mainly colonized by RC-I methanogens produce

  7. Soil quality assessment in rice production systems

    NARCIS (Netherlands)

    Rodrigues de Lima, A.C.

    2007-01-01

    In the state of Rio Grande do Sul, Brazil, rice production is one of the most important regional activities. Farmers are concerned that the land use practices for rice production in the Camaquã region may not be sustainable because of detrimental effects on soil quality. The study presented in this

  8. SAR Agriculture Rice Production Estimation (SARPE)

    Science.gov (United States)

    Raimadoya, M.

    2013-12-01

    The study of SAR Agriculture Rice Production Estimation (SARPE) was held in Indonesia on 2012, as part of Asia-Rice Crop Estimation & Monitoring (Asia-RiCE), which is a component for the GEO Global Agricultural Monitoring (GEOGLAM) initiative. The study was expected to give a breakthrough result, by using radar technology and paradigm shift of the standard production estimation system from list frame to area frame approach. This initial product estimation system is expected to be refined (fine tuning) in 2013, by participating as part of Technical Demonstration Site (Phase -1A) of Asia-RICE. The implementation period of this initial study was from the date of March 12 to December 10, 2012. The implementation of the study was done by following the approach of the BIMAS-21 framework, which has been developed since 2008. The results of this study can be briefly divided into two major components, namely: Rice-field Baseline Mapping (PESBAK - Peta Sawah Baku) and Crop Growth Monitoring. Rice-fields were derived from the mapping results of the Ministry of Agriculture (Kemtan), and validated through Student Extension Campaign of the Faculty of Agriculture, Bogor Agricultural University (IPB). While for the crop growth, it was derived from the results of image analysis process. The analysis was done, either on radar/Radarsat-2 (medium resolution) or optical/ MODIS (low resolution), based on the Planting Calendar (KATAM) of Kemtan. In this case, the planting season II/2012-2013 of rice production centers in West Java Province (Karawang, Subang and Indramayu counties). The selection of crop season and county were entirely dependent on the quality of the available PESBAK and procurement process of radar imagery. The PESBAK is still in the form of block instead of fields, so it can not be directly utilized in this study. Efforts to improve the PESBAK can not be optimal because the provided satellite image (ECW format) is not the original one. While the procurement process of

  9. Perceived factors limiting rice production in Pategi Local ...

    African Journals Online (AJOL)

    user

    perceived limiting factors in rice production include lack of rice processing ... This production increase has not been enough to meet the consumption demand of ... of Kwara State, Nigeria seeks to determine some of the factors limiting rice ...

  10. Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions.

    Science.gov (United States)

    Park, Seong-Im; Kim, Young-Saeng; Kim, Jin-Ju; Mok, Ji-Eun; Kim, Yul-Ho; Park, Hyang-Mi; Kim, Il-Sup; Yoon, Ho-Sung

    2017-08-01

    Reactive oxygen species, which increase under various environmental stresses, have deleterious effects on plants. An important antioxidant, glutathione, is used to detoxify reactive oxygen species in plant cells and is mainly produced by two enzymes: gamma-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the glutathione synthetase gene (OsGS) in rice, we generated four independent transgenic rice plants (TG1-TG4) that overexpressed OsGS under the control of the constitutively expressed OsCc1 promoter. When grown under natural paddy field conditions, the TG rice plants exhibited greater growth development, higher chlorophyll content, and higher GSH/GSSH ratios than control wild-type (WT) rice plants. Subsequently, the TG rice plants enhanced redox homeostasis by preventing hydroperoxide-mediated membrane damage, which improved their adaptation to environmental stresses. As a result, TG rice plants improved rice grain yield and total biomass following increases in panicle number and number of spikelets per panicle, despite differences in climate during the cultivation periods of 2014 and 2015. Overall, our results indicate that OsGS overexpression improved redox homeostasis by enhancing the glutathione pool, which resulted in greater tolerance to environmental stresses in the paddy fields. Copyright © 2017. Published by Elsevier GmbH.

  11. Bioethanol production from rice straw residues

    Directory of Open Access Journals (Sweden)

    Elsayed B. Belal

    2013-01-01

    Full Text Available A rice straw -cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 ºC, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L-1.

  12. Adoption of Recommended Rice Production Practices among ...

    African Journals Online (AJOL)

    User

    rice production practices by women farmers in Nasarawa State. A total of 203 women rice farmers were selected for the study using multi- ... RRPPs were unavailability of credit facilities, poor marketing system and ... economy which provides employment opportunity for about 70-80 percent of the total ..... shown in Table 1.

  13. Rice field for the treatment of pond aquaculture effluents | Wang ...

    African Journals Online (AJOL)

    We conducted an experiment to evaluate the efficiency of rice fields in treating pond aquaculture effluent and its responses to different fertilizer treatments. Four treatments was considered in the experiment: no rice planted as the control (CT); rice planted and no fertilizer input (RE); rice planted and a rate of approximately ...

  14. Life cycle GHG analysis of rice straw bio-DME production and application in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.; Sagisaka, Masayuki; Yamaguchi, Katsunobu

    2013-01-01

    Highlights: • Life cycle GHG emissions of rice straw bio-DME production in Thailand are assessed. • Bio-DME replaces diesel in engines and supplements LPG for household application. • Rice straw bio-DME in both cases of substitution helps reduce GHG emissions. - Abstract: Thailand is one of the leading countries in rice production and export; an abundance of rice straw, therefore, is left in the field nowadays and is commonly burnt to facilitate quick planting of the next crop. The study assesses the life cycle greenhouse gas (GHG) emissions of using rice straw for bio-DME production in Thailand. The analysis is divided into two scenarios of rice straw bio-DME utilization i.e. used as automotive fuel for diesel engines and used as LPG supplement for household application. The results reveal that that utilization of rice straw for bio-DME in the two scenarios could help reduce GHG emissions by around 14–70% and 2–66%, respectively as compared to the diesel fuel and LPG substituted. In case rice straw is considered as a by-product of rice cultivation, the cultivation of rice straw will be the major source of GHG emission contributing around 50% of the total GHG emissions of rice straw bio-DME production. Several factors that can affect the GHG performance of rice straw bio-DME production are discussed along with measures to enhance GHG performance of rice straw bio-DME production and utilization

  15. Methane emission from wetland rice fields

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.

    1996-01-01


    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic

  16. [Effects of fish on field resource utilization and rice growth in rice-fish coculture].

    Science.gov (United States)

    Zhang, Jian; Hu, Liang Liang; Ren, Wei Zheng; Guo, Liang; Wu, Min Fang; Tang, Jian Jun; Chen, Xin

    2017-01-01

    Rice field can provide habitat for fish and other aquatic animals. Rice-fish coculture can increase rice yield and simultaneously reduce the use of chemicals through reducing rice pest occurrence and nutrient complementary use. However, how fish uses food sources (e.g. phytoplankton, weeds, duckweed, macro-algal and snail) from rice field, and whether the nutrients releasing from those food sources due to fish transforming can improve rice growth are still unknown. Here, we conducted two field experiments to address these questions. One was to investigate the pattern of fish activity in the field using the method of video recording. The other was to examine the utilization of field resources by fish using stable isotope technology. Rice growth and rice yield were also exa-mined. Results showed that fish tended to be more active and significantly expanded the activity range in the rice-fish coculture compared to fish monoculture (fish not living together with rice plants). The contributions of 3 potential aquatic organisms (duckweed, phytoplankton and snail) to fish dietary were 22.7%, 34.8% and 30.0% respectively under rice-fish coculture without feed. Under the treatment with feed, however, the contributions of these 3 aquatic organisms to the fish die-tary were 8.9%, 5.9% and 1.6% respectively. The feed contribution was 71.0%. Rice-fish coculture significantly increased the nitrogen concentration in rice leaves, prolonged tillering stage by 10-12 days and increased rice spike rate and yield. The results suggested that raising fish in paddy field may transform the nutrients contained in field resources to bioavailable for rice plants through fish feeding activity, which can improve rice growth and rice yield.

  17. RiceAtlas, a spatial database of global rice calendars and production.

    Science.gov (United States)

    Laborte, Alice G; Gutierrez, Mary Anne; Balanza, Jane Girly; Saito, Kazuki; Zwart, Sander J; Boschetti, Mirco; Murty, M V R; Villano, Lorena; Aunario, Jorrel Khalil; Reinke, Russell; Koo, Jawoo; Hijmans, Robert J; Nelson, Andrew

    2017-05-30

    Knowing where, when, and how much rice is planted and harvested is crucial information for understanding the effects of policy, trade, and global and technological change on food security. We developed RiceAtlas, a spatial database on the seasonal distribution of the world's rice production. It consists of data on rice planting and harvesting dates by growing season and estimates of monthly production for all rice-producing countries. Sources used for planting and harvesting dates include global and regional databases, national publications, online reports, and expert knowledge. Monthly production data were estimated based on annual or seasonal production statistics, and planting and harvesting dates. RiceAtlas has 2,725 spatial units. Compared with available global crop calendars, RiceAtlas is nearly ten times more spatially detailed and has nearly seven times more spatial units, with at least two seasons of calendar data, making RiceAtlas the most comprehensive and detailed spatial database on rice calendar and production.

  18. Looking Inward to the Use of Unmanned Aerial Vehicle (UAV) for Rice Production Assessment in Indonesia

    Science.gov (United States)

    Komaladara, A. A. S. P.; Ambarawati, I. G. A. A.; Wijaya, I. M. A. S.; Hongo, C.; Mirah Adi, A. A. A.

    2015-12-01

    Rice is the main source of carbohydrate for most Indonesians. Rice production has been very dynamic due to improved infrastructure, research and development, and better farm management. However, rice production is susceptible to loss caused by drought, pest and disease attack and climate change. With the growing concern on sustainable and self-reliance food production in the country, there is an urgency to encourage research and efforts to increase rice productivity. Attempts to provide spatial distribution of rice fields on high resolution optical remote sensing data have been employed to some extent, however this technology could be costly. The use of UAV has been introduced to estimate damage ratio in rice crop recently in Indonesia. This technology is one of the ways to estimate rice production quicker, cost-saving and before harvesting time. This study aims to analyze spatio temporal and damage ratio of rice crop using UAV in Indonesia. The study empirically presents the use of UAV (Phantom 2 Vision +) on rice fields to the soil condition and development of management zone map in Bali as an example. The study concludes that the use of UAV allows researchers to pin point characteristics of crop and land in a specific area of a farm. This will then allow researchers to assist farmers in implementing specific and appropriate solutions to production issues. Key words: UAV, rice production, damage ratio

  19. Rice Combine Harvester: Its Effects to the Livelihood of Rice-Field Tenants in a Second Class Municipality

    Directory of Open Access Journals (Sweden)

    Jesrael Medrano

    2016-11-01

    Full Text Available Over the past few years, the advancement of modern technology has intensely overhauled society. People use and benefit from modern technology, and the tremendous opportunities it provides play a significant role in almost all aspects of human life. However, too much usage of this has its repercussions as well. Technological and mechanical change in agricultural sector and its impact on the work force have already become one of the neglected concerns of farmers in Amulung, a second class municipality of Cagayan. The newly introduced rice combine harvesters are already dominating the rice fields in Amulung during harvesting seasons. Thus, it replaces the conventional system of harvesting using human labor and sickles. This study is conducted to determine the effects of rice combine harvesters to the livelihood of rice field tenants in Amulung, Cagayan. Using purposive sampling through site selection approach and networking, 25 rice field tenants were selected as participants of this study. In–depth conversations and guided interview had served as the main instruments used by the researchers to gather the needed data. The results showed that rice combine harvesters cause unemployment and migration among the participants and degrade their sense of solidarity and camaraderie. As a result, the participants sought alternative activities which they can be paid off. Also, they engage themselves in livestock and poultry production, and even in informal sector economy just to cope with the prevalence of rice combine harvesters.

  20. An update on the use of co-products from the milling of rice in value added food products

    Science.gov (United States)

    Because of the huge quantity of rice produced annually, milled-rice co-products; such as, rice bran, rice oil, rice wax, rice flour, and rice hull are plentiful and readily available. These co-products could be valuable sources of food ingredients, but they have been vastly under-utilized. Rice bra...

  1. Reducing Potential Disaster Impacts in Irrigated Rice Fields in West Java

    NARCIS (Netherlands)

    Sianturi, R.S.

    2018-01-01

    The increasing global population inevitably demands for stable food production. As an important food crop, rice plays a major role in maintaining food security. However, irrigated rice fields are increasingly suffered from natural hazard occurrences worldwide, disrupting livelihoods of millions of

  2. Remotely Sensing Larval Population Dynamics of Rice Field Anophelines

    Science.gov (United States)

    Beck, Louisa R.; Dister, Sheri W.; Wood, Byron L.; Washino, Robert K.

    1997-01-01

    The primary objective of both studies was to determine if RS and GIS techniques could be used to distinguish between high and low larval-producing rice fields in California. Results of the first study suggested that early-season green-up and proximity to livestock pastures were positively correlated with high larval abundance. Based on the early-season spectral differences between high and low larval-producing fields, it appeared that canopy development and tillering influenced mosquito habitat quality. At that time, rice fields consisted of a mixture of plants and water, a combination that allowed An. freeborni females to lay eggs in partial sunlight, protected from both predators and wind. This established a population earlier in the season than in other, 'less-green' fields where tillering and plant emergence was too minimal for ovipositioning. The study also indicated the importance of the distance that a mosquito would have to fly in order to take a bloodmeal prior to ovipositing. These associations were fully explored in an expanded study two years later. The second study confirmed the positive relationship between early season canopy development and larval abundance, and also demonstrated the relationship between abundance and distance-to-pasture. The association between greenness (as measured using NDVI), distance-to-pasture, and abundance is illustrated. The second study also indicated the siginificance of the landscape context of rice fields for larval production. Fields that included opportunities for feeding and resting within the flight range of the mosquito had higher abundances than did fields that were in a homogeneous rice area.

  3. Water saving in lowland rice production: an experimental and modeling study

    NARCIS (Netherlands)

    Belder, P.

    2005-01-01

    Increasing demand for rice and decreasing water diversions to agriculture, urge for higher water productivity in rice production systems. One way to deal with this challenge is using water-saving regimes on field scale. The main objective of this study was to quantify the effects of water-saving

  4. Radiation disinfection of rice-straw products

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Ishigaki, Isao; Ohki, Yumi.

    1991-01-01

    For the quarantine treatment of rice-straw products from foreign countries, irradiation effects of gamma-rays and electron beams on plant pathogenic microorganisms especially on fungi were investigated. The total aerobic bacteria in rice-straw was determined to be 3x10 7 - 3x10 8 per gram which consisted mainly of Pseudomonas, Flavobacterium, Arthrobacter and Erwinia. The principal bacteria in rice-straw could be eliminated with 5 kGy of gamma irradiation. Deinococcus proteolyticus and Pseudomonas radiora were the main survivors at 5 to 12 kGy of irradiation. Saprophytic fungus which belongs to Dimorphospora also survived up to 8 kGy of irradiation. The D 10 values of 26 strains of fungi isolated from rice-straw were 1.1 to 2.5 times higher in the dry condition compared to the values when irradiated in 0.067 M phosphate buffer solution. The induction dose in the dry condition also increased from 1.5 to 10 times than that in the wet condition. In the case of electron beam irradiation of fungi under dry conditions, D 10 values were about 1.3 times higher than that of gamma irradiation. From this study, the dose necessary to reduce the plant pathogenic fungi in rice-straw at a level below 10 -4 per gram was estimated to be as 7-8 kGy for gamma-irradiation and 10 kGy for electron beam irradiation. (author)

  5. Lead in rice: analysis of baseline lead levels in market and field collected rice grains.

    Science.gov (United States)

    Norton, Gareth J; Williams, Paul N; Adomako, Eureka E; Price, Adam H; Zhu, Yongguan; Zhao, Fang-Jie; McGrath, Steve; Deacon, Claire M; Villada, Antia; Sommella, Alessia; Lu, Ying; Ming, Lei; De Silva, P Mangala C S; Brammer, Hugh; Dasgupta, Tapash; Islam, M Rafiqul; Meharg, Andrew A

    2014-07-01

    In a large scale survey of rice grains from markets (13 countries) and fields (6 countries), a total of 1578 rice grain samples were analysed for lead. From the market collected samples, only 0.6% of the samples exceeded the Chinese and EU limit of 0.2 μg g(-1) lead in rice (when excluding samples collected from known contaminated/mine impacted regions). When evaluating the rice grain samples against the Food and Drug Administration's (FDA) provisional total tolerable intake (PTTI) values for children and pregnant women, it was found that only people consuming large quantities of rice were at risk of exceeding the PTTI from rice alone. Furthermore, 6 field experiments were conducted to evaluate the proportion of the variation in lead concentration in rice grains due to genetics. A total of 4 of the 6 field experiments had significant differences between genotypes, but when the genotypes common across all six field sites were assessed, only 4% of the variation was explained by genotype, with 9.5% and 11% of the variation explained by the environment and genotype by environment interaction respectively. Further work is needed to identify the sources of lead contamination in rice, with detailed information obtained on the locations and environments where the rice is sampled, so that specific risk assessments can be performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effect of gamma irradiation on rice and its food products

    International Nuclear Information System (INIS)

    Sung, W.-C.

    2005-01-01

    Two milled indica rice varieties were exposed to gamma radiation with doses ranging from 0 to 1.0 kGy. The effects of gamma irradiation on rice flour pasting properties and the qualities of its food product, rice curd, were compared to the effects of storage. A dose of 1 kGy can decrease the flour paste viscosity and tenderize the texture of the rice curd to similar levels as those obtained after 12 months of storage. It was thus shown that gamma irradiation could shorten the indica rice aging time and improve the processing stability and quality of rice products

  7. Effect of gamma irradiation on rice and its food products

    Energy Technology Data Exchange (ETDEWEB)

    Sung, W.-C. [Department of Hotel and Restaurant Management, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Sec. 1, Pao-An, Jen-Te Hsiang, Tainan 717, Taiwan (China)]. E-mail: sungwilliam2001@yahoo.com.tw

    2005-07-01

    Two milled indica rice varieties were exposed to gamma radiation with doses ranging from 0 to 1.0 kGy. The effects of gamma irradiation on rice flour pasting properties and the qualities of its food product, rice curd, were compared to the effects of storage. A dose of 1 kGy can decrease the flour paste viscosity and tenderize the texture of the rice curd to similar levels as those obtained after 12 months of storage. It was thus shown that gamma irradiation could shorten the indica rice aging time and improve the processing stability and quality of rice products.

  8. RiceAtlas, a spatial database of global rice calendars and production

    NARCIS (Netherlands)

    Laborte, Alice G.; Gutierrez, Mary Anne; Balanza, Jane Girly; Saito, Kazuki; Zwart, Sander; Boschetti, Mirco; Murty, M. V.R.; Villano, Lorena; Aunario, Jorrel Khalil; Reinke, Russell; Koo, Jawoo; Hijmans, Robert J.; Nelson, Andrew

    2017-01-01

    Knowing where, when, and how much rice is planted and harvested is crucial information for understanding the effects of policy, trade, and global and technological change on food security. We developed RiceAtlas, a spatial database on the seasonal distribution of the world's rice production. It

  9. An Economic Risk Analysis of Weed Suppressive Rice Cultivars in Rice Production

    Science.gov (United States)

    Weeds are a major constraint to rice production. In the United States, most rice cultivars are not inherently weed-suppressive and require substantial herbicide inputs to achieve agronomic and economic viability. Intensive herbicide application in rice also has many potential drawbacks, resulting in...

  10. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines

    International Nuclear Information System (INIS)

    Gadde, Butchaiah; Bonnet, Sebastien; Menke, Christoph; Garivait, Savitri

    2009-01-01

    Rice is a widely grown crop in Asia. China (30%) and India (21%) contribute to about half of the world's total rice production. In this study, three major rice-producing countries in Asia are considered, India, Thailand and the Philippines (the later two contributing 4% and 2% of the world's rice production). Rice straw is one of the main field based residues produced along with this commodity and its applications vary widely in the region. Although rice production practises vary from one country to another, open burning of straw is a common practice in these countries. In this study, an approach was followed aiming at (a) determining the quantity of rice straw being subject to open field burning in those countries, (b) congregating pollutant specific emissions factors for rice straw burning, and (c) quantifying the resulting air pollutant emissions. Uncertainties in the results obtained as compared to a global approach are also discussed. - This research work contributes to enhance scientific knowledge for estimating air pollutant emissions from open burning of crop residues and improve emission results accuracy.

  11. Succession of methanogenic archaea in rice straw incorporated into a Japanese rice field: estimation by PCR-DGGE and sequence analyses

    Directory of Open Access Journals (Sweden)

    Atsuo Sugano

    2005-01-01

    Full Text Available The succession and phylogenetic profiles of methanogenic archaeal communities associated with rice straw decomposition in rice-field soil were studied by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE analysis followed by 16S rDNA sequencing. Nylon bags containing either leaf sheaths or blades were buried in the plowed layer of a Japanese rice field under drained conditions during the off-crop season and under flooded conditions after transplanting. In addition, rice straw samples that had been buried in the rice field under drained conditions during the off-crop season were temporarily removed during spring plowing and then re-buried in the same rice field under flooded conditions at transplanting. Populations of methanogenic archaea were examined by amplification of the 16S rRNA genes in the DNA extracted from the rice straw samples. No PCR product was produced for samples of leaf sheath or blade prior to burial or after burial under drained conditions, indicating that the methanogen population was very small during decomposition of rice straw under oxic conditions. Many common bands were observed in rice straw samples of leaf sheath and blade during decomposition of rice straw under flooded conditions. Cluster analysis based on DGGE patterns divided methanogenic archaeal communities into two groups before and after the mid-season drainage. Sequence analysis of DGGE bands that were commonly present were closely related to Methanomicrobiales and Rice cluster I. Methanomicrobiales, Rice cluster I and Methanosarcinales were major members before the mid-season drainage, whereas the DGGE bands that characterized methanogenic archaeal communities after the mid-season drainage were closely related to Methanomicrobiales. These results indicate that mid-season drainage affected the methanogenic archaeal communities irrespective of their location on rice straw (sheath and blade and the previous history of decomposition

  12. Soil quality assessment in rice production systems: establishing a minimum data set.

    NARCIS (Netherlands)

    Rodrigues de Lima, A.C.; Hoogmoed, W.B.; Brussaard, L.

    2008-01-01

    Soil quality, as a measure of the soil's capacity to function, can be assessed by indicators based on physical, chemical, and biological properties. Here we report on the assessment of soil quality in 21 rice (Oryza sativa) fields under three rice production systems (semi-direct, pre-germinated, and

  13. Resource Misallocation and Rice Productivity in Thailand

    Directory of Open Access Journals (Sweden)

    Siwapong Dheera - Aumpon

    2018-06-01

    Full Text Available Thailand’s manufacturing sector is characterised by considerable resource misallocation compared with this sector in other countries, and the problem may extend to its agricultural sector as well. Using detailed household-level data on rice production from the 2013 Agricultural Census, this paper examines resource misallocation across farms in Thailand and its effect on the country’s aggregate productivity in rice farming. I find that the marginal products of land and capital were largely dispersed, which is an indication of significant resource misallocation. I further estimate that reallocation of resources could increase aggregate output and productivity by approximately a factor of 1.67. This potential gain is not small, but it is smaller than that predicted in other studies for the Thai manufacturing sector and the Malawian agricultural sector, a result suggesting that the Thai rice farming sector is relatively less plagued by resource misallocation. Other developing countries may encounter similar degrees of misallocation in their agricultural sectors. I also find that an effective reallocation policy cannot involve simply reducing the landholdings of large landholders but rather supports highproductivity farmers to have more land and capital.

  14. Managing flood prone ecosystem for rice production in Bihar plains

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.

    2002-06-01

    A large area of the eastern region especially Bihar (0.5 million hectare) faces flood submergence and/or drought every year which creates an unfavorable environment for crop production. In this ecosystem only flood prone rice is grown whose cultivation is entirely different than normal rice crop. Managing the flood prone ecosystem for rice production needs to evaluate the reasons and a comprehensive appropriate technology through research efforts for better rice production under such harsh ecology. An attempt was made to develop a suitable agronomic package for rice cultivation during and after flooding in flood prone plains of Bihar. (author)

  15. Optimizing Greenhouse Rice Production: Summary of Recommendations

    OpenAIRE

    Eddy, Robert; Acosta, Kevin; Liu, Yisi; Russell, Michael

    2016-01-01

    This publication provides a single-page chart summarizing our protocols for growing Rice (japonica). Split into three production goals, recommendations are given for photoperiod, temperature, lighting, container, root medium, planting density, irrigation, fertilization, algae control and fungus gnat control. This version updates our fertilization frequency, pot size, root medium and algae control recommendations. This document summarizes a series of questions and answers originally posted ...

  16. Radiation disinfection of rice-straw products

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi; Ishigaki, Isao (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment); Ohki, Yumi

    1991-11-01

    For the quarantine treatment of rice-straw products from foreign countries, irradiation effects of gamma-rays and electron beams on plant pathogenic microorganisms especially on fungi were investigated. The total aerobic bacteria in rice-straw was determined to be 3x10{sup 7} - 3x10{sup 8} per gram which consisted mainly of Pseudomonas, Flavobacterium, Arthrobacter and Erwinia. The principal bacteria in rice-straw could be eliminated with 5 kGy of gamma irradiation. Deinococcus proteolyticus and Pseudomonas radiora were the main survivors at 5 to 12 kGy of irradiation. Saprophytic fungus which belongs to Dimorphospora also survived up to 8 kGy of irradiation. The D{sub 10} values of 26 strains of fungi isolated from rice-straw were 1.1 to 2.5 times higher in the dry condition compared to the values when irradiated in 0.067 M phosphate buffer solution. The induction dose in the dry condition also increased from 1.5 to 10 times than that in the wet condition. In the case of electron beam irradiation of fungi under dry conditions, D{sub 10} values were about 1.3 times higher than that of gamma irradiation. From this study, the dose necessary to reduce the plant pathogenic fungi in rice-straw at a level below 10{sup -4} per gram was estimated to be as 7-8 kGy for gamma-irradiation and 10 kGy for electron beam irradiation. (author).

  17. AN INTERACTION MODEL BETWEEN ENVIRONMENTAL FACTORS AND BLACK RICE GROWTH IN IRRIGATED ORGANIC PADDY FIELD

    Directory of Open Access Journals (Sweden)

    Budiman

    2015-02-01

    Full Text Available Black rice production in organic farming system does not meet the demand of local customers because of its low productivity. This research aimed to set an interaction model using multivariate analysis via smartPLS to identify environmental factors which simultaneously affects the growth of black rice. The growth of black rice in two irrigated organic paddy field in Malang, Indonesia was observed during planting period from November 2011 to March 2012. In each rice field, the growth was periodically recorded during planting periods: 19-29 days after planting (dap, 41-45 dap, 62-66 dap, 77-81 dap, 90-94 dap and 104-106 dap. Environmental factors such as water quantities, soil conditions, weed communities and cultivation system around the black rice population were also measured. Black rice growth was influenced simultaneously by water quantities, soil, weed communities and cultivating systems with predictive-relevance value reaching 92.83%. Based on the model, water quantities in paddy field is a key factor which directly and indirectly determined the growth and productivity of black rice.

  18. Global Rice Atlas: Disaggregated seasonal crop calendar and production

    NARCIS (Netherlands)

    Balanza, Jane Girly; Gutierrez, Mary Anne; Villano, Lorena; Nelson, A.D.; Zwart, S.J.; Boschetti, Mirco; Koo, Jawoo; Reinke, Russell; Murty, M. V.R.; Laborte, Alice G.

    2014-01-01

    Purpose: Rice is an important staple crop cultivated in more than 163 million ha globally. Although information on the distribution of global rice production is available by country and, at times, at subnational level, information on its distribution within a year is often lacking in different rice

  19. Ecological investigation of application of pesticides in rice fields

    International Nuclear Information System (INIS)

    Nouri, J.; Arjomandi, R.; Bayat, H.

    2000-01-01

    Among several pests of rice as one of the main agricultural products in Iran, rice borer, C hilo sarsaparilla is one of the most important pests of this crop. Use of pesticides coincided with the occurrence of this pest in the northern region of Iran in 1972. At present in order to control this pest, more than 12000 tones of pesticides granules are used annually. Ecological effects of pesticides application and the use of Trichograma sp. as a natural enemy, for assessing the impacts of pesticides in environments, especially on different living organisms on the plant, in irrigation water, and in 5 cm depth of surface soil, were investigated in two regions of Amol, named Osk. Mahalleh and Capik Field of Tashbandan. Results indicated that the two treatments were not different on crop loss. One the contrary, in the pesticide treatment, there was a considerable dec tease in the population of living organisms, particularly, no organism was observed in 5 cm depth of surface soil. It is recommended that in order to maintain the balance of environment, the use of chemicals for controlling rice borer must be with extreme care, only in the inevitable was with the use of principles of Integrated Pest Management

  20. Analysis of hyperspectral field radiometric data for monitoring nitrogen concentration in rice crops

    Science.gov (United States)

    Stroppiana, D.; Boschetti, M.; Confalonieri, R.; Bocchi, S.; Brivio, P. A.

    2005-10-01

    Monitoring crop conditions and assessing nutrition requirements is fundamental for implementing sustainable agriculture. Rational nitrogen fertilization is of particular importance in rice crops in order to guarantee high production levels while minimising the impact on the environment. In fact, the typical flooded condition of rice fields can be a significant source of greenhouse gasses. Information on plant nitrogen concentration can be used, coupled with information about the phenological stage, to plan strategies for a rational and spatially differentiated fertilization schedule. A field experiment was carried out in a rice field Northern Italy, in order to evaluate the potential of field radiometric measurements for the prediction of rice nitrogen concentration. The results indicate that rice reflectance is influenced by nitrogen supply at certain wavelengths although N concentration cannot be accurately predicted based on the reflectance measured at a given wavelength. Regression analysis highlighted that the visible region of the spectrum is most sensitive to plant nitrogen concentration when reflectance measures are combined into a spectral index. An automated procedure allowed the analysis of all the possible combinations into a Normalized Difference Index (NDI) of the narrow spectral bands derived by spectral resampling of field measurements. The derived index appeared to be least influenced by plant biomass and Leaf Area Index (LAI) providing a useful approach to detect rice nutritional status. The validation of the regressive model showed that the model is able to predict rice N concentration (R2=0.55 [p<0.01] RRMSE=29.4; modelling efficiency close to the optimum value).

  1. Land Titles and Rice Production in Vietnam

    DEFF Research Database (Denmark)

    Van Den Broeck, Katleen; Newman, Carol; Tarp, Finn

    In most of the empirical literature on land titling, the household is regarded as unitary, and land rights are found to have ambiguous effects on land allocation, investment and productivity. Using data from 12 provinces in Vietnam, we diversify land titles, and show in a household fixed effects...... analysis of plot level rice yields that land titles are indeed important. Only exclusively held titles have the expected positive effects, and the positive effect on yields is found in male headed households. Furthermore, a household level rice yield function reveals that exclusive user rights...... are inefficiency decreasing, while jointly held user rights have no efficiency effects. Finally, once the gender of the head of household is controlled for, exclusively held female titles have a greater positive effect on the efficiency of the household than that of male held titles...

  2. Rice production model based on the concept of ecological footprint

    Science.gov (United States)

    Faiz, S. A.; Wicaksono, A. D.; Dinanti, D.

    2017-06-01

    Pursuant to what had been stated in Region Spatial Planning (RTRW) of Malang Regency for period 2010-2030, Malang Regency was considered as the center of agricultural development, including districts bordered with Malang City. To protect the region functioning as the provider of rice production, then the policy of sustainable food farming-land (LP2B) was made which its implementation aims to protect rice-land. In the existing condition, LP2B system was not maximally executed, and it caused a limited extend of rice-land to deliver rice production output. One cause related with the development of settlements and industries due to the effect of Malang City that converted land-function. Location of research focused on 30 villages with direct border with Malang City. Review was conducted to develop a model of relation between farming production output and ecological footprint variables. These variables include rice-land area (X1), built land percentage (X2), and number of farmers (X3). Analysis technique was regression. Result of regression indicated that the model of rice production output Y=-207,983 + 10.246X1. Rice-land area (X1) was the most influential independent variable. It was concluded that of villages directly bordered with Malang City, there were 11 villages with higher production potential because their rice production yield was more than 1,000 tons/year, while 12 villages were threatened with low production output because its rice production yield only attained 500 tons/year. Based on the model and the spatial direction of RTRW, it can be said that the direction for the farming development policy must be redesigned to maintain rice-land area on the regions on which agricultural activity was still dominant. Because rice-land area was the most influential factor to farming production. Therefore, the wider the rice-land is, the higher rice production output is on each village.

  3. An update on the use of rice in value-added food products.

    Science.gov (United States)

    Because of the huge quantity of rice produced annually, milled-rice co-products; such as, rice flour, rice bran, rice wax, and rice hull are plentiful and readily available. These co-products could be valuable sources of food ingredients, but they have been vastly under-utilized. This is a report ...

  4. The dynamics of rice production in Indonesia 1961–2009

    Directory of Open Access Journals (Sweden)

    Dyah R. Panuju

    2013-01-01

    Full Text Available Rice is one of the important agricultural products in Indonesia. The production has been fully supported by infrastructure including research and development as well as government regulations in pricing. Its vulnerability to climate change requires adaptation strategies on irrigation, biotechnology and selection of alternative crops. The primary goal of this paper was to evaluate the historical perspective of the dynamics of rice production, technologies particularly in seed inventions, labour in farming and consumption of rice from 1961 to 2009 in conjunction with land capability. The study of historical rice production could be a benefit for future agricultural planning in Indonesia.

  5. An overview of global rice production, supply, trade, and consumption.

    Science.gov (United States)

    Muthayya, Sumithra; Sugimoto, Jonathan D; Montgomery, Scott; Maberly, Glen F

    2014-09-01

    Rice is the staple food for over half the world's population. Approximately 480 million metric tons of milled rice is produced annually. China and India alone account for ∼50% of the rice grown and consumed. Rice provides up to 50% of the dietary caloric supply for millions living in poverty in Asia and is, therefore, critical for food security. It is becoming an important food staple in both Latin America and Africa. Record increases in rice production have been observed since the start of the Green Revolution. However, rice remains one of the most protected food commodities in world trade. Rice is a poor source of vitamins and minerals, and losses occur during the milling process. Populations that subsist on rice are at high risk of vitamin and mineral deficiency. Improved technologies to fortify rice have the potential to address these deficiencies and their associated adverse health effects. With the rice industry consolidating in many countries, there are opportunities to fortify a significant share of rice for distribution or for use in government safety net programs that target those most in need, especially women and children. Multisectoral approaches are needed for the promotion and implementation of rice fortification in countries. © 2014 New York Academy of Sciences.

  6. Improving Farmers' Efficiency in Rice Production In Nigeria: The ...

    African Journals Online (AJOL)

    This paper assesses the effects of extension services on farmers' efficiency and productivity in rice production in Kano State, Nigeria. Data for the study were collected from 126 rice farmers selected using multi stage sampling technique. Stochastic production frontier function was estimated to ascertain the effects of ...

  7. Can rice field channels contribute to biodiversity conservation in Southern Brazilian wetlands?

    Science.gov (United States)

    Maltchik, Leonardo; Rolon, Ana Silvia; Stenert, Cristina; Machado, Iberê Farina; Rocha, Odete

    2011-12-01

    Conservation of species in agroecosystems has attracted attention. Irrigation channels can improve habitats and offer conditions for freshwater species conservation. Two questions from biodiversity conservation point of view are: 1) Can the irrigated channels maintain a rich diversity of macrophytes, macroinvertebrates and amphibians over the cultivation cycle? 2) Do richness, abundance and composition of aquatic species change over the rice cultivation cycle? For this, a set of four rice field channels was randomly selected in Southern Brazilian wetlands. In each channel, six sample collection events were carried out over the rice cultivation cycle (June 2005 to June 2006). A total of 160 taxa were identified in irrigated channels, including 59 macrophyte species, 91 taxa of macroinvertebrate and 10 amphibian species. The richness and abundance of macrophytes, macroinvertebrates and amphibians did not change significantly over the rice cultivation cycle. However, the species composition of these groups in the irrigation channels varied between uncultivated and cultivated periods. Our results showed that the species diversity found in the irrigation channels, together with the permanence of water enables these man-made aquatic networks to function as important systems that can contribute to the conservation of biodiversity in regions where the wetlands were converted into rice fields. The conservation of the species in agriculture, such as rice field channels, may be an important alternative for biodiversity conservation in Southern Brazil, where more than 90% of wetland systems have already been lost and the remaining ones are still at high risk due to the expansion of rice production.

  8. The Impact of Agricultural Policy Distortions on the Productivity Gap: Evidence from the Rice Production

    OpenAIRE

    Rakotoarisoa, Manitra A.

    2008-01-01

    This study determines how production and trade policy distortions affected rice productivity in thirty-three rice-producing countries. A rice-productivity index for each country is constructed, and a model linking the productivity gap with policy distortions is presented. After controlling for the differences in infrastructure, openness, and human capital, this article shows that high subsidies and protection in developed countries combined with taxation of rice farming in poor countries have...

  9. Greenhouse gas budget from a rice paddy field in the Albufera of Valencia, Spain.

    Science.gov (United States)

    Meijide, Ana; López-Ballesteros, Ana; Calvo-Roselló, Esperanza; López-Jiménez, Ramón; Recio-Huetos, Jaime; Calatayud, Vicent; Carrara, Arnaud; Serrano-Ortiz, Penelope

    2017-04-01

    sequestration rates of ca. 40 µmol m-2 s-1. During this period, the higher air temperature together with the flooding allows for the development of rice plants, resulting in the highest EVI and NDVI values (0.59 and 0.85, respectively) and nighttime maximum CO2 emissions (5-10 µmol m-2 s-1). These conditions also favor the production of CH4, which make the rice paddy field a CH4 source. The ecosystem behaved as a N2O sink during most of the study period. Positive N2O emissions were only observed at the beginning of the vegetation growth phase, which seems to be related to fertilizer application.

  10. Occurrence of Aspergillus section Flavi and aflatoxins in Brazilian rice: From field to market.

    Science.gov (United States)

    Katsurayama, Aline M; Martins, Ligia M; Iamanaka, Beatriz T; Fungaro, Maria Helena P; Silva, Josué J; Frisvad, Jens C; Pitt, John I; Taniwaki, Marta H

    2018-02-02

    The guarantee of the high quality of rice is of utmost importance because any toxic contaminant may affect consumer health, especially in countries such as Brazil where rice is part of the daily diet. A total of 187 rice samples, from field, processing and market from two different production systems, wetland from the state of Rio Grande do Sul, dryland, from the state of Maranhão and market samples from the state of São Paulo, were analyzed for fungi belonging to Aspergillus section Flavi and the presence of aflatoxins. Twenty-three soil samples from wetland and dryland were also analyzed. A total of 383 Aspergillus section Flavi strains were isolated from rice and soil samples. Using a polyphasic approach, with phenotypic (morphology and extrolite profiles) and molecular data (beta-tubulin gene sequences), five species were identified: A. flavus, A. caelatus, A. novoparasiticus, A. arachidicola and A. pseudocaelatus. This is the first report of these last three species from rice and rice plantation soil. Only seven (17%) of the A. flavus isolates produced type B aflatoxins, but 95% produced kojic acid and 69% cyclopiazonic acid. Less than 14% of the rice samples were contaminated with aflatoxins, but two of the market samples were well above the maximum tolerable limit (5μg/kg), established by the Brazilian National Health Surveillance Agency. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dissipation and Residue Level of Thifluzamide in Rice Field Ecosystem

    Directory of Open Access Journals (Sweden)

    Weitao Chen

    2015-01-01

    Full Text Available An efficient modified QuEChERS method combined with high performance liquid chromatography-tandem mass spectrometry detection (HPLC-MS/MS was established and evaluated for the residue analysis of thifluzamide in rice grain, husk, straw, seedling, paddy water, and soil. Thifluzamide residues were extracted with acetonitrile, cleaned up with primary secondary amine (PSA, and then determined by HPLC-MS/MS. The fortified recoveries were 76%–106% with RSDs of 3%–13%. The results of the supervised field trials at two experiment sites showed that thifluzamide dissipated rapidly in paddy fields, and the half-lives in paddy water, soil, and rice seedling were 0.3–0.6 d, 1.8–3.6 d, and 4.3–13.9 d, respectively. At harvest time, when the preharvest interval (PHI was set as 21 d, the final residues of thifluzamide in rice grains were below the maximum residue limit (MRL of 0.5 mg/kg set by Japan, whereas the final residues in rice husk and straw were still high (the highest value reached 1.36 mg/kg in rice husk and 0.83 mg/kg in rice straw. The results indicated that the highest residue in rice grain was 0.23 mg/kg when PHI was 21 d, and only 6.9–11.0% of acute risk quotient of thifluzamide was occupied by the dietary daily intake in Chinese population consuming rice.

  12. Swamp Rice Production in Ogun Waterside Local Government Area ...

    African Journals Online (AJOL)

    This study examined the economics of swamp rice production among peasant farmers in the Waterside Local Government Area of Ogun State for 2001 cropping year. A total of 50 swamp rice farmers were randomly selected from 5 villages using multistage sampling technique. The data collected, with the aid of ...

  13. Resource Use Efficiency in Rice Production in Jere Local ...

    African Journals Online (AJOL)

    The study was carried-out on resource use efficiency in rice production in Jere Local Government Area of Borno State, Nigeria. Data were obtained using structured questionnaire. Five (5) wards were purposely selected out of the twelve (12) wards to reflect areas where rice is mainly grown. A total of 100 respondents were ...

  14. Adoption of selected innovations in rice production and their effect ...

    African Journals Online (AJOL)

    Adoption of selected innovations in rice production and their effect on farmers living standard in Bauchi local government area, Bauchi state, Nigeria. ... International Journal of Natural and Applied Sciences ... Simple random sampling technique was used for the selection of 82 rice growers from these villages. The data ...

  15. Optimisation of wort production from rice malt using enzymes and ...

    African Journals Online (AJOL)

    Commercially, rice malt has never been successfully used in brewing because of its low free α-amino nitrogen (FAN) content. This study was designed to optimise rice malt replacement for barley malt in wort production and to improve FAN by adding α-amylase and protease. The response surface methodology (RSM) ...

  16. Rice production with minimal irrigation and no nitrogen fertilizer by intensive use of treated municipal wastewater.

    Science.gov (United States)

    Muramatsu, Ayumi; Watanabe, Toru; Sasaki, Atsushi; Ito, Hiroaki; Kajihara, Akihiko

    2014-01-01

    We designed a new cultivation system of rice with circulated irrigation to remove nitrogen from treated municipal wastewater effectively and assessed the possibility of nitrogen removal in the new system without any adverse effects on rice production through bench-scale experiments through two seasons. Overgrowth of the rice plant, which can lead to lodging and tasteless rice, was found in the first season probably because nitrogen supply based on standard practice in normal paddy fields was too much in the closed irrigation system. In the second season, therefore, the amount of treated wastewater initially applied to the system was reduced but this resulted in a considerably decreased yield. On the other hand, the taste of the rice was significantly improved. The two-season experiments revealed that the new system enabled rice production with minimal irrigation (approximately 50% on the yield base compared to normal paddy fields) and no nitrogen fertilizer. The system also achieved >95% removal of nitrogen from the treated wastewater used for circulated irrigation. The accumulation of harmful metals in the rice was not observed after one season of cultivation in the new system. The accumulation after cultivation using the same soil repeatedly for a longer time should be examined by further studies.

  17. Spatial Field Variability Mapping of Rice Crop using Clustering Technique from Space Borne Hyperspectral Data

    Science.gov (United States)

    Moharana, S.; Dutta, S.

    2015-12-01

    Precision farming refers to field-specific management of an agricultural crop at a spatial scale with an aim to get the highest achievable yield and to achieve this spatial information on field variability is essential. The difficulty in mapping of spatial variability occurring within an agriculture field can be revealed by employing spectral techniques in hyperspectral imagery rather than multispectral imagery. However an advanced algorithm needs to be developed to fully make use of the rich information content in hyperspectral data. In the present study, potential of hyperspectral data acquired from space platform was examined to map the field variation of paddy crop and its species discrimination. This high dimensional data comprising 242 spectral narrow bands with 30m ground resolution Hyperion L1R product acquired for Assam, India (30th Sept and 3rd Oct, 2014) were allowed for necessary pre-processing steps followed by geometric correction using Hyperion L1GST product. Finally an atmospherically corrected and spatially deduced image consisting of 112 band was obtained. By employing an advanced clustering algorithm, 12 different clusters of spectral waveforms of the crop were generated from six paddy fields for each images. The findings showed that, some clusters were well discriminated representing specific rice genotypes and some clusters were mixed treating as a single rice genotype. As vegetation index (VI) is the best indicator of vegetation mapping, three ratio based VI maps were also generated and unsupervised classification was performed for it. The so obtained 12 clusters of paddy crop were mapped spatially to the derived VI maps. From these findings, the existence of heterogeneity was clearly captured in one of the 6 rice plots (rice plot no. 1) while heterogeneity was observed in rest of the 5 rice plots. The degree of heterogeneous was found more in rice plot no.6 as compared to other plots. Subsequently, spatial variability of paddy field was

  18. Impact of fungicide and insecticide use on non-target aquatic organisms in rice paddy fields

    Directory of Open Access Journals (Sweden)

    Alana Cristina Dorneles Wandscheer

    Full Text Available ABSTRACT: The intensive use of plant protection products in rice paddy fields ( Oryza sativa L. has caused concern about the environmental impact on communities of non-target organisms that are natural inhabitants in these agroecosystems. The purpose of this review is to analyze the data currently available in the literature about some important fungicides and insecticides (such as trifloxystrobin, tebuconazole, tricyclazole, lambda-cyhalothrin, and thiamethoxam, which are currently used to control pests and diseases in rice paddy fields, as well as their effects on the community of non-target aquatic organisms.

  19. Climate Change Implications to Irrigated Rice Production in Southern Brazil: A Modelling Approach

    Science.gov (United States)

    Dos Santos, Thiago

    Rice is one of the staple foods for more than three billion people worldwide. When cultivated under irrigated conditions (i.e. lowland rice), rice is one of the most intensive water consumer crops globally. Therefore, representation of rice growth should be integrated into the latest land surface models to allow studies on food security and to ensure that accurate simulations of the bidirectional feedbacks between the land surface and atmosphere take place. In this study, I present a new process-based model for rice fields that includes rice growth and rice irrigation as modules within the Agro-IBIS dynamic agro-ecosystem model. The model includes a series of equations, agricultural management parameters and an irrigation scheme that are specifically tailored for rice crops. The model was evaluated against leaf area index and biomass observations, obtained for one growing season in Rio Grande do Sul state (southern Brazil), and in Los Banos, Philippines. The model accurately captured the temporal dynamics of leaf area index in both the Brazilian and the Philippine sites, and predicted end-of-season biomass with an error of between -9.5% and 11.3% depending on the location and the plant organ. Rice phenology is predicted by the model based on experimentally-derived growth rates, and was evaluated by comparing simulated and observed durations of the four growth phases considered by the model. Agro-IBIS showed a tendency to overestimate the duration of the growth stages between 3% and 16%, but underestimated by 8% the duration of the panicle formation phase in one growing season. The new irrigation model is based on the water balance at the surface and applies irrigation in order to keep the water layer at the paddy field always in the optimum level. A set of climate projections from global climate models under two emission scenarios, and excluding and considering CO2 fertilizations effects, was used to drive the updated Agro-IBIS to estimate the effects of climate

  20. Land Titles and Rice Production in Vietnam

    DEFF Research Database (Denmark)

    Van Den Broeck, Katleen; Newman, Carol; Tarp, Finn

    analysis of plot level rice yields that land titles are indeed important. Only exclusively held titles have the expected positive effects, and the positive effect on yields is found in male headed households. Furthermore, a household level rice yield function reveals that exclusive user rights...

  1. Abiotic partitioning of clothianidin under simulated rice field conditions.

    Science.gov (United States)

    Mulligan, Rebecca A; Parikh, Sanjai J; Tjeerdema, Ronald S

    2015-10-01

    Clothianidin is registered for pre- and post-flood application in Californian rice fields for control of the rice seed midge, Cricotopus sylvestris, and the rice water weevil, Lissorhoptrus oryzophilus. The objective was to characterize air-water and soil-water partitioning of clothianidin under simulated Californian rice field conditions. Clothianidin was confirmed to be non-volatile (from water) via the gas purge method, as no loss from the aqueous phase was observed at 22 and 37 °C; an upper-limit KH value was calculated at 2.9 × 10(-11) Pa m(3) mol(-1) (20 °C). Soil-water partitioning was determined by the batch equilibrium method using four soils collected from rice fields in the Sacramento Valley, and sorption affinity (Kd ), sorbent capacity, desorption and organic-carbon-normalized distribution (Koc ) were determined. Values for pH, cation exchange capacity and organic matter content ranged from 4.5 to 6.6, from 5.9 to 37.9 and from 1.25 to 1.97% respectively. The log Koc values (22 and 37 °C) ranged from 2.6 to 2.7, while sorption capacity was low at 22 °C and decreased further at 37 °C. Hysteresis was observed in soils at both temperatures, suggesting that bound residues do not readily desorb. Soil-water and air-water partitioning will not significantly reduce offsite transport of clothianidin from flooded rice fields via drainage. © 2014 Society of Chemical Industry.

  2. production of bioethanol from rice straw using yeast extracts ...

    African Journals Online (AJOL)

    user

    70% of production cost using less important materials, like agricultural waste ... rice cultivation and wood industries results in the ... method for pretreatment and enzymatic saccharification ... The economic problems consist exclusive of cost.

  3. Tool for Land Suitability Assessment for Rice Production in

    African Journals Online (AJOL)

    komla

    Emphasis on rice production should be to target a higher ... from 25 °C, Ghana's thermal .... mechanical cultivation, effective soil depth Climate data. TABLE 2. Statistical weightings for dominant and ... calculated from historical daily.

  4. Economic assessment of different mulches in conventional and water-saving rice production systems.

    Science.gov (United States)

    Jabran, Khawar; Hussain, Mubshar; Fahad, Shah; Farooq, Muhammad; Bajwa, Ali Ahsan; Alharrby, Hesham; Nasim, Wajid

    2016-05-01

    Water-saving rice production systems including alternate wetting and drying (AWD) and aerobic rice (AR) are being increasingly adopted by growers due to global water crises. Application of natural and artificial mulches may further improve water economy of water-saving rice production systems. Conventionally flooded rice (CFR) system has been rarely compared with AWD and AR in terms of economic returns. In this 2-year field study, we compared CFR with AWD and AR (with and without straw and plastic mulches) for the cost of production and economic benefits. Results indicated that CFR had a higher production cost than AWD and AR. However, application of mulches increased the cost of production of AWD and AR production systems where plastic mulch was expensive than straw mulch. Although the mulching increased the cost of production for AWD and AR, the gross income of these systems was also improved significantly. The gross income from mulched plots of AWD and AR was higher than non-mulched plots of the same systems. In conclusion, AWD and AR effectively reduce cost of production by economizing the water use. However, the use of natural and artificial mulches in such water-saving environments further increased the economic returns. The maximized economic returns by using straw mulch in water-saving rice production systems definitely have pragmatic implications for sustainable agriculture.

  5. Response of rice cultivars to rates of nitrogen and potassium application in field and pot conditions.

    Science.gov (United States)

    Bahmaniar, M A; Ranjbar, G A

    2007-05-01

    Nitrogen and potassium are the yield-limiting nutrients in rice production regions of Iran. Use of N and K efficient cultivars is an important complementary strategy in improving rice yield, increasing the quality properties of rice grains and reducing cost of production. In order to consider the effects of different amounts of N and K application on rice (Oryza sativa L.) yield and yield components in pot and field conditions these experiments were undertaken in 2004 at Sari Agricultural Station, Iran. Four levels of N (0, 50, 100 and 150 Kg N ha(-1) in field and 0, 0.6, 1.2 and 1.8 g N pot(-1) in pot) corresponding with four levels of K (0, 75, 150 and 225 kg K2O ha(-1) in field and 0, 0.5, 1 and 1.5 g K2O pot(-1) in pot) were applied in a split-factorial plot design with three replications in both pot and field experiments, variously. Grain yield, number of grain per panicle, number of tiller, plant height, length of flag leaf, total and shoot dry matter, 1000 grain weight and harvest index have been increased by N application in field conditions. However, in pot conditions grain yield, number of grain per panicle, number of tiller, plant height, width of flag leaf, total and shoot dry matter, leaf nitrogen contents and harvest index have significantly been increased (p pot conditions (p < or = 0.05).

  6. Energy use pattern in rice production: A case study from Mazandaran province, Iran

    International Nuclear Information System (INIS)

    AghaAlikhani, M.; Kazemi-Poshtmasari, H.; Habibzadeh, F.

    2013-01-01

    Highlights: ► We compare the energy use efficiency in rice production for traditional and mechanized system. ► Since farmers growing native, high yield and hybrid rice cultivars we have focused on mean data. ► Chemical fertilizer has the highest share in total energy inputs were followed by diesel fuel. ► Rice production in traditional system has lower output but higher EUE than mechanized system. - Abstract: Rice (Oryza sativa L.) is grown under both traditional system (TS) and mechanized system (MS) in Iran. In this study the energy consumption for rice is analyzed in Mazandaran, Northern province of Iran. The indicators are: net energy, energy use efficiency, specific energy, energy productivity, direct energy, indirect energy, renewable energy, non-renewable and total energy input. The cultivars of rice commonly grown in Iran are listed in three groups: native, high yield cultivars and hybrid cultivar. Primary data were obtained through field survey and personal interviews using questionnaires from 48 agricultural services center in Mazandaran province. Secondary data and energy equivalents were obtained from available literature using collected data of the production period of 2007–2008. Analysis of date showed that averagely diesel fuel had the highest share within the total energy inputs, followed by chemical fertilizer in rice production in both TS and MS. Energy use efficiency was calculated as 1.72 in TS and 1.63 in MS. Total energy consumption in rice production were 71,092.26 MJ/ha (TS) and 79,460.33 MJ/ha (MS). In general, there were not significant changes regarding the human labor and chemicals in tow systems

  7. Delay-tolerant mobile network protocol for rice field monitoring using wireless sensor networks

    Science.gov (United States)

    Guitton, Alexandre; Andres, Frédéric; Cardoso, Jarbas Lopes; Kawtrakul, Asanee; Barbin, Silvio E.

    2015-10-01

    The monitoring of rice fields can improve productivity by helping farmers throughout the rice cultivation cycle, on various issues: when to harvest, when to treat the crops against disease, when to increase the water level, how to share observations and decisions made in a collaborative way, etc. In this paper, we propose an architecture to monitor a rice field by a wireless sensor network. Our architecture is based on static sensor nodes forming a disconnected network, and mobile nodes communicating with the sensor nodes in a delay-tolerant manner. The data collected by the static sensor nodes are transmitted to mobile nodes, which in turn transmit them to a gateway, connected to a database, for further analysis. We focus on the related architecture, as well as on the energy-efficient protocols intended to perform the data collection.

  8. Characteristics and land suitability of newly establish rice field in Lesung Batu Muda, Rawas Ulu, Musi Rawas, South Sumatera

    Directory of Open Access Journals (Sweden)

    R Sudaryanto

    2015-04-01

    Full Text Available Rice field has a strategic function because it is the main provider of food for the population of Indonesia. The data of the land use for the rice field in Indonesia showed that around 41% in Java Island. Agricultural technology at the level of industry experienced rapid progress, but the technology implementation at the level by farmer is relatively slow. Increased production of rice in Indonesia was reported of less than 1% per year. The research aimed to study the characteristics and land suitability of newly established rice field in Lesung Batu Muda, Rawas Ulu, Musi Rawas, South Sumatera. There were two soil land units that were tested included water availability, rooting medium, level of erosion, soil chemical properties and land preparation. The results of the study showed that newly established rice fields in Lesung Batu Muda, Rawas Ulu, Musi Rawas, South Sumatera could be used to open new rice fields by planting twice a year. In opening new rice fields, the application of organic matter and creation of terracing on sloping areas were needed.

  9. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Kazuei, E-mail: k-ishii@eng.hokudai.ac.jp; Furuichi, Toru

    2014-12-15

    Highlights: • Optimized conditions were determined for the production of rice straw pellets. • The moisture content and forming temperature are key factors. • High quality rice pellets in the lower heating value and durability were produced. - Abstract: A large amount of rice straw is generated and left as much in paddy fields, which causes greenhouse gas emissions as methane. Rice straw can be used as bioenergy. Rice straw pellets are a promising technology because pelletization of rice straw is a form of mass and energy densification, which leads to a product that is easy to handle, transport, store and utilize because of the increase in the bulk density. The operational conditions required to produce high quality rice straw pellets have not been determined. This study determined the optimal moisture content range required to produce rice straw pellets with high yield ratio and high heating value, and also determined the influence of particle size and the forming temperature on the yield ratio and durability of rice straw pellets. The optimal moisture content range was between 13% and 20% under a forming temperature of 60 or 80 °C. The optimal particle size was between 10 and 20 mm, considering the time and energy required for shredding, although the particle size did not significantly affect the yield ratio and durability of the pellets. The optimized conditions provided high quality rice straw pellets with nearly 90% yield ratio, ⩾12 MJ/kg for the lower heating value, and >95% durability.

  10. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets

    International Nuclear Information System (INIS)

    Ishii, Kazuei; Furuichi, Toru

    2014-01-01

    Highlights: • Optimized conditions were determined for the production of rice straw pellets. • The moisture content and forming temperature are key factors. • High quality rice pellets in the lower heating value and durability were produced. - Abstract: A large amount of rice straw is generated and left as much in paddy fields, which causes greenhouse gas emissions as methane. Rice straw can be used as bioenergy. Rice straw pellets are a promising technology because pelletization of rice straw is a form of mass and energy densification, which leads to a product that is easy to handle, transport, store and utilize because of the increase in the bulk density. The operational conditions required to produce high quality rice straw pellets have not been determined. This study determined the optimal moisture content range required to produce rice straw pellets with high yield ratio and high heating value, and also determined the influence of particle size and the forming temperature on the yield ratio and durability of rice straw pellets. The optimal moisture content range was between 13% and 20% under a forming temperature of 60 or 80 °C. The optimal particle size was between 10 and 20 mm, considering the time and energy required for shredding, although the particle size did not significantly affect the yield ratio and durability of the pellets. The optimized conditions provided high quality rice straw pellets with nearly 90% yield ratio, ⩾12 MJ/kg for the lower heating value, and >95% durability

  11. Soil organic carbon in riparian forests, rice fields, and pastures in Piedras, Tolima, Colombia.

    Directory of Open Access Journals (Sweden)

    Hernán Jair Andrade-Castañeda

    2016-06-01

    Full Text Available The aim of the study was to estimate the soil organic carbon (SOC storage in the interface between riparian forests and a matrix of rice fields and pastures with organic management. The study took place in Piedras, Tolima, Colombia. Two plots in production (rice and pasture were selected and SOC was estimated in these areas and in the edge and the interior of adjacent riparian forests at a depth of 0 to 20 cm. Bulk density and SOC concentration were quantified between May and July, 2013. Potential change in SOC storage due to land use change among rice fields, pastures, and riparian forests was estimated. The interfaces rice field-riparian forest and pasture-riparian forest stored an average of 65.6 and 61.3 t C/ha, respectively, with no statistical differences (p>0.05. Statistical differences were not detected (p>0.05 between agricultural matrices (rice fields and pastures in any of the variables. The sampling position (matrix and the edge and interior of forests had a significant impact (p<0.05 just in bulk density: 1.7 vs 1.1 vs 1.0 g/cm3 in interior and edge of the riparian forests and the matrix, respectively. SOC was not statistically affected (p>0.05 by the position in the riparian forest-matrix interface. Conversion from riparian forests to rice fields or pastures with organic management is not emitting greenhouse gases, on the contrary, it is increasing SOC in 3.2 t C/ha. 

  12. Comparison of aquatic macrophyte community structure between natural wetlands and rice fields with different cultivation ages

    OpenAIRE

    Rolon, A. S.; Godoy, R. S.; Maltchik, L.

    2017-01-01

    Abstract Recent studies indicate that rice fields contribute to the conservation of aquatic plants, however, repeated cultivation can reduce the species diversity harbored by rice fields. Repeated tillage, agrochemical application and environmental homogeneity can reduce plant diversity and select for species more tolerant to disturbance. Our hypotheses were: 1) macrophyte richness and biomass decrease with increased rice crop age; and 2) macrophyte species of rice fields are a subsample of n...

  13. Effects of Furrow Irrigation on the Growth, Production, and Water Use Efficiency of Direct Sowing Rice

    Directory of Open Access Journals (Sweden)

    Chunlin He

    2010-01-01

    Full Text Available Rice farming is the major crop production in Asia and is predicted to increase significantly in the near future in order to meet the demands for the increasing human population. Traditional irrigation methods used in rice farming often result in great water loss. New water-saving methods are urgently needed to reduce water consumption. Three field and pot experiments were conducted to evaluate the furrow irrigation (FI system to improve water use efficiency (WUE and production of direct sowing rice in southern China. Compared to the conventional irrigation (CI system (continuous flooding irrigation, for every square hectometer of rice field, the FI system reduced water use by 3130 m3, or 48.1%, and increased grain production by 13.9% for an early cultivar. For a late cultivar, the FI system reduced water use by 2655 m3, or 40.6%, and an increase of grain production by 12.1%. The improved WUE in the FI system is attributed to (1 a significant reduction of irrigation rate, seepage, evaporation, and evapotranspiration; (2 a significant reduction in the reduced materials, such as ferrous ion (Fe2+, and therefore an increase in the vitality of the root system, evident by the increases in the number of white roots by 32.62%, and decreases in the number of black roots by 20.04% and yellow roots by 12.58%; the use of the FI system may also reduce humidity of the rice field and enhance gas transport in the soil and light penetration, which led to reduced rice diseases and increased leaf vitality; and (3 increases in tiller and effective spikes by 11.53% and the weight per thousand grains by 1.0 g. These findings suggest that the shallow FI system is a promising means for rice farming in areas with increasing water shortages.

  14. Effects of furrow irrigation on the growth, production, and water use efficiency of direct sowing rice.

    Science.gov (United States)

    He, Chunlin

    2010-08-03

    Rice farming is the major crop production in Asia and is predicted to increase significantly in the near future in order to meet the demands for the increasing human population. Traditional irrigation methods used in rice farming often result in great water loss. New water-saving methods are urgently needed to reduce water consumption. Three field and pot experiments were conducted to evaluate the furrow irrigation (FI) system to improve water use efficiency (WUE) and production of direct sowing rice in southern China. Compared to the conventional irrigation (CI) system (continuous flooding irrigation), for every square hectometer of rice field, the FI system reduced water use by 3130 m3, or 48.1%, and increased grain production by 13.9% for an early cultivar. For a late cultivar, the FI system reduced water use by 2655 m3, or 40.6%, and an increase of grain production by 12.1%. The improved WUE in the FI system is attributed to (1) a significant reduction of irrigation rate, seepage, evaporation, and evapotranspiration; (2) a significant reduction in the reduced materials, such as ferrous ion (Fe2+), and therefore an increase in the vitality of the root system, evident by the increases in the number of white roots by 32.62%, and decreases in the number of black roots by 20.04% and yellow roots by 12.58%; the use of the FI system may also reduce humidity of the rice field and enhance gas transport in the soil and light penetration, which led to reduced rice diseases and increased leaf vitality; and (3) increases in tiller and effective spikes by 11.53% and the weight per thousand grains by 1.0 g. These findings suggest that the shallow FI system is a promising means for rice farming in areas with increasing water shortages.

  15. Focal species candidates for pesticide risk assessment in European rice fields: A review.

    Science.gov (United States)

    Vallon, Martin; Dietzen, Christian; Laucht, Silke; Ludwigs, Jan-Dieter

    2018-04-25

    An assessment of potential risks of pesticides on wildlife is required during the process of product registration within Europe because of the importance of agricultural landscapes as wildlife habitats. Despite their peculiarity and their specific role as artificial wetlands, rice paddies are to date pooled with cereals in guidance documents on how to conduct risk assessments for birds and mammals in Europe. Hence, the focal species currently considered in risk assessments for rice paddies are those known from cereal fields and can therefore be expected to differ significantly from the species actually occurring in the wet environments of rice paddies. We present results of a comprehensive review on bird and mammal species regularly occurring in rice paddies during a time of potential pesticide exposure to identify appropriate focal species candidates for ecotoxicological pesticide risk assessment according to the European Food Safety Authority (EFSA). In addition, we present data on rice cultivation areas and agricultural practices in Europe to give background information supporting the species selection process. Our literature search identified a general scarcity of relevant data, particularly for mammals, which highlights the need for crop-specific focal species studies. However, our results clearly indicate that the relevant bird and mammal species in rice fields indeed differ strongly from the focal species used for the cereal risk assessment. They can thus be used as a baseline for more realistic wildlife risk assessments specific to rice and the development of a revised guidance document to bridge the gap for regulatory decision makers. Integr Environ Assess Manag 2018;00:000-000. © 2018 SETAC. © 2018 SETAC.

  16. Heavy Metal Content in Terraced Rice Fields at Sruwen Tengaran Semarang - Indonesia

    Science.gov (United States)

    Hindarwati, Yulis; Soeprobowati, Tri Retnaningsih; Sudarno

    2018-02-01

    The presence of heavy metal on agricultural soils can be caused not only natural factors but also due to human intervention. Differences in management and lack of understanding of farmers in the production input of fertilizers and pesticides ensued in land ravaged. Periodic testing of paddy fields is necessary to minimize the contaminants from being absorbed by plants that will have an impact on health decline. The purpose of the assessment was to identify the heavy metal content in the terraced rice field in Sruwen Village, Tengaran District, Semarang Regency. Survey was conducted in February 2017. Sampling on terraced rice fields of different heights consisted of upper, middle, and upper down. Taken as many as eight single points and composed at a depth of 0-20 cm and 20-40 cm. The identification results showed that heavy metal content of Pb, Cd, and Cu were present at all altitudes. Heavy Metals Pb and Cd at a depth of 0-20 cm were higher from 20-40 cm in the upper and lower rice fields but lower in the middle rice field. Cu heavy metal at a depth of 0-20 cm was higher than 20-40 cm in all altitude land. The heavy metal content of Pb, Cd, and Cu was still below the heavy metal standard set by the European Union and India.

  17. Practices for Reducing Greenhouse Gas Emissions from Rice Production in Northeast Thailand

    Directory of Open Access Journals (Sweden)

    Noppol Arunrat

    2017-01-01

    Full Text Available Land management practices for rice productivity and carbon storage have been a key focus of research leading to opportunities for substantial greenhouse gas (GHG mitigation. The effects of land management practices on global warming potential (GWP and greenhouse gas intensity (GHGI from rice production within the farm gate were investigated. For the 13 study sites, soil samples were collected by the Land Development Department in 2004. In 2014, at these same sites, soil samples were collected again to estimate the soil organic carbon sequestration rate (SOCSR from 2004 to 2014. Surveys were conducted at each sampling site to record the rice yield and management practices. The carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O emissions, Net GWP, and GHGI associated with the management practices were calculated. Mean rice yield and SOCSR were 3307 kg·ha−1·year−1 and 1173 kg·C·ha−1·year−1, respectively. The net GWP varied across sites, from 819 to 5170 kg·CO2eq·ha−1·year−1, with an average value of 3090 kg·CO2eq·ha−1·year−1. GHGI ranged from 0.31 to 1.68 kg·CO2eq·kg−1 yield, with an average value of 0.97 kg·CO2eq·kg−1 yield. Our findings revealed that the amount of potassium (potash, K2O fertilizer application rate is the most significant factor explaining rice yield and SOCSR. The burning of rice residues in the field was the main factor determining GHGI in this area. An effective way to reduce GHG emissions and contribute to sustainable rice production for food security with low GHGI and high productivity is avoiding the burning of rice residues.

  18. Mosquitoes and other aquatic insects in fallow field biotopes and rice paddy fields.

    Science.gov (United States)

    Ohba, S Y; Matsuo, T; Takagi, M

    2013-03-01

    Fallow field biotopes that develop from abandoned rice fields are man-made wetlands that provide new habitats for various aquatic animals. Although consideration of such biotopes generally focuses on their positive aspects, this study evaluated the negative aspects of establishing fallow field biotopes with regard to mosquito breeding sites. To determine whether fallow field biotopes become breeding habitats for vector mosquitoes, we evaluated mosquito fauna in fallow field biotopes and adjacent rice fields. We found larvae of Anopheles lesteri, Anopheles sinensis and Culex tritaeniorhynchus (all: Diptera: Culicidae) in the biotopes. Although abundances of mosquito larvae in the biotopes and rice fields were statistically similar, mosquito abundances in rice fields increased dramatically in August when the water level reduced after the rainy season. The abundance and variety of the mosquitoes' natural predators were greater in biotopes than in rice fields because the former are a permanent and stable aquatic environment. A generalized linear mixed model showed a negative effect of predator diversity on mosquito larvae abundance in both habitats. Although fallow field biotopes become breeding habitats for vector mosquitoes, establishing biotopes from fallow fields in order to protect various aquatic animals, including mosquito insect predators, may help to control mosquito breeding. © 2012 The Royal Entomological Society.

  19. Field trial of GABA-fortified rice plants and oral administration of milled rice in spontaneously hypertensive rats.

    Science.gov (United States)

    Kowaka, Emi; Shimajiri, Yasuka; Kawakami, Kouhei; Tongu, Miki; Akama, Kazuhito

    2015-06-01

    Hypertension is one of the most critical risk factors accompanying cardiovascular diseases. γ-Aminobutyric acid (GABA) is a non-protein amino acid that functions as a major neurotransmitter in mammals and also as a blood-pressure lowering agent. We previously produced GABA-fortified rice lines of a popular Japonica rice cultivar 'Koshihikari' by genetic manipulation of GABA shunt-related genes. In the study reported here, we grew these same novel rice lines in a field trial and administered the milled rice orally to rats. The yield parameters of the transgenic rice plants were almost unchanged compared to those of untransformed cv. 'Koshihikari' plants, while the rice grains of the transgenic plants contained a high GABA content (3.5 g GABA/kg brown rice; 0.75-0.85 GABA g/kg milled rice) in a greenhouse trial. Oral administration of a diet containing 2.5% GABA-fortified rice, with a daily intake for 8 weeks, had an approximately 20 mmHg anti-hypertensive effect in spontaneous hypertensive rats but not in normotensive Wistar-Kyoto rats. These results suggest that GABA-fortified rice may be applicable as a staple food to control or prevent hypertension.

  20. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    Directory of Open Access Journals (Sweden)

    Anja Schmidt

    Full Text Available Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices.

  1. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    Science.gov (United States)

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices.

  2. ENERGY USE ANALYSIS FOR RICE PRODUCTION IN NASARAWA STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    Hussaini Yusuf Ibrahim

    2012-12-01

    Full Text Available The study was conducted to analyze energy use for in rice production in Nasarawa state Nigeria using a sample of 120 randomly selected rice farmers. Energy productivity, energy efficiency and specific energy were computed and simple descriptive statistics was used for data analysis. The energy use pattern shows that, rice production consumed an average total energy of 12906.8 MJha-1, with herbicide energy input contributing the largest share (53.55 %. Human labour had the least share (0.74 % of the total energy input used. The energy productivity, Specific energy and energy efficiency were 0.3 MJ-1, 3.6 MJ-1 and 4.1 respectively. A total of 10925.0 MJ of energy was used in the form of indirect energy and 1981.8MJ was in the direct form of energy. Non-renewable energy forms contributed the largest share (80.63 % of the total energy input used for rice production in the study area. Rice production in the study area was observed to be mainly dependent on non-renewable and indirect energy input especially herbicide. Thus, the study recommends the introduction of integrated weed management system in order to reduce cost and dependence on a non-renewable input for weed control.

  3. Testing climate-smart irrigation strategies to reduce methane emissions from rice fields

    Science.gov (United States)

    Runkle, B.; Suvocarev, K.; Reba, M. L.

    2017-12-01

    Approximately 11% of the global 308 Tg CH4 anthropogenic emissions are currently attributed to rice cultivation. In this study, the impact of water conservation practices on rice field CH4 emissions was evaluated in Arkansas, the leading state in US rice cultivation. While conserving water, the Alternate Wetting and Drying (AWD) irrigation practice can also reduce CH4 emissions through the deliberate, periodic introduction of aerobic conditions. Seasonal CH4emissions from a pair of adjacent, production-sized rice fields were estimated and compared during the 2015 to 2017 growing seasons using the eddy covariance method on each field. The fields were alternately treated with continuous flood (CF) and AWD irrigation. In 2015, the seasonal cumulative carbon losses by CH4 emission were 30.3 ± 6.3 and 141.9 ± 8.6 kg CH4-C ha-1 for the AWD and CF treatments, respectively. Data from 2016 and 2017 will be analyzed and shown within this presentation; an initial view demonstrates consistent findings to 2015. When accounting for differences in field conditions and soils, the AWD practice is attributable to a 36-51% reduction in seasonal emissions. The substantial decrease in CH4 emissions by AWD supports previous chamber-based research and offers strong evidence for the efficacy of AWD in reducing CH4 emissions in Arkansas rice production. The AWD practice has enabled the sale of credits for carbon offsets trading and this new market could encourage CH4 emissions reductions on a national scale. These eddy covariance towers are being placed into a regional perspective including crop and forest land in the three states comprising the Mississippi Delta: Arkansas, Mississippi, and Louisiana.

  4. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.

    Science.gov (United States)

    Kouzuma, Atsushi; Kaku, Nobuo; Watanabe, Kazuya

    2014-12-01

    Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ∼80 mW m(-2) (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world.

  5. Life cycle GHG evaluation of organic rice production in northern Thailand.

    Science.gov (United States)

    Yodkhum, Sanwasan; Gheewala, Shabbir H; Sampattagul, Sate

    2017-07-01

    Greenhouse gas (GHG) emission is one of the serious international environmental issues that can lead to severe damages such as climate change, sea level rise, emerging disease and many other impacts. Rice cultivation is associated with emissions of potent GHGs such as methane and nitrous oxide. Thai rice has been massively exported worldwide however the markets are becoming more competitive than ever since the green market has been hugely promoted. In order to maintain the same level or enhance of competitiveness, Thai rice needs to be considered for environmentally conscious products to meet the international environmental standards. Therefore, it is necessary to evaluate the greenhouse gas emissions throughout the life cycle of rice production in order to identify the major emission sources and possible reduction strategies. In this research, the rice variety considered is Khao Dawk Mali 105 (KDML 105) cultivated by organic practices. The data sources were Don-Chiang Organic Agricultural Cooperative (DCOAC), Mae-teang district, Chiang Mai province, Thailand and the Office of Agricultural Economics (OAE) of Thailand with onsite records and interviews of farmers in 2013. The GHG emissions were calculated from cradle-to-farm by using the Life Cycle Assessment (LCA) approach and the 2006 IPCC Guideline for National Greenhouse Gas Inventories. The functional unit is defined as 1 kg of paddy rice at farm gate. Results showed that the total GHG emissions of organic rice production were 0.58 kg CO 2 -eq per kg of paddy rice. The major source of GHG emission was from the field emissions accounting for 0.48 kg CO 2 -eq per kg of paddy rice, about 83% of total, followed by land preparation, harvesting and other stages (planting, cultivation and transport of raw materials) were 9, 5 and 3% of total, respectively. The comparative results clearly showed that the GHG emissions of organic paddy rice were considerably lower than conventional rice production due to the

  6. Production of Nanocellulose from Rice Husk

    Directory of Open Access Journals (Sweden)

    Shaghayegh Rezanezhad

    2013-11-01

    Full Text Available In this work, nanocellulose was produced from rice husk, as a lignocellulosic waste of rice. Initially, purified cellulose was produced with chemo-mechanical and soda-anthraquinone (soda/AQ pulping and bleaching. The purified cellulose was then sonicated for 15 min using an ultrasonic processor, resulted in nanocellulose. The nanocellulose obtained by sonification has been characterized by atomic force microscopy (AFM, X-ray diffraction (XRD and thermogravimetric analysis (TGA. Diameter of nanocellulose from rice husk by chemical method was 30-40 nm and that of produced by soda-AQ pulping method were 10-20 nm. The nanocellulose crystallinity for chemical method obtained 60% and for that of produced with soda-AQ pulping method was 66%. The degradation onset temperature for nanocellulose from rice husk by chemical method was 165°C and that of produced with soda-AQ pulping method were 188°c. The thermal behaviors of nanocellulose and purified cellulose were almost the same, suggesting the ultrasonic treatment had minor effect on the thermal decomposition of the nanocellulose.

  7. Rice production with less irrigation water is possible in a Sahelian environment

    NARCIS (Netherlands)

    Vries, de M.E.; Rodenburg, J.; Bado, B.V.; Sow, A.; Leffelaar, P.A.; Giller, K.E.

    2010-01-01

    We investigated the possibility of saving irrigation water in rice production in a Sahelian environment with different nitrogen rates and weed control treatments. A series of field experiments was conducted at Ndiaye (shallow water table, dry and wet season) and at Fanaye (deep water table, wet

  8. THE EFFECT OF RICE CULTIVARS ON METHANE EMISSION FROM IRRIGATED RICE FIELD

    Directory of Open Access Journals (Sweden)

    P. Setyanto

    2016-10-01

    Full Text Available Rice plants have been reported to affect methane (CH4 emission from rice fields. The objectives of this study were to determine the effect of rice cultivars on CH4 emission from flooded rice and to develop crop management strategies with low emitting rice cultivars while sustaining high yield. The four rice cultivars studied were Memberamo, Cisadane, IR64, and Way Apoburu. The CH4 emissions were determined in the wet season of 2001/2002 (November-February using an automated closed chamber technique in an irrigated field condition. Farmyard manure at the rate of 5 t ha-1 was given to the plots to ensure carbon was not limited. Root weight, root length, biomass, and number of tillers were determined at 17, 36, and 57 days after transplanting (DAT. The results showed that the mean CH4 emission was highest in the plot planted with Cisadane (94.8 kg CH4 ha-1, and the lowest with IR64 (37.7 kg CH4 ha-1. The plots treated with emberamo and Way Apoburu resulted an intermediate CH4 emission at the average of 61.1 and 58.9 kg CH4 ha-1, respectively. There was no significant difference in yield between the cultivars tested. The yield of Memberamo, Cisadane, IR64, and Way Apoburu were 5.882, 5.764, 5.873 and 6.065 t ha-1, respectively. Statistical analysis showed that there were no significant differences in the root weight and root length among cultivars. However, Cisadane gave the highest dry matter weight (222 g hill-1 at 57 DAT compared to the other cultivars (175-190 g hill-1. Plant tillers did not show significant differences between the cultivars. Regression analysis showed that CH4 flux was significantly related with root weight, root length, aboveground biomass, and number of plant tillers. This finding shows that the use of selected cultivars, such as IR64, can potentially lower CH4 emission without scarifying yield.

  9. Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy.

    Science.gov (United States)

    Zhang, Afeng; Bian, Rongjun; Li, Lianqing; Wang, Xudong; Zhao, Ying; Hussain, Qaiser; Pan, Genxing

    2015-12-01

    Soil amendment of biochar (BSA) had been shown effective for mitigating greenhouse gas (GHG) emission and alleviating metal stress to plants and microbes in soil. It has not yet been addressed if biochar exerts synergy effects on crop production, GHG emission, and microbial activity in metal-polluted soils. In a field experiment, biochar was amended at sequential rates at 0, 10, 20, and 40 t ha(-1), respectively, in a cadmium- and lead-contaminated rice paddy from the Tai lake Plain, China, before rice cropping in 2010. Fluxes of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored using a static chamber method during the whole rice growing season (WRGS) of 2011. BSA significantly reduced soil CaCl2 extractable pool of Cd, and DTPA extractable pool of Cd and Pb. As compared to control, soil CO2 emission under BSA was observed to have no change at 10 t ha(-1) but decreased by 16-24% at 20 and 40 t ha(-1). In a similar trend, BSA at 20 and 40 t ha(-1) increased rice yield by 25-26% and thus enhanced ecosystem CO2 sequestration by 47-55% over the control. Seasonal total N2O emission was reduced by 7.1, 30.7, and 48.6% under BSA at 10, 20, and 40 t ha(-1), respectively. Overall, a net reduction in greenhouse gas balance (NGHGB) by 53.9-62.8% and in greenhouse gas intensity (GHGI) by 14.3-28.6% was observed following BSA at 20 and 40 t ha(-1). The present study suggested a great potential of biochar to enhancing grain yield while reducing carbon emission in metal-polluted rice paddies.

  10. land evaluation for improved rice production in watari irrigation

    African Journals Online (AJOL)

    DR. AMINU

    This study aimed at raising irrigated rice production in Watari Irrigation scheme, in Kano state, as to bridge the gap ... land including details about maintenance and ... Area of Kano state and cover a total of 4,574 .... which requires a depth of more than 50cm for efficient .... raise the productivity of the soils to optimum for.

  11. Site Suitability For Yam, Rice And Cotton Production In Adamawa ...

    African Journals Online (AJOL)

    This paper demonstrated the potentials of GIS technique for mapping and delineating the suitable sites for Yam, Rice and Cotton production in Adamawa State. Site suitability mapping is necessary to create data bank and to guide the farmers in decision making on sites for crop production in the state. The use of GIS for this ...

  12. Lime and Phosphate Amendment Can Significantly Reduce Uptake of Cd and Pb by Field-Grown Rice

    Directory of Open Access Journals (Sweden)

    Rongbo Xiao

    2017-03-01

    Full Text Available Agricultural soils are suffering from increasing heavy metal pollution, among which, paddy soil polluted by heavy metals is frequently reported and has elicited great public concern. In this study, we carried out field experiments on paddy soil around a Pb-Zn mine to study amelioration effects of four soil amendments on uptake of Cd and Pb by rice, and to make recommendations for paddy soil heavy metal remediation, particularly for combined pollution of Cd and Pb. The results showed that all the four treatments can significantly reduce the Cd and Pb content in the late rice grain compared with the early rice, among which, the combination amendment of lime and phosphate had the best remediation effects where rice grain Cd content was reduced by 85% and 61%, respectively, for the late rice and the early rice, and by 30% in the late rice grain for Pb. The high reduction effects under the Ca + P treatment might be attributed to increase of soil pH from 5.5 to 6.7. We also found that influence of the Ca + P treatment on rice production was insignificant, while the available Cd and Pb content in soil was reduced by 16.5% and 11.7%, respectively.

  13. Assessment of suitability of selected rice varieties for production of expanded rice

    Directory of Open Access Journals (Sweden)

    Vijayalaxmi Kamaraddi

    2015-12-01

    Full Text Available Expanded rice, prepared from pre-gelatinized milled rice by sand roasting method, is a popular snack food of India. Five high-yielding rice varieties of Hill zone of Karnataka state, viz., IET-13901, KHP-2, KHP-5, KHP-10, and Intan were screened for puffing quality based on their physicochemical, functional, nutritional and organoleptic parameters with Rajamudi as local check. The effect of varietal differences on expansion/puffing quality parameters, in vitro digestibility of starch and protein as well as bioaccessibility of iron, zinc, and calcium were determined. Results indicated a strong positive correlation between amylose content and expansion ratio and a negative correlation between protein and amylose content, length expansion ratio and volume expansion ratio. Expansion characteristics showed that the varieties suitable for production of puffed rice were KHP-2, IET-13901 and Intan. Nutritional analysis showed following ranges of nutrient content in expanded rice: protein, 6.22–8.17%; fat, 0.06–0.14%; and as mg/100 g calcium, 20.5–23.5; iron, 2.01–2.72; zinc, 1.22–1.82; thiamine, 0.315–0.470; riboflavin, 0.051–0.069; and niacin, 3.18–4.68. Nearly 80.3–80.8% starch and 67.6–83.2% protein was digestible. Among all varieties, KHP-2 had lowest amount of rapidly digestible starch (61.4%. Mineral bioaccessibility ranged from 42.7 to 52.1%. Sensory analysis indicated that Intan and KHP-2 were superior and suited for production of expanded rice.

  14. Effects of screenhouse cultivation and organic materials incorporation on global warming potential in rice fields.

    Science.gov (United States)

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Xiong, Ruiheng; Hang, Yuhao

    2017-03-01

    Global rice production will be increasingly challenged by providing healthy food for a growing population at minimal environmental cost. In this study, a 2-year field experiment was conducted to investigate the effects of a novel rice cultivation mode (screenhouse cultivation, SHC) and organic material (OM) incorporation (wheat straw and wheat straw-based biogas residue) on methane (CH 4 ) and nitrous oxide (N 2 O) emissions and rice yields. In addition, the environmental factors and soil properties were also determined. Relative to the traditional open-field cultivation (OFC), SHC decreased the CH 4 and N 2 O emissions by 6.58-18.73 and 2.51-21.35%, respectively, and the global warming potential (GWP) was reduced by 6.49-18.65%. This trend was mainly because of lower soil temperature and higher soil redox potential in SHC. Although the rice grain yield for SHC were reduced by 2.51-4.98% compared to the OFC, the CH 4 emissions and GWP per unit of grain yield (yield-scaled CH 4 emissions and GWP) under SHC were declined. Compared to use of inorganic fertilizer only (IN), combining inorganic fertilizer with wheat straw (WS) or wheat straw-based biogas residue (BR) improved rice grain yield by 2.12-4.10 and 4.68-5.89%, respectively. However, OM incorporation enhanced CH 4 emissions and GWP, leading to higher yield-scaled CH 4 emissions and GWP in WS treatment. Due to rice yield that is relatively high, there was no obvious effect of BR treatment on them. These findings suggest that apparent environmental benefit can be realized by applying SHC and fermenting straw aerobically before its incorporation.

  15. Unravelling trophic subsidies of agroecosystems for biodiversity conservation: Food consumption and nutrient recycling by waterbirds in Mediterranean rice fields

    International Nuclear Information System (INIS)

    Navedo, Juan G.; Hahn, Steffen; Parejo, Manuel; Abad-Gómez, José M.; Gutiérrez, Jorge S.; Villegas, Auxiliadora; Sánchez-Guzmán, Juan M.; Masero, José A.

    2015-01-01

    Waterbirds can reallocate a considerable amount of nutrients within agricultural fields and between agriculture sites and wetlands. However their effects on biogeochemical cycles have rarely been quantified. We estimated bird numbers, diet (from stable isotope analysis), food supply, and the food consumption on rice fields by overwintering waterbirds in one of the most important areas for rice production in southwestern Europe and a key area for various migrating and resident waterbird species. Herein, we modelled the nutrient (N and P) recycling in rice fields, and their transport to reservoirs. The energy consumption by waterbirds (96,605 ± 18,311 individuals) on rice fields during winter averaged at 89.9 ± 39.0 kJ·m −2 , with its majority (89.9%) belonging to foraging on rice seeds. Thus, the birds removed about 26% of rice seeds leftover after harvest (estimated in 932.5 ± 504.7 seeds·m −2 in early winter) wherein common cranes and dabbling ducks (four species) were the most important consumers. Waterbirds foraging and roosting in the rice fields recycled more than 24.1 (1.0 kg·ha −1 ) of N and an additional 5.0 tons (0.2 kg·ha −1 ) of P in the Extremadura's rice fields during winter. Additionally, we estimated that 2.3 tons of N and 550 kg of P were removed from rice fields and transported to reservoirs. The seasonal foraging of wildlife should result in a direct benefit for rice farmers by improving nutrient recycling through defecation by waterbirds with respect to artificial fertilisation. Additionally, rice fields located in the cranes' core wintering areas can provide sufficient food supply to induce habitat shift from their traditional wintering habitat in ‘dehesas’ to rice fields, which causes indirect socioeconomic benefit through reduced acorn consumption by cranes. Our modelling approach may thus be especially helpful for management decisions regarding rice agroecosystems in areas which are also important for the

  16. Unravelling trophic subsidies of agroecosystems for biodiversity conservation: Food consumption and nutrient recycling by waterbirds in Mediterranean rice fields

    Energy Technology Data Exchange (ETDEWEB)

    Navedo, Juan G., E-mail: jgnavedo@uach.cl [Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Facultad de Ciencias, Campus Isla Teja, 5090000 Valdivia (Chile); Conservation Biology Research Group, Universidad de Extremadura, Avda. Elvas s/n, 06002 Badajoz (Spain); Hahn, Steffen [Department Bird Migration, Swiss Ornithological Institute, Seerose 1, 6204 Sempach (Switzerland); Parejo, Manuel; Abad-Gómez, José M. [Conservation Biology Research Group, Universidad de Extremadura, Avda. Elvas s/n, 06002 Badajoz (Spain); Gutiérrez, Jorge S. [Conservation Biology Research Group, Universidad de Extremadura, Avda. Elvas s/n, 06002 Badajoz (Spain); Department of Marine Ecology, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, 1790 AB Den Burg, Texel (Netherlands); Villegas, Auxiliadora; Sánchez-Guzmán, Juan M.; Masero, José A. [Conservation Biology Research Group, Universidad de Extremadura, Avda. Elvas s/n, 06002 Badajoz (Spain)

    2015-04-01

    Waterbirds can reallocate a considerable amount of nutrients within agricultural fields and between agriculture sites and wetlands. However their effects on biogeochemical cycles have rarely been quantified. We estimated bird numbers, diet (from stable isotope analysis), food supply, and the food consumption on rice fields by overwintering waterbirds in one of the most important areas for rice production in southwestern Europe and a key area for various migrating and resident waterbird species. Herein, we modelled the nutrient (N and P) recycling in rice fields, and their transport to reservoirs. The energy consumption by waterbirds (96,605 ± 18,311 individuals) on rice fields during winter averaged at 89.9 ± 39.0 kJ·m{sup −2}, with its majority (89.9%) belonging to foraging on rice seeds. Thus, the birds removed about 26% of rice seeds leftover after harvest (estimated in 932.5 ± 504.7 seeds·m{sup −2} in early winter) wherein common cranes and dabbling ducks (four species) were the most important consumers. Waterbirds foraging and roosting in the rice fields recycled more than 24.1 (1.0 kg·ha{sup −1}) of N and an additional 5.0 tons (0.2 kg·ha{sup −1}) of P in the Extremadura's rice fields during winter. Additionally, we estimated that 2.3 tons of N and 550 kg of P were removed from rice fields and transported to reservoirs. The seasonal foraging of wildlife should result in a direct benefit for rice farmers by improving nutrient recycling through defecation by waterbirds with respect to artificial fertilisation. Additionally, rice fields located in the cranes' core wintering areas can provide sufficient food supply to induce habitat shift from their traditional wintering habitat in ‘dehesas’ to rice fields, which causes indirect socioeconomic benefit through reduced acorn consumption by cranes. Our modelling approach may thus be especially helpful for management decisions regarding rice agroecosystems in areas which are also important

  17. ANALYSIS ON THE DYNAMICS OF SPATIAL DISTRIBUTION PATTERN OF MIXED SPIDER POPULATION IN RICE FIELD

    Institute of Scientific and Technical Information of China (English)

    ZhiWang; Zhe-mingYuan; Da-xiangSong; Ming-shengZhu

    2004-01-01

    The results make it clear that there are total 11 families, 29 genera and 43 species of spiders in the rice field of Dong Fang Hong Farm. Among them, there are 8 families, 19 genera and 28 species in the early rice field, and 10 families, 27 genera and 36 species in the late rice field. The spatial distribution pattern of mixed spider populations in rice fields was different during different development stages of rice plant. During the prophase, metaphase and anaphase of early rice plant development, the spatial distribution pattern of mixed spider populations was aggregative, random and aggregative respectively. During the prophase, metaphase and anaphase of late rice plant development, the spatial distribution pattern was uniform, aggregative and uniform respectively.

  18. a survey of rice production and processing in south east nigeria

    African Journals Online (AJOL)

    A SURVEY OF RICE PRODUCTION AND PROCESSING IN SOUTH EAST NIGERIA. ... in South-Eastern Nigeria was carried out by investigative survey approach. ... labour and traditional approach in the production and processing of rice.

  19. Climate variability, rice production and groundwater depletion in India

    Science.gov (United States)

    Bhargava, Alok

    2018-03-01

    This paper modeled the proximate determinants of rice outputs and groundwater depths in 27 Indian states during 1980-2010. Dynamic random effects models were estimated by maximum likelihood at state and well levels. The main findings from models for rice outputs were that temperatures and rainfall levels were significant predictors, and the relationships were quadratic with respect to rainfall. Moreover, nonlinearities with respect to population changes indicated greater rice production with population increases. Second, groundwater depths were positively associated with temperatures and negatively with rainfall levels and there were nonlinear effects of population changes. Third, dynamic models for in situ groundwater depths in 11 795 wells in mainly unconfined aquifers, accounting for latitudes, longitudes and altitudes, showed steady depletion. Overall, the results indicated that population pressures on food production and environment need to be tackled via long-term healthcare, agricultural, and groundwater recharge policies in India.

  20. A Survey of Myanmar Rice Production and Constraints

    Directory of Open Access Journals (Sweden)

    T.A.A. Naing

    2008-10-01

    Full Text Available Although modern high yielding varieties were introduced into Myanmar in the early 1980s, the national average of rice grain yield has stagnated at 3.2-3.4 t ha-1. To identify yield constraints, input intensities and the general practices of rice cultivation in Myanmar, a survey was conducted during the wet seasons of 2001 and 2002. A total of 98 farmers from five townships in Upper Myanmar and 16 in Lower Myanmar representing the most important areas of rice production were questioned on their management practices, yields, and perceived yield constraints over the previous four years. There was a recent decrease in the overall average rate of fertilizer application, an increase in the prevalence of rice-legume cropping systems, and only localized insect pest or disease problems. Additionally, rice yields were found to be higher in Upper Myanmar, likely the results of more suitable weather conditions, better irrigation, and ready market access. Furthermore, a number of critical factors affecting production are identified and possible solutions discussed.

  1. Role of sulphur in rice production

    International Nuclear Information System (INIS)

    Sachdev, Pamila; Sachdev, M.S.

    2002-01-01

    Sulphur is an essential plant nutrient growing in international importance. Rice farmers usually apply nitrogen, phosphorus and potassium at high rates to the crop. Whenever there is an imbalance between off take and input of nutrients, it may lead to a decline in soil fertility and increase incidence of deficiencies of certain plant nutrients especially sulphur and zinc. On the basis of available information, nutritional requirement, uptake values, crop response and measures to overcome S deficiency are some of the aspects critically dealt with

  2. Seasonal variation of carbon dioxide and methane exchange between rice paddy fields and atmosphere in Japan

    Science.gov (United States)

    Kokubo, R.

    2017-12-01

    Rice paddy fields spread throughout Asia and play an important role in terms of regulating greenhouse gases on the ground. Rice paddies have the potential to either increase or decrease the net balance of greenhouse gases in the atmosphere. In the rice growth period, rice paddy fields are sources of CH4, whereas they generally act as a sink of CO2. However, the behavior of greenhouse gases during fallow periods has not been well understood. A field experiment was conducted at a rice paddy field in Fuchu, central Japan in 2014. We evaluated CO2 and CH4 fluxes in the rice paddy field using the eddy covariance method. Except for 20 days after transplanting (DAT), temporal CO2 fluxes showed negative values during a rice growth period whereas they showed positive values throughout a fallow period. The positive CO2 fluxes at 2 emissions by respiration of rice plants and soil microorganisms than CO2 uptake by photosynthesis of rice plants. In the middle of the growing season at around DAT=50, CO2 emission became dominant again because flooded water was temporarily drained in the rice paddy field. Seasonal CH4 fluxes during a growth period were regulated by water management and plant growth stages. During a fallow period, however, the field was kept a non-flooded condition that resulted in an aerobic soil condition and thus very low CH4 emission.

  3. Knowledge Management at the Village Level: How Thai Rice Farmers Incorporate Technologies to Improve Production Systems

    Directory of Open Access Journals (Sweden)

    Jude William R. Genilo

    2007-04-01

    Full Text Available The shift from agricultural to industrial and from industrial to knowledge societies has affected the ways farmers run their small-scale field activitiesin Central Thailand. To remain competitive, rice farmers need to continuously incorporate innovations and upgrade their technologies to sustain operations. These innovations and technologies may be seen in practically all aspects of the rice production process – from seed selection to fertilization, from seed raising and growth to irrigation, from crop protection to harvesting, threshing and drying. The study basically aims to explore the plausibility of rice farming villages as “learning organizations” and within these villages, the viability of forming “communities of practice.” In so doing, it investigates how the rice farming village under study organizes, shares, moves and gains information on rice farming. The study was conducted in Baan Sap Som Boon, Nonglue Subdistrict, Muang District, Chainat Province. The study uses a qualitative, exploratory and descriptive design. It uses both primary and secondary data and an ethnographic study approach. Research method and techniques consist of review of materials, interview with key persons and farmers in the community, interview with government personnel and field observations. Data generation was conducted from October 2004 to July 2005 in Chainat Province, Thailand.

  4. Land Evaluation for improved Rice Production in Watari Irrigation ...

    African Journals Online (AJOL)

    ... suggested to overcome these limitation and upgrade the suitability of the mapping units for increased rice production are; application of inorganic fertilizer, improve the low levels of nutrients and organic matter contents of the soil in the area and other recommendations include land leveling and conservation measures to ...

  5. Determinants of adoption and productivity of improved rice varieties ...

    African Journals Online (AJOL)

    The study employed adoption index, logit model and stochastic frontier model to assess the adoption status, its determinants and impact on farmers' productivity respectively. The results show that farmers have responded appreciably to intervention programme that promote the use of improved rice varieties with an adoption ...

  6. Bioethanol productions from rice polish by optimization of dilute acid ...

    African Journals Online (AJOL)

    Lignocellulose materials are abundant renewable resource for the production of biofuel from fermentative organism (Sacchromyces cervesiae). Rice polish is cheapest and abundant lignocelluloses resource and has potential to produce bioethanol. The main steps for the conversion of biomass into glucose required dilute ...

  7. Effect of Climate Change on Rice Production in Anambra State ...

    African Journals Online (AJOL)

    The serious negative effects of climate change on rice production were reduction in crop yield and grain quality, destruction of farm land by flood, high incidence of weeds, pests and diseases, surge of infectious human diseases such as meningitis, malaria and cholera, decrease in soil fertility, more flood and droughts in ...

  8. Allocative efficiency, employment and rice production risk: An ...

    African Journals Online (AJOL)

    Smallholder farmers have developed coping mechanisms in order to minimize the negative impact of rice production risks. A programme to accelerate the provision of education and credit is needed. The education programme should include both formal and non-formal elements. This is important for the improvement of ...

  9. Research within the coordinated programme on isotope-aided micronutrient studies in rice production with special reference to zinc deficiencies

    International Nuclear Information System (INIS)

    Rosales, C.M.

    1980-07-01

    An extensive survey identified 500,000 ha of soil in the Philippines as being potentially Zn-deficient for rice production. Isotope-aided laboratory, greenhouse, and field experiments were conducted to identify the most efficient methods of supplying fertilizer Zn to flooded rice. The application of 5 kg Zn/ha as ZnSO 4 effectively corrected a Zn deficiency and increased rice yield and Zn uptake for three successive growing seasons. No further increases were noted with higher rates of Zn application. Fertilizer ZnSO 4 was equally effective when mixed with the soil, combined with urea fertilizers, or surface-applied at or two weeks after transplanting the rice. Mine tailings were also shown to be an effective source of Zn. Mixing organic compost with the ZnSO 4 decreased the percent Zn derived from the fertilizer and the rice yield. 65 Zn-labelled ZnSO 4 was used

  10. Adapting rice production to climate change for sustainable blue water consumption: an economic and virtual water analysis

    Science.gov (United States)

    Darzi-Naftchali, Abdullah; Karandish, Fatemeh

    2017-12-01

    Sustainable utilization of blue water resources under climate change is of great significance especially for producing high water-consuming crops in water-scarce regions. Based on the virtual water concept, we carried out a comprehensive field-modeling research to find the optimal agricultural practices regarding rice blue water consumption under prospective climate change. The DSSAT-CERES-Rice model was used in combination with 20 GCMs under three Representative Concentration Pathways of low (RCP2.6), intermediate (RCP4.6), and very high (RCP8.5) greenhouse concentrations to predict rice yield and water requirement and related virtual water and economic return for the base and future periods. The crop model was calibrated and validated based on the 2-year field data obtained from consolidated paddy fields of the Sari Agricultural Sciences and Natural Resources University during 2011 and 2012 rice cropping cycles. Climate change imposes an increase of 0.02-0.04 °C in air temperature which consequently shifts rice growing seasons to winter season, and shorten the length of rice physiological maturity period by 2-15 days. While rice virtual water reduces by 0.1-20.6% during 2011-2070, reduced rice yield by 3.8-22.6% over the late twenty-first century results in a considerable increase in rice virtual water. By increasing the contribution of green water in supplying crop water requirement, earlier cropping could diminish blue water consumption for rice production in the region while cultivation postponement increases irrigation water requirement by 2-195 m3 ha-1. Forty days delay in rice cultivation in future will result in 29.9-40.6% yield reduction and 43.9-60% increase in rice virtual water under different scenarios. Earlier cropping during the 2011-2040 and 2041-2070 periods would increase water productivity, unit value of water, and economic value of blue water compared to the base period. Based on the results, management of rice cultivation calendar is a

  11. Winter flooding of California rice fields reduces immature populations of Lissorhoptrus oryzophilus (Coleoptera: Curculionidae) in the spring.

    Science.gov (United States)

    Aghaee, Mohammad-Amir; Godfrey, Larry D

    2017-07-01

    In California, rice fields are flooded over the winter months (November to March) to facilitate degradation of post-harvest rice straw and to provide temporary habitat for migratory waterfowl. Prior research showed that winter flood rice fields had fewer rice water weevil (Lissorhoptrus oryzophilus), larvae and pupae during the rice production season than fields that were left unflooded in the winter. A series of experiments were conducted to provide further support for these trends under controlled conditions and to find a mechanism for this phenomenon. Under winter flooded conditions there was a 50% reduction in populations of weevil immatures compared with the untreated control (no straw or winter flood). These same conditions corresponded to a 20% increase in the amount of silicon found in plant tissues in 2014 and a 39 to 90% decrease in methane production in the soil from 2013 to 2014, respectively. Evidence from previous field research and these controlled studies supports winter flooding as an appropriate tactic for controlling L. oryzophilus populations in the spring. However, the mechanism that would explain why winter flooding adversely affects L. oryzophilus immatures remains unclear. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Translocations of 2,4-D-14C Herbicides In Weed And Rice Plant On Irrigated Rice Field System

    International Nuclear Information System (INIS)

    Chairul, Sofnie M.; Idawati; Mulyadi

    2000-01-01

    The investigation of translocation 2,4-D herbicides using 14 C as tracer on irradiated rice plant system. Condition of the soil was two kinds, that is normal soil and soil 30% up normal. The soil of rice field was spray with 1μCi of 2,4-D non labelled, one week after planting. A part of rice plant and weed was determined the radioactivity after 0, 2, 4, 8, and 10 weeks after spraying. The result showed that radioactivity maximum after zero week was in root and leaf of weeds, the second weeks in root of rice, the forth weeks in rice stick, and eighth weeks in leaf of rice. This result occur at normal condition soil of solid 30 % up normal soil. The residues of 2.4-D in rice was 4,24x10 -3 ppb at normal soil and 3.16x10 -3 ppb at solid 30% up normal soil. This result still lower than rate of WHO/FAO, that is 0,05 ppm

  13. Maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides

    Science.gov (United States)

    Rice protein, a byproduct of rice syrup production, is abundant but, its lack of functionality prevents its wide use as a food ingredient. Maillard reaction products of (MRPs) hydrolysates from the limited hydrolysis of rice protein (LHRP) and various mono-, oligo- and polysaccharides were evaluat...

  14. Diversity and population dynamics of pests and predators in irrigated rice fields with treated and untreated pesticide.

    Science.gov (United States)

    Rattanapun, W

    2012-01-01

    The monitoring of rice pests and their predators in pesticide untreated and treated rice fields was conducted at the southern of Thailand. Twenty-two species in 15 families and 6 orders of rice pests were sampled from untreated rice field. For treated rice field, 22 species in 14 families and 5 orders of rice pest were collected. Regardless of treatment type, dominant species and individual number of rice pest varied to physiological stage of rice. Lepidopteran pests had highest infestation during the vegetative stage of rice growth, while hemipteran pests composed of hopper species (Hemipetra: Auchenorrhyncha) and heteropteran species (Hemiptera: Heteroptera) were dominant groups during the reproductive stage and grain formation and ripening stage of rice growth. In contrast, dominant species of predator did not change throughout rice growing season. There were 35 species in 25 families and seven orders and 40 species in 29 families and seven orders of predators collected from untreated and treated rice field, respectively. Major predators of both rice fields were Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae), Tetragnatha sp. (Araneae: Tetragnathidae) and Agriocnemis pygmaea Rambur (Odonata: Agrionidae). The population dynamic of predators were not related with rice pest population in both treatments. However, the fluctuation of population pattern of rice pests in the untreated treatment were more distinctly synchronized with their predators than that of the treated treatment. There were no significant differences in the total number of rice pest and predator between two treatments at vegetative and reproductive stages of rice growth. Untreated rice field had a higher population number of predator and a lower population number of rice pest than that of treated rice field during grain formation and ripening stages. These results indicated the ago-ecosystem balance in rice fields could be produced through minimal pesticide application, in order to allow

  15. a survey of rice production and processing in south east nigeria

    African Journals Online (AJOL)

    user

    agricultural policy makers device the modalities for improving rice production and processing in the area. ... farmers in the South-Eastern Nigeria use manual labour in the seed bed preparation ... Rice is a very important grain food to the world.

  16. International Conference on Sustainable Rice Production - Policy, Technology and Extension Celebration Activity for International Year of Rice and World Food Day 2004

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Rice is the staple food of more than half of the world's population. The production, processing and management of paddy rice have provided the basic conditions for the living of mankind. The production of rice has not only created employment opportunities for one billion agricultural population in developing nations, but has also contributed to the development of the splendid culture associated with rice production. Hence, effective and productive rice systems play an influential role in development of economy and improvement of quality of life. In view of this, on 16 December,2002, the UN General Assembly declared the year of 2004 the International Year of Rice.

  17. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    Science.gov (United States)

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems. Copyright © 2016 Elsevier

  18. Cropping system diversification for food production in Mindanao rubber plantations: a rice cultivar mixture and rice intercropped with mungbean

    Science.gov (United States)

    Elazegui, Francisco; Duque, Jo-Anne Lynne Joy E.; Mundt, Christopher C.; Vera Cruz, Casiana M.

    2017-01-01

    Including food production in non-food systems, such as rubber plantations and biofuel or bioenergy crops, may contribute to household food security. We evaluated the potential for planting rice, mungbean, rice cultivar mixtures, and rice intercropped with mungbean in young rubber plantations in experiments in the Arakan Valley of Mindanao in the Philippines. Rice mixtures consisted of two- or three-row strips of cultivar Dinorado, a cultivar with higher value but lower yield, and high-yielding cultivar UPL Ri-5. Rice and mungbean intercropping treatments consisted of different combinations of two- or three-row strips of rice and mungbean. We used generalized linear mixed models to evaluate the yield of each crop alone and in the mixture or intercropping treatments. We also evaluated a land equivalent ratio for yield, along with weed biomass (where Ageratum conyzoides was particularly abundant), the severity of disease caused by Magnaporthe oryzae and Cochliobolus miyabeanus, and rice bug (Leptocorisa acuta) abundance. We analyzed the yield ranking of each cropping system across site-year combinations to determine mean relative performance and yield stability. When weighted by their relative economic value, UPL Ri-5 had the highest mean performance, but with decreasing performance in low-yielding environments. A rice and mungbean intercropping system had the second highest performance, tied with high-value Dinorado but without decreasing relative performance in low-yielding environments. Rice and mungbean intercropped with rubber have been adopted by farmers in the Arakan Valley. PMID:28194318

  19. Role of varieties in sustainable rice production in Malaysia

    International Nuclear Information System (INIS)

    Othman Omar; Saad Abdullah

    2002-01-01

    Rice is the staple food of Malaysians. Rice production in Malaysia is concentrated in granary areas, which are provided with irrigation facilities. There is no plan to increase the size or the number of these granary areas, thus productivity per unit area must be increased to sustain the current level of self-sufficiency. Variety determines the potential productivity; environment and crop management determine how much of this potential is realized. Crop management is very important, as any drop in the level of management will effect productivity. However there are characteristics / factors that can be incorporated into varieties which can buffer the effect of environment and crop management. Pests and diseases can result in severe yield loss and lead to non-sustainable production. Varietal resistance to some of these diseases can be incorporated into rice varieties. Active breeding to incorporate rice resistance to blast, PMV (tungro), bacterial blight and brown planthopper is being currently carried out Factors that determine or justify the active breeding status are: importance of Oe pests diseases, resistance sources and the availability of efficient screening procedure. Sheath blight is also an important disease in direct seeded crops as it can cause severe yield loss, but good resistant sources are not available for incorporation and the screening procedure is also not very efficient. Biotechnologists are working hard to introduce resistance from other crops and also develop other resistance mechanisms for sheath blight. Water, shortage or excess, is a major cause of non-sustainable production. The breeding of short-term varieties can overcome water problems or shortages. Negative interaction between varietal characteristics and environment do occur. Finally farmers have to decide which factors of the environment cannot be easily controlled, and choose the correct varieties in order to achieve sustainable production. (Author)

  20. Functional suitability of commercially milled rice bran in India for use in different food products.

    Science.gov (United States)

    Sekhon, K S; Dhillon, S S; Singh, N; Singh, B

    1997-01-01

    The effect of blending of commercially available full fat and defatted rice brans in India from modern multistage rice mills with parboiling/stabilizing facilities in different food products in comparison to those obtained from laboratory milling of rice is reported. Bread volume and cookie spread decreased but muffin volume increased with the addition of different types of bran to wheat flour, however, the cookie spread factor was not affected by addition of full fat rice bran. The yields of the extrudate were increased by the blending of full fat rice bran but were decreased by the addition of defatted rice bran. Rice brans could be added to different food products to the extent of 5-10%. However, the full fat rice bran could not be used for production of extruded snack food.

  1. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China

    International Nuclear Information System (INIS)

    Sui, Yanghui; Gao, Jiping; Liu, Caihong; Zhang, Wenzhong; Lan, Yu; Li, Shuhang; Meng, Jun; Xu, Zhengjin; Tang, Liang

    2016-01-01

    Impacts of biochar on greenhouse gas emissions and C sequestration in agricultural soils have been considered as the key to mitigate climate change. There is limited knowledge regarding the effects of rice straw-derived biochar and interaction with N fertilization on soil C sequestration and rice productivity in fertile paddy fields. A 2-year (2013 and 2014) consecutive field trial was performed using straw treatment (5.05 t ha −1 ) and biochar amendment (0, 1.78, 14.8 and 29.6 t ha −1 ) with or without urea application in a rice paddy in Northeast China. A super high yielding rice variety (Oryza sativa L. subsp. Japonica cv. ‘Shennong 265’) was cultivated with permanent flooding. Results showed that biochar amendments significantly decreased CH 4 emissions relative to straw treatment irrespective of N fertilization, especially in N-fertilized soils with 1.78 t ha −1 biochar. There were no differences in CO 2 emissions with respect to biochar amendments, except for 14.8 t ha −1 biochar with N fertilization. Straw treatment had the highest global warming potential over a 100-year time frame, which was nearly 1.5 times that of 14.8 t ha −1 biochar amendment without N fertilization. Biochar addition increased total soil C by up to 5.75 mg g −1 and 11.69 mg g −1 (with 14.8 and 29.6 t ha −1 biochar, respectively), whereas straw incorporation increased this value by only 3.92 mg g −1 . The aboveground biomass of rice in biochar-amended soils increased to varying degrees compared with that in straw-treated soils. However, biochar application had no effects on rice yield, regardless of N fertilization. This study indicated that transforming straw to biochar was more stabilized and more suitable to mitigate greenhouse gas emissions and increase C storage in agriculture soils in Northeast China. - Highlights: • Rice straw-derived biochar significantly reduced CH 4 emission. • Rice straw-derived biochar interacted with the effects of N fertilizers on

  2. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Yanghui [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China); Gao, Jiping [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China); Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Dongling Rd, Shenyang 110866 (China); Liu, Caihong; Zhang, Wenzhong [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China); Lan, Yu [Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Dongling Rd, Shenyang 110866 (China); Li, Shuhang [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China); Meng, Jun [Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Dongling Rd, Shenyang 110866 (China); Xu, Zhengjin, E-mail: xuzhengjin@126.com [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China); Tang, Liang, E-mail: tl_rice@126.com [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China)

    2016-02-15

    Impacts of biochar on greenhouse gas emissions and C sequestration in agricultural soils have been considered as the key to mitigate climate change. There is limited knowledge regarding the effects of rice straw-derived biochar and interaction with N fertilization on soil C sequestration and rice productivity in fertile paddy fields. A 2-year (2013 and 2014) consecutive field trial was performed using straw treatment (5.05 t ha{sup −1}) and biochar amendment (0, 1.78, 14.8 and 29.6 t ha{sup −1}) with or without urea application in a rice paddy in Northeast China. A super high yielding rice variety (Oryza sativa L. subsp. Japonica cv. ‘Shennong 265’) was cultivated with permanent flooding. Results showed that biochar amendments significantly decreased CH{sub 4} emissions relative to straw treatment irrespective of N fertilization, especially in N-fertilized soils with 1.78 t ha{sup −1} biochar. There were no differences in CO{sub 2} emissions with respect to biochar amendments, except for 14.8 t ha{sup −1} biochar with N fertilization. Straw treatment had the highest global warming potential over a 100-year time frame, which was nearly 1.5 times that of 14.8 t ha{sup −1} biochar amendment without N fertilization. Biochar addition increased total soil C by up to 5.75 mg g{sup −1} and 11.69 mg g{sup −1} (with 14.8 and 29.6 t ha{sup −1} biochar, respectively), whereas straw incorporation increased this value by only 3.92 mg g{sup −1}. The aboveground biomass of rice in biochar-amended soils increased to varying degrees compared with that in straw-treated soils. However, biochar application had no effects on rice yield, regardless of N fertilization. This study indicated that transforming straw to biochar was more stabilized and more suitable to mitigate greenhouse gas emissions and increase C storage in agriculture soils in Northeast China. - Highlights: • Rice straw-derived biochar significantly reduced CH{sub 4} emission. • Rice straw

  3. Weed populations and their buried seeds in rice fields of the MUDA area

    International Nuclear Information System (INIS)

    Ismail Sahid; Noor Faezah Zainuddin; Ho Nai Kin

    2002-01-01

    A total of 25 weed species belonging to 15 families were found in rice fields near Kampung Tandop, in the Muda Irrigation Scheme, Kedah, Malaysia. The dominant weeds in dry-seeded rice were Utricularia aurea Lour., Fimbristylis miliacea (L.) vahl., Echinochloa crusgalli (L.) Beauv., Monochoria vaginalis (Burm. Q Presl. and Najas graminea (Del.) Redl. In wet-seeded rice, the dominant species were N. graminea, Lemna minor L., Sphenoclea zeylanica Gaertn., U. aured, and Sagittaria guayanensis H. B. K., while in volunteer seedling rice fields, the dominant species were Echinochloa colonum (L.) Link., Fimbristylis alboviridis C. B. Clarke, E miliacea, Cyperus babakan Steud. and Fuirena umbellata Rottb. Dry-seeded rice fields contained the highest number of weed seeds (930 910/m 2 in the top 15 cm of soil); volunteer seedling rice fields contained 793.162/m 2 and wet-seeded rice fields 712 228/m 2 . In general, the seed numbers declined with increasing soil depth. At 1015 cm depth, seeds of U aurea and S. zeylanica were the most abundant in dry and wet-seeded rice fields, whilst seeds of Scirpusjuncoides Roxb. and E miliacea were most abundant in volunteer seedling fields. (Author)

  4. Optimizing Greenhouse Rice Production: What Is the Best Pot Size?

    OpenAIRE

    Eddy, Robert; Acosta, Kevin; Liu, Yisi; Russell, Michael

    2016-01-01

    This publication describes our studies to determine the best pot size to optimize greenhouse rice production. We recommend 9-cm (4-inch) diameter square pot. Pots as small as 7-cm diameter yielded seed. This version is updated to include observations of larger pots with multiple plants. Photos of the plants growing under differing pot sizes are provided. This document is one entry in a series of questions and answers originally posted to the Purdue University Department of Horticulture & L...

  5. Rapid assessment of rice seed availability for wildlife in harvested fields

    Science.gov (United States)

    Halstead, B.J.; Miller, M.R.; Casazza, Michael L.; Coates, P.S.; Farinha, M.A.; Benjamin, Gustafson K.; Yee, J.L.; Fleskes, J.P.

    2011-01-01

    Rice seed remaining in commercial fields after harvest (waste rice) is a critical food resource for wintering waterfowl in rice-growing regions of North America. Accurate and precise estimates of the seed mass density of waste rice are essential for planning waterfowl wintering habitat extents and management. In the Sacramento Valley of California, USA, the existing method for obtaining estimates of availability of waste rice in harvested fields produces relatively precise estimates, but the labor-, time-, and machineryintensive process is not practical for routine assessments needed to examine long-term trends in waste rice availability. We tested several experimental methods designed to rapidly derive estimates that would not be burdened with disadvantages of the existing method. We first conducted a simulation study of the efficiency of each method and then conducted field tests. For each approach, methods did not vary in root mean squared error, although some methods did exhibit bias for both simulations and field tests. Methods also varied substantially in the time to conduct each sample and in the number of samples required to detect a standard trend. Overall, modified line-intercept methods performed well for estimating the density of rice seeds. Waste rice in the straw, although not measured directly, can be accounted for by a positive relationship with density of rice on the ground. Rapid assessment of food availability is a useful tool to help waterfowl managers establish and implement wetland restoration and agricultural habitat-enhancement goals for wintering waterfowl. ?? 2011 The Wildlife Society.

  6. Production Efficiency of Swamp Rice Production in Cross River ...

    African Journals Online (AJOL)

    This study compares profit maximization, output optimization and resource use efficiency in ... of two varieties of swamp rice by farmers in Cross River State of Nigeria. ... The result of the finding also shows that small-scale farmers were more ...

  7. Impacts of climate change on rice production in Africa and causes of simulated yield changes

    NARCIS (Netherlands)

    Oort, Van Pepijn A.J.; Zwart, Sander J.

    2018-01-01

    This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature

  8. Energy use pattern and sensitivity analysis of rice production: A case ...

    African Journals Online (AJOL)

    Rice is one of the most important crop supplying the world's population's food. Because of the direct links between energy and crop yields, and food supplies, rice energy analysis is essential. The objective of this study was to evaluate the energy balance between inputs and outputs of rice production in Guilane Province of ...

  9. Xylitol production from rice husk using candida guilliermondii

    International Nuclear Information System (INIS)

    Villalba C Marcela; Velez U Tatiana; Arias Z, Mario; Arrazola P, Guillermo

    2009-01-01

    In this study was used rice husk, previously hydrolyzed with diluted sulfuric acid at 121 Celsius degrade C and 15 psig, with a residence time 60 min. The initial concentration of substrate, inoculum, and relationship between media volume/flask volume and their combined effects were studied on the production of xylitol. The initial concentrations of 80 g/l xylose and 5 g/l inoculum led the best xylitol production (45.2 g/l), productivity (0.23 g/loH) and yield (0.57 g/g).

  10. Resource use efficiency in small-scale rice production in Nigeria ...

    African Journals Online (AJOL)

    The production function for rice, elasticity of production, return to scale, marginal productivity and level of efficiency of inputs used in rice production were determined. ... With the exception of fertilizer that was over-utilized, all other inputs were underutilized with ratios of marginal value products to unit prices greater than unity ...

  11. The Dynamics Of Rice Field Conversion Into Settlement In The District Of Bandung

    Directory of Open Access Journals (Sweden)

    Ivan Chofyan

    2016-12-01

    Full Text Available Bandung District as one of the rice-producing areas in West Java has a strong interest in maintaining rice field. However, the land conversion of rice field in the Bandung District continues to occur with various factors. This study aims to identify the elements that make up the structure of the phenomenon and the linkages between these elements which lead to the conversion of rice fields and recommend some policy alternatives that are useful for efforts to control the conversion of rice field. In order to achieve the stated goals, this study uses system dynamics which is one method of thinking system that could see the various aspects of integral and structurally enable to explain the phenomenon of land conversion happens. On this study determines 4 scenarios consists of a basic scenario, rice field cropping intensity scenarios (RFCI, necessity standard of land settlement scenarios (NSLS, and food diversification scenarios (FD. The final result of this study states that the necessity standard of land settlement scenarios result in a decrease in the rate of land conversion is smaller and the rice stock inventory is more stable compared to other scenarios. Under these conditions, policies that support the above scenario should be established, namely the policy of land-saving settlement development and establishment of sustainable rice field.

  12. Role of mutation in improving rice productivity-retrospect and prospect

    International Nuclear Information System (INIS)

    Chakrabarti, S.N.

    1996-01-01

    With the recent development in the hybrid rice breeding and rice biotechnology, the role of mutation induction in genetic manipulation deserves special importance. In many instances, the major constraint in hybrid rice breeding is lack of suitable cytoplasmic male sterile line. There is immense scope for developing such male sterile lines through use of mutation tool. In this paper improvement of rice productivity with particular reference to attainments in India have been discussed. 50 refs., 2 figs., 6 tabs

  13. Richness and density of aquatic benthic macroinvertebrates after exposure to fungicides and insecticides in rice paddy fields

    Directory of Open Access Journals (Sweden)

    ALANA C.D. WANDSCHEER

    Full Text Available ABSTRACT The objective of this study was to verify the richness and density of aquatic benthic macroinvertebrates after exposure to fungicides and insecticides of the rice paddy fields. In the crop seasons of 2012/13 and 2013/14, field experiments were performed, which consisted of single-dose applications of the fungicides trifloxystrobin + tebuconazole and tricyclazole, and the insecticides lambda-cyhalothrin + thiamethoxam and diflubenzuron, in 10 m2 experimental plots, over rice plants in the R3 stage. Control plots with and without rice plants were maintained in order to simulate a natural environment. Soil samples were collected during rice cultivation for assessment of the macroinvertebrate fauna. Chemical-physical parameters assessed in the experiments included temperature, pH and oxygen dissolved in the water and pesticide persistence in the water and in the soil. The application of a single dose of the pesticides and fungicides in the recommended period does not cause significant negative effects over the richness and density of the macroinvertebrates. Tebuconazole, tricyclazole and thiamethoxam showed high persistence in the irrigation water of rice paddy fields. Thus, the doses and number of applications of these products in crops should be carefully handled in order to avoid contamination of the environment.

  14. Richness and density of aquatic benthic macroinvertebrates after exposure to fungicides and insecticides in rice paddy fields.

    Science.gov (United States)

    Wandscheer, Alana C D; Marchesan, Enio; Santos, Sandro; Zanella, Renato; Silva, Marília F; Londero, Guilherme P; Donato, Gabriel

    2017-01-01

    The objective of this study was to verify the richness and density of aquatic benthic macroinvertebrates after exposure to fungicides and insecticides of the rice paddy fields. In the crop seasons of 2012/13 and 2013/14, field experiments were performed, which consisted of single-dose applications of the fungicides trifloxystrobin + tebuconazole and tricyclazole, and the insecticides lambda-cyhalothrin + thiamethoxam and diflubenzuron, in 10 m2 experimental plots, over rice plants in the R3 stage. Control plots with and without rice plants were maintained in order to simulate a natural environment. Soil samples were collected during rice cultivation for assessment of the macroinvertebrate fauna. Chemical-physical parameters assessed in the experiments included temperature, pH and oxygen dissolved in the water and pesticide persistence in the water and in the soil. The application of a single dose of the pesticides and fungicides in the recommended period does not cause significant negative effects over the richness and density of the macroinvertebrates. Tebuconazole, tricyclazole and thiamethoxam showed high persistence in the irrigation water of rice paddy fields. Thus, the doses and number of applications of these products in crops should be carefully handled in order to avoid contamination of the environment.

  15. IMPACT OF MARKET-DETERMINED EXCHANGE RATES ON RICE PRODUCTION AND IMPORT IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Aliyu Aishat Ammani

    2013-10-01

    Full Text Available Rice is an economically important food security crop, cultivated in almost all of Nigeria’s 36 States. Nigeria spends more than 356 billion naira (2.24 billion US dollars annually on rice import. This paper set out to analyze the trend in rice production, productivity, import, value of import and consumption that follows the adoption of the Structural Adjustment Programme (SAP in Nigeria, with emphasis on the effects of exchange rate (ER deregulation on domestic rice production and rice imports over the period 1986-2010. Relevant time series data were collected and used. A semi-log growth rate model and 2simple linear regression models were developed and estimated. Highlights of the findings include (i accelerated rate of growth in rice production (Instantaneous Growth Rate (IGR 2.2%; Cumulative Growth Rate (CGR 2.2%; rice hectarage (IGR 3.7%; CGR 3.8%; rice importation (IGR 8.5%; CGR8.9%; expenditure on rice importation (IGR 10.6%; CGR 11.2% and rice consumption (IGR 3.4%; CGR 3.5% alongside a significant deceleration in rice yield (IGR -1.4%; CGR -201.4% (ii The observed significant increase in domestic rice production cannot be confidently attributed to ER deregulation alone because it does not lead to a decrease in rice importation into Nigeria. (iii The significant increase in domestic rice importation as observed contradicts a priori expectation that ER deregulation will lead to significant decrease in rice importation. The study concluded that free market approach alone cannot stimulate local agricultural production in countries where farmers producing under low-technology-agriculture are put in direct competition with farmers from advancedtechnology-agriculture; hence governments need to restrict importation to protect local producers.

  16. (SRI) to Increase Rice Water Productivity

    African Journals Online (AJOL)

    Water Productivity: a Case of Mkindo Irrigation Scheme in. Morogoro ... plots in a randomized complete block design (RCBD) with five treatments based on two water application regimes of ..... green, blue and grey water footprint of crops.

  17. Adsorption Kinetics of Carbamate Pesticide in Rice Field Soil

    Directory of Open Access Journals (Sweden)

    Soontree Khuntong

    2010-07-01

    Full Text Available Ultrasonic extraction (75.55% with petroleum ether:acetone (1:1, v/v was employed for extraction of carbofuran in rice field soil. The amounts of carbofuran were determined by reverse phase HPLC. The analytical method provided high precision and accuracy with the relative error of 0.47%. The percentage of recoveries varied from 84% to 77% in the con¬centration ranges of 10–40 mg/L of spiked soil samples. The carbofuran residues in the rice field soil significantly decreased year by year because of pesticide properties, soil properties and degradation conditions. A high amount of residues was found in the plots that contained high organic contents. The adsorption of carbofuran in soil reached equilibrium within 23 h. The percentage of adsorption varied from almost 30% to 80% depending on concentrations of carbofuran. The adsorption of carbofuran agreed with Freundlich isotherms; q = 7.07 x 10-5Cf2.5092; with the correlation coefficient of 0.9281. Organic carbon coefficient, Koc, was 1.91 x 10-3 mg/L calculated from Kd, and half-life (8.9 d of adsorbed carbofuran. The GUS index (6.37 calculated from Koc presented a high lixiviation potential. The positive ΔG indicated the non-spontaneous reaction. Carbofuran rapidly desorbed from soil at the desorption rate of 0.0228 mg/kg soil d. Kinetic studies provided the first order reaction with the reaction rate of 0.0779 mg/d and half-life of 8.9 days.

  18. Acid drainage from coal mining: Effect on paddy soil and productivity of rice.

    Science.gov (United States)

    Choudhury, Burhan U; Malang, Akbar; Webster, Richard; Mohapatra, Kamal P; Verma, Bibhash C; Kumar, Manoj; Das, Anup; Islam, Mokidul; Hazarika, Samarendra

    2017-04-01

    Overburden and acid drainage from coal mining is transforming productive agricultural lands to unproductive wasteland in some parts of Northeast India. We have investigated the adverse effects of acid mine drainage on the soil of rice paddy and productivity by comparing them with non-mined land and abandoned paddy fields of Jaintia Hills in Northeast India. Pot experiments with a local rice cultivar (Myngoi) as test crop evaluated biological productivity of the contaminated soil. Contamination from overburden and acid mine drainage acidified the soil by 0.5 pH units, increased the exchangeable Al 3+ content 2-fold and its saturation on clay complexes by 53%. Available sulfur and extractable heavy metals, namely Fe, Mn and Cu increased several-fold in excess of critical limits, while the availability of phosphorus, potassium and zinc contents diminished by 32-62%. The grain yield of rice was 62% less from fields contaminated with acid mine drainage than from fields that have not suffered. Similarly, the amounts of vegetation, i.e. shoots and roots, in pots filled with soil from fields that received acid mine drainage were 59-68% less than from uncontaminated land (average shoot weight: 7.9±2.12gpot -1 ; average root weight: 3.40±1.15gpot -1 ). Paddy fields recovered some of their productivity 4years after mining ceased. Step-wise multiple regression analysis affirmed that shoot weight in the pots and grain yield in field were significantly (p<0.01) and positively influenced by the soil's pH and its contents of K, N and Zn, while concentration of S in excess of threshold limits in contaminated soil significantly (p<0.01) reduced the weight of shoots in the pots and grain yield in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A comparison of spider communities in Bt and non-Bt rice fields.

    Science.gov (United States)

    Lee, Sue Yeon; Kim, Seung Tae; Jung, Jong Kook; Lee, Joon-Ho

    2014-06-01

    To assess the potential adverse effects of a Bt rice line (Japonica rice cultivar, Nakdong) expressing a synthetic cry1Ac1 gene, C7-1-9-1-B, which was highly active against all larval stages of Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae), we investigated the community structure of spiders in Bt and non-Bt rice fields during the rice-growing season in 2007 and 2008 in Chungcheongnam-do, Korea. Spiders were surveyed with a sweep net and suction device. Suction sampling captured more spiders, measured in terms of species level and abundance, than sweeping. Araneidae and Thomisidae were captured more by sweeping, and certain species were captured only by sweeping. These findings show that both suction and sweep sampling methods should be used because these methods are most likely complementary. In total, 29 species in 23 genera and nine families were identified from the 4,937 spiders collected, and both Bt and non-Bt rice fields showed a typical Korean spider assemblage. The temporal patterns of spider species richness and spider abundance were very similar between Bt and non-Bt rice, although significant differences in species richness were observed on a few occasions. Overall, spider community structure, including diversity, the dominant species, and abundance did not differ between Bt and non-Bt rice. The results of the study indicated that the transgenic Cry1Ac rice lines tested in this study had no adverse effects on the spider community structure of the rice fields.

  20. Inorganic arsenic contents in ready-to-eat rice products and various Korean rice determined by a highly sensitive gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Jung, Mun Yhung; Kang, Ju Hee; Jung, Hyun Jeong; Ma, Sang Yong

    2018-02-01

    Rice and rice products have been reported to contain high contents of toxic inorganic arsenic (iAs). The inorganic arsenic contents in microwavable ready-to-eat rice products (n=30) and different types of Korean rice (n=102) were determined by a gas chromatography-tandem mass spectrometry (GC-MS/MS). The method showed low limit of detection (0.015pg), high intra- and inter-day repeatability (ready-to-eat rice products was 59μgkg -1 (dry weight basis). The mean iAs contents in polished white, brown, black, and waxy rice were 65, 109, 91, and 66μgkg -1 , respectively. The percentages of ready-to-eat rice products, white, brown, black, and waxy rice containing iAs over the maximum level (100μgkg -1 ) set by EU for the infant foods were 17, 4, 70, 36 and 0%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Forecasting Rice Productivity and Production of Odisha, India, Using Autoregressive Integrated Moving Average Models

    Directory of Open Access Journals (Sweden)

    Rahul Tripathi

    2014-01-01

    Full Text Available Forecasting of rice area, production, and productivity of Odisha was made from the historical data of 1950-51 to 2008-09 by using univariate autoregressive integrated moving average (ARIMA models and was compared with the forecasted all Indian data. The autoregressive (p and moving average (q parameters were identified based on the significant spikes in the plots of partial autocorrelation function (PACF and autocorrelation function (ACF of the different time series. ARIMA (2, 1, 0 model was found suitable for all Indian rice productivity and production, whereas ARIMA (1, 1, 1 was best fitted for forecasting of rice productivity and production in Odisha. Prediction was made for the immediate next three years, that is, 2007-08, 2008-09, and 2009-10, using the best fitted ARIMA models based on minimum value of the selection criterion, that is, Akaike information criteria (AIC and Schwarz-Bayesian information criteria (SBC. The performances of models were validated by comparing with percentage deviation from the actual values and mean absolute percent error (MAPE, which was found to be 0.61 and 2.99% for the area under rice in Odisha and India, respectively. Similarly for prediction of rice production and productivity in Odisha and India, the MAPE was found to be less than 6%.

  2. Sustainable rice production in the Muda area of Malaysia

    International Nuclear Information System (INIS)

    Ho Nai Kin; Foong Kam Chong; Kamarudin Dahuli

    2002-01-01

    The Green Revolution has generated both positive as well as negative effects on the rice agroecosystem in the Muda area. The major obstacles to sustainable rice production are water shortage, natural hazards, disease epidemics, pest outbreaks, urban and industrial development, as well as structural changes in the farming community. The Muda Agricultural Development Authority (MADA) has adopted a proactive approach in addressing these problems. The improvement in management in the Muda area comprises the following strategies: i) Improvement in water use efficiency through intensification of tertiary irrigation systems, ii) Optimisation of drainage water utilisation through recycling, iii) Establishment of a Management Information System to support operational decisions, iv) Conservation of catchment vegetation for sustainable water resources, v) Implementation of Integrated Pest Management programmes, vi) Mobilisation of farmers in dynamic group activities, vii) Integration of farmers participatory experiments in the extension programmes. The above mentioned approaches have contributed to the attainment of high cropping intensity yield enhancement, and sustainability of rice production in the Muda area. (Author)

  3. Effects of Bt-transgenic rice cultivation on planktonic communities in paddy fields and adjacent ditches

    International Nuclear Information System (INIS)

    Liu, Yongbo; Liu, Fang; Wang, Chao; Quan, Zhanjun; Li, Junsheng

    2016-01-01

    The non-target effects of transgenic plants are issues of concern; however, their impacts in cultivated agricultural fields and adjacent natural aquatic ecosystems are poorly understood. We conducted field experiments during two growing seasons to determine the effects of cultivating Bacillus thuringiensis (Bt)-transgenic rice on the phytoplankton and zooplankton communities in a paddy field and an adjacent ditch. Bt toxin was detected in soil but not in water. Water quality was not significantly different between non-Bt and Bt rice fields, but varied among up-, mid- and downstream locations in the ditch. Cultivation of Bt-transgenic rice had no effects on zooplankton communities. Phytoplankton abundance and biodiversity were not significantly different between transgenic and non-transgenic rice fields in 2013; however, phytoplankton were more abundant in the transgenic rice field than in the non-transgenic rice field in 2014. Water quality and rice type explained 65.9% and 12.8% of this difference in 2014, respectively. Phytoplankton and zooplankton were more abundant in mid- and downstream, than upstream, locations in the ditch, an effect that we attribute to water quality differences. Thus, the release of Bt toxins into field water during the cultivation of transgenic crops had no direct negative effects on plankton community composition, but indirect effects that alter environmental conditions should be taken into account during the processes of management planning and policymaking. - Highlights: • We detect fusion Cry1Ab/1Ac proteins from Bt rice entering into aquatic ecosystems. • Bt-transgenic rice cultivation have no significant effect on zooplankton community. • Bt-transgenic rice cultivation have indirect effect on phytoplankton community. • Water quality explains the difference of plankton communities in adjacent ditches.

  4. Effects of Bt-transgenic rice cultivation on planktonic communities in paddy fields and adjacent ditches

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongbo, E-mail: liuyb@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Liu, Fang [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wang, Chao [Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380 (China); Quan, Zhanjun [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Li, Junsheng, E-mail: lijsh@creas.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China)

    2016-09-15

    The non-target effects of transgenic plants are issues of concern; however, their impacts in cultivated agricultural fields and adjacent natural aquatic ecosystems are poorly understood. We conducted field experiments during two growing seasons to determine the effects of cultivating Bacillus thuringiensis (Bt)-transgenic rice on the phytoplankton and zooplankton communities in a paddy field and an adjacent ditch. Bt toxin was detected in soil but not in water. Water quality was not significantly different between non-Bt and Bt rice fields, but varied among up-, mid- and downstream locations in the ditch. Cultivation of Bt-transgenic rice had no effects on zooplankton communities. Phytoplankton abundance and biodiversity were not significantly different between transgenic and non-transgenic rice fields in 2013; however, phytoplankton were more abundant in the transgenic rice field than in the non-transgenic rice field in 2014. Water quality and rice type explained 65.9% and 12.8% of this difference in 2014, respectively. Phytoplankton and zooplankton were more abundant in mid- and downstream, than upstream, locations in the ditch, an effect that we attribute to water quality differences. Thus, the release of Bt toxins into field water during the cultivation of transgenic crops had no direct negative effects on plankton community composition, but indirect effects that alter environmental conditions should be taken into account during the processes of management planning and policymaking. - Highlights: • We detect fusion Cry1Ab/1Ac proteins from Bt rice entering into aquatic ecosystems. • Bt-transgenic rice cultivation have no significant effect on zooplankton community. • Bt-transgenic rice cultivation have indirect effect on phytoplankton community. • Water quality explains the difference of plankton communities in adjacent ditches.

  5. Interaction of genotype x management on vegetative growth and weed suppression of aerobic rice

    NARCIS (Netherlands)

    Zhao, D.L.; Bastiaans, L.; Atlin, G.N.; Spiertz, J.H.J.

    2007-01-01

    Water shortage in drought-prone rice-growing areas of the world is threatening conventional irrigated rice production systems, in which rice is transplanted into fields where standing water is maintained until harvest. Aerobic rice production systems, in which rice is grown as a direct-seeded upland

  6. Impact Of Different Time Planting In Soybeans And Neem Seed Extract Application To Insect Population On Rice Field

    OpenAIRE

    Tamrin Abdullah; Ahdin Gassa; Sri Nur Aminah Ngatimin; Nurariaty Agus And Abdul Fattah

    2015-01-01

    Abstract The purpose of research is to study impact of different time planting of soybean and neem seed extract application to pest insect population on rice field. The research was used Random Block Design in three treatment of insecticides application i.e neem seed extract together with rice planting neem seed extract on soybean 17 days after rice planting synthetic insecticides on 17 days after rice planting Delthametrin on soybean and Chlorpirifos on rice respectively. Research was conduc...

  7. Impact Of Different Time Planting In Soybeans And Neem Seed Extract Application To Insect Population On Rice Field

    OpenAIRE

    Abdullah, Tamrin; Gassa, Ahdin; Ngatimin, Sri Nur Aminah; Agus, Nurariaty; Fattah, Abdul

    2015-01-01

    The purpose of research is to study impact of different time planting of soybean and neem seed extract application to pest insect population on rice field. The research was used Random Block Design in three treatment of insecticides application i.e: neem seed extract together with rice planting, neem seed extract on soybean 17 days after rice planting, synthetic insecticides on 17 days after rice planting (Delthametrin on soybean and Chlorpirifos on rice), respectively. Research was conducted...

  8. The Short-Term Effects of Rice Straw Biochar, Nitrogen and Phosphorus Fertilizer on Rice Yield and Soil Properties in a Cold Waterlogged Paddy Field

    Directory of Open Access Journals (Sweden)

    Linlin Si

    2018-02-01

    Full Text Available Crop productivity in cold waterlogged paddy fields can be constrained by chronic flooding stress and low temperature. Farmers typically use chemical fertilizer to improve crop production, but this conventional fertilization is not very effective in a cold waterlogged paddy field. Biochar amendment has been proposed as a promising management approach to eliminating these obstacles. However, little is known about the performance of biochar when combined with N fertilizer and P fertilizer in cold waterlogged soils. The aim of this study was, therefore, to assess the main effects and interactive effects of rice straw biochar, N and P fertilizer on rice growth and soil properties in a cold waterlogged paddy field. The field treatments consisted of a factorial combination of two biochar levels (0 and 2.25 t ha−1, two N fertilizer levels (120.0 and 180.0 kg ha−1 and two P fertilizer levels (37.5 and 67.5 kg ha−1 which were arranged in a randomized block design, with three replicates. Results confirmed that biochar application caused a significant increase in the soil pH due to its liming effect, while this application resulted in a significant decrease in soil exchangeable cations, such as exchangeable Ca, Mg, Al and base cations. The interactive effect of N fertilizer, P fertilizer and biochar was significant for soil total N. Moreover, a negative effect of biochar on the internal K use efficiency suggested that K uptake into rice may benefit from biochar application. According to the partial Eta squared values, the combined application of N fertilizer and biochar was as effective as pure P fertilization at increasing straw P uptake. The addition of biochar to farmers’ fertilization practice treatment (180.0 kg N ha−1, 67.5 kg P2O5 ha−1 and 67.5 kg K2O ha−1 significantly increased rice yield, mainly owing to improvements in grains per panicle. However, notable effects of biochar on rice yield and biomass production were not detected

  9. The competitiveness of domestic rice production in East Africa: A domestic resource cost approach in Uganda

    Directory of Open Access Journals (Sweden)

    Masao Kikuchi

    2016-03-01

    Full Text Available The rapid increase of rice imports in sub-Saharan Africa under the unstable situation in the world rice market during the 2000s has made it an important policy target for the countries in the region to increase self-sufficiency in rice in order to enhance food security. Whether domestic rice production can be competitive with imported rice is a serious question in East African countries that lie close, just across the Arabian Sea, to major rice exporting countries in South Asia. This study investigates the international competitiveness of domestic rice production in Uganda in terms of the domestic resource cost ratio. The results show that rainfed rice cultivation, which accounts for 95% of domestic rice production, does not have a comparative advantage with respect to rice imported from Pakistan, the largest supplier of imported rice to Uganda. However, the degree of non-competitiveness is not serious, and a high possibility exists for Uganda’s rainfed rice cultivation to become internationally competitive by improving yield levels by applying more modern inputs and enhancing labour productivity. Irrigated rice cultivation, though very limited in area, is competitive even under the present input-output structure when the cost of irrigation infrastructure is treated as a sunk cost. If the cost of installing irrigation infrastructure and its operation and maintenance is taken into account, the types of irrigation development that are economically feasible are not large-scale irrigation projects, but are small- and microscale projects for lowland rice cultivation and rain-water harvesting for upland rice cultivation.

  10. Rainfed Rice Production and there Germplasm Development in Kenya

    International Nuclear Information System (INIS)

    Onyango, J.C.; Onyango, M.O.A.

    1999-01-01

    Rice (Oryza Sativa L.) has been grown in Kenya for several centuries and during this time has been locally selected by farmers for adaptation in the dry climate of Kenya highlands and coastal region. this history of selection by farmers has led to the concentration of genetic information for performance under drought conditions in locally-adapted rice types. Since water availability affects many processes in plants, drought tolerance is a complex character and due to the complex nature of the drought tolerance limited progress has been made in breeding for drought tolerance using simple screening methods. To produce drought tolerant cultivars, characters can used as parents in a breeding program, this is a two step process. Obviously, the root system is central to drought tolerance. The root system must be able to remove water efficiently from soils with low moisture and withstand the dynamics of soil during drought conditions will prevent stomata closure and maximise photosynthesis which is essential for high crop production. Over 365 cultivars of rainfed rice have been identified in Kenya and can be used in the two step process as source material for identifying characters related to drought tolerance and as parental lines. To advance the first step, research was conducted to identify drought tolerance characters in rainfed cultivars from Kenya. The study had a total of 580 mm of rainfall which was below the mean precipitation requirement of 750 mm. The drought sensitive variety IR20 was compared with drought tolerant IR52 and five KR (Kenya Rice) KR21, KR22, KR35,KR108 and KR135 cultivars. Plant biomass, plant height, leaf area, leaf length, protein: chlorophyll content ratio and grain yield were affected by limiting water availability and differences between cultivars were noted. The protein to chlorophyll ratio in leaves in the KR. cultivars increase from 18.4 to 28.0 as water deficient increases from -0.8 mpa to -1.4 Mpa allowing these cultivars to maintain

  11. Improving the phenotypic expression of rice genotypes: Rethinking “intensification” for production systems and selection practices for rice breeding

    Directory of Open Access Journals (Sweden)

    Norman Uphoff

    2015-06-01

    Full Text Available Intensification in rice crop production is generally understood as requiring increased use of material inputs: water, inorganic fertilizers, and agrochemicals. However, this is not the only kind of intensification available. More productive crop phenotypes, with traits such as more resistance to biotic and abiotic stresses and shorter crop cycles, are possible through modifications in the management of rice plants, soil, water, and nutrients, reducing rather than increasing material inputs. Greater factor productivity can be achieved through the application of new knowledge and more skill, and (initially more labor, as seen from the System of Rice Intensification (SRI, whose practices are used in various combinations by as many as 10 million farmers on about 4 million hectares in over 50 countries. The highest yields achieved with these management methods have come from hybrids and improved rice varieties, confirming the importance of making genetic improvements. However, unimproved varieties are also responsive to these changes, which induce better growth and functioning of rice root systems and more abundance, diversity, and activity of beneficial soil organisms. Some of these organisms as symbiotic endophytes can affect and enhance the expression of rice plants' genetic potential as well as their phenotypic resilience to multiple stresses, including those of climate change. SRI experience and data suggest that decades of plant breeding have been selecting for the best crop genetic endowments under suboptimal growing conditions, with crowding of plants that impedes their photosynthesis and growth, flooding of rice paddies that causes roots to degenerate and forgoes benefits derived from aerobic soil organisms, and overuse of agrochemicals that adversely affect these organisms as well as soil and human health. This review paper reports evidence from research in India and Indonesia that changes in crop and water management can improve the

  12. Reconciling the conservation of the purple swamphen (Porphyrio porphyrio and its damage in Mediterranean rice fields through sustainable non-lethal techniques

    Directory of Open Access Journals (Sweden)

    Rubén Moreno-Opo

    2018-04-01

    Full Text Available Resolving human–wildlife conflicts requires the assessment and implementation of appropriate technical measures that minimize negative impacts on socio-economic uses, including agriculture, and ensure the adequate protection of biological diversity. Rice paddies are widely distributed in the western Mediterranean region. Because of their high productivity, they can be a good habitat for waterbirds, including the purple swamphen Porphyrio porphyrio, particularly in areas where natural wetlands have been removed or reduced. As a result of its population growth, there have been increasing levels of damage caused by this species in rice fields due to stem-cutting and opening of bald patches in rice fields. With the aim of reducing damage, we evaluated the effectiveness of passive and active measures that would limit access to rice fields and deter/scare away purple swamphens in affected areas of the Ebro Delta (NE Spain. We selected the techniques according to the growth phase of rice and the activity of birds in the rice fields (perimeter fences and clearing vegetation around the rice plots during sprouting and growing phases, and falconry at maturation. There were positive results during the sprouting and growing phases thanks to fences and clearing vegetation, reducing the affected area by 37.8% between treatment and control plots. This would mean an economic savings of 18,550 €/year in compensation payments by regional administrations including the investment in implementing and maintaining passive protection measures. Active deterrence through falconry did not reduce the level of damage. The analysis of purple swamphen home range, activity centers (centroids, and the proportion of locations in and outside of rice fields showed no differences before and after dissuasive practices. These results were influenced by multiple concurrent factors including weather, the structural configuration of the rice plots and their location. In summary, we

  13. Comparison of ammonium sulfate and urea as nitrogen sources in rice production

    International Nuclear Information System (INIS)

    Bufogle, A. Jr.; Bollich, P.K.; Kovar, J.L.; Lindau, C.W.; Macchiavellid, R.E.

    1998-01-01

    Wetland rice agriculture is the major anthropogenic source of methane, an important greenhouse gas. Methane emissions are less when ammonium sulfate (AS) rather than urea is the nitrogen (N) source. However, an agronomic advantage of AS over urea has not been established. The objectives of this study were: (i) to compare the effectiveness of AS, urea, and urea plus elemental sulfur (S) as sources of N in flooded rice culture, (ii) to compare fertilizer recovery of each source of N from application at preflood (PF) and panicle initiation (PI), and (iii) to determine if there is a response to S by rice grown on a soil with a less than optimum level of available S. 'Cypress' rice was drill-seeded in a Crowley silt loam soil (fine, montmorillonitic, thermic Typic Albaqualf) of 7.25 to 10.75 mg S kg-1. Ammonium sulfate, urea, or urea plus S was applied in split applications of 101 kg N ha-1 PF and 50 kg N ha-1 PI. Microplots with retainers and 15N-labeled N were used. Unlabeled N was used in field plots. Microplots were harvested at 50% heading, while field plots were harvested at maturity. Dry matter and total N accumulation at 50% heading and at maturity were similar regardless of N source. Grain dry matter yields were 8.54, 8.47, and 8.79 Mg ha-1 for AS, urea, and urea plus S treatments, respectively. Greater N recovery was generally found from N application at PI than at PF, but this was not reflected by an increase in grain yield. No response to S was detected, although grain yields were slightly higher when S-containing fertilizers were used. Ammonium sulfate and urea were equally effective for flooded rice production in Louisiana

  14. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing.

    Science.gov (United States)

    Ahmed, Sibtain; Mustafa, Ghulam; Arshad, Muhammad; Rajoka, Muhammad Ibrahim

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  15. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    Directory of Open Access Journals (Sweden)

    Haibing He

    2014-01-01

    Full Text Available Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM, furrow irrigation with nonmulching (FIN, and drip irrigation with plastic mulching (DI. Compared with the conventional flooding (CF treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN, lower maximum quantum yield (Fv/Fm, and lower effective quantum yield of PSII photochemistry (ΦPSII. And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC. Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  16. CERTIFICATION OF ORGANIC AGRICULTURE FOR RICE PRODUCTION IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Dedik Budianta

    2016-11-01

    Full Text Available To make better the life, it is required safety foods for health. The health foods can be satisfied by organic farming. Organic farming is farming system based on biomass recycling or eliminating the use of materials as a synthetic agrochemical inputs. To determine whether the result of rice called as an organic product needs to be certified by the Organic Certification Board (OCB. According to the Indonesian National Standard (INS 6729: 2013, organic farming systems (OFS are not only limited to not use material agrochemical synthetic, but must meet the requirements of OFS in rice production ranging from cultivating, handling, storage, processing, transportation, labeling, marketing, production facilities and other materials that are allowed start on farm to off farm should be separated from conventional agriculture. The farm is just a negate the use of synthetic agrochemicals without regard to the cultivation process and the system of post-harvest organic results are said to be premium food which is not as organic food, because organic food is food produced from OFS by applying processing practices to preserve the ecosystem of sustainable, control of weeds, pests, diseases, selection and crop rotation, water management, land preparation and planting and the use of biological materials. Thus the system of organic agriculture is a holistic management system to improve and develop the agro-ecosystem health, including biodiversity, biological cycles and soil biological activity. The first step that must be done is the conversion of land for food crops from anorganic to organic farming for 2 years did not get the requisite amount of agrochemical applied to the soil for annual crop and 3 years for perennial crops. If agriculture in paddy soil can control the conventional farms into OFS, then the resulting rice is as an organic product.

  17. Assessing farmers' community readiness towards the enhancement of natural enemy population in rice fields in Malacca

    Science.gov (United States)

    Fairuz, K.; Idris, A. G.; Syahrizan, S.; Hatijah, K.

    2018-04-01

    Malacca has committed to be a green technology state by the year 2020. Agriculture is one of the main industries that have been highlighted to achieve this goal especially rice farming activities. Some limitations for this issue have restricted the accomplishment of the plan including pesticide usage among rice farmers. The use of chemicals in rice field need to be reduced significantly in order to support the goal. One of the indicators to the successfulness of pesticide reduction is the increasing numbers of natural enemies' species abundance and population in the rice field. Natural enemies were important to regulate pest populations in rice field naturally. Farmers' readiness to participate in this issue is very important to ensure the successfulness. The level of readiness of farmers' community will determine whether they are ready or not to execute the plan. Unfortunately, such information in rice farmers' community was not properly measured. Thus this study was aimed to assess the readiness level of rice farmers' community to change in order to enhance natural enemies in their rice field. This study was adapting the CR model as its theoretical framework. Three rice farming area in Malacca were involved in this study namely, Jasin, Melaka Tengah and Alor Gajah. Questionnaires were used as major instrument and were randomly distributed to 224 farmers. Data collected were tested for their reliability, significance and level of readiness. Knowledge of issue, knowledge of effort and resources dimensions were found influencing the readiness dimension significantly, whilst the attitude and leadership dimensions were not. Generally, the level of readiness for farmers' community in Malacca was found in the sixth or initial stage, where some of them initially have started to practice a few related activities to enhance the natural enemies' population in their rice field. Continuous support and assistant from the leaders and local authorities are crucially needed in

  18. Toxicity evaluation of natural samples from the vicinity of rice fields using two trophic levels.

    Science.gov (United States)

    Marques, Catarina R; Pereira, Ruth; Gonçalves, Fernando

    2011-09-01

    An ecotoxicological screening of environmental samples collected in the vicinity of rice fields followed a combination of physical and chemical measurements and chronic bioassays with two freshwater trophic levels (microalgae: Pseudokirchneriella subcapitata and Chlorella vulgaris; daphnids: Daphnia longispina and Daphnia magna). As so, water and sediment/soil elutriate samples were obtained from three sites: (1) in a canal reach crossing a protected wetland upstream, (2) in a canal reach surrounded by rice fields and (3) in a rice paddy. The sampling was performed before and during the rice culture. During the rice cropping, the whole system quality decreased comparatively to the situation before that period (e.g. nutrient overload, the presence of pesticides in elutriates from sites L2 and L3). This was reinforced by a significant inhibition of both microalgae growth, especially under elutriates. Contrary, the life-history traits of daphnids were significantly stimulated with increasing concentrations of water and elutriates, for both sampling periods.

  19. Rice Production Vulnerability to Climate Change in Indonesia: An Overview on Community-based Adaptation

    Science.gov (United States)

    Komaladara, A. A. S. P.; Budiasa, I. W.; Ambarawati, I. G. A. A.

    2015-12-01

    Rice remains to be a major crop and staple food in Indonesia. The task to ensure that rice production meets the demand of a growing population continues to engage the attention of national planners and policy makers. However, the adverse effects of climate change on agriculture production have presented Indonesia with yet another significant challenge. The exposure of rice crops to climate-related hazards such as temperature stress, floods, and drought, may lead to lower yield and self-sufficiency rate. This study explores the vulnerability of rice production to the effects of climate change in Indonesia. Considering the vast geographical span of the country and varying exposure, sensitivity, and adaptive capacity to climate change at regional level, this study emphasize the importance of community-based adaptation. Results from a simulation based on production and climate data from 1984 to 2014 indicates that rice production is sensitive to variation in growing season temperature and precipitation. A projection of these climate factors in 2050 has a significant impact on the major rice crop. To manage the impact of climate change, this study turns to the potential roles of farmer organizations, such as Subak, in adaptation strategies. The Subak in Bali is recognized for its cultural and organizational framework that highlights the sharing of knowledge and local wisdom in rice production. This is demonstrated by its efficient community-based irrigation management system, leading to sustainable rice production. Keywords: rice production, climate change, community-based adaptation, Indonesia

  20. Influence of phosphate and copper on reductive dechlorination of thiobencarb in California rice field soils.

    Science.gov (United States)

    Gunasekara, Amrith S; Tenbrook, Patti L; Palumbo, Amanda J; Johnson, Catherine S; Tjeerdema, Ronald S

    2005-12-28

    The potential for reductive dechlorination of the herbicide thiobencarb (TB) by microbes and its prevention in saturated anaerobic rice field soils was examined in laboratory microcosms. TB is effective in controlling both annual grasses and broadleaf weeds. In anoxic microcosms, TB was effectively degraded within 30 days to its dechlorinated product, deschlorothiobencarb (DTB), in two Sacramento Valley rice field soils. TB dechlorination, and subsequent degradation, followed pseudo-zero- (lag phase) and first-order (degradation phase) kinetics. Logistic regression analysis (r2 > 0.841) produced a half-life (t(1/2)) in nonsterile soils ranging from 10 to 15 days, which was also observed when microcosms were amended with low concentrations (copper (Cu2+; as the fungicides Cu(OH)2 and CuSO4.5H2O). High Cu2+ concentrations (>40 mg L(-1)) were added to the microcosms to determine if copper toxicity to dechlorinating microbes is concentration dependent within the range used. After 30 days, the low-copper-amended soils closely resembled the nonsterile experiments to which no Cu2+ was added while the high-copper-amended microcosms were similar to the sterile experiment. Microcosms were also separately amended with 5.7 g L(-1) phosphate (PO4(2-); as KH2PO4), a nutrient regularly applied to rice fields. Phosphate-amended experiments also showed TB degradation, but no DTB formation, indicating the phosphate played a role, possibly as a microbial inhibitor or an alternative electron acceptor, in limiting the dechlorination of TB. In summary, TB dechlorination was inhibited at high Cu(OH)2, CuSO4.5H2O, and KH2PO4 concentrations.

  1. Impact of Improved Rice Variety on Productivity Among Smallholder Farmers in Ghana

    Directory of Open Access Journals (Sweden)

    Edward Tsinigo

    2017-02-01

    Full Text Available Advancement in agricultural technologies is seen to result in the shift in production functions. The study was conducted to establish the impact of the improved rice variety on productivity in the Ejura-Sekyedumase and Atebubu-Amantin Municipalities of Ghana. The study was based on the survey of 208 rice farmers using a three-stage stratified sampling method. The study used a structured questionnaire to collect input-output data from the rice farmers. Data were analysed using the Cobb-Douglas production function. The study found that the technical change associated with the introduction of the improved rice variety was of the non-neutral type. Further, the adoption of the improved rice variety has increased rice productivity by about 46% for the adopters. The main determinants of productivity for the adopters were seed, land, fertiliser, herbicide, and education. Productivity among the non-adopters was positively influenced by seed, land, herbicide, and fertiliser. The study concluded that the improved rice variety has superior yield advantage. The study recommends for the simultaneous promotion of improved rice varieties and their recommended inputs to increase rice productivity.

  2. COMPETITIVENESS OF NIGERIAN RICE AND MAIZE PRODUCTION ECOLOGIES: A POLICY ANALYSIS APPROACH

    OpenAIRE

    Victor Olusegun Okoruwa

    2011-01-01

    The Nigerian rice and maize sectors are faced with decreasing supply and increasing demand as rice and maize have taken a strategic place of other staples leading to excessive importation and increasing government intervention. This study therefore assesses the competitiveness of Nigerian rice and maize production ecologies using the policy analysis matrix (PAM) on a sample of 122 farmers. Results of the PAM revealed that outputs from the production ecologies are taxed. This is further confir...

  3. Carbon dioxide emissions and energy balance closure before, during, and after biomass burning in mid-South rice fields

    Science.gov (United States)

    Fong, B.; Adviento-Borbe, A.; Reba, M. L.; Runkle, B.; Suvocarev, K.

    2017-12-01

    Biomass burning or field burning is a crop management practice that removes rice straw, reduces tillage, controls pests and releases nutrients for the next cropping season. Current field burning emissions are not included in agricultural field annual emissions largely because of the lack of studies, especially on the field scale. Field burning measurements are important for greenhouse gas emission inventories and quantifying the annual carbon footprint of rice. Paired eddy covariance systems were used to measure energy balance, CO2 fluxes, and H2O fluxes in mid-South US rice fields (total area of 25 ha) before, during and after biomass burning for 20 days after harvest. During the biomass burning, air temperatures increased 29°C, while ambient CO2 concentration increased from 402 to 16,567 ppm and H2O concentrations increased from 18.73 to 25.62 ppt. For the burning period, 67-86 kg CO2 ha-1 period-1 was emitted calculated by integrating fluxes over the biomass burning event. However, the estimated emission using aboveground biomass and combustion factors was calculated as 11,733 kg CO2 ha-1 period-1. Part of the difference could be attributed to sensor sensitivity decreasing 80% during burning for two minutes due to smoke. Net ecosystem exchange (NEE) increased by a factor of two, 1.14 before burning to 2.44 μmol m-2 s-1 possibly due to greater reduction of plant material and photosynthesis following burning. This study highlights the contribution of rice straw burning to total CO2 emissions from rice production.

  4. Effects of field high temperature on grain yield and quality of a subtropical type japonica rice—Pon-Lai rice

    Directory of Open Access Journals (Sweden)

    Yi-Chien Wu

    2016-01-01

    Full Text Available Typical japonica type rice is sensitive to high temperature. Pon-Lai rice is a special japonica type with adaptation to the subtropical climate in Taiwan. Facing climate change, rising temperatures would damage the yield and quality of rice production. This research was conducted using Pon-Lai rice in the field of a subtropical climate. We conducted 2 experiments, including a year-round experiment and collection of samples from different districts for building different temperature conditions. We analyzed the correlation between rising temperature and rice yield or quality. In our results, the critical period of temperature effect is 0–15 days after heading (H15. The threshold of high temperature damage in yield and appearance quality was 25–27 °C. Grain weight decreased about 2–6%, while the temperature of H15 was raised 1 °C above the thresholds. Perfect grain ratio and chalky grain ratio decreased and increased, respectively, while the temperature of H15 was raised above the thresholds. However, the high temperature in H15 affected the physicochemical characteristics. In addition, we found positive correlation between grain length to width ratio and perfect grain ratio. Grain length to width ratio could be an index of temperature effects for grain quality. In our study, when the temperature was below 30 °C, a rising temperature of H15 could damage rice yield and appearance quality, and change grain shape. Our results could provide reference for dealing with the warming future in other temperate rice-cultivated countries.

  5. Astaxanthin production from sewage of traditional Thai rice vermicelli

    Science.gov (United States)

    Sujarit, Chutinut; Rittirut, Waigoon; Amornlerdpison, Doungporn; Siripatana, Chairat

    2017-03-01

    This research aimed to investigate an optimal condition for astaxanthin production by Phaffia rhodozyma TISTR 5730 in two different media: synthetic YM medium and the medium added with coconut water and diluted with sewage from Thai traditional rice vermicelli plant (coconut water: sewage of 1:0, 1:1, 1:3 and 1:5 ration respectively). The basic medium formulation was composed of 10 g/L glucose, 3 g/L yeast extract, 0.1 g/L K2HPO4, 0.01 g/L NaCl, 0.01 g/L MgSO4 and 0.01 g/L CaCl2 with initial pH 5.5. The cultures were cultivated on 200 rpm shaking bath at 50 °C for 120 hr. It was found that P. rhodozyma TISTR 5370 grew optimally when cultivated in a mixture of coconut water and Thai rice vermicelli sewage (ratio of 1:3), with growth of 3.23 g dry biomass/L and specific astaxanthin production of 680 μg/g dry cell respectively. When fan palm sugar was added to increase reducing sugar from 10 to 15, 20 and 25 g/L, it was demonstrated that the 15 g/L formulation produced highest both dry cell weight (9.66 g/L) and astaxanthin (810 μg/g dry cell weight). Furthermore, when 0.5, 1.0 and 1.5 g/L citric acid was added as supplement, it was found that 1.0-g/L citric acid formulation gave the best result: 10.30 g/L dried cell weight and 930 μg/g dry cell weight astaxanthin. This study provides a promising alternative method of sewage reduction and valorization of wastewater from Thai traditional rice vermicelli plant.

  6. ECONOMIC ANALYSIS OF SMALL HOLDER RICE PRODUCTION SYSTEMS IN EBONYI STATE SOUTH EAST, NIGERIA

    Directory of Open Access Journals (Sweden)

    Nwaobiala C.U.

    2013-11-01

    Full Text Available Economic analysis of Upland and Swamp rice production in Ebonyi State, South east Nigeria was studied and analyzed in 2011 farming season. Purposive and multistage random sampling technique was used to select agricultural blocks, circles and rice farmers. The sample size was 240 rice farmers (120 Agricultural Development Programme (ADP Upland rice contact farmers and 120 Agricultural Development Programme (ADP Swamp contact rice farmers. Data for the analysis were collected from a structured questionnaire. The result indicates that mean ages of upland rice farmers was 37.3 years while swamp rice farmers had 39.2 years. The mean farming experience for both farmers were 8.5 years (upland rice farmers and 8.8 years (swamp rice farmers with farm sizes of 1.2 and 1.1 hectares for upland rice farmers and swamp rice farmers respectively. Upland rice farmers had an annual farm income of 189,410.00 NGN (1,222USD as against 201,166.00 NGN (1,297.85USD for Swamp rice farmers. The multiple regression (Cobb Douglas estimates of the determinants of output of upland rice showed that coefficients age, farming experience, farm size, variable inputs and farm income were positively signed at given levels of probability while capital inputs was negative. The Cobb Douglas regression estimates of the determinants of output of Swamp rice showed that the coefficients of education, labour cost, farm size, variable inputs and farm income were positively signed and significant at given levels of probability as well as capital inputs which was negative. The result indicates that net profit from Upland rice cultivation was 92,800.00 NGN (598.71USD with a Benefit Cost Ratio of N1.55 (1.56USD. The net profit from Swamp rice cultivation was 132,090.00 NGN (852.19USD and a Benefit Cost Ratio of 1.75 NGN (1.75USD. Access to credit to rice farmers, subsidy on farm inputs, dissemination of improved rice technologies by extension agents and formation of farmer groups were advocated

  7. Utilizing NASA Earth Observations to Monitor Land Management Practices and the Development of Marshlands to Rice Fields in Rwanda

    Science.gov (United States)

    Dusabimana, M. R.; Blach, D.; Mwiza, F.; Muzungu, E.; Swaminathan, R.; Tate, Z.

    2014-12-01

    Rwanda, a small country with the highest population density in Sub-Saharan Africa, is one of the world's poorest countries. Although agriculture is the backbone of Rwandan economy, agricultural productivity is extremely low. Over 90 % of the population is engaged in subsistence farming and only 52 % of the total land surface area is arable. Of this land, approximately 165,000 hectares are marshlands, of which only 57 % has been cultivated. Rwandan government has invested in the advancement of agriculture with activities such as irrigation, marshland reclamation, and crop regionalization. In 2001, Ministry of Agriculture and Animal Resources (MINAGRI) released the Rural Sector Support Program (RSSP), which aimed at converting marshlands into rice fields at various development sites across the country. The focus of this project was to monitor rice fields in Rwanda utilizing NASA Earth observations such as Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager. Modified Normalized Difference Water Index (MNDWI) was used to depict the progress of marshland to rice field conversion as it highlights the presence of irrigated rice fields from the surrounding area. Additionally, Decision Support System for Agrotechnology Transfer (DSSAT) was used to estimate rice yield at RSSP sites. Various simulations were run to find perfect conditions for cultivating the highest yield for a given farm. Furthermore, soil erosion susceptibility masks were created by combining factors derived from ASTER, MERRA, and ground truth data using Revised Universal Soil Loss Equation (RUSLE). The end results, maps, and tutorials were delivered to the partners and policy makers in Rwanda to help make informed decisions. It can be clearly seen that Earth observations can be successfully used to monitor agricultural and land management practices as a cost effective method that will enable farmers to improve crop yield production and food security.

  8. Changing cultural landscape in post-productivism of rice field in Nyuh Kuning Village Bali

    Science.gov (United States)

    Maulidi, C.; Wulandari, L. D.

    2017-06-01

    Natural landscape in developing countries is facing a challenge due to economic growth, a cultural shift, and population dynamics. Farm land where is close to urban areas tending to be converted into more economically valuable spaces. Watershed Pakerisan listed as World Heritage of UNESCO, rich of cultural value on its landscape, especially the Subak, a traditional irrigation system, has a close relationship to the philosophy of Hindu-Bali culture. Nyuh Kuning, a village (local terms is Banjar) located adjacent to the Pakerisan Watershed, and has a spatial pattern in synergic ally connected with tradition, culture, and their religion. Rice field not only for economical but also its place to worship the Goddess (Dewi Sri). Rice Field in Nyuh Kuning declined significantly along past 10 years. The changing landscape of Nyuh Kuning traced through serial of aerial photographs from 2005 until 2015. Along with the broad decline of rice field, villager’s attachment on their cultural space is also changing. An economic motive pronounces a winner in the bargaining between the motives of economic value and cultural value in the Nyuh Kuning. Villagers revealed arguments that necessities nowadays prosecute high consumption, both for household and for education. Therefore conversion of rice fields to become more economical is understandable among communities. Villagers rent the rice fields to foreigners (migrants), and then foreigners take rice-fields as personal assets, not for the villagers (ritual activities and the cultural traditions) any longer. In theoritical term, villager’s emotional bond to the cultural landscape in post—productivism of rice field, is weakened. Wawedangan Desa and its complex cultural values are not part of their identity anymore. However, place dependence become the reason why the shifting place attachment is happening. Functional economic bond is mentioned as place dependence dominats in villager’s attachment. Certainly it’s not a

  9. Effects of Agricultural Management Policies on the Exposure of Black-Winged Stilts (Himantopus himantopus Chicks to Cholinesterase-Inhibiting Pesticides in Rice Fields.

    Directory of Open Access Journals (Sweden)

    Gregorio M Toral

    Full Text Available Levels of exposure to pesticides in rice fields can be significant depending on the environmental policies practiced. The aim of European Union integrated management policy is to reduce pesticide use and impact on environment. Rice fields provide an alternative breeding habitat for many waterbirds that are exposed to the pesticides used and therefore can be valuable indicators of their risk for wildlife. To evaluate integrated management success we examined exposure of Black-winged Stilts (Himantopus himantopus to cholinesterase-inhibiting pesticides in rice fields under different types of management by measuring plasma cholinesterase activity. Cholinesterase activity was lower in birds sampled in (a 2008 after a period of intense pesticide application, than in (b 2005-2007 and 2011 in rice fields subject to integrated management in Doñana (SW Spain and (c in control natural wetlands in Spain and Morocco. During 2009 and 2010, cholinesterase activity was lower in rice fields in Doñana than in rice fields in Larache and Sidi Allal Tazi (NW Morocco. Our results suggest that integrated management successfully reduced the exposure of Black-winged Stilts to pesticides in most of the years. Care should be taken to implement mosquito and pest crop controls on time and with environmentally friendly products in order to reduce its impact on wildlife.

  10. Metabolic fate of 14-C-fenitrothion in a rice field model ecosystem

    International Nuclear Information System (INIS)

    Nashriyah binti Mat; Nambu, K.; Miyashita, T.; Sakata, S.; Ohshima, M.

    1991-01-01

    Pesticide fenitrothion (Sumithion sup R)is widely used to control rice stem borer and other pests. Its metabolic fate and degradation was studied using the sup 14 C-ring labelled fenitrothion in a model ecosystem consisting of Takarazuka paddy field soil, rice plant (Oryza sativa var. nihonbare), carp fish (Cyprinus carpio L.) and dechlorinated water. Radioactive fenitrothion was applied at a normal rate as used by Japanese farmers and samples of rice plant, fish soil and water were analysed after ten days of application. Fenitrothion was readily metabolized in rice plant and fish and also readily degraded to a number of metabolites in water and flooded soil. Most of the radioactivity applied was found in the soil component of the ecosystem. A trace amount of fenitrooxon, the activated metabolite of fenitrothion was detected only in soil and water. A possible metabolic pathway of fenitrothion in the rice model ecosystem was proposed

  11. Prompt Proxy Mapping of Flood Damaged Rice Fields Using MODIS-Derived Indices

    Directory of Open Access Journals (Sweden)

    Youngjoo Kwak

    2015-11-01

    Full Text Available Flood mapping, particularly hazard and risk mapping, is an imperative process and a fundamental part of emergency response and risk management. This paper aims to produce a flood risk proxy map of damaged rice fields over the whole of Bangladesh, where monsoon river floods are dominant and frequent, affecting over 80% of the total population. This proxy risk map was developed to meet the request of the government on a national level. This study represents a rapid, straightforward methodology for estimating rice-crop damage in flood areas of Bangladesh during the large flood from July to September 2007, despite the lack of primary data. We improved a water detection algorithm to achieve a better discrimination capacity to discern flood areas by using a modified land surface water index (MLSWI. Then, rice fields were estimated utilizing a hybrid rice field map from land-cover classification and MODIS-derived indices, such as the normalized difference vegetation index (NDVI and enhanced vegetation index (EVI. The results showed that the developed method is capable of providing instant, comprehensive, nationwide mapping of flood risks, such as rice field damage. The detected flood areas and damaged rice fields during the 2007 flood were verified by comparing them with the Advanced Land Observing Satellite (ALOS AVNIR-2 images (a 10 m spatial resolution and in situ field survey data with moderate agreement (K = 0.57.

  12. Physiology and productivity of rice crop influenced by drought stress ...

    African Journals Online (AJOL)

    Rice is sensitive to moisture stress and in view of the water scarcity in the coming years, it is imperative to evaluate the performance of rice cultivar under moisture deficit. The present study aimed to evaluate the physiological responses of two rice cultivars under drought stress induced at panicle initiation and soft dough ...

  13. Growth and Productivity of Response of Hybrid Rice to Application of Animal Manures, Plant Residues and Phosphorus

    Directory of Open Access Journals (Sweden)

    Dr. Amanullah

    2016-10-01

    Full Text Available The objective of this research was to evaluate the impact of organic sources (animal manures vs. plant residues at the rate of 10 t ha-1 each on the productivity profitability of small land rice (Oryza sativa L. grower under different levels of phosphorus (0, 30, 60 and 90 kg P ha-1 fertilization. Two separate field experiments were conducted. In experiment (1, impact of three animal manures sources (cattle, sheep & poultry manures and P levels was studied along with one control plot (no animal manure and P applied as check was investigated. In experiment (2, three plant residues sources (peach leaves, garlic residues & wheat straw and P levels was studied along with one control plot (no plant residues and P applied as check. Both the experiments were carried out on small land farmer field at District Swabi, Khyber Pakhtunkhwa Province (Northwest Pakistan during summer 2015. The results revealed that in both experiments the control plot had significantly (p≤0.05 less productivity than the average of all treated plots with organic sources and P level. The increase in P levels in both experiments (animal manure vs. plant residues had resulted in higher rice productivity (90 = 60 > 30 > 0 kg P ha-1. In the experiment under animal manures, application of poultry manure increased rice productivity as compared with sheep and cattle manures (poultry > sheep > cattle manures. In the experiment under plant residues, application of peach leaves or garlic resides had higher rice productivity over wheat straw (peach leaves = garlic residues > wheat straw. On the average, the rice grown under animal manures produced about 20% higher grain yield than the rice grown under crop residues. We concluded from this study that application of 90 kg P ha-1 along with combined application of animal manures especially poultry manure could increase rice productivity. We conclude from this study that application of 90 kg P ha-1 along with combined application of animal

  14. Biogeochemical cycling in Rice Agroecosystems Resulting From Water and Si management: Implications for As abatement and Sustainable Rice Production

    Science.gov (United States)

    Seyfferth, A.; Limmer, M. A.; Amaral, D.; Teasley, W.

    2017-12-01

    Flooded rice agroecosystems favor geochemical conditions that mobilize soil-bound arsenic (As) and produce methane (CH4). These negative outcomes of flooded rice may lead to As exposure upon As-laden rice grain consumption and enhanced greenhouse gas emissions. Periodic draining of fields (e.g., alternate wetting and drying) is effective at minimizing these negative outcomes, but may reduce rice yield, increase toxic Cd in grain, and increase nitrous oxide (N2O) emissions. Because 3 of the 4 dominant chemical form of As in flooded paddy soil share the efficient Si uptake pathway, increasing plant-available Si can decrease toxic As in grain and boost yield, particularly when plants are stressed with As. We used combined pot and field studies to examine the biogeochemical cycling of As, Fe, Si, and C when plants are grown with water and/or Si management, the latter of which under both low and high As conditions. We show that increasing plant-available Si can be used alone or in conjunction with water management to improve rice yields depending on the edaphic conditions. These processes and findings will be discussed in the larger context of global food security.

  15. Local mat-forming cyanobacteria effectively facilitate decontamination of radioactive cesium in rice fields

    International Nuclear Information System (INIS)

    Yamamoto, Atsushi; Yoshida, Shigeru; Okumura, Hiroshi; Inagaki, Masayo; Yamanishi, Hirokuni; Ito, Tetsuo; Furukawa, Michio

    2015-01-01

    The most effective and widespread method to decontaminate radioactive cesium from the Fukushima Daiichi Nuclear Power Plant Disaster was peeling topsoil. But the method had problems, such as large amounts of discarded soil and large-scale work. In nature, cyanobacteria formed biomats on the ground surface and facilitated peeling topsoil when the biomats dried. The cyanobacteria-facilitating peeling decontamination method utilized these cyanobacterial properties. Cyanobacteria are located all over Japan and 'local' cyanobacteria could be used for decontamination without introducing new species. Utilizing cyanobacteria could decrease the amount of discarded soil to about 30% and downsize the execution-scale to individual locations. Cyanobacterial biomats were easily cultivated, especially in rice fields, by maintaining wet conditions and exposure to 100 - 83% solar radiation. Shading by a thin net was helpful in maintaining an environment suitable for cyanobacteria. Nowadays, to prevent uptake of radioactive cesium into rice, K + is usually added to fertilizer in rice fields. The K + fertilization in rice fields might also enhance cyanobacterial capture of radioactive cesium, because high concentrations of K + enhanced cyanobacterial uptake of Cs + . Cyanobacteria could also mitigate the risk of radioactive cesium moving away from a decontaminating rice field. Therefore, the cyanobacteria-facilitating peeling decontamination method was proposed as an easy and safe 'D.I.Y.' method for both farmers and the environment. Besides, plowing rice fields with water before peeling improved the efficiency of this method, because plowing increased the radioactive cesium concentration in the topsoil. (author)

  16. Investigation of Flooding Water Depth Management on Yield and Quality Indices of Rice Production

    Directory of Open Access Journals (Sweden)

    Hamid Reza Salemi

    2017-03-01

    Full Text Available Introduction: Water crisis as a majorlimitation factor for agriculture, like other arid and semiarid regions exists in Isfahan province which is located in the central part of the Zayandehrud River Basin (ZRB. Rice appears to be the far-most profitable crop but at the same time it has a major impact on basin scale water resources, especially affecting downstream farmers. In the study area (ShahidFozveh Research Station, the water resources for agricultural production face heightened competition from other sectors like industry and domestic use. This necessitates considering different crops, altered agricultural systems and innovative methods that can reduce the water requirements for the irrigation of rice. The Alternative Wetting and Drying (AWD seems to be an effective method reducing water use for rice crops and possibly save the water for downstream users. There have been no qualitative evaluations of rice production under deficit irrigation practices in Isfahan area. This study sought to determine, under study area conditions, the quantities of water irrigation used with AWD practices, the resulting water productivity (WP and the effects of alternative irrigation management on yield, quality indices and rice production performance. Materials and Methods: The ZRB (41,500 km2 is a closed basin with no outlet to the sea. The research was conducted in the Qahderijan region of Isfahan province, which is located in the central part of the ZRB. The ShahidFozveh Agricultural Research Station (32°, 36’ N, 51°, 36’ E is located at the altitude of 1612 m above the sea level. In order to improve WP and illustration of the impact of various levels of flooding depth on grain yield and quality indices at rice production, a field experiment (3000 m2 was conducted at ShahidFozveh Research Station for 2 years arranged in a split plot design with three replications. It will be necessary to use different scenario of water flooding depth management to

  17. Productivity of Upland Rice Genotypes under Different Nitrogen Doses

    Energy Technology Data Exchange (ETDEWEB)

    Traore, K.; Traore, O. [INERA /Station de Farakoba, Bobo-Dioulasso (Burkina Faso); Bado, V. B. [Africa Rice Center (AfricaRice), Saint Louis (Senegal)

    2013-11-15

    Nitrogen (N) deficiency is one of the most yield-limiting nutrients in upland rice growing area in Burkina Faso. A field experiment was carried out from 2008 to 2010 in Farakoba research center with the objective to evaluate 200 upland rice (Oryza sativa L.) genotypes from WAB, NERICA, CNA, CNAX, IRAT and IR lines for N use efficiency. The treatments consisted of three levels of N: low, medium and high at 20, 60 and 100 kg-N h{sup a-1}, respectively. Both grain and straw yield increased with N application. The yields were highest for NERICA and WAB lines compared to the other lines, and this was consistent over the N doses. A large variability was found among the genotypes. Three groups of genotypes were identified according to N use efficiency. The high N use efficiency genotypes were found in WAB and NERICA lines. The N concentration in the shoot at flowering significantly increased with N doses and this was similar for N taken up by genotypes. (author)

  18. Estimation of the Carbon Footprint and Global Warming Potential in Rice Production Systems

    International Nuclear Information System (INIS)

    Dastan, S.; Soltani, F.; Noormohamadi, G.; Madani, H.; Yadi, R.

    2016-01-01

    Optimal management approaches can be adopted in order to increase crop productivity and lower the carbon footprint of grain products. The objective of this study was to estimate the carbon (C) footprint and global warming potential of rice production systems. In this experiment, rice production systems (including SRI, improved and conventional) were studied. All activities, field operations and data in production methods and at different input rates were monitored and recorded during 2012. Results showed that average global warming potential across production systems was equal to 2803.25 kg CO 2 -eq ha-1. The highest and least global warming potential were observed in the SRI and conventional systems, respectively. global warming potential per unit energy input was the least and most in SRI and conventional systems, respectively. Also, the SRI and conventional systems had the maximum and minimum global warming potential per unit energy output, respectively. SRI and conventional system had the greatest and least global warming potential per unit energy output, respectively. Therefore, the optimal management approach found in SRI resulted in a reduction in GHGs, global warming potential and the carbon footprint.

  19. Valorization of rice straw waste: production of porcelain tiles

    Directory of Open Access Journals (Sweden)

    Álvaro Guzmán A

    2015-12-01

    Full Text Available Abstract The rice industry generates huge amounts of rice straw ashes (RSA. This paper presents the results of an experimental research work about the incorporation of RSA waste as a new alternative raw material for production of porcelain tiles. The RSA replaces, partially or completely, the non-plastic raw materials (quartz (feldspathic sand in this research and feldspar, that together with the clays, constitute the major constituents of formulations of porcelain tiles. A standard industrial composition (0% RSA and two more compositions in which feldspar and feldspathic sand were replaced with two percentages of RSA (12.5% RSA and 60% RSA were formulated, keeping the clay content constant. The mixtures were processed, reproducing industrial porcelain tile manufacturing conditions by the dry route and fired at peak temperatures varying from 1140-1260 ºC. The results showed that additions of 12.5% RSA in replacement of feldspar and feldspathic sand allowed producing porcelain tiles that did not display marked changes in processing behaviour, in addition to obtain a microstructure and the typical mineralogical phases of porcelain tile. Thus, an alternative use of an agricultural waste material is proposed, which can be translated into economic and environmental benefits.

  20. Development of Ozone Technology Rice Storage Systems (OTRISS) for Quality Improvement of Rice Production

    International Nuclear Information System (INIS)

    Nur, M; Kusdiyantini, E; Wuryanti, W; Winarni, T A; Widyanto, S A; Muharam, H

    2015-01-01

    This research has been carried out by using ozone to address the rapidly declining quality of rice in storage. In the first year, research has focused on the rice storage with ozone technology for small capacity (e.g., household) and the medium capacity (e.g., dormitories, hospitals). Ozone was produced by an ozone generator with Dielectric Barrier Discharge Plasma (DBDP). Ozone technology rice storage system (OTRISS) is using ozone charateristic which is a strong oxidizer. Ozone have a short endurance of existence and then decompose, as a result produce oxygen and radicals of oxygen. These characteristics could kill microorganisms and pests, reduce air humidity and enrich oxygen. All components used in SPBTO assembled using raw materials available in the big cities in Indonesia. Provider of high voltage (High Voltage Power Supply, 40-70 kV, 23 KH, AC) is one of components that have been assembled and tested. Ozone generator is assembled with 7 reactors of Dielectric Barrier Discharge Plasma (DBDP). Rice container that have been prepared for OTRISS have adjusted so can be integrated with generator, power supply and blower to blow air. OTRISS with a capacity of 75 kg and 100 kg have been made and tested. The ability of ozone to eliminate bacteria and fungi have been tested and resulted in a decrease of microorganisms at 3 log CFU/g. Testing in food chemistry showed that ozone treatment of rice had not changed the chemical content that still meet the standard of chemical content and nutritional applicable to ISO standard milled rice. The results of this study are very likely to be used as an alternative to rice storage systems in warehouse. Test and scale-up is being carried out in a mini warehouse whose condition is mimicked to rice in National Rice Storage of Indonesia (Bulog) to ensure quality. Next adaptations would be installed in the rice storage system in the Bulog. (paper)

  1. Immobilization of Saccharomyces Cerevisiae in Rice Hulls for Ethanol Production

    Directory of Open Access Journals (Sweden)

    Edita Martini

    2011-05-01

    Full Text Available The whole cell immobilization in ethanol fermentation can be done by using natural carriers or through synthetic carriers. All of these methods have the same purpose of retaining high cell concentrations within a certain defined region of space which leads to higher ethanol productivity. Lignocellulosic plant substance represents one of highly potential sources in ethanol production. Some studies have found that cellulosic substances substances can also be used as a natural carrier in cell immobilization by re-circulating pre-culture medium into a reactor. In this experiment, rice hulls without any treatment were used to immobilize Saccharomyces cerevisiae through semi solid state incubation combined with re-circulating pre-culture medium. The scanning electron microscopy (SEM pictures of the carrier show that the yeast cells are absorbed and embedded to the rice hull pore. In liquid batch fermentation system with an initial sugar concentration of 50 g/L, nearly 100% total sugar was consumed after 48 hours. This resulted in an ethanol yield of 0.32 g ethanol/g glucose, which is 62.7% of the theoretical value. Ethanol productivity of 0.59 g/(L.h is 2.3 fold higher than that of free cells which is 0.26 g/(L.h. An effort to reuse the immobilized cells in liquid fermentation system showed poor results due to cell desorption in the first batch which led to high sugar concentration inhibitory effect in the second batch fermentation. This might be solved by using semi solid fermentation process in the future work.

  2. Outsourcing Agricultural Production: Evidence from Rice Farmers in Zhejiang Province.

    Directory of Open Access Journals (Sweden)

    Chen Ji

    Full Text Available China has recorded positive growth rates of grain production for the past eleven consecutive years. This is a remarkable accomplishment given that China's rapid industrialization and urbanization has led to a vast reduction of arable land and agricultural labor to non-agricultural sectors. While there are many factors contributing to this happy outcome, one potential contributing factor that has received increasing attention is the emergence of agricultural production outsourcing, a new rural institution that has emerged in recent years. This study aims to contribute to the limited but growing literature on agricultural production outsourcing in China. Specifically, this study analyzes factors affecting farmers' decisions to outsource any or some production tasks using data from rice farmers in Zhejiang province. Results from a logistic model show that farm size and government subsidy encourages farmers to outsource while ownership of agricultural machines and land fragmentation have negative effects on farmers' decisions to outsource production tasks. Results also showed that determinants of outsourcing decisions vary with the production tasks that farmers outsourced.

  3. Outsourcing Agricultural Production: Evidence from Rice Farmers in Zhejiang Province.

    Science.gov (United States)

    Ji, Chen; Guo, Hongdong; Jin, Songqing; Yang, Jin

    2017-01-01

    China has recorded positive growth rates of grain production for the past eleven consecutive years. This is a remarkable accomplishment given that China's rapid industrialization and urbanization has led to a vast reduction of arable land and agricultural labor to non-agricultural sectors. While there are many factors contributing to this happy outcome, one potential contributing factor that has received increasing attention is the emergence of agricultural production outsourcing, a new rural institution that has emerged in recent years. This study aims to contribute to the limited but growing literature on agricultural production outsourcing in China. Specifically, this study analyzes factors affecting farmers' decisions to outsource any or some production tasks using data from rice farmers in Zhejiang province. Results from a logistic model show that farm size and government subsidy encourages farmers to outsource while ownership of agricultural machines and land fragmentation have negative effects on farmers' decisions to outsource production tasks. Results also showed that determinants of outsourcing decisions vary with the production tasks that farmers outsourced.

  4. Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system

    Directory of Open Access Journals (Sweden)

    Silvana Tarlera

    2016-02-01

    Full Text Available ABSTRACT Water management impacts both methane (CH4 and nitrous oxide (N2O emissions from rice paddy fields. Although controlled irrigation is one of the most important tools for reducing CH4emission in rice production systems it can also increase N2O emissions and reduce crop yields. Over three years, CH4 and N2O emissions were measured in a rice field in Uruguay under two different irrigation management systems, using static closed chambers: conventional water management (continuous flooding after 30 days of emergence, CF30; and an alternative system (controlled deficit irrigation allowing for wetting and drying, AWDI. AWDI showed mean cumulative CH4 emission values of 98.4 kg CH4 ha−1, 55 % lower compared to CF30, while no differences in nitrous oxide emissions were observed between treatments ( p > 0.05. No yield differences between irrigation systems were observed in two of the rice seasons ( p > 0.05 while AWDI promoted yield reduction in one of the seasons ( p< 0.05. When rice yield and greenhouse gases (GHG emissions were considered together, the AWDI irrigation system allowed for lower yield-scaled total global warming potential (GWP. Higher irrigation water productivity was achieved under AWDI in two of the three rice seasons. These findings suggest that AWDI could be an option for reducing GHG emissions and increasing irrigation water productivity. However, AWDI may compromise grain yield in certain years, reflecting the importance of the need for fine tuning of this irrigation strategy and an assessment of the overall tradeoff between relationships in order to promote its adoption by farmers.

  5. Statistical analysis of fallout radionuclides transfer to paddy-field rice

    International Nuclear Information System (INIS)

    Takahashi, T.; Morisawa, S.; Inoue, Y.

    1996-01-01

    Radionuclides released from nuclear facilities to atmosphere are transported through various pathways in biosphere and cause human exposure. Among these radionuclides transfer pathways, an ingestion of crops containing radionuclides is one of the dominant pathway for human exposure. For the safety assessment of nuclear facilities, it is important to understand the behavior of radionuclides in agricultural environment and to describe them in a mathematical model. In this paper, a statistical model is proposed for estimating the concentration of fallout radionuclides in paddy-field rice, the staple food for Japanese people. For describing behavior of fallout radionuclides in a paddy-field, a dynamic model and a statistical model have been proposed respectively. The model used in this study has been developed assuming that the amount of radionuclides transfer to brown rice (hulled rice) or polished rice through direct deposition of airborne radionuclides (the direct deposition pathway) and root uptake from a paddy soil (the root uptake pathway) are proportional to the deposition flux of radionuclides and concentration of radionuclides in paddy soil respectively. That is, the model has two independent variables; the deposition flux of radionuclides and the concentration of radionuclides in the paddy soil, and has single dependent variable; the concentration of radionuclides in brown rice or polished rice. The regression analysis is applied by using environmental monitoring data. Then the distribution of radionuclides between rice-bran (skin part of rice crop) and polished rice (core part) through both the direct deposition pathway and the root uptake pathway are evaluated by the model. (author)

  6. A Study Of Biogas Production From Rice Straw In An Underground Digester

    International Nuclear Information System (INIS)

    Akpabio, O; Sambo, A.S; Fai, F

    2002-01-01

    The rising cost of petroleum products, the growing world population with diminishing resources and increasing wastes has brought about the need for sourcing alternative resources in order to bring about sustainable development. In this regard. this research was conceived to innovate design and construction of a biogas digester and to study the production of biogas from rice straw. An underground biogas digester was designed. Constructed and tested. The test digestion produced biogas yield of 0.020 M/KXg from green cow dung. In the study of biogas production from rice straw, four bench digesters of one d m3 (I litre) each were used. The bench digester produced biogas yields of 0.0149 m3/kg of rice straw, 0.0389 m3/kg of a mixture of rice straw and cow dung and 0.0792 m3/kg of cow dung. Scaled up digestion of rice straw in the underground digester gave biogas yield of 7.37 x 104 m3/kg. The biogas produced from rice straw was found to contain 38.52% of carbon dioxide and no hydrogen sulphide. It was concluded that the biogas generation from rice straw was encouraging, but scale up yields was low. The limiting factors on biogas production from rice straw with the effect of digester design or biogas production are presented and discussed

  7. Sulfate-reducing bacteria in rice field soil and on rice roots.

    Science.gov (United States)

    Wind, T; Stubner, S; Conrad, R

    1999-05-01

    Rice plants that were grown in flooded rice soil microcosms were examined for their ability to exhibit sulfate reducing activity. Washed excised rice roots showed sulfate reduction potential when incubated in anaerobic medium indicating the presence of sulfate-reducing bacteria. Rice plants, that were incubated in a double-chamber (phylloshpere and rhizosphere separated), showed potential sulfate reduction rates in the anoxic rhizosphere compartment. These rates decreased when oxygen was allowed to penetrate through the aerenchyma system of the plants into the anoxic root compartment, indicating that sulfate reducers on the roots were partially inhibited by oxygen or that sulfate was regenerated by oxidation of reduced S-compounds. The potential activity of sulfate reducers on rice roots was consistent with MPN enumerations showing that H2-utilizing sulfate-reducing bacteria were present in high numbers on the rhizoplane (4.1 x 10(7) g-1 root fresh weight) and in the adjacent rhizosperic soil (2.5 x 10(7) g-1 soil dry weight). Acetate-oxidizing sulfate reducers, on the other hand, showed highest numbers in the unplanted bulk soil (1.9 x 10(6) g-1 soil dry weight). Two sulfate reducing bacteria were isolated from the highest dilutions of the MPN series and were characterized physiologically and phylogenetically. Strain F1-7b which was isolated from the rhizoplane with H2 as electron donor was related to subgroup II of the family Desulfovibrionaceae. Strain EZ-2C2, isolated from the rhizoplane on acetate, grouped together with Desulforhabdus sp. and Syntrophobacter wolinii. Other strains of sulfate-reducing bacteria originated from bulk soil of rice soil microcosms and were isolated using different electron donors. From these isolates, strains R-AcA1, R-IbutA1, R-PimA1 and R-AcetonA170 were Gram-positive bacteria which were affiliated with the genus Desulfotomaculum. The other isolates were members of subgroup II of the Desulfovibrionaceae (R-SucA1 and R-LacA1), were

  8. Combination Of Organic Matter And Inorganic N Fertilizer For Enhancing Productivity And N Uptake Of Upland Rice

    International Nuclear Information System (INIS)

    Idawati; Haryanto

    2002-01-01

    Organic matter in soil plays very important roles in agriculture, especially in highly weathered soil like most soils in Indonesia. Inorganic fertilizer which is an instant N source, is still required, to supply plant demand. Combination of organic matter and inorganic N fertilizer would be the best solution to achieve high agricultural product. To study organic matter addition in combination with N fertilizer in upland rice cultivation, two experiments were conducted in The Agricultural Research Station, Citayam. One experiment was a field experiment and the other was a pot experiment conducted in the field in which the field experiment was performed, by installing pots in the center of plot experiment 15N technique was applied in the pot experiment The experiments were designed with Randomized Block Design. Prior to the experiment. N soil was extracted by planting blanket plant. i.e. corn. The treatments for field and pot experiments were the same, i.e.: 0 as Control I (without organic matter, without N fertilizer); N as Control 2 (without organic matter, 45 kg N/ha at planting + 45 kg N/ha a month after planting); GN-I (Gliricidia at planting; 45 kg N/ha at planting + 22,5 kg N/ha a month after planting); GN-2 (Gliricidia at planting + Gliricidia a month after planting; 45 kg N/ha at planting); GN-3 (Gliricidia at planting; 22,5 kg N/ha at planting + 22,5 kg N/ha a month after planting); JN-I (rice straw at planting; 90 kg N/ha at planting); JN-2 (rice straw at planting; 45 kg N/ha a planting + 45 kg N/ha a month after planting); JN-3 (rice straw at planting; 45 kg N/ha at planting + 22,5 kg N/ba month after planting); KN-I(long bean residue at planting; 45 kg N/ha at planting + 22,5 kg N/ha a month after planting); KN-2 (long bean residue at planting; 22,5 kg N/ha at planting + 22,5 kg N/ha a month after planting). Soil N was successfully depleted by blanket plant showed by very low rice production and N uptake of Control I. Result of the pot experiment

  9. Ammonium sulphate fertiliser increases larval populations of Anopheles arabiensis and culicine mosquitoes in rice fields

    DEFF Research Database (Denmark)

    Mutero, C M; Ng'ang'a, P N; Wekoyela, P

    2004-01-01

    Field experiments were conducted in central Kenya, to study the effect of ammonium sulphate fertiliser ((NH(4))(2)SO(4)) on mosquito larval populations in rice fields. The experiments used a complete randomised block design having four blocks with two experimental ponds per block, and the fertili......Field experiments were conducted in central Kenya, to study the effect of ammonium sulphate fertiliser ((NH(4))(2)SO(4)) on mosquito larval populations in rice fields. The experiments used a complete randomised block design having four blocks with two experimental ponds per block...... populations of An. arabiensis (Pmosquitoes (P... in rice fields, thereby making them visually more attractive for egg-laying by An. arabiensis and culicine mosquitoes....

  10. IMPACT OF ROW-PLANTING ADOPTION ON PRODUCTIVITY OF RICE FARMING IN NORTHERN GHANA

    Directory of Open Access Journals (Sweden)

    Emmanuel DONKOR

    2016-11-01

    Full Text Available This paper employed the endogenous switching regression and propensity score matching methods to analyse the impact of row-planting technology on rice productivity using 470 rice farms in Northern Ghana. The empirical findings showed that the adoption of row-planting technology exerted greater positive impact on rice yields of smallholder farmers. In addition, rice yields of adopters and non-adopters are driven by farm inputs, socioeconomic, institutional and technological factors. We suggest that achieving self-sufficiency in rice and rural economic transformation in sub-Saharan Africa requires promotion of agricultural technologies including row-planting. Different specific policy interventions are also required to promote rice yields for adopters and non-adopters.

  11. A dynamic compartment model for assessing the transfer of radionuclide deposited onto flooded rice-fields

    International Nuclear Information System (INIS)

    Keum, Dong-Kwon; Lee, Han-Soo; Choi, Heui-Ju; Kang, Hee-Seok; Lim, Kwang-Muk; Choi, Young-Ho; Lee, Chang-Woo

    2004-01-01

    A dynamic compartment model has been studied to estimate the transfer of radionuclides deposited onto flooded rice-fields after an accidental release. In the model, a surface water compartment and a direct shoot-base absorption from the surface water to the rice-plant, which are major features discriminating the present model from the existing model, has been introduced to account for the flooded condition of rice-fields. The model has been applied to the deposition experiments of 137 Cs on rice-fields that were performed at three different times to simulate the deposition before transplanting (May 2) and during the growth of the rice (June 1 and August 12), respectively. In the case of the deposition of May 2, the root-uptake is the most predominant process for transferring 137 Cs to the rice-body and grain. When the radionuclide is applied just after transplanting (June 1), the activity of the body is controlled by the shoot-base absorption and the activity of the grain by the root-uptake. The deposition just before ear-emergence (August 12) shows that the shoot-base absorption contributes entirely to the increase of both the activities of the body and grain. The model prediction agrees within one or two factors with the experimental results obtained for a respective deposition experiment

  12. Consumers' Preferences for a Local Food Product: The Case of a New Carnaroli Rice Product in Lombardy.

    Science.gov (United States)

    Ferrazzi, Giovanni; Ventura, Vera; Ratti, Sabrina; Balzaretti, Claudia

    2017-04-13

    Italy, with a cultivated area of 218,000 ha, is a European leader of rice production. In particular Lombardy region accounts for 40% of total rice cultivation and the case study in object accounts for 3.2% of Lombardy total rice area (2773 ha). Starting from 2012, through a regional project titled Buono, Sano e Vicino (good, healthy and close), Riso e Rane rural district supported local rice farmers in developing innovation in rice production and promoting an alternative supply chain to increase farmers bargaining power and promote new market strategies. More specifically, the innovation introduced is a new biotech method for variety certification, named DNA controllato (DNA tested). In the first step of the project, the attention was focused on an Italian traditional variety of rice: Carnaroli rice. Thanks to a commercial agreement with one of the most important large retailers in Lombardy, the Riso e Rane rice is offered for sale both in the traditional and wholegrain version. In this context, this work aims to evaluate the determinants of consumer's quality perception of this product, through a preference study of the commercial rice package. Preliminary results reveal that consumers perceive information about origin, local food-system and tradition more easily than DNA tested certification. In conclusion, this work contributes to evaluate the role of bio economy applications to the food sector and offers new insights for the debate about the relationships between tradition and innovation.

  13. Consumers’ preferences for a local food product: the case of a new Carnaroli rice product in Lombardy

    Directory of Open Access Journals (Sweden)

    Giovanni Ferrazzi

    2017-04-01

    Full Text Available Italy, with a cultivated area of 218,000 ha, is a European leader of rice production. In particular Lombardy region accounts for 40% of total rice cultivation and the case study in object accounts for 3.2% of Lombardy total rice area (2773 ha. Starting from 2012, through a regional project titled Buono, Sano e Vicino (good, healthy and close, Riso e Rane rural district supported local rice farmers in developing innovation in rice production and promoting an alternative supply chain to increase farmers bargaining power and promote new market strategies. More specifically, the innovation introduced is a new biotech method for variety certification, named DNA controllato (DNA tested. In the first step of the project, the attention was focused on an Italian traditional variety of rice: Carnaroli rice. Thanks to a commercial agreement with one of the most important large retailers in Lombardy, the Riso e Rane rice is offered for sale both in the traditional and wholegrain version. In this context, this work aims to evaluate the determinants of consumer’s quality perception of this product, through a preference study of the commercial rice package. Preliminary results reveal that consumers perceive information about origin, local food-system and tradition more easily than DNA tested certification. In conclusion, this work contributes to evaluate the role of bio economy applications to the food sector and offers new insights for the debate about the relationships between tradition and innovation.

  14. Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation.

    NARCIS (Netherlands)

    Matthews, R.B.; Kropff, M.J.; Horie, T.; Bachelet, D.

    1997-01-01

    The likely effects of climate change caused by increasing atmospheric carbon dioxide levels on rice production in Asia were evaluated using two rice crop simulation models, ORYZA1 and SIMRIW, running under fixed-change' climate scenarios and scenarios predicted for a doubled-CO2 (2xCO2) atmosphere

  15. Agricultural production - Phase 2. Indonesia. Rice - azolla - fish culture - use of nuclear technique

    International Nuclear Information System (INIS)

    Watanabe, Iwao.

    1991-01-01

    The primary aim of the expert mission was to provide advice on the use of nuclear techniques to study rice-azolla-fish culture. Results of the work performed so far show that basal application of azolla gives similar or better yields of rice than basal application of urea. Fish productivity was also found to be significantly higher when azolla is present. 2 tabs

  16. Improving nitrogen management via a regional management plan for Chinese rice production

    Science.gov (United States)

    Wu, Liang; Chen, Xinping; Cui, Zhenling; Wang, Guiliang; Zhang, Weifeng

    2015-09-01

    A lack of basic information on optimal nitrogen (N) management often results in over- or under-application of N fertilizer in small-scale intensive rice farming. Here, we present a new database of N input from a survey of 6611 small-scale rice farmers and rice yield in response to added N in 1177 experimental on-farm tests across eight agroecological subregions of China. This database enables us to evaluate N management by farmers and develop an optimal approach to regional N management. We also investigated grain yield, N application rate, and estimated greenhouse gas (GHG) emissions in comparison to N application and farming practices. Across all farmers, the average N application rate, weighted by the area of rice production in each subregion, was 210 kg ha-1 and ranged from 30 to 744 kg ha-1 across fields and from 131 to 316 kg ha-1 across regions. The regionally optimal N rate (RONR) determined from the experiments averaged 167 kg ha-1 and varied from 114 to 224 kg N ha-1 for the different regions. If these RONR were widely adopted in China, approximately 56% of farms would reduce their use of N fertilizer, and approximately 33% would increase their use of N fertilizer. As a result, grain yield would increase by 7.4% from 7.14 to 7.67 Mg ha-1, and the estimated GHG emissions would be reduced by 11.1% from 1390 to 1236 kg carbon dioxide (CO2) eq Mg-1 grain. These results suggest that to achieve the goals of improvement in regional yield and sustainable environmental development, regional N use should be optimized among N-poor and N-rich farms and regions in China.

  17. Improving nitrogen management via a regional management plan for Chinese rice production

    International Nuclear Information System (INIS)

    Wu, Liang; Chen, Xinping; Cui, Zhenling; Wang, Guiliang; Zhang, Weifeng

    2015-01-01

    A lack of basic information on optimal nitrogen (N) management often results in over- or under-application of N fertilizer in small-scale intensive rice farming. Here, we present a new database of N input from a survey of 6611 small-scale rice farmers and rice yield in response to added N in 1177 experimental on-farm tests across eight agroecological subregions of China. This database enables us to evaluate N management by farmers and develop an optimal approach to regional N management. We also investigated grain yield, N application rate, and estimated greenhouse gas (GHG) emissions in comparison to N application and farming practices. Across all farmers, the average N application rate, weighted by the area of rice production in each subregion, was 210 kg ha −1 and ranged from 30 to 744 kg ha −1 across fields and from 131 to 316 kg ha −1 across regions. The regionally optimal N rate (RONR) determined from the experiments averaged 167 kg ha −1 and varied from 114 to 224 kg N ha −1 for the different regions. If these RONR were widely adopted in China, approximately 56% of farms would reduce their use of N fertilizer, and approximately 33% would increase their use of N fertilizer. As a result, grain yield would increase by 7.4% from 7.14 to 7.67 Mg ha −1 , and the estimated GHG emissions would be reduced by 11.1% from 1390 to 1236 kg carbon dioxide (CO 2 ) eq Mg −1 grain. These results suggest that to achieve the goals of improvement in regional yield and sustainable environmental development, regional N use should be optimized among N-poor and N-rich farms and regions in China. (letter)

  18. Rice farming in Bali: organic production and marketing challenges.

    Science.gov (United States)

    MacRae, Graeme

    2011-01-01

    All is not well with agriculture in Southeast Asia. The productivity gains of the Green Revolution have slowed and even reversed and environmental problems and shortages of water and land are evident. At the same time changing world markets are shifting the dynamics of national agricultural economies. But from the point of view of farmers themselves, it is their season-to-season economic survival that is at stake. Bali is in some ways typical of other agricultural areas in the region, but it is also a special case because of its distinctive economic and cultural environment dominated by tourism. In this environment, farmers are doubly marginalized. At the same time the island offers them unique market opportunities for premium and organic produce. This article examines the ways in which these opportunities have been approached and describes their varying degrees of success. It focuses especially on one project that has been successful in reducing production costs by conversion to organic production, but less so in marketing its produce. It argues finally for the need for integrated studies of the entire rice production/marketing complex, especially from the bottom-up point of view of farmers.

  19. Study on residues of 14C-Fenitrothion in a model rice-fish ecosystem and in a field rice-fish ecosystem

    International Nuclear Information System (INIS)

    Zhang Zhongliang; Wang Huaxin; Guo Dazhi; Chen Zhiyu; Wu Suchueng

    1993-01-01

    Residues of 14 C-fenitrothion in a model rice-fish ecosystem and field rice-fish ecosystem were studied. When equal amounts of the pesticide were applied, the extractable residues in brown rice (equivalent to 34.3±1.9 μg/kg fenitrothion) and rice stems and leaves (20.9±1.5 μg/kg) of the model rice-fish ecosystem were 10-15 times higher than that of the field rice-fish ecosystem (4.48±0.13 μg/kg and 1.27±0.34 μg/kg respectively). Residues in upper part of the soil (6.50±0.1--8.10±0.2 μg/kg) and lower part of the soil (1.30±0.1--1.50±0.1 μg/kg) of the model rice-fish ecosystem were 10-40 times higher than that of the field rice-fish ecosystem (0.17±0.01 μg/kg). The extractable residues in paddy water of the model ecosystem (0.30 ± 0.01 μg/kg) were similar to that of the field ecosystem (0.20±0.02 μg/kg). When the fenitrothion was sprayed on the rice plants, residues in brown rice, fish body, soil and paddy water were lower than those when the pesticide was spread on the surface of the soil. (author). 4 refs, 2 tabs

  20. Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part II: Field trial results, carbon abatement, economic assessment and conclusions

    International Nuclear Information System (INIS)

    Shackley, Simon; Carter, Sarah; Knowles, Tony; Middelink, Erik; Haefele, Stephan; Haszeldine, Stuart

    2012-01-01

    In part I we described the gasification technology and characterised the physio-chemical properties and environmental impacts of the rice husk char (RHC) by-product. In part II we present summary results from field trials using the RHC, and provide an estimate of the carbon abatement and economic evaluation of the system. Statistically significant yield increases are demonstrated for RHC addition in irrigated rice cultivation (33% increase in paddy rice yield for a 41.5 t (dry weight) RHC application per hectare). The carbon abatement from the RHC addition is approximately 0.42 t CO 2 t −1 rice husk; including energy generation from gasification this increases to ca. 0.86 tCO 2 t −1 . Assuming a carbon value of $5 t CO 2 t −1 , and agronomic value of $3 t −1 RHC based on the field trials, the economic value of the RHC varies from $9 t −1 (including only recalcitrant carbon) to $15 t −1 (including avoided emissions from energy production). We summarise results from parts I and II, concluding that the gasification–biochar system meets many of the criteria of sustainability, but requires better waste water management and more field trials to demonstrate repeatable agronomic efficacy of RHC application. - Highlights: ► Field trials show statistically significant rice yield increases using rice husk char (RHC). ► Carbon abatement of 0.42 t CO 2 t −1 rice husk from RHC production. ► Bioenergy generation via gasification gives carbon abatement of 0.44 t CO 2 t −1 husk. ► Total carbon abatement is therefore ca. 0.86 t CO 2 t −1 husk. ► Agronomic value from trials is $3 t −1 char; assuming $5 CO 2 t −1 , the total value of RHC is $9–$15 t −1 .

  1. Production of glutinous rice flour from broken rice via ultrasonic assisted extraction of amylose.

    Science.gov (United States)

    Setyawati, Yohana Dwi; Ahsan, Sitti Faika; Ong, Lu Ki; Soetaredjo, Felycia Edi; Ismadji, Suryadi; Ju, Yi-Hsu

    2016-07-15

    In this study, a modified aqueous leaching method by complex formation of amylose with glycerol was employed for reducing the amylose content of starch in broken white rice to less than 2%, so that the resulting starch can be classified to that of glutinous rice flour. By employing ultrasonication in alkaline condition, extraction of amylose could be performed by washing at lower temperature in shorter time compared to the existing aqueous leaching method. The effects of glycerol concentration, alkali concentration, ultrasonication and treatment time on the amylose content of the treated starch were systematically investigated. Under optimum condition, amylose content of broken white rice starch can be reduced from 27.27% to 1.43% with a yield of 80.42%. The changes in the physicochemical properties of the rice flour before and after treatment were studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Heat exposure, cardiovascular stress and work productivity in rice harvesters in India: implications for a climate change future.

    Science.gov (United States)

    Sahu, Subhashis; Sett, Moumita; Kjellstrom, Tord

    2013-01-01

    Excessive workplace heat exposures create well-known risks of heat stroke, and it limits the workers' capacity to sustain physical activity. There is very limited evidence available on how these effects reduce work productivity, while the quantitative relationship between heat and work productivity is an essential basis for climate change impact assessments. We measured hourly heat exposure in rice fields in West Bengal and recorded perceived health problems via interviews of 124 rice harvesters. In a sub-group (n = 48) heart rate was recorded every minute in a standard work situation. Work productivity was recorded as hourly rice bundle collection output. The hourly heat levels (WBGT = Wet Bulb Globe Temperature) were 26-32°C (at air temperatures of 30-38°C), exceeding international standards. Most workers reported exhaustion and pain during work on hot days. Heart rate recovered quickly at low heat, but more slowly at high heat, indicating cardiovascular strain. The hourly number of rice bundles collected was significantly reduced at WBGT>26°C (approximately 5% per°C of increased WBGT). We conclude that high heat exposure in agriculture caused heat strain and reduced work productivity. This reduction will be exacerbated by climate change and may undermine the local economy.

  3. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    Science.gov (United States)

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  4. Tolerance of different rice genotypes (oryza sativa l.) against the infestation of rice stem borers under natural field conditions

    International Nuclear Information System (INIS)

    Sarwar, M.; Ahmad, N.; Nasrullah; Tofique, M.

    2010-01-01

    The present studies report the genotypic responses of 61 rice (Oryza sativa L.) genotypes (35 aromatic and 26 non aromatic) against the infestation of rice stem borers under natural field conditions. The data obtained on these genotypes on larval infestation in combination with yield were the criteria to assess the resistance depicted by them. The studies showed that among aromatic genotypes, 'Khushboo-95' gave the best yield of grain and harboured the least pest infestation (2.81% dead hearts and 1.85% white heads); on the other hand variety 'Sonahri Sugdasi (P)' harboured the highest borers attack (10.37% and 19.30%) and yielded the lowest grain yield. Regarding non-aromatic genotypes, IR8-2.5-11 received least infestation (1.32% and 0.26% dead hearts and white heads, respectively) generating highest yield showing its tolerance to borer's attack, in contrast, genotype IR6-252 harboured the highest infestation (5.65%, 4.28%) and yielded minimum grain indicating its susceptibility. These results demonstrate the expression of resistance gene in the genome of tolerant rice genotypes that can provide season-long protection from the natural infestation of insect pests. (author)

  5. Rice status and microwave characteristics: Analysis of rice paddy fields at Kojima Bay [Okayama, Japan] using multi-frequency and polarimetric Pi-SAR radar data images

    International Nuclear Information System (INIS)

    Ishitsuka, N.; Saito, G.; Ouchi, K.; Davidson, G.; Mohri, K.; Uratsuka, S.

    2003-01-01

    Abstract South-east Asia has a rainy-season at the crop growing period, and it is difficult to observe agricultural land in this season using optical remote sensing. Synthetic Aperture Radar (SAR) can observe the earth's surface without being influenced by of clouds. However, it is less useful for observing agricultural land, because satellite SAR has only one data band. Recently, SAR is able to provide multi band and multi polarimetric data. Pi-SAR, an airborne SAR developed by NASDA and CRL, can provide L and X bands and fully polarimetric data. Rice is the main crop in Asia, and we studied the characteristic microwave scatter on rice paddy fields using Pi-SAR data. Our study area was the rice paddy fields in Kojima reclaimed land in Japan. We had two fully polarimetric data sets from 13 July 1999 and 4 October 2000. First, we processed the color polarimetric composite image. Next we calibrated the phase of each polarimetric data using river area by the Kimura method. After that we performed decomposition analysis and drew polarimetric signatures for understanding the status of rice paddy fields. At the rice planting period, rice paddy fields are filled with water and rice plants are very small. The SAR microwave scatters on water surfaces like a mirror, called 'mirror (or specular) reflection'. This phenomenon makes backscatter a small value at the water-covered area. The image from July is about one month after trans-planting and rice plants are 20-40 cm in height. X-band microwave scatters on the rice surface, but L-band microwave passes through rice bodies and shows mirror refraction on water surfaces. Some strong backscatter occur on rice paddy fields especially VV polarization because of bragg scattering. The fields where bragg scattering returns strong VV scatter because the space between rice stems cause resonation in the L-band wavelength. We can easily understand bragg scatter by using polarimetric data. Using the image from October at

  6. Cointegration analysis for rice production in the states of Perlis and Johor, Malaysia

    Science.gov (United States)

    Shitan, Mahendran; Ng, Yung Lerd; Karmokar, Provash Kumar

    2015-02-01

    Rice is ranked the third most important crop in Malaysia after rubber and palm oil in terms of production. Unlike the industrial crops, although its contribution to Malaysia's economy is minimal, it plays a pivotal role in the country's food security as rice is consumed by almost everyone in Malaysia. Rice production is influenced by factors such as geographical location, temperature, rainfall, soil fertility, farming practices, etc. and hence the productivity of rice may differ in different state. In this study, our particular interest is to investigate the interrelationship between the rice production of Perlis and Johor. Data collected from Department of Agriculture, Government of Malaysia are tested for unit roots by Augmented Dickey-Fuller (ADF) unit root test while Engle-Granger (EG) procedure is used in the cointegration analysis. Our study shows that cointegrating relationship exists among the rice production in both states. The speed of adjustment coefficient of the error correction model (ECM) of Perlis is 0.611 indicating that approximately 61.1% of any deviation from the long-run path is corrected within a year by the production of rice in Johor.

  7. Production of technical silicon and silicon carbide from rice-husk

    Directory of Open Access Journals (Sweden)

    A. Z. Issagulov

    2014-10-01

    Full Text Available In the article there are studied physical and chemical properties of silicon-carbonic raw material – rice-husk, thermophysical characteristics of the process of rice-husk pyrolysis in nonreactive and oxidizing environment; structure and phase composition of products of the rice-husk pyrolysis in interval of temperatures 150 – 850 °С and high temperature pyrolysis in interval of temperatures 900 – 1 500 °С. There are defined the silicon-carbon production conditions, which meet the requirements applicable to charging materials at production of technical silicon and silicon carbide.

  8. Field performance of selected mutants of sorghum and rice. Field evaluation review

    International Nuclear Information System (INIS)

    1996-10-01

    Agricultural research conducted in Mali by the Institute Polytechnique Rural (IPR) and the Institute d'Economie Rural (IER), from improvement of sorghum and African rice (Oryza glaberrima) with some Agency support, resulted in several advanced generations of sorghum and African rice with improved characteristics, including high yield. Project MLI/5/014 aims at further supporting both institutions to advance these promising results, particularly by supporting multi-location field trials to select high yielding plant varieties, and by adding capability in tissue culture techniques for advanced mutation breeding as well as in the use of nuclear techniques in soil studies. The project was approved in 1995, as a model project and the current budget for the Agency's input amounts to $469,300 until 1997. The disbursements up to April 1996 amount to $168,991. The present mid-term evaluation aims at assessing the progress of the project towards its intended objectives and overall goal and the evaluation methodology applied was based on the Logical Framework Approach for project design. Figs, tabs

  9. Vector Fields on Product Manifolds

    OpenAIRE

    Kurz, Stefan

    2011-01-01

    This short report establishes some basic properties of smooth vector fields on product manifolds. The main results are: (i) On a product manifold there always exists a direct sum decomposition into horizontal and vertical vector fields. (ii) Horizontal and vertical vector fields are naturally isomorphic to smooth families of vector fields defined on the factors. Vector fields are regarded as derivations of the algebra of smooth functions.

  10. Evaluation of real-time PCR detection methods for detecting rice products contaminated by rice genetically modified with a CpTI-KDEL-T-nos transgenic construct.

    Science.gov (United States)

    Nakamura, Kosuke; Akiyama, Hiroshi; Kawano, Noriaki; Kobayashi, Tomoko; Yoshimatsu, Kayo; Mano, Junichi; Kitta, Kazumi; Ohmori, Kiyomi; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko

    2013-12-01

    Genetically modified (GM) rice (Oryza sativa) lines, such as insecticidal Kefeng and Kemingdao, have been developed and found unauthorised in processed rice products in many countries. Therefore, qualitative detection methods for the GM rice are required for the GM food regulation. A transgenic construct for expressing cowpea (Vigna unguiculata) trypsin inhibitor (CpTI) was detected in some imported processed rice products contaminated with Kemingdao. The 3' terminal sequence of the identified transgenic construct for expression of CpTI included an endoplasmic reticulum retention signal coding sequence (KDEL) and nopaline synthase terminator (T-nos). The sequence was identical to that in a report on Kefeng. A novel construct-specific real-time polymerase chain reaction (PCR) detection method for detecting the junction region sequence between the CpTI-KDEL and T-nos was developed. The imported processed rice products were evaluated for the contamination of the GM rice using the developed construct-specific real-time PCR methods, and detection frequency was compared with five event-specific detection methods. The construct-specific detection methods detected the GM rice at higher frequency than the event-specific detection methods. Therefore, we propose that the construct-specific detection method is a beneficial tool for screening the contamination of GM rice lines, such as Kefeng, in processed rice products for the GM food regulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Rice evapotranspiration at the field and canopy scales under water-saving irrigation

    Science.gov (United States)

    Liu, Xiaoyin; Xu, Junzeng; Yang, Shihong; Zhang, Jiangang

    2018-04-01

    Evapotranspiration (ET) is an important process of land surface water and thermal cycling, with large temporal and spatial variability. To reveal the effect of water-saving irrigation (WSI) on rice ET at different spatial scales and understand the cross spatial scale difference, rice ET under WSI condition at canopy (ETCML) and field scale (ETEC) were measured simultaneously by mini-lysimeter and eddy covariance (EC) in the rice season of 2014. To overcome the shortage of energy balance deficit by EC system, and evaluate the influence of energy balance closure degree on ETEC, ETEC was corrected as {ET}_{EC}^{*} by energy balance closure correction according to the evaporative fraction. Seasonal average daily ETEC, {ET}_{EC}^{*} and ETCML of rice under WSI practice were estimated as 3.12, 4.03 and 4.35 mm day-1, smaller than the values reported in flooded paddy fields. Daily ETEC, {ET}_{EC}^{*} and ETCML varied in a similar trends and reached the maximum in late tillering, then decreased along with the crop growth in late season. The value of ETEC was much lower than ETCML, and was frequently 1-2 h lagged behind ETCML. It indicated that the energy balance deficit resulted in underestimation of crop ET by EC system. The corrected value of {ET}_{EC}^{*} matched ETCML much better than ETEC, with a smaller RMSE (0.086 mm h-1) and higher R 2 (0.843) and IOA (0.961). The time lapse between {ET}_{EC}^{*} and ETCML was mostly shortened to less than 0.5 h. The multiple stepwise regression analysis indicated that net radiation ( R n) is the dominant factor for rice ET, and soil moisture ( θ) is another significant factor ( p rice fields. The difference between ETCML and {ET}_{EC}^{*} ({ET}_{CML} - {ET}_{EC}^{*}) were significantly ( p rice ET in WSI fields, and for its cross scale conversion.

  12. Soil CO 2 fluxes from direct seeding rice fields under two tillage practices in central China

    Science.gov (United States)

    Li, Cheng-fang; Kou, Zhi-kui; Yang, Jin-hua; Cai, Ming-li; Wang, Jin-ping; Cao, Cou-gui

    2010-07-01

    Agricultural practices affect the production and emission of carbon dioxide (CO 2) from paddy soils. It is crucial to understand the effects of tillage and N fertilization on soil CO 2 flux and its influencing factors for a better comprehension of carbon dynamics in subtropical paddy ecosystems. A 2-yr field study was conducted to assess the effects of tillage (conventional tillage [CT] and no-tillage [NT]) and N fertilization (0 and 210 kg N ha -1) on soil CO 2 fluxes during the 2008 and 2009 rice growing seasons in central China. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the split-plot treatment. The soil CO 2 fluxes were measured 24 times in 2008 and 17 times in 2009. N fertilization did not affect soil CO 2 emissions while tillage affected soil CO 2 emissions, where NT had similar soil CO 2 emissions to CT in 2008, but in 2009, NT significantly increased soil CO 2 emissions. Cumulative CO 2 emissions were 2079-2245 kg CO 2-C ha -1 from NT treatments, and 2084-2141 kg CO 2-C ha -1 from CT treatments in 2008, and were 1257-1401 kg CO 2-C ha -1 from NT treatments, and 1003-1034 kg CO 2-C ha -1 from CT treatments in 2009, respectively. Cumulative CO 2 emissions were significantly related to aboveground biomass and soil organic C. Before drainage of paddy fields, soil CO 2 fluxes were significantly related to soil temperature with correlation coefficients ( R) of 0.67-0.87 in 2008 and 0.69-0.85 in 2009; moreover, the Q 10 values ranged from 1.28 to 1.55 and from 2.10 to 5.21 in 2009, respectively. Our results suggested that NT rice production system appeared to be ineffective in decreasing carbon emission, which suggested that CO 2 emissions from integrated rice-based system should be taken into account to assess effects of tillage.

  13. Model development for nutrient loading estimates from paddy rice fields in Korea.

    Science.gov (United States)

    Jeon, Ji-Hong; Yoon, Chun G; Ham, Jong-Hwa; Jung, Kwang-Wook

    2004-01-01

    A field experiment was performed to evaluate water and nutrient balances in paddy rice culture operations during 2001-2002. The water balance analysis indicated that about half (50-60%) of the total outflow was lost by surface drainage, with the remainder occurring by evapotranspiration (490-530 mm). The surface drainage from paddy fields was mainly caused by rainfall and forced-drainage, and in particular, the runoff during early rice culture periods depends more on the forced-drainage due to fertilization practices. Most of the total phosphorus (T-P) inflow was supplied by fertilization at transplanting, while the total nitrogen (T-N) inflow was supplied by the three fertilizations, precipitation. and from the upper paddy field, which comprised 13-33% of the total inflow. Although most of the nutrient outflow was attributed to plant uptake. nutrient loss by surface drainage was substantial, comprising 20% for T-N and 10% for T-P. Water and nutrient balances indicate that reduction of surface drainage from paddy rice fields is imperative for nonpoint source pollution control. The simplified computer model, PADDIMOD, was developed to simulate water and nutrient (T-N and T-P) behavior in the paddy rice field. The model predicts daily ponded water depth, surface drainage, and nutrient concentrations. It was formulated with a few equations and simplified assumptions, but its application and a model fitness test indicated that the simulation results reasonably matched the observed data. It is a simple and convenient planning model that could be used to evaluate BMPs of paddy rice fields alone or in combination with other complex watershed models. Application of the PADDIMOD to other paddy rice fields with different agricultural environments might require further calibration and validation.

  14. Economic analysis of swamp rice production in Ebonyi Southern ...

    African Journals Online (AJOL)

    The aim of the paper is to analyze the determinants and profitability of the output of swamp rice farmers in Ebonyi southern Agricultural zone of Ebonyi State. Primary data were obtained through the use of structured questionnaires. A total of eighty (80) swamp rice farmers were randomly selected from the different blocks ...

  15. Efficiency in rice production : evidence from gogounou district in ...

    African Journals Online (AJOL)

    Thetechnical, allocative and economic efficiencies of rice growing in the District of Gogonou and factors determining the economic efficiency have been analysed with the help of a survey carried out among 150 rice producers randomly sampled during the agricultural year 2005-2006. The data analysis is essentially based ...

  16. COMPETITIVENESS OF NIGERIAN RICE AND MAIZE PRODUCTION ECOLOGIES: A POLICY ANALYSIS APPROACH

    Directory of Open Access Journals (Sweden)

    Victor Olusegun Okoruwa

    2011-05-01

    Full Text Available The Nigerian rice and maize sectors are faced with decreasing supply and increasing demand as rice and maize have taken a strategic place of other staples leading to excessive importation and increasing government intervention. This study therefore assesses the competitiveness of Nigerian rice and maize production ecologies using the policy analysis matrix (PAM on a sample of 122 farmers. Results of the PAM revealed that outputs from the production ecologies are taxed. This is further confirmed by the Effective protection coefficient (EPC and Subsidy ratio to producers (SRP values, however, the production ecologies are subsidized on the use of tradable inputs. The production ecologies show a strong competitiveness at the farm level (under irrigated rice, upland rice and upland maize and a strong comparative advantage. Sensitivity analysis indicated that a 50 percent increase in output and a 13.3 percent depreciation of the domestic currency will increase competitiveness and comparative advantage of rice and maize production in all ecologies. The study recommends that government should ensure a level of policy stability in the rice and maize sectors, assist farmers with irrigated water scheme to ensure constant water supply, and increase the level of output through provision of improved seed varieties.

  17. High Purity Silica Production from Rice Husk Ash

    International Nuclear Information System (INIS)

    Yaminn Lwin; April Nwayy Nwayy Htett

    2010-12-01

    In this research, two types of raw material source, rice husk and rice husk ash, were used. Among the rice husk samples, taungpyan sample was chosen because it contains the maximum silica content and treated with (1,3,5) wt% sulphuric acid (96% concentration) and citric acid (99% concentration). These acid treated taungpyan samples and nonacid treated taungpyan sample were burned at 900C for 30 min. For rice husk ash samples, ash samples from fluidized combustor, fluidized gasifier and brick factory were collected. All of the rice husk ash samples were purified by alkaline extraction method with (2-3) N NaOH solution and followed by acid precipitation method with 5 N H2SO4 solution. According to the analysis and characterization, acid treated taungpyan sample (5 wt% citric acid) with the highest silica content (99.906 wt% and crystallization form) was obtained.

  18. Atmospheric CO2 concentration effects on rice water use and biomass production.

    Directory of Open Access Journals (Sweden)

    Uttam Kumar

    Full Text Available Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv. Crop geometry and management emulated field conditions. In two wet (WS and two dry (DS seasons, final aboveground dry weight (agdw was measured. At 390 ppmv [CO2] (current ambient level, agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE, increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv, 719 mm (390 ppmv, 928 mm (780 ppmv and 803 mm (1560 ppmv. With increasing [CO2], crop water use efficiency (WUE gradually increased from 1.59 g kg-1 (195 ppmv to 2.88 g kg-1 (1560 ppmv. Transpiration efficiency (TE measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  19. Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang; Yu, Haiyang [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Jing [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); Xu, Hua, E-mail: hxu@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); Wu, Qinyan; Yang, Jinghui; Zhuang, Yiqing [Zhenjiang Institute of Agricultural Science of Hilly Regions in Jiangsu, Jurong 212400 (China)

    2015-06-15

    Incorporation of straw together with microbial inoculant (a microorganism agent, accelerating straw decomposition) is being increasingly adopted in rice cultivation, thus its effect on greenhouse gas (GHG) emissions merits serious attention. A 3-year field experiment was conducted from 2010 to 2012 to investigate combined effect of straw and microbial inoculant on methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emissions, global warming potential (GWP) and greenhouse gas intensity (GHGI) in a rice field in Jurong, Jiangsu Province, China. The experiment was designed to have treatment NPK (N, P and K fertilizers only), treatment NPKS (NPK plus wheat straw), treatment NPKSR (NPKS plus Ruilaite microbial inoculant) and treatment NPKSJ (NPKS plus Jinkuizi microbial inoculant). Results show that compared to NPK, NPKS increased seasonal CH{sub 4} emission by 280–1370%, while decreasing N{sub 2}O emission by 7–13%. When compared with NPKS, NPKSR and NPKSJ increased seasonal CH{sub 4} emission by 7–13% and 6–12%, respectively, whereas reduced N{sub 2}O emission by 10–27% and 9–24%, respectively. The higher CH{sub 4} emission could be attributed to the higher soil CH{sub 4} production potential triggered by the combined application of straw and microbial inoculant, and the lower N{sub 2}O emission to the decreased inorganic N content. As a whole, the benefit of lower N{sub 2}O emission was completely offset by increased CH{sub 4} emission, resulting in a higher GWP for NPKSR (5–12%) and NPKSJ (5–11%) relative to NPKS. Due to NPKSR and NPKSJ increased rice grain yield by 3–6% and 2–4% compared to NPKS, the GHGI values for NPKS, NPKSR and NPKSJ were comparable. These findings suggest that incorporating straw together with microbial inoculant would not influence the radiative forcing of rice production in the terms of per unit of rice grain yield relative to the incorporation of straw alone. - Highlights: • This paper presents 3-year measurements of CH

  20. Effect Of Shade Organic Materials And Varieties On Growth And Production Of Upland Rice

    Directory of Open Access Journals (Sweden)

    Jonatan Ginting

    2015-01-01

    Full Text Available Abstract There is a shade factor and low organic matter content of the soil is a problem that needs to be addressed in the development of upland rice cultivation as intercrops in the plantation area. Based on these considerations then one study that needs to be done is to conduct experiments on the effect of shade factor combined with the the provision of the organic material to the some varieties of upland rice that has been recommended nationally. The objective of experiment is to study the influence of shade organic materials and varieties on the growth and production of upland rice. This research using experimental design of Split - Split Plot Design with 3 treatment factors and 3 replications or blocks. The first factor is the treatment of shade with 3 levels shade percentage 0 20 and 40. The second factor is the dosage of organic material consists of 3 levels 0 g polybag 25 g polybag 50 g polybag and 75 g polybag. The third factor is the treatment of varieties consists of 4 types of upland rice varieties Si Kembiri Situ Patengggang Situ Bagendit and Tuwoti. The research results showed that the effect of shade on upland rice varieties decrease number of tillers number of panicles number of productive grains grain production per hill of uplnd rice plants and total sugar content of upland rice plants. Effect of organic matter increases number of panicles number of productive grains grain production per hill of upland rice plants and total sugar content of upland rice plants. It is known that the the variety of Situ Patenggang provides better growth and production compared with three other varieties Si Kembiri Situ Bagendit and Tuwoti in shaded conditions.

  1. Health assessment of Arsenic and Zinc in rice cultivated in Fars province (Case Study: Firoozabad fields

    Directory of Open Access Journals (Sweden)

    M Cheraghi

    2013-11-01

    Full Text Available Food security along with the protection of environment has become a global issue.Accumulation of Arsenic and Zinc in rice is considered as a major problem for South-East Asia, where rice is a staple food. Given that, rice is considered as the highly consumed food in the diet of Iranian people, this study was conducted to estimate the concentrations of Zinc and Arsenic in rice cultivated in Firoozabad fields. For this purpose, 38 rice samples were collected from 22 nearby villages. Samples were digested by Digesdahl device and the concentrations of Arsenic and Zinc were determined by ICP. The results showed that the concentration (mean ± SD of Zinc was 20.87 ± 1.9 mg/kg of dry matter (ranged from 25.26 to 32.97; meanwhile mean value of Arsenic concentration was estimated at 22.89 ± 2.2 mg/kg of dry matter (ranged from 17.61 to 26.77.Comparing the concentrations of Arsenic and Zinc in rice samples with the standard limit set by WHO/FAO it was revealed that Arsenic concentrations in 100% of the samples were higher than standard level, whereas Zinc concentrations in 97.36% of the samples were below the limit.

  2. Utilization of crops residues as compost and biochar for improving soil physical properties and upland rice productivity

    Directory of Open Access Journals (Sweden)

    J. Barus

    2016-07-01

    Full Text Available The abundance of crops waste in the agricultural field can be converted to organic fertilizer throughout the process of composting or pyrolysis to return back into the soil. The study aimed to elucidate the effect of compost and biochar application on the physical properties and productivity of upland rice at Village of Sukaraja Nuban, Batanghari Nuban Sub district, East Lampung Regency in 2015. The amendment treatments were A. control; B. 10 t rice husk biochar/ ha; C. 10 t maize cob biochar/ha; D. 10 t straw compost/ha; E. 10 t stover compost/ha, F. 10 t rice husk biochar/ha + 10 t straw compost/ha; F. 10 t maize cob biochar/ha + 10 t maize stover compost/ha. The treatments were arranged in randomized block design with four replicates. The plot size for each treatment was 10 x 20 m. After incubation for about one month, undisturbed soil samples were taken using copper ring at 10–20 cm depth for laboratory analyzes. Analyses of soil physical properties included bulk density, particle density, total porosity, drainage porosity, and soil water condition. Plant observations conducted at harvest were plant height, number of panicle, number of grain/panicle, and grain weight/plot. Results of the study showed that biochar and compost improved soil physical properties such as bulk density, total porosity, fast drainage pores, water content, and permeability of soil. The combination of rice husk biochar and straw compost gave better effect than single applications on rice production components (numbers of panicle and grains of rice, and gave the highest yield of 4.875 t/ha.

  3. Scientific Evidence of Rice By-Products for Cancer Prevention: Chemopreventive Properties of Waste Products from Rice Milling on Carcinogenesis In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Bee Ling Tan

    2017-01-01

    Full Text Available Cancer is a significant global health concern affecting men and women worldwide. Although current chemopreventive drugs could inhibit the growth of cancer cells, they exert many adverse side effects. Dietary factor plays a crucial role in the management of cancers and has drawn the attention of researchers to be used as an option to combat this disease. Both in vitro and in vivo studies showed that rice and its by-products display encouraging results in the prevention of this disease. The mechanism of anticancer effect is suggested partly through potentiation of bioactive compounds like vitamin E, phytic acid, γ-aminobutyric acid (GABA, γ-oryzanol, and phenolics. Nevertheless, the bioactivity of rice and its by-products is still incompletely understood. In this review, we present the findings from a preclinical study both in in vitro and in animal experiments on the promising role of rice by-products with focus on cancer prevention.

  4. Evaluation of Protocols for Measuring Leaf Photosynthetic Properties of Field-Grown Rice

    Directory of Open Access Journals (Sweden)

    Chang Tian-gen

    2017-01-01

    Full Text Available Largely due to the heterogeneity of environmental parameters and the logistical difficulty of moving photosynthetic equipment in the paddy fields, effective measurement of lowland rice photosynthesis is still a challenge. In this study, we showed that measuring detached rice leaves in the laboratory can not effectively represent the parameters measured in situ. We further described a new indoor facility, high-efficiency all-weather photosynthetic measurement system (HAPS, and the associated measurement protocol to enable whole-weather measurement of photosynthetic parameters of rice grown in the paddy fields. Using HAPS, we can conduct photosynthetic measurements with a time span much longer than that appropriate for the outdoor measurements. Comparative study shows that photosynthetic parameters obtained with the new protocol can effectively represent the parameters in the fields. There was much less standard deviation for measurements using HAPS compared to the outdoor measurements, no matter for technical replications of each recording or for biological replications of each leaf position. This new facility and protocol enables rice photosynthetic physiology studies to be less tough but more efficient, and provides a potential option for large scale studies of rice leaf photosynthesis.

  5. The kinetics of glucose production from rice straw by Aspergillus niger

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... The concentration and rate of glucose production was observed to depend on pretreatment of ... cerning reaction rate parameters for rice straw hydrolysis. The generation of such ... The experiment and glucose analysis was ...

  6. Influence of rice field agrochemicals on the ecological status of a tropical stream

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Jes Jessen, E-mail: jr@bios.au.dk [Aarhus University, Department of Bioscience, Vejlsøvej 25, 8600 Silkeborg (Denmark); Reiler, Emilie Marie [University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Carazo, Elizabeth; Matarrita, Jessie [Centro de Investigación en Contaminación Ambiental, Ciudad Universidad de Costa Rica Universitaria Rodrigo Facio, San José (Costa Rica); Muñoz, Alejandro [Centro de Investigación en Contaminación Ambiental, Ciudad Universidad de Costa Rica Universitaria Rodrigo Facio, San José (Costa Rica); Escuela de Biología, Ciudad Universitaria Rodrigo Facio, San José (Costa Rica); Cedergreen, Nina [University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark)

    2016-01-15

    Many tropical countries contain a high density of protected ecosystems, and these may often be bordered by intensive agricultural systems. We investigated the chemical and ecological status of a stream connecting an area with conventional rice production and a downstream protected nature reserve; Mata Redonda. Three sites were sampled: 1) an upstream control, 2) in the rice production area and 3) a downstream site in Mata Redonda. We sampled benthic macroinvertebrates and pesticides in water and sediments along with supporting physical and chemical data. Pesticide concentrations in water exceeded current safety thresholds at sites 2 and 3, especially during the rainy season, and sediment associated pesticide concentrations exceeded current safety thresholds in three of six samples. Importantly, the highest predicted pesticide toxicity in sediments was observed at site 3 in the Mata Redonda confirming that the nature reserve received critical levels of pesticide pollution from upstream sections. The currently used macroinvertebrate index in Costa Rica (BMWP-CR) and an adjusted version of the SPecies At Risk index (SPEAR) were not significantly correlated to any measure of anthropogenic stress, but the Average Score Per Taxon (ASPT) index was significantly correlated with the predicted pesticide toxicity (sumTU{sub D.magna}), oxygen concentrations and substrate composition. Our results suggest that pesticide pollution was likely involved in the impairment of the ecological status of the sampling sites, including site 3 in Mata Redonda. Based on our results, we give guidance to biomonitoring in Costa Rica and call for increased focus on pesticide transport from agricultural regions to protected areas. - Highlights: • Pesticides are transported via streams to protected downstream nature reserves. • Pesticide concentrations were highest during the rainy season due to flooded fields. • Pesticide concentrations in the protected area exceeded safety thresholds.

  7. Influence of rice field agrochemicals on the ecological status of a tropical stream

    International Nuclear Information System (INIS)

    Rasmussen, Jes Jessen; Reiler, Emilie Marie; Carazo, Elizabeth; Matarrita, Jessie; Muñoz, Alejandro; Cedergreen, Nina

    2016-01-01

    Many tropical countries contain a high density of protected ecosystems, and these may often be bordered by intensive agricultural systems. We investigated the chemical and ecological status of a stream connecting an area with conventional rice production and a downstream protected nature reserve; Mata Redonda. Three sites were sampled: 1) an upstream control, 2) in the rice production area and 3) a downstream site in Mata Redonda. We sampled benthic macroinvertebrates and pesticides in water and sediments along with supporting physical and chemical data. Pesticide concentrations in water exceeded current safety thresholds at sites 2 and 3, especially during the rainy season, and sediment associated pesticide concentrations exceeded current safety thresholds in three of six samples. Importantly, the highest predicted pesticide toxicity in sediments was observed at site 3 in the Mata Redonda confirming that the nature reserve received critical levels of pesticide pollution from upstream sections. The currently used macroinvertebrate index in Costa Rica (BMWP-CR) and an adjusted version of the SPecies At Risk index (SPEAR) were not significantly correlated to any measure of anthropogenic stress, but the Average Score Per Taxon (ASPT) index was significantly correlated with the predicted pesticide toxicity (sumTU_D_._m_a_g_n_a), oxygen concentrations and substrate composition. Our results suggest that pesticide pollution was likely involved in the impairment of the ecological status of the sampling sites, including site 3 in Mata Redonda. Based on our results, we give guidance to biomonitoring in Costa Rica and call for increased focus on pesticide transport from agricultural regions to protected areas. - Highlights: • Pesticides are transported via streams to protected downstream nature reserves. • Pesticide concentrations were highest during the rainy season due to flooded fields. • Pesticide concentrations in the protected area exceeded safety thresholds.

  8. A New Strategy for Utilizing Rice Forage Production Using a No-Tillage System to Enhance the Self-Sufficient Feed Ratio of Small Scale Dairy Farming in Japan

    Directory of Open Access Journals (Sweden)

    Windi Al Zahra

    2014-08-01

    Full Text Available Rice forage systems can increase the land use efficiency in paddy fields, improve the self-sufficient feed ratio, and provide environmental benefits for agro-ecosystems. This system often decreased economic benefits compared with those through imported commercial forage feed, particularly in Japan. We observed the productivities of winter forage after rice harvest between conventional tillage (CT and no-tillage (NT in a field experiment. An on-farm evaluation was performed to determine the self-sufficient ratio of feed and forage production costs based on farm evaluation of the dairy farmer and the rice grower, who adopted a rice forage system. The field experiment detected no significant difference in forage production and quality between CT and NT after rice harvest. However, the production cost was dramatically decreased by 28.1% in NT compared with CT. The self-sufficient ratio was 5.4% higher when dairy farmers adopted the rice forage system compared with those using the current management system. Therefore, this study demonstrated the positive benefits for dairy farmers and rice growers in Japan when adopting a rice forage system with NT, which could improve the self-sufficient feed ratio and reduce production costs.

  9. Mitigation of unwanted direct and indirect land-use change - an integrated approach illustrated for palm oil, pulpwood, rubber and rice production in North and East Kalimantan, Indonesia

    NARCIS (Netherlands)

    Van der Laan, Carina; Wicke, Birka; Verweij, Pita A.; Faaij, André P C

    2017-01-01

    The widespread production of cash crops can result in the decline of forests, peatlands, rice fields and local community land. Such unwanted land-use and land-cover (LULC) change can lead to decreased carbon stocks, diminished biodiversity, displaced communities and reduced local food production. In

  10. Can increased leaf photosynthesis be converted into higher crop mass production? A simulation study for rice using the crop model GECROS

    NARCIS (Netherlands)

    Yin, Xinyou; Struik, Paul C.

    2017-01-01

    Various genetic engineering routes to enhance C3 leaf photosynthesis have been proposed to improve crop productivity. However, their potential contribution to crop productivity needs to be assessed under realistic field conditions. Using 31 year weather data, we ran the crop model GECROS for rice

  11. Soil quality assessment of rice production systems in South of Brazil

    OpenAIRE

    Rodrigues de Lima, A.C.; Hoogmoed, W.B.; Brussaard, L.

    2006-01-01

    Soil quality, as a measure of the soil capacity to function, can be quantified by indicators based on physical, chemical and biological properties. Maintaining soil quality at a desirable level in the rice cropping system is a very complex issue due to the nature of the production systems used. In the state of Rio Grande do Sul, Brazil, rice production is one of the most important agricultural activities in the region. The study presented here was conducted with the following objectives: (i) ...

  12. Remote sensing-based Information for crop monitoring: contribution of SAR and Moderate resolution optical data on Asian rice production

    Science.gov (United States)

    Boschetti, Mirco; Holectz, Francesco; Manfron, Giacinto; Collivignarelli, Francesco; Nelson, Andrew

    2013-04-01

    Updated information on crop typology and status are strongly required to support suitable action to better manage agriculture production and reduce food insecurity. In this field, remote sensing has been demonstrated to be a suitable tool to monitor crop condition however rarely the tested system became really operative. The ones today available, such as the European Commission MARS, are mainly based on the analysis of NDVI time series and required ancillary external information like crop mask to interpret the seasonal signal. This condition is not always guarantied worldwide reducing the potentiality of the remote sensing monitoring. Moreover in tropical countries cloud contamination strongly reduce the possibility of using optical remote sensing data for crop monitoring. In this framework we focused our analysis on the rice production monitoring in Asian tropical area. Rice is in fact the staple food for half of the world population (FAO 2004), in Asia almost 90% of the world's rice is produced and consumed and Rice and poverty often coincide. In this contest the production of reliable rice production information is of extreme interest. We tried to address two important issue in terms of required geospatial information for crop monitoring: rice crop detection (rice map) and seasonal dynamics analysis (phenology). We use both SAR and Optical data in order to exploit the potential complementarity of this system. Multi-temporal ASAR Wide Swath data are in fact the best option to deal with cloud contamination. SAR can easily penetrate the clouds providing information on the surface target. Temporal analysis of archive ASAR data allowed to derived accurate map, at 100m spatial resolution, of permanent rice cultivated areas. On the other and high frequency revisiting optical data, in this case MODIS, have been used to extract seasonal information for the year under analysis. MOD09A1 Surface Reflectance 8-Day L3 Global 500m have been exploited to derive time series of

  13. Management of soil physical properties of lowland puddled rice soil for sustainable food production

    International Nuclear Information System (INIS)

    Bhagat, R.M.

    2004-01-01

    About 3 billion people who rely on rice as their staple food today will have multiplied to some 4.4 billion by the middle of this century. With rice demand growing at an average rate of about 3 percent annually, 70 percent more rice has to be produced in next 30 years compared to present day production levels. More rice has to come from less favorable environments, with less water and nutrients. Agricultural population densities on Asia's rice producing lands are among the highest in the world and continue to increase at a remarkable rate. Rice has widely adapted itself: to the hot Australian and Egyptian deserts, to the cool Himalayan foothills of Nepal. Hill tribes in Southeast Asia plant it on slash-and-burned forest slopes; that's upland rice. However, low lying areas in Asia, which are subject to uncontrolled flooding, are home to more than 100 million poor farmers. Puddling or wet tillage in rice, decreases total soil porosity only slightly, but markedly changes porosity distribution with both storage and residual porosity increasing at the expanse of transmission porosity. Soil texture plays an important role in soil water retention following soil disturbance. Cracking pattern of the soils is studied after six years of different levels of regular addition of residue. Cracking pattern at a soil surface affects the hydrodynamic properties of soil. Cracking extends the soil-air interface into the soil profile and thereby may increase the moisture loss through evaporation

  14. Exploring the possibility of using Agroplus Biodecomposer for boosting up rice productivity under Bangladesh condition

    Directory of Open Access Journals (Sweden)

    Dulaly Sarker

    2018-04-01

    Full Text Available Over dependence on chemical fertilizers is a threat to the sustainability of rice ecosystem. Application of organic and biofertilizers might reduce reliance on chemical fertilizers and thus can play a vital role to boost up rice productivity in an eco-friendly way. An experiment was conducted at Mymensingh (24°10'0'' N latitude and 90°25'0" E longitude at 15 m above the sea level, Bangladesh during November 2015 to April 2016 to evaluate the effect of different dosages of Agroplus Biodecomposer, an organic biofertilizer containing Streptomycetes bacteria, on the growth and yield performance of some rice. The experiment included four winter rice varieties viz. (i Hybrid rice Hira and (ii Hybrid rice Tej (iii BRRI dhan28 and (iv BRRI dhan29; and four concentrations of Agroplus Biodecomposer viz. (i no Agroplus Biodecomposer (Control, (ii 2% Agroplus Biodecomposer (iii 3% Agroplus Biodecomposer and (iv 4% Agroplus Biodecomposer. The experiment was laid out in a randomized complete block design (RCBD with three replications. Agroplus Biodecomposer positively influenced growth and productivity of winter rice. It was evident that both plant height and tillering ability of winter rice were increased gradually with increased concentration of Agroplus Biodecomposer at all the growth stages of rice. All the yield contributing characters of rice were enhanced due to Agroplus Biodecomposer application which resulted in increased grain yield. Compared to control, rice grain yield was increased by 14, 20 and 28%, respectively due to application of Agroplus Biodecomposer at 2, 3 and 4% concentration. Rice variety also differed significantly in terms of growth and yield performance among themselves. Hybrid varieties performed better than inbred ones. Hybrid variety Hira appeared as the best performer followed by another hybrid Tej. Hybrid variety Hira interacted favorably with 4% Agroplus Biodecomposer to produce the highest grain yield of rice (7 t ha-1

  15. Screening and selection of most potent diazotrophic cyanobacterial isolate exhibiting natural tolerance to rice field herbicides for exploitation as biofertilizer.

    Science.gov (United States)

    Singh, Surendra; Datta, Pallavi

    2006-01-01

    Periodic applications of heavy dosages of herbicides in modern rice-agriculture are a necessary evil for obtaining high crop productivity. Such herbicides are not only detrimental to weeds but biofertilizer strains of diazotrophic cyanobacteria also. It is therefore, essential to screen and select such biofertilizer strains of diazotrophic cyanobacteria exhibiting natural tolerance to common rice-field herbicides that can be further improved by mutational techniques to make biofertilizer technology a viable one. Therefore, efforts have been made to screen five dominant diazotrophic cyanobacterial forms e.g. filamentous heterocystous Nostoc punctiforme , Nostoc calcicola , Anabaena variabilis and unicellular Gloeocapsa sp. and Aphanocapsa sp. along with standard laboratory strain Nostoc muscorum ISU against increasing concentrations (0-100 mg l(-1) of four commercial grade common rice-field herbicides i.e. Arozin, Butachlor, Alachlor and 2,4-D under diazotrophic growth conditions. The lethal and IGC(50) concentrations for all four herbicides tested were found highest for A. variabilis as compared to other test cyanobacteria. The lowest reduction in chlorophyll a content, photosynthetic oxygen evolution, and N(2)-fixation was found in A. variabilis as compared to other rice field isolates and standard laboratory strain N. muscorum ISU. On the basis of prolong survival potential and lowest reductions in vital metabolic activities tested at IGC(50) concentration of four herbicides, it is concluded that A. variabilis is the most potent and promising cyanobacterial isolate as compared with other forms. This could be further improved by mutational techniques for exploitation as most potential and viable biofertilizer strain.

  16. Linking environment-productivity trade-offs and correlated uncertainties: Greenhouse gas emissions and crop productivity in paddy rice production systems

    International Nuclear Information System (INIS)

    Hayashi, Kiyotada; Nagumo, Yoshifumi; Domoto, Akiko

    2016-01-01

    In comparative life cycle assessments of agricultural production systems, analyses of both the trade-offs between environmental impacts and crop productivity and of the uncertainties specific to agriculture such as fluctuations in greenhouse gas (GHG) emissions and crop yields are crucial. However, these two issues are usually analyzed separately. In this paper, we present a framework to link trade-off and uncertainty analyses; correlated uncertainties are integrated into environment-productivity trade-off analyses. We compared three rice production systems in Japan: a system using a pelletized, nitrogen-concentrated organic fertilizer made from poultry manure using closed-air composting techniques (high-N system), a system using a conventional organic fertilizer made from poultry manure using open-air composting techniques (low-N system), and a system using a chemical compound fertilizer (conventional system). We focused on two important sources of uncertainties in paddy rice cultivation—methane emissions from paddy fields and crop yields. We found trade-offs between the conventional and high-N systems and the low-N system and the existence of positively correlated uncertainties in the conventional and high-N systems. We concluded that our framework is effective in recommending the high-N system compared with the low-N system, although the performance of the former is almost the same as the conventional system. - Highlights: • Correlated uncertainties were integrated into environment-productivity trade-offs. • Life cycle GHG emissions and crop yields were analyzed using field and survey data. • Three rice production systems using chemical or organic fertilizers were compared. • There were portfolio (insurance) effects in matured technologies. • Analysis of trade-offs and correlated uncertainties will be useful for decisions.

  17. Linking environment-productivity trade-offs and correlated uncertainties: Greenhouse gas emissions and crop productivity in paddy rice production systems

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kiyotada, E-mail: hayashi@affrc.go.jp [Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan); Nagumo, Yoshifumi [Crop Research Center, Niigata Agricultural Research Institute, 857 Nagakura-machi, Nagaoka, Niigata 940-0826 (Japan); Domoto, Akiko [Mie Prefecture Agricultural Research Institute, 530 Kawakita-cho, Ureshino, Matsusaka, Mie 515-2316 (Japan)

    2016-11-15

    In comparative life cycle assessments of agricultural production systems, analyses of both the trade-offs between environmental impacts and crop productivity and of the uncertainties specific to agriculture such as fluctuations in greenhouse gas (GHG) emissions and crop yields are crucial. However, these two issues are usually analyzed separately. In this paper, we present a framework to link trade-off and uncertainty analyses; correlated uncertainties are integrated into environment-productivity trade-off analyses. We compared three rice production systems in Japan: a system using a pelletized, nitrogen-concentrated organic fertilizer made from poultry manure using closed-air composting techniques (high-N system), a system using a conventional organic fertilizer made from poultry manure using open-air composting techniques (low-N system), and a system using a chemical compound fertilizer (conventional system). We focused on two important sources of uncertainties in paddy rice cultivation—methane emissions from paddy fields and crop yields. We found trade-offs between the conventional and high-N systems and the low-N system and the existence of positively correlated uncertainties in the conventional and high-N systems. We concluded that our framework is effective in recommending the high-N system compared with the low-N system, although the performance of the former is almost the same as the conventional system. - Highlights: • Correlated uncertainties were integrated into environment-productivity trade-offs. • Life cycle GHG emissions and crop yields were analyzed using field and survey data. • Three rice production systems using chemical or organic fertilizers were compared. • There were portfolio (insurance) effects in matured technologies. • Analysis of trade-offs and correlated uncertainties will be useful for decisions.

  18. Effect of elevated [CO2] and nutrient management on wet and dry season rice production in subtropical India

    Institute of Scientific and Technical Information of China (English)

    Sushree Sagarika Satapathy; Dillip Kumar Swain; Surendranath Pasupalak; Pratap Bhanu Singh Bhadoria

    2015-01-01

    The present experiment was conducted to evaluate the effect of elevated [CO2] with varying nutrient management on rice–rice production system. The experiment was conducted in the open field and inside open-top chambers (OTCs) of ambient [CO2] (≈390μmol L−1) and elevated [CO2] environment (25%above ambient) during wet and dry seasons in 2011–2013 at Kharagpur, India. The nutrient management included recommended doses of N, P, and K as chemical fertilizer (CF), integration of chemical and organic sources, and application of increased (25%higher) doses of CF. The higher [CO2] level in the OTC increased aboveground biomass but marginally decreased filled grains per panicle and grain yield of rice, compared to the ambient environment. However, crop root biomass was increased significantly under elevated [CO2]. With respect to nutrient management, increasing the dose of CF increased grain yield significantly in both seasons. At the recommended dose of nutrients, integrated nutrient management was comparable to CF in the wet season, but significantly inferior in the dry season, in its effect on growth and yield of rice. The [CO2] elevation in OTC led to a marginal increase in organic C and available P content of soil, but a decrease in available N content. It was concluded that increased doses of nutrients via integration of chemical and organic sources in the wet season and chemical sources alone in the dry season will minimize the adverse effect of future climate on rice production in subtropical India.

  19. Effects on wildlife of ethyl and methyl parathion applied to California rice fields

    Science.gov (United States)

    Custer, T.W.; Hill, E.F.; Ohlendorf, H.M.

    1985-01-01

    Selected rice fields on the Sacramento National Wildlife Refuge Complex were aerially sprayed one time during May or June 1982 with either ethyl (0.11 kg Al/ha) or methyl (0.84 kg AI/ha) parathion for control of tadpole shrimp, Triops longicaudatus. No sick or dead vertebrate wildlife were found or adjacent to the treated rice fields after spraying. Specimens of the following birds and mammals were assayed for brain cholinesterase (ChE) activity to determine exposure to either form of parathion; house mouse, Mus musculus; black-tailed jackrabbit, Lepus californicus; mallard, Anas platyrhynchos; ring-necked pheasant, Phasianus colchicus; American coot, Fulica americana; and red-winged blackbird, Agelaius phoeniceus. Both mice and pheasants from methyl parathion-treated fields had overall mean ChE activities that were significantly (P < 0.05) inhibited compared with controls, and 7, 40, 54 and 57% of individual blackbirds, pheasant, mice, and coots, respectively, had inhibited brain ChE activities (i.e., less than -2 SD of control mean). Although no overall species effect was detected for ethyl parathoid treatment, pheasants (43%), coots (33%), and mice (37%) had significantly inhibited brain ChE activities. Neither of the parathion treatment appeared acutely hazardous to wildlife in or adjacent to rice fields, but sufficient information on potential hazards was obtained to warrant caution in use of these chemicals, especially methyl parathion, in rice fields.

  20. Effects of wildlife of ethyl and methyl parathion applied to California USA rice fields

    Science.gov (United States)

    Custer, T.W.; Hill, E.F.; Ohlendorf, H.M.

    1985-01-01

    Selected rice fields on the Sacramento National Wildlife Refuge Complex were aerially sprayed one time during May or June 1982 with either ethyl (0.11 kg Al/ha) or methyl (0.84 kg AI/ha) parathion for control of tadpole shrimp, Triops longicaudatus. No sick or dead vertebrate wildlife were found or adjacent to the treated rice fields after spraying. Specimens of the following birds and mammals were assayed for brain cholinesterase (ChE) activity to determine exposure to either form of parathion; house mouse, Mus musculus; black-tailed jackrabbit, Lepus californicus; mallard, Anas platyrhynchos; ring-necked pheasant, Phasianus colchicus; American coot, Fulica americana; and red-winged blackbird, Agelaius phoeniceus. Both mice and pheasants from methyl parathion-treated fields had overall mean ChE activities that were significantly (P < 0.05) inhibited compared with controls, and 7, 40, 54 and 57% of individual blackbirds, pheasant, mice, and coots, respectively, had inhibited brain ChE activities (i.e., less than -2 SD of control mean). Although no overall species effect was detected for ethyl parathoid treatment, pheasants (43%), coots (33%), and mice (37%) had significantly inhibited brain ChE activities. Neither of the parathion treatment appeared acutely hazardous to wildlife in or adjacent to rice fields, but sufficient information on potential hazards was obtained to warrant caution in use of these chemicals, especially methyl parathion, in rice fields.

  1. Phenotype diversity analysis of red-grained rice landraces from Yuanyang Hani's terraced fields, China

    Science.gov (United States)

    Li, Lianjie; Cheng, Long

    2017-10-01

    There are many areas in the world have terraced fields, Yuanyang Rani's terraced fields are examples in the world, and their unique ecological diversity is beyond other terraced fields, rice landraces are very rich. In order to provide useful information for protection and utilization of red-grained rice landraces from Rani's terraced fields, 61 red-grained rice landraces were assessed based 20 quantitative traits. Principal component analysis (PCA) suggested that 20 quantitative characters could be simplified to seven principal components, and their accumulative contribution ration amounted to 78.699%. The first principal component (PC1) explained 18.375% of the total variance, which was contributed by filled grain number, 1000-grain weight, spikelets per panicle, secondary branch number, grain length, and grain thickness. PC2 accounted for 16.548% of the variance and featured flag leaf width, flag leaf area, panicle neck length and primary branch number. These traits were the most effective parameters to discriminate individuals. At the request of the proceedings editor and with the approval of all authors, article 040111 titled, "Phenotype diversity analysis of red-grained rice landraces from Yuanyang Hani's terraced fields, China," is being retracted from the public record due to the fact that it is a duplication of article 040110 published in the same volume.

  2. Information circulation in rice production: the case of UNVDA and Ndop rice farmers, Cameroon

    NARCIS (Netherlands)

    Chindong, P.E.

    2008-01-01

    The study revealed that the dominant Agricultural extension approaches used in the rice sector in Cameroon is ToT and T&V. The methods of information circulation using these approaches are individual and group methods. The extension approaches has been criticized for its ineffectiveness especially

  3. rice husk as filler rice husk as filler in the production of bricks using

    African Journals Online (AJOL)

    eobe

    block [1].The effect of palm fruit fibre in clay bricks was also investigated by Akinyele and Abdulraheem,. [2], they observed ... the Rice Husk ash at 8% improves the compressive ... that 5% mix of the material acts as a filler in concrete because ...

  4. Preparation and characterization of rice hull silica products

    International Nuclear Information System (INIS)

    Quirit, Leni L.; Llaguno, Elma C.; Pagdanganan, Fernando C.; Hernandez, Karen N.

    2008-01-01

    Rice hull is an abundant agricultural waste material which could be a renewable energy source when combusted. The combustion residue (called rice hull ash or RHA) contains a significant amount (20% of the hull) of potentially high grade silica. Silica gels prepared from rice hull were found to have properties comparable to two commercial desiccant silica gels (Blue Merck and FNG-A) in terms of chemical and amorphous structure, surface area, desiccant characteristics, microstructure and heats of adsorption. These properties were determined from water vapor adsorption measurements, electron microscopy, and from infrared and x-ray diffraction spectra. The acid treated rice hull gels were found to have fewer elemental impurities detected by qualitative x-ray fluorescence, compared to the commercial gels. Thermogravimetric analysis (TGA) data showed that this technique can also be used to indirectly compare impurity levels in the samples, in terms of the amorphous to crystalline phase transition. Using an improved acid treatment method, a silica gel sample was prepared from rice hull and compared to three commercial chromatographic silica gels using quantitative elemental x-ray fluorescence analysis. Elemental levels in the rice hull gel were within the range of levels or close to the detection limits of corresponding elements in the chromatographic gels. Water vapor adsorption, x-ray diffraction, infrared spectroscopy and scanning electron microscopy showed that the rice hull gel was similar to the commercial chromatographic silica gel Davison 12. Zeolites are crystalline aluminosilicates used as molecular sieves for purification and catalytic purposes. Zeolites X and Y were synthesized from rice hull silica gel and aluminum hydroxide. For comparison, controls were synthesized from commercial silica gel. The samples and controls exhibited characteristics infrared peaks corresponding to the vibrations of the TO 4 (T=Si, Al) of the zeolite framework. The x

  5. Impact Of Different Time Planting In Soybeans And Neem Seed Extract Application To Insect Population On Rice Field

    Directory of Open Access Journals (Sweden)

    Tamrin Abdullah

    2015-08-01

    Full Text Available Abstract The purpose of research is to study impact of different time planting of soybean and neem seed extract application to pest insect population on rice field. The research was used Random Block Design in three treatment of insecticides application i.e neem seed extract together with rice planting neem seed extract on soybean 17 days after rice planting synthetic insecticides on 17 days after rice planting Delthametrin on soybean and Chlorpirifos on rice respectively. Research was conducted in rice fields with irrigation channels. The land area is 0.8 hectares with extensive experiments each rice terraces approximately 900 m2 with separate by rice terraces for every treatment. Each treatment consisted of three groups and using nine rice terraces. Samples of the rice plant population is 25 plants per sample unit. The results was showed treatment by neem seed extract with different time planting of soybeans able to reduce number of pest insects populations such as N. virescens 80.38 N. lugens 67.17 S. incertulas 66.5 and L. oratorius 93.46 when compared to treatment with synthetic insecticides Delthamethrin and Chlorpyrifos.

  6. Sustainable and Low Greenhouse Gas Emitting Rice Production in Latin America and the Caribbean: A Review on the Transition from Ideality to Reality

    Directory of Open Access Journals (Sweden)

    Ngonidzashe Chirinda

    2018-03-01

    Full Text Available The burgeoning demand for rice in Latin America and Caribbean (LAC exceeds supply, resulting in a rice deficit. To overcome this challenge, rice production should be increased, albeit sustainably. However, since rice production is associated with increases in the atmospheric concentration of two greenhouse gases (GHGs, namely methane (CH4 and nitrous oxide (N2O, the challenge is on ensuring that production increases are not associated with an increase in GHG emissions and thus do not cause an increase in GHG emission intensities. Based on current understanding of drivers of CH4 and N2O production, we provide here insights on the potential climate change mitigation benefits of management and technological options (i.e., seeding, tillage, irrigation, residue management pursued in the LAC region. Studies conducted in the LAC region show intermittent irrigation or alternate wetting and drying of rice fields to reduce CH4 emissions by 25–70% without increasing N2O emissions. Results on yield changes associated with intermittent irrigation remain inconclusive. Compared to conventional tillage, no-tillage and anticipated tillage (i.e., fall tillage cause a 21% and 25% reduction in CH4 emissions, respectively. From existing literature, it was unambiguous that the mitigation potential of most management strategies pursued in the LAC region need to be quantified while acknowledging country-specific conditions. While breeding high yielding and low emitting rice varieties may represent the most promising and possibly sustainable approach for achieving GHG emission reductions without demanding major changes in on-farm management practices, this is rather idealistic. We contend that a more realistic approach for realizing low GHG emitting rice production systems is to focus on increasing rice yields, for obvious food security reasons, which, while not reducing absolute emissions, should translate to a reduction in GHG emission intensities. Moreover, there

  7. Characteristics of the water footprint of rice production under different rainfall years in Jilin Province, China.

    Science.gov (United States)

    Li, Hongying; Qin, Lijie; He, Hongshi

    2018-06-01

    Rice is a special crop, and its production differs from that of other crops because it requires a thin layer of water coverage for a long period. The calculation of the water footprint of rice production should differ from that of other crops owing to the rice growing process. This study improved the calculation of blue and grey water footprints of rice production and analyzed the variations in the water footprints for rice production under different rainfall years in Jilin Province. In the drought year, the green water footprint was the lowest and the blue water footprint was the highest among the three years, while in the humid year, the green water footprint was the highest and the blue water footprint was not the lowest. The areas with higher water footprints were found in the east and west regions of Jilin Province, while the areas with lower water footprints were found in the middle east and middle regions of Jilin Province. Blue water was the primary water resource for rice production, although more precipitation provided the highest green water in the humid year; also, the spatial distributions of water footprints were not the same under different rainfall years. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Effects of fish and prawn culture on physico-chemical parameters of water and rice yield in rice fields

    OpenAIRE

    Razzak, M.A.; Nahar, A.; Mirhaj, M.; Becker, K.; Dewan, S.

    2009-01-01

    An experiment was conducted with five treatments i.e. rice combined with fish having regular urea fertilization (T1), rice combined with prawn having regular urea fertilization (T2), rice combined with fish with supplementary feeding (T3), rice combined with prawn with supplementary feeding (T4) and without fish and prawn (T5) was kept as control. The dissolved oxygen values obtained in treatments with fish both in morning and afternoon were lower than the values of prawn containing treatment...

  9. Development of dynamic compartment models for prediction of radionuclide behaviors in rice paddy fields

    International Nuclear Information System (INIS)

    Takahashi, Tomoyuki; Tomita, Ken'ichi; Yamamoto, Kazuhide; Uchida, Shigeo

    2007-01-01

    We are developing dynamic compartment models for prediction of behaviors of some important radionuclides in rice paddy fields for safety assessment of nuclear facilities. For a verification of these models, we report calculations for several different deposition patterns of radionuclides. (author)

  10. The phenology of malaria mosquitos in irrigated rice fields in Mali

    NARCIS (Netherlands)

    Klinkenberg, E.; Takken, W.; Huibers, F.P.; Touré, Y.T.

    2003-01-01

    A field study was carried out in the large-scale rice irrigation scheme of the Office du Niger in Mali to investigate the relation between anopheline mosquito larval development and small-scale differences in irrigation practices, such as water level, irrigation application and irrigation frequency.

  11. Original Paper Field-specific difficulties for transplanted rice to cope ...

    African Journals Online (AJOL)

    Field-specific difficulties for transplanted rice to cope with ammonia from a localized enriched environment. Rémi GAUDIN1*, Berthe RASOAMAMPIONONA2 and Lilia RABEHARISOA3. 1Montpellier SupAgro, UMR System, 2 Place Viala, 34060 Montpellier, France. 2Faculté des Sciences, Université d'Antananarivo, B.P. ...

  12. Agronomic and environmental aspects of diazotrophic bacteria in irrigated rice fields

    Science.gov (United States)

    This article provides an overview of the free-living and plant-associated nitrogen-fixing bacterial communities in irrigated rice fields, with a focus on describing the drivers affecting community assemblages in this soil-water-plant-atmosphere system. Theoretical and technical advances in non-legu...

  13. Field evidence for the potential of Rhodobacter capsulatus as Biofertilizer for flooded rice.

    Science.gov (United States)

    Gamal-Eldin, Hosny; Elbanna, Khaled

    2011-02-01

    In a previous study, we evaluated the effects of inoculating rice plants with the phototrophic purple nonsulfur bacterium Rhodobacter capsulatus (Rc) on growth and yield of rice in pots and lysimeter experiments and the results obtained have been highly encouraging. In this study, we carried out two field experiments: one in the experimental farm of the Faculty of Agriculture, Fayoum University, and the second in a farmer's field in Kafr El-sheikh, to assess the effects of Rc on growth and yield of rice in comparison and in combination with chemical nitrogen fertilizer (CNF) and farmyard manure. The results indicated that both biological and grain yields in all the Rc inoculated treatments were significantly higher than those in the uninoculated corresponding treatments in both fields. With regard to grain yield, the major factor for determining the effectiveness of any agricultural treatment, inoculation with Rc in combination with 50% of the recommended CNF rate gave a grain yield that was statistically equivalent to that obtained with 100% of the recommended CNF rate. These results provide a clear evidence for the potential of Rc as biofertilizer for flooded rice under field conditions.

  14. Yield gap of rainfed rice in farmers’ fields in Central Java, Indonesia

    NARCIS (Netherlands)

    Boling, A.A.; Tuong, T.P.; Keulen, van H.; Bouman, B.A.M.; Suganda, H.; Spiertz, J.H.J.

    2010-01-01

    Yield constraint analysis for rainfed rice at a research station gives insight into the relative role of occurring yield-limiting factors. However, soil nutrient status and water conditions along toposequences in rainfed farmers’ fields may differ from those at the research station. Therefore, yield

  15. Rice microstructure

    Science.gov (United States)

    An understanding of plant structure is desirable to obtain a clear idea of the overall impact of a crop. A mature rice plant consists of leafy components (left in the field post-harvest) and paddy rice (collected). The rice plant is supported by a hollow stem (culm) with leaf sheaths attached to nod...

  16. Can rice field channels contribute to biodiversity conservation in Southern Brazilian wetlands?

    Directory of Open Access Journals (Sweden)

    Leonardo Maltchik

    2011-12-01

    species in agroecosystems has attracted attention. Irrigation channels can improve habitats and offer conditions for freshwater species conservation. Two questions from biodiversity conservation point of view are: 1 Can the irrigated channels maintain a rich diversity of macrophytes, macroinvertebrates and amphibians over the cultivation cycle? 2 Do richness, abundance and composition of aquatic species change over the rice cultivation cycle? For this, a set of four rice field channels was randomly selected in Southern Brazilian wetlands. In each channel, six sample collection events were carried out over the rice cultivation cycle (June 2005 to June 2006. A total of 160 taxa were identified in irrigated channels, including 59 macrophyte species, 91 taxa of macroinvertebrate and 10 amphibian species. The richness and abundance of macrophytes, macroinvertebrates and amphibians did not change significantly over the rice cultivation cycle. However, the species composition of these groups in the irrigation channels varied between uncultivated and cultivated periods. Our results showed that the species diversity found in the irrigation channels, together with the permanence of water enables these man-made aquatic networks to function as important systems that can contribute to the conservation of biodiversity in regions where the wetlands were converted into rice fields. The conservation of the species in agriculture, such as rice field channels, may be an important alternative for biodiversity conservation in Southern Brazil, where more than 90% of wetland systems have already been lost and the remaining ones are still at high risk due to the expansion of rice production. Rev. Biol. Trop. 59 (4: 1895-1914. Epub 2011 December 01.

  17. Transgenic rice plants expressing a fused protein of Cry1Ab/Vip3H has resistance to rice stem borers under laboratory and field conditions.

    Science.gov (United States)

    Chen, Yang; Tian, Jun-Ce; Shen, Zhi-Chen; Peng, Yu-Fa; Hu, Cui; Guo, Yu-Yuan; Ye, Gong-Yin

    2010-08-01

    Six transgenic rice, Oryza sativa L., lines (G6H1, G6H2, G6H3, G6H4, G6H5, and G6H6) expressing a fused Cry1Ab/Vip3H protein, were evaluated for resistance against the Asiatic rice borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), and the stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) in the laboratory and field. The bioassay results indicated that the mortality of Asiatic rice borer and S. inferens neonate larvae on six transgenic lines from seedling to filling stage was up to 100% at 168 h after infestation. The cumulative feeding area by Asiatic rice borer neonate larvae on all transgenic lines was significantly reduced compared with the untransformed parental 'Xiushui 110' rice. A 2-yr field evaluation showed that damage during the vegetative stage (deadheart) or during the reproductive stage (whitehead) caused by Asiatic rice borer and S. inferens for transgenic lines was much lower than the control. For three lines (G6H1, G6H2, and G6H6), no damage was found during the entire growing period. Estimation of fused Cry1Ab/Vip3H protein concentrations using PathoScreen kit for Bt-Cry1Ab/1Ac protein indicated that the expression levels of Cry1Ab protein both in main stems (within the average range of 0.006-0.073% of total soluble protein) and their flag leaves (within the average range of 0.001-0.038% of total soluble protein) were significantly different among six transgenic lines at different developmental stages. Both laboratory and field researches suggested that the transgenic rice lines have considerable potential for protecting rice from attack by both stem borers.

  18. Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities.

    Science.gov (United States)

    Lumini, Erica; Vallino, Marta; Alguacil, Maria M; Romani, Marco; Bianciotto, Valeria

    2011-07-01

    Arbuscular mycorrhizal fungi (AMF) comprise one of the main components of soil microbiota in most agroecosystems. These obligate mutualistic symbionts colonize the roots of most plants, including crop plants. Many papers have indicated that different crop management practices could affect AMF communities and their root colonization. However, there is little knowledge available on the influence of conventional and low-input agriculture on root colonization and AMF molecular diversity in rice fields. Two different agroecosystems (continuous conventional high-input rice monocropping and organic farming with a five-year crop rotation) and two different water management regimes have been considered in this study. Both morphological and molecular analyses were performed. The soil mycorrhizal potential, estimated using clover trap cultures, was high and similar in the two agroecosystems. The diversity of the AMF community in the soil, calculated by means of PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) and 18S rDNA sequencing on clover trap cultures roots, was higher for the organic cultivation. The rice roots cultivated in the conventional agrosystem or under permanent flooding showed no AMF colonization, while the rice plants grown under the organic agriculture system showed typical mycorrhization patterns. Considered together, our data suggest that a high-input cropping system and conventional flooding depress AMF colonization in rice roots and that organic managements could help maintain a higher diversity of AMF communities in soil.

  19. Rhizosphere biodegradation of xenobiotics: Microbiological study of a rice field polluted by oil refinery residues

    Energy Technology Data Exchange (ETDEWEB)

    Rasolomanana, J.L.; Balandreau, J.

    1987-07-01

    A rice field had been studied in which the disposal of oil residues from a refinery plant seemed to improve rice growth and soil N content. To check the hypothesis that nitrogen fixation by oil-adapted bacteria could explain this observation we isolated and studied dominant diazotrophic bacteria from the rhizosphere of an actively N/sub 2/-fixing rice plant growing on the polluted soil; for this purpose we used an axenic plant as an enrichment step. The rhizosphere did not contain more than 10/sup 5/ N/sub 2/-fixing bacteria per g dry soil, essentially Bacillus polymyxa; one of the isolates, strain R3 could grow and reduce C/sub 2/H/sub 2/ on oil residues only in the presence of glucose or of exudates from an axenic plant (spermosphere model); the presence of R3 diminished the inhibition of rice growth due to the oil residues; R3 nitrogenase activity in the rhizosphere of rice was increased in the presence of these residues. This cometabolism of oil residues in the presence of exudates and their stimulating effect on N/sub 2/ fixation provide a likely explanation for observed positive effects of the disposal of oil residues on arable lands, and are conducive to the hypothesis that rhizosphere cometabolism could greatly enhance soil organic matter turn over and humification rates.

  20. Distribution and Population Dynamics of Nematodes in a Rice Field and Pasture in India

    Science.gov (United States)

    Mishra, C. C.; Dash, M. C.

    1981-01-01

    Ecological studies on soil nematodes were made in a tropical rice field and pasture. Parasitic species were more diversified in the pasture than in the rice field. Eighty-six and sixty percent of total nematodes occurred in the top 10 cm in rice field and pasture, respectively. Nematodes were not randomly or uniformly dispersed but aggregated. Parasitic forms were most abundant and correlated with root biomass in the 0-15-cm soil layer, the greatest number usually occurring at the 10-15-cm depth at both sites. In summer, however, they were densest at the 15-30-cm depth. Microbivores were most frequent in the top 5 cm of both sites. Micellaneous feeders (food sources uncertain) usually occurred in highest densities at the 15-30-cm depth. Predators showed no distinct depth preference. Temperature and moisture of the soil apparently played an important role in regulating nematode population. Peak densities of 31.3 × 10⁴/m² and 21.6 × 10⁴/m² at a 30-cm depth occurred in January, while minimum densities of 5.0-5.3 × 10⁴/m² and 4.1 × 10⁴/m² occurred in July-October and April in rice field and pasture, respectively. Monthly mean biomass of nematodes was 23.8 ± 4.5 mg/m² in rice field and 11.5 ± 1.5 mg/m² in pasture. PMID:19300801

  1. Evaluation of Rice Resistance to Southern Rice Black-Streaked Dwarf Virus and Rice Ragged Stunt Virus through Combined Field Tests, Quantitative Real-Time PCR, and Proteome Analysis.

    Science.gov (United States)

    Wang, Zhenchao; Yu, Lu; Jin, Linhong; Wang, Wenli; Zhao, Qi; Ran, Longlu; Li, Xiangyang; Chen, Zhuo; Guo, Rong; Wei, Yongtian; Yang, Zhongcheng; Liu, Enlong; Hu, Deyu; Song, Baoan

    2017-02-22

    Diseases caused by southern rice black-streaked dwarf virus (SRBSDV) and rice ragged stunt virus (RRSV) considerably decrease grain yield. Therefore, determining rice cultivars with high resistance to SRBSDV and RRSV is necessary. In this study, rice cultivars with high resistance to SRBSDV and RRSV were evaluated through field trials in Shidian and Mangshi county, Yunnan province, China. SYBR Green I-based quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to quantitatively detect virus gene expression levels in different rice varieties. The following parameters were applied to evaluate rice resistance: acre yield (A.Y.), incidence of infected plants (I.I.P.), virus load (V.L.), disease index (D.I.), and insect quantity (I.Q.) per 100 clusters. Zhongzheyou1 (Z1) and Liangyou2186 (L2186) were considered the most suitable varieties with integrated higher A.Y., lower I.I.P., V.L., D.I. and I.Q. In order to investigate the mechanism of rice resistance, comparative label-free shotgun liquid chromatography tandem-mass spectrometry (LC-MS/MS) proteomic approaches were applied to comprehensively describe the proteomics of rice varieties' SRBSDV tolerance. Systemic acquired resistance (SAR)-related proteins in Z1 and L2186 may result in the superior resistance of these varieties compared with Fengyouxiangzhan (FYXZ).

  2. Utilization of organic fertilizer to increase paddy growth and productivity using System of Rice Intensification (SRI method in saline soil

    Directory of Open Access Journals (Sweden)

    V . O . Subardja

    2016-01-01

    Full Text Available Soil salinity has negative effect on soil biodiversity as well as microbial activities. Hence, rice growth also effected by salinity. Application of organic fertilizer and adoption of System of Rice Intensification (SRI cultivation might improve the (biological soil properties and increase rice yield. The aim of this study was to evaluate the effect of two different rice cultivation methods namely conventional rice cultivation method and System of Rice Intensification (SRI rice cultivation method and two kinds organic fertilizer on improvement of soil biological properties and rice yield. In this study, a split plot experimental design was applied where rice cultivation method (conventional and SRI was the main plot and two kinds of organic fertilizer (market waste and rice straw was the sub plot. The treatments had four replicates. The results showed that SRI cultivation with market waste organic fertilizer could increase soil biological properties (population of microbe, fungi and soil respiration. The same treatment also increased rice growth and production. Combination of SRI and market waste organic fertilizer yielded the highest rice production (7.21 t/ha.

  3. Zinc content determination in rice and other agricultural products by X-ray fluorescence

    International Nuclear Information System (INIS)

    Denis Alpizar, Otoniel; Diaz Rizo, Oscar

    2010-01-01

    The Zn content in regular consumption foodstuff (rice, some vegetables and roots) in Cuba is reported. Concentrations are determined by X-Ray Fluorescence analysis using a set of organic standards doped with Zn. The accuracy of the analytical procedure was validated using the Certified Reference Materials IAEA 393 and y MA-B-3/TM. The obtained results show rice as the major Zn bioaccumulator of the studied agricultural products and the main Zn source in Cuban human diet. (author)

  4. Effects of Feeding Purple Rice ( L. Var. Glutinosa on the Quality of Pork and Pork Products

    Directory of Open Access Journals (Sweden)

    Sanchai Jaturasitha

    2016-04-01

    Full Text Available Purple rice is a strain of glutaneous rice rich in anthocyanins and γ-oryzanol. Both types of compounds are involved in antioxidant and lipid metabolism of mammals. Three experimental diet types were used which consisted approximately by half either of purple rice, white rice or corn. Diets were fed to 3×10 pigs growing from about 30 to 100 kg. Meat samples were investigated either as raw or cured loin chops or as smoked bacon produced from the belly. Various physicochemical traits were assessed and data were evaluated by analysis of variance. Traits describing water-holding capacity (drip, thaw, and cooking losses and tenderness (sensory grading, shear force of the meat were mostly not significantly affected by the diet type. However, purple rice feeding of pigs resulted in lower fat and cholesterol contents of loin and smoked bacon compared to white rice, but not compared to corn feeding except of the fat content of the loin. The shelf life of the raw loin chops was improved by purple rice as well. In detail, the occurrence of thiobarbituric acid reactive substances after 9 days of chilled storage was three to four times higher in the white rice and corn diets than with purple rice. The n-6:n-3 ratio in the raw loin chops was 9:1 with purple rice and clearly higher with 12:1 with the other diets, meat lipids. Level and kind of effect of purple rice found in raw meat was not always recovered in the cured loin chops and the smoked bacon. Still the impression of flavor and color, as well as overall acceptability were best in the smoked bacon from the purple-rice fed pigs, whereas this effect did not occur in the cured loin chops. These findings suggest that purple rice has a certain, useful, bioactivity in pigs concerning meat quality, but some of these effects are of low practical relevance. Further studies have to show ways how transiency and low recovery in meat products of some of the effects can be counteracted.

  5. Dynamical roguing model for controlling the spread of tungro virus via Nephotettix Virescens in a rice field

    Science.gov (United States)

    Blas, Nikki; David, Guido

    2017-10-01

    Rice tungro disease is described as a cancer due to its major impact on the livelihood of farmers and the difficulty of controlling it. Tungro is a semi-persistent virus transmitted by green leafhoppers called Nephotettix Virescens. In this paper, we presented a compartmental plant-vector model of the Nephotettix Virescens - rice plant interaction based on a system of ordinary differential equations to simulate the effects of roguing in controlling the spread of Tungro virus in a model rice field of susceptible rice variety (Taichung Native 1).

  6. COMPARISON OF TWO CHEMICAL PRETREATMENTS OF RICE STRAW FOR BIOGAS PRODUCTION BY ANAEROBIC DIGESTION

    Directory of Open Access Journals (Sweden)

    Zilin Song,

    2012-06-01

    Full Text Available Lignocellulosic biomass is considered the most abundant renewable resource that has the potential to contribute remarkably in the supply of biofuel. Previous studies have shown that chemical pretreatment prior to anaerobic digestion (AD can increase the digestibility of lignocellulosic biomass and methane yield. In the present study, the effect of rice straw pretreatment using ammonium hydroxide (NH3•H2O and hydrogen peroxide (H2O2 on the biogasification performance through AD was investigated. A self-designed, laboratory-scale, and continuous anaerobic biogas digester was used for the evaluation. Results showed that the contents of the rice straw, i.e. the lignin, cellulose, and hemicellulose were degraded significantly after the NH3•H2O and H2O2 treatments, and that biogas production from all pretreated rice straw increased. In addition, the optimal treatments for biogas production were the 4% and 3% H2O2 treatments (w/w, which yielded 327.5 and 319.7 mL/gVS, biogas, respectively, higher than the untreated sample. Biogas production from H2O2 pretreated rice straw was more favorable than rice straw pretreated with same concentration of ammonia, ranking in the order of 4% ≈ 3% > 2% > 1%. The optimal amount of H2O2 treatment for rice straw biogas digestion is 3% when economics and biogas yields are considered.

  7. Floating rice-culture system for nutrient remediation and feed production in a eutrophic lake.

    Science.gov (United States)

    Srivastava, Ankita; Chun, Seong-Jun; Ko, So-Ra; Kim, Junhwan; Ahn, Chi-Yong; Oh, Hee-Mock

    2017-12-01

    The increased inputs of nutrients have been demonstrated to be a major contributing factor to the eutrophication of lakes and reservoirs which can lead to the production of harmful algal/cyanobacterial blooms and deleteriously affect the aesthetics of water-bodies. Floating plant-culture systems have been widely used for the ecological remediation of eutrophic water in a cost-effective manner. We investigated the applicability of Korean japonica rice variety 'Nampyeong' in a floating-culture system in a eutrophic lake for nutrient uptake and biomass production. Chemical and organic compound compositions were analyzed two times during the growth stages of the rice plant: 98 DAT (days after transplanting) and 165 DAT. Total nitrogen and phosphorus contributed around 1.36 and 0.15 (% dry weight), respectively, in rice plant components at 165 DAT. Crude protein, lipids, fiber and ash were 4.35, 1.91, 23.66 and 5.55 (% dry weight), respectively. In addition, microcystin levels in the rice plant components ranged from 0.0008 to 0.002 μg/g and did not exceed the recommended tolerable limits. These results suggested that the developed floating rice-culture system showed a good potential as a holistic management approach in terms of nutrient reduction, rice production for further use as feed and for bloom control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cellulose Nanocrystals Obtained from Rice By-Products and Their Binding Potential to Metallic Ions

    Directory of Open Access Journals (Sweden)

    Vanessa L. Albernaz

    2015-01-01

    Full Text Available The present study aimed to develop and optimize a method to obtain cellulose nanocrystals from the agricultural by-products rice husk and straw and to evaluate their electrostructural modifications in the presence of metallic ions. First, different particle formation conditions and routes were tested and analyzed by spectrophotometry, dynamic light scattering (DLS, and Zeta potential measurements. Then, electrostructural effects of ions Na(I, Cd(II, and Al(III on the optimized nanoparticles were analyzed by atomic force microscopy (AFM, scanning electron microscopy (SEM, and electrical conductivity (EC assessments. The produced cellulose nanocrystals adopted a rod-like shape. AFM height distribution and EC data indicated that the nanocrystals have more affinity in binding with Na(I > Al(III > Cd(II. These data suggest that the use of these cellulose nanocrystals in the bioremediation field is promising, both in metal sorption from wastewater and as an alternative for water desalination.

  9. Insect remote sensing using a polarization sensitive cw lidar system in chinese rice fields

    Directory of Open Access Journals (Sweden)

    Zhu Shiming

    2018-01-01

    Full Text Available A joint Chinese-Swedish field campaign of Scheimpflug continuous-wave lidar monitoring of rice-field flying pest insects was pursued in very hot July weather conditions close to Guangzhou, China. The occurrence of insects, birds and bats with almost 200 hours of round-the-clock polarization-sensitive recordings was studied. Wing-beat frequency recordings and depolarization properties were used for target classification. Influence of weather conditions on the flying fauna was also investigated.

  10. Insect remote sensing using a polarization sensitive cw lidar system in chinese rice fields

    Science.gov (United States)

    Zhu, Shiming; Malmqvist, Elin; Li, Yiyun; Jansson, Samuel; Li, Wansha; Duan, Zheng; Fu, Wei; Svanberg, Katarina; Bood, Joakim; Feng, Hongqiang; Åkesson, Susanne; Song, Ziwei; Zhang, Baoxin; Zhao, Guangyu; Li, Dunsong; Brydegaard, Mikkel; Svanberg, Sune

    2018-04-01

    A joint Chinese-Swedish field campaign of Scheimpflug continuous-wave lidar monitoring of rice-field flying pest insects was pursued in very hot July weather conditions close to Guangzhou, China. The occurrence of insects, birds and bats with almost 200 hours of round-the-clock polarization-sensitive recordings was studied. Wing-beat frequency recordings and depolarization properties were used for target classification. Influence of weather conditions on the flying fauna was also investigated.

  11. Impact of Water Management on Rice Varieties, Yield, and Water Productivity under the System of Rice Intensification in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Victoriano Joseph Pascual

    2016-12-01

    Full Text Available The system of rice intensification (SRI uses less water and enhances rice yield through synergy among several agronomic management practices. This claim was investigated to determine the effects of crop growth, yield and irrigation water use, using two thirds of the recommended SRI practices and two rice varieties, namely Tainan11 (TN11 and Tidung30 (TD30. Irrigation regimes were (a intermittent irrigation with three-day intervals (TD303 and TN113; (b intermittent irrigation with seven-day intervals (TD307 and TN117 and (c continuous flooding (TD30F and TN11F. Results showed that intermittent irrigation of three- and seven-day intervals produced water savings of 55% and 74% compared with continuous flooding. Total water productivity was greater with intermittent irrigation at seven-day intervals producing 0.35 kg·grain/m3 (TN117 and 0.46 kg·grain/m3 (TD307. Average daily headed panicle reduced by 166% and 196% for TN113 and TN117 compared with TN11F, with similar reduction recorded for TD303 (150% and TD307 (156% compared with TD30F. Grain yield of TD30 was comparable among irrigation regimes; however, it reduced by 30.29% in TN117 compared to TN11F. Plant height and leaf area were greater in plants exposed to intermittent irrigation of three-day intervals.

  12. Identification of rice cultivar with exclusive characteristic to Cd using a field-polluted soil and its foreground application.

    Science.gov (United States)

    Zhan, Jie; Wei, Shuhe; Niu, Rongcheng; Li, Yunmeng; Wang, Shanshan; Zhu, Jiangong

    2013-04-01

    Using low-accumulative plant, especially excluder crop, to safely produce food is one of the very important technologies of phytoremediation, which is practical to safe production and long-term remediation of heavy metal-contaminated soil. A pot experiment using field cadmium (Cd)-contaminated soil (Cd concentration was 0.75 mg kg(-1)) was conducted to compare Cd accumulation differences among 39 normal rice cultivars (Japonica) in Shenyang region of China for food safety and high grain yield aim. The results showed that brown grain Cd concentration in 12 rice cultivars of a total of 39 tested cultivars was lower than 0.2 mg kg(-1) (Agricultural Trade Standard of Nonpollution Food for Rice of China, NY 5115-2008). In these 12 cultivars, Cd enrichment factors (Cd concentration ratio in shoot to that in soil) of nine cultivars were lower than 1. Likewise, Cd translocation factors (Cd concentration ratio in shoot to that in root) of eight cultivars were lower than the 0.28 average. Furthermore, grain yield per pot of seven cultivars were higher than the average 18.4 g pot(-1). Four cultivars, i.e., Shendao 5, Tianfu 1, Fuhe 90, and Yanfeng 47 showed Cd-exclusive characteristic and better foreground application.

  13. Physiological studies on photochemical oxidant injury in rice plants. II. Effect of abscisic acid (ABA) on ozone injury and ethylene production in rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Nakamura, H.; Ota, Y.

    1981-12-01

    In order to determine the effect of ABA on ozone injury to rice plants, ethylene production, rate of chlorophyll retention and ozone-sensitivity of rice plants pretreated with ABA solution were investigated. The experiments were carried out in pots using rice plants at the 7-8 leaf stage. The results obtained are summarized as follows: ethylene production by the leaf blades exposed to ozone increased with the increase in the dosage of ozone; ethylene production was higher in cv. Nihonbare which was more sensitive to ozone than in cv. Tongil; pre-treatment with ABA solution one hour before ozone treatment reduced ethylene production by the leaf blades exposed to ozone; and the rate of chlorophyll retention decreased following injury, but increased remarkably by the pre-treatment with ABA solution. In conclusion, it could be demonstrated that ozone injury of rice plants can be reduced by the pre-treatment with ABA solution. 28 references, 5 figures, 1 table.

  14. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice — A field study over four rice seasons in Hunan, China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De; Guo, Hu; Li, Ruiyue [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Li, Lianqing, E-mail: lqli@njau.edu.cn [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Pan, Genxing [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Chang, Andrew [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Joseph, Stephen [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-01-15

    Biochar is becoming an environmentally friendly material for remediation of heavy metal contaminated soils and improving food safety. A field trial over four rice seasons was conducted to investigate the use of biochar and low Cd accumulating cultivars on Cd uptake in a heavy metal contaminated soil. Wheat straw derived biochar was applied at 0, 20 and 40 t ha{sup −1}. Two rice cultivars with differing Cd accumulation abilities were selected in each season. The results showed that both biochar and low Cd affinity cultivars significantly reduced rice grain Cd accumulation. Biochar had no significant effect the first season but thereafter consistently reduced rice grain Cd by a maximum of 61, 86 and 57% over the next three seasons. Zn accumulation in the rice grains was not decreased by biochar application, although available soil Zn was sharply reduced (35–91%). Indica conventional rice cultivars had much lower Cd, but higher Zn and lower Cd/Zn ratios in the grain than indica hybrid cultivars. Biochar was more effective for mitigating grain Cd accumulation in low Cd affinity cultivars than in high affinity cultivars. Soil pH was sustainably increased (up to nearly 1 unit) while available Cd significantly decreased by a maximum of 85% after biochar addition. The translocation of Cd from rice roots to shoots was reduced from 20 to 80% by biochar. Low uptake affinity cultivars combined with biochar reduced late rice grain Cd concentration and Cd/Zn ratios by 69–80% and 72–80%, respectively. It indicated that the management of combining biochar and low Cd affinity cultivars should be an efficient way to remediate Cd contaminated rice paddies and reduce health risk associated with consuming rice from these soils. - Highlights: • Biochar sustainably reduced soil Cd availability and Cd translocation in rice plant. • Indica conventional cultivars had lower Cd but higher Zn in grains than hybrid ones. • Biochar significantly reduced grain Cd and Cd/Zn ratio

  15. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice — A field study over four rice seasons in Hunan, China

    International Nuclear Information System (INIS)

    Chen, De; Guo, Hu; Li, Ruiyue; Li, Lianqing; Pan, Genxing; Chang, Andrew; Joseph, Stephen

    2016-01-01

    Biochar is becoming an environmentally friendly material for remediation of heavy metal contaminated soils and improving food safety. A field trial over four rice seasons was conducted to investigate the use of biochar and low Cd accumulating cultivars on Cd uptake in a heavy metal contaminated soil. Wheat straw derived biochar was applied at 0, 20 and 40 t ha"−"1. Two rice cultivars with differing Cd accumulation abilities were selected in each season. The results showed that both biochar and low Cd affinity cultivars significantly reduced rice grain Cd accumulation. Biochar had no significant effect the first season but thereafter consistently reduced rice grain Cd by a maximum of 61, 86 and 57% over the next three seasons. Zn accumulation in the rice grains was not decreased by biochar application, although available soil Zn was sharply reduced (35–91%). Indica conventional rice cultivars had much lower Cd, but higher Zn and lower Cd/Zn ratios in the grain than indica hybrid cultivars. Biochar was more effective for mitigating grain Cd accumulation in low Cd affinity cultivars than in high affinity cultivars. Soil pH was sustainably increased (up to nearly 1 unit) while available Cd significantly decreased by a maximum of 85% after biochar addition. The translocation of Cd from rice roots to shoots was reduced from 20 to 80% by biochar. Low uptake affinity cultivars combined with biochar reduced late rice grain Cd concentration and Cd/Zn ratios by 69–80% and 72–80%, respectively. It indicated that the management of combining biochar and low Cd affinity cultivars should be an efficient way to remediate Cd contaminated rice paddies and reduce health risk associated with consuming rice from these soils. - Highlights: • Biochar sustainably reduced soil Cd availability and Cd translocation in rice plant. • Indica conventional cultivars had lower Cd but higher Zn in grains than hybrid ones. • Biochar significantly reduced grain Cd and Cd/Zn ratio, though

  16. Value added products with popular low grade rice varieties of Andhra Pradesh.

    Science.gov (United States)

    Anitha, G; Rajyalakshmi, P

    2014-12-01

    Eight Popular Low Grade Rice Varieties (PLRVs) MTU 3626, MTU 1001, MTU 1010, MTU 4870 and NLR 145, NLR 34242, NLR 30491, NLR 34449, (developed and released by ANGR agricultural University, Andhra Pradesh) having poor cooking quality were selected for the study. ANGRAU variety BPT 5204 popularly consumed as staple rice was used as check. Eight products of traditional/commercial importance were standardized incorporating PLRVs as a major ingredient in the form of rice flour (burfi, noodles and extruded snack product and vennaundalu (butter coated balls), palathalikalu (dough rolled into strips, steamed/cooked in milk); rice semolina (instant kheer mix and instant upma mix), and flaked rice (nutritious bar). The products were evaluated for nutritional, cooking quality characteristics, consumer acceptability and shelf-life. Consumer acceptability of the PLR products was carried out with 60 farm women based on 9 point hedonic scale. Shelf-life of the products (packed in both metalized PP and PE pouches) was evaluated monthly for chemical, microbiological and sensory parameters. Energy values of control and PLR products showed no significant difference. Upon cooking, PLR Noodles showed no significant difference with water absorption and volume but more (p instant kheer mix (92%) and extruded product (88%). As per sensory scores, all the PLR products were well accepted with no observable changes in flavor or taste upon storage. PLR products showed increased (P noodles and highest for burfi (though in safe limits). Extruded snacks (control and PLR) showed no microbial growth during the entire storage period. Considering the poor marketability of PLRVs for consumption as staple rice, the study signifies the utilitarian value of PLRVs in making products of convenience/commercial importance.

  17. Influence of Seed Priming on Performance and Water Productivity of Direct Seeded Rice in Alternating Wetting and Drying

    Directory of Open Access Journals (Sweden)

    Hafeez Ur Rehman

    2015-07-01

    Full Text Available Direct seeded rice is promising alternative to traditional transplanting, but requires appropriate crop and water management to maintain yield performance and achieve high water productivity. Present study evaluated the effect of seed priming and irrigation on crop establishment, tillering, agronomic traits, paddy yield, grain quality and water productivity of direct seeded rice in alternate wetting and drying (DSR-AWD in comparison with direct seeded rice at field capacity (DSR-FC. Seed priming treatments were osmo-priming with KCl (2.2%, CaCl2 (2.2% and moringa leaf extracts (MLE, 3.3% including hydro-priming as control. Among the treatments, seed osmo-primed with MLE emerged earlier and had higher final emergence, followed by osmo-priming with CaCl2. Tillering emergence rate and number of tillers per plant were the highest for seed priming with CaCl2 in DSR-AWD. Total productive and non-productive tillers, panicle length, biological and grain yields, harvest index were highest for seed priming with MLE or CaCl2 in DSR-AWD. Similarly, grain quality, estimated in terms of normal grains, abortive and chalky grains, was also the highest in DSR-AWD with MLE osmo-priming. Benefit cost ratio and water productivity was also the highest in DSR-AWD for seed priming with MLE. In conclusion, seed priming with MLE or CaCl2 can be successfully employed to improve the direct seeded rice performance when practiced with alternate wetting and drying irrigation.

  18. Phosphate dynamics on the application of rice straw compost-biochar and phosphate fertilization in rice fields

    International Nuclear Information System (INIS)

    Ania Citraresmini; Taufiq Bachtiar

    2016-01-01

    Soil productivity is determined by soil characteristics itself, which consist of physical, chemical and biological character. The linkage between these three properties can be represented by a single indicator, namely the carbon content in the soil. One of the effects of soil organic matter fulfillment is the availability of soil nutrients, especially to the nutrient that limits the lowland rice production. In this case, P (phosphorus) nutrient become a limiting factor because their numbers are often in abundance but in a form that can not be used by plants. Experiments were carried out with the aim of studying the impact of straw compost application that integrates with Biochar, to the availability of P in lowland soil. The interaction of straw compost + Biochar with PSB inoculation and P sources, become the treatment that being tested in the experiment. Randomized Block Design with factorial pattern is applied as design experiment. As the first factor is the application dose of straw compost + Biochar, consists of 5 levels of treatment : 0; 1; 2; 3; 4 t ha -1 . Second factor is several sources of P, consist of 5 levels of treatment : without P sources (p 0 ); 100 kg ha -1 SP-36 fertilizer (p1); rock phosphate at the dose of 163 kg ha -1 (p 2 ); PSB inoculation at the inoculation dose of 2 kg ha -1 (p 3 ); and rock phosphate inoculated with PSB (p 4 ). The experiment done in the green house of PAIR-BATAN experimental station, Jakarta, on March-July 2014. Phosphorus dynamic as a result of the tested treatments, determined by using radioisotope 32 P technology at the activity of 30 mCi and described clearly on the plant P uptake data of Sidenuk rice plant variety. The experiment result showed that the treatments applied is causing significantly different response on the soil C-organic, the number of PSB populations, 32 P plant counting and plant P uptake derived from several P sources in the plant. (author)

  19. Effects of climate change on rice production and strategies for adaptation in southern China

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Ge, D.; Chen, H.; Fang, J. [Jiangsu Academy of Agricultural Sciences (China)

    1995-12-31

    The CERES-rice (Oryza sativa L.) model was calibrated and validated for nine sites in southern China to examine its suitability to model rice production in this area, using agronomic data from more than three successive years. After determining the genetic coefficients for the cultivars, the CERES-rice model was run a second time for the same locations for a time period of 20 to 30 yr. The model used local climate data (1958--1986) and doubled-CO{sub 2} climate change scenarios generated from the Goddard Institute for Space Studies (GISS), Geophysical Fluid dynamics Laboratory (GFDL), and United Kingdom Meteorological Office (UKMO) global climate models (GCMs), with and without supplemental irrigation(to model paddy and upland rice, respectively). The study estimated the potential impacts of climate change on rice production by comparing the base runs with the runs under the three doubled-CO{sub 2} GCM scenarios and it considered the physiological effects of CO{sub 2} on rice growth in each GCM scenario. Finally, the study examined several strategies for adapting to climate change.

  20. Morphology, production, and chemical content performance of black rice Matesih accession with several comparisons

    Science.gov (United States)

    Nandariyah; Purwanto, E.; Meidini, A. N.

    2018-03-01

    Rice (Oryza sativa L.) is an important food crop in Indonesia. In Matesih area, Karanganyar, recently found new varieties of black rice cultured by local farmers which morphology and chemical content have not yet identified. The purpose of this research was to obtain information of morphology, production, and chemical content of black rice matesih accession and to compare the appearance in order to detect the superiority of black rice matesih accession with the comparison of other accession of black rice. There were four accessions of black rice tested, namely Matesih Accession, Klaten Accession, Toraja, and Cempo. Research data were divided into qualitative data which processed by scoring, and quantitative data are processed with simple descriptive statistic. The kinship test was done by using NTSYSpc program with SIMQual and SIMInt function. The observation of qualitative properties indicates that accession matesih has a form that is relatively similar to other accessions. Qualitatively, accession matesih superior at leaf length, leaf width, plant height and culm diameter. Klaten accession has higher production than accession matesih. Matesih accession has the advantage of having shorter period on heading time and harvest time than other accessions. Matesih accession has the highest amylose content, lower protein content than klaten accession and lower content of anthocyanin than toraja accession. The kinship analysis showed that matesih accession and klaten accession has close kinship.

  1. Role of cooperative companies in sustainable rice production and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-15

    Mar 15, 2010 ... poverty in Guilan state of Iran, thus cooperative companies should be organized and supported by government. Key words: Cooperative companies, rural households, rice, income, employment. INTRODUCTION. Almost half ... education and trainnig, neglect of agriculture and low investment are major ...

  2. Optimization of biodiesel production from rice bran oil via ...

    African Journals Online (AJOL)

    ... 9,12-octadecadienoic and 9-octadecadienoic acid. The fourier transform infrared spectrum of biodiesel also showed the characteristic bands of C=O, O-C-O, C=C and –(CH2)n-. Key words: Rice bran oil, biodiesel, response surface methodology, gas chromatography mass spectrometry, fourier transform infrared spectrum ...

  3. Determinants and Profitability of Rice production in Cyabayaga ...

    African Journals Online (AJOL)

    Findings from the Cost Benefit Analysis (CBA) indicated that only one category of farmers, among the three sampled, had positive Net Present Value (NPV). The implication for negative NPVs is that rice growers do not invest appropriately, leading to lower returns. The two analytical approaches led to a similar conclusion ...

  4. Role of cooperative companies in sustainable rice production and ...

    African Journals Online (AJOL)

    This study was conducted in the districts of Guilan state of Iran to assess the impact of cooperative companies on the economic condition of rice farmers in the Guilan state. The research was conducted in the 2005 to 2007 periods. Three hundred respondents were selected for the study comprising equal number of ...

  5. Analysis of profit inefficiency in rice production in Eastern and ...

    African Journals Online (AJOL)

    Rice is among the emerging crops in Uganda that play an important role both as a food and a cash crop. It ranks fourth among the cereal crops in area cultivated, occupying a total of 80 thousand hectares of land with an estimated annual output of 120,000 metric tonnes. The study analyses sources of technical and ...

  6. Organic manuring through Gliricidia manculata for rice production

    International Nuclear Information System (INIS)

    Khan, A.R.; Sarkar, Sumana; Nanda, P.; Chandra, D.

    2001-05-01

    Results of this study reveal that application of organic manure (Gliciridia maculata) alone or in combination with urea gave significantly higher yield in comparison to the conventional practice. The new technology is more labor and energy efficient and improves rice crop stand

  7. How smallholder farmers in Uttarakhand reworked the system of rice intensification: innovations from sociotechnical interactions in fields and villages

    NARCIS (Netherlands)

    Sen, D.

    2015-01-01

    The System of Rice Intensification (SRI) is presented in Asia and other parts of the world as an alternative ‘agro-ecological’ and ‘farm-based’ innovation in rice production. SRI calls for modifications in crop-management practices without relying on external inputs, which makes it different from

  8. Waste rice seed in conventional and stripper-head harvested fields in California: Implications for wintering waterfowl

    Science.gov (United States)

    Fleskes, Joseph P.; Halstead, Brian J.; Casazza, Michael L.; Coates, Peter S.; Kohl, Jeffrey D.; Skalos, Daniel A.

    2012-01-01

    Waste rice seed is an important food for wintering waterfowl and current estimates of its availability are needed to determine the carrying capacity of rice fields and guide habitat conservation. We used a line-intercept method to estimate mass-density of rice seed remaining after harvest during 2010 in the Sacramento Valley (SACV) of California and compared results with estimates from previous studies in the SACV and Mississippi Alluvial Valley (MAV). Posterior mean (95% credible interval) estimates of total waste rice seed mass-density for the SACV in 2010 were 388 (336–449) kg/ha in conventionally harvested fields and 245 (198–307) kg/ha in stripper-head harvested fields; the 2010 mass-density is nearly identical to the mid-1980s estimate for conventionally harvested fields but 36% lower than the mid-1990s estimate for stripped fields. About 18% of SACV fields were stripper-head harvested in 2010 vs. 9–15% in the mid-1990s and 0% in the mid-1980s; but due to a 50% increase in planted rice area, total mass of waste rice seed in SACV remaining after harvest in 2010 was 43% greater than in the mid-1980s. However, total mass of seed-eating waterfowl also increased 82%, and the ratio of waste rice seed to seed-eating waterfowl mass was 21% smaller in 2010 than in the mid-1980s. Mass-densities of waste rice remaining after harvest in SACV fields are within the range reported for MAV fields. However, because there is a lag between harvest and waterfowl use in the MAV but not in the SACV, seed loss is greater in the MAV and estimated waste seed mass-density available to wintering waterfowl in SACV fields is about 5–30 times recent MAV estimates. Waste rice seed remains an abundant food source for waterfowl wintering in the SACV, but increased use of stripper-head harvesters would reduce this food. To provide accurate data on carrying capacities of rice fields necessary for conservation planning, trends in planted rice area, harvest method, and postharvest field

  9. analysis of the productivity of upland rice and cover crops in relay ...

    African Journals Online (AJOL)

    AISA

    system will be identified. MATERIALS AND METHODS. FIELD EXPERIMENT. Field experiments, comprising monocultures of two rice cultivars, two cover crop ..... Value of SLAnew of the cultivars fluctuated around 23 m2 kg-1, with the values for V4 slightly higher than for WAB56-50 during the first part of development (Table ...

  10. Mitigation options for methane emissions from rice fields in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Lantin, R.S.; Buendia, L.V.; Wassmann, R. [International Rice Research Institute, Laguna (Philippines)] [and others

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of the total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.

  11. Epiphytic Cyanobacteria on Chara vulgaris Are the Main Contributors to N2 Fixation in Rice Fields

    Science.gov (United States)

    Ariosa, Yoanna; Quesada, Antonio; Aburto, Juan; Carrasco, David; Carreres, Ramón; Leganés, Francisco; Fernández Valiente, Eduardo

    2004-01-01

    The distribution of nitrogenase activity in the rice-soil system and the possible contribution of epiphytic cyanobacteria on rice plants and other macrophytes to this activity were studied in two locations in the rice fields of Valencia, Spain, in two consecutive crop seasons. The largest proportion of photodependent N2 fixation was associated with the macrophyte Chara vulgaris in both years and at both locations. The nitrogen fixation rate associated with Chara always represented more than 45% of the global nitrogenase activity measured in the rice field. The estimated average N2 fixation rate associated with Chara was 27.53 kg of N ha−1 crop−1. The mean estimated N2 fixation rates for the other parts of the system for all sampling periods were as follows: soil, 4.07 kg of N ha−1 crop−1; submerged parts of rice plants, 3.93 kg of N ha−1 crop−1; and roots, 0.28 kg of N ha−1 crop−1. Micrographic studies revealed the presence of epiphytic cyanobacteria on the surface of Chara. Three-dimensional reconstructions by confocal scanning laser microscopy revealed no cyanobacterial cells inside the Chara structures. Quantification of epiphytic cyanobacteria by image analysis revealed that cyanobacteria were more abundant in nodes than in internodes (on average, cyanobacteria covered 8.4% ± 4.4% and 6.2% ± 5.0% of the surface area in the nodes and internodes, respectively). Epiphytic cyanobacteria were also quantified by using a fluorometer. This made it possible to discriminate which algal groups were the source of chlorophyll a. Chlorophyll a measurements confirmed that cyanobacteria were more abundant in nodes than in internodes (on average, the chlorophyll a concentrations were 17.2 ± 28.0 and 4.0 ± 3.8 μg mg [dry weight] of Chara−1 in the nodes and internodes, respectively). These results indicate that this macrophyte, which is usually considered a weed in the context of rice cultivation, may help maintain soil N fertility in the rice field

  12. Dynamics, Residue and Risk Assessment of Nitenpyram in Rice and Paddy Field

    Directory of Open Access Journals (Sweden)

    YUAN Xue-xia

    2016-09-01

    Full Text Available Residues dynamics, final residual levels and dietary intake risk of nitenpyram in rice and paddy field were investigated in three dif-ferent regions of China(Shandong, Henan and Anhui. A method was illustrated to detect nitenpyram residues in paddy, plant, brown rice, paddy water and soil. The residues in paddy and rice were extracted with methanol+phosphate buffer(0.2 mol·L-1, pH=7.0(60+40, adjust pH to 2.5, then cleaned up with solid phase extraction column and 0.22 μm filter membrane, and then analyzed by HPLC with an ul-traviolet detector at 260 nm. When spiked 0.05, 0.5, 1.0 mg·kg-1, the recoveries of nitenpyram in paddy plant and brown rice were 78.4%~94.7% and 84.0%~94.2%, respectively. The residues in paddy water and soil were extracted with phosphate buffer (0.2 mol·L-1, pH=7.0, when spiked 0.01, 0.5, 1.0 mg·kg-1, the recoveries of nitenpyram in paddy water and soil were 84.6%~98.0% and 93.7%~97.1%, respective-ly, which indicated this method match the requirement of the detection. Two years results showed that nitenpyram belongs to easily degraded pesticides, because all half-lives were below 1.4 d in rice plant, as well as below 4.2 d in paddy water. Final residual levels of nitenpyram in rice were all below 0.05 mg·kg-1,which was far below the Japanese maximum residue limit(0.5 mg·kg-1. The risk quotients (RQs were low for different populations in China, which indicated its low risk in rice. Therefore, the rice with nitenpyram applied, according to the recom-mend method, 45 g·hm-2 application once, with 21 days collection interval, was safe.

  13. Land Suitability and Insurance Premiums: A GIS-based Multicriteria Analysis Approach for Sustainable Rice Production

    Directory of Open Access Journals (Sweden)

    Md Monjurul Islam

    2018-05-01

    Full Text Available The purpose of this research is to develop a land suitability model for rice production based on suitability levels and to propose insurance premiums to obtain maximum returns based on the harvest index and subsidy dependence factor for the marginal and moderately suitable lands in the northern part of Bangladesh. A multicriteria analysis was undertaken and a rice land suitability map was developed using geographical information system and analytical hierarchy process. The analysis identified that 22.74% of the area was highly suitable, while 14.86% was marginally suitable, and 28.54% was moderately suitable for rice production. However, 32.67% of the area, which was occupied by water bodies, rivers, forests, and settlements, is permanently not suitable; 1.19% is presently not suitable. To motivate low-quality land owners to produce rice, there is no alternative but to provide protection through crop insurance. We suggest producing rice up to marginally suitable lands to obtain support from insurance. The minimum coverage is marginal coverage (70% to cover the production costs, while the maximum coverage is high coverage (90% to enable a maximum return. This new crop insurance model, based on land suitability can be a rational support for owners of different quality land to increase production.

  14. Improvement of Soil Biology Characteristics at Paddy Field by System of Rice Intensification

    Directory of Open Access Journals (Sweden)

    Widyatmani Sih Dewi

    2015-07-01

    Full Text Available The aim of the research was to test the System of Rice Intensification (SRI method in improving the biological properties of paddy soil. The indicators of improvement were measured by the number of earthworm feces (cast, and the population of some microbial and nutrient content in the cast. The experiments were performed by comparing the three methods, namely: (1 SRI, (2 semi-conventional, and (3 conventional, using Randomized Completely Block Design. Each treatment was repeated nine times. The experiments were performed in the paddy fields belonging to farmers in Sukoharjo, Central Java. The result showed that the SRI (application of 1 tons ha-1 of vermicompost + 50% of inorganic fertilizer dosage tends to increase the number of earthworms cast. It is an indicator of earthworm activity in soil. Earthworms cast contains more phosphate solubilizing bacteria (12.98 x 1010cfu and N content (1.23% compared to its surrounding soil. There is a close functional relation between earthworms cast with total tiller number. SRI method is better than the other two methods to improve the biological characteristics of paddy soil that has the potential to maintain the sustainability of soil productivity.

  15. Electricity Generation in Microbial Fuel Cell (MFC) by Bacterium Isolated from Rice Paddy Field Soil

    Science.gov (United States)

    Fakhirruddin, Fakhriah; Amid, Azura; Salim, Wan Wardatul Amani Wan; Suhaida Azmi, Azlin

    2018-03-01

    Microbial fuel cell (MFC) is an alternative approach in generating renewable energy by utilising bacteria that will oxidize organic or inorganic substrates, producing electrons yielded as electrical energy. Different species of exoelectrogenic bacteria capable of generating significant amount of electricity in MFC has been identified, using various organic compounds for fuel. Soil sample taken from rice paddy field is proven to contain exoelectrogenic bacteria, thus electricity generation using mixed culture originally found in the soil, and pure culture isolated from the soil is studied. This research will isolate the exoelectrogenic bacterial species in the rice paddy field soil responsible for energy generation. Growth of bacteria isolated from the MFC is observed by measuring the optical density (OD), cell density weight (CDW) and viable cell count. Mixed bacterial species found in paddy field soil generates maximum power of 77.62 μW and 0.70 mA of current. In addition, the research also shows that the pure bacterium in rice paddy field soil can produce maximum power and current at 51.32 μW and 0.28 mA respectively.

  16. Multisensor Capacitance Probes for Simultaneously Monitoring Rice Field Soil-Water- Crop-Ambient Conditions.

    Science.gov (United States)

    Brinkhoff, James; Hornbuckle, John; Dowling, Thomas

    2017-12-26

    Multisensor capacitance probes (MCPs) have traditionally been used for soil moisture monitoring and irrigation scheduling. This paper presents a new application of these probes, namely the simultaneous monitoring of ponded water level, soil moisture, and temperature profile, conditions which are particularly important for rice crops in temperate growing regions and for rice grown with prolonged periods of drying. WiFi-based loggers are used to concurrently collect the data from the MCPs and ultrasonic distance sensors (giving an independent reading of water depth). Models are fit to MCP water depth vs volumetric water content (VWC) characteristics from laboratory measurements, variability from probe-to-probe is assessed, and the methodology is verified using measurements from a rice field throughout a growing season. The root-mean-squared error of the water depth calculated from MCP VWC over the rice growing season was 6.6 mm. MCPs are used to simultaneously monitor ponded water depth, soil moisture content when ponded water is drained, and temperatures in root, water, crop and ambient zones. The insulation effect of ponded water against cold-temperature effects is demonstrated with low and high water levels. The developed approach offers advantages in gaining the full soil-plant-atmosphere continuum in a single robust sensor.

  17. Impacts of climate change on rice production in Africa and causes of simulated yield changes.

    Science.gov (United States)

    van Oort, Pepijn A J; Zwart, Sander J

    2018-03-01

    This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (-24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by -21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by -45% with adaptation they would decrease significantly less (-15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  18. Crop and varietal diversification of rainfed rice based cropping systems for higher productivity and profitability in Eastern India.

    Science.gov (United States)

    Lal, B; Gautam, Priyanka; Panda, B B; Raja, R; Singh, Teekam; Tripathi, R; Shahid, M; Nayak, A K

    2017-01-01

    Rice-rice system and rice fallows are no longer productive in Southeast Asia. Crop and varietal diversification of the rice based cropping systems may improve the productivity and profitability of the systems. Diversification is also a viable option to mitigate the risk of climate change. In Eastern India, farmers cultivate rice during rainy season (June-September) and land leftovers fallow after rice harvest in the post-rainy season (November-May) due to lack of sufficient rainfall or irrigation amenities. However, in lowland areas, sufficient residual soil moistures are available in rice fallow in the post-rainy season (November-March), which can be utilized for raising second crops in the region. Implementation of suitable crop/varietal diversification is thus very much vital to achieve this objective. To assess the yield performance of rice varieties under timely and late sown conditions and to evaluate the performance of dry season crops following them, three different duration rice cultivars were transplanted in July and August. In dry season several non-rice crops were sown in rice fallow to constitute a cropping system. The results revealed that tiller occurrence, biomass accumulation, dry matter remobilization, crop growth rate, and ultimately yield were significantly decreased under late transplanting. On an average, around 30% yield reduction obtained under late sowing may be due to low temperature stress and high rainfall at reproductive stages of the crop. Dry season crops following short duration rice cultivars performed better in terms of grain yield. In the dry season, toria was profitable when sown earlier and if sowing was delayed greengram was suitable. Highest system productivity and profitability under timely sown rice may be due to higher dry matter remobilization from source to sink. A significant correlation was observed between biomass production and grain yield. We infer that late transplanting decrease the tiller occurrence and assimilate

  19. The dominant factors affecting agricultural land use (rice field change in Yogyakarta Special Province

    Directory of Open Access Journals (Sweden)

    Hadi Sabari Yunus

    2013-07-01

    The research shows that the period of 1980 - 2000 in Yogyakarta Special Province has indicated very significantly the increase in population, the development of road and the extension of built up area. For the time being, agricultural land mainly in Sleman Regency, Bantul Regency and Yogyakarta Municipality has decreased. Sleman regency performed the largest decrease of rice field and followed after then by Bantul regency and Yogyakarta Municipality. The regency of Kulon Progo and Gunung Kidul have experienced reverse phenomenon i.e. the increase of rice field during this period. Individually or simultaneously, three variables used in this research (number of people, road's length and built up area have significantly influenced the agricultural land use.

  20. Determination of plant species for the phytoremediation of carbofuran residue in rice field soils

    Directory of Open Access Journals (Sweden)

    Alissara Reungsang

    2005-09-01

    Full Text Available This study searched for plant species suitable for accumulating carbofuran residue in rice field soil. Three groups of plant, i.e. grass crops, upland crops, and vegetable crops, were grown in 8 inches diameter plastic pots filled with soil containing 5 mg/kg carbofuran. Parts of plants (stems and leaves, roots, fruits were harvested at day 120 and analyzed for carbofuran residue using HPLC. The results indicated that Helianthus annuus L. (sunflower was the most suitable species for phytoremediation of carbofuran residue in rice field soil because it highly accumulated carbofuran up to 93.4 μg/kg dry weight in its stems and leaves. In addition, H. annuus L. (sunflower could tolerate carbofuran since it showed similar physical appearance (circumference and height to control not receiving carbofuran.

  1. Vulnerability of Thai rice production to simultaneous climate and socioeconomic changes: a double exposure analysis

    Science.gov (United States)

    Sangpenchan, R.

    2011-12-01

    This research explores the vulnerability of Thai rice production to simultaneous exposure by climate and socioeconomic change -- so-called "double exposure." Both processes influence Thailand's rice production system, but the vulnerabilities associated with their interactions are unknown. To understand this double exposure, I adopts a mixed-method, qualitative-quantitative analytical approach consisting of three phases of analysis involving a Vulnerability Scoping Diagram, a Principal Component Analysis, and the EPIC crop model using proxy datasets collected from secondary data sources at provincial scales.The first and second phases identify key variables representing each of the three dimensions of vulnerability -- exposure, sensitivity, and adaptive capacity indicating that the greatest vulnerability in the rice production system occurs in households and areas with high exposure to climate change, high sensitivity to climate and socioeconomic stress, and low adaptive capacity. In the third phase, the EPIC crop model simulates rice yields associated with future climate change projected by CSIRO and MIROC climate models. Climate change-only scenarios project the decrease in yields by 10% from the current productivity during 2016-2025 and 30% during 2045-2054. Scenarios applying both climate change and improved technology and management practices show that a 50% increase in rice production is possible, but requires strong collaboration between sectors to advance agricultural research and technology and requires strong adaptive capacity in the rice production system characterized by well-developed social capital, social networks, financial capacity, and infrastructure and household mobility at the local scale. The vulnerability assessment and climate and crop adaptation simulations used here provide useful information to decision makers developing vulnerability reduction plans in the face of concurrent climate and socioeconomic change.

  2. Soil quality and rice productivity problems in Sahelian irrigation schemes

    NARCIS (Netherlands)

    Asten, van P.J.A.

    2003-01-01

    In irrigation schemes in theSahel, rice yields and cropping

  3. Efficiency of nitrogen fertilizer in rice culture production

    International Nuclear Information System (INIS)

    Romero, M.R.; Perez, C.; Sosa, J.L.

    1990-01-01

    Using the isotopic tracer technique with 15 urea, the efficiency of three ways of nitrogen fertilizer splitting in rice was determined. Fractioning at three moments, initial tilloring, active tile ring and primordial change, allowed a better assimilation of nitrogen by the grain and the rest of the plant. The optimum moment for the application of the fertilizer was at primordial change, while the highest took place at seeding

  4. Spatial Distribution of Trace Elements in Rice Field at Prafi District Manokwari

    Directory of Open Access Journals (Sweden)

    Aplena Elen S. Bless

    2016-08-01

    Full Text Available Mapping spatial variability of trace elements in rice Ḁeld is necessary to obtain soil quality information to en-hance rice production. ἀis study was aimed to measure concentration and distribution of Zn, Cu, Fe, Pb, and Cd in two diᴀerent sites (SP1, SP2 of PraḀ rice Ḁeld in Manokwari West Papua. ἀe representative 26 soil samples were analysed for their available trace metal concentration (DTPA, soil pH, and C-organic and soil texture. ἀe result indicated that Fe toxicity and Zn deḀcient problems were encountered in both sites.  Rice Ḁeld in SP2 was more deḀcient in Zn than SP1. Site with the highest trace elements (Zn, Fe, Cu, and Cd concentration had low soil pH and high C-organic. Acidic soil has higher solubility of metals; while high C-organic could improve the formation of dissolve organic carbon-metal binding, hence it improving the trace metals concentration in soil solution.

  5. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    Directory of Open Access Journals (Sweden)

    Laura Montesinos

    Full Text Available Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation.

  6. Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films

    Science.gov (United States)

    Yao, Zhisheng; Zheng, Xunhua; Liu, Chunyan; Lin, Shan; Zuo, Qiang; Butterbach-Bahl, Klaus

    2017-01-01

    In China, rice production is facing unprecedented challenges, including the increasing demand, looming water crisis and on-going climate change. Thus, producing more rice at lower environmental cost is required for future development, i.e., the use of less water and the production of fewer greenhouse gas (GHG) per unit of rice. Ground cover rice production systems (GCRPSs) could potentially address these concerns, although no studies have systematically and simultaneously evaluated the benefits of GCRPS regarding yields and considering water use and GHG emissions. This study reports the results of a 2-year study comparing conventional paddy and various GCRPS practices. Relative to conventional paddy, GCRPSs had greater rice yields and nitrogen use efficiencies (8.5% and 70%, respectively), required less irrigation (-64%) and resulted in less total CH4 and N2O emissions (-54%). On average, annual emission factors of N2O were 1.67% and 2.00% for conventional paddy and GCRPS, respectively. A cost-benefit analysis considering yields, GHG emissions, water demand and labor and mulching costs indicated GCRPSs are an environmentally and economically profitable technology. Furthermore, substituting the polyethylene film with a biodegradable film resulted in comparable benefits of yield and climate. Overall, GCRPSs, particularly with biodegradable films, provide a promising solution for farmers to secure or even increase yields while reducing the environmental footprint.

  7. Analysis of the effectiveness of fertilizer subsidy policy and its effect on rice production in Karanganyar Regency

    Science.gov (United States)

    Mulyadiana, A. T.; Marwanti, S.; Rahayu, W.

    2018-03-01

    The research aims to know the factors which affecting rice production, and to know the effectiveness of fertilizer subsidy policy on rice production in Karanganyar Regency. The fertilizer subsidy policy was based on four indicators of fertilizer subsidy namely exact price, exact place, exact time, and exact quantity. Data was analyzed using descriptive quantitative and qualitative and multiple linear regression. The result of research showed that fertilizer subsidy policy in Karanganyar Regency evaluated from four indicators was not effective because the distribution of fertilizer subsidy to farmers still experience some mistakes. The result of regression analysis showed that production factors such as land area, use of urea fertilizer, use of NPK fertilizer, and effectiveness of fertilizer subsidy policy had positive correlation and significant influence on rice production, while labor utilization and use of seeds factors had no significant effect on rice production in Karanganyar Regency. This means that if the fertilizer subsidy policy is more effective, rice production is also increased.

  8. Rice agroecosystem and the maintenance of biodiversity

    International Nuclear Information System (INIS)

    Ahyaudin Ali

    2002-01-01

    Rice fields are a special type of wetland. They are shallow, constantly disturbed and experience extremes in temperature and dissolved oxygen content. They receive nutrients in the form of fertilizers during rice cultivation. Rice fields; support a variety of flora and fauna that have adapted and adjusted themselves to the extreme conditions. Since rice fields also support populations of wild fish, rice?fish integration should be done in order to optimize land use and provide supplementary income to farmers. Rice?fish farming encourages farmers to judiciously apply pesticides and herbicides in their fields thus helping to control excessive and unwarranted use of these chemicals. Rice fields also support many migratory and nonmigratory bird species and provides habitat for small mammals. Thus the rice agroecosystem helps to maintain aquatic biodiversity. The Muda rice agroecosystem consists of a troika of interconnected ecosystems. The troika consisting of reservoirs, the connecting network of canals and the rice fields; should be investigated further. This data is needed for informed decision-making concerning development and management of the system so that productivity and biodiversity can be maintained and sustained. (Author)

  9. Farmers’ knowledge, use and preferences of parasitic weed management strategies in rain-fed rice production systems

    NARCIS (Netherlands)

    Tippe, Dennis E.; Rodenburg, Jonne; Schut, Marc; Ast, van Aad; Kayeke, Juma; Bastiaans, Lammert

    2017-01-01

    Rain-fed rice production in sub-Saharan Africa is often hampered by parasitic weeds. This study assessed farmers’ awareness, use, preference and adoption criteria of parasitic weed management practices in rain-fed rice production environments in Tanzania. Surveys and workshops were organized in

  10. Temporal changes of radiocesium in irrigated paddy fields and its accumulation in rice plants in Fukushima.

    Science.gov (United States)

    Yang, Baolu; Onda, Yuichi; Wakiyama, Yoshifumi; Yoshimura, Kazuya; Sekimoto, Hitoshi; Ha, Yiming

    2016-01-01

    About half of the total paddy field area, which is the dominant agricultural land in Fukushima Prefecture, was contaminated by radiocesium released by the Fukushima Daiichi Nuclear Power Plant accident. In this study, we investigated the temporal changes of radiocesium in soil, irrigation water, and rice plant in two adjacent rice paddies, with and without surface-soil-removal, in Fukushima Prefecture for over three years (2012-2014) after the nuclear accident. Our results showed that radiocesium migrated into 24-28 cm soil layers and that the activity concentration of radiocesium in paddy soils showed a significant reduction in 2014. The newly added radiocesium to paddies through irrigation water contributed only a maximum value of 0.15% and 0.75% of the total amount present in control and decontaminated paddies, respectively, throughout the study period. The radiocesium activity concentration in suspended sediment in irrigation water exponentially decreased, and the effective half-lives (Teff) for (137)Cs and (134)Cs were 1.3 and 0.9 years, respectively. Additionally, the average suspended sediment concentration in irrigation water increased between 2012 and 2014, suggesting that enhanced soil erosion had occurred in the surrounding environment. Radiocesium accumulation in rice plant also decreased with time in both paddies. However, the concentration ratio of radiocesium for rice plant in the decontaminated paddy increased compared with control paddy, despite approximately 96% of fallout radiocesium removed in paddy soil. Further analysis is required to clarify the reasons of high concentration ratio of radiocesium for rice plant in the decontaminated paddy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Aerobic rice mechanization: techniques for crop establishment

    Science.gov (United States)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  12. Problems Analysis on Increasing Rice Production Through Food Estate Program in Bulungan Regency, North Kalimantan

    Science.gov (United States)

    Setyo, P.; Elly, J.

    2018-05-01

    To increase rice production in the Province of North Kalimantan, the provincial government has launched a Food Estate Program. The program is also a central government program in relation to government policies on food security. One of the food estate development areas is the Delta Kayan Food Estate of 50,000 hectares in Bulungan Regency, where about 30,000 hectares area is a tidal land with a very fertile alluvial soil type. This policy study aims to identify and analyze problems of increasing rice production through food estate development in North Kalimantan Province and formulate priority programs as recommendations for policy making in increasing rice production. The study has identified a number of problems of increasing rice production, such as land tenure, land suitability, water system, infrastructure, accessibility of production factors, institutional, and capacity of human resources. The Analytic Hierarchy Process was applied to develop priority programs, resulting in the three most important programs being water management, improving access to production factors, and improving the capacity of human resources. Action plans related to priority programs have also been identified.

  13. Plasma production via field ionization

    Directory of Open Access Journals (Sweden)

    C. L. O’Connell

    2006-10-01

    Full Text Available Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch, or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam’s bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  14. Biogas Production from Rice Husk Waste by using Solid State Anaerobic Digestion (SSAD Method

    Directory of Open Access Journals (Sweden)

    Hawali Abdul Matin Hashfi

    2018-01-01

    Full Text Available An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD. The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.

  15. Biogas Production from Rice Husk Waste by using Solid State Anaerobic Digestion (SSAD) Method

    Science.gov (United States)

    Matin, Hashfi Hawali Abdul; Hadiyanto

    2018-02-01

    An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.

  16. Screening for Direct Production of Lactic Acid from Rice Starch Waste by Geobacillus stearothermophilus

    Directory of Open Access Journals (Sweden)

    Kunasundari Balakrishnan

    2017-01-01

    Full Text Available Lactic acid recently became an important chemical where it is widely used in many industries such as food, cosmetic, chemical and pharmaceutical industry. The present study focuses on the screening for lactic acid production from rice starch waste using a thermophilic amylolytic bacterium, Geobacillus stearothermophilus. There is no information available on direct fermentation of lactic acid from rice starch waste using G. stearothermophilus. The effects of different parameters such as temperature, pH, incubation time, agitation speed, concentration of nitrogen and carbon sources on the lactic acid production were assessed. The highest concentration of lactic acid produced was 5.65 ± 0.07 g/L at operating conditions of 60°C, pH 5.5, 48 h, 200 rpm of agitation speed with 5% concentrations of both carbon and nitrogen source. The findings indicated that rice starch waste can be successfully converted to lactic acid by G. stearothermophilus.

  17. Rice Field Geochemistry and Hydrology: An Explanation for Why Groundwater Irrigated Fields in Bangladesh are Net Sinks of Arsenic from Groundwater

    Science.gov (United States)

    Neumann, Rebecca B.; St. Vincent, Allison P.; Roberts, Linda C.; Badruzzaman, A. Borhan M.; Ali, M. Ashraf; Harvey, Charles F.

    2011-01-01

    Irrigation of rice fields in Bangladesh with arsenic-contaminated groundwater transfers tens of cubic kilometers of water and thousands of tons of arsenic from aquifers to rice fields each year. Here we combine observations of infiltration patterns with measurements of porewater chemical composition from our field site in Munshiganj Bangladesh to characterize the mobility of arsenic in soils beneath rice fields. We find that very little arsenic delivered by irrigation returns to the aquifer, and that recharging water mobilizes little, if any, arsenic from rice field subsoils. Arsenic from irrigation water is deposited on surface soils and sequestered along flow paths that pass through bunds, the raised soil boundaries around fields. Additionally, timing of flow into bunds limits the transport of biologically available organic carbon from rice fields into the subsurface where it could stimulate reduction processes that mobilize arsenic from soils and sediments. Together, these results explain why groundwater irrigated rice fields act as net sinks of arsenic from groundwater. PMID:21332196

  18. Comparative study on nutritional and sensory quality of barnyard and foxtail millet food products with traditional rice products.

    Science.gov (United States)

    Verma, Suman; Srivastava, Sarita; Tiwari, Neha

    2015-08-01

    Millets have the potential to contribute to food security and nutrition, but still these are underutilized crops. The present study was undertaken with a view to analyse the physico-chemical, functional and nutritional composition of foxtail millet, barnyard millet and rice and to compare the sensory quality and nutritive value of food products from foxtail and barnyard millet with rice. Analysis of physico- chemical and functional characteristics revealed that the thousand kernel weight of foxtail millet, barnyard millet and rice was 2.5, 3.0 and 18.3 g, respectively and thousand kernel volume was 1.6, 13 2.0 and 7.1 ml, respectively. The water absorption capacity of foxtail millet, barnyard millet and rice was 1.90, 1.96 and 1.98 ml/g, respectively and water solubility index was 2.8, 1.2 and 1.0 %, respectively. Viscosity was measured for foxtail millet (1650.6 cps), barnyard millet (1581 cps) and rice (1668.3 cps). Analysis of nutritional composition showed that the moisture content of foxtail millet, barnyard millet and rice was 9.35, 11.93 and 11.91 %, respectively. The total ash, crude protein, crude fat, crude fibre and carbohydrate of foxtail millet were 3.10, 10.29, 3.06, 4.25 and 69.95 %, respectively, for barnyard millet were 4.27, 6.93, 2.02, 2.98 and 71.87 %, respectively and the corresponding values for rice were 0.59, 6.19, 0.53, 0.21 and 80.58 %, respectively. The energy value for foxtail millet, barnyard millet and rice was 349, 407 and 352 Kcal, respectively. The foxtail millet contained 30.10 mg/100 g calcium and 3.73 mg/100 g iron whereas barnyard millet contained 23.16 mg/100 g calcium and 6.91 mg/100 g iron. Values of 10 mg/100 g calcium and 0.10 mg/100 g iron were observed for rice. The formulated products viz. laddu, halwa and biryani from foxtail millet, barnyard millet and rice (control) were analysed for their sensory qualities. Among the products prepared, there was non significant difference with regard to the

  19. Application of Bioameliorant and Biofertilizers to Increase the Soil Health and Rice Productivity

    Directory of Open Access Journals (Sweden)

    Tualar Simarmata

    2016-10-01

    Full Text Available The major rice intensity of diseases in Indonesia was increased significantly and has caused a yield loss of up to 20–30%. The experiments had been conducted to investigate the effect of bioameliorant or composted straw (CS combined with consortia of biofertilizers (CB and biocontrol agent to restore the soil health and promote the induced systemic resistance (ISR for increasing the rice productivity. The experiment arranged as randomized block design consisted of 12 treatments (0, 2.5, 5.0 and 7.5 ton of CS per ha combined with 400 g of CB and 200 g inoculant of CB + 200 g inoculant of Trichoderma sp and was provided with three replications. The experimental results revealed that application of 2.5–7.5 ton per ha of bioameliorant combined with 400 g per ha of CB and 400 g Trichoderma sp has increased the ISR and enhanced the rice productivity significantly. The brown spot, sheath rice blight and bacterial leaf blight diseases were reduced from 16.7% to 3.3–8.0%, 20% to 4–10%, 24% to 2.7–4.7% and 20.7% to 8–14.0%, respectively at 7 weeks after transplanting. In addition, the rice grain yield was increased from about 7.1 ton ha−1 to 7.9–10.1 ton per ha.

  20. User Guide ECOREA-RICE (version 1.0). Program for assessing the transfer of radionuclides released accidentally onto flooded rice-fields

    International Nuclear Information System (INIS)

    Keum, Dong Kwon; Lee, Han Soo; Choi, Hei Hu; Kang, Hee Seok; Lee, Chang Woo

    2004-05-01

    The computer code ECOREA-RICE is a dynamic compartment model that is specially designed for estimating the transfer of radionuclides deposited onto flooded rice-fields after an accidental release. The model consists of six independent compartments including rice-body, grain, surface water, root-zone soil, fixed soil and deep soil, and takes into account the transfer processes including radioactive decay, percolation, leaching, shoot-base absorption, root-uptake, weathering, translocation, fixation in soil by adsorption and desorption, and soil-mixing by plowing. The rate of the change of radioactivity in compartments is expressed by a set of the first order ordinary differential equations, which are solved by the fourth order Runge-Kutta algorithm. Input to the program includes the deposition date, transplanting date, ear emergence date, harvest date, soil data, the biomass data of rice-plant, and rate constants associated with transfer processes. Output includes the list of input data, the activity of radionuclides in compartment, the rate constant, and the transfer factor of rice-body and grain with time

  1. Carbon footprint of the rice (Oryza sativa production system in the municipality of Campoalegre, Huila, Colombia

    Directory of Open Access Journals (Sweden)

    Hernán J. Andrade

    2014-01-01

    Full Text Available Carbon footprint is a useful tool to estimate the impact of any production system on climate change, specifically in the net emission or fixation of greenhouse gasses (GHG. The rice cropping system has a large food, social and economical importance in the world; however, it is a net GHG-emitting productive system. The objective of this study was estimating the carbon footprint of the rice production in Campoalegre, Huila, Colombia. A total of 21 rice productive units, located at less than 15 kmfrom the center of the municipality and with gravity irrigation, was selected. Through semi-structured interviews, all activities that emit GHGs, from land preparation to harvest grain, were investigated. It was consulted to producers and managers about the use of nitrogen fertilizers and fossil fuels and the yield of rice grain in each production unit. Factor of emission and warming-equivalence among GHG recommended by Intergovernmental Panel on Climate Change were employed. Carbon fixation rates estimated in Tolima were used to found alternative systems for mitigation of these emissions. It was found a total emission of 998.1 ± 365.3 kg CO2e/ha/cycle (163.3 ± 55.8 kg CO2e/t, having nitrogen fertilization being the greatest contribution (65%. Mitigation of this GHG emission would imply the establishment and management of 0.5 ha of cacao plantations without shade trees or coffee plantations with shade trees or 1.4 ha of monoculture coffee plantations.

  2. Effect of elevated [CO2] and nutrient management on wet and dry season rice production in subtropical India

    Institute of Scientific and Technical Information of China (English)

    Sushree Sagarika Satapathy; Dillip Kumar Swain; Surendranath Pasupalak; Pratap Bhanu Singh Bhadoria

    2015-01-01

    The present experiment was conducted to evaluate the effect of elevated [CO2] with varying nutrient management on rice–rice production system. The experiment was conducted in the open field and inside open-top chambers(OTCs) of ambient [CO2](≈ 390 μmol L-1) and elevated [CO2] environment(25% above ambient) during wet and dry seasons in 2011–2013at Kharagpur, India. The nutrient management included recommended doses of N, P, and K as chemical fertilizer(CF), integration of chemical and organic sources, and application of increased(25% higher) doses of CF. The higher [CO2] level in the OTC increased aboveground biomass but marginally decreased filled grains per panicle and grain yield of rice, compared to the ambient environment. However, crop root biomass was increased significantly under elevated [CO2]. With respect to nutrient management, increasing the dose of CF increased grain yield significantly in both seasons. At the recommended dose of nutrients, integrated nutrient management was comparable to CF in the wet season, but significantly inferior in the dry season, in its effect on growth and yield of rice. The [CO2] elevation in OTC led to a marginal increase in organic C and available P content of soil, but a decrease in available N content. It was concluded that increased doses of nutrients via integration of chemical and organic sources in the wet season and chemical sources alone in the dry season will minimize the adverse effect of future climate on rice production in subtropical India.

  3. Soil Respiration Controls Ionic Nutrient Concentration In Percolating Water In Rice Fields

    Science.gov (United States)

    Kimura, M.

    2004-12-01

    Soil water in the plow layer in rice fields contains various kinds of cations and anions, and they are lost from the plow layer by water percolation. Some portions of CO2 produced by respirations of rice roots and soil microorganisms are also leached by water percolation to the subsoil layer as HCO3-. As the electrical neutrality of inorganic substances in percolating water is maintained when they are assumed to be in the form of simple cations and anions, soil respiration accelerates the leaching of ionic nutrients from the plow layer by water percolation. The proportion of inorganic carbon (Σ CO2) originated from photosynthates in the total Σ CO2 in soil solution in the plow layer was from 28 to 36 % in the rice straw amended soil and from 16 to 31 % in the soil without rice straw amendment in a soil pot experiment with rice plant after the maximum tillering stage. Most of Σ CO2 in percolating water from the plow layer accumulates in the subsoil layer. Periodical measurement of Σ CO2 in percolating water at 13 and 40 cm soil depths indicated that 10 % of total soil organic C in the plow layer was leached down from the plow layer (13 cm), and that about 90 % of it was retained in the subsoil layer to the depth of 40 cm. Water soluble organic materials are also leached from the plow layer by water percolation, and the leaching is accelerated by soil reduction. Soil reduction decreased the content of organic materials that were bound with ferric iron in soil (extractable by 0.1M Na4P2O7 + NaBH4) and increased the content of organic materials that were extractable by the neutral chelating solution (0.1M Na4P2O7). In addition, water percolation transformed the latter organic materials to those that were extractable by water and a neutral salt. Considerable portions of organic materials in percolating water are adsorbed in the subsoil layer, and then partially decomposed and polymerized to specific soil organic materials in the subsoil. Organic materials that were

  4. Dissipation of the Herbicide Benzobicyclon Hydrolysate in a Model California Rice Field Soil.

    Science.gov (United States)

    Williams, Katryn L; Gladfelder, Joshua J; Quigley, Lindsay L; Ball, David B; Tjeerdema, Ronald S

    2017-10-25

    The herbicide benzobicyclon (BZB; 3-(2-chloro-4-(methylsulfonyl)benzoyl)-2-phenylthiobicyclo[3.2.1]oct-2-en-4-one) has recently been approved for use on California rice fields by the United States Environmental Protection Agency (U.S. EPA). Hydrolysis of BZB rapidly forms the active compound, benzobicyclon hydrolysate (BH), whose fate is currently not well understood. A model California rice soil was used to determine BH soil dissipation. The pK a and aqueous solubility were also determined, as experimental values are not currently available. Sorption data indicate BH does not bind tightly, or irreversibly, with this soil. Flooding resulted in decreased BH loss, indicating anaerobic microbes are less likely to transform BH compared to aerobic microorganisms. Temperature increased dissipation, while autoclaving decreased BH loss. Overall, dissipation was slow regardless of treatment. Further investigation is needed to elucidate the exact routes of loss in soil, though BH is expected to dissipate slowly in flooded rice field soil.

  5. Deferral of leaf senescence and increased productivity in rice

    International Nuclear Information System (INIS)

    Biswas, A.K.; Choudhari, M.A.

    1978-01-01

    The effect of spraying of different hormones and nurtient solutions on plants at 3 developmental stages of growth of Jaya rice has been studied. Increased plant growth and leaf longevity have been correlated with increased yield of the crop. 32 P feeding experiments showed that major export of materials took place from flag leaf to grains, while various treatments with hormones and nutrients could modify this export by implicating other leaves as well. These data also support the increased yield and longevity of the top. (author)

  6. Changes in the status of harvested rice fields in the Sacramento Valley, California: Implications for wintering waterfowl.

    Science.gov (United States)

    Miller, Michael R.; Garr, Jay D.; Coates, Peter S.

    2010-01-01

    Harvested rice fields provide critical foraging habitat for wintering waterfowl in North America, but their value depends upon post-harvest treatments. We visited harvested ricefields in the Sacramento Valley, California, during the winters of 2007 and 2008 (recent period) and recorded their observed status as harvested (standing or mechanically modified stubble), burned, plowed, or flooded. We compared these data with those from identical studies conducted during the 1980s (early period). We documented substantial changes in field status between periods. First, the area of flooded rice increased 4-5-fold, from about 15% to >40% of fields, because of a 3-4-fold increase in the percentage of fields flooded coupled with a 37-41% increase in the area of rice produced. Concurrently, the area of plowed fields increased from 35% of fields, burned fields declined from about 40% to 1%, and fields categorized as harvested declined from 22-54% to rice field status survey in the Sacramento Valley and other North American rice growing regions as appropriate to support long-term monitoring programs and wetland habitat conservation planning for wintering waterfowl.

  7. A digital photography and analysis system for estimation of root and shoot development in rice weed suppression studies in the field

    Science.gov (United States)

    Rice germplasm with an inherent ability to suppress weeds can potentially improve the economics and sustainability of weed control in rice. We devised a simple, rapid, and inexpensive digital imaging system to quantify several shoot and root growth characteristics in field-grown rice plants that ha...

  8. Mist-netting records of some pest and non-pest rice field birds of the MUDA rice agroecosystem

    International Nuclear Information System (INIS)

    Maimon Abdullah

    2002-01-01

    An initial survey was conducted to determine the status of bird population in the Muda rice area of Kedah. Sighting records as well as netting and bird ringing in conjunction with Capture-Recapture method were carried out on two occasions during the planting seasons of June 1993 and August 1994, respectively. On the former occasion, a total of 25 birds were captured by mist?netting at Kampung Kangkong, Mucla, of which 14 comprised of grainivores: twelve specimens of baya weavers or ciak tempua, Ploceusphilippinus and two specimens of scaly-breasted munias or, pipit pinang (Lonchura punctulata). Some nine specimens of white-throated kingfisher or pekaka belukar (Halcyon smyrnensis), a magpie robin or murai kampung (Copsychus sauiaris) and a greater painted snipe or meragi (Rostratula benghalensis) were also ringed and released. A 33% recapture success was recorded during the three-day netting period. On the second occasion, some 15 specimens comprising members of Columbidae, Ploceidae, Motacillidae, Alcedinidae, Apodidae and Caprimulgidae were mist-netted at Alor Serdang, Kota Sarang Semut, Muda. Likewise, the highest number netted (7) were the ubiquitous pest and commensal species, viz; baya weavers, ciak urasia and Richards pipit; followed by four white-breasted kingfishers, two peaceful doves, a house swift and a large-tailed nightjar. Details of vital statistics for each specimen captured were recorded and the results of our field observations showed that insectivores and darters were more likely to be netted than waterbirds and ground dwelling species. (Author)

  9. Paddy-field contamination with 134Cs and 137Cs due to Fukushima Dai-ichi Nuclear Power Plant accident and soil-to-rice transfer coefficients

    International Nuclear Information System (INIS)

    Endo, Satoru; Kajimoto, Tsuyoshi; Shizuma, Kiyoshi

    2013-01-01

    The transfer coefficient (TF) from soil to rice plants of 134 Cs and 137 Cs in the form of radioactive deposition from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March 2011 was investigated in three rice paddy fields in Minami-Soma City. Rice crops were planted in the following May and harvested at the end of September. Soil cores of 30-cm depth were sampled from rice-planted paddy fields to measure 134 Cs and 137 Cs radioactivity at 5-cm intervals. 134 Cs and 137 Cs radioactivity was also measured in rice ears (rice with chaff), straws and roots. The rice ears were subdivided into chaff, brown rice, polished rice and rice bran, and the 134 Cs and 137 Cs radioactivity concentration of each plant part was measured to calculate the respective TF from the soil. The TF of roots was highest at 0.48 ± 0.10 in the field where the 40 K concentration in the soil core was relatively low, in comparison with TF values of 0.31 and 0.38 in other fields. Similar trends could be found for the TF of whole rice plants, excluding roots. The TF of rice ears was relatively low at 0.019–0.026. The TF of chaff, rice bran, brown rice and polished rice was estimated to be 0.049, 0.10–0.16, 0.013–0.017 and 0.005–0.013, respectively. - Highlights: ► We investigated the transfer coefficient of 134 Cs and 137 Cs from soil to rice plants in Minami-Soma City due to the Fukushima accident in 2011. ► The rice ears, straws, roots, chaff, brown rice, polished rice, rice bran and soil samples have been measured by Ge-detector. ► Transfer coefficient of chaff, rice bran, brown rice, and polished rice is estimated as 0.049, ranging from 0.10 to 0.16, 0.013 to 0.017, and 0.005 to 0.013, respectively.

  10. The Interactive Effect of Diversification and Farming Scale on Productivity of Family Farm:Taking Rice Cultivation as An Example

    Science.gov (United States)

    Wei, Zhou

    2017-05-01

    Based on the diversification and cultivation scale, the rice cropping data of rural fixed observation points in 2011 were selected and the effect of diversification degree on rice productivity was analyzed by the Tobit model. The empirical results of the model show that diversification of sample farm will lead to loss of rice production efficiency. With the increase of rice planting scale, the loss of rice production efficiency will need to be further increased by diversification. Thus, we should stick to the family farm of specialized production operation. The transfer of land, the price and quantity of leasing, respecting the law of the market; the raising of funds can be considered non-subsidized capital market financing to help, while maintaining a certain degree of diversification, to avoid idle assets, low resource efficiency loss.

  11. Transgene Flow from Glufosinate-Resistant Rice to Improved and Weedy Rice in China

    Directory of Open Access Journals (Sweden)

    Yong-liang LU

    2014-09-01

    Full Text Available The development of transgenic rice with novel traits in China can increase rice productivity, but transgene flow to improved or weedy rice has become a major concern. We aimed to evaluate the potential maximum frequencies of transgene flow from glufosinate-resistant rice to improved rice cultivars and weedy rice. Treatments were arranged in randomized complete blocks with three replicates. Experiments were conducted between 2009 and 2010 at the Center for Environmental Safety Supervision and Inspection for Genetically Modified Plants, China National Rice Research Institute, Hangzhou, China. Glufosinate-resistant japonica rice 99-1 was the pollen donor. The pollen recipients were two inbred japonica rice (Chunjiang 016 and Xiushui 09, two inbred indica rice (Zhongzu 14 and Zhongzao 22, two indica hybrid rice (Zhongzheyou 1 and Guodao 1, and one weedy indica rice (Taizhou weedy rice. The offspring of recipients were planted in the field and sprayed with a commercial dose of glufosinate. Leaf tissues of survivors were analyzed by polymerase chain reaction to detect the presence of the transgene. The frequency of gene flow ranged from 0 to 0.488%. In 2009, the order of gene flow frequency was as follows: weedy rice > Chunjiang 016 > Xiushui 09 and Zhongzu 14 > Guodao 1, Zhongzheyou 1 and Zhongzao 22. Gene flow frequencies were generally higher in 2009 than in 2010, but did not differ significantly among rice materials. Gene flow frequency was the highest in weedy rice followed by the inbred japonica rice. The risk of gene flow differed significantly between years and year-to-year variance could mask risk differences among pollen recipients. Gene flow was generally lesser in taller pollen recipients than in shorter ones, but plant height only accounted for about 30% of variation in gene flow. When flowering synchrony was maximized, as in this study, low frequencies of gene flow occurred from herbicide-resistant japonica rice to other cultivars and

  12. Application of Azolla and intermittent irrigation to improve the productivity and nutrient contents of local black rice variety

    Science.gov (United States)

    Sulandjari; Yunindanova, M. B.

    2018-03-01

    Black rice is a local rice variety that contains a high level of anthocyanin pigment. Anthocyanin has been reported to be very effective in reducing cholesterol levels as well as cancer cell invasion. One of the main problems in rice cultivation is lack of water. System of Rice Intensification (SRI) has shown to be able to increase rice productivity by increasing the number of tillers. This system is known as a water-efficient cultivation. Other rice cultivation barrier is related to the use of nitrogen fertilizer. One of replacement of nitrogen fertilizer is by adding azolla. The objective of this research was identifying growth and yield of organic black rice with intermittent irrigation and application of azolla. The plant material used was black rice Cempo variety from Sleman, Yogyakarta. This experiment utilized 4 dosages of azolla as the first treatment: 100 gm-2, 200 gm-2 and 400 gm-2. The second treatment was water supply consisted of continuous flooded 2 cm; flooded 2 cm every 3 days; flooded 2 cm every 6 days. The results depicted that the application of azolla was able to increase the growth of black rice. Azolla of 200 gm-2 and 400 gm-2 and intermittent 3 days to 6 days generated higher dry grain, anthocyanin and antioxidant. Azolla 200 gm-2 with intermittent irrigation 3 days could be a good combination to improve plant growth, yield and properties of local black rice.

  13. December, 2013 ISSN 1119-944X 167 Rice Production under

    African Journals Online (AJOL)

    ONIKOYI

    Nigeria is the most populous country in Africa with a population of over 130 ... consumed in South East Asia, which is a major centre of the world population. ... Studies have shown that aggregate rice production in Nigeria has been growing at.

  14. Soil quality assessment of rice production systems in South of Brazil

    NARCIS (Netherlands)

    Rodrigues de Lima, A.C.; Hoogmoed, W.B.; Brussaard, L.

    2007-01-01

    Soil quality, as a measure of the soil capacity to function, can be quantified by indicators based on physical, chemical and biological properties. Maintaining soil quality at a desirable level in the rice cropping system is a very complex issue due to the nature of the production systems used. In

  15. Production of pulse in mono-cropped rice system in the coastal region of Eastern India

    International Nuclear Information System (INIS)

    Khan, A.R.; Nanda, P.; Chandra, Dinesh; Ghorai, A.K.; Behera, M.S.

    2001-04-01

    This experiment was undertaken with an objective to increase the yield of black-gram leguminous pulse crop through optimal doses of phosphatic fertilizer with supplemental irrigation in mono-cropped rice-fallow regions of India. Irrigation and phosphorus fertilizer application were introduced for enhancing productivity of black-gram to provide better returns to available water resources

  16. Policy reforms, rice production and sustainable land use in China: A macro-micro analysis

    NARCIS (Netherlands)

    Heerink, N.; Qu, F.; Kuiper, M.H.; Shi Xiaoping, X.; Tan Shuhao,

    2007-01-01

    This paper presents a macro¿micro analysis of the impact of policy reforms in China on agricultural production, input use and soil quality change for a major rice-producing area, namely Jiangxi province. This is done in three steps. First, a quantitative assessment is made of the impact of market

  17. An institutional perspective on farmers’ water management and rice production practices in Benin

    NARCIS (Netherlands)

    Totin, G.G.E.

    2013-01-01

    This thesis is part of the wider debate about the role of institutions in agricultural innovation processes. It

    investigates how institutions shape rice production in inland valleys in Benin. It starts from a scoping study

    (prior to this research) on smallholder irrigation in

  18. Lactic acid production from submerged fermentation of broken rice using undefined mixed culture.

    Science.gov (United States)

    Nunes, Luiza Varela; de Barros Correa, Fabiane Fernanda; de Oliva Neto, Pedro; Mayer, Cassia Roberta Malacrida; Escaramboni, Bruna; Campioni, Tania Sila; de Barros, Natan Roberto; Herculano, Rondinelli Donizetti; Fernández Núñez, Eutimio Gustavo

    2017-04-01

    The present work aimed to characterize and optimize the submerged fermentation of broken rice for lactic acid (LA) production using undefined mixed culture from dewatered activated sludge. A microorganism with amylolytic activity, which also produces LA, Lactobacillus amylovorus, was used as a control to assess the extent of mixed culture on LA yield. Three level full factorial designs were performed to optimize and define the influence of fermentation temperature (20-50 °C), gelatinization time (30-60 min) and broken rice concentration in culture medium (40-80 g L -1 ) on LA production in pure and undefined mixed culture. LA production in mixed culture (9.76 g L -1 ) increased in sixfold respect to pure culture in optimal assessed experimental conditions. The optimal conditions for maximizing LA yield in mixed culture bioprocess were 31 °C temperature, 45 min gelatinization time and 79 g L -1 broken rice concentration in culture medium. This study demonstrated the positive effect of undefined mixed culture from dewatered activated sludge to produce LA from culture medium formulated with broken rice. In addition, this work establishes the basis for an efficient and low-cost bioprocess to manufacture LA from this booming agro-industrial by-product.

  19. Trade-offs and spatial dependency of rice production and environmental consequences at community level in Southeastern China

    Science.gov (United States)

    Xu, Hui; Liu, Zhong; Wang, Lihua; Wan, Haibo; Jing, Changwei; Jiang, Jingang; Wu, Jiaping; Qi, Jiaguo

    2018-02-01

    Over the past three decades, farmers in China have increasingly used fertilizers to increase paddy rice production. While this approach has eased the rising demand for food, it is unclear whether it pays off in the long-run when costs associated with environmental consequences are considered. Using two case studies in Zhejiang Province, China, this paper analyzed field-based rice yields, fertilizer inputs, nitrogen leaching and greenhouse emissions and their socioeconomic values of different farm practices. The objective was to assess the trade-offs among economic gains from increased yield and environmental consequences of different paddy rice management practices. The results indicated short-term economic gains to farmers outweigh the environmental cost concerns. However, considering the lasting environmental effects, there is a significant imbalance toward a conservative farming practice. The results further indicated that synergies can be achieved if precision management practices are adopted. It was also indicated that a large spatial variation exists in yields and environmental impacts, suggesting ‘one-size fits all’ policies will likely be ineffective in reducing environmental impacts. Although only two case studies were demonstrated in this study, the approach may be generalized to other geographic regions to help guide paddy farmers in similar climatic and land use environments such as those in the subtropical regions of Southeast Asia, to achieve synergic environment practices.

  20. Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Minfeng Xue

    Full Text Available Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice worldwide. The fungal pathogen is notorious for its ability to overcome host resistance. To better understand its genetic variation in nature, we sequenced the genomes of two field isolates, Y34 and P131. In comparison with the previously sequenced laboratory strain 70-15, both field isolates had a similar genome size but slightly more genes. Sequences from the field isolates were used to improve genome assembly and gene prediction of 70-15. Although the overall genome structure is similar, a number of gene families that are likely involved in plant-fungal interactions are expanded in the field isolates. Genome-wide analysis on asynonymous to synonymous nucleotide substitution rates revealed that many infection-related genes underwent diversifying selection. The field isolates also have hundreds of isolate-specific genes and a number of isolate-specific gene duplication events. Functional characterization of randomly selected isolate-specific genes revealed that they play diverse roles, some of which affect virulence. Furthermore, each genome contains thousands of loci of transposon-like elements, but less than 30% of them are conserved among different isolates, suggesting active transposition events in M. oryzae. A total of approximately 200 genes were disrupted in these three strains by transposable elements. Interestingly, transposon-like elements tend to be associated with isolate-specific or duplicated sequences. Overall, our results indicate that gain or loss of unique genes, DNA duplication, gene family expansion, and frequent translocation of transposon-like elements are important factors in genome variation of the rice blast fungus.

  1. Rice yield estimation based on weather conditions and on technological level of production systems in Brazil

    Directory of Open Access Journals (Sweden)

    José Eduardo Boffino de Almeida Monteiro

    2013-02-01

    Full Text Available The objective of this work was to evaluate an estimation system for rice yield in Brazil, based on simple agrometeorological models and on the technological level of production systems. This estimation system incorporates the conceptual basis proposed by Doorenbos & Kassam for potential and attainable yields with empirical adjusts for maximum yield and crop sensitivity to water deficit, considering five categories of rice yield. Rice yield was estimated from 2000/2001 to 2007/2008, and compared to IBGE yield data. Regression analyses between model estimates and data from IBGE surveys resulted in significant coefficients of determination, with less dispersion in the South than in the North and Northeast regions of the country. Index of model efficiency (E1' ranged from 0.01 in the lower yield classes to 0.45 in higher ones, and mean absolute error ranged from 58 to 250 kg ha‑1, respectively.

  2. Rice field agroecosystem investigation : environmental and toxicological assessment; Indagine su una risaia campione: analisi ambientali e chimico-tossicologiche

    Energy Technology Data Exchange (ETDEWEB)

    Bari, A; Minciardi, M; Rossi, G [ENEA, Centro Ricerche Saluggia, Vercelli (Italy). Dip. Ambiente; Bonotto, F; Paonessa, F; Troiani, F [ENEA, Centro Ricerche Saluggia, Vercelli (Italy). Dip. Energia; Rosa, S [ENEA, Centro Ricrche Casaccia, Rome (Italy). Dip. Ambiente; Cormegna, M [Ente Nazionale Risi, Centro Ricerche sul Riso, Castello d` Agogna, Pavia (Italy)

    1995-10-01

    The rice-field agroecosystem, even if deeply anthropically determined, can be considered substitute of the plain wet lands, now almost all disappeared in the part of the territory has been considering. The aim of the research we started was the analysis and the ecological characterization of this environment and the assessment of the effects of the different agronomical practices, relating to the conservation of the biodiversity in a plain wetland. The ENEA Environmental Biology and Nature Conservation Division of Saluggia (VC) and Casaccia (Roma), in co-operation with ENEA ERG-RAD-LAB Division of Saluggia and the Rice Research Center of Castello d`Agogna (PV) associated to Rice National Society, started a preliminary research on a sample rice field, aiming to evaluate, using different methodologies, the destiny of the chemical substances (herbicides, fungicidals, heavy metals and other chemical compounds) introduced through cultivation practices or arrived by irrigation systems.

  3. Runoff of pesticides from rice fields in the Ile de Camargue (Rhone river delta, France): Field study and modeling

    International Nuclear Information System (INIS)

    Comoretto, Laetitia; Arfib, Bruno; Talva, Romain; Chauvelon, Philippe; Pichaud, Marc; Chiron, Serge; Hoehener, Patrick

    2008-01-01

    A field study on the runoff of pesticides was conducted during the cultivation period in 2004 on a hydraulically isolated rice farm of 120 ha surface with one central water outlet. Four pesticides were studied: Alphamethrin, MCPA, Oxadiazon, and Pretilachlor. Alphamethrin concentrations in runoff never exceeded 0.001 μg L -1 . The three other pesticides were found in concentrations between 5.2 and 28.2 μg L -1 in the runoff water shortly after the application and decreased thereafter. The data for MCPA compared reasonably well with predictions by an analytical runoff model, accounting for volatilization, degradation, leaching to groundwater, and sorption to soil. The runoff model estimated that runoff accounted for as much as 18-42% of mass loss for MCPA. Less runoff is observed and predicted for Oxadiazon and Pretilachlor. It was concluded that runoff from rice paddies carries important loads of dissolved pesticides to the wetlands in the Ile de Camargue, and that the model can be used to predict this runoff. - Runoff of dissolved pesticides was measured on a rice farm in the Camargue (France) and modeled with an analytical model

  4. Soil micronutrients and its uptake by rice plant. Part of a coordinated programme on isotope-aided micronutrient studies in rice production with special reference to zinc deficiencies

    International Nuclear Information System (INIS)

    Kim, T.S.

    1980-02-01

    A series of field and greenhouse experiments with flooded rice was carried out on contrasting soil types of Korea to study the zinc status of soils, evaluate the chemical methods for extracting zinc from soils in terms of ability to identify zinc deficiency, perform 65 Zn-aided experiments including the residual effects of zinc fertilizers to evaluate the efficiency of zinc sources and methods of zinc application to rice, and associated studies on factors affecting zinc nutrition in rice such as effect of organic matter and chelates. The results show that i) 0.05 N HCl solution for extracting available zinc in soil was effective to separating the soils which require zinc fertilizer application. The proposed zinc value to identify is 2.4 ppm. Among rice soils surveyed, the red-yellow podsolic soil derived from basalt, the reddish-brown lateritic soil of calcareous material and newly reclaimed saline soils were shown to be below this limit; ii) 5 kg Zn/ha as zinc sulphate introduced the highest response in terms of % Zndff, total zinc yield in rice plant, and the fertilizer zinc use efficiency. Applying higher zinc amounts, in case of 20 kg Zn/ha, retarded nitrogen uptake by the plant and as a result the rice grain yield was decreased; iii) Significant yields increases due to the residual effects of zinc fertilizers were obtained on the second and third crops; iv) On the zinc-deficient calcareous soil the use of chelated zinc sources is recommended

  5. Economic Ergonomic Approach to Design an Optimal Manpower and Mechanization in Rice Production

    Science.gov (United States)

    Muanah; Syuaib, M. F.; Liyantono

    2018-05-01

    Productivity of manpower could be improved by considering the economic and ergonomic aspect. The ergonomic aspect (human factor) is required to design an optimal manpower, while in the economic aspect, the well being of manpower could be evaluated from the amount of received income based on their work capability. This research was conducted on February 2016 to January 2017 in Gapoktan Silih Asih rice field Cigombong, Bogor. This study aims to analyze the income of manpower based on current conditions, increasement of working hours and mechanization addition. The results showed that manpower income based on the current condition and ergonomic consideration was Rp 1,174,030/person.month, by increasing the working hours with ergonomic consideration the obtained income was Rp 1,766,204/person.month. the revenues were based on the existing work system even though the increasement of working hours have not provided optimal income due to low productivity. Therefore the results of analysis with the addition of selective mechanization, showed self-ownership machinery was more profitable the obtained income have more than the Bogor minimum wage standard of Rp 2,969,325/person.month.

  6. Technology Adoption and Productivity Difference among Growers of New Rice for Africa in Savanna Zone of Nigeria

    Directory of Open Access Journals (Sweden)

    Rahji, MAY.

    2009-01-01

    Full Text Available The use of New Rice for Africa (NERICA and complementary rice production technology is being promoted by Nigeria government in order to increase productivity of upland rice farming. This study examines the levels, determinants and effects of complementary technology adoption on productivity of NERICA rice farming. Data for the study were obtained from sample survey of 227 NERICA rice farmers in the guinea savanna zone using multistage sampling technique. Data collected were analyzed using Tobit regression model and Cobb-Douglas production function. Results showed that the average technology score was 52.1 percent (+ 0.242. Fifty-five percent of the farmers who scored above the mean were categorized as low technology users. Tobit regression estimation shows that farmers' technology score was affected significantly (P< 0.05 by farmer's level of education (0.0127, extension visit (0.0145, farming experience (0.0085, land ownership status (0.0687, credit use (0.0698 and level of rice commercialization (0.3783. Cobb-Douglas production estimation shows a neutrally outward shift in production function as the level of complementary technology increases, indicating increasing productivity. Thus, promotion of complementary technology in NERICA rice production is a worthwhile effort and should continue to be funded. Improvement of those factors that significantly affect adoption of complementary technology is recommended.

  7. Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice

    Directory of Open Access Journals (Sweden)

    Kamatsuki Kaori

    2011-01-01

    Full Text Available Abstract Background Plant growth depends on synergistic interactions between internal and external signals, and yield potential of crops is a manifestation of how these complex factors interact, particularly at critical stages of development. As an initial step towards developing a systems-level understanding of the biological processes underlying the expression of overall agronomic potential in cereal crops, a high-resolution transcriptome analysis of rice was conducted throughout life cycle of rice grown under natural field conditions. Results A wide range of gene expression profiles based on 48 organs and tissues at various developmental stages identified 731 organ/tissue specific genes as well as 215 growth stage-specific expressed genes universally in leaf blade, leaf sheath, and root. Continuous transcriptome profiling of leaf from transplanting until harvesting further elucidated the growth-stage specificity of gene expression and uncovered two major drastic changes in the leaf transcriptional program. The first major change occurred before the panicle differentiation, accompanied by the expression of RFT1, a putative florigen gene in long day conditions, and the downregulation of the precursors of two microRNAs. This transcriptome change was also associated with physiological alterations including phosphate-homeostasis state as evident from the behavior of several key regulators such as miR399. The second major transcriptome change occurred just after flowering, and based on analysis of sterile mutant lines, we further revealed that the formation of strong sink, i.e., a developing grain, is not the major cause but is rather a promoter of this change. Conclusions Our study provides not only the genetic basis for functional genomics in rice but also new insight into understanding the critical physiological processes involved in flowering and seed development, that could lead to novel strategies for optimizing crop productivity.

  8. Expression of the Aeluropus littoralis AlSAP Gene Enhances Rice Yield under Field Drought at the Reproductive Stage

    Directory of Open Access Journals (Sweden)

    Thaura Ghneim-Herrera

    2017-06-01

    Full Text Available We evaluated the yields of Oryza sativa L. ‘Nipponbare’ rice lines expressing a gene encoding an A20/AN1 domain stress-associated protein, AlSAP, from the halophyte grass Aeluropus littoralis under the control of different promoters. Three independent field trials were conducted, with drought imposed at the reproductive stage. In all trials, the two transgenic lines, RN5 and RN6, consistently out-performed non-transgenic (NT and wild-type (WT controls, providing 50–90% increases in grain yield (GY. Enhancement of tillering and panicle fertility contributed to this improved GY under drought. In contrast with physiological records collected during previous greenhouse dry-down experiments, where drought was imposed at the early tillering stage, we did not observe significant differences in photosynthetic parameters, leaf water potential, or accumulation of antioxidants in flag leaves of AlSAP-lines subjected to drought at flowering. However, AlSAP expression alleviated leaf rolling and leaf drying induced by drought, resulting in increased accumulation of green biomass. Therefore, the observed enhanced performance of the AlSAP-lines subjected to drought at the reproductive stage can be tentatively ascribed to a primed status of the transgenic plants, resulting from a higher accumulation of biomass during vegetative growth, allowing reserve remobilization and maintenance of productive tillering and grain filling. Under irrigated conditions, the overall performance of AlSAP-lines was comparable with, or even significantly better than, the NT and WT controls. Thus, AlSAP expression inflicted no penalty on rice yields under optimal growth conditions. Our results support the use of AlSAP transgenics to reduce rice GY losses under drought conditions.

  9. Acetylcholinesterase inhibition and gill lesions in Rasbora caverii, an indigenous fish inhabiting rice field associated waterbodies in Sri Lanka.

    Science.gov (United States)

    Wijeyaratne, W M D N; Pathiratne, Asoka

    2006-10-01

    The present study was aimed at applying condition factor (CF), brain acetylcholinesterase (AChE) and gill histology as biomarkers for detecting possible exposure/effect induced by pesticides in fish residing rice field associated waterbodies in Sri Lanka. Biomarkers of an indigenous fish, Rasbora caverii collected from five sampling sites including canals near rice fields, a river and a reservoir (the reference site) were evaluated at four sampling stages covering pesticide application periods during rice cultivation season in 2004. Results indicated that CF of the fish did not show significant alterations regardless of the sampling sites or sampling stages. Site specific differences in AChE activities of the fish were not evident either prior to application of pesticides or at 7 days after Paraquat application to the rice fields. Two days after the application of a mixture of Fenthion and Phenthoate to the rice fields, AChE activity of the fish collected from canals near rice fields was significantly depressed (65-75%) compared to the fish in the reference site. The activities remain depressed to 50-56% even at 65 days after the insecticides application. Laboratory studies showed that prior exposure of R. caverii to Paraquat (2 microg l(-1), 7 days) enhanced the extent of inhibition of brain AChE activity induced by Fenthion (3 microg l(-1)) or a mixture of Fenthion (3 microg l(-1)) and Phenthoate (5 microg l(-1)). Gills of fish collected from canals near rice fields exhibited abnormal multiple divisions at the tips of some secondary lamellae in addition to hyperplasia, hypertrophy and club shaped deformities. Results indicate that application of pesticides in rice culture could manifest a threat to native fish populations residing rice field associated waterbodies. The response of brain AChE and histological changes in the gills of R. caverii allowed differentiating sampling sites after insecticide applications to the rice fields. Hence, R. caverii may be

  10. Microbial, physical and chemical properties of irrigation water in rice fields of Southern Brazil

    Directory of Open Access Journals (Sweden)

    MARIA HELENA L.R. RECHE

    2016-03-01

    Full Text Available ABSTRACT This paper presents the results of the statistical analysis of microbiological, physical and chemical parameters related to the quality of the water used in rice fields in Southern Brazil. Data were collected during three consecutive crop years, within structure of a comprehensive monitoring program. The indicators used were: potential hydrogen, electrical conductivity, turbidity, nitrogen, phosphorus, potassium, calcium, total and fecal coliforms. Principal Component and Discriminant Analysis showed consistent differences between the water irrigation and drainage, as the temporal variation demonstrated a clear reduction in the concentration of most of the variables analyzed. The pattern of this reduction is not the same in the two regions - that is, the importance of each of the different variables in the observed differentiation is modified in two locations. These results suggested that the variations in the water quality utilized for rice irrigation was influenced by certain specific aspects of each rice region in South Brazilian - such as anthropic action or soil/climate conditions in each hydrographic basin.

  11. Rice production systems and avian influenza: Interactions between mixed-farming systems, poultry and wild birds

    Science.gov (United States)

    Muzaffar, S.B.; Takekawa, John Y.; Prosser, D.J.; Newman, S.H.; Xiao, X.

    2010-01-01

    Wild waterfowl are the reservoir for avian influenza viruses (AIVs), a family of RNA viruses that may cause mild sickness in waterbirds. Emergence of H5N1, a highly pathogenic avian influenza (HPAI) strain, causing severe disease and mortality in wild birds, poultry and humans, had raised concerns about the role of wild birds in possible transmission of the disease. In this review, the link between rice production systems, poultry production systems, and wild bird ecology is examined to assess the extent to which these interactions could contribute towards the persistence and evolution of HPAI H5N1. The rice (Oryza sativa) and poultry production systems in Asia described, and then migration and movements of wild birds discussed. Mixed farming systems in Asia and wild bird movement and migration patterns create opportunities for the persistence of low pathogenic AIVs in these systems. Nonetheless, there is no evidence of long-term persistence of HPAI viruses (including the H5N1 subtype) in the wild. There are still significant gaps in the understanding of how AIVs circulate in rice systems. A better understanding of persistence of AIVs in rice farms, particularly of poultry origins, is essential in limiting exchange of AIVs between mixed-farming systems, poultry and wild birds.

  12. Wolbachia infection complexity among insects in the tropical rice-field community.

    Science.gov (United States)

    Kittayapong, P; Jamnongluk, W; Thipaksorn, A; Milne, J R; Sindhusake, C

    2003-04-01

    Wolbachia are a group of intracellular bacteria that cause reproductive alterations in their arthropod hosts. Widely discordant host and Wolbachia phylogenies indicate that horizontal transmission of these bacteria among species sometimes occurs. A likely means of horizontal transfer is through the feeding relations of organisms within communities. Feeding interactions among insects within the rice-field insect community have been well documented in the past. Here, we present the results of a polymerase chain reaction-based survey and phylogenetic analysis of Wolbachia strains in the rice-field insect community of Thailand. Our field survey indicated that 49 of 209 (23.4%) rice-field insect species were infected with Wolbachia. Of the 49 infected species, 27 were members of two feeding complexes: (i) a group of 13 hoppers preyed on by 2 mirid species and parasitized by a fly species, and (ii) 2 lepidopteran pests parasitized by 9 wasp species. Wolbachia strains found in three hoppers, Recilia dorsalis, Nephotettix malayanus and Nisia nervosa, the two mirid predators, Cyrtorhinus lividipennis and Tytthus chinensis, and the fly parasitoid, Tomosvaryella subvirescens, were all in the same Wolbachia clade. In the second complex, the two lepidopteran pests, Cnaphalocrocis medinalis and Scirpophaga incertulas, were both infected with Wolbachia from the same clade, as was the parasitoid Tropobracon schoenobii. However, none of the other infected parasitoid species in this feeding complex was infected by Wolbachia from this clade. Mean (+/- SD) genetic distance of Wolbachia wsp sequences among interacting species pairs of the hopper feeding complex (0.118 +/- 0.091 nucleotide sequence differences), but not for the other two complexes, was significantly smaller than that between noninteracting species pairs (0.162 +/- 0.079 nucleotide sequence differences). Our results suggest that some feeding complexes, such as the hopper complex described here, could be an important

  13. luminium alloy - rice husk ash composites production and analysis

    Directory of Open Access Journals (Sweden)

    Abdullahi Mohammed USMAN

    2014-11-01

    Full Text Available This study was carried out to produce and analyse the properties of Aluminium Alloy-Rice Husk Ash composites. Rice husk ash (RHA with high silica content of up to 97.095% was used for the study with the RHA varied from 0vol% – 30vol% at intervals of 5vol% in the aluminium alloy as reinforcement. The density and some mechanical properties of the composites including tensile strength, impact strength, hardness and fatigue strength were investigated. The results showed that the density of the composite decreases with the percentage increase of reinforcement from 2840.242 kgm-3 for the control sample to 2402.899 kgm-3 for 30vol% RHA. The Ultimate Tensile Strength (UTS varies from 164.374 MNm-2 at 0% RHA to 176.837 MNm-2 with maximum value at 10% RHA, impact strength values varies from 84.020kJm-2 at 0% RHA to 155.244 kJm-2 with maximum value at 10% RHA, hardness value varies from 70.467 RHV at 0% RHA to 109.367 RHV with maximum value at 25% RHA and fatigue strength varies from 0.224x106 cycles to 2.582x106 cycles with maximum cycle at 20% RHA. The results of analysis of variance showed that there are significant differences among the means of each property of the composites at different levels of replacement of the ash addition (P<0.05. It was concluded that the produced composites could be used to make engineering components such as automobile body parts, piston and block engine etc.

  14. Evaluating Sheath Blight Resistance in Rice Using Detached Tiller and Field Screening Method

    Directory of Open Access Journals (Sweden)

    Bedanand Chaudhary

    2015-12-01

    Full Text Available In present study physical resistance test on 12 rice varieties against sheath blight (ShB caused by Rhizoctonia solani was examined. A detached tiller test was used to measure components of ShB physiological resistance at Regional Agricultural Research Station (RARS, Tarahara, Nepal. The varieties were evaluated in a randomized complete block design (RCBD with 3 replications in year 2010-12. A sclerotium was inserted below the leaf collar of individual tillers maintained in tubes filled with water. Only the 56-day old susceptible plants were inoculated. After 7 days of inoculation, number of lesions, dead leaves, vertical sheath colonization and disease severity were measured. In 2011, field experiments were conducted with three replications to address morphological resistance in 28 rice genotypes. Disease incidence was recorded on 14, 21 and 28 days after inoculation. The number of dead leaves differed only numerically while disease variables significantly (P=0.004 varied among varieties. The other variables were highly correlated with each other. Cluster analysis of variables formed three varietal groups; Sabitri with lowest, and Jasmine-85 and Betichikon having highest values. Rice genotypes differed significantly (P=0.05 for disease incidence and area Under Disease Progress Curve (AUDPC. Tetep and IAC-165 had the lowest and highest terminal disease incidences and AUDPC, respectively. Sabitri, MTU-1010 and IR-26 recorded lower AUDPC values. Hence, Tetep and Sabitri could be used as donors in hybridization and their plant morphology could be considered as selection guide for improving ShB resistance in rice.

  15. Good manufacturing practices production of a purification-free oral cholera vaccine expressed in transgenic rice plants.

    Science.gov (United States)

    Kashima, Koji; Yuki, Yoshikazu; Mejima, Mio; Kurokawa, Shiho; Suzuki, Yuji; Minakawa, Satomi; Takeyama, Natsumi; Fukuyama, Yoshiko; Azegami, Tatsuhiko; Tanimoto, Takeshi; Kuroda, Masaharu; Tamura, Minoru; Gomi, Yasuyuki; Kiyono, Hiroshi

    2016-03-01

    The first Good Manufacturing Practices production of a purification-free rice-based oral cholera vaccine (MucoRice-CTB) from transgenic plants in a closed cultivation system yielded a product meeting regulatory requirements. Despite our knowledge of their advantages, plant-based vaccines remain unavailable for human use in both developing and industrialized countries. A leading, practical obstacle to their widespread use is producing plant-based vaccines that meet governmental regulatory requirements. Here, we report the first production according to current Good Manufacturing Practices of a rice-based vaccine, the cholera vaccine MucoRice-CTB, at an academic institution. To this end, we established specifications and methods for the master seed bank (MSB) of MucoRice-CTB, which was previously generated as a selection-marker-free line, evaluated its propagation, and given that the stored seeds must be renewed periodically. The production of MucoRice-CTB incorporated a closed hydroponic system for cultivating the transgenic plants, to minimize variations in expression and quality during vaccine manufacture. This type of molecular farming factory can be operated year-round, generating three harvests annually, and is cost- and production-effective. Rice was polished to a ratio of 95 % and then powdered to produce the MucoRice-CTB drug substance, and the identity, potency, and safety of the MucoRice-CTB product met pre-established release requirements. The formulation of MucoRice-CTB made by fine-powdering of drug substance and packaged in an aluminum pouch is being evaluated in a physician-initiated phase I study.

  16. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    International Nuclear Information System (INIS)

    Mann, R.A.; Munir, M.; Haqqani, A.M.

    2004-01-01

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  17. The impact of elevated CO2 and temperature on grain quality of rice grown under open-air field conditions.

    Science.gov (United States)

    Jing, Liquan; Wang, Juan; Shen, Shibo; Wang, Yunxia; Zhu, Jianguo; Wang, Yulong; Yang, Lianxin

    2016-08-01

    Rising atmospheric CO2 is accompanied by global warming. However, interactive effects of elevated CO2 and temperature have not been well studied on grain quality of rice. A japonica cultivar was grown in the field using a free-air CO2 enrichment facility in combination with a canopy air temperature increase system in 2014. The gas fumigation (200 µmol mol(-1) above ambient CO2 ) and temperature increase (1 °C above ambient air temperature) were performed from tillering until maturity. Compared with the control (ambient CO2 and air temperature), elevated CO2 increased grain length and width as well as grain chalkiness but decreased protein concentrations. In contrast, the increase in canopy air temperature had less effect on these parameters except for grain chalkiness. The starch pasting properties of rice flour and taste analysis of cooked rice indicated that the palatability of rice was improved by CO2 and/or temperature elevation, with the combination of the two treatments showing the most significant changes compared with ambient rice. It is concluded that projected CO2 in 2050 may have larger effects on rice grain quality than the projected temperature increase. Although deterioration in milling suitability, grain appearance and nutritional quality can be expected, the taste of cooked rice might be better in the future environment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. Identification, measurement, and assessment of water cycle of unhusked rice agricultural phases: Case study at Tangerang paddy field, Indonesia

    Science.gov (United States)

    Hartono, N.; Laurence; Johannes, H. P.

    2017-11-01

    According to one of UN reports, water scarcity has happened all around the world, including Indonesia. Irrigation sector takes up 70% of world water consumption and potentially increases 20% due to the population explosion. Rice is accounted for 69% of agricultural products contributions in Indonesia’s water footprint. Therefore, evaluation of water cycle was essential to raise awareness among practitioners. Data collections were conducted in the functional unit of one-hectare rice field located in Tangerang. This study used CropWat 8.0 and SimaPro software. Identification involved data such as climate, crop, and soil. Nursery became the highest water consumed phase, requiring 419 mm in height. Measurement through water footprint resulted in consumption of green water footprint for 8,183,618.5 liters (62.9%), followed by grey for 4,805,733.2 liters (36.9%) and blue for 23,902.36 liters (0.2%). The grey consumption was exceeding the average, which indicated high doses of pesticides. Life Cycle Assessment showed negative impacts of fertilizers that caused damages like fossil depletion, respiratory health, and eutrophication.

  19. [Carbon efficiency of double-rice production system in Hunan Province, China].

    Science.gov (United States)

    Chen, Zhong-du; Wu, Yao; Ti, Jin-song; Chen, Fu; Li, Yong

    2015-01-01

    Improving the carbon efficiency of crop production systems is one of the important ways to realize low-carbon agriculture. A life cycle assessment approach and input-output calculation method was applied for a double-rice production system in the Hunan Province. Based on statistical data of crop yield and investment in the production system in the period from 2004 to 2012, carbon emission, carbon absorption, carbon efficiency and their dynamic changes of the double rice production systems were estimated. The results showed that the average of annual carbon emission from 2004 to 2012 was 656.4 x 10(7) kg CE. Carbon emissions from production and transport of fertilizer and pesticide accounted for a majority of agricultural input carbon emissions, approximately 70.0% and 15.9%, respectively. The carbon emission showed a decreasing trend from 2004 to 2012 in the Hunan Province, with an annual reduction rate of 2.4%, but the carbon emission intensity was in a trend of increase. The average of annual carbon absorption was 1547.0 x 10(7) kg C. The annual carbon absorption also showed a decreasing trend from 2004 to 2012 in Hunan Province, with an average annual reduction rate of 1.2%, and the carbon absorption intensity showed a trend of increase. Furthermore, production efficiency of carbon showed a slow upward trend. The economic efficiency of carbon showed a larger increasing rate with time, with an average annual growth rate of 9.9%. Ecological efficiency of carbon was stable and low, maintained at about 2.4 kg C . kg-1 CE. It indicated that the integrated carbon efficiency of Hunan double rice crop production system improved slowly with time and the key to improve the carbon efficiency of double rice production systems lies in reducing the rates of nitrogen fertilizer and pesticide, and improving their use efficiencies.

  20. Novel Digital Features Discriminate Between Drought Resistant and Drought Sensitive Rice Under Controlled and Field Conditions

    Directory of Open Access Journals (Sweden)

    Lingfeng Duan

    2018-04-01

    Full Text Available Dynamic quantification of drought response is a key issue both for variety selection and for functional genetic study of rice drought resistance. Traditional assessment of drought resistance traits, such as stay-green and leaf-rolling, has utilized manual measurements, that are often subjective, error-prone, poorly quantified and time consuming. To relieve this phenotyping bottleneck, we demonstrate a feasible, robust and non-destructive method that dynamically quantifies response to drought, under both controlled and field conditions. Firstly, RGB images of individual rice plants at different growth points were analyzed to derive 4 features that were influenced by imposition of drought. These include a feature related to the ability to stay green, which we termed greenness plant area ratio (GPAR and 3 shape descriptors [total plant area/bounding rectangle area ratio (TBR, perimeter area ratio (PAR and total plant area/convex hull area ratio (TCR]. Experiments showed that these 4 features were capable of discriminating reliably between drought resistant and drought sensitive accessions, and dynamically quantifying the drought response under controlled conditions across time (at either daily or half hourly time intervals. We compared the 3 shape descriptors and concluded that PAR was more robust and sensitive to leaf-rolling than the other shape descriptors. In addition, PAR and GPAR proved to be effective in quantification of drought response in the field. Moreover, the values obtained in field experiments using the collection of rice varieties were correlated with those derived from pot-based experiments. The general applicability of the algorithms is demonstrated by their ability to probe archival Miscanthus data previously collected on an independent platform. In conclusion, this image-based technology is robust providing a platform-independent tool for quantifying drought response that should be of general utility for breeding and functional

  1. Microbial Protein Production and Nitrogen Balance of Local Steer Fed Ammoniated Rice Straws Added

    Directory of Open Access Journals (Sweden)

    H Hindratiningrum

    2009-05-01

    Full Text Available The objective of the experiment was to investigate the kind of energy source feedstuffs on nutrient balance and microbial protein synthesis in local male beef cattle fed with ammoniated rice straws Twenty steers Peranakan Ongole (PO with average age 1-2 years old were used. They were divided 5 groups based on initial body weight as block. Therefore, Completely Randomised Block Design (CBRD was used for this experiment. Data were analysed by analysis variance and continued honestly significant different (HSD to test the differences between means. The result showed that the range MCP and eficiency MCP were 154,61 g/d until 226,54 g/d and 54,08 gMCP/kg DOMR until 62,64 gMCP/kg DOMR. The range of nitrogen balance were 72,28 gram until 111,67 gram. MCP and efficiency MCP were not affected (P>0,05 by the treatments but balance of nitrogen was affected (P<0,05. Diet containing fresh cassava waste as energy source (R2 was lower (P<0,05 than R1 and R4 while between R1,R3 and R4 was similar. This results indicate that feed source of energy (rice brand, wet cassava waste, dry cassava waste and corn can be used in steers with rice straw ensilage as forage. (Animal Production 11(2: 116-121 (2009 Key Words : Microbial protein production, nitrogen balance, rice straw, ensilage

  2. Effect of heavy haze and aerosol pollution on rice and wheat productions in China

    Science.gov (United States)

    Tie, Xuexi; Huang, Ru-Jin; Dai, Wenting; Cao, Junji; Long, Xin; Su, Xiaoli; Zhao, Shuyu; Wang, Qiyuan; Li, Guohui

    2016-07-01

    In China, regional haze pollution is a serious environmental problem. The impact on ecosystem, however, is not clearly understood. This study investigates the effect of regional haze pollution on the yields of rice and wheat in China. The spatial and temporal distributions of aerosol optical depth (AOD) show high particulate pollution in the North China Plain region, Yangtze River Delta region, the central eastern China, and the Si Chuan Basin, coexisted largely with crop growth in time and space. The solar irradiance reaching these regions is estimated to reduce by up to 28-49%, calculated using the AOD distributions and tropospheric ultraviolet-visible (TUV) model. Reduction of solar irradiance in these regions can depress optimal yields of about 45% of rice and 75% of wheat growth in China, leading to 2% reduction in total rice production and 8% reduction in total wheat production in China. However, there are large uncertainties of the estimate related to the diffuse solar radiation. For high diffuse radiation case, the estimate reductions of rice and wheat decrease to 1% and 4.5%, respectively. A further detailed study is needed to clearly understand this effect to meet the growing food demand in the nation in the coming decades.

  3. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jingqing [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); School of Environmental Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Li, Dong; Sun, Yongming [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang, Guohui [School of Environmental Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Yuan, Zhenhong, E-mail: yuanzh@ms.giec.ac.cn [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhen, Feng; Wang, Yao [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2013-12-15

    Highlights: • Biogas production was enhanced by co-digestion of rice straw with other materials. • The optimal ratio of kitchen waste, pig manure and rice straw is 0.4:1.6:1. • The maximum biogas yield of 674.4 L/kg VS was obtained. • VFA inhibition occurred when kitchen waste content was more than 26%. • The dominant VFA were propionate and acetate in successful reactors. - Abstract: In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37 ± 1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9–70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others.

  4. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure

    International Nuclear Information System (INIS)

    Ye, Jingqing; Li, Dong; Sun, Yongming; Wang, Guohui; Yuan, Zhenhong; Zhen, Feng; Wang, Yao

    2013-01-01

    Highlights: • Biogas production was enhanced by co-digestion of rice straw with other materials. • The optimal ratio of kitchen waste, pig manure and rice straw is 0.4:1.6:1. • The maximum biogas yield of 674.4 L/kg VS was obtained. • VFA inhibition occurred when kitchen waste content was more than 26%. • The dominant VFA were propionate and acetate in successful reactors. - Abstract: In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37 ± 1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9–70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others

  5. Construction of a BAC library and identification of Dmrt1 gene of the rice field eel, Monopterus albus

    International Nuclear Information System (INIS)

    Jang Songhun; Zhou Fang; Xia Laixin; Zhao Wei; Cheng Hanhua; Zhou Rongjia

    2006-01-01

    A bacterial artificial chromosome (BAC) library was constructed using nuclear DNA from the rice field eel (Monopterus albus). The BAC library consists of a total of 33,000 clones with an average insert size of 115 kb. Based on the rice field eel haploid genome size of 600 Mb, the BAC library is estimated to contain approximately 6.3 genome equivalents and represents 99.8% of the genome of the rice field eel. This is first BAC library constructed from this species. To estimate the possibility of isolating a specific clone, high-density colony hybridization-based library screening was performed using Dmrt1 cDNA of the rice field eel as a probe. Both library screening and PCR identification results revealed three positive BAC clones which were overlapped, and formed a contig covering the Dmrt1 gene of 195 kb. By sequence comparisons with the Dmrt1 cDNA and sequencing of first four intron-exon junctions, Dmrt1 gene of the rice field eel was predicted to contain four introns and five exons. The sizes of first and second intron are 1.5 and 2.6 kb, respectively, and the sizes of last two introns were predicted to be about 20 kb. The Dmrt1 gene structure was conserved in evolution. These results also indicate that the BAC library is a useful resource for BAC contig construction and molecular isolation of functional genes

  6. Estimation of Net Rice Production through Improved CASA Model by Addition of Soil Suitability Constant (ħα

    Directory of Open Access Journals (Sweden)

    Syed Muhammad Hassan Raza

    2018-05-01

    Full Text Available Net primary production (NPP is an important indicator of the supply of food and wood. We used a hierarchy model and real time field observations to estimate NPP using satellite imagery. Net radiation received by rice crop canopies was estimated as 27,428 Wm−2 (215.4 Wm−2 as averaged throughout the rice cultivation period (RCP, including 23,168 Wm−2 (118.3 Wm−2 as averaged as shortwave and 4260 Wm−2 (34.63 Wm−2 as averaged as longwave radiation. Soil, sensible and latent heat fluxes were approximated as 3324 Wm−2, 16,549 Wm−2, and 7554 Wm−2, respectively. Water stress on rice crops varied between 0.5838 and 0.1218 from the start until the end of the RCP. Biomass generation declined from 6.09–1.03 g/m2 in the tillering and ripening stages, respectively. We added a soil suitability constant (ħα into the Carnegie-Ames-Stanford Approach (CASA model to achieve a more precise estimate of yield. Classification results suggest that the total area under rice cultivation was 8861 km2. The spatial distribution of rice cultivation as per suitability zone was: 1674 km2 was not suitable (NS, 592 km2 was less suitable (LS, 2210 km2 was moderately suitable (MS and 4385 km2 was highly suitable (HS soil type with ħα ranges of 0.05–0.25, 0.4–0.6, 0.7–0.75 and 0.85–0.95 of the CASA based yield, respectively. We estimated net production as 1.63 million tons, as per 0.46 ton/ha, 1.2 ton/ha 1.9 ton/ha and 2.4 ton/ha from NS, LS, MS and HS soil types, respectively. The results obtained through this improved CASA model, by addition of the constant ħα, are likely to be useful for agronomists by providing more accurate estimates of NPP.

  7. Improving water management practices to reduce nutrient export from rice paddy fields.

    Science.gov (United States)

    Zhang, Zhi-Jian; Yao, Ju-Xiang; Wang, Zhao-De; Xu, Xin; Lin, Xian-Yong; Czapar, George F; Zhang, Jian-Ying

    2011-01-01

    Nitrogen (N) and phosphorus (P) loss from rice paddy fields represents a significant threat to water quality in China. In this project, three irrigation-drainage regimes were compared, including one conventional irrigation-drainage regime, i.e. continuous submergence regime (CSR), and two improved regimes, i.e. the alternating submergence-nonsubmergence regime (ASNR) and the zero-drainage irrigation technology (ZDIT), to seek cost-effective practices for reducing nutrient loss. The data from these comparisons showed that, excluding the nutrient input from irrigation, the net exports of total N and total P via surface field drainage ranged from -3.93 to 2.39 kg ha and 0.17 to 0.95 g ha(-1) under the CSR operation, respectively, while N loss was -2.46 to -2.23 kg ha(-1) and P export was -0.65 to 0.31 kg ha(-1) under the improved regimes. The intensity of P export was positively correlated to the rate of P application. Reducing the draining frequency or postponing the draining operation would shift the ecological role of the paddy field from a nutrient export source to an interception sink when ASNR or the zero-drainage water management was used. In addition, since the rice yields are being guaranteed at no additional cost, the improved irrigation-drainage operations would have economic as well as environmental benefits.

  8. Historical trend of dioxin and agrochemical in rice straw and their impact on meat and dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Masunaga, S.; Kameda, Y.; Hamada, H.; Nakanishi, J.

    2002-07-01

    Dioxin and dioxin-like PCB impurities in agrochemicals used previously in paddy fields have fawn out and ultimately precipitated and accumulated in sediments in Japanese bays and lakes. Earlier we reported that the maximum impurities flew out during the 1960s and the 1970s. Meanwhile total daily intake (TDI) study revealed Japanese dioxins daily intake has decreased since 1977, especially polychlorinated dibenzo-p-dioxins and polychlorinated di benzofurans (PCDD/DFs) from dairy products and meat and egg products. Besides polychlorinated biphenyls (co-PCBs) from fishes and shellfishes also showed similar trend. In this study pesticides and congener specific pattern of PCDD/DFs and co-PCBs in old rice straws were measured in order to find out straw exposure level. In addition, we estimated the daily PCDD/DFs intake from dairy products, meat and eggs originated from impurities in straws. (Author)

  9. Morphological Variation of Six Pigmented Rice Local Varieties Grown in Organic Rice Field in Sengguruh Village, Kepanjen District, Malang Regency

    Directory of Open Access Journals (Sweden)

    Shinta

    2014-05-01

    Full Text Available Indonesia is the third richest country for pigmented rice source such as Wojalaka black rice of East Nusa Tenggara (NTT, Manggarai of NTT, Toraja of South Sulawesi, Cempo Ireng of Central Java and red rice of Aek Sibundong (leading variety and Baubau of Southeast Sulawesi. However, the morphological character of pigmented rice in Indonesia is less reported. The objective of research was to compare the morphological variation of root, stem, leaf, panicle, floret and the colour of milk mature grain and mature grain by observing the vegetative and generative parts of six local rice varieties. Research had been conducted from February 2012 to February 2014 in Sengguruh Village, Kepanjen District, Malang Regency. This study type was quasi-experiment with eleven replications. Group Random Design was used. The observation was given upon vegetative, reproductive and maturity phases as groups. Independent variables in this study were six rice varieties, while the dependent variable was morphological variation (root, stem, leaf, panicle, floret, milk mature grain and mature grain. The analysis of multivariate data in cluster and bip lot was carried out with PAST. The result of the study indicated that there was morphological difference on stem, leaf, panicle, floret, milk mature grain and mature grain. The colour of the stem in Aek Sibundong variety was purple, while that of other varieties was green. Toraja and Manggarai varieties had the highest height with 163-168 cm, followed by Cempo Ireng with 139 cm, Wojalaka and Baubau with 110-112 cm. Aek Sibundong Variety had the lowest height with 99 cm. Aek Sibundong and Wojalaka varieties had 6-7 internodes which were the greatest number of internode, while other varieties only had 4-5 internodes. Some varieties, such as Aek Sibundong, Wojalaka and Baubau had short and small leaf. The leaflet angle of Aek Sibundong and Baubau were 14o and it might be said as upright, while that of Wojalaka was 43o or moderate

  10. Utilization of agriculture wastes. part I. production of fungal protein from rice and wheat straws

    International Nuclear Information System (INIS)

    Murtaza, N.; Hussain, S.A.

    2000-01-01

    Agricultural Agricultural waste of rice and wheat straws were studied for the production of protein and biomass. As these wastes have low protein contents as attempt is made to increase the protein and biomass content of these wastes so as to produce a better product for consumption as food. The studies were conducted using various media and various incubation periods. Some inorganic salts and molasses were added to improve the cultivation of fungi. Aspergillus oryzae produced the results due to its rapid growth which minimized the chance of contamination. Seven days incubation gave the most favourable results in both the agricultural wastes. The maximum production of biomass (33.33%) with a protein value of 20% was obtained with 450 g of rice straw in media no. 2 whereas 400 g of wheat straw on 6 litres of medium produced the best results with 20% biomass and a protein value of 20%. (author)

  11. The Contribution of Azolla and Urea in Lowland Rice Growth Production for Three Consecutive Seasons

    International Nuclear Information System (INIS)

    E-L-Sisworo; H-Rasjid; Haryanto; Idawati

    2008-01-01

    Three field experiments have been carried out in three consecutive seasons namely wet season (120 days), dry season (120 days), wet season (120 days) at Pusakanegara. The purpose of this experiment is to test whether urea combined with Azolla could increase lowland rice production and soil quality. The experimental plots have a size of 20 m 2 and in each experimental plot an isotope plot was placed with a size of 1 m 2 . The isotope plots were used to apply labeled 15 N urea. Treatments conducted were lowland varieties: Atomita I (V1) and IR-64 (V2); several levels of urea and Azolla : Pu1 urea-tablets + an Azolla cover (Azc), Pu2 = urea-tablets + Azolla incorporated (Azi ), Pu3 = urea-prill + Azc , Pu4 = urea-prill + Azi; seasons : Ss 1 = wet season, Ss2 = dry season, Ss3 = wet season. The experimental design used was a factorial experiment in a Randomized Block Design, where each treatment was replicated four times. Parameters used were, dry weight of straw (St), grain (G), plant (P1 = St + G) in kg/ha; N-total percentage (% N-to) of St and G, percentage N-derived from urea + Az (% N-Pu) of St and G; percentage N-derived from soil (% N-S) of St and G; uptake of N-Pu and N-S in St, G and P1. Some results of these experiment were, N-Pu play a less important role in growth of lowland crop expressed in several parameters compared to N-soil. The form of N-urea in tablets are superior to that the form of urea in prills. For the last product of lowland rice which is grain obviously V1 (Atomita-1) is better than V2 (IR-64) expressed in t/ha. The progress of seasons showed clearly that there is an N accumulation which might be the increase of soil organic matter (SOM) and that means there is an increase in soil quality in the view point of N. (author)

  12. The Contribution of Azolla and Urea in Lowland Rice Growth Production for Three Consecutive Seasons

    Directory of Open Access Journals (Sweden)

    EL. Sisworo

    2008-01-01

    Full Text Available Three field experiments have been carried out in three consecutive seasons namely wet season (120 days, dry season (120 days, wet season (120 days at Pusakanegara. The purpose of this experiment is to test whether urea combined with Azolla could increase lowland rice production and soil quality. The experimental plots have a size of 20 m2 and in each experimental plot an isotope plot was placed with a size of 1 m2. The isotope plots were used to apply labeled 15N urea. Treatments conducted were lowland varieties: Atomita I (V1 and IR-64 (V2; several levels of urea and Azolla : Pu1 = urea-tablets + an Azolla cover (Azc, Pu2 = urea-tablets + Azolla incorporated (Azi , Pu3 = urea-prill + Azc , Pu4 = urea-prill + Azi; seasons : Ss 1 = wet season, Ss2 = dry season, Ss3 = wet season. The experimental design used was a factorial experiment in a Randomized Block Design, where each treatment was replicated four times. Parameters used were, dry weight of straw (St, grain (G, plant (P1 = St + G in kg/ha; N-total percentage (% N-to of St and G, percentage N-derived from urea + Az (% N-Pu of St and G; percentage N-derived from soil (% N-S of St and G; uptake of N-Pu and N-S in St, G and P1. Some results of these experiment were, N-Pu play a less important role in growth of lowland crop expressed in several parameters compared to N-soil. The form of N-urea in tablets are superior to that the form of urea in prills. For the last product of lowland rice which is grain obviously V1 (Atomita-1 is better than V2 (IR-64 expressed in t/ha. The progress of seasons showed clearly that there is an N accumulation which might be the increase of soil organic matter (SOM and that means there is an increase in soil quality in the view point of N

  13. Components of a Rice-Oilseed Rape Production System Augmented with Trichoderma sp. Tri-1 Control Sclerotinia sclerotiorum on Oilseed Rape.

    Science.gov (United States)

    Hu, Xiaojia; Roberts, Daniel P; Xie, Lihua; Maul, Jude E; Yu, Changbing; Li, Yinshui; Zhang, Yinbo; Qin, Lu; Liao, Xing

    2015-10-01

    Sclerotinia sclerotiorum causes serious yield losses on many crops throughout the world. A multicomponent treatment that consisted of the residual rice straw remaining after rice harvest and Trichoderma sp. Tri-1 (Tri-1) formulated with the oilseed rape seedcake fertilizer was used in field soil infested with S. sclerotiorum. This treatment resulted in oilseed rape seed yield that was significantly greater than the nontreated control or when the fungicide carbendizem was used in the presence of this pathogen in field trials. Yield data suggested that the rice straw, oilseed rape seedcake, and Tri-1 components of this treatment all contributed incrementally. Similar treatment results were obtained regarding reduction in disease incidence. Slight improvements in yield and disease incidence were detected when this multicomponent treatment was combined with a fungicide spray. Inhibition of sclerotial germination by this multicomponent treatment trended greater than the nontreated control at 90, 120, and 150 days in field studies but was not significantly different from this control. This multicomponent treatment resulted in increased yield relative to the nontreated control in the absence of pathogen in a greenhouse pot study, while the straw alone and the straw plus oilseed rape seedcake treatments did not; suggesting that Tri-1 was capable of promoting growth. Experiments reported here indicate that a treatment containing components of a rice-oilseed rape production system augmented with Tri-1 can control S. sclerotiorum on oilseed rape, be used in integrated strategies containing fungicide sprays for control of this pathogen, and promote plant growth.

  14. Productivity, Profitability and Resource Use Efficiency: A Comparative Analysis between Conventional and High Yielding Rice in Rajbari District, Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Yahia Bapari

    2016-10-01

    Full Text Available The study was analyzed the determinants, costs and benefits and resources allocation of both conventional and high yielding rice cultivation over the Rajbari district of Bangladesh. Data were accumulated from 300 regular rice growers of conventional and high yielding varieties and random sampling technique was applied for selecting the respondents from the study area from which information was collected through pre-tested questionnaire. Cobb – Douglas production function and gross margin were mainly used to determine the productivities and profits of both rice and the marginal value of the product was highly recommended to derive the optimal use of the resources. Results obtained by applying ordinary least square method showed that the most important factors of production in the study area were irrigation, labor, fertilizer and insecticide costs whose elasticities were 0.904, 0.048, 0.045 and 0.044 respectively and insignificant factors were seed and ploughing costs whose elasticities were – 0.009 and 0.030 respectively for high yielding rice. On the other hand, irrigation, insecticide, seed and ploughing costs of elasticities 0.880, 0.589, 0.116 and – 0.127 respectively were the important factors and minor role playing factors were labor and fertilizer costs whose elasticities were 0.098 and 0.077 respectively for conventional yielding rice. The core message from productivity analysis was that the irrigation was key variable which played a positive and vital role in producing rice of both varieties. All variables (resources were economically misallocated in the production activities of both varieties along the study area but high yielding rice was more profitable than conventional one. Results also showed that the farmers of the study area produced rice of both varieties in the inefficient range of production. Continuous supply of electricity, flexible credit and improving the existing resources were the prime policy recommendations of

  15. Isotope aided micronutrient studies in rice production with special reference to zinc deficiency pt.2

    International Nuclear Information System (INIS)

    Kim, T.S.; Kim, J.S.; Kim, J.S.

    1979-01-01

    A field experiment has been carried out to evaluate the residual effect of zinc fertilizers by rice plant grown under flooded conditions in the field. The results obtained are summarized as follows: Residual effect of zinc fertilizers on yields of rough and hulled grains showed slight increases. Effect of zinc application methods on yields of the grains were shown that zinc mixed treatment could be more effectively utilized than treatment of zinc on the soil surface. In case of levels of zinc application, 5kg zinc per hectare represented high yields of the grains than those obtained from 10 kg and 20 kg zinc placement per hectare respectively. Regarding the form of zinc fertilizers, the urea-zinc complex showed less effective on yields of the grains than did the zinc sulfate. This phenomenon was consistent with the previous result. Yields of total zinc in rice plant grown on the rice straw added soils (Treatment No. 2 and 8) and the urea-zinc complex treated soil were increased markedly as compared to those data obtained from the previous year. The percentage of zinc derived from fertilizer decreased largely as compared to that of the first year crop. The yield of fertilizer zinc in rice plant decreased slightly in the most zinc treatments but in the case of treatments of zinc mixed with the straw added soil and the urea-zinc complex increased reversely as compared to the previous results. The mixed application of zinc with soil showed higher yield of fertilizer zinc than the soil surface placement. Approximately from 4.6 to 24.3 per cent of zinc taken up by rice plants were derived from the fertilizer zinc. Zinc fertilizer use efficiency ranged from 0.213 to 0.584 per cent when 5 kg zinc per hectare applied. (author)

  16. Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management.

    Directory of Open Access Journals (Sweden)

    Ning An

    Full Text Available Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG emissions (N2O, CH4 and CO2-equivalent with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices-BMPs helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield. Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice

  17. An integrated, multisensor system for the continuous monitoring of water dynamics in rice fields under different irrigation regimes.

    Science.gov (United States)

    Chiaradia, Enrico Antonio; Facchi, Arianna; Masseroni, Daniele; Ferrari, Daniele; Bischetti, Gian Battista; Gharsallah, Olfa; Cesari de Maria, Sandra; Rienzner, Michele; Naldi, Ezio; Romani, Marco; Gandolfi, Claudio

    2015-09-01

    The cultivation of rice, one of the most important staple crops worldwide, has very high water requirements. A variety of irrigation practices are applied, whose pros and cons, both in terms of water productivity and of their effects on the environment, are not completely understood yet. The continuous monitoring of irrigation and rainfall inputs, as well as of soil water dynamics, is a very important factor in the analysis of these practices. At the same time, however, it represents a challenging and costly task because of the complexity of the processes involved, of the difference in nature and magnitude of the driving variables and of the high variety of field conditions. In this paper, we present the prototype of an integrated, multisensor system for the continuous monitoring of water dynamics in rice fields under different irrigation regimes. The system consists of the following: (1) flow measurement devices for the monitoring of irrigation supply and tailwater drainage; (2) piezometers for groundwater level monitoring; (3) level gauges for monitoring the flooding depth; (4) multilevel tensiometers and moisture sensor clusters to monitor soil water status; (5) eddy covariance station for the estimation of evapotranspiration fluxes and (6) wireless transmission devices and software interface for data transfer, storage and control from remote computer. The system is modular and it is replicable in different field conditions. It was successfully applied over a 2-year period in three experimental plots in Northern Italy, each one with a different water management strategy. In the paper, we present information concerning the different instruments selected, their interconnections and their integration in a common remote control scheme. We also provide considerations and figures on the material and labour costs of the installation and management of the system.

  18. Influence of rice straw polyphenols on cellulase production by Trichoderma reesei.

    Science.gov (United States)

    Zheng, Wei; Zheng, Qin; Xue, Yiyun; Hu, Jiajun; Gao, Min-Tian

    2017-06-01

    In this study, we found that during cellulase production by Trichoderma reesei large amounts of polyphenols were released from rice straw when the latter was used as the carbon source. We identified and quantified the phenolic compounds in rice straw and investigated the effects of the phenolic compounds on cellulase production by T. reesei. The phenolic compounds of rice straw mainly consisted of phenolic acids and tannins. Coumaric acid (CA) and ferulic acid (FA) were the predominant phenolic acids, which inhibited cellulase production by T. reesei. When the concentrations of CA and FA in the broth increased to 0.06 g/L, cellulase activity decreased by 23% compared with that in the control culture. Even though the rice straw had a lower tannin than phenolic acid content, the tannins had a greater inhibitory effect than the phenolic acids on cellulase production by T. reesei. Tannin concentrations greater than 0.3 g/L completely inhibited cellulase production. Thus, phenolic compounds, especially tannins are the major inhibitors of cellulase production by T. reesei. Therefore, we studied the effects of pretreatments on the release of phenolic compounds. Ball milling played an important role in the release of FA and CA, and hot water extraction was highly efficient in removing tannins. By combining ball milling with extraction by water, the 2-fold higher cellulase activity than in the control culture was obtained. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Taxocoenosis and distribution of nektonic fauna in the rice fields of Kashmir (J and K) India.

    Science.gov (United States)

    Bahaar, S W N; Bhat, G A

    2011-04-15

    Present study attempts to identify the taxocoenosis and distribution of nektonic fauna harbouring the rice field ecosystems of Kashmir. The main objective of the study was to provide an overview of the nektonic community composition and physicochemical characteristics of flood waters. 6 sites were selected in Kupwara, Bandipora, Budgam, Srinagar, Pulwama and Anantnag districts of valley Kashmir. A total of 26 taxa belonging to 13 different orders were reported during the study which commenced through 2 consecutive crop cycles. The taxocoenosis was dominated by Coleoptera (10 taxa) followed by Hemiptera (3 taxa), Diptera (2 taxa), Diplostraca (2 taxa), Acarina, Anostraca, Anura, Amphipoda, Basommatophora, Cypriniformes, Cyprinodontiformes, Odonata and Pulmonata (1 taxa each). Diversity was calculated using Simpsons Index (D), Simpsons Index of Diversity (1-D), Simpsons Reciprocal Index (1/D), Shannon-Weiner Index (H'), Margalef Richness Index (d) and Evenness Index (e). Kupwara (34 degrees 02'N; 74 degrees 16'E) formed the most diverse site registering a total of 2384 individuals belonging to 24 taxa. A perusal of the primary data related to the physicochemical attributes of flood waters exhibited that average water temperature varied between 19-30 degrees C, average air temperature varied between 21 and 33 degrees C. pH depicted a variation between 6.0 and 9.0, Dissolved Oxygen varied between a minimum of 1.0 mg L(-1) and a maximum of 10 mg L(-1). Free CO2 ranged between 0 mg L(-1) and 6.1 mg(-1). The results pressed the need for recognizing and preserving rice fields as potential habitats for organisms that have successfully adapted to the highly manipulated and eutrophic conditions of rice paddies.

  20. Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants.

    Science.gov (United States)

    Bao, Zhihua; Okubo, Takashi; Kubota, Kengo; Kasahara, Yasuhiro; Tsurumaru, Hirohito; Anda, Mizue; Ikeda, Seishi; Minamisawa, Kiwamu

    2014-08-01

    In a previous study by our group, CH4 oxidation and N2 fixation were simultaneously activated in the roots of wild-type rice plants in a paddy field with no N input; both processes are likely controlled by a rice gene for microbial symbiosis. The present study examined which microorganisms in rice roots were responsible for CH4 oxidation and N2 fixation under the field conditions. Metaproteomic analysis of root-associated bacteria from field-grown rice (Oryza sativa Nipponbare) revealed that nitrogenase complex-containing nitrogenase reductase (NifH) and the alpha subunit (NifD) and beta subunit (NifK) of dinitrogenase were mainly derived from type II methanotrophic bacteria of the family Methylocystaceae, including Methylosinus spp. Minor nitrogenase proteins such as Methylocella, Bradyrhizobium, Rhodopseudomonas, and Anaeromyxobacter were also detected. Methane monooxygenase proteins (PmoCBA and MmoXYZCBG) were detected in the same bacterial group of the Methylocystaceae. Because these results indicated that Methylocystaceae members mediate both CH4 oxidation and N2 fixation, we examined their localization in rice tissues by using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The methanotrophs were localized around the epidermal cells and vascular cylinder in the root tissues of the field-grown rice plants. Our metaproteomics and CARD-FISH results suggest that CH4 oxidation and N2 fixation are performed mainly by type II methanotrophs of the Methylocystaceae, including Methylosinus spp., inhabiting the vascular bundles and epidermal cells of rice roots. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity.

    Science.gov (United States)

    Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Kirti, P B

    2017-07-01

    The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. RICE SEED TREATMENT AND RECOATING WITH POLYMERS: PHYSIOLOGICAL QUALITY AND RETENTION OF CHEMICAL PRODUCTS

    Directory of Open Access Journals (Sweden)

    LOVANE KLEIN FAGUNDES

    2017-01-01

    Full Text Available The use of chemical seed treatment is an important tool in the protection of seedlings and has contributed to the increase of rice yield (Oryza sativa L.. The objective of this study was to evaluate the physiological quality and quantify the retention of chemical products in rice seeds treated with insecticide and fungicide coated with polymers. Six seed treatments were used: control, phytosanitary treatment and phytosanitary treatment and coating with the polymers, Florite 1127®, GV5® Solid Resin, Polyseed CF® and VermDynaseed®. The physiological quality was evaluated by the test of germination and vigor by first count tests, germination speed index, shoot length, radicle length, seedling dry mass and sand emergence. To determine the retention of the active ingredients metalaxyl-M and thiamethoxam, an equipment called extractor was used. The experiment was organized in a completely randomized design (DIC and the averages were separated by the Scott Knott test (p≤0.05. Seed treatment with the fungicide and insecticide, coated with the polymers, Florite 1127®, Solid Resin GV5®, Polyseed CF® and VermDynaseed®, did not affect the physiological quality of rice seeds. Solid Resin GV5®, Polyseed CF® and VermDynaseed® polymers were efficient at retaining thiamethoxam in the rice seeds, preventing some of the active ingredients of the insecticide from being leached through the sand columns immediately after the simulated pluvial precipitation.

  3. Optimisation of dilute acid pre-treatment of artisan rice hulls for ethanol production

    International Nuclear Information System (INIS)

    Lopez, Yoney; Martin, Carlos; Gullon, Beatriz; Parajo, Juan Carlos

    2011-01-01

    Rice hulls are potential low-cost feedstocks for fuel ethanol production in many countries. In this work, the dilute-acid pre-treatment of artisan rice hulls was investigated using a central composite rotatable experimental design. The experimental variables were temperature (140-210 C), biomass load (5-20%) and sulphuric acid concentration (0.5-1.5 g per 100 g of reaction mixture). A total of 16 experimental runs, including a 23-plan, two replicates at the central point and six star points, were carried out. Low temperatures were found to be favourable for the hydrolysis of xylan and of the easily hydrolyzable glucan fraction. High glucose formation (up to 15.3 g/100 g), attributable to starch hydrolysis, was detected in the hydrolysates obtained under the least severe pre-treatment conditions. Using the experimental results, several models for predicting the effect of the operational conditions on the yield of pretreated solids, xylan and glucan conversion upon pre-treatment, and on enzymatic convertibility of cellulose were developed. Optimum results were predicted for the conversion of easily-hydrolyzable glucan in the material pretreated at 140.7 C, and for the enzymatic saccharification of cellulose in the material pretreated at 169 C. These results suggested the use of two-step acid hydrolysis as future pre-treatment strategy for artisan rice hulls. Key words: Dilute acid hydrolysis, enzymatic hydrolysis, pre-treatment, rice hulls. (author)

  4. Variability in climatic productivity of paddy rice in japan

    OpenAIRE

    Sugihara, Yasuyuki

    1985-01-01

    The regionaliy of climatic productivity was examined from the viewpoints of seasonal variation and temperature characteristics of climatic productivity. The obtained climatic divisions are types A1 (coldest), A2 (cold), A3 (moderate), B (warmtransitional), C (warm), and D (warmest). The long-range changes of climatic productivity for 6 stations representative of each agro-climatic division were obtained. The productivities of Asahikawa, Morioka, and Saga clearly indicate maximum or minimum va...

  5. Pathological Study of Blood Parasites in Rice Field Frogs, Hoplobatrachus rugulosus (Wiegmann, 1834

    Directory of Open Access Journals (Sweden)

    Achariya Sailasuta

    2011-01-01

    Full Text Available One hundred and forty adult rice field frogs, Hoplobatrachus rugulosus (Wiegmann, 1834, were collected in Srakaew province, Thailand. For blood parasite examination, thin blood smears were made and routinely stained with Giemsa. The results showed that 70% of the frogs (98/140 were infected with 5 species of blood parasites, including a Trypanosoma rotatorium-like organism, Trypanosoma chattoni, Hepatozoon sp. a, Hepatozoon sp. b, and Lankesterella minima. Pathological examination of the liver, lung, spleen, and kidney of the frogs that were apparently infected with one of these blood parasites were collected and processed by routine histology and subsequently stained with haematoxylin and eosin. Histopathological findings associated with the Trypanosoma rotatorium-like organism and Trypanosoma chattoni-infected frogs showed no pathological lesions. Hepatozoon sp. a and Hepatozoon sp. b-infected frogs developed inflammatory lesions predominantly in the liver, demonstrating granuloma-like lesions with Hepatozoon sp. meronts at the centre. Tissue sections of Lankesterella minima-infected frogs also showed lesions. Liver and spleen showed inflammatory lesions with an accumulation of melanomacrophage centres (MMCs surrounding the meronts and merozoites. It is suggested that Hepatozoon sp. a, Hepatozoon sp. b, and Lankesterella minima-infections are capable of producing inflammatory lesions in the visceral organs of rice field frogs, and the severity of lesions is tentatively related to levels of parasitemia.

  6. The Chamber for Studying Rice Response to Elevated Nighttime Temperature in Field

    Directory of Open Access Journals (Sweden)

    Song Chen

    2013-01-01

    Full Text Available An in situ temperature-controlled field chamber was developed for studying a large population of rice plant under different nighttime temperature treatments while maintaining conditions similar to those in the field during daytime. The system consists of a pipe hoop shed-type chamber with manually removable covers manipulated to provide a natural environment at daytime and a relatively stable and accurate temperature at night. Average air temperatures of 22.4 ± 0.3°C at setting of 22°C, 27.6 ± 0.4°C at 27°C, and 23.8 ± 0.7°C ambient conditions were maintained with the system. No significant horizontal and vertical differences in temperature were found and only slight changes in water temperatures were observed between the chambers and ambient conditions at 36 days after transplanting. A slight variation in CO2 concentration was observed at the end of the treatment during the day, but the 10-μmol CO2 mol−1 difference was too small to alter plant response. The present utilitarian system, which only utilizes an air conditioner/heater, is suitable for studying the effect of nighttime temperature on plant physiological responses with minimal perturbation of other environmental factors. At the same time, it will enable in situ screening of many rice genotypes.

  7. Fipronil application on rice paddy fields reduces densities of common skimmer and scarlet skimmer

    Science.gov (United States)

    Kasai, Atsushi; Hayashi, Takehiko I.; Ohnishi, Hitoshi; Suzuki, Kazutaka; Hayasaka, Daisuke; Goka, Koichi

    2016-01-01

    Several reports suggested that rice seedling nursery-box application of some systemic insecticides (neonicotinoids and fipronil) is the cause of the decline in dragonfly species noted since the 1990s in Japan. We conducted paddy mesocosm experiments to investigate the effect of the systemic insecticides clothianidin, fipronil and chlorantraniliprole on rice paddy field biological communities. Concentrations of all insecticides in the paddy water were reduced to the limit of detection within 3 months after application. However, residuals of these insecticides in the paddy soil were detected throughout the experimental period. Plankton species were affected by clothianidin and chlorantraniliprole right after the applications, but they recovered after the concentrations decreased. On the other hand, the effects of fipronil treatment, especially on Odonata, were larger than those of any other treatment. The number of adult dragonflies completing eclosion was severely decreased in the fipronil treatment. These results suggest that the accumulation of these insecticides in paddy soil reduces biodiversity by eliminating dragonfly nymphs, which occupy a high trophic level in paddy fields. PMID:26979488

  8. A study on some enzymes in rice field fish as biomarkers for pesticide exposure

    International Nuclear Information System (INIS)

    Juzu Hayati Arshad; Mazlina Muhammad; Salmijah Surif; Abdul Manan Mat Jais

    2002-01-01

    A study was carried out on three enzymes in rice field fish which can be used as possible biomarkers for pesticide exposure. The results obtained showed that the activity of the enzyme EROD (ethoxyresorufin-o-deethylase) increased between 1.5-2.2 fold in snakehead or haruan (Channa striata) sampled from the pesticide polluted areas, particularly the recycled areas and only a slight increase in EROD activity in climbing perch or puyu (Anabas testudineus). Increase in the activity of carboxylesterase was also noted. The percentage inhibition of acety1cholinesterase ranges from 18.4%-57.4% and 2.5%-34.2% for Channa striata and Anabas testudineus, respectively. Generally, a higher percentage of acety1cholinesterase inhibition was noted for those fish sampled from the recycled areas. The noted changes in the activity of these enzymes suggest exposure of rice field fish to foreign compounds, possibly pesticides, which are known to induce EROD activity and inhibit acety1cholinesterase activity. Therefore it may be possible to use these enzymes as biomarkers for pesticide exposure. (Author)

  9. Pathological Study of Blood Parasites in Rice Field Frogs, Hoplobatrachus rugulosus (Wiegmann, 1834)

    Science.gov (United States)

    Sailasuta, Achariya; Satetasit, Jetjun; Chutmongkonkul, Malinee

    2011-01-01

    One hundred and forty adult rice field frogs, Hoplobatrachus rugulosus (Wiegmann, 1834), were collected in Srakaew province, Thailand. For blood parasite examination, thin blood smears were made and routinely stained with Giemsa. The results showed that 70% of the frogs (98/140) were infected with 5 species of blood parasites, including a Trypanosoma rotatorium-like organism, Trypanosoma chattoni, Hepatozoon sp. a, Hepatozoon sp. b, and Lankesterella minima. Pathological examination of the liver, lung, spleen, and kidney of the frogs that were apparently infected with one of these blood parasites were collected and processed by routine histology and subsequently stained with haematoxylin and eosin. Histopathological findings associated with the Trypanosoma rotatorium-like organism and Trypanosoma chattoni-infected frogs showed no pathological lesions. Hepatozoon sp. a and Hepatozoon sp. b-infected frogs developed inflammatory lesions predominantly in the liver, demonstrating granuloma-like lesions with Hepatozoon sp. meronts at the centre. Tissue sections of Lankesterella minima-infected frogs also showed lesions. Liver and spleen showed inflammatory lesions with an accumulation of melanomacrophage centres (MMCs) surrounding the meronts and merozoites. It is suggested that Hepatozoon sp. a, Hepatozoon sp. b, and Lankesterella minima-infections are capable of producing inflammatory lesions in the visceral organs of rice field frogs, and the severity of lesions is tentatively related to levels of parasitemia. PMID:21918731

  10. Structural properties and digestibility of pulsed electric field treated waxy rice starch.

    Science.gov (United States)

    Zeng, Feng; Gao, Qun-Yu; Han, Zhong; Zeng, Xin-An; Yu, Shu-Juan

    2016-03-01

    Waxy rice starch was subjected to pulsed electric field (PEF) treatment at intensity of 30, 40 and 50kVcm(-1). The impact of PEF treatment on the granular morphology, molecular weight, semi-crystalline structure, thermal properties, and digestibility were investigated. The micrographs suggested that electric energy could act on the granule structure of starch granule, especially at high intensity of 50kVcm(-1). Gelatinization onset temperature, peak temperature, conclusion temperature and enthalpy value of PEF treated starches were lower than that of native starch. The 9nm lamellar peak of PEF treated starches decreased as revealed by small angle X-ray scattering. The relative crystallinity of treated starches decreased as the increase of electric field intensity. Increased rapidly digestible starch level and decreased slowly digestible starch level was found on PEF treated starches. These results would imply that PEF treatment induced structural changes in waxy rice starch significantly affected its digestibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Trichoderma Reesei single cell protein production from rice straw pulp in solid state fermentation

    Science.gov (United States)

    Zaki, M.; Said, S. D.

    2018-04-01

    The dependency on fish meal as a major protein source for animal feed can lead toit priceinstability in line with the increasing in meat production and consumption in Indonesia. In order todeal with this problem, an effort to produce an alternative protein sources production is needed. This scenario is possible due to the abundantavailability of agricultural residues such as rice straw whichcould be utilized as substrate for production of single cell proteins as an alternative proteinsource. This work investigated the potential utilization of rice straw pulp and urea mixture as substrate for the production of local Trichoderma reesei single cell protein in solid state fermentation system. Some parameters have been analyzed to evaluate the effect of ratio of rice straw pulp to urea on mixed single cell protein biomass (mixed SCP biomass) composition, such as total crude protein (analyzed by kjedhal method) and lignin content (TAPPI method).The results showed that crude protein content in mixed SCP biomassincreases with the increasing in fermentation time, otherwise it decreases with the increasing insubstrate carbon to nitrogen (C/N) ratio. Residual lignin content in mixed SCP biomass decreases from 7% to 0.63% during fermentationproceeded of 21 days. The highest crude protein content in mixed SCP biomasswas obtained at substrate C/N ratio 20:1 of 25%.

  12. Effect of γ-irradiation on F-2 and T-2 toxin production in corn a rice

    International Nuclear Information System (INIS)

    Halasz, A.; Badaway, A.; Sawinsky, J.; Kozma-Kovacs, E.; Beczner, J.

    1989-01-01

    Fusarium graminearum and F. tricinctum were grown on moistened corn and rice. After inoculation the substrates were exposed to γ radiation and the growth rate and mycotoxin production were measured. A delay in mycelium growth and an increase in F-2 and T-2 toxin production occurred after irradiation with 1 and 3 kGy. The maximum F-2 production was 10.7 mg/kg for rice at 3 kGy whereas for T-2 it was 735 μg/kg for rice at 3 kGy. At 9 kGy neither growth nor toxin production could be detected in any inoculated corn and rice substrate. (author). 3 tabs., 12 refs

  13. Stochastic Frontier Approach and Data Envelopment Analysis to Total Factor Productivity and Efficiency Measurement of Bangladeshi Rice

    Science.gov (United States)

    Hossain, Md. Kamrul; Kamil, Anton Abdulbasah; Baten, Md. Azizul; Mustafa, Adli

    2012-01-01

    The objective of this paper is to apply the Translog Stochastic Frontier production model (SFA) and Data Envelopment Analysis (DEA) to estimate efficiencies over time and the Total Factor Productivity (TFP) growth rate for Bangladeshi rice crops (Aus, Aman and Boro) throughout the most recent data available comprising the period 1989–2008. Results indicate that technical efficiency was observed as higher for Boro among the three types of rice, but the overall technical efficiency of rice production was found around 50%. Although positive changes exist in TFP for the sample analyzed, the average growth rate of TFP for rice production was estimated at almost the same levels for both Translog SFA with half normal distribution and DEA. Estimated TFP from SFA is forecasted with ARIMA (2, 0, 0) model. ARIMA (1, 0, 0) model is used to forecast TFP of Aman from DEA estimation. PMID:23077500

  14. Gibberellic Acid: A Key Phytohormone for Spikelet Fertility in Rice Grain Production

    Directory of Open Access Journals (Sweden)

    Choon-Tak Kwon

    2016-05-01

    Full Text Available The phytohormone gibberellic acid (GA has essential signaling functions in multiple processes during plant development. In the “Green Revolution”, breeders developed high-yield rice cultivars that exhibited both semi-dwarfism and altered GA responses, thus improving grain production. Most studies of GA have concentrated on germination and cell elongation, but GA also has a pivotal role in floral organ development, particularly in stamen/anther formation. In rice, GA signaling plays an important role in spikelet fertility; however, the molecular genetic and biochemical mechanisms of GA in male fertility remain largely unknown. Here, we review recent progress in understanding the network of GA signaling and its connection with spikelet fertility, which is tightly associated with grain productivity in cereal crops.

  15. Gibberellic Acid: A Key Phytohormone for Spikelet Fertility in Rice Grain Production.

    Science.gov (United States)

    Kwon, Choon-Tak; Paek, Nam-Chon

    2016-05-23

    The phytohormone gibberellic acid (GA) has essential signaling functions in multiple processes during plant development. In the "Green Revolution", breeders developed high-yield rice cultivars that exhibited both semi-dwarfism and altered GA responses, thus improving grain production. Most studies of GA have concentrated on germination and cell elongation, but GA also has a pivotal role in floral organ development, particularly in stamen/anther formation. In rice, GA signaling plays an important role in spikelet fertility; however, the molecular genetic and biochemical mechanisms of GA in male fertility remain largely unknown. Here, we review recent progress in understanding the network of GA signaling and its connection with spikelet fertility, which is tightly associated with grain productivity in cereal crops.

  16. Enhanced Production of Glucose Oxidase Using Penicillium notatum and Rice Polish

    Directory of Open Access Journals (Sweden)

    Shazia Sabir

    2007-01-01

    Full Text Available Glucose oxidase (GOD is an important enzyme that finds a wide range of applications in food and pharmaceutical industry. In this investigation the feasibility of using rice polish as a substrate for the production of GOD by Penicillium notatum in submerged fermentation (SmF has been evaluated. The intention was to enhance total GOD activity by the selection of economical substrate, microorganism and consecutive optimization of various cultural conditions. Maximum GOD activity of (112±5 U/mL was achieved under optimum growth conditions: rice polish 5 g, incubation period 72 h, buffering agent 3 % (by mass per volume, incubation temperature (30±1 °C and pH=6.0. Addition of carbon and nitrogen sources further enhanced the enzyme yield, indicating an economically attractive process for GOD production.

  17. Arsenic transport in irrigation water across rice-field soils in Bangladesh

    International Nuclear Information System (INIS)

    Polizzotto, Matthew L.; Lineberger, Ethan M.; Matteson, Audrey R.; Neumann, Rebecca B.; Badruzzaman, A. Borhan M.; Ashraf Ali, M.

    2013-01-01

    Experiments were conducted to analyze processes impacting arsenic transport in irrigation water flowing over bare rice-field soils in Bangladesh. Dissolved concentrations of As, Fe, P, and Si varied over space and time, according to whether irrigation water was flowing or static. Initially, under flowing conditions, arsenic concentrations in irrigation water were below well-water levels and showed little spatial variability across fields. As flowing-water levels rose, arsenic concentrations were elevated at field inlets and decreased with distance across fields, but under subsequent static conditions, concentrations dropped and were less variable. Laboratory experiments revealed that over half of the initial well-water arsenic was removed from solution by oxidative interaction with other water-column components. Introduction of small quantities of soil further decreased arsenic concentrations in solution. At higher soil-solution ratios, however, soil contributed arsenic to solution via abiotic and biotic desorption. Collectively, these results suggest careful design is required for land-based arsenic-removal schemes. -- Highlights: •We analyzed the processes impacting arsenic transport in flowing irrigation water. •Arsenic in Bangladesh rice-field irrigation water varied over space and time. •Arsenic was correlated with Fe, P, and Si in flowing and static water. •Oxidation, adsorption and desorption reactions controlled arsenic concentrations. •Land-based arsenic removal from water will be impacted by hydraulic conditions. -- Arsenic concentrations in flowing and static irrigation water in Bangladesh varied over space and time, suggesting careful design is required for land-based pre-treatment schemes that aim to remove As from solution

  18. Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production.

    Science.gov (United States)

    Rahnama, Nooshin; Foo, Hooi Ling; Abdul Rahman, Nor Aini; Ariff, Arbakariya; Md Shah, Umi Kalsom

    2014-12-12

    Rice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. The high cost of commercial enzymes is a major impediment to the industrial application of cellulases. Therefore, the use of local microbial enzymes has been suggested. Trichoderma harzianum strains are potential CMCase and β-glucosidase producers. However, few researches have been reported on cellulase production by T. harzianum and the subsequent use of the crude cellulase for cellulose enzymatic hydrolysis. For cellulose hydrolysis to be efficiently performed, the presence of the whole set of cellulase components including exoglucanase, endoglucanase, and β-glucosidase at a considerable concentration is required. Biomass recalcitrance is also a bottleneck in the bioconversion of agricultural residues to value-added products. An effective pretreatment could be of central significance in the bioconversion of biomass to biofuels. Rice straw pretreated using various concentrations of NaOH was subjected to enzymatic hydrolysis. The saccharification of rice straw pretreated with 2% (w/v) NaOH using crude cellulase from local T. harzianum SNRS3 resulted in the production of 29.87 g/L reducing sugar and a yield of 0.6 g/g substrate. The use of rice straw hydrolysate as carbon source for biobutanol fermentation by Clostridium acetobutylicum ATCC 824 resulted in an ABE yield, ABE productivity, and biobutanol yield of 0.27 g/g glucose, 0.04 g/L/h and 0.16 g/g glucose, respectively. As a potential β-glucosidase producer, T. harzianum SNRS3 used in this study was able to produce β-glucosidase at the activity of 173.71 U/g substrate. However, for cellulose hydrolysis to be efficient, Filter Paper Activity at a considerable concentration is also required to initiate the

  19. Enhanced Production of Glucose Oxidase Using Penicillium notatum and Rice Polish

    OpenAIRE

    Shazia Sabir; Haq Nawaz Bhatti; Muhammad Anjum Zia; Munir Ahmad Sheikh

    2007-01-01

    Glucose oxidase (GOD) is an important enzyme that finds a wide range of applications in food and pharmaceutical industry. In this investigation the feasibility of using rice polish as a substrate for the production of GOD by Penicillium notatum in submerged fermentation (SmF) has been evaluated. The intention was to enhance total GOD activity by the selection of economical substrate, microorganism and consecutive optimization of various cultural conditions. Maximum GOD activity of (112±5) U/m...

  20. Factors Affecting the Growth and Production of Milk-Clotting Enzyme by Amylomyces rouxii in Rice Liquid Medium

    Directory of Open Access Journals (Sweden)

    Pei-Jing Yu

    2005-01-01

    Full Text Available Amylomyces rouxii is one of the main fungi usually coexisting with yeasts in Chinese yeast ball, the starter of chiu-niang, a traditional Chinese fermented product from rice. In the present study, growth and production of milk-clotting enzyme (MCE in gelatinous rice liquid culture of A. rouxii as influenced by waxy (gelatinous rice content in the medium (5–20 %, temperature (25–40 °C, cultivation time (1–6 days, shaking speeds (0–150 rpm and metal ions (Na+, K+, Zn2+, Mg2+, Mn2+, Cu2+, Ca2+, Fe3+ and Al3+ were investigated. Results revealed that rice content in the medium, shaking speed, temperature and cultivation time all affected the mycelial propagation and the production of milk-clotting enzyme by A. rouxii in the rice liquid culture. The maximum milk-clotting enzyme activity of ca. 1.22 unit/mL of medium was observed in the 3-day static culture of test organism grown at 30 °C in the medium containing 20 % of gelatinous rice, while mycelial propagation increased with the increase of cultivation time and shaking speed. Furthermore, a significant increase (p<0.05 in the milk-clotting enzyme activity of ca. 1.90 unit/mL of medium, which was about 1.55-fold of the control, was observed when Al3+ was added to the rice liquid medium.

  1. Studies on development of new functional natural materials from agricultural products - Technology developments for ceramic powders and materials from rice phytoliths

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Kap; Kim, Yong Ik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Yoon, Nang Kyu; Seong, Seo Yong [Myongseong Ceramics Com., Taejon (Korea, Republic of); Ryu, Sang Eun [Bae Jae Univ., Taejon (Korea, Republic of); Lee, Jae Chun [Myungji Univ., Seoul (Korea, Republic of)

    1995-08-01

    Based on an estimation of annual rice production of 5.2 million tons, rice husks by-production reaches to 1.17 million tons per year in Korea. Distinguished to other corns, rice contains a lot of Si; 10-20% by weight in rice husks calculated as silica. The aim of this research project is to develop technologies for ceramic powders and materials utilizing the silica in rice husks called phytoliths. In this first year research, researches of the following subjects were performed; material properties of rice husks, milling of rice husks, acid treatments, oxidations at low and high temperatures, sintering and crystalization of amorphous silica, low temperature carburization, formation of silicon carbide whiskers, and brick lightening method using milled rice husks. 11 tabs., 49 figs., 75 refs. (Author).

  2. A two-stage bioprocess for hydrogen and methane production from rice straw bioethanol residues.

    Science.gov (United States)

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Wu, Chao-Wei; Chung, Man-Chien

    2012-06-01

    This study evaluates a two-stage bioprocess for recovering hydrogen and methane while treating organic residues of fermentative bioethanol from rice straw. The obtained results indicate that controlling a proper volumetric loading rate, substrate-to-biomass ratio, or F/M ratio is important to maximizing biohydrogen production from rice straw bioethanol residues. Clostridium tyrobutyricum, the identified major hydrogen-producing bacteria enriched in the hydrogen bioreactor, is likely utilizing lactate and acetate for biohydrogen production. The occurrence of acetogenesis during biohydrogen fermentation may reduce the B/A ratio and lead to a lower hydrogen production. Organic residues remained in the effluent of hydrogen bioreactor can be effectively converted to methane with a rate of 2.8 mmol CH(4)/gVSS/h at VLR of 4.6 kg COD/m(3)/d. Finally, approximately 75% of COD in rice straw bioethanol residues can be removed and among that 1.3% and 66.1% of COD can be recovered in the forms of hydrogen and methane, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Selection of Thai starter components for ethanol production utilizing malted rice from waste paddy

    Directory of Open Access Journals (Sweden)

    Sirilux Chaijamrus

    2011-04-01

    Full Text Available The use of mixed herbs in Thai rice wine starter (Loog-pang were investigated in order to directly maintain theefficiency of the microbial community (Saccharomycopsis fibuligera, Amylomyces sp., Gluconobacter sp. and Pediocccuspentosaceus. The optimum formula was galanga, garlic, long pepper, licorice, and black pepper at the ratio of 0.5:8:1:4:1,respectively. Previously, waste paddy has been used directly as a renewable resource for fuel ethanol production using solidstate fermentation (SSF with Loog-pang. In this study, hydrolyzed malted rice starch was used as the sole nutrient source insubmerged fermentation (SmF to enhance the process yield. The maximum ethanol productivity (4.08 g/kg waste paddy h-1and the highest ethanol concentration (149±7.0 g/kg waste paddy were obtained after 48 hrs of incubation. The resultsindicated that starch saccharification provided a higher ethanol yield (48.38 g/100g sugar consumed than SSF. In addition,the efficiency of ethanol fermentation was 67% which is similar to that of the malted rice made from normal paddy (68%.This result suggests that waste paddy could be used as an alternative raw material for ethanol production.

  4. Enhancement of Biogas Production from Rice Husk by NaOH and Enzyme Pretreatment

    Directory of Open Access Journals (Sweden)

    Syafrudin

    2018-01-01

    Full Text Available Biogas is a renewable energy source that can be used as an alternative fuel to replace fossil fuel such as oil and natural gas. This research aims to analyze the impact of NaOH (Sodium hydroxide and enzyme usage on the production of rice husk biogas using Solid State Anaerobic Digestion (SS-AD. Generally, SS-AD occurs at solid concentrations higher than 15%. The waste of rice husk are used as substrate with a C/N ratio of 25% and the total of solid that are used is 21%. Rice husk contains high lignin, therefore it is handled with chemical and biological treatment. The chemical preliminary treatment was using NaOH with various concentrations from 3%, 6% and 9% while the biological preliminary treatment was using enzyme with various concentration from 5%, 8%, and 11%. The biogas that is produced then measured every two days during 60 days of research with the biogas volume as a parameter observed. The result of the research shows that preliminary treatment with NaOH and enzyme can increase the production of biogas. The highest biogas production was obtained by the NaOH pretreatment using 6% NaOH which was 497 ml and by enzyme pretreatment using 11% enzyme which was 667,5 ml.

  5. Enhancement of Biogas Production from Rice Husk by NaOH and Enzyme Pretreatment

    Science.gov (United States)

    Syafrudin; Nugraha, Winardi Dwi; Agnesia, Shandy Sarima; Matin, Hashfi Hawali Abdul; Budiyono

    2018-02-01

    Biogas is a renewable energy source that can be used as an alternative fuel to replace fossil fuel such as oil and natural gas. This research aims to analyze the impact of NaOH (Sodium hydroxide) and enzyme usage on the production of rice husk biogas using Solid State Anaerobic Digestion (SS-AD). Generally, SS-AD occurs at solid concentrations higher than 15%. The waste of rice husk are used as substrate with a C/N ratio of 25% and the total of solid that are used is 21%. Rice husk contains high lignin, therefore it is handled with chemical and biological treatment. The chemical preliminary treatment was using NaOH with various concentrations from 3%, 6% and 9% while the biological preliminary treatment was using enzyme with various concentration from 5%, 8%, and 11%. The biogas that is produced then measured every two days during 60 days of research with the biogas volume as a parameter observed. The result of the research shows that preliminary treatment with NaOH and enzyme can increase the production of biogas. The highest biogas production was obtained by the NaOH pretreatment using 6% NaOH which was 497 ml and by enzyme pretreatment using 11% enzyme which was 667,5 ml.

  6. Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116).

    Science.gov (United States)

    Srivastava, Neha; Srivastava, Manish; Kushwaha, Deepika; Gupta, Vijai Kumar; Manikanta, Ambepu; Ramteke, P W; Mishra, P K

    2017-08-01

    In the present work, production of hydrogen via dark fermentation has been carried out using the hydrolyzed rice straw and Clostridium pasteurianum (MTCC116). The hydrolysis reaction of 1.0% alkali pretreated rice straw was performed at 70°C and 10% substrate loading via Fe 3 O 4 /Alginate nanocomposite (Fe 3 O 4 /Alginate NCs) treated thermostable crude cellulase enzyme following the previously established method. It is noticed that under the optimized conditions, at 70°C the Fe 3 O 4 /Alginate NCs treated cellulase has produced around 54.18g/L sugars as the rice straw hydrolyzate. Moreover, the efficiency of the process illustrates that using this hydrolyzate, Clostridium pasteurianum (MTCC116) could produce cumulative hydrogen of 2580ml/L in 144h with the maximum production rate of 23.96ml/L/h in 96h. In addition, maximum dry bacterial biomass of 1.02g/L and 1.51g/L was recorded after 96h and 144h, respectively with corresponding initial pH of 6.6 and 3.8, suggesting higher hydrogen production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Environmental Life Cycle Assessment of long-term organic rice production in a Subtropical area of China

    DEFF Research Database (Denmark)

    Xueqing, He; Qiao, Yuhui; Liang, Long

    2018-01-01

    a considerable environmental impact and changing from conventional to organic rice cultivation might therefore have a potentially great impact. Meanwhile, it takes time for the organic farming systems to reach a new steady state after conversion to organic. Thus, the environmental profile of the organic products...... will change over time and it is therefore important to examine whether the difference to conventional will be reduced (and disappear) or be increased over time. The aim of the present study was therefore to assess the environmental impact of organic rice production 5 (OR5), 10 (OR10) and 15 (OR15) years since...... conversion and compare it to conventional rice (CR) in subtropical China. The life cycle assessment (LCA) method was used to assess environmental impact of rice production systems with regard to nine environmental impact categories: Non-renewable Energy Depletion (NED), Water Depletion (WD), Land Occupation...

  8. Southern rice black-streaked dwarf virus: a white-backed planthopper transmitted fijivirus threadening rice production in Asia

    Directory of Open Access Journals (Sweden)

    Guohui eZhou

    2013-09-01

    Full Text Available Southern rice black-streaked dwarf virus (SRBSDV, a nonenveloped icosahedral virus with a genome of 10 double-stranded RNA segments, is a novel species in the genus Fijivirus (family Reoviridae first recognized in 2008. Rice plants infected with this virus exhibit symptoms similar to those caused by Rice black-streaked dwarf virus. Since 2009, the virus has rapidly spread and caused serious rice losses in East and Southeast Asia. Significant progress has been made in recent years in understanding this disease, especially about the functions of the viral genes, rice–virus–insect interactions, and epidemiology and control measures. The virus can be efficiently transmitted by the white-backed planthopper (WBPH, Sogatella furcifera in a persistent circulative propagative manner but cannot be transmitted by the brown planthopper (Nilaparvata lugens and small brown planthopper (Laodelphax striatellus. Rice, maize, Chinese sorghum (Coix lacryma-jobi and other grass weeds can be infected via WBPH. However, only rice plays a major role in the virus infection cycle because of the vector's preference. In Southeast Asia, WBPH is a long-distance migratory rice pest. The disease cycle can be described as follows: SRBSDV and its WBPH vector overwinter in warm tropical or sub-tropical areas; viruliferous WBPH adults carry the virus from south to north via long-distance migration in early spring, transmit the virus to rice seedlings in the newly colonized areas, and lay eggs on the infected seedlings; the next generation of WBPHs propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Several molecular and serological methods have been developed to detect SRBSDV in plant tissues and individual insects. Control measures based on protection from WBPH, including seedbed coverage, chemical seed treatments, and chemical spraying of seedlings, have proven effective in China.

  9. Research within the coordinated programme on the use of isotopes in rice production studies

    International Nuclear Information System (INIS)

    Subbiah, B.V.

    1974-01-01

    Studies from 1970 to 1974 are described. Seven field experiments (1970,1971) were divided into wet season experiments (IARI, New Delhi) and dry season experiments at Hyderabad, where the effect of selected water management practices on fertilizer-N utilization by high yielding rice (IR-22) from urea and from ammonium sulfate were investigated. Urea-N was utilized more efficiently. Drainage treatment proved superior to continuous flooding. The effect of basal application and top dressing of fertilizer-N on various physiological stages of growth was studied from 1971 to 1972, and the effect of time and method of application from 1972 to 1973. The rate of uptake of fertilizer-N and its distribution in the rice plant were analyzed from 1973 to 1974. Nitrogen 15 was used. Results are tabulated but not summarized

  10. Lead pollution from waterfowl hunting in wetlands and rice fields in Argentina.

    Science.gov (United States)

    Romano, Marcelo; Ferreyra, Hebe; Ferreyroa, Gisele; Molina, Fernando V; Caselli, Andrea; Barberis, Ignacio; Beldoménico, Pablo; Uhart, Marcela

    2016-03-01

    The pollution of wetlands by lead derived from waterfowl hunting with lead shot was investigated. We determined soil pellet density and Pb concentration in soil, water and vegetation in natural wetlands and rice fields in central-eastern Santa Fe province, Argentina. Pellet density varied greatly among hunting sites (between 5.5-141 pellets/m(2)) and pellets were present in some control sites. Soil Pb concentration in most hunting sites (approximately 10-20 mg kg(-1)) was not much higher than in control sites (~5-10 mg kg(-1)), with the exception of the site with highest pellet density, which also had a high Pb soil concentration. In water, on the other hand, Pb concentration was similar in all sites (~4-7 μg L(-1)), both control and hunting, and higher than reference values for aquatic media. Lead was also present in vegetation, including grasses and rice crops, in almost all cases. Most soil-collection sites were slightly acidic, and were frequently flooded. These results strongly suggest that metallic Pb from spent shot is oxidized and dissolved due to wetland conditions. Thus, the pollutant is readily mobilized and distributed across all wetland areas, effectively homogenizing its concentration in locations with and without hunting activities. The replacement of lead by nontoxic materials in pellets appears to be the only effective way to prevent Pb pollution in wetlands. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Resource Use Efficiency in Rice Production in Jere Local ...

    African Journals Online (AJOL)

    acer

    Descriptive statistics and production function were used as analytical tools. The result ..... women's active participation in agriculture. The result also .... Poverty Reduction. Through the ... and the Efficiencies of India Farm Using. Panel Data ...

  12. Role of Remote Sensing and Geographyc Information System Mapping for Protected Areas Land Rice Field Subak, Buffer Zones, and Area Conversion (Case Studies In Gianyar Regency, Bali Province)

    Science.gov (United States)

    Lanya, Indayati; Netera Subadiyasa, N.

    2016-11-01

    Conversion of rice fields in Bali 2579 ha/year, Law Number 41 of 2009 [1] and five of Government Regulation (GR), mandates the Local Government (LG) has a Regional Regulation (RR) or Rule Regent/Mayor, on the protection of agricultural land sustainable food (PALSF). Yet none provincial government of Bali has PALSF; although Subak as world cultural heritage. Similarly, Gianyar regency development strategy directed to integrate agriculture with tourism. Landsat 8 images, Word View Coverage 2015 Gianyar district and ArcGIS 10.3 software used for of rice field mapping and zoning of land protection Subak. Ten thematic maps (watersheds, land use, irrigation, relief/slope, rainfall, spatial planning, land suitability, productivity, the distance from downtown) as a variable parameter, weighted and balanced numerically. Numerical classification agricultura land using for the overlay menu and reselek. The total value of >125 as rice need to be protected, 100-125 value for buffer zone, and the value of 100, 50-100 and development of the region downstream to the access road Ida Bagus Matera (Jln. Province / national) in the coastal areas of Gianyar.

  13. Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani

    Directory of Open Access Journals (Sweden)

    Suchi eSrivastava

    2016-05-01

    Full Text Available Rhizoctonia solani (RS is a necrotrophic fungi causing sheath blight in rice leading to substantial loss in yield. Excessive and persistent use of preventive chemicals raises human health and environment safety concerns. As an alternative, use of biocontrol agents is highly recommended. In the present study an abiotic stress tolerant, plant growth promoting rhizobacteria Bacillus amyloliquefaciens (SN13 is demonstrated to act as a biocontrol agent and enhance immune response against RS in rice by modulating various physiological, metabolic and molecular functions. A sustained tolerance by SN13 primed plant over a longer period of time, post RS infection may be attributed to several unconventional aspects of the plants’ physiological status. The prolonged stress tolerance observed in presence of SN13 is characterized by (a involvement of bacterial mycolytic enzymes, (b sustained maintenance of elicitors to keep the immune system induced involving non-metabolizable sugars such as turanose besides the known elicitors, (c a delicate balance of ROS and ROS scavengers through production of proline, mannitol and arabitol and rare sugars like fructopyranose, β-d glucopyranose and myoinositol and expression of ferric reductases and hypoxia induced proteins, (d production of metabolites like quinozoline and expression of terpene synthase and (e hormonal cross talk. As the novel aspect of biological control this study highlights the role of rare sugars, maintenance of hypoxic conditions, and sucrose and starch metabolism in Bacillus amyloliquifaciens (SN13 mediated sustained biotic stress tolerance in rice.

  14. The emerging roles of agricultural insurance and farmers cooperatives on sustainable rice productions in Indonesia

    Science.gov (United States)

    Lopulisa, C.; Rismaneswati; Ramlan, A.; Suryani, I.

    2018-05-01

    Rice is the main staple food of most Asian countries including Indonesia. Most of the rice producers are constituted by small individual farmers characterized with mostly landless, have a less farming capitals and less access to pool resources and of course are confronted with various risk. Agriculture is faced with a lot of uncertainly most of which are not within the control of farmers. Global climatic change, climatic disasters, fluctuation of global economic and competitiveness of multinational company make difficulties of farmers to pursue his sustainable farming activity. The challenge and the role of government is to reduce uncertainly and to improve resiliency of the small farmer. Agriculture insurance shall focus on risk factors that are difficult to manage or cannot be managed by small farmers and it is should be viewed as just one aspect of the “holistic” risk management strategy. Technology, market, consumer, behaviour, development will always move forward, and no individual farmers can adapt this change alone, so small farmers need to corporate with each other that can optimized the resources they have. Cooperative could create possibilities, value added, shortening the supplied chain, made a product more effective and efficient, and finally can complete in domestic and global markets. Therefore, agriculture insurance as well a farmer cooperative may play an important role on sustainability of rice production in Indonesia. Nowadays and in the future agriculture sustainability is a not merely of technology problems but also a matter of economic-social-culture and politic issues within local, national, and international context.

  15. Soil CH4 and N2O Emissions from Rice Paddy Fields in Southern Brazil as Affected by Crop Management Levels: a Three-Year Field Study

    Directory of Open Access Journals (Sweden)

    Tiago Zschornack

    2018-05-01

    Full Text Available ABSTRACT Rice yield increases in response to improvements in crop management, but the impact on greenhouse gas (GHG emissions in the subtropical region of Southern Brazil remains unknown. A three-year field study was developed aiming to evaluate the impact that an increase in crop management levels (high and very high has on soil methane (CH4 and nitrous oxide (N2O emissions, as compared to the level (medium currently adopted by farmers in Southern Brazil. Differences in crop management included seed and fertilizer rates, irrigation, and pesticide use. The effect of crop management levels on the annual partial global warming potential (pGWP = CH4 × 25 + N2O × 298 ranged from 7,547 to 17,711 kg CO2eq ha−1 and this effect was larger than on the rice grain yield (9,280 to 12,260 kg ha−1, resulting in approximately 60 % higher yield-scaled GHG with the high crop management level compared to the current level. Soil CH4 emissions accounted for 98 % of pGWP in the flooded rice season, whereas N2O prevailed during the drained non-rice season (≈65 %. Although it was impossible to relate emissions to any individual input or practice, soil CH4 emissions in the rice season were linearly related to the biomass produced by the rice crop (p<0.01 and by ryegrass in the previous non-rice season (p<0.1, both of which were possibly related to the supply of labile C for methanogenesis. A future increase in rice yield as a result of the adoption of improved crop management may require additional agricultural practices (e.g., intermittent irrigation to offset the increased GHG emissions.

  16. Effect of Two Kinds of Green Manure and Urea on Production and N Uptake by Lowland Rice

    International Nuclear Information System (INIS)

    Haryanto; Idawati; Havid Rasjid; Elsje L Sisworo

    2004-01-01

    One field experiment has been conducted to study effect of two kinds of green manure and urea on production and N uptake in lowland rice. This experiment were used 11 treatments : (U) applying urea fertilizer at dose 200 kg urea/ha or recommended dose, (1/2 U) urea at 100 kg/ha, (1/2 U + Az) urea at 100 kg/ha + Azolla inoculation, (1/2 U + S) urea at 100 kg/ha + Sesbania incorporated at 50 DAT (days after transplanting), (Az + S) Azolla inoculation + Sesbania incorporated at 50 DAT, (Az + Sph) Azolla inoculation + Sesbania crop imported into the soil as green manure applied at preparation time of the land, (1/2 U + Az + S) treatment of (Az + S) combined with 100 kg urea/ha application, (1/2 U + Az + Sph) treatment of (Az + Sph) combined with 100 kg urea/ha application, (A) inoculation of Azolla, (S) Sesbania incorporated at 50 DAT, and Control (without urea, Azolla, and Sesbania). Lowland rice variety Cilosari was used in this experiment. This experiment was designed by Randomized Complete Block Design with 4 replicates for each treatment. To study the N-derived from fertilizer and green manure the 15 N isotope technique was used with the non direct method. Labelled 15 N ammonium sulphate with 10.12% 15 N was applied at 1 m x 1 m isotope plots for each plot in this experiment. The result showed that treatment combination of 100 kg urea/ha + Azolla inoculation + Sesbania crop incorporated into the soil as green manure applied at preparation time of the land gave N availability of soil higher than that resulted by 200 kg Urea/ha application. These treatments were not significantly different for total N uptake and N-derived from fertilizer in the rice grain. (author)

  17. laboratory production of alcohol from rice and maize chaffs

    African Journals Online (AJOL)

    Abdulrahman Issa Muse

    2010-09-22

    Sep 22, 2010 ... The alcohol content of the samples were determined by distillation method. ... and cosmetics. It serves as a .... Reducing sugar production was determined .... did not lead to a decrease in water activity (aw) as it was noticed by ...

  18. Innovation platform: A tool for sustainable rice production in Ghana ...

    African Journals Online (AJOL)

    Agriculture plays a key role in Ghana's economy and that of sub Saharan Africa. Transforming agriculture in Ghana is key to increasing farm output, reducing poverty, ensuring environmental sustainability and reducing food insecurity. Linear transfer of technology addressing productivity, marketing and policy underlies the ...

  19. Resource-Use Efficiency in Rice Production Under Small Scale ...

    African Journals Online (AJOL)

    This was attested by the high ratios (greater than unity) of MVP/MFC of all the variables. For optimum resource allocation to fertilizer, labour and land about 85.7%, 83.3% and 69% increase in MVP is required respectively. The estimated elasticity of production summed up to 0.815 meaning decreasing return to scale.

  20. Water Productivity of Irrigated Rice under Transplanting, Wet Seeding and Dry Seeding Methods of Cultivation

    Directory of Open Access Journals (Sweden)

    Murali, NS.

    1997-01-01

    Full Text Available Water productivity (WP of irrigated lowland rice was determined during the 1994 dry (January to May and wet (August to December seasons on a heavy clay acid sulphate soil. Treatments consisted of three cultivation methods : transplanted rice, pregerminated seeds broadcasted on puddled soil (wet seeding and dry seeds broadcasted on unpuddled soil (dry seeding. In wet and dry seeded plots, continuous standing water condition was initiated 17 days after sowing. Total water requirement for rice production was highest in transplanted plots (755 mm in wet season and 1154 mm in dry season and was lowest in dry seeded plots (505 mm in wet season and 1040 mm in dry season. Dry seeding required no water for land preparation but transplanting and wet seeding methods required 18 - 20 % of total water requirement in dry season and 27 - 29 % in wet season. Total percolation was maximum (99 mm in wet season and 215 mm in dry season in dry seeding method and was minimum (62 mm in wet season and 94 mm in dry season in transplanting method. In dry and wet seeding methods, daily percolation gradually decreased with the age of the crop. Total seepage loss did not show any significant difference between the cultivation methods in the two seasons. Grain yield was not affected by the three cultivation methods in both seasons. Water productivity (the ratio between grain yield and total amount of water used in production was 3.5 - 4.1 kg ha-1 mm-1, 3.8 - 4.4 kg ha-1 mm-1 and 4.1 - 5.5 kg ha-1 mm-1 in transplanted, wet seeded and dry seeded rice, respectively. Labour requirement for land preparation and sowing was maximum in transplanted (219 - 226 man-hours ha-1 followed by wet (104 -112 man-hours ha-1 and dry seeded (94 - 99 man-hours ha-1 methods. However, in wet season extra labour (77 man-hours ha-1 was required for weeding after crop establishment in dry and wet seeding methods. Crop maturity was 20 days earlier in wet and dry seeding methods compared to

  1. ADAPTIVE CAPACITIES OF FARMERS TO CLIMATE CHANGE ADAPTATION STRATEGIES AND THEIR EFFECTS ON RICE PRODUCTION IN THE NORTHERN REGION OF GHANA

    Directory of Open Access Journals (Sweden)

    Franklin Nantui Mabe

    2012-11-01

    Full Text Available This study estimated the adaptive capacities of farmers to climate change adaptation strategies and their effects on rice production in the Northern Region of Ghana. The adaptive capacities of rice farmers were estimated quantitatively and categorized into high, moderate and low adaptive capacities. Double logarithmic regression model of Cobb-Douglas production function was used to quantity the effects of adaptive capacities of farmers on rice production. On the average, the farmers interviewed are moderately adaptive to climate change. Also, high adaptive farmers obtain nine more bags of 50 kg bag of paddy rice than farmers with low adaptive capacities. Therefore, the more a farmer has the ability to adjust to climate change, the more the number of bags of rice he or she obtains. Rice farmers should be empowered through better extension services in order to attain high adaptive capacity status so as to help them obtain more rice output.

  2. Cytoplasmic-genetic male sterility gene provides direct evidence for some hybrid rice recently evolving into weedy rice

    Science.gov (United States)

    Zhang, Jingxu; Lu, Zuomei; Dai, Weimin; Song, Xiaoling; Peng, Yufa; Valverde, Bernal E.; Qiang, Sheng

    2015-01-01

    Weedy rice infests paddy fields worldwide at an alarmingly increasing rate. There is substantial evidence indicating that many weedy rice forms originated from or are closely related to cultivated rice. There is suspicion that the outbreak of weedy rice in China may be related to widely grown hybrid rice due to its heterosis and the diversity of its progeny, but this notion remains unsupported by direct evidence. We screened weedy rice accessions by both genetic and molecular marker tests for the cytoplasmic male sterility (CMS) genes (Wild abortive, WA, and Boro type, BT) most widely used in the production of indica and japonica three-line hybrid rice as a diagnostic trait of direct parenthood. Sixteen weedy rice accessions of the 358 tested (4.5%) contained the CMS-WA gene; none contained the CMS-BT gene. These 16 accessions represent weedy rices recently evolved from maternal hybrid rice derivatives, given the primarily maternal inheritance of this trait. Our results provide key direct evidence that hybrid rice can be involved in the evolution of some weedy rice accessions, but is not a primary factor in the recent outbreak of weedy rice in China. PMID:26012494

  3. Cytoplasmic-genetic male sterility gene provides direct evidence for some hybrid rice recently evolving into weedy rice.

    Science.gov (United States)

    Zhang, Jingxu; Lu, Zuomei; Dai, Weimin; Song, Xiaoling; Peng, Yufa; Valverde, Bernal E; Qiang, Sheng

    2015-05-27

    Weedy rice infests paddy fields worldwide at an alarmingly increasing rate. There is substantial evidence indicating that many weedy rice forms originated from or are closely related to cultivated rice. There is suspicion that the outbreak of weedy rice in China may be related to widely grown hybrid rice due to its heterosis and the diversity of its progeny, but this notion remains unsupported by direct evidence. We screened weedy rice accessions by both genetic and molecular marker tests for the cytoplasmic male sterility (CMS) genes (Wild abortive, WA, and Boro type, BT) most widely used in the production of indica and japonica three-line hybrid rice as a diagnostic trait of direct parenthood. Sixteen weedy rice accessions of the 358 tested (4.5%) contained the CMS-WA gene; none contained the CMS-BT gene. These 16 accessions represent weedy rices recently evolved from maternal hybrid rice derivatives, given the primarily maternal inheritance of this trait. Our results provide key direct evidence that hybrid rice can be involved in the evolution of some weedy rice accessions, but is not a primary factor in the recent outbreak of weedy rice in China.

  4. Influence of transgenic rice expressing a fused Cry1Ab/1Ac protein on frogs in paddy fields.

    Science.gov (United States)

    Wang, Jia-Mei; Chen, Xiu-Ping; Liang, Yu-Yong; Zhu, Hao-Jun; Ding, Jia-Tong; Peng, Yu-Fa

    2014-11-01

    As genetic engineering in plants is increasingly used to control agricultural pests, it is important to determine whether such transgenic plants adversely affect non-target organisms within and around cultivated fields. The cry1Ab/1Ac fusion gene from Bacillus thuringiensis (Bt) has insecticidal activity and has been introduced into rice line Minghui 63 (MH63). We evaluated the effect of transgenic cry1Ab/1Ac rice (Huahui 1, HH1) on paddy frogs by comparing HH1 and MH63 rice paddies with and without pesticide treatment. The density of tadpoles in rice fields was surveyed at regular intervals, and Cry1Ab/1Ac protein levels were determined in tissues of tadpoles and froglets collected from the paddy fields. In addition, Rana nigromaculata froglets were raised in purse nets placed within these experimental plots. The survival, body weight, feeding habits, and histological characteristics of the digestive tract of these froglets were analyzed. We found that the tadpole density was significantly decreased immediately after pesticide application, and the weight of R. nigromaculata froglets of pesticide groups was significantly reduced compared with no pesticide treatment, but we found no differences between Bt and non-Bt rice groups. Moreover, no Cry1Ab/1Ac protein was detected in tissue samples collected from 192 tadpoles and froglets representing all four experimental groups. In addition, R. nigromaculata froglets raised in purse seines fed primarily on stem borer and non-target insects, and showed no obvious abnormality in the microstructure of their digestive tracts. Based on these results, we conclude that cultivation of transgenic cry1Ab/1Ac rice does not adversely affect paddy frogs.

  5. Studies on mosquitoes (Diptera: Culicidae and anthropicenvironment: 5- Breeding of Anopheles albitarsis in flooded rice fields in South-Eastern Brazil

    Directory of Open Access Journals (Sweden)

    Oswaldo Paulo Forattini

    1994-10-01

    Full Text Available Studies on breeding Anopheles albitarsis and association with rice growth in irrigated paddy fields were carried out during the rice cultivation cycle from December 1993 to March 1994. This period corresponded to the length of time of permanent paddy flooding. Breeding occurred in the early stage up until five weeks after transplantation when rice plant height was small. That inverse correlation may give potential direction to control measures.

  6. Optimizing the harvesting stage of rye as a green manure to maximize nutrient production and to minimize methane production in mono-rice paddies

    NARCIS (Netherlands)

    Kim, Sang Yun; Park, Chi Kyu; Gwon, Hyo Suk; Khan, Muhammed Israr; Kim, P.J.

    2015-01-01

    Rye (Secale cerealis) has been widely cultivated to improve soil quality in temperate paddies. However, its biomass incorporation can significantly increase greenhouse gas emissions, particularly the emission of methane (CH4), during rice cultivation. The chemical composition and productivity of

  7. Impact of livestock Scale on Rice Production in Battambang of Cambodia

    Science.gov (United States)

    Siek, D.; Xu, S. W.; Wyu; Ahmed, A.-G.

    2017-10-01

    Increasing the awareness of environmental protection especially in the rural regions is important as most the farmers reside in that region. Crop-livestock proudciton has proven in many ways to encourage environmental protection. This study analyzes among other factors the impacto of livestock scale on rice production. Two regressions: Ordinary Least Square (OLS) and stepwise regression was applied to investigate these interrelationship. The result stress of three factors encouraging livestock production namely size of farmland, scale of livestock and income acquired from other jobs. The study further provides recommends to the government based on the findings of the study.

  8. Evidence for the Emergence of New Rice Types of Interspecific Hybrid Origin in West African Farmers' Fields

    NARCIS (Netherlands)

    Nuijten, H.A.C.P.; Treuren, van R.; Struik, P.C.; Mokuwa, G.A.; Okry, F.; Teeken, B.W.E.; Richards, P.

    2009-01-01

    In West Africa two rice species (Oryza glaberrima Steud. and Oryza sativa L.) co-exist. Although originally it was thought that interspecific hybridization is impossible without biotechnological methods, progenies of hybridization appear to occur in farmer fields. AFLP analysis was used to assess

  9. [Effects of insecticides on insect pest-natural enemy community in early rice fields].

    Science.gov (United States)

    Jiang, Junqi; Miao, Yong; Zou, Yunding; Li, Guiting

    2006-05-01

    This paper studied the effects of triazophos, shachongshuang, abamectin, and Bt + imidacloprid on the insect pest-natural enemy community in early rice fields in the Yangtze-Huaihe region of Anhui Province. The results showed that all of the test insecticides had significant effects in controlling the growth of major insect pest populations. The average value of insect pest-natural enemy community diversity under effects of triazophos, shachongshuang, abamectin, and Bt + imidacloprid was 1.545, 1.562, 1.691 and 1.915, respectively, while that in control plot was 1.897. After two weeks of applying insecticides, the plots applied with shachongshuang and abamectin had a similar composition of insect pest-natural enemy community, but the community composition was significantly different between the plots applied with triazophos and Bt + imidacloprid. From the viewpoints of community stability and pest control, Bt + imidacloprid had the best effect, and shachongshuang and abamectin were better than triazophos.

  10. Organic rice production in developing countries with regard to fair trade (VB)

    DEFF Research Database (Denmark)

    Merlin, Charlotte; Mikkelsen, Henrik N.; Olsen, Lino Klit

    1999-01-01

    . Local certification is desirable from socio-economic considerations.2. Local work up of the products is likewise desirable for socio-economis reasons.3. The establishment of grower groups can ease the two points above.4. Education of the farmers with regard to understanding the organic production method......This report deals with the possibilities of organic rice production in developing countries under fair trade conditions - conditions which assures the producer a fair price for the delivered product.It is concluded that the following points should be worked with when carrying out such a project:1...... and the learning of soil improvement techniques.In connection with the choice of area it is concluded that the naturally most stable areas are also the most favourable for organic production.With regards to the ownership af the area which is chosen for organic production it is evaluated that the small family run...

  11. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yiming; Wang, Xiaopeng; Yang, Jingping, E-mail: jpyang@zju.edu.cn; Zhao, Xing; Ye, Xinyi

    2016-09-15

    The application rate of nitrogen fertilizer was believed to dramatically influence greenhouse gas (GHG) emissions from paddy fields. Thus, providing a suitable nitrogen fertilization rate to ensure rice yields, reducing GHG emissions and exploring emission behavior are important issues for field management. In this paper, a two year experiment with six rates (0, 75, 150, 225, 300, 375 kg N/ha) of nitrogen fertilizer application was designed to examine GHG emissions by measuring carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O) flux and their cumulative global warming potential (GWP) from paddy fields in Hangzhou, Zhejiang in 2013 and 2014. The results indicated that the GWP and rice yields increased with an increasing application rate of nitrogen fertilizer. Emission peaks of CH{sub 4} mainly appeared at the vegetative phase, and emission peaks of CO{sub 2}, and N{sub 2}O mainly appeared at reproductive phase of rice growth. The CO{sub 2} flux was significantly correlated with soil temperature, while the CH{sub 4} flux was influenced by logging water remaining period and N{sub 2}O flux was significantly associated with nitrogen application rates. This study showed that 225 kg N/ha was a suitable nitrogen fertilizer rate to minimize GHG emissions with low yield-scaled emissions of 3.69 (in 2013) and 2.23 (in 2014) kg CO{sub 2}-eq/kg rice yield as well as to ensure rice yields remained at a relatively high level of 8.89 t/ha in paddy fields. - Highlights: • Exploiting co-benefits of rice yield and reduction of greenhouse gas emission. • Global warming potential and rice yield increased with nitrogen fertilizer rate up. • Emission peaks of CH{sub 4,} CO{sub 2} and N{sub 2}O appeared at vegetative and reproductive phase. • 225 kg N/ha rate benefits both rice yields and GWP reduction.

  12. Diet and resource partitioning among anurans in irrigated rice fields in Pantanal, Brazil

    Directory of Open Access Journals (Sweden)

    L. Piatti

    Full Text Available Artificial ponds or irrigated systems scattered throughout farmlands can offer important habitats for anurans and can be interesting sites for research on species resources use in a changing landscape. This study describes the diet and resource partitioning among anurans inhabiting irrigated rice fields in the Pantanal region. Twenty categories of prey were found in the stomachs of Leptodactylus chaquensis, L. elenae, L. podicipinus and Rhinella bergi, the most frequent being Coleoptera, Hymenoptera, larvae of Hexapoda, Hemiptera, Diptera and Orthoptera. The great differences found in the diet of these species in rice fields compared to other locations, according to available records in the literature, was the increased importance of Hemipitera and Orthoptera and the decrease in importance of Hymenoptera in the diet of leptodactylids. These differences might be attributed to changes in the availability of resources in response to habitat modification. Although diet composition was very similar among species, niche overlap was larger than expected by chance, suggesting that the competition for food resources is not, or has not been, a significant force in determining the structure of this frog community. Two non-exclusive hypotheses could be considered as a justification for this result: 1 the high niche overlap could result from resource availability, which is sufficient to satisfy all species without any strong competition; 2 or the high values of niche overlap could be a selective force driving species to compete, but there has not been enough time to express a significant divergence in the species diet because the study area is characterised as a dynamic habitat influenced by frequent and cyclical changes.

  13. Climate Change Impact Assessment for Wheat and Rice Productivity, Haryana, India

    Science.gov (United States)

    Rana, M.; Singh, K. K.; Kumari, N.

    2017-12-01

    Agriculture presents a core of the India Economy and provides food and livelihood activities to much of the Indian population. However, the changing climate is putting challenges to agriculture. The mean temperature in India is increased by 0.1-0.3 degC in Kharif and 0.3-0.7 degC during rabi by 2010, and projected to further increase by 0.4-0.2 degC during Kharif and to 1.1-4.5degC in rabi by 2070. Similarly mean rainfall is projected to increase up to 10% during kharif and rabi by 2070.At same time, there is an increased possibility of climate extremes, such as the timing of onset of monsoon, intensities and frequency of floods and droughts (S.A. Khan et al.,2009).In addition, the rapid population growth at a rate of 1.2% per annum, expected to reach 1.53 billion by the end of 2030; is also a critical issue of this century. Keeping in mind the above facts, this study is carried out in one of major agriculture state in India. The related field data collected from the ongoing experiments in agriculture universities/institutes in the respective state and observed weather data from India Meteorological Dept.(IMD), New Delhi and future climate scenarios data from India Institute of Tropical Meteorology(IITM). Validated CERES Wheat and Rice model embedded in DSSATv4.6 used for simulating the climate change impacts. The yield simulations of crop models were obtained separately for baseline and future data The simulation result indicates significant impact of climate change on both wheat and rice yield. The reason for same attributed to increase in temperature that majorly impact rabi wheat and extreme weather events for Kharif rice. Keywords: Climate Change, CERES Rice-Wheat, Yield, Validation

  14. Effects of Feeding Purple Rice (Oryza sativa L. Var. Glutinosa) on the Quality of Pork and Pork Products

    Science.gov (United States)

    Jaturasitha, Sanchai; Ratanapradit, Punnares; Piawong, Witapong; Kreuzer, Michael

    2016-01-01

    Purple rice is a strain of glutaneous rice rich in anthocyanins and γ-oryzanol. Both types of compounds are involved in antioxidant and lipid metabolism of mammals. Three experimental diet types were used which consisted approximately by half either of purple rice, white rice or corn. Diets were fed to 3×10 pigs growing from about 30 to 100 kg. Meat samples were investigated either as raw or cured loin chops or as smoked bacon produced from the belly. Various physicochemical traits were assessed and data were evaluated by analysis of variance. Traits describing water-holding capacity (drip, thaw, and cooking losses) and tenderness (sensory grading, shear force) of the meat were mostly not significantly affected by the diet type. However, purple rice feeding of pigs resulted in lower fat and cholesterol contents of loin and smoked bacon compared to white rice, but not compared to corn feeding except of the fat content of the loin. The shelf life of the raw loin chops was improved by purple rice as well. In detail, the occurrence of thiobarbituric acid reactive substances after 9 days of chilled storage was three to four times higher in the white rice and corn diets than with purple rice. The n-6:n-3 ratio in the raw loin chops was 9:1 with purple rice and clearly higher with 12:1 with the other diets, meat lipids. Level and kind of effect of purple rice found in raw meat was not always recovered in the cured loin chops and the smoked bacon. Still the impression of flavor and color, as well as overall acceptability were best in the smoked bacon from the purple-rice fed pigs, whereas this effect did not occur in the cured loin chops. These findings suggest that purple rice has a certain, useful, bioactivity in pigs concerning meat quality, but some of these effects are of low practical relevance. Further studies have to show ways how transiency and low recovery in meat products of some of the effects can be counteracted. PMID:26949957

  15. Changes of Field Incurred Chlorpyrifos and Its Toxic Metabolite Residues in Rice during Food Processing from-RAC-to-Consumption

    Science.gov (United States)

    Zhang, Zhiyong; Jiang, Wayne W.; Jian, Qiu; Song, Wencheng; Zheng, Zuntao; Wang, Donglan; Liu, Xianjin

    2015-01-01

    The objectives of this study were to determine the effects of food processing on field incurred residues levels of chlorpyrifos and its metabolite 3,5,6-Trichloro-2-pyridinol (TCP) in rice. The chlorpyrifos and TCP were found to be 1.27 and 0.093 mg kg-1 in straw and 0.41 and 0.073 mg kg-1 in grain, respectively. It is observed that the sunlight for 2 hours does not decrease the chlorpyrifos and TCP residues in grain significantly. Their residues in rice were reduced by up to 50% by hulling. The cooking reduced the chlorpyrifos and TCP in rice to undetectable level (below 0.01 mg kg-1). Processing factors (PFs) of chlorpyrifos and TCP residues in rice during food processing were similar. Various factors have impacts on the fates of chlorpyrifos and TCP residues and the important steps to reduce their residues in rice were hulling and cooking. The results can contribute to assure the consumer of a safe wholesome food supply. PMID:25608031

  16. Response of rice to inoculation with plant growth promoting rhizobacteria in control lab environment and field experiment

    International Nuclear Information System (INIS)

    Ahmed, B.

    2014-01-01

    The present study was conducted to evaluate the effects of bacterial inoculation on different growth parameters of rice variety JP-5. Three bacterial strains (Azospirillum brasilense R1, Azospirillum lipoferum RSWT1 and Pseudomonas Ky1) were used to inoculate rice varietyJP-5 at control lab environment and field. Plant growth promotion was observed in all inoculated treatments over non-inoculated, which was evident from increase in root area, root length, number of tillers, straw and grain yields and total weight of plant. Azospirillum brasilense R1 was more effective in plant growth promotion than other strains and showed 19% increase in the straw weight and 39.5% increase in grain weight. Inoculation with Azospirillum lipoferum RSWT1 and Pseudomonas Ky1 increased grain weight by 18.5% and 13.8% respectively. The study revealed that beneficial strains of PGPR can be used as biofertilizer for rice. (author)

  17. Prokaryotic Expression of Rice Ospgip1 Gene and Bioinformatic Analysis of Encoded Product

    Directory of Open Access Journals (Sweden)

    Xi-jun CHEN

    2011-12-01

    Full Text Available Using the reference sequences of pgip genes in GenBank, a fragment of 930 bp covering the open reading frame (ORF of rice Ospgip1 (Oryza sativa polygalacturonase-inhibiting protein 1 was amplified. The prokaryotic expression product of the gene inhibited the growth of Rhizoctonia solani, the causal agent of rice sheath blight, and reduced its polygalacturonase activity. Bioinformatic analysis showed that OsPGIP1 is a hydrophobic protein with a molecular weight of 32.8 kDa and an isoelectric point (pI of 7.26. The protein is mainly located in the cell wall of rice, and its signal peptide cleavage site is located between the 17th and 18th amino acids. There are four cysteines in both the N- and C-termini of the deduced protein, which can form three disulfide bonds (between the 56th and 63rd, the 278th and 298th, and the 300th and 308th amino acids. The protein has a typical leucine-rich repeat (LRR domain, and its secondary structure comprises α-helices, β-sheets and irregular coils. Compared with polygalacturonase-inhibiting proteins (PGIPs from other plants, the 7th LRR is absent in OsPGIP1. The nine LRRs could form a cleft that might associate with proteins from pathogenic fungi, such as polygalacturonase.

  18. Production of Mozzarella Cheese Using Rennin Enzyme from Mucor miehei Grown at Rice Bran Molasses Medium

    Science.gov (United States)

    Rusdan, I. H.; Kusnadi, J.

    2017-04-01

    The research aimed to study the characteristic and yield of Mozzarella cheese produced by using rennin enzyme from Mucor miehei which is grown at rice bran and molasses medium. The popularity of Mozzarella cheese in Indonesia is increased caused by the spreading of western foods in Indonesia such as pizza and spaghetti that use Mozzarella cheese for ingredient. In Italy, Mozzarella and pizza cheeses are dominating 78% of the total Italian Cheese products. In producing Mozzarella cheese, rennin enzyme is always used as milk coagulant. Even now, Indonesia has not produced the rennin enzyme yet. The rennin enzyme from Mucor miehei growing at rice bran and molases medium which have the availability can be managed purposively within short period of time. The completly randomized design methode used to get the best crude extracts of Mucor miehei rennin enzyme, then is employed to produce mozzarella cheese. The result of Mozzarella cheese has various characteristics such as the yield’s weight is 9.1%, which consists of 50% moisture content, 36.64% peotein levels, 0.1 melting ability and 82.72% stretch ability or 0.79/N. With that characteristic it is concluded that rennin enzyme from Mucor miehei grown at rice bran molasses medium has the potential to alternatively subtitute calf rennin to produce Mozzarella cheese, and the characteristics fulfill the standart.

  19. Growth and production of new superior rice varieties in the shade intensity

    Science.gov (United States)

    Alridiwirsah; Harahap, E. M.; Akoeb, E. N.; Hanum, H.

    2018-02-01

    Shade intensity is one of the most important requirements for plant growth, affecting growth, development, survival, and crop productivity. This study aims to evaluate the growth and productiom of New Superior Rice Varieties In The shade Intensity. This study was conducted in Balai Pengkajian Teknologi Pertanian, Pagar Merbau, Deli Serdang, North Sumatra. The research used completely randomized design with twofactors. The shade intensity (N) were 25%, 50% and no shade intensity as a control. Whereas new superior rice varieties were V1: Inpara 2, V2: Suluttan Unsrat 2, V3: Inpari Mugibat, V4: Inpari Sidenuk, V5: Mekongga, V6: Ciherang, V7:Inpari 10, V8: Inpari 3, V9: Inpari 4, V10: Inpari 30, dan V11: Cibogo. The result indicated that new superior rice varietiesshowedsignificant effectonthe growth and productionvariablesuch as leaf area, where Inpari Sidenuk variety was the highest among the varieties. Total chorophyll, the highest was found on Inpari variety. Number of tillers and plant height where the highest was found on Ciherang variety. The shade intensity showed significant effect on leaf area, where 25% shade intensity was the highest. Total chlorophyll, the highest was found on 50% shade intensity, number of tillers, the highest was found on no shade intensity.

  20. Ethanol production potential from fermented rice noodle wastewater treatment using entrapped yeast cell sequencing batch reactor

    Science.gov (United States)

    Siripattanakul-Ratpukdi, Sumana

    2012-03-01

    Fermented rice noodle production generates a large volume of starch-based wastewater. This study investigated the treatment of the fermented rice noodle wastewater using entrapped cell sequencing batch reactor (ECSBR) compared to traditional sequencing batch reactor (SBR). The yeast cells were applied because of their potential to convert reducing sugar in the wastewater to ethanol. In present study, preliminary treatment by acid hydrolysis was performed. A yeast culture, Saccharomyces cerevisiae, with calcium alginate cell entrapment was used. Optimum yeast cell loading in batch experiment and fermented rice noodle treatment performances using ECSBR and SBR systems were examined. In the first part, it was found that the cell loadings (0.6-2.7 × 108 cells/mL) did not play an important role in this study. Treatment reactions followed the second-order kinetics with the treatment efficiencies of 92-95%. In the second part, the result showed that ECSBR performed better than SBR in both treatment efficiency and system stability perspectives. ECSBR maintained glucose removal of 82.5 ± 10% for 5-cycle treatment while glucose removal by SBR declined from 96 to 40% within the 5-cycle treatment. Scanning electron microscopic images supported the treatment results. A number of yeast cells entrapped and attached onto the matrix grew in the entrapment matrix.

  1. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems.

    Science.gov (United States)

    Ladha, J K; Tirol-Padre, A; Reddy, C K; Cassman, K G; Verma, Sudhir; Powlson, D S; van Kessel, C; de B Richter, Daniel; Chakraborty, Debashis; Pathak, Himanshu

    2016-01-18

    Industrially produced N-fertilizer is essential to the production of cereals that supports current and projected human populations. We constructed a top-down global N budget for maize, rice, and wheat for a 50-year period (1961 to 2010). Cereals harvested a total of 1551 Tg of N, of which 48% was supplied through fertilizer-N and 4% came from net soil depletion. An estimated 48% (737 Tg) of crop N, equal to 29, 38, and 25 kg ha(-1) yr(-1) for maize, rice, and wheat, respectively, is contributed by sources other than fertilizer- or soil-N. Non-symbiotic N2 fixation appears to be the major source of this N, which is 370 Tg or 24% of total N in the crop, corresponding to 13, 22, and 13 kg ha(-1) yr(-1) for maize, rice, and wheat, respectively. Manure (217 Tg or 14%) and atmospheric deposition (96 Tg or 6%) are the other sources of N. Crop residues and seed contribute marginally. Our scaling-down approach to estimate the contribution of non-symbiotic N2 fixation is robust because it focuses on global quantities of N in sources and sinks that are easier to estimate, in contrast to estimating N losses per se, because losses are highly soil-, climate-, and crop-specific.

  2. ANALYSIS OF SUPPLY RESPONSE AND PRICE RISK ON RICE PRODUCTION IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Opeyemi Eyitayo Ayinde

    2017-03-01

    Full Text Available  Nigeria, like most African countries, has engaged in agricultural liberalization since 1986 in the hope that reforms emphasizing price incentives will encourage producers to respond. Thus far, the reforms seem to have introduced greater uncertainty into the market given increasing rates of price volatility. This study amongst other things therefore seeks to determine and model the responsiveness of rice supply to price risk in Nigeria. Statistical information on domestic and imported quantities of rice was obtained for 41 years (1970 to 2011 from various sources, such as the Food and Agriculture Organization (FAO database, Federal Ministry of Agriculture statistical bulletins, Central Bank of Nigeria statistical bulletins and National Bureau of Statistic (NBS. Data were analyzed using equilibrium output supply function, co-integration models, and vector autoregressive distributed lag model. Rice importation was statistically significant and changes in output were also responsive to changes in price. The results indicate that producers are more responsive not only to price and non-price factor but also to price risk and exchange rate. It is therefore imperative to reduce the effects of price risk as to increase the response of producer to supply by bridging the gap in production

  3. Effects of super-hard rice bread blended with black rice bran on amyloid β peptide production and abrupt increase in postprandial blood glucose levels in mice.

    Science.gov (United States)

    Nakamura, Sumiko; Hara, Takashi; Joh, Toshio; Kobayashi, Atsushi; Yamazaki, Akira; Kasuga, Kensaku; Ikeuchi, Takeshi; Ohtsubo, Ken'ichi

    2017-02-01

    Alzheimer's disease and type 2 diabetes are very serious diseases with the latter having been suggested to cause the former. We prepared super-hard rice bread blended with black rice bran (SRBBB), which contained a high amount of resistant starch that showed strong inhibitory activities against β-secretase and acetylcholinesterase even after heating. Black rice bran showed greater β-secretase inhibitory activity (3.6-fold) than Koshihikari rice. The bran contained more oleic acid and anthocyanin, meaning that it is potentially a biofunctional food with a high antioxidant capacity. Furthermore, aged mice, which were fed a SRBBB diet for four weeks, showed lower amyloid β 40 peptide in the blood than mice fed a commercial diet (p < 0.01). Additionally, their initial blood glucose levels (BGLs) after 12 weeks of being fed SRBBB were significantly lower than those in the control group. Taken together, our results indicate SRBBB shows promise for inhibiting not only amyloid β production, but also abrupt increases in postprandial BGLs.

  4. Techno-economic analysis of bioethanol production from rice straw by liquid-state fermentation

    Science.gov (United States)

    Hidayata, M. H. M.; Salleh, S. F.; Riayatsyahb, T. M. I.; Aditiyac, H. B.; Mahliaa, T. M. I.; Shamsuddina, A. H.

    2016-03-01

    Renewable energy is the latest approach of the Malaysian government in an effort to find sustainable alternative energy sources and to fulfill the ever increasing energy demand. Being a country that thrives in the service and agricultural sector, bioethanol production from lignocellulosic biomass presents itself as a promising option. However, the lack of technical practicality and complexity in the operation system hinder it from being economically viable. Hence, this research acquired multiple case studies in order to provide an insight on the process involved and its implication on production as well as to obtain a cost analysis of bioethanol production. The energy input and cost of three main components of the bioethanol production which are the collection, logistics, and pretreatment of rice straw were evaluated extensively. The theoretical bioethanol yield and conversion efficiency obtained were 250 L/t and 60% respectively. The findings concluded that bioethanol production from rice straw is currently not economically feasible in Malaysia’s market due to lack of efficiency in the pretreatment phase and overbearing logistics and pretreatment costs. This work could serve as a reference to future studies of biofuel commercialization in Malaysia.

  5. The effect of motor vehicle emission towards lead (Pb content of rice field soil with different clay content

    Directory of Open Access Journals (Sweden)

    C.C.Wati

    2015-10-01

    Full Text Available Motor vehicle gas emission contains lead (Pb which is a hazardous and toxic substance. Agricultural land, especially rice field, which is located nearby roads passed by many motor vehicle, are susceptible to the accumulation of Pb. If Pb is permeated by plants cultivated in the rice field, it will be very hazardous for humans as they are the final consumers. Hence, it is essential to identify Pb content of rice-field soil initiated by motor vehicle gas emission. This study was aimed to identify the effects of motor vehicle density, the distance between rice-field and road, and the clay content of soil towards Pb content of soils in Blitar and Ngawi Regencies of East Java. The method used for the study was survey method managed by using three-factor nested design with three replicates. The results of this study showed that motor vehicle density and the distance of rice field to road provide significant affected the total of Pb content of soil. However, the dissemination pattern of Pb in the soil was irregular due to the factors of climate and environment. Before Pb reached soil surface, Pb was spread out in the air due to the effect of temperature, wind velocity, vehicle velocity, size of vehicle, and road density. Consequently, the location with low motor vehicle density and positioned faraway to the road had higher total rate of Pb than the location with high motor vehicle density and positioned nearby the road. Clay content affected the total rate of Pb content as much as 37%, every 1% increase of clay content increased the total rate of Pb as much as 0.08 mg/kg.

  6. Comparison between solid-state and powder-state alkali pretreatment on saccharification and fermentation for bioethanol production from rice straw.

    Science.gov (United States)

    Yeasmin, Shabina; Kim, Chul-Hwan; Islam, Shah Md Asraful; Lee, Ji-Young

    2016-01-01

    The efficacy of different concentrations of NaOH (0.25%, 0.50%, 0.75%, and 1.00%) for the pretreatment of rice straw in solid and powder state in enzymatic saccharification and fermentation for the production of bioethanol was evaluated. A greater amount of biomass was recovered through solid-state pretreatment (3.74 g) from 5 g of rice straw. The highest increase in the volume of rice straw powder as a result of swelling was observed with 1.00% NaOH pretreatment (48.07%), which was statistically identical to 0.75% NaOH pretreatment (32.31%). The surface of rice straw was disrupted by the 0.75% NaOH and 1.00% NaOH pretreated samples as observed using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). In Fourier-transform infrared (FT-IR) spectra, absorbance of hydroxyl groups at 1,050 cm(-1) due to the OH group of lignin was gradually decreased with the increase of NaOH concentration. The greatest amounts of glucose and ethanol were obtained in 1.00% NaOH solid-state pretreated and powder-state hydrolyzed samples (0.804 g g(-1) and 0.379 g g(-1), respectively), which was statistically similar to the use of 0.75% NaOH (0.763 g g(-1) and 0.358 g g(-1), respectively). Thus, solid-state pretreatment with 0.75% NaOH and powder-state hydrolysis appear to be suitable for fermentation and bioethanol production from rice straw.

  7. Analytical method for the determination of various arsenic species in rice, rice food products, apple juice, and other juices by ion chromatography-inductively coupled plasma/mass spectrometry.

    Science.gov (United States)

    Ellingson, David; Zywicki, Richard; Sullivan, Darryl

    2014-01-01

    Recent studies have shown that there are detectable levels of arsenic (As) in rice, rice food products, and apple juice. This has created significant concern to the public, the food industry, and various regulatory bodies. Classic test methods typically measure total As and are unable to differentiate the various As species. Since different As species have greatly different toxicities, an analytical method was needed to separate and quantify the different inorganic and organic species of As. The inorganic species arsenite [As(+3)] and arsenate [As(+5)] are highly toxic. With this in mind, an ion chromatography-inductively coupled plasma (IC-ICP/MS) method was developed and validated for rice and rice food products that can separate and individually measure multiple inorganic and organic species of As. This allows for the evaluation of the safety or risk associated with any product analyzed. The IC-ICP/MS method was validated on rice and rice food products, and it has been used successfully on apple juice. This paper provides details of the validated method as well as some lessons learned during its development. Precision and accuracy data are presented for rice, rice food products, and apple juice.

  8. Rapid Measurement of Soil Carbon in Rice Paddy Field of Lombok Island Indonesia Using Near Infrared Technology

    Science.gov (United States)

    Kusumo, B. H.; Sukartono, S.; Bustan, B.

    2018-02-01

    Measuring soil organic carbon (C) using conventional analysis is tedious procedure, time consuming and expensive. It is needed simple procedure which is cheap and saves time. Near infrared technology offers rapid procedure as it works based on the soil spectral reflectance and without any chemicals. The aim of this research is to test whether this technology able to rapidly measure soil organic C in rice paddy field. Soil samples were collected from rice paddy field of Lombok Island Indonesia, and the coordinates of the samples were recorded. Parts of the samples were analysed using conventional analysis (Walkley and Black) and some other parts were scanned using near infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) Models were developed using data of soil C analysed using conventional analysis and data from soil spectral reflectance. The models were moderately successful to measure soil C in rice paddy field of Lombok Island. This shows that the NIR technology can be further used to monitor the C change in rice paddy soil.

  9. Integrated weed management for sustainable rice production: concepts, perspectives and options

    International Nuclear Information System (INIS)

    Amartalingam Rajan

    2002-01-01

    Weed management has always been in some way integrated with cultural and biological methods, probably occurring more fortuitously than purposefully. Experience has shown that repeated use of any weed control technique especially in monocultures production systems results in rapid emergence of weeds more adapted to the new practice. In intensive high input farming systems, heavy selection pressure for herbicide tolerant weeds and the environmental impacts of these inputs are important tissues that require a good understanding of agroecosystem for successful integration of available options. Rice culture, in particular flooded rice culture has always employed integration through an evolution of management practices over the generations. However, a vast majority office farmers in Asia have yet to achieve the high returns realised by farmers elsewhere, where a near optimum combination of high inputs are being effectively integrated for maximum productivity. In addition to technological and management limitations, farmers in developing countries are faced with social, economic and policy constraints. On the other hand, farmers who had achieved considerable increases in productivity through labour replacing technologies, in particular direct seeding with the aid of herbicides, are now faced with issues related to environmental concerns due to high levels of these inputs. The issues facing weed scientists and farmers alike in managing weeds effectively and in a manner to ensure sustainability have become more challenging than ever before. In the last two decades, no issue has been discusse