WorldWideScience

Sample records for production engineering aspects

  1. Aspect-Oriented Model-Driven Software Product Line Engineering

    Science.gov (United States)

    Groher, Iris; Voelter, Markus

    Software product line engineering aims to reduce development time, effort, cost, and complexity by taking advantage of the commonality within a portfolio of similar products. The effectiveness of a software product line approach directly depends on how well feature variability within the portfolio is implemented and managed throughout the development lifecycle, from early analysis through maintenance and evolution. This article presents an approach that facilitates variability implementation, management, and tracing by integrating model-driven and aspect-oriented software development. Features are separated in models and composed of aspect-oriented composition techniques on model level. Model transformations support the transition from problem to solution space models. Aspect-oriented techniques enable the explicit expression and modularization of variability on model, template, and code level. The presented concepts are illustrated with a case study of a home automation system.

  2. Engineering-geological aspects of negative consequences of contamination of dispersive soils by petroleum products

    Directory of Open Access Journals (Sweden)

    Р. Э. Дашко

    2017-12-01

    Based on the analysis of the results of long-term monitoring of the effect of contamination of dispersive soils by oil products, their bearing capacity in the base of the structures has been reduced to 50% of the initial value. The role of microbial activity in the formation of an aggressive environment in relation to building materials is shown.

  3. Biological aspects of tissue-engineered cartilage.

    Science.gov (United States)

    Hoshi, Kazuto; Fujihara, Yuko; Yamawaki, Takanori; Harai, Motohiro; Asawa, Yukiyo; Hikita, Atsuhiko

    2018-04-01

    Cartilage regenerative medicine has been progressed well, and it reaches the stage of clinical application. Among various techniques, tissue engineering, which incorporates elements of materials science, is investigated earnestly, driven by high clinical needs. The cartilage tissue engineering using a poly lactide scaffold has been exploratorily used in the treatment of cleft lip-nose patients, disclosing good clinical results during 3-year observation. However, to increase the reliability of this treatment, not only accumulation of clinical evidence on safety and usefulness of the tissue-engineered products, but also establishment of scientific background on biological mechanisms, are regarded essential. In this paper, we reviewed recent trends of cartilage tissue engineering in clinical practice, summarized experimental findings on cellular and matrix changes during the cartilage regeneration, and discussed the importance of further studies on biological aspects of tissue-engineered cartilage, especially by the histological and the morphological methods.

  4. Some radiation chemical aspects of nuclear engineering

    International Nuclear Information System (INIS)

    Pikaev, A.K.; Kabakchi, S.A.; Egorov, G.F.

    1988-01-01

    Some radiation chemical aspects of nuclear engineering are discussed (predominantly on the base of the works performed in the Soviet Union). The data on the influence of temperature within the range of 0-300 0 C on the yields of water radiolysis products are considered. The results obtained from the study of reactivity of actinide ions towards inorganic free radicals in acid aqueous solutions are summarized. The information on composition and properties of the products of radiolytic transformations of different extragents and diluents and on their influence on the behaviour of extraction systems during processing of irradiated nuclear fuel is presented. (author)

  5. Engineering aspects of compact stellarators

    International Nuclear Information System (INIS)

    Nelson, B.E.; Benson, R.D.; Brooks, A.

    2003-01-01

    Compact stellarators could combine the good confinement and high beta of a tokamak with the inherently steady state, disruption-free characteristics of a stellarator. Two U.S. compact stellarator facilities are now in the conceptual design phase: the National Compact Stellarator Experiment (NCSX) and the Quasi- Poloidal Stellarator (QPS). NCSX has a major radius of 1.4 m and a toroidal field up to 2 T. The primary feature of both NCSX and QPS is the set of modular coils that provide the basic magnetic configuration. These coils represent a major engineering challenge due to the complex shape, precise geometric accuracy, and high current density of the windings. The winding geometry is too complex for conventional hollow copper conductor construction. Instead, the modular coils will be wound with flexible, multi strand cable conductor that has been compacted to a 75% copper packing fraction. Inside the NCSX coil set and surrounding the plasma is a highly contoured vacuum vessel. The vessel consists of three identical, 120 deg. segments that are bolted together at double sealed joints. The QPS device has a major radius of 0.9 m, a toroidal field of 1 T, and an aspect ratio of only 2.7. Instead of an internal vacuum vessel, the QPS modular coils will operate in an external vacuum tank. (author)

  6. Chemical engineering aspects in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Chmiel, H

    1981-04-01

    Many basic chemical engineering processes are based on transport processes due, for example, to differences in temperature, pressure, and concentration. Such transport processes abound in the healthy circulatory system. Thus, metabolic processes supply the human body with the necessary warmth. The heart serves as a blood pump to provide optimal blood pressure in all vessels. Highly complex membranes in the kidneys ensure the efficient detoxification of the blood. It is therefore natural that the chemical engineer be involved in the solution of a number of biomedical engineering problems that come up in the field of medicine. Some typical tasks are: the characterization of the flow properties of biological fluids; research on the interaction between blood and foreign substances of the purpose of finding materials suitable for temporary or permanent use in the body and the development of blood pumps and artifical substitutes for the lungs, the liver, and the kidneys.

  7. CIRP encyclopedia of production engineering

    CERN Document Server

    Reinhart, Gunther

    2014-01-01

    The CIRP Encyclopedia covers the state-of-art of advanced technologies, methods and models for production, production engineering and logistics. While the technological and operational aspects are in the focus, economical aspects are adressed too. The definitions and short explanations for a wide variety of terms were reviewed by the CIRP-Community, representing the highest standards in research. Thus, the content is not only evaluated internationally on a high scientific level but also reflects very recent developments.

  8. Mechanical engineering aspects of TFTR

    International Nuclear Information System (INIS)

    Citrolo, J.C.

    1983-04-01

    This paper briefly presents the principles which characterize a tokamak and discusses the mechanical aspects of TFTR, particularly the toroidal field coils and the vacuum chamber, in the context of being key components common to all tokamaks. The mechanical loads on these items as well as other design requirements are considered and the solutions to these requirements as executed in TFTR are presented. Future technological developments beyond the scope of TFTR, which are necessary to bring the tokamak concept to a full fusion-power system, are also presented. Additional methods of plasma heating, current drive, and first wall designs are examples of items in this category

  9. Engineering aspects of radiometric logging

    International Nuclear Information System (INIS)

    Huppert, P.

    1982-01-01

    Engineering problems encountered in the development of nuclear borehole logging techniques are discussed. Spectrometric techniques require electronic stability of the equipment. In addition the electronics must be capable of handling high count rates of randomly distributed pulses of fast rise time from the detector and the systems must be designed so that precise calibration is possible under field operating conditions. Components of a logging system are discussed in detail. They include the logging probe (electronics, detector, high voltage supply, preamplifier), electronic instrumentation for data collection and processing and auxiliary equipment

  10. Sustainability aspects of biofuel production

    Science.gov (United States)

    Pawłowski, L.; Cel, W.; Wójcik Oliveira, K.

    2018-05-01

    Nowadays, world development depends on the energy supply. The use of fossil fuels leads to two threats: depletion of resources within a single century and climate changes caused by the emission of CO2 from fossil fuels combustion. Widespread application of renewable energy sources, in which biofuels play a major role, is proposed as a counter-measure. The paper made an attempt to evaluate to what extent biofuels meet the criteria of sustainable development. It was shown that excessive development of biofuels may threaten the sustainable development paradigms both in the aspect of: intergenerational equity, leading to an increase of food prices, as well as intergenerational equity, resulting in degradation of the environment. The paper presents the possibility of sustainable biofuels production increase.

  11. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  12. Productivity Improvement for Engineers.

    Science.gov (United States)

    1981-08-01

    organization and the likely positions or types of work that will be required of the engineer in the future. There should therefore, be a balance of...Mall, P., Improving Total Productivity, John Wiley & Sons, New York, 1978. Miller, R.B., Participative Management-Quality of Worklife and Job Enrichment...Noyes Data Corp., Park Ridge, N.J., 1977. Hughes Aircraft Co., R & D Productivity-Study Report, Hughes Aircraft Co., Culver City , California, 1974

  13. Engineering Changes in Product Design - A Review

    Science.gov (United States)

    Karthik, K.; Janardhan Reddy, K., Dr

    2016-09-01

    Changes are fundamental to product development. Engineering changes are unavoidable and can arise at any phase of the product life cycle. The consideration of market requirements, customer/user feedbacks, manufacturing constraints, design innovations etc., turning them into viable products can be accomplished when product change is managed properly. In the early design cycle, informal changes are accepted. However, changes become formal when its complexity and cost increases, and as product matures. To maximize the market shares, manufacturers have to effectively and efficiently manage engineering changes by means of Configuration Control. The paper gives a broad overview about ‘Engineering Change Management’ (ECM) through configuration management and its implications in product design. The aim is to give an idea and understanding about the engineering changes in product design scenario to the new researchers. This paper elaborates the significant aspect of managing the engineering changes and the importance of ECM in a product life cycle.

  14. Photobiological hydrogen production with the unicellular green alga Chlamydomonas reinhardtii under process engineering aspects; Photobiologische Wasserstoffproduktion mit der einzelligen Gruenalge Chlamydomonas reinhardtii unter verfahrenstechnischen Aspekten

    Energy Technology Data Exchange (ETDEWEB)

    Geier, Stephanie

    2011-07-01

    Hydrogen is of high interest as a clean and environmentally friendly energy source as its combustion only emits water and energy. However, currently hydrogen is produced in energy demanding processes by the consumption of fossil fuels. An alternative way of sustainable and non-polluting hydrogen production could be provided by use of photosynthetic active microalgae. Within this work, the photobiological hydrogen production with the unicellular green algae Chlamydomonas reinhardtii is investigated under the aspects of bioprocess-engineering and economics. Objectives are, besides the increase of the photochemical efficiency, the cultivation of the algae and subsequent hydrogen production under cost-free sunlight. It could be demonstrated that outdoor cultivation of C. reinhardtii is possible in Central Europe throughout the year by using e.g. waste heat. Similar cell numbers in the range from 1,2.10{sup 7} cells ml{sup -1} to 1,7.10{sup 7} cells ml{sup -1} could be achieved in closed photobioreactors of the type Photobioreactor Screening Module under controlled laboratory conditions and both continuous illumination (200 {mu}mol.m{sup -2}.s{sup -1}) and simulated outdoor conditions according to the light intensity of idealized summer day as well as in outdoor experiments (up to 2000 {mu}mol.m{sup -2}.s{sup -1}).The use of 10 % CO{sub 2} corresponding to the CO{sub 2} content in flue gas led to a doubling of cell numbers under continuous illumination to 4,2.10{sup 7} cells ml{sup -1}, compared to the reference culture bubbled with 3 % CO{sub 2}. A significant increase of cell numbers under the light profiles of an idealized summer day could not be achieved. The cultivation under the light profile of a winter day at 25 C reduced cell growth to 54 %, compared to the summer simulation. In open 30 L outdoor ponds, only 0,26.10{sup 7} cells ml{sup -1} could be achieved under photoheterotrophic conditions during the summer months, which corresponds to 20 % of the cell

  15. Engineering aspects of particle beam fusion systems

    International Nuclear Information System (INIS)

    Cook, D.L.

    1982-01-01

    The Department of Energy is supporting research directed toward demonstration of DT fuel ignition in an Inertial Confinement Fusion (ICF) capsule. As part of the ICF effort, two major Particle Beam Fusion Accelerators (PBFA I and II) are being developed at Sandia National Laboratories with the objective of providing energetic light ion beams of sufficient power density for target implosion. Supporting light ion beam research is being performed at the Naval Research Laboratory and at Cornell University. If the answers to several key physics and engineering questions are favorable, pulsed power accelerators will be able to provide an efficient and inexpensive approach to high target gain and eventual power production applications

  16. Chapter 1. Economic aspects of aluminium production

    International Nuclear Information System (INIS)

    Yanko, E.A.; Kabirov, Sh.O.; Safiev, Kh.; Azizov, B.S.; Mirpochaev, Kh.A.

    2011-01-01

    This article is devoted to economic aspects of aluminium production. Therefore, the perspectives of development of aluminium production, the base components of aluminium cost and economic security of enterprise are considered in this chapter.

  17. Toxicological aspects of energy production

    International Nuclear Information System (INIS)

    Sanders, C.L.

    1986-01-01

    Part I reviews the principles of toxicology, describes the biological fate of chemicals in the body, discusses basic pathobiology, and reviews short-term toxicity tests. Part II describes the toxicology and pathology of pollutants in several important organ systems. The greatest emphasis is placed on the respiratory tract because of its high probability as a route of exposure to pollutants from energy technologies and its high sensitivity to pollutant related tissue damage. Part III describes the toxicological aspects of specific chemical classes associated with fossil fuels; these include polycyclic hydrocarbons, gases and metals. Part IV describes the biomedical effects associated with each energy technology, including coal and oil, fossil fuel and biomass conversions, solar and geothermal and radiological health aspects associated with uranium mining, nuclear fission and fusion, and with nonionising radiations and electromagnetic fields

  18. Engineering aspects of a fully mirrored endoscope

    International Nuclear Information System (INIS)

    Terra, A.; Huber, A.; Schweer, B.; Mertens, Ph.; Arnoux, G.; Balshaw, N.; Brezinsek, S.; Egner, S.; Hartl, M.; Kampf, D.; Klammer, J.; Lambertz, H.T.; Morlock, C.; Murari, A.; Reindl, M.; Sanders, S.; Sergienko, G.; Spencer, G.

    2013-01-01

    Highlights: ► Replacement of JET diagnostics to match the new ITER-like Wall. ► The endoscope test ITER-like design with only mirror based optics. ► Withstanding and diagnostic capability during Plasma operation and disruptions. ► Engineering process from design to installation and procurement. -- Abstract: The development of optical diagnostics, like endoscopes, compatible with the ITER environment (metallic plasma facing components, neutron proof optics, etc.) is a challenge, but current tokamaks such as JET provide opportunities to test fully working concepts. This paper describes the engineering aspects of a fully mirrored endoscope that has recently been designed, procured and installed on JET. The system must operate in a very strict environment with high temperature, high magnetic fields up to B = 4 T and rapid field variations (∂B/∂t ∼ 100 T/s) that induce high stresses due to eddy currents in the front mirror assembly. It must be designed to withstand high mechanical loads especially during disruptions, which lead to acceleration of about 7 g at 14 Hz. For the JET endoscope, when the plasma thermal loading, direct and indirect, was added to the assumed disruption loads, the reserve factor, defined as a ratio of yield strength over summed up von Mises stresses, was close to 1 for the mirror components. To ensure reliable operation, several analyses were performed to evaluate the thermo-mechanical performance of the endoscope and a final validation was obtained from mechanical and thermal tests, before the system's final installation in May 2011. During the tests, stability of the field of view angle variation was kept below 1° despite the high thermal gradient on endoscope head (∂T/∂x ∼ 500 K/m). In parallel, to ensure long time operation and to prevent undesirable performance degradation, a shutter system was also implemented in order to reduce impurity deposition on in-vessel mirrors but also to allow in situ transmission calibration

  19. Metrological aspects of enzyme production

    International Nuclear Information System (INIS)

    Kerber, T M; Pereira-Meirelles, F V; Dellamora-Ortiz, G M

    2010-01-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies

  20. Review of health safety aspects of nanotechnologies in food production

    NARCIS (Netherlands)

    Bouwmeester, H.; Dekkers, S.; Noordam, M.Y.; Hagens, W.; Bulder, A.S.; Heer, de P.M.; Voorde, ten S.E.C.G.; Wijnhoven, S.; Marvin, H.J.P.; Sips, A.

    2009-01-01

    Due to new, previously unknown, properties attributed to engineered nanoparticles many new products are introduced in the agro-food area. Nanotechnologies cover many aspects, such as disease treatment, food security, new materials for pathogen detection, packaging materials and delivery systems. As

  1. Early Aspects at ICSE 2007: Workshop on Aspect-Oriented Requirements Engineering and Architecture Design

    NARCIS (Netherlands)

    Chitchyan, R; Rashid, A.; Moreira, A; Araujo, J.; Clements, P.; Baniassad, E.; Tekinerdogan, B.

    2007-01-01

    The “Early Aspects @ ICSE’07��? is the 11th workshop in the series of Early Aspects workshops [1] which focuses on aspect identification during the requirements engineering and architecture derivation activities. The specific aim of the present workshop is twofold: (a) to initiate creation of an

  2. Novel trends in engineered milk products.

    Science.gov (United States)

    Chandrapala, Jayani; Zisu, Bogdan

    2016-08-01

    Food engineering within the dairy sector is an ever developing field of study purely based on the application of engineering principles and concepts to any aspect of dairy product manufacturing and operations. The last 25 years of science and technology devoted to milk and milk products have led to major advances. The purpose of this paper is to review the history and current status of some engineered milk products and to speculate regarding future trends. Much of the advancement has been directed towards production capacity, mechanisation, automation, hygiene within the processing plant, safety, extensions in shelf life, and new product introductions that bring variety and convenience for the consumer. Significant advancements in product quality have been made, many of these arising from improved knowledge of the functional properties of ingredients and their impact on structure and texture. In addition, further improvements focused on energy efficiency and environmental sustainability have been made and will be needed in the future.

  3. Engineering aspects of disruption current decay

    International Nuclear Information System (INIS)

    Murray, J.G.

    1983-11-01

    Engineering features associated with the configuration of a tokamak can affect the amount of energy that produces melting and damage to the limiters or internal wall surfaces as the result of a major disruption. During the current decay period of a major thermal disruption, the energy that can damage a wall or limiter comes from the external magnetic field. By providing a good conducting torus near the plasma and increasing the plasma circuit resistance, this magnetic energy (transferred by way of the plasma circuit) can be minimized. This report addresses engineering design features to reduce the energy deposited on the inner torus surface that produces melting of the structures

  4. Volume I: Introduction and engineering aspects

    Science.gov (United States)

    Nicol, Allen H.; Flint, Delos E.; Saplis, Raymond A.

    1957-01-01

    This series of military geology reports on Okinawa is part of the Corps of Engineers Post Hostilities Mapping Program. The purpose of this survey is twofold. The first is to collect scientific information through field study; the second is to publish it in a form that is usable by the United States Armed Forces and Civil Administrators.

  5. Practical Engineering Aspects of Catalysis in Microreactors

    Czech Academy of Sciences Publication Activity Database

    Křišťál, Jiří; Stavárek, Petr; Vajglová, Zuzana; Vondráčková, Magdalena; Pavlorková, Jana; Jiřičný, Vladimír

    2015-01-01

    Roč. 41, č. 12 (2015), s. 9357-9371 ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Castle Trest, 16.09.2014-20.09.2014] Institutional support: RVO:67985858 Keywords : heterogeneous catalysis * homogeneous catalysis * photo catalysis Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.833, year: 2015

  6. Engineering aspects of the INTOR design

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1981-01-01

    The INTOR engineering design has been strongly influenced by considerations for assembly and maintenance. A maintenance philosophy was established at the outset of the conceptual design to insure that the tokamak configuration would be developed to accommodate maintenance requirements. The main features of the INTOR design are summarized in this paper with primary emphasis on the impact of maintenance considerations

  7. Supporting Product Line Evolution with Framed Aspects

    DEFF Research Database (Denmark)

    Loughran, Neil; Rashid, Awais; Zhang, Weishan

    2004-01-01

    , but there will eventually come a time when a certain feature or scenario appears which could not have been foreseen in the early stages of development. We argue that frames and aspects when used in isolation cannot overcome these weaknesses effectively. However, they can be addressed by using the respective strengths......This paper discusses how evolution in software product lines can be supported using framed aspects: a combination of aspect-oriented programming and frame technology. Product line architectures and assets are subject to maintenance and evolution throughout their lifetime due to the emergence of new...... of both technologies in combination. The amalgamation of framing and aspect-oriented techniques can help in the integration of new features and thus reduce the risk of architectural erosion....

  8. Environmental aspects of decentralized electricity production

    International Nuclear Information System (INIS)

    Henry, J.P.

    1991-01-01

    Renewable energy sources are the focus of considerable interest because they do not place future generations at risk; the development of cogeneration has been favorably received on the whole because it uses energy that would otherwise be lost. Difficulties are sometimes encountered in the development of small-scale hydroelectric facilities (older facilities negative aspects, over production impression in France, etc.). Environmental protection regulations do not distinguish between centralized and decentralized electricity production, but between large and small production facilities

  9. Aspects of parallel processing and control engineering

    OpenAIRE

    McKittrick, Brendan J

    1991-01-01

    The concept of parallel processing is not a new one, but the application of it to control engineering tasks is a relatively recent development, made possible by contemporary hardware and software innovation. It has long been accepted that, if properly orchestrated several processors/CPUs when combined can form a powerful processing entity. What prevented this from being implemented in commercial systems was the adequacy of the microprocessor for most tasks and hence the expense of a multi-pro...

  10. Nuclear reactor safety: physics and engineering aspects

    International Nuclear Information System (INIS)

    Kinchin, G.H.

    1982-01-01

    In order to carry out the sort of probabilistic analysis referred to by Farmer (Contemp. Phys.; 22:349(1981)), it is necessary to have a good understanding of the processes involved in both normal and accident conditions in a nuclear reactor. Some of these processes, for a variety of different reactor systems, are considered in sections dealing with the neutron chain reaction, the removal of heat from the reactor, material problems, reliability of protective systems and a number of specific topics of particular interest from the point of view of physics or engineering. (author)

  11. Cooperative and human aspects of software engineering: CHASE 2010

    DEFF Research Database (Denmark)

    Dittrich, Yvonne; Sharp, Helen C.; Winschiers Theophilus, Heike

    2010-01-01

    Software is created by people -- software engineers in cooperation with domain experts, users and other stakeholders--in varied environments, under various conditions. Thus understanding cooperative and human aspects of software development is crucial to comprehend how and which methods and tools...... are required, to improve the creation and maintenance of software. The 3rd workshop on Cooperative and Human Aspects of Software Engineering held at the International Conference on Software Engineering continued the tradition from earlier workshops and provided a lively forum to discuss current developments...... and high quality research in the field. Further dissemination of research results will lead to an improvement of software development and deployment across the globe....

  12. Engineering aspects of a thermonuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Geller, L; Kupp, R W; Koslov, S [Vitro Engineering Company (United States)

    1958-07-01

    The plasma containment problem, common to all fusion reactors, is assumed in the present paper to have been solved. It is absolutely necessary that this phase of fusion reactor development be satisfactorily completed before any subsequent work can be done; and since the present paper is a gross economics-engineering evaluation of the D-D reactor it is quite reasonable to assume that such a reactor can be built. The results derived below are limited by our present knowledge concerning steady state containment of a plasma so that a large solenoidal magnet surrounding the reactor chamber is assumed to be an essential constituent of the power generator. Future related discoveries could play a large part in altering the conclusions derived here.

  13. Chapter 2. Theoretical aspects of aluminium production

    International Nuclear Information System (INIS)

    Yanko, E.A.; Kabirov, Sh.O.; Safiev, Kh.; Azizov, B.S.; Mirpochaev, Kh.A.

    2011-01-01

    This article is devoted to theoretical aspects of aluminium production. Thus, the electrochemistry of electrolysis process, calculation of base industrial indicators of aluminium electrolytic cell, and processes occurring on anode and cathode were considered. Factors, which increase the current output and electrolytic cell productivity were studied. The side effects, including anode effect, sodium extraction on cathode, aluminium dissolution in the electrolyte, aluminium carbide formation, and influence of admixtures in the electrolyte were studied as well.

  14. Engineering and psychological aspects of work safety

    Energy Technology Data Exchange (ETDEWEB)

    Muromtseva, L A

    1982-01-01

    This work examines the study of worker operations within oil and gas enterprises from the standpoint of psychology. A psychological analysis of worker operations is provided in order to aid the resolution of problems associated with the nature of interaction between the human organism, time, and the completion of each operation. An inquiry is conducted into accidents and mishaps. Analysis is provided of laborintensive operations involved in both production and downhole service operations in oil wells.

  15. Product design and development engineering

    International Nuclear Information System (INIS)

    Lee, Kookhwan

    2008-01-01

    This book gives design of molded plastics, design of press product, design of die casting products, the application of communication terminal design, application and design of machine elements(screw, spring, bearing, gear, retaining ridge, drawing standards, KS and JIS material marks list), 3D CAD, concurrent engineering of product design, creative concept design.

  16. Engineering aspects of the INTOR design

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1983-01-01

    The INTOR engineering design has been strongly influenced by considerations for assembly and maintenance. A maintenance philosophy was established at the outset of the conceptual design to insure that the tokamak configuration would be developed to accommodate maintenance requirements. The main features of the INTOR design are summarized in this paper with primary emphasis on the impact of maintenance considerations. The most apparent configuration design feature is the access provided for torus maintenance. Particular attention was given to the size and location of superconducting magnets and the location of vacuum boundaries. All of the poloidal field (PF) coils are placed outside of the bore of the toroidal field (TF) coils and located above and below an access opening between adjacent TF coils through which torus sectors are removed. A magnet structural configuration consisting of mechanically attached reinforcing members has been designed which facilitates the open access space for torus sector removal. For impurity control, a single null poloidal divertor was selected over a double null design in order to maintain sufficient access for pumping and maintenance of the collector. A double null divertor was found to severely limit access to the torus with the addition of divertor collectors and pumping at the top. For this reason, a single null concept was selected in spite of the more difficult design problems associated with the required asymmetric PF system and higher particle loadings. Tokamak support systems and the reactor building and facilities are also important to the overall design evolution and were included in the conceptual design effort. However, this paper discusses only the primary tokamak systems. (author)

  17. Engineering aspects of probabilistic risk assessment

    International Nuclear Information System (INIS)

    vonHerrmann, J.L.; Wood, P.J.

    1984-01-01

    Over the last decade, the use of probabilistic risk assessment (PRA) in the nuclear industry has expanded significantly. In these analyses the probabilities of experiencing certain undesired events (for example, a plant accident which results in damage to the nuclear fuel) are estimated and the consequences of these events are evaluated in terms of some common measure. These probabilities and consequences are then combined to form a representation of the risk associated with the plant studied. In the relatively short history of probabilistic risk assessment of nuclear power plants, the primary motivation for these studies has been the quantitative assessment of public risk associated with a single plant or group of plants. Accordingly, the primary product of most PRAs performed to date has been a 'risk curve' in which the probability (or expected frequency) of exceeding a certain consequence level is plotted against that consequence. The most common goal of these assessments has been to demonstrate the 'acceptability' of the calculated risk by comparison of the resultant risk curve to risk curves associated with other plants or with other societal risks. Presented here are brief descriptions of some alternate applications of PRAs, a discussion of how these other applications compare or contrast with the currently popular uses of PRA, and a discussion of the relative benefits of each

  18. Genetic Engineering and Crop Production.

    Science.gov (United States)

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  19. Energy aspects of microalgal biodiesel production

    Directory of Open Access Journals (Sweden)

    Edith Martinez-Guerra

    2016-03-01

    Full Text Available Algal biodiesel production will play a significant role in sustaining future transportation fuel supplies. A large number of researchers around the world are investigating into making this process sustainable by increasing the energy gains and by optimizing resource-utilization efficiencies. Although, research is being pursued aggressively in all aspects of algal biodiesel production from microalgal cell cultivation, cell harvesting, and extraction and transesterification steps to the final product separation and purification, there is a large disparity in the data presented in recent reports making it difficult to assess the real potential of microalgae as a future energy source. This article discusses some of the key issues in energy consumption in the process of algal biodiesel production and identifies the areas for improvement to make this process energy-positive and sustainable.

  20. 2nd VDE-colloquium about ethical aspects of engineering

    International Nuclear Information System (INIS)

    1981-01-01

    This volume contains the lectures - including the following discussion - that were held on the colloquium about ethical aspects of engineering in Darmstadt in February 1980. This meeting should foster the concurrence of the science of engineering with the sociopolitical factors, to consolidate the engineers' self-conception and to provide them with discussion points for the sociological arguments. The following lectures were held under the leading motive 'Responsibility for technology': Responsibility of technicians - Remarks on the present discussion; One track and other specialists - On the responsibility in scientific - Technical evolution; Responsibility for technology; The damned technology - The author presents his new book. (HSCH) [de

  1. Human Factors Engineering Aspects of Modifications in Control Room Modernization

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques [Idaho National Lab. (INL), Idaho Falls, ID (United States); Clefton, Gordon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    This report describes the basic aspects of control room modernization projects in the U.S. nuclear industry and the need for supplementary guidance on the integration of human factors considerations into the licensing and regulatory aspects of digital upgrades. The report pays specific attention to the integration of principles described in NUREG-0711 (Human Factors Engineering Program Review Model) and how supplementary guidance can help to raise general awareness in the industry regarding the complexities of control room modernization projects created by many interdependent regulations, standards and guidelines. The report also describes how human factors engineering principles and methods provided by various resources and international standards can help in navigating through the process of licensing digital upgrades. In particular, the integration of human factors engineering guidance and requirements into the process of licensing digital upgrades can help reduce uncertainty related to development of technical bases for digital upgrades that will avoid the introduction of new failure modes.

  2. Ecological aspects in civil engineering and physical planning

    International Nuclear Information System (INIS)

    Engelhardt, W.

    1983-01-01

    This book presents an introduction to aspects of ecology and has been quite purposefully restricted to the aspects of interest in connection with civil engineering and physical planning. The various chapters deal with soil, water bodies, air, plants and plant communities, trees in towns, animal life, noise and health, as well as high-energy radiation and its impact on man and environment. The book is intended to make engineers and other interested readers working in the technical professions familiar with ecologic principles and ecologically minded thinking in order to pave the way for ecology-mindedness in civil engineering and physical planning, hopefully contributing to avoiding mistakes and their harmful consequences. (orig.) [de

  3. Perturbative and nonperturbative aspects of multiparticle production

    International Nuclear Information System (INIS)

    Dahlqvist, P.

    1989-04-01

    Different aspects of strong interaction in particle collisions are studied. A measure on colour-connected parton states is presented. With this measure it is possible to divide the production process into the perturbative part (represented by the QCD cascade) and the soft fragmentation. This is obtained both with respect to multiplicity distributions and momenta distribution of particles. It is also demonstrated how to obtain information on the partonic state with respect to this measure from experiment. This may serve as a useful tool when studying strong interactions in multiparticle production. Parton cascade show nontrivial scaling behaviour in momenta of multiplicity distribution in small rapidity intervals. This has been called intermittency. The connection with multifractals is discussed. It is also demonstrated how this effect will survive fragmentaion. Further we study the production of soft photons inside the space-time picture of Lund string fragmentation. The result indicate that the reported excess of long wavelength photons, if confirmed, has an anomalous origin. (author)

  4. Engineered microbes and methods for microbial oil production

    Energy Technology Data Exchange (ETDEWEB)

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2018-01-09

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  5. Engineered microbes and methods for microbial oil production

    Science.gov (United States)

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2015-02-10

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  6. Aspects of occupational radioprotection in laboratories for radioisotopes production

    International Nuclear Information System (INIS)

    Fajardo, Patricia Wieland; Santos, Ilka Helena Taam.

    1990-10-01

    Some aspects of the radiation protection program implemented in the radioisotope production laboratories at the Nuclear Engineering Institute (IEN), are presented. This program evolves external and internal monitoring, radiation level measurements, and surface and air contamination monitoring. Comparing the results obtained in 1987, 1988 and 1989 with the corresponding limits established by Brazilian National Nuclear Energy Commission, it can be seen that the radiation protection program is suitable for those places with high risks of radiation contamination. (author). 2 refs., 2 figs., 2 tabs

  7. Cooperative and Human Aspects of Software Engineering (CHASE 2010)

    DEFF Research Database (Denmark)

    Dittrich, Yvonne; De Souza, Cleidson; Korpela, Mikko

    2010-01-01

    Software is created by people---software engineers---working in varied environments, under various conditions. Thus understanding cooperative and human aspect of software development is crucial to comprehend how methods and tools are used, and thereby improving the creation and maintenance...... research on human and cooperative aspects of software engineering. We aim at providing both a meeting place for the growing community and the possibility for researchers interested in joining the field to present their work in progress and get an overview over the field....... of software. Inspired by the hosting country's concept of co-responsibility -- ubuntu -- we especially invited contributions that address community-based development like open source development and sustainability of ICT eco-systems. The goal of this workshop is to provide a forum for discussing high quality...

  8. Procurement engineering - the productivity factor

    Energy Technology Data Exchange (ETDEWEB)

    Bargerstock, S.B. (TENERA, L.P., Chattanooga, TN (United States))

    1993-01-01

    The industry is several years on the road to implementation of the Nuclear Management and Resources Council (NUMARC) initiatives on commercial-grade item dedication and procurement. Utilities have taken several approaches to involve engineering in the procurement process. A common result for the approaches is the additional operations and maintenance (O M) cost imposed by the added resource requirements. Procurement engineering productivity is a key element in controlling this business area. Experience shows that 400 to 500% improvements in productivity are possible with a 2-yr period. Improving the productivity of the procurement engineering function is important in today's competitive utility environment. Procurement engineering typically involves four distinct technical evaluation responsibilities along with several administrative areas. Technical evaluations include the functionally based safety classification of replacement components and parts (lacking a master parts list), the determination of dedication requirements for safety-related commercial-grade items, the preparation of a procurement specification to maintain the licensed design bases, and the equivalency evaluation of alternate items not requiring the design-change process. Administrative duties include obtaining technical review of vendor-supplied documentation, identifying obsolete parts and components, resolving material nonconformances, initiating the design-change process for replacement items (as needed), and providing technical support to O M. Although most utilities may not perform or require all the noted activities, a large percentage will apply to each utility station.

  9. Procurement engineering - the productivity factor

    International Nuclear Information System (INIS)

    Bargerstock, S.B.

    1993-01-01

    The industry is several years on the road to implementation of the Nuclear Management and Resources Council (NUMARC) initiatives on commercial-grade item dedication and procurement. Utilities have taken several approaches to involve engineering in the procurement process. A common result for the approaches is the additional operations and maintenance (O ampersand M) cost imposed by the added resource requirements. Procurement engineering productivity is a key element in controlling this business area. Experience shows that 400 to 500% improvements in productivity are possible with a 2-yr period. Improving the productivity of the procurement engineering function is important in today's competitive utility environment. Procurement engineering typically involves four distinct technical evaluation responsibilities along with several administrative areas. Technical evaluations include the functionally based safety classification of replacement components and parts (lacking a master parts list), the determination of dedication requirements for safety-related commercial-grade items, the preparation of a procurement specification to maintain the licensed design bases, and the equivalency evaluation of alternate items not requiring the design-change process. Administrative duties include obtaining technical review of vendor-supplied documentation, identifying obsolete parts and components, resolving material nonconformances, initiating the design-change process for replacement items (as needed), and providing technical support to O ampersand M. Although most utilities may not perform or require all the noted activities, a large percentage will apply to each utility station

  10. Nuclear engineering aspects of glioma BNCT research in Italy

    International Nuclear Information System (INIS)

    Curzio, G.; Mazzini, M.

    1998-01-01

    A research project on Boron Neutron Capture Therapy (BNCZ) of gliomas has been set up in Italy, with the participation of Departments of Oncology and Mechanical and Nuclear Construction (DCMN) of the University of Pisa, as well as the Neuroscience and Physics Departments of the Universities of Roma. The specific objective of DCMN Research Unit is the study of the physical-engineering aspects related to BNCT. The paper outlines the research lines in progress at DCMN: Monte Carlo calculations of neutron dose distribution for BNCT treatment planning; measurements of neutron fluxes, spectra and doses by neutron detectors specifically set up; design of modifications to the nuclear reactors of ENEA Casaccia Center. In particular, the paper emphasizes the most original contributions on dosimetric aspects, both from informatic and experimental points of view.(author)

  11. Engineering and economic aspects of centalized heating from nuclear boilers

    International Nuclear Information System (INIS)

    Emel'yanov, I.Ya.; Baturov, B.B.; Korytnikov, V.P.; Koryakin, Yu.I.; Chernyaev, V.A.; Kovylyanskij, Ya.A.; Galaktionov, I.V.

    1979-01-01

    Some engineering and economic aspects for deployment of centralized nuclear boilers (NB) in the USSR are considered. Engineering, maintenance and economic features of NB as compared to organic-fuelled boilers and nuclear thermal power plants are discussed. Among major factors governing economic efficiency of NB underlined are oraganic fuel costs, reactor unit power, location relative to heat-consuming centres and capacity factor. It is concluded that NB can be economical for heating large consumers (more than 1500 G kal/hr). At the periphery NB can be competitive already at reactor unit power of several MWth. The development of HTGR type reactor-based nuclear-chemical boilers and lines for heat transport in a chemically bound state (e.g., CH 4 → H 2 +CO 2 +CO → CH 4 ) opens the way for a substantial breakthrow in the centralized NB efficiency

  12. Knowledge Engineering Aspects of Affective Bi-Modal Educational Applications

    Science.gov (United States)

    Alepis, Efthymios; Virvou, Maria; Kabassi, Katerina

    This paper analyses the knowledge and software engineering aspects of educational applications that provide affective bi-modal human-computer interaction. For this purpose, a system that provides affective interaction based on evidence from two different modes has been developed. More specifically, the system's inferences about students' emotions are based on user input evidence from the keyboard and the microphone. Evidence from these two modes is combined by a user modelling component that incorporates user stereotypes as well as a multi criteria decision making theory. The mechanism that integrates the inferences from the two modes has been based on the results of two empirical studies that were conducted in the context of knowledge engineering of the system. The evaluation of the developed system showed significant improvements in the recognition of the emotional states of users.

  13. Engineering aspects of a D-D commercial tokamak reactor

    International Nuclear Information System (INIS)

    Evans, K. Jr.; Baker, C.C.; Brooks, J.N.

    1981-01-01

    This paper presents some of the engineering aspects of WILDCAT, a conceptual design of a D-D tokamak, fusion reactor. This conceptual design has evolved from initial studies of D-D tokamak reactors, and is intended to be a study of a later-model, commerical fusion reactor in the same sense that STARFIRE was such a study for D-T fuel cycle. The major guidelines of the study have been to utilize as fully as possible the advantages of the D-D fuel cycle but to avoid unnecessary extrapolations of parameters from existing D-T designs, in particular STARFIRE. The paper consists of an overview of the reference design, a description of each of the major engineering systems (rf current drive, burn cycle, impurity control, first wall, blanket/shield, TF magnets, and tritium system, and a summary of conclusions)

  14. A Review of Modeling Bioelectrochemical Systems: Engineering and Statistical Aspects

    Directory of Open Access Journals (Sweden)

    Shuai Luo

    2016-02-01

    Full Text Available Bioelectrochemical systems (BES are promising technologies to convert organic compounds in wastewater to electrical energy through a series of complex physical-chemical, biological and electrochemical processes. Representative BES such as microbial fuel cells (MFCs have been studied and advanced for energy recovery. Substantial experimental and modeling efforts have been made for investigating the processes involved in electricity generation toward the improvement of the BES performance for practical applications. However, there are many parameters that will potentially affect these processes, thereby making the optimization of system performance hard to be achieved. Mathematical models, including engineering models and statistical models, are powerful tools to help understand the interactions among the parameters in BES and perform optimization of BES configuration/operation. This review paper aims to introduce and discuss the recent developments of BES modeling from engineering and statistical aspects, including analysis on the model structure, description of application cases and sensitivity analysis of various parameters. It is expected to serves as a compass for integrating the engineering and statistical modeling strategies to improve model accuracy for BES development.

  15. Engineering design aspects of the heat-pipe power system

    International Nuclear Information System (INIS)

    Capell, B.M.; Houts, M.G.; Poston, D.I.; Berte, M.

    1997-10-01

    The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations

  16. Engineering aspects of the Stanford relativity gyro experiment

    Science.gov (United States)

    Everitt, C. W. F.; Debra, D. B.

    1981-01-01

    According to certain theoretical predictions, the Newtonian laws of motion must be corrected for the effect of a gravitational field. Schiff (1960) proposed an experiment which would demonstrate the effect predicted by Einstein's Theory of General Relativity on a gyroscope. The experiment has been under development at Stanford University since 1961. The requirements involved make it necessary that the test be performed in a satellite to take advantage of weightlessness in space. In a discussion of engineering developments related to the experiment, attention is given to the development of proportional helium thrusters, the simulation of the attitude control system, aspects of inner loop control, the mechanization of the two-loop attitude control system, the effects of helium slosh on spacecraft pointing, and the data instrumentation system.

  17. Software engineering aspects of real-time programming concepts

    Science.gov (United States)

    Schoitsch, Erwin

    1986-08-01

    Real-time programming is a discipline of great importance not only in process control, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other. The second part deals with structuring and modularization of technical processes to build reliable and maintainable real time systems. Software-quality and software engineering aspects are considered throughout the paper.

  18. Engineering design aspects of the heat-pipe power system

    Science.gov (United States)

    Capell, B. M.; Houts, M. G.; Poston, D. I.; Berte, M.

    1997-01-01

    The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations.

  19. Rapid product development: project engineering joined to design engineering in a concurrent engineering context

    Science.gov (United States)

    Bernard, Alain; Ouazzani, A.; Chambolle, F.; Bocquet, Jean Claud

    1997-01-01

    Software tools for designers are mainly based on geometry. Today, many industrial modelers have been rebuilt with C++, or any other object oriented language. This paper proposes to locate the research topics, in order to develop a functional link between project management tools, technical data management and product models. The 'design process' aspect will also be justified through the need of capitalizing designer intent and design history. This is related to different research works of Mechanical Engineering and Logistics Laboratory of Ecole Centrale Paris, and especially two PhD topics.

  20. Physics and engineering aspects of the EBT reactor

    International Nuclear Information System (INIS)

    Uckan, N.A.; Bettis, E.S.; Hedrick, C.L.; Santoro, R.T.; Watts, H.L.; Yeh, H.T.

    1977-01-01

    The ELMO Bumpy Torus (EBT) reactor has the advantage of high-β, steady-state operation. The first reactor study based on the EBT confinement concept was initiated in 1976. It provided the required starting point for continued assessment of the validity of the concept. A new design based on the present physics understanding, practical design approaches, and present and near-term technologies has been established. One of the important factors in an EBT reactor is the large aspect ratio (large toroidal major radius as well). This leads to a power plant with a comparatively large total energy output, usually in the range of 2000-6000 MW(th) for a conventional neutron wall loading of 1-2 MW/m 2 (the high value of β in an EBT device provides a net cost per unit energy roughly equal to or somewhat less than that for a Tokamak system). The large aspect ratio also provides very simple engineering and design requirements because of good access and small force loading asymmetries. Another important factor is the steady-state operation. In an EBT system, less power handling, energy storage, and filtering equipment will be needed. An EBT reactor is less likely to be subject to thermal and mechanical fatigue than reactors with large pulsed magnetic fields and short bursts of fusion power. The details of the key design elements and critical scientific and technology factors which are substantially different from other fusion reactor approaches are described

  1. Alcohol, biomass energy: technological and economical aspects of production

    International Nuclear Information System (INIS)

    Ometto, Joao Guilherme Sabino

    1993-01-01

    This paper presents some technological and economical aspects of sugar cane and alcohol production in Brazil since 1975 until nowadays. The evolution of their production is analysed and the relationship between cost-benefit and ethanol consumption is discussed

  2. Engineering aspects of particle-beam fusion systems

    International Nuclear Information System (INIS)

    Cook, D.L.

    1982-01-01

    The Department of Energy is supporting research directed toward demonstration of DT fuel ignition in an Inertial Confinement Fusion (ICF) capsule. As part of the ICF effort, two major Particle Beam Fusion Accelerators (PBFA I and II) are being developed at Sandia National Laboratories with the objective of providing energetic light ion beams of sufficient power density for target implosion. Supporting light ion beam research is being performed at the Naval Research Laboratory and at Cornell University. If the answers to several key physics and engineering questions are favorable, pulsed power accelerators will be able to provide an efficient and inexpensive approach to high target gain and eventual power production applications

  3. Enhanced productivity of simulation engineers

    International Nuclear Information System (INIS)

    Rohrmann, C.

    1999-01-01

    Simulation has always required a hybrid collection of individuals for software development and maintenance, half engineers and half computer scientists. This paper presents a chronology and an indication of some of the technology currently available to simplify simulation software development and maintenance so that engineers can truly be engineers and not computer scientists. (author)

  4. Macroeconomic aspects of decentralized electricity production

    International Nuclear Information System (INIS)

    Percebois, J.

    1991-01-01

    The development of decentralized electricity production should be viewed first and foremost as a means of adapting production resources to meet the needs of the users between 1995 and 1997. Consumer production and cogeneration are not, however, simply stopgap solutions operating on the fringe of electricity production. These methods serve to highlight a problem that has already been raised in the past: the real advantages and disadvantages of centralized systems managed by companies that exercise a virtual monopoly in either the public or private sector

  5. Ranking product aspects through sentiment analysis of online reviews

    Science.gov (United States)

    Wang, Wei; Wang, Hongwei; Song, Yuan

    2017-03-01

    The electronic word-of-mouth (e-WOM) is one of the most important among all the factors affecting consumers' behaviours. Opinions towards a product through online reviews will influence purchase decisions of other online consumers by changing their perceptions on the product quality. Furthermore, each product aspect may impact consumers' intentions differently. Thus, sentiment analysis and econometric models are incorporated to examine the relationship between purchase intentions and aspect-opinion pairs, which enable the weight estimation for each product aspect. We first identify product aspects and reduce dimensions to extract aspect-opinion pairs. Next the information gain is calculated for each aspect through entropy theory. Based on sentiment polarity and sentiment strength, we formulate an econometric model by integrating the information gain to measure the aspect's weight. In the experiment, we track 386 digital cameras on Amazon for 39 months, and results show that the aspect weight for digital cameras is detected more precisely than TF-ID and HAC algorithms. The results will bridge product aspects and consumption intention to facilitate e-WOM-based marketing.

  6. An overview of Engineering Aspects of Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Prabhakar, A.

    2005-01-01

    Full Text Available Solid substrate cultivation (SSC or solid state fermentation (SSF is envisioned as a prominent bio conversion technique to transform natural raw materials into a wide variety of chemical as well as bio-chemical products. This process involves the fermentation of solid substrate medium with microorganism in the absence of free flowing water. Recent developments and concerted focus on SSF enabled it to evolve as a potential bio- technology as an alternative to thetraditional chemical synthesis. SSF is being successfully exploited for food production, fuels, enzymes, antibiotics, animal feeds and also for dye degradation. This paper discusses the various micro and macro level engineering problems associated with SSF and some possible solutions for its full commercial realization.

  7. Protein Engineering: Case Studies of Commercialized Engineered Products

    Science.gov (United States)

    Walsh, Gary

    2007-01-01

    Programs in biochemistry invariably encompass the principles of protein engineering. Students often display increased understanding and enthusiasm when theoretical concepts are underpinned by practical example. Herein are presented five case studies, each focusing upon a commercial protein product engineered to enhance its application-relevant…

  8. Environmental Aspects of the Engineering Training at Technical University

    Directory of Open Access Journals (Sweden)

    V. V. Bushueva

    2015-01-01

    Full Text Available Problem relevance. The article gives a justification for a need to train professionally competent, ecologically oriented engineers capable to create new equipment taking into account the ecological characteristics. Such approach expresses a requirement coherence to develop technical systems and technologies taking into account, both technical reliability and human and environmental safety. Today, in conditions of modern industrial production it is an important point in engineer’s activity. So to train future engineers who meet these requirements new forms and methods are to be found.Objectives. To prove that involvement of creative student’s teams in training the future ecologically oriented engineers is of importance. The organisational structure and methods of activities along with the principles of revitalizing search for engineering ideas and solutions to develop environmentally safe technical systems and technologies allow us to solve more complicated problems. This is the important characteristic in activities of creative groups. The article considers a significance of the future engineer’s responsibility in terms of environment safety. It gives "Methodical advices to analyse the operational impacts of technical systems on the human and environment" to show that there is a need in development of reliable and environment-safe technical systems.Novelty of this work is a technique for the organization and forms of student creative team’s activities. It represents a revised and updated option of a technique of the creative teams working at the industrial enterprises in France. The revised technique takes into consideration both the specifics of student's audience at technical university and the environment-oriented tasks to be solved. Efficiency of search and solution of environment-oriented engineering tasks is enhanced owing to use of revitalizing methods for the creative team’s activities, which are widely used today in student

  9. Main aspects of sunflower production in Brazil

    Directory of Open Access Journals (Sweden)

    Castro Cesar

    2018-01-01

    Full Text Available Sunflower is one of the most important oilseed crops in the world, since its grains have high oil content (38% to 50%, primarily used for the production of high quality oil. The production of sunflower increases the supply of protein meal for animal feeding, which enables the increase of protein production, more specifically meat, eggs and milk. Grain production systems in Brazil have peculiarities, since two to three different crops are grown in a special arrangement, in the same area and year. Notwithstanding the small cultivated area in Brazil of 62.3 thousand hectares, sunflower is used in succession or rotation with other grain crops such as soybean or maize, showing an enormous potential for expansion and can be cultivated from latitudes 33°S to 5°N, especially in the Brazilian Cerrado biome. Sunflower cultivation in succession to soybean as a second summer crop can also reduce environmental impacts because of the more efficient usage of production factors, such as land and sharing of agricultural inputs, machinery, infrastructure and workforce. The success of establishing the sunflower is associated with the adequate management of soil fertility, use of cultivars adapted to different environments, plant arrangement, seed quality and adequate phytosanitary management, among other factors. It also needs strategic actions, planning and, long-term research and technology diffusion.

  10. Review of health safety aspects of nanotechnologies in food production.

    Science.gov (United States)

    Bouwmeester, Hans; Dekkers, Susan; Noordam, Maryvon Y; Hagens, Werner I; Bulder, Astrid S; de Heer, Cees; ten Voorde, Sandra E C G; Wijnhoven, Susan W P; Marvin, Hans J P; Sips, Adriënne J A M

    2009-02-01

    Due to new, previously unknown, properties attributed to engineered nanoparticles many new products are introduced in the agro-food area. Nanotechnologies cover many aspects, such as disease treatment, food security, new materials for pathogen detection, packaging materials and delivery systems. As with most new and evolving technologies, potential benefits are emphasized, while little is known on safety of the application of nanotechnologies in the agro-food sector. This review gives an overview of scientific issues that need to be addressed with priority in order to improve the risk assessment for nanoparticles in food. The following research topics are considered to contribute pivotally to risk assessment of nanotechnologies and nanoparticles in food products. Set a definition for NPs to facilitate regulatory discussions, prioritization of research and exchange of study results. Develop analytical tools for the characterization of nanoparticles in complex biological matrices like food. Establish relevant dose metrics for nanoparticles used for both interpretation of scientific studies as well as regulatory frameworks. Search for deviant behavior (kinetics) and novel effects (toxicity) of nanoparticles and assess the validity of currently used test systems following oral exposure. Estimate the consumer exposure to nanoparticles.

  11. Multidisplinary Engineering, Project, and Production Management

    Directory of Open Access Journals (Sweden)

    Chien-Ho Ko

    2012-01-01

    Full Text Available Journal of Engineering, Project, and Production Management (EPPM-Journal reflect the journal’s multidisciplinary approach to management research and can be categorized as belonging to three general topics: Project Management, Engineering and Project Management, and Project and Production Management.

  12. Design of experiments in production engineering

    CERN Document Server

    2016-01-01

    This book covers design of experiments (DoE) applied in production engineering as a combination of manufacturing technology with applied management science. It presents recent research advances and applications of design experiments in production engineering and the chapters cover metal cutting tools, soft computing for modelling and optmization of machining, waterjet machining of high performance ceramics, among others.

  13. Scheduling in Engineering, Project, and Production Management

    OpenAIRE

    Chien-Ho Ko

    2015-01-01

    This issue presents five papers selected from the 2013 (4th) International Conference on Engineering, Project, and Production Management (EPPM2013) held in Bangkok, Thailand. Three of the papers deal with scheduling problems faced in project and production management, while the remaining two focus on engineering management issues.

  14. Multidisplinary Engineering, Project, and Production Management

    OpenAIRE

    Chien-Ho Ko

    2012-01-01

    Journal of Engineering, Project, and Production Management (EPPM-Journal) reflect the journal’s multidisciplinary approach to management research and can be categorized as belonging to three general topics: Project Management, Engineering and Project Management, and Project and Production Management.

  15. Aspects of computer control from the human engineering standpoint

    International Nuclear Information System (INIS)

    Huang, T.V.

    1979-03-01

    A Computer Control System includes data acquisition, information display and output control signals. In order to design such a system effectively we must first determine the required operational mode: automatic control (closed loop), computer assisted (open loop), or hybrid control. The choice of operating mode will depend on the nature of the plant, the complexity of the operation, the funds available, and the technical expertise of the operating staff, among many other factors. Once the mode has been selected, consideration must be given to the method (man/machine interface) by which the operator interacts with this system. The human engineering factors are of prime importance to achieving high operating efficiency and very careful attention must be given to this aspect of the work, if full operator acceptance is to be achieved. This paper will discuss these topics and will draw on experience gained in setting up the computer control system in Main Control Center for Stanford University's Accelerator Center (a high energy physics research facility)

  16. Engineering feasibility of tight aspect ratio Tokamak (spherical torus) reactors

    International Nuclear Information System (INIS)

    Peng, Y-K.M.; Hicks, J.B.

    1990-01-01

    Engineering solutions are identified and analyzed for key high-power-density components of tight aspect ratio tokamak reactors (spherical torus reactors). The potentially extreme divertor heat loads can be reduced to about 3 MW/m 2 in expanded divertors using coils inside the demountable toroidal field coils. Given the long and narrow divertor channels, gaseous divertor targets become possible, which eliminate sputtering and increase the divertor life. The unshielded centre conductor post (CCP) of the toroidal field coil can be made of a single dispersion strengthened copper conductor cooled by high-velocity pressurized water to maintain acceptable copper temperature and strength. Damage and activation of the CCP at a neutron fluence of 10 MW-a/m 2 are also tolerable. Annual replacement of the centre post, the divertor assemblies and the blanket can be accomplished with vertical access for all torus components, which are modularized to reduce size and weight. The technical requirements of these solutions are shown to be comparable with, if not less demanding than, those estimated for conventional tokamak reactors. (author)

  17. Proceedings of the Pacific Rim Statistical Conference for Production Engineering : Big Data, Production Engineering and Statistics

    CERN Document Server

    Jang, Daeheung; Lai, Tze; Lee, Youngjo; Lu, Ying; Ni, Jun; Qian, Peter; Qiu, Peihua; Tiao, George

    2018-01-01

    This book presents the proceedings of the 2nd Pacific Rim Statistical Conference for Production Engineering: Production Engineering, Big Data and Statistics, which took place at Seoul National University in Seoul, Korea in December, 2016. The papers included discuss a wide range of statistical challenges, methods and applications for big data in production engineering, and introduce recent advances in relevant statistical methods.

  18. Biochemical and photosynthetic aspects of energy production

    Energy Technology Data Exchange (ETDEWEB)

    San Pietro, A [ed.

    1980-01-01

    Photosynthesis is the only method of solar energy conversion presently practiced on a large scale, supplying all food energy as well as fiber and wood. This book is an attempt to describe and evaluate biological processes that may serve in the future to provide alternative energy resources. Areas covered include marine biomass production, algal-bacterial systems, agricultural residues, energy farming and biological nitrogen fixation with an emphasis on the legumes.

  19. Operational Aspects of Continuous Pharmaceutical Production

    DEFF Research Database (Denmark)

    Mitic, Aleksandar

    Introduction of the Process Analytical Technolo gy (PAT) Initiative, the Quality by Design (QbD) approach and the Continuous Improvement (CI) methodology/philosophy is considered as a huge milestone in the modern pharmaceutical indust ry. The above concepts, when applied to a pharmaceutical...... satisfaction of the demands defined by the PA T Initiative. This approach could be considered as establishing a Lean Production System (LPS) whic h is usually supported with tools associated with Process Intensifaction (PI) a nd Process Optimization (PO). Development of continuous processes is often c onnected...... tools, such as microwave assisted organic synthesis (MAOS), ultrasounds, meso-scale flow chemistry and microprocess technology. Furthermore, developmen t of chemical catalysts and enzymes enabled further acceleration of some chemical reactions that were known as very slow or impossible to be performed...

  20. Game theoretic aspect of production process transfer functions ...

    African Journals Online (AJOL)

    Game theoretic aspect of production process transfer functions. ... On the final analysis, it was shown that relating transfer function to Bayesian games and mechanism design would lead to optimal bids, optimal ... AJOL African Journals Online.

  1. Engineering Parameters in Bioreactor's Design: A Critical Aspect in Tissue Engineering

    Science.gov (United States)

    Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors. PMID:24000327

  2. Engineering parameters in bioreactor's design: a critical aspect in tissue engineering.

    Science.gov (United States)

    Salehi-Nik, Nasim; Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Anisi, Fatemeh; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.

  3. Engineering Parameters in Bioreactor’s Design: A Critical Aspect in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Nasim Salehi-Nik

    2013-01-01

    Full Text Available Bioreactors are important inevitable part of any tissue engineering (TE strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.

  4. Some intriguing aspects of multiparticle production processes

    Science.gov (United States)

    Wilk, Grzegorz; Włodarczyk, Zbigniew

    2018-04-01

    Multiparticle production processes provide valuable information about the mechanism of the conversion of the initial energy of projectiles into a number of secondaries by measuring their multiplicity distributions and their distributions in phase space. They therefore serve as a reference point for more involved measurements. Distributions in phase space are usually investigated using the statistical approach, very successful in general but failing in cases of small colliding systems, small multiplicities, and at the edges of the allowed phase space, in which cases the underlying dynamical effects competing with the statistical distributions take over. We discuss an alternative approach, which applies to the whole phase space without detailed knowledge of dynamics. It is based on a modification of the usual statistics by generalizing it to a superstatistical form. We stress particularly the scaling and self-similar properties of such an approach manifesting themselves as the phenomena of the log-periodic oscillations and oscillations of temperature caused by sound waves in hadronic matter. Concerning the multiplicity distributions we discuss in detail the phenomenon of the oscillatory behavior of the modified combinants apparently observed in experimental data.

  5. Engineering and material aspects of impurity control systems

    International Nuclear Information System (INIS)

    Koski, J.A.

    1985-01-01

    The design of impurity control devices for fusion energy devices is discussed from the engineering and materials viewpoint. First, examples of impurity control devices are presented, and the plasma edge environment for which they are designed is briefly described. Materials concerns related to the design of the components are discussed and some currently proposed designs presented. Engineering tools available to the designer are listed, and some commonly encountered engineering analysis problems described

  6. Engineering Information Infrastructure for Product Lifecycle Managment

    Science.gov (United States)

    Kimura, Fumihiko

    For proper management of total product life cycle, it is fundamentally important to systematize design and engineering information about product systems. For example, maintenance operation could be more efficiently performed, if appropriate parts design information is available at the maintenance site. Such information shall be available as an information infrastructure for various kinds of engineering operations, and it should be easily accessible during the whole product life cycle, such as transportation, marketing, usage, repair/upgrade, take-back and recycling/disposal. Different from the traditional engineering database, life cycle support information has several characteristic requirements, such as flexible extensibility, distributed architecture, multiple viewpoints, long-time archiving, and product usage information, etc. Basic approaches for managing engineering information infrastructure are investigated, and various information contents and associated life cycle applications are discussed.

  7. Heat and mass transfer during baking: product quality aspects

    NARCIS (Netherlands)

    Asselman, A.; Straten, van G.; Hadiyanto, H.; Boom, R.M.; Esveld, D.C.; Boxtel, van A.J.B.

    2005-01-01

    Abstract Most food product qualities are developed during heating processes. Therefore the internal heating and mass transfer of water are important aspects in food processing. Heating of food products is mostly induced by convection heating. However, the number applications of convective heating in

  8. Collaborative engineering for complex products

    CSIR Research Space (South Africa)

    Erasmus, J

    2015-10-01

    Full Text Available stream_source_info Erasmus_2015.pdf.txt stream_content_type text/plain stream_size 6206 Content-Encoding UTF-8 stream_name Erasmus_2015.pdf.txt Content-Type text/plain; charset=UTF-8 Collaborative engineering... with collaboration and cooperation • Now they compete on implementation (application) instead of standards (infrastructure) Reyes, V., 2014. Dealing with automotive software complexity with virtual prototyping – Part 1: Virtual HIL development basics (accessed 9...

  9. Quality and Safety Aspects of Cereals (Wheat) and Their Products.

    Science.gov (United States)

    Varzakas, Theo

    2016-11-17

    Cereals and, most specifically, wheat are described in this chapter highlighting on their safety and quality aspects. Moreover, wheat quality aspects are adequately addressed since they are used to characterize dough properties and baking quality. Determination of dough properties is also mentioned and pasta quality is also described in this chapter. Chemometrics-multivariate analysis is one of the analyses carried out. Regarding production weighing/mixing of flours, kneading, extruded wheat flours, and sodium chloride are important processing steps/raw materials used in the manufacturing of pastry products. Staling of cereal-based products is also taken into account. Finally, safety aspects of cereal-based products are well documented with special emphasis on mycotoxins, acrylamide, and near infrared methodology.

  10. Students' Attitudes towards Interdisciplinary Education: A Course on Interdisciplinary Aspects of Science and Engineering Education

    Science.gov (United States)

    Gero, Aharon

    2017-01-01

    A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…

  11. Integral methods in science and engineering theoretical and practical aspects

    CERN Document Server

    Constanda, C; Rollins, D

    2006-01-01

    Presents a series of analytic and numerical methods of solution constructed for important problems arising in science and engineering, based on the powerful operation of integration. This volume is meant for researchers and practitioners in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students.

  12. Modular Engineering of Production Plants

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth

    1998-01-01

    Based on a case-study on design of pharmaceutical production plants, this paper suggests that modularity may support business efficiency for companies with one-of-a-kind production and without in-house manufacturing. Modularity may support efficient management of design knowledge and may facilitate...

  13. Economic aspects of radionuclide production for nuclear medicine

    International Nuclear Information System (INIS)

    Le Gallic, Y.; Prospert, J.

    1980-03-01

    In a difficult economic situation it was considered advisable to inform users of certain financial aspects of radionuclide production for nuclear medicine. Two aspects of this vast and many-sided problem are developed here: - The cost price structure of different products (radiopharmaceutical and radioimmunological) which defines the size of the market consistent with a balanced budget. This aspect of the economic analysis seems all the more important as ORIS, although a non profit-making organization, has to balance its production costs. - The effects on the national economy of the nuclear medicine supply market. From this viewpoint it seemed interesting to examine the share-out of the French market between ORIS which is practically the only national producer and importers, as well as the balance of payments situation in this respect [fr

  14. In-situ uranium mining: reservoir engineering aspects of leaching and restoration

    International Nuclear Information System (INIS)

    Kabir, M.I.

    1982-01-01

    To establish the feasibility of in-situ mining of uranium, a push-pull test of an in-situ uranium leaching process, which consists of a single injection/production test well and two observation wells, was designed to evaluate the parameters which govern the uranium production and restorability of a solution mined zone. The test procedure itself consists of injection (push cycle) of a preflush followed by lixiviant, a brief soak period (soak cycle), and subsequent production (pull cycle) into the same well. Based on computer modeling, procedures are defined which permit, for a properly designed test, the determination of both restoration and leaching parameters. The test procedure and design recommendations are also outlined. Two numerical simulators which model field scale uranium production and restoration operations are presented. These simulators are able to accommodate various well patterns and irregular reservoir boundaries, physical dispersion, directional permeability variations (if present), and a variety of injection/production strategies. A streamline-concentration balance technique has been used to develop the models. The assumption of time invariant boundary conditions and no transverse dispersion between the streamlines reduces the two dimensional problem to a bundle of one dimensional ones. It has been further shown that the production well effluent histories can easily be obtained by superposing the solution of the concentration balance equations for a single streamline, and thus reducing computation time significantly. Finally, the simulators have been used to study various reservoir engineering aspects to optimize in-situ uranium production from field scale operations

  15. In-situ uranium mining: reservoir engineering aspects of leaching and restoration

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, M.I.

    1982-01-01

    To establish the feasibility of in-situ mining of uranium, a push-pull test of an in-situ uranium leaching process, which consists of a single injection/production test well and two observation wells, was designed to evaluate the parameters which govern the uranium production and restorability of a solution mined zone. The test procedure itself consists of injection (push cycle) of a preflush followed by lixiviant, a brief soak period (soak cycle), and subsequent production (pull cycle) into the same well. Based on computer modeling, procedures are defined which permit, for a properly designed test, the determination of both restoration and leaching parameters. The test procedure and design recommendations are also outlined. Two numerical simulators which model field scale uranium production and restoration operations are presented. These simulators are able to accommodate various well patterns and irregular reservoir boundaries, physical dispersion, directional permeability variations (if present), and a variety of injection/production strategies. A streamline-concentration balance technique has been used to develop the models. The assumption of time invariant boundary conditions and no transverse dispersion between the streamlines reduces the two dimensional problem to a bundle of one dimensional ones. It has been further shown that the production well effluent histories can easily be obtained by superposing the solution of the concentration balance equations for a single streamline, and thus reducing computation time significantly. Finally, the simulators have been used to study various reservoir engineering aspects to optimize in-situ uranium production from field scale operations.

  16. Engineering microbes for efficient production of chemicals

    Science.gov (United States)

    Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers

    2015-04-28

    This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.

  17. Environmental aspects of engineering geological mapping in the United States

    Science.gov (United States)

    Radbruch-Hall, Dorothy H.

    1979-01-01

    Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.

  18. Quality and Reliability Aspects in Nuclear Power Reactor Fuel Engineering

    International Nuclear Information System (INIS)

    2015-01-01

    In order to decrease costs and increase competitiveness, nuclear utilities use more challenging operational conditions, longer fuel cycles and higher burnups, which require modifications in fuel designs and materials. Different aspects of quality assurance and control, as well as analysis of fuel performance have been considered in a number of specialized publications. The present publication provides a concise but comprehensive overview of all interconnected quality and reliability issues in fuel fabrication, design and operation. It jointly tackles technical, safety and organizational aspects, and contains examples of state of the art developments and good practices of coordinated work of fuel designers, vendors and reactor operators

  19. Thermal and Mechanical Design Aspects of the LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, R P; Gerhard, M A; Latkowski, J F; Kramer, K J; Morris, K R; Peterson, P F; Seifried, J E

    2008-10-25

    The Laser Inertial confinement fusion - Fission Energy (LIFE) engine encompasses the components of a LIFE power plant responsible for converting the thermal energy of fusion and fission reactions into electricity. The design and integration of these components must satisfy a challenging set of requirements driven by nuclear, thermal, geometric, structural, and materials considerations. This paper details a self-consistent configuration for the LIFE engine along with the methods and technologies selected to meet these stringent requirements. Included is discussion of plant layout, coolant flow dynamics, fuel temperatures, expected structural stresses, power cycle efficiencies, and first wall survival threats. Further research and to understand and resolve outstanding issues is also outlined.

  20. Scientific and technological aspects of the radiopasteurization of egg products

    Energy Technology Data Exchange (ETDEWEB)

    Etienne, J C; Biltiau, J; Rombaux, J P

    1973-11-01

    A bibliographic review is presented of the scientific and technological problems in the thermal pasteurization of egg products and the possible advantages of the substitution of radiopasteurization. Current procedures of pasteurization are described. Conditioning of the egg products by congealing or dehydration prior to storage is discussed. A comparative examination is made of the physico-chemical properties of treated egg products and of the organoleptic qualities of the finished product. The present status of radiopasteurization, the problems to be solved, and the economic aspects are discussed. (JSR)

  1. Stochastic aspects of multiparticle production in relativistic nuclear reactions

    International Nuclear Information System (INIS)

    Tachung, M.

    1988-01-01

    Midrapidity multiparticle production process in ordinary hadron and heavy-ion induced reactions at sufficiently high incident energies are analyzed. It is shown that stochastic aspects of multiparticle production process in relativistic range plays a dominating role in understanding the observable phenomena. The basic idea and the main results of the multisource model for hadron-nucleus and nucleus-nucleus collisions are shown. The concept of the NES (number of effective sources) scaling is discussed. 16 refs.; 7 figs

  2. Cooperative and Human Aspects of Software Engineering (CHASE 2008)

    DEFF Research Database (Denmark)

    2008-01-01

    ethnographic research to experiments. Moreover, the background of attendees reflects the diversity of researchers in this domain, ranging from sociology to psychology, from informatics to software engineering. CHASE 1008 met its goals in presenting high-quality research and building community through a mixture...... of presentations, discussions, posters, and social activities....

  3. Language Aspects of Engineering Students' View of Entropy

    Science.gov (United States)

    Haglund, Jesper; Andersson, Staffan; Elmgren, Maja

    2016-01-01

    Entropy is a central concept in thermodynamics, but has been found to be challenging to students due to its abstract nature and the fact that it is not part of students' everyday language. Interviews with three pairs of engineering students (N = 6) were conducted and video recorded regarding their interpretation and use of the entropy concept, one…

  4. Human aspects, gamification, and social media in collaborative software engineering

    NARCIS (Netherlands)

    Vasilescu, B.N.

    2014-01-01

    Software engineering is inherently a collaborative venture. In open-source software (OSS) development, such collaborations almost always span geographies and cultures. Because of the decentralised and self-directed nature of OSS as well as the social diversity inherent to OSS communities, the

  5. Economical and engineering aspects of modular-type fast reactors

    International Nuclear Information System (INIS)

    Kirillov, E.V.; Demidova, L.S.

    1989-01-01

    Economical and engineering characteristics for SAFR and PRISM modular-type reactors are analyzed on the basis of foreign papers. Dependence of economical characteristics for SAFR modules on their output is shown. Cost of power generation for the NPPs with PRISM reactor, LWR reactor and for coal thermal power plant is presented

  6. Engineering - a key aspect of the UK nuclear policy review

    International Nuclear Information System (INIS)

    Bindon, J.L.; Butcher, Sally

    1993-01-01

    In anticipation of the forthcoming nuclear review, a forum on issues relevant to the industry was held at the Institution of Electrical Engineers HQ in London, in association with the Institute of Energy and the Watt Committee on Energy. The forum was divided into five sections, dealing with energy policy, the environment, industry, economics and safety. (author)

  7. Aspects of Mutual Engagement: School of Engineering and Industry Collaborations

    Science.gov (United States)

    Stroud, Dean; Hopkins, Andrew

    2016-01-01

    This paper is a case study of collaboration between a large steel company and a university's school of engineering. Our aim is to contribute to understandings of engagement between employers and higher education institutions and explore some of the complexities of such collaborations in their initiation and propagation. The analysis derives from…

  8. Metabolic engineering of microalgal based biofuel production: prospects and challenges

    Directory of Open Access Journals (Sweden)

    Chiranjib eBanerjee

    2016-03-01

    Full Text Available The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs, which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e. Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering.

  9. Production engineering jig and tool design

    CERN Document Server

    Jones, E J H

    1972-01-01

    Production Engineering: Jig and Tool Design focuses on jig and tool design as part of production engineering and covers topics ranging from inspection and gauging to multiple and consecutive tooling, tool calculation and development of form tools, deep-hole boring, and grinding-wheel form-crushing. Air and oil operated fixtures, negative rake machining, and the economics of jig and fixture practice are also discussed. This text is comprised of 22 chapters; the first of which provides an overview of the function and organization of the jig and tool department. Attention then turns to the subjec

  10. Mechanical-engineering aspects of mirror-fusion technology

    International Nuclear Information System (INIS)

    Fisher, D.K.; Doggett, J.N.

    1982-01-01

    The mirror approach to magnetic fusion has evolved from the original simple mirror cell to today's mainline effort: the tandem-mirror machine with thermal barriers. Physics and engineering research is being conducted throughout the world, with major efforts in Japan, the USSR, and the US. At least one facility under construction (MFTF-B) will approach equivalent energy breakeven in physics performance. Significant mechanical engineering development is needed, however, before a demonstration reactor can be constructed. The principal areas crucial to mirror reactor development include large high-field superconducting magnets, high-speed continuous vacuum-pumping systems, long-pulse high-power neutral-beam and rf-plasma heating systems, and efficient high-voltage high-power direct converters. Other areas common to all fusion systems include tritium handling technology, first-wall materials development, and fusion blanket design

  11. Engineering aspects of rate-related processes in food manufacturing.

    Science.gov (United States)

    Adachi, Shuji

    2015-01-01

    Many rate-related phenomena occur in food manufacturing processes. This review addresses four of them, all of which are topics that the author has studied in order to design food manufacturing processes that are favorable from the standpoint of food engineering. They include chromatographic separation through continuous separation with a simulated moving adsorber, lipid oxidation kinetics in emulsions and microencapsulated systems, kinetic analysis and extraction in subcritical water, and water migration in pasta.

  12. Aspects of volumetric efficiency measurement for reciprocating engines

    Directory of Open Access Journals (Sweden)

    Pešić Radivoje B.

    2013-01-01

    Full Text Available The volumetric efficiency significantly influences engine output. Both design and dimensions of an intake and exhaust system have large impact on volumetric efficiency. Experimental equipment for measuring of airflow through the engine, which is placed in the intake system, may affect the results of measurements and distort the real picture of the impact of individual structural factors. This paper deals with the problems of experimental determination of intake airflow using orifice plates and the influence of orifice plate diameter on the results of the measurements. The problems of airflow measurements through a multi-process Otto/Diesel engine were analyzed. An original method for determining volumetric efficiency was developed based on in-cylinder pressure measurement during motored operation, and appropriate calibration of the experimental procedure was performed. Good correlation between the results of application of the original method for determination of volumetric efficiency and the results of theoretical model used in research of influence of the intake pipe length on volumetric efficiency was determined. [Acknowledgments. The paper is the result of the research within the project TR 35041 financed by the Ministry of Science and Technological Development of the Republic of Serbia

  13. Process, engineering and design aspects of contaminated soil bioremediation. Pt. 1 In situ treatments

    International Nuclear Information System (INIS)

    De Fraja Frangipane, E.; Andreottola, G.; Tatano, F.

    1995-01-01

    The present paper is an up-to-date overview of contaminated soil bioremediation techniques, which are analyzed in detail with regard to main process, engineering and design aspects. General biochemical/kinetic aspects of bioremediation of contaminated soil, and in situ treatments, are discussed in this part one

  14. Genetic engineering of microorganisms for biodiesel production

    Science.gov (United States)

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua

    2013-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples. PMID:23222170

  15. Technological aspects of horse meat products - A review.

    Science.gov (United States)

    Lorenzo, José M; Munekata, Paulo E S; Campagnol, Paulo Cezar Bastianello; Zhu, Zhenzhou; Alpas, Hami; Barba, Francisco J; Tomasevic, Igor

    2017-12-01

    Horse meat and its products can be considered as a food with a high nutritional value. However, due to cases of economically motivated food adulteration by the intentional addition of horse meat beef products in recent years, horse meat has become a controversial issue. Consumer confidence in meat products and the meat industry has diminished, although consumers consider the differences between the food content and the label as the major issue rather than the safety and nutritional characteristics of horse meat. The elaboration of meat products from horse meat (e.g. "cecina", dry-cured loin, salami, bressaola and pâté) is also an interesting alternative to other traditional meat products such as dry-cured pork hams, pork sausages and liver pâtés. In this review, the technological aspects, safety and storage stability of meat products elaborated from horse meat will be addressed by highlighting the nutritional and sensory aspects of these meat products. We aim to improve the existing knowledge about horse meat in the view of recent scandals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Aspects of the risk analysis in the process engineering industry

    International Nuclear Information System (INIS)

    Hennings, W.; Madjar, M.; Mock, R.; Reer, B.

    1996-01-01

    This document is the result of a multi-discipline working group of a portion of a project called Risk analysis for chemical plants. Within the framework of the project, only selected methods and tools of risk analysis, thus, aspects of method, were able to be discussed and developed further. Case examples from the chemical industry are dealt with in order to discuss the application of a computer assisted quantitative error analysis in this industrial sector. Included is also a comprehensive documentation of the data and results utilised in the examples. figs., tabs., refs

  17. Biogas Production and Engine Conversion From Diesel Engine to Biogas Engine for Lighting in Rural Area

    OpenAIRE

    Tun, Seint Thandar

    2012-01-01

    The research of alternative fuels implemented in internal combustion engines are becoming the subjects of interest nowadays. This paper describes a production of biogas from cow dung, diesel engine conversion process with piston modification of ZH1115 diesel engine. To produce biogas, the usual practice is to mix water with some organic material, such as cow dung (a free source of the appropriate micro-organisms). The slurry is placed in a leak-proof container (called a digester) and leaves i...

  18. Challenges and solutions in natural gas engine development and productions

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Mahdi; Izanloo, Hossein [Irankhodro Powertrain Co. (IPCO) (Iran)

    2008-07-01

    As an alternative fuel, natural gas is generally accepted for internal combustion engines and some developments have been conducted in order to adopt it for the road vehicles and stationary applications. Foresights shows natural gas vehicles will be a part of the future transportation technology regarding to their mid and long-term benefits. Therefore inherent problems of natural gas engine technology should be overcome to produce a competitive engine. In this paper major problems and their possible solutions in developing and producing natural gas engine for passenger cars are detailed and discussed. Challenging materials are sorted and presented in two categorizes: technical and econo-strategical problems. In the technical section major difficulties faced in components or systems of natural gas engine are analysed in different aspects of design, validation, and production. In addition problems arisen from the fuel characteristics which influence the function and durability of engine are argued. Subjects like freezing in gas regulator, cold start fuel injection, gas leakage, impurities within compressed natural gas, variation in fuel composition, thermo-mechanics of cylinder head and block, wear of valve seat inserts, spark plug erosion, back-fire phenomenon, engine oil quality requirement, low power density and mileage are described. In the econo-strategical discussion, challenges like limited gas distribution infrastructure, lack of specific manufacturing standards and codes, and non-dedicated emission standards are explained. In both part of the paper a comprehensive view is extended to clarify the effect, risk and solutions of each problem. Due to the fact that almost all information and analysis presented in this paper are based on the experience of developing a natural gas engine family, and an extensive literature review, discussions and conclusions could be useful as a guide line for future natural gas engine projects. (orig.)

  19. Protein engineering for biofuel production: Recent development

    Directory of Open Access Journals (Sweden)

    Nisha Singh

    2016-09-01

    Full Text Available The unstable and unsure handiness of crude oil sources moreover the rising price of fuels have shifted international efforts to utilize renewable resources for the assembly of greener energy and a replacement which might additionally meet the high energy demand of the globe. Biofuels represent a sustainable, renewable, and also the solely predictable energy supply to fossil fuels. During the green production of Biofuels, several in vivo processes place confidence in the conversion of biomass to sugars by engineered enzymes, and the subsequent conversion of sugars to chemicals via designed proteins in microbial production hosts. Enzymes are indispensable within the effort to provide fuels in an ecologically friendly manner. They have the potential to catalyze reactions with high specificity and potency while not using dangerous chemicals. Nature provides an in depth assortment of enzymes, however usually these should be altered to perform desired functions in needed conditions. Presently available enzymes like cellulose are subject to tight induction and regulation systems and additionally suffer inhibition from numerous end products. Therefore, more impregnable and economical catalyst preparations ought to be developed for the enzymatic method to be more economical. Approaches like protein engineering, reconstitution of protein mixtures and bio prospecting for superior enzymes are gaining importance. Advances in enzyme engineering allow the planning and/or directed evolution of enzymes specifically tailored for such industrial applications. Recent years have seen the production of improved enzymes to help with the conversion of biomass into fuels. The assembly of the many of those fuels is feasible due to advances in protein engineering. This review discusses the distinctive challenges that protein engineering faces in the method of changing lignocellulose to biofuels and the way they're addressed by recent advances in this field.

  20. Several aspects of the effect of nuclear power engineering and thermal power engineering on the environment

    Energy Technology Data Exchange (ETDEWEB)

    Malenchenko, A F

    1979-01-01

    A survey is made of the comparative effect of nuclear power engineering and thermal power engineering on environment and man. The most significant approaches to solution of radio-ecological problems of APS are found.

  1. Engineering aspects of enzymatic fiber solubilization from potato pulp

    DEFF Research Database (Denmark)

    Ravn, Helle Christine

    product containg ≤200 ppm of calcium, were tested for precipitable dry matter after a 1 min. reaction at 60°C and pH 6.0 using 1% substrate and with or without enzymes. The enzymes were PL from Emericella nidulans and PG from Aspergillus aculeatus each dosed at 1.0% (w/w) enzyme/substrate [E/S]. The study...

  2. Genetic engineering and sustainable production of ornamentals

    DEFF Research Database (Denmark)

    Lütken, Henrik Vlk; Clarke, Jihong Liu; Müller, Renate

    2012-01-01

    Abstract Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduct......Abstract Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources....... This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed......, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors...

  3. Dosimetric aspects of radiation processing of food and allied products

    International Nuclear Information System (INIS)

    Sharma, G.; Bhat, R.M.; Bhatt, B.C.

    2010-01-01

    Full text: Gamma radiation processing in the last 4-5 decades is continuously gaining importance in processing of a wide variety of products, as it can modify physical, chemical and biological properties of the materials, including food and allied products on industrial scale due its inherent qualities like ease of processing in finally packaged form, eco-friendly nature and other obvious reasons over conventional means of processing. Food and allied products are either from agricultural produce or animal origin; they get easily contaminated from soil during harvesting, handling, processing, environment conditions, storage and transport from various types of micro-organisms including pathogens. In many countries it is mandatory to bring down the population of micro-organisms to an acceptable level and complete elimination of pathogens before such products are accepted for human or animal consumption. Processing of food and allied products by radiation has its own challenges due to wider public acceptance of irradiated food, a wide range, 0.25-50kGy, of absorbed dose requirements for different category of such products and purposes, use of a variety of packaging materials in different shapes and sizes and because of its perishable nature. More than 50 countries including India in the world have accepted radiation processing of food and allied products by radiation. Dosimetry is an important aspect of radiation processing, whether it is food or allied product. Uniformity in dose delivered to these products depends on several factors such as product carrier to source frame alignment, product carrier and product/tote box design, product loading pattern, attenuation due to product thickness, product bulk density that varies from 0.1-1.0 kg/l and the plant design whether during processing product overlaps the source or otherwise. In this presentation dosimetric aspects of radiation processing of food and allied products and problems associated with dosimetry of such

  4. ASPECTS OF REGIONAL COMPETITIVENESS THROUGH DYNAMIC PRICES OF PETROLEUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Daniela\tENACHESCU

    2015-06-01

    Full Text Available This paper presents aspects regarding the dynamics of prices of petroleum products: gasoline and diesel in Romania in the period 2003(2007-2014. Both focus on relationship-price raw material and finished product by the impact of market prices. Given that the price of fuel is a key factor in economic development but also in the living of population, this paper has proposed to analyze some aspects of the dynamics of prices of petroleum products in correlation with commodity prices in a competitive market in 2003 -2014. In the analized period, price of oil barrel has a dynamics substantially influenced by the global political turbulences but also by lower oil demand due to consumption reduction, especially lately. Increases and decreases were abrupt and unpredictable in the early years of the first decade of the XXI century. Political crises in the Middle East, the economic crisis started in 2007 and especially the crisis in Ukraine and policies adopted by the EU and the US have led to extremely large fluctuations in oil prices from one period to another . This dynamic will only cover the price of petroleum products namely gazoline and diesel for vehicles.

  5. Patchoulol Production with Metabolically Engineered Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Nadja A. Henke

    2018-04-01

    Full Text Available Patchoulol is a sesquiterpene alcohol and an important natural product for the perfume industry. Corynebacterium glutamicum is the prominent host for the fermentative production of amino acids with an average annual production volume of ~6 million tons. Due to its robustness and well established large-scale fermentation, C. glutamicum has been engineered for the production of a number of value-added compounds including terpenoids. Both C40 and C50 carotenoids, including the industrially relevant astaxanthin, and short-chain terpenes such as the sesquiterpene valencene can be produced with this organism. In this study, systematic metabolic engineering enabled construction of a patchoulol producing C. glutamicum strain by applying the following strategies: (i construction of a farnesyl pyrophosphate-producing platform strain by combining genomic deletions with heterologous expression of ispA from Escherichia coli; (ii prevention of carotenoid-like byproduct formation; (iii overproduction of limiting enzymes from the 2-c-methyl-d-erythritol 4-phosphate (MEP-pathway to increase precursor supply; and (iv heterologous expression of the plant patchoulol synthase gene PcPS from Pogostemon cablin. Additionally, a proof of principle liter-scale fermentation with a two-phase organic overlay-culture medium system for terpenoid capture was performed. To the best of our knowledge, the patchoulol titers demonstrated here are the highest reported to date with up to 60 mg L−1 and volumetric productivities of up to 18 mg L−1 d−1.

  6. Metabolic engineering of Cyanobacteria and microalgae for enhanced production of biofuels and high-value products.

    Science.gov (United States)

    Gomaa, M A; Al-Haj, L; Abed, R M M

    2016-10-01

    A lot of research has been performed on Cyanobacteria and microalgae with the aim to produce numerous biotechnological products. However, native strains have a few shortcomings, like limitations in cultivation, harvesting and product extraction, which prevents reaching optimal production value at lowest costs. Such limitations require the intervention of genetic engineering to produce strains with superior properties. Promising advancements in the cultivation of Cyanobacteria and microalgae have been achieved by improving photosynthetic efficiency through increasing RuBisCO activity and truncation of light-harvesting antennae. Genetic engineering has also contributed to final product extraction by inducing autolysis and product secretory systems, to enable direct product recovery without going through costly extraction steps. In this review, we summarize the different enzymes and pathways that have been targeted thus far for improving cultivation aspects, harvesting and product extraction in Cyanobacteria and microalgae. With synthetic biology advancements, genetically engineered strains can be generated to resolve demanding process issues and achieve economic practicality. This comprehensive overview of gene modifications will be useful to researchers in the field to employ on their strains to increase their yields and improve the economic feasibility of the production process. © 2016 The Society for Applied Microbiology.

  7. [Modeling developmental aspects of sensorimotor control of speech production].

    Science.gov (United States)

    Kröger, B J; Birkholz, P; Neuschaefer-Rube, C

    2007-05-01

    Detailed knowledge of the neurophysiology of speech acquisition is important for understanding the developmental aspects of speech perception and production and for understanding developmental disorders of speech perception and production. A computer implemented neural model of sensorimotor control of speech production was developed. The model is capable of demonstrating the neural functions of different cortical areas during speech production in detail. (i) Two sensory and two motor maps or neural representations and the appertaining neural mappings or projections establish the sensorimotor feedback control system. These maps and mappings are already formed and trained during the prelinguistic phase of speech acquisition. (ii) The feedforward sensorimotor control system comprises the lexical map (representations of sounds, syllables, and words of the first language) and the mappings from lexical to sensory and to motor maps. The training of the appertaining mappings form the linguistic phase of speech acquisition. (iii) Three prelinguistic learning phases--i. e. silent mouthing, quasi stationary vocalic articulation, and realisation of articulatory protogestures--can be defined on the basis of our simulation studies using the computational neural model. These learning phases can be associated with temporal phases of prelinguistic speech acquisition obtained from natural data. The neural model illuminates the detailed function of specific cortical areas during speech production. In particular it can be shown that developmental disorders of speech production may result from a delayed or incorrect process within one of the prelinguistic learning phases defined by the neural model.

  8. Some economic aspects of the low enriched uranium production

    International Nuclear Information System (INIS)

    1990-05-01

    At the Technical Committee Meeting on Economics of Low Enriched Uranium 14 papers were presented. A separate abstract was prepared for each of these papers. The five technical sessions covered several economic aspects of uranium concentrates production, conversion into uranium hexafluoride and uranium enrichment and the recycling of U and Pu in LWR. Four Panel discussions were held to discuss the uranium market trends, the situation of conversion industry, the reprocessing and the uranium market, the future trends of enrichment and the economics of LWRs compared with other reactors. Refs, figs and tabs

  9. Engineering and sustainability aspect of palm oil shell powder in cement

    Science.gov (United States)

    Karim, Mohammad Razaul; Hossain, Md. Moktar; Yusoff, Sumiani Binti

    2017-06-01

    Palm oil shell (POS) is a waste material which significantly produced in palm oil mills. In current practice, this waste is dumped in open land or landfill sites or is used as fuel to run a steam turbine of a boiler, which leads to environmental pollutions. The characterization, engineering and sustainability aspect of this waste for using in cement-based applications lead to reduce the emission of carbon dioxide and cost, save natural resources for cement production and also sustainable usage of waste material. The characterization was carried out using particle size analyzer, XRF, SEM and total organic carbon analyzer. ASTM standard methods were used to observe the setting time and water for normal consistency. The compressive strength of palm oil shell powder (POSP) blended cement was explored with the water to cement and cement to sand ratio of 0.40 and 0.50, respectively up to 40% replacement levels of OPC. Result found that the setting time and water demand were increased, but compressive strength was decreased to replacement levels. However, the incorporation of POSP in cement was reduced 9.6% of CO2 emission, 25 % of the cost and save natural resource, i.e. limestone, clay, iron ore, silica shale and gypsum of 35.1%, 4.95%, 0.9%, 4.05 % and 1.2 %, respectively at 30% replacement level of OPC. The results of this extensive study on POSP characterization, effect on basic cement properties and sustainability aspect provide the guidance for using the POSP at industrial scale for cement production.

  10. Developing engineering processes through integrated modelling of product and process

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Bjerrum; Hvam, Lars

    2012-01-01

    This article aims at developing an operational tool for integrated modelling of product assortments and engineering processes in companies making customer specific products. Integrating a product model in the design of engineering processes will provide a deeper understanding of the engineering...... activities as well as insight into how product features affect the engineering processes. The article suggests possible ways of integrating models of products with models of engineering processes. The models have been tested and further developed in an action research study carried out in collaboration...... with a major international engineering company....

  11. Social aspects in additive manufacturing of pharmaceutical products

    DEFF Research Database (Denmark)

    Lind, Johanna Lena Maria; Kälvemark Sporrong, Sofia; Kaae, Susanne

    2016-01-01

    INTRODUCTION: Additive manufacturing (AM) techniques, such as drug printing, represent a new engineering approach that can implement the concept of personalized medicine via on-demand manufacturing of dosage forms with individually adjusted doses. Implementation of AM principles...... will be used for production of on-demand medicine. The impact of such changes in the distribution chain on regulation, healthcare professionals and patients are highlighted. Expert opinion: Drug manufacturing by traditional methods is well-established, but it lacks the possibility for on-demand personalized...

  12. Folic Acid Production by Engineered Ashbya gossypii.

    Science.gov (United States)

    Serrano-Amatriain, Cristina; Ledesma-Amaro, Rodrigo; López-Nicolás, Rubén; Ros, Gaspar; Jiménez, Alberto; Revuelta, José Luis

    2016-11-01

    Folic acid (vitamin B 9 ) is the common name of a number of chemically related compounds (folates), which play a central role as cofactors in one-carbon transfer reactions. Folates are involved in the biosynthesis and metabolism of nucleotides and amino acids, as well as supplying methyl groups to a broad range of substrates, such as hormones, DNA, proteins, and lipids, as part of the methyl cycle. Humans and animals cannot synthesize folic acid and, therefore, need them in the diet. Folic acid deficiency is an important and underestimated problem of micronutrient malnutrition affecting billions of people worldwide. Therefore, the addition of folic acid as food additive has become mandatory in many countries thus contributing to a growing demand of the vitamin. At present, folic acid is exclusively produced by chemical synthesis despite its associated environmental burdens. In this work, we have metabolically engineered the industrial fungus Ashbya gossypii in order to explore its potential as a natural producer of folic acid. Overexpression of FOL genes greatly enhanced the synthesis of folates and identified GTP cyclohydrolase I as the limiting step. Metabolic flux redirection from competing pathways also stimulated folic acid production. Finally, combinatorial engineering synergistically increased the production of different bioactive forms of the folic vitamin. Overall, strains were constructed which produce 146-fold (6595µg/L) more vitamin than the wild-type and by far represents the highest yield reported. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Re-engineering of Products and Processes How to Achieve Global Success in the Changing Marketplace

    CERN Document Server

    Rotini, Federico; Cascini, Gaetano

    2012-01-01

    Whilst previous methods for business process re-engineering have focused on time and cost reduction policies to preserve competitive services and products, Re-engineering of Products and Processes: How to Achieve Global Success in the Changing Marketplace presents a new approach which aims to include aspects that impact the customer perceived value. This method supports business re-engineering initiatives by identifying process bottlenecks as well as new products and services available to overcome market competition. This original approach is described step-by-step, explaining the theory through examples of performable tasks and the selection of relevant tools according to the nature of the problem. Supported by illustrations, tables and diagrams, Re-engineering of Products and Processes: How to Achieve Global Success in the Changing Marketplace clearly explains a method which is then applied to several case studies across different industrial sectors. Re-engineering of Products and Processes: How to Achieve...

  14. Genome engineering for microbial natural product discovery.

    Science.gov (United States)

    Choi, Si-Sun; Katsuyama, Yohei; Bai, Linquan; Deng, Zixin; Ohnishi, Yasuo; Kim, Eung-Soo

    2018-03-03

    The discovery and development of microbial natural products (MNPs) have played pivotal roles in the fields of human medicine and its related biotechnology sectors over the past several decades. The post-genomic era has witnessed the development of microbial genome mining approaches to isolate previously unsuspected MNP biosynthetic gene clusters (BGCs) hidden in the genome, followed by various BGC awakening techniques to visualize compound production. Additional microbial genome engineering techniques have allowed higher MNP production titers, which could complement a traditional culture-based MNP chasing approach. Here, we describe recent developments in the MNP research paradigm, including microbial genome mining, NP BGC activation, and NP overproducing cell factory design. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Engineering cyanobacteria for fuels and chemicals production.

    Science.gov (United States)

    Zhou, Jie; Li, Yin

    2010-03-01

    The world's energy and global warming crises call for sustainable, renewable, carbon-neutral alternatives to replace fossil fuel resources. Currently, most biofuels are produced from agricultural crops and residues, which lead to concerns about food security and land shortage. Compared to the current biofuel production system, cyanobacteria, as autotrophic prokaryotes, do not require arable land and can grow to high densities by efficiently using solar energy, CO(2), water, and inorganic nutrients. Moreover, powerful genetic techniques of cyanobacteria have been developed. For these reasons, cyanobacteria, which carry out oxygenic photosynthesis, are attractive hosts for production of fuels and chemicals. Recently, several chemicals including ethanol, isobutanol and isoprene have been produced by engineered cyanobacteria directly using solar energy, CO(2), and water. Cyanobacterium is therefore a potential novel cell factory for fuels and chemicals production to address global energy security and climate change issues.

  16. Certain aspects of the environmental impact of nuclear power engineering and thermal power engineering

    Energy Technology Data Exchange (ETDEWEB)

    Malenchenko, A F [AN Belorusskoj SSR, Minsk. Inst. Yadernoj Ehnergetiki

    1979-01-01

    A review is made of the both environmental impact and hazard to man resulting from nuclear power engineering as compared with those of thermal power engineering. At present, in addition to such criteria, as physical-chemical characteristic of energy sources, their efficiency and accessibility for exploitation, new requirements were substantiated in relation to safety of their utilization for environment. So, one of essential problems of nuclear power engineering development consists in assessment and prediction of radioecological consequence. The analysis and operating experience of more than 1000 reactor/years with no accidents and harm for pupulation show, that in respect to impact on environment and man nuclear power engineering is much more safe in comparison with energy sources using tradidional fossile fuel.

  17. The Community project on engineering aspects of backfilling and sealing of radioactive waste repositories

    International Nuclear Information System (INIS)

    Lake, L.M.; Bennett, A.

    1987-01-01

    This report summarizes the work carried out under CEC contracts about engineering aspects of backfilling and sealing of radioactive waste repositories, for the time period 1983-84. It complements a previous report (ref. EUR 9283) on the same topic, this latter covering the period 1980-82

  18. Physical and engineering aspects of a fusion engineering test facility based on mirror confinement

    International Nuclear Information System (INIS)

    Kawabe, T.; Hirayama, S.; Hojo, H.; Kozaki, Y.; Yoshikawa, K.

    1986-01-01

    Controlled fusion research has accomplished great progress in the field of confinement of high-density and high-temperature plasmas and breakeven experiments are expected before the end of the 1980s. Many experiments have been proposed as the next step for fusion research. Among them is the study of ignited plasmas and another is the study of fusion engineering. Some of the important studies in fusion engineering are the integrated test in a fusion reactor environment as well as tests of first-wall materials and of the reactor structures, and test for tritium breeding and blanket modules or submodules. An ideal neutron source for the study of fusion engineering is the deuterium-tritium (D-T) fusion plasma itself. A neutron facility based on a D-T-burning plasma consists of all of the components that a real fusion power reactor would have, so eventually the integrated test for fusion reactor engineering can be done as well as the tests for each engineering component

  19. Commercial Aspect of Research Reactor Fuel Element Production

    International Nuclear Information System (INIS)

    Susanto, B.G; Suripto, A

    1998-01-01

    Several aspects affecting the commercialization of the Research Reactor Fuel Element Production Installation (RR FEPI) under a BUMN (state-owned company)have been studied. The break event point (BEP) value based on total production cost used is greatly depending upon the unit selling price of the fuel element. At a selling price of USD 43,500/fuel element, the results of analysis shows that the BEP will be reached at 51% of minimum available capacity. At a selling price of US$ 43.500/fuel element the total income (after tax) for 7 years ahead is US $ 4.620.191,- The net present value in this study has a positive value is equal to US $ 2.827.527,- the internal rate of return will be 18% which is higher than normal the bank interest rare (in US dollar) at this time. It is concluded therefore that the nuclear research reactor fuel element produced by state-owned company BUMN has a good prospect to be sold commercially

  20. Production and ecological aspects of short rotation poplars in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Karacic, Almir

    2005-02-01

    Poplars (Populus sp.) are widely used in short rotation forestry for production of biomass for bioenergy, fibre and environmental services. Swedish short rotation forestry is based on Salix sp., and little is known about the production potential of poplar plantations and their effects on the environment. This thesis focuses on four aspects of intensive short rotation forestry with poplars: 1) Biomass production and partitioning at several initial densities and a range of latitudes and growing conditions in Sweden, 2) the effects of poplar plantation on floristic diversity in the Swedish agricultural landscape, 3) the pattern of wind damage and its effects on production in poplar plantations in southern Sweden, and 4) ecological characterisation of poplar varieties in short-term experiments with pot-grown plants. Annual biomass production in poplar plots and plantations over a rotation period of 9-14 years ranges between 3.3 and 9.2 Mg/ha/yr. These high production figures are achieved on relatively fertile, non-fertilised and non-irrigated agricultural land. The production assessments for commercial poplar plantations established at lower initial densities (1000 trees/ha) in southern Sweden indicate a similar production potential as in closely spaced cultures (5000 trees/ha), though at 3-5 years longer rotations. Lower initial densities enable higher pulpwood yields along with the production of biomass for bioenergy. A comparison among 21 poplar plots, 0.1-13 ha large and adjacent arable fields, indicates that small poplar plantations may increase floristic diversity on a landscape scale, mainly by providing a different type of habitat that may favour shade-tolerant and draught-sensitive species. This is reflected by a relatively low number of species shared by both types of habitat. Wind damage in two poplar plantations, 15 and 33 ha large, was assessed using wind damage classes based on leaning angle of individual trees on plots established before wind damage

  1. Social aspects in additive manufacturing of pharmaceutical products.

    Science.gov (United States)

    Lind, Johanna; Kälvemark Sporrong, Sofia; Kaae, Susanne; Rantanen, Jukka; Genina, Natalja

    2017-08-01

    Additive manufacturing (AM) techniques, such as drug printing, represent a new engineering approach that can implement the concept of personalized medicine via on-demand manufacturing of dosage forms with individually adjusted doses. Implementation of AM principles, such as pharmacoprinting, will challenge the entire drug distribution chain and affect the society at different levels. Areas covered: This work summarizes the concept of personalized medicine and gives an overview of possibilities for monitoring patients' health. The most recent activities in the field of printing technologies for fabrication of dosage forms and 'polypills' with flexible doses and tailored release profiles are reviewed. Different scenarios for the drug distribution chain with the required adjustments in drug logistics, quality systems and environmental safety are discussed, as well as whether AM will be used for production of on-demand medicine. The impact of such changes in the distribution chain on regulation, healthcare professionals and patients are highlighted. Expert opinion: Drug manufacturing by traditional methods is well-established, but it lacks the possibility for on-demand personalized drug production. With the recent approval of the first printed medicine, society should be prepared for the changes that will follow the introduction of printed pharmaceuticals.

  2. Workshop on cooperative and human aspects of software engineering (CHASE 2011)

    DEFF Research Database (Denmark)

    Cataldo, Marcelo; de Souza, Cleidson; Dittrich, Yvonne

    2011-01-01

    is to provide a forum for discussing high quality research on human and cooperative aspects of software engineering. We aim at providing both a meeting place for the growing community and the possibility for researchers interested in joining the field to present their work in progress and get an overview over......Software is created by people for people working in varied environments, under various conditions. Thus understanding cooperative and human aspects of software development is crucial to comprehend how methods and tools are used, and thereby improve the creation and maintenance of software. Over...

  3. Metabolic engineering of cyanobacteria for the synthesis of commodity products

    NARCIS (Netherlands)

    Angermayr, S.A.; Gorchs Rovira, A.; Hellingwerf, K.J.

    2015-01-01

    Through metabolic engineering cyanobacteria can be employed in biotechnology. Combining the capacity for oxygenic photosynthesis and carbon fixation with an engineered metabolic pathway allows carbon-based product formation from CO2, light, and water directly. Such cyanobacterial 'cell factories'

  4. PGE Production in Southern Africa, Part II: Environmental Aspects

    Directory of Open Access Journals (Sweden)

    Benedikt Buchspies

    2017-11-01

    Full Text Available Platinum group elements (PGEs, 6E PGE = Pt + Pd + Rh + Ru + Ir + Au are used in numerous applications that seek to reduce environmental impacts of mobility and energy generation. Consequently, the future demand for PGEs is predicted to increase. Previous studies indicate that environmental impacts of PGE production change over time emphasizing the need of up-to-date data and assessments. In this context, an analysis of environmental aspects of PGE production is needed to support the environmental assessment of technologies using PGEs, to reveal environmental hotspots within the production chain and to identify optimization potential. Therefore, this paper assesses greenhouse gas (GHG emissions, cumulative fossil energy demand (CEDfossil, sulfur dioxide (SO2 emissions and water use of primary PGE production in Southern Africa, where most of today’s supply originates from. The analysis shows that in 2015, emissions amounted to 45 t CO2-eq. and 502 kg SO2 per kg 6E PGE in the case GHG and SO2 emissions, respectively. GHG emissions are dominated by emissions from electricity provision contributing more than 90% to the overall GHG emissions. The CEDfossil amounted to 0.60 TJ per kg 6E PGE. A detailed analysis of the CEDfossil reveals that electricity provision based on coal power consumes the most fossil energy carriers among all energy forms. Results show that the emissions are directly related to the electricity demand. Thus, the reduction in the electricity demand presents the major lever to reduce the consumption of fossil energy resources and the emission of GHGs and SO2. In 2015, the water withdrawal amounted to 0.272 million L per kg 6E PGE. Additionally, 0.402 million L of recycled water were used per kg 6E PGE. All assessed indicators except ore grades and production volumes reveal increasing trends in the period from 2010 to 2015. It can be concluded that difficult market conditions (see part I of this paper series and increasing

  5. Trade-off analysis of high-aspect-ratio-cooling-channels for rocket engines

    International Nuclear Information System (INIS)

    Pizzarelli, Marco; Nasuti, Francesco; Onofri, Marcello

    2013-01-01

    Highlights: • Aspect ratio has a significant effect on cooling efficiency and hydraulic losses. • Minimizing power loss is of paramount importance in liquid rocket engine cooling. • A suitable quasi-2D model is used to get fast cooling system analysis. • Trade-off with assigned weight, temperature, and channel height or wall thickness. • Aspect ratio is found that minimizes power loss in the cooling circuit. -- Abstract: High performance liquid rocket engines are often characterized by rectangular cooling channels with high aspect ratio (channel height-to-width ratio) because of their proven superior cooling efficiency with respect to a conventional design. However, the identification of the optimum aspect ratio is not a trivial task. In the present study a trade-off analysis is performed on a cooling channel system that can be of interest for rocket engines. This analysis requires multiple cooling channel flow calculations and thus cannot be efficiently performed by CFD solvers. Therefore, a proper numerical approach, referred to as quasi-2D model, is used to have fast and accurate predictions of cooling system properties. This approach relies on its capability of describing the thermal stratification that occurs in the coolant and in the wall structure, as well as the coolant warming and pressure drop along the channel length. Validation of the model is carried out by comparison with solutions obtained with a validated CFD solver. Results of the analysis show the existence of an optimum channel aspect ratio that minimizes the requested pump power needed to overcome losses in the cooling circuit

  6. Radiological aspects in a monazite based rare earth production facility

    International Nuclear Information System (INIS)

    Harikumar, M.; Sujata, R.; Chinnaesakki, S.; Tripathi, R.M.; Puranik, V.D.; Nair, N.N.G.

    2011-01-01

    One of the largest reserves of monazite in the world is present in the Indian subcontinent. Monazite ore has around 8-9% thorium oxide and nearly 60% Rare earth oxides. Selective acid extraction is used to separate the composite rare earths. The main radiological hazard arises from the presence of thorium and its daughter products. Monitoring of the radiation field and air activity in the rare earths plant is done routinely to reduce the radiation exposure to plant personnel. The separation of uranium and rare earths from Thorium concentrate separated from Monazite is being done as a part of the THRUST (Thorium Retrieval, Recovery of Uranium and Re-storage of Thorium) project from 2004 at Indian Rare Earths Limited, Udyogamandal. The radiological aspect for this extraction of uranium and rare earths was studied. The general radiation field in the rare earth production plant was 0.3-5.0 μGyh -1 and the average short lived air activity was 46 ± 7 mWL. The long lived air activity arising from 232 Th is very insignificant radiologically. The occupational radiation exposure for the rare earths separation plant is only 6 % of the total dose and the estimated average individual dose is 1.6 mSv per year. Studies were also done to estimate the residual radioactivity in the separated rare earth compounds using gamma spectrometry and the results showed significant presence of 227 Ac arising due to the protactinium fraction in the thorium concentrate. This activity is not detectable in a freshly separated rare earth compound but can buildup with time. (author)

  7. The aspect of personnel metal attitude in the production safety

    International Nuclear Information System (INIS)

    Joyosukarto, Priyanto M.

    2002-01-01

    The occurrence of an accident could always be traced to component/system failures and/or human error. The two factors are closely related to competency of the personnel's involved, in which mental attitude is a decisive factor. Furthermore mental attitude could be viewed as an element of Safety (S) Culture. Consequently, S. Culture could might created or at lea ts, be enhanced by the introduction of appropriate values, norms, as well as attitudes. The ABC and TBC of safety norm have been discussed briefly. Whereas mental attitude has been defined and discussed in detail and graded into six levels, namely: attending, responding, complying, accepting, preferring, and integrating. To assure highest level of safety, personnel must achieve integrating level of attitude, in the sense that he would merely do an action on the basis of safety values and/or norms prevailing in the system, not due to external pressure. Furthermore, considering the work as a physical and an emotional activity resulting in stress and strain on the body, Karate exercises have been promoted as an alternative for enhancing mental attitude by means of reducing personnel vulnerability to strain and stress. This method is accomplished by exploiting Roux's Low of conditioning effect and by implementation of an in-depth understanding on the spiritual aspect of Karate. It is concluded that in the field of production safety, there is a positive correlation between Karate, mental attitude, competence, performance, quality, and safety

  8. Search and rescue in collapsed structures: engineering and social science aspects.

    Science.gov (United States)

    El-Tawil, Sherif; Aguirre, Benigno

    2010-10-01

    This paper discusses the social science and engineering dimensions of search and rescue (SAR) in collapsed buildings. First, existing information is presented on factors that influence the behaviour of trapped victims, particularly human, physical, socioeconomic and circumstantial factors. Trapped victims are most often discussed in the context of structural collapse and injuries sustained. Most studies in this area focus on earthquakes as the type of disaster that produces the most extensive structural damage. Second, information is set out on the engineering aspects of urban search and rescue (USAR) in the United States, including the role of structural engineers in USAR operations, training and certification of structural specialists, and safety and general procedures. The use of computational simulation to link the engineering and social science aspects of USAR is discussed. This could supplement training of local SAR groups and USAR teams, allowing them to understand better the collapse process and how voids form in a rubble pile. A preliminary simulation tool developed for this purpose is described. © 2010 The Author(s). Journal compilation © Overseas Development Institute, 2010.

  9. Transmutation of Isotopes --- Ecological and Energy Production Aspects

    Science.gov (United States)

    Gudowski, Waclaw

    2000-01-01

    This paper describes principles of Accelerator-Driven Transmutation of Nuclear Wastes (ATW) and gives some flavour of the most important topics which are today under investigations in many countries. An assessment of the potential impact of ATW on a future of nuclear energy is also given. Nuclear reactors based on self-sustained fission reactions --- after spectacular development in fifties and sixties, that resulted in deployment of over 400 power reactors --- are wrestling today more with public acceptance than with irresolvable technological problems. In a whole spectrum of reasons which resulted in today's opposition against nuclear power few of them are very relevant for the nuclear physics community and they arose from the fact that development of nuclear power had been handed over to the nuclear engineers and technicians with some generically unresolved problems, which should have been solved properly by nuclear scientists. In a certain degree of simplification one can say, that most of the problems originate from very specific features of a fission phenomenon: self-sustained chain reaction in fissile materials and very strong radioactivity of fission products and very long half-life of some of the fission and activation products. And just this enormous concentration of radioactive fission products in the reactor core is the main problem of managing nuclear reactors: it requires unconditional guarantee for the reactor core integrity in order to avoid radioactive contamination of the environment; it creates problems to handle decay heat in the reactor core and finally it makes handling and/or disposal of spent fuel almost a philosophical issue, due to unimaginable long time scales of radioactive decay of some isotopes. A lot can be done to improve the design of conventional nuclear reactors (like Light Water Reactors); new, better reactors can be designed but it seems today very improbable to expect any radical change in the public perception of conventional

  10. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production.

    Science.gov (United States)

    Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng

    2017-07-19

    Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.

  11. Interfacial aspects in the production of advanced viscoelastic composites

    International Nuclear Information System (INIS)

    Khan, M.B.

    1997-01-01

    The integrity and morphology of the interfacial junction often dictate the mechanical and thermal response of multiphase engineering materials. The production of materials with synergistic properties requires the effective generation and consolidation of material interfaces. The paper examines this theme in viscoelastic systems, comprising polymer alloys, reactive composites, electrical insulation and reinforced commodity polymers. Processing protocol is identified through TEM/SEM for the nylon/ABS composite material that alloys optimum utilization of reactive comptabilizers. Comparative results show that both reactive and miscibility are crucial for a compatibilizer to provide sufficient dispersion and adequate interfacial adhesion between the two phases. In discrete system, interfacial coupling is normally accomplished by bonding agents which form chemical bridges across the particle-matrix interface. A recent technique, however, utilizer a lateral modulus gradient across the material interface to increase fracture energy (Mechanical approach), Micro morphology of a convectional composite sans bonding agent is compared with the latter modified via the mechanical approach, Cryo-fracture surfaces of these composites reveal good particle-matrix adhesion in the modified composite, as opposed to visible particle pull-out observed in the other composite. A third approach toward interfacial coupling relies on the suitable modification of the particle surface to promote interaction between the particle and the polymer chains. This strategy is examined with particular reference to electoral cable sheathing and synthetic window profile, by using composite particles produced in the author's processing facility. ESCA spectrum of these particles is discussed, along with impact and TGA/DTA data for the modified PVC/EPDM composites. The impact strength of rigid PVC improved over a range of temperature, including the important region of zero degree centigrade and below. TGGA

  12. Teaching and Learning in Chemical Product Engineering - an Evolving par of the Chemical Engineering Curriculum

    DEFF Research Database (Denmark)

    Vigild, Martin Etchells; Kiil, Søren; Wesselingh, Johannes

    2007-01-01

    Over the last decade Chemical Product Engineering has evolved as part of the Chemical Engineering Curriculum at several universities in Europe and America. At the DTU Chemical Product Engineering was introduced in 2000. This presentation will report on the experiences gained from teaching classes...... and preparing a text book on the subject. [1] Chemical Product Engineering is solidly based on chemical technical and engineering knowledge. Furthermore, the subject naturally calls for a holistic approach to teaching and learning and introduces elements which target transferable and professional engineering...... skills. Such skills are important in Chemical Product Engineering when dealing with open-ended problems, creative problem solutions, operating in a team working environment and exercising project management. In our course we emphasise team activites, formative feed back to the students as well as helping...

  13. Cross-cultural Human-Machine-Systems: selected aspects of a cross-cultural system engineering; Interkulturelle Mensch-Maschine-Systeme: ausgewaehlte Aspekte einer interkulturellen Systemgestaltung

    Energy Technology Data Exchange (ETDEWEB)

    Roese, K. [Technische Univ. Kaiserslautern (Germany). AG Nutzergerechte Produktentwicklung

    2006-07-01

    Cross-cultural Human-Machine-Systems are one key factor for success in the global market era. Nowadays the machine producer have to offer their products worldwide. With the export to other nations they have to consider on the user behaviour in these other cultures. The analysis of cross-cultural user requirements and their integration into the product development process is a real chance to cape with these challenge. This paper describe two aspects of cross-cultural user aspects. It gives an impression of the complex and sometimes unknown cultural influencing factors and their impact on Human-Machine-System-Engineering. (orig.)

  14. Cultural Aspects when Implementing Lean Production and Lean Product Development – Experiences from a Swedish Perspective

    Directory of Open Access Journals (Sweden)

    Promporn Wangwacharakul

    2014-07-01

    Full Text Available Lean principles and methods, originating in a Japanese cultural context, have spread to a large number of companies throughout the world. The aim of this case study research is to identify and compare national cultural aspects that influence Lean Production and Lean Product Development implementation in Swedish companies. Data were collected through questionnaires, interviews and an industrial workshop with Swedish Lean practitioners. The study shows that some sub-areas in Lean, such as value definition, control systems, leadership, team development, knowledge management, and strategies, are highly dependent on contextual factors related to human, cultural and organizational aspects. These are related to the national culture and should be considered to a higher extent for successful sustainable implementation of Lean in different cultural contexts. As for implementing Lean in Sweden, national cultural characteristics, such as individualism, autonomy and supportive management style fit well with Lean thinking.

  15. Student and Staff Perceptions of Key Aspects of Computer Science Engineering Capstone Projects

    Science.gov (United States)

    Olarte, Juan José; Dominguez, César; Jaime, Arturo; Garcia-Izquierdo, Francisco José

    2016-01-01

    In carrying out their capstone projects, students use knowledge and skills acquired throughout their degree program to create a product or provide a technical service. An assigned advisor guides the students and supervises the work, and a committee assesses the projects. This study compares student and staff perceptions of key aspects of…

  16. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes

    DEFF Research Database (Denmark)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca

    2018-01-01

    , we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical......Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational...... engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined...

  17. Health physics aspects of activation products from fusion reactors

    International Nuclear Information System (INIS)

    Shoup, R.L.; Poston, J.W.; Easterly, C.E.; Jacobs, D.G.

    1975-01-01

    A review of the activation products from fusion reactors and their attendant impacts is discussed. This includes a discussion on their production, expected inventories, and the status of metabolic data on these products

  18. Experiencing Production Ramp-Up Education for Engineers

    Science.gov (United States)

    Bassetto, S.; Fiegenwald, V.; Cholez, C.; Mangione, F.

    2011-01-01

    This paper presents a game of industrialisation, based on a paper airplane, that mimics real world production ramp-up and blends classical engineering courses together. It is based on a low cost product so that it can be mass produced. The game targets graduate students and practitioners in engineering fields. For students, it offers an experiment…

  19. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.

    Science.gov (United States)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J

    2018-05-11

    Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.

  20. Engineering Design Study of Quasi-Axisymmetric Stellarator with Low Aspect Ratio

    International Nuclear Information System (INIS)

    Matsuoka, Keisuke; Okamura, Shoichi; Nishimura, Shin; Isobe, Mitsutaka; Suzuki, Chihiro; Shimizu, Akihiro; Tanaka, Nobuo; Hasegawa, Mitsuru; Naito, Hideji; Urata, Kazuhiro; Suzuki, Yutaka; Tsukamoto, Tadanori

    2004-01-01

    The engineering design of the quasi-axisymmetric stellarator CHS-qa is described, having a toroidal period number of 2, major radius of 1.5 m, and plasma aspect ratio of 3.2. Although the entire structure of the machine is highly nonaxisymmetric and deformative, the following major engineering concerns for the modular coils and the vacuum vessel have been resolved: (a) modular coil design (curvature and twist of conductors), (b) supporting structures for modular coils, (c) errors due to electromagnetic forces and misalignment in manufacturing processes (analysis shows that the magnetic surface is robust against such disturbances), (d) construction procedure for vacuum vessel and modular coils, and (e) ports for heating and diagnostics

  1. Theoretical aspects of an electrostatic aerosol filter for civilian turbofan engines

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2012-03-01

    Full Text Available The paper addresses the problem of aerosol filtration in turbofan engines. The current problem of very fine aerosol admission is the impossibility for mechanical filtration; another aspect of the problem is the high mass flow of air to be filtered. Non-attended, the aerosol admission can -and usually does- lead to clogging of turbine cooling passages and can damage the engine completely. The approach is theoretical and relies on the principles of electrostatic dust collectors known in other industries. An estimative equation is deduced in order to quantify the electrical charge required to obtain the desired filtration. Although the device still needs more theoretical and experimental work, it could one day be used as a means of increasing the safety of airplanes passing trough an aerosol laden mass of air.

  2. The physics and engineering aspects of radiology. Textbook with questions and answers

    International Nuclear Information System (INIS)

    Link, T.M.; Heppe, A.; Meier, N.; Fiebich, M.

    1994-01-01

    The textbook formulates and answers the questions encountered in practice by students in the radiology professions, covering the physics and engineering aspects as well as quality control and the relevant requirements set by the X-ray Ordinance and the Quality Assurance Guide issued by the Bundesaerztekammer for diagnostic radiography and computed tomography. The text is accompanied by simplified illustrations that are easy to remember. The book is intended to serve as a textbook for readers preparing for their examination as a medical specialist, or for participants of obligatory courses in radiological protection, or radiographers. Readers will also find it useful as a refresher course. (orig.) [de

  3. Toward solar biodiesel production from CO2 using engineered cyanobacteria.

    Science.gov (United States)

    Woo, Han Min; Lee, Hyun Jeong

    2017-05-01

    Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to various biochemicals including fatty acid-derived biodiesel. Recently, Synechococcus elongatus PCC 7942, a model cyanobacterium, has been engineered to convert CO2 to fatty acid ethyl esters (FAEEs) as biodiesel. Modular pathway has been constructed for FAEE production. Several metabolic engineering strategies were discussed to improve the production levels of FAEEs, including host engineering by improving CO2 fixation rate and photosynthetic efficiency. In addition, protein engineering of key enzyme in S. elongatus PCC 7942 was implemented to address issues on FAEE secretions toward sustainable FAEE production from CO2. Finally, advanced metabolic engineering will promote developing biosolar cell factories to convert CO2 to feasible amount of FAEEs toward solar biodiesel. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Aspects

    Directory of Open Access Journals (Sweden)

    Fatma A. Abdel Razek

    2014-01-01

    Full Text Available The reproductive cycle of the eared horse mussel, Modiolus auriculatus, was followed for one year from February, 2011 to January, 2012 based on 240 individuals collected from Hurghada, north coast of Red Sea, Egypt. The gonadal maturation of M. auriculatus was examined by means of macroscopic and histological preparations of the mantle. Annual cycle with periods of growth, maturity and discharge of gonadic products occurs simultaneously in both sexes. Ripe individuals were observed throughout the year. The largest number of spawning for the individuals occurred from March to June and July for the population. So, it was clear to identify one heavy spawning period for this species. Sexation of M. auriculatus did not differ significantly from 1:1. Sexes were distinguishable in all individuals at the ripe stage with a shell length greater than 3.00 cm. A direct positive correlation was observed between gonad index and water temperature.

  5. Formation of personnel corps of engineers in the Urals: sociological aspect

    Directory of Open Access Journals (Sweden)

    Boris Sergeevich Pavlov

    2012-03-01

    Full Text Available In terms of crisis economic development, one of priority goals for the technical institutes of higher education is to train engineers who are competitive on the regional labour markets. The main root of the problem of low prestige of the engineering profession in Russia, the slippage in the personnel training in technical universities lies in the depreciation of engineering work, and reduction of its social and economic attractiveness. The gap between science, education and industry leads to aging of engineering staff at the manufactures and to migration of the most talented engineers into other fields of activity. This paper analyzes current problems of engineers training organization in the Urals. The causes of sharp decline of the engineering profession social status in Russia, the fall of interest of secondary school graduates to continuation of their studies in technical institutes of higher education are reviewed. The authors show that the formation of engineering competence as a defining personal and vocational quality of a specialist involves actualization of the student's motivation, one's active and purposeful adaptation to the educational process, increasing one's responsibility for mastering the curriculum. Conclusions and suggestions of the authors are based on the results of a comprehensive sociological research conducted by them in 2011 in five high schools of the Urals (Yekaterinburg, Nizhnevartovsk and Chelyabinsk. The survey showed that during the stage of young specialists' preparation, cooperation in the «university - enterprise» system is actually shifted to the interaction, in fact, between institute of higher education and young professionals who act as the sellers of their labour. The authors believe that it makes sense to roll over (or rather - to stimulate the active engineering work of the most productive engineering professionals who have reached retirement age. Equally sharp and critical are the issues of

  6. Irradiation of animal products. Aspects and applications [sterilizing - preservation

    International Nuclear Information System (INIS)

    Chiavaro, E.; Bentley, S.; Maggi, E.

    1998-01-01

    In December 1997, FDA finally approved irradiation of bovine ground meat as a mean of controlling pathogenic microorganisms; this acknowledgement probably preludes a widespread employment of this technology. The Authors take into account the various aspects of this controversal process, that still has difficulty in becoming popular, due to a substantial lack of information in public opinion [it

  7. Space Shuttle main engine product improvement

    Science.gov (United States)

    Lucci, A. D.; Klatt, F. P.

    1985-01-01

    The current design of the Space Shuttle Main Engine has passed 11 certification cycles, amassed approximately a quarter million seconds of engine test time in 1200 tests and successfully launched the Space Shuttle 17 times of 51 engine launches through May 1985. Building on this extensive background, two development programs are underway at Rocketdyne to improve the flow of hot gas through the powerhead and evaluate the changes to increase the performance margins in the engine. These two programs, called Phase II+ and Technology Test Bed Precursor program are described. Phase II+ develops a two-tube hot-gas manifold that improves the component environment. The Precursor program will evaluate a larger throat main combustion chamber, conduct combustion stability testing of a baffleless main injector, fabricate an experimental weld-free heat exchanger tube, fabricate and test a high pressure oxidizer turbopump with an improved inlet, and develop and test methods for reducing temperature transients at start and shutdown.

  8. Geological-Technical and Geo-engineering Aspects of Dimensional Stone Underground Quarrying

    Science.gov (United States)

    Fornaro, Mauro; Lovera, Enrico

    improved. The paper refers to some of the most important and significant examples in Italy, and underlines the possibility of extending, by underground quarrying, the exploitation of important and well-appreciated natural stones, as the quartzite-sandstone of the Tosco-Emiliano Appennini (Firenzuola Stone) and the Alpine gneisses. In order to pass from the simple experimental stage (explorative drift) to the more complex 3D design of the underground voids, detailed geo-structural reconstruction of the rock body and specific lithological in situ surveys are needed: such important aspects represent a very interesting common field between mining engineers and geologists.

  9. Analysis of the Lifecycle of Mechanical Engineering Products

    OpenAIRE

    Gubaidulina, Rauza Khamidovna; Gruby, S. V.; Davlatov, G. D.

    2016-01-01

    Principal phases of the lifecycle of mechanical engineering products are analyzed in the paper. The authors have developed methods and procedures to improve designing, manufacturing, operating and recycling of the machine. It has been revealed that economic lifecycle of the product is a base for appropriate organization of mechanical engineering production. This lifecycle is calculated as a minimal sum total of consumer and producer costs. The machine construction and its manufacturing techno...

  10. Some aspects of the translog production function estimation

    Directory of Open Access Journals (Sweden)

    Florin-Marius PAVELESCU

    2011-06-01

    Full Text Available In a translog production function, the number of parameters practically öexplodesö as the number of considered production factors increases. Consequently, the shortcoming in the estimation of the respective production function is the occurrence of collinearity. Theoretically, the collinearity impact is minimum if a single production factor is taken into account. In this case, we can determine not only the output elasticity but also the elasticity of scale related to the respective production factor. In the present paper, we demonstrate that the relationship between the output elasticity and estimated average elasticity of scale depends on the dynamics trajectory of the production factor, underexponential and overexponential, respectively. At the end, a practical example is offered, dealing with the computation of the Gross Domestic Product elasticity and average elasticity of scale related to employed population in the United Kingdom and France during 1999-2009.

  11. Consumer attitudes towards sustainability aspects of food production

    DEFF Research Database (Denmark)

    Krystallis Krontalis, Athanasios; Grunert, Klaus G; de Barcellos, Marcia Dutra

    2012-01-01

    This study aims to analyse citizens' sustainability attitudes towards food production in the EU, Brazil, and China (n = 2885), using pork as an exemplary production system. The objective is to map citizens' attitudes towards sustainable characteristics of pig production systems, and investigate...... whether these attitudes coincide with people's general attitudes towards sustainability, on one hand, and their consumption of specific pork products, on the other. A conjoint experiment was designed to evaluate citizens' preferences towards pig production systems with varying sustainability levels....... Conjoint analysis results were then used for a subsequent cluster analysis in order to identify international citizen clusters across the three continents. Respondents' sociodemographic profile, attitudes towards sustainability issues, and consumption frequency of various pork products are used to profile...

  12. Consumer attitudes towards sustainability aspects of food production

    DEFF Research Database (Denmark)

    Krystallis Krontalis, Athanasios; Grunert, Klaus G; de Barcellos, Marcia D.

    2013-01-01

    This study aims to analyse citizens' sustainability attitudes towards food production in the EU, Brazil, and China (n = 2885), using pork as an exemplary production system. The objective is to map citizens' attitudes towards sustainable characteristics of pig production systems, and investigate...... whether these attitudes coincide with people's general attitudes towards sustainability, on one hand, and their consumption of specific pork products, on the other. A conjoint experiment was designed to evaluate citizens' preferences towards pig production systems with varying sustainability levels....... Conjoint analysis results were then used for a subsequent cluster analysis in order to identify international citizen clusters across the three continents. Respondents' sociodemographic profile, attitudes towards sustainability issues, and consumption frequency of various pork products are used to profile...

  13. Methodological aspects of accounting production cost of public sector entities

    Directory of Open Access Journals (Sweden)

    Людмила Геннадіївна Ловінська

    2015-09-01

    Full Text Available The necessity of obtaining objective information about the activities of the public sector in various areas of the production is defined. It is proved an expediency of development the Project of «Guidelines for the structure of production costs» on the basis of the approved in the public sector NP(SAPS 135 "Costs". The need for accounting costs by type of activity (operational, financial and investment is marked. The composition of production costs is defined

  14. Plant cultivation aspects of biogas production in organic farming; Pflanzenbauliche Aspekte der Biogasproduktion im oekologischen Landbau

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Bernhard [Amt fuer Ernaehrung Landwirtschaft und Forsten, Bamberg (Germany); Miller, Hubert [Biolandhof Miller (Germany)

    2012-11-01

    The authors of the contribution under consideration report on plant cultivation aspects of biogas production in organic farming. The power generation, the economic aspects of this operating sector, the potential impact on the performance of crop production as well as soil fertility are considered.

  15. Sustainability, environmental, and safety aspects in the production of biocomposites

    DEFF Research Database (Denmark)

    Markert, Frank

    Future product design requires sustainbale processes and may with great benefit prtially be based on composites made from agricultural by-products. the EU project Biocomp addressed the manufacturing and the parallel assessment of the world wide sustainability of such an approach as well as the en......Future product design requires sustainbale processes and may with great benefit prtially be based on composites made from agricultural by-products. the EU project Biocomp addressed the manufacturing and the parallel assessment of the world wide sustainability of such an approach as well...

  16. SCIENTIFIC AND PRACTICAL ASPECTS OF PRODUCTION THE COMBINED FOOD

    Directory of Open Access Journals (Sweden)

    Vladimir Ivanovich Manzhesov

    2017-01-01

    Full Text Available In work of work the choice of use of lupin’s flour is reasonable, her physical and chemical indicators are studied. The technological scheme of development of the combined meat and cereal products of a functional orientation is developed and proved. The chemical composition of a ready-made product is investigated. Balance of amino-acid structure is noted that allows to carry meat and cereal meatballs «Domashnie obogashhennye» to functional products. Calculation of economic efficiency has shown that production is expedient. The net profit will make 2731,96 rub. Level of profitability has made 17,02%.

  17. Institutional aspects of decentralized electricity production. Orientations of the CEC

    International Nuclear Information System (INIS)

    Guibal, J.C.

    1991-01-01

    The objective of the european commission is to remove the legal and administrative obstacles blocking the development of consumer production on the basis of combined production and waste combustion, and to oblige the public service to purchase the surplus electricity generated by consumer production at a price based on the avoided costs. The main difficulty faced by the Commission will be to develop a relatively flexible framework defining exactly how consumer production is to be integrated into the public service, given the diversity of the procedures existing in the different member states (projects THERMIE and SAVE)

  18. Applicability aspects of workload control in job shop production

    NARCIS (Netherlands)

    Henrich, P.

    2005-01-01

    The term Job Shop Production (JSP) describes a manufacturing environment that produces piece goods in small batches. It is a common manufacturing environment in small and medium-sized enterprises (SMEs). The incoming orders often differ in the number of ordered products, their design, process

  19. Product Realization | College of Engineering & Applied Science

    Science.gov (United States)

    Olympiad Girls Who Code Club FIRST Tech Challenge NSF I-Corps Site of Southeastern Wisconsin UW-Milwaukee Product Realization Course Companies need time and talent to develop new product prototypes. Students need

  20. Biofuel production in Escherichia coli. The role of metabolic engineering and synthetic biology

    Energy Technology Data Exchange (ETDEWEB)

    Clomburg, James M. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Gonzalez, Ramon [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Rice Univ., Houston, TX (United States). Dept. of Bioengineering

    2010-03-15

    The microbial production of biofuels is a promising avenue for the development of viable processes for the generation of fuels from sustainable resources. In order to become cost and energy effective, these processes must utilize organisms that can be optimized to efficiently produce candidate fuels from a variety of feedstocks. Escherichia coli has become a promising host organism for the microbial production of biofuels in part due to the ease at which this organism can be manipulated. Advancements in metabolic engineering and synthetic biology have led to the ability to efficiently engineer E. coli as a biocatalyst for the production of a wide variety of potential biofuels from several biomass constituents. This review focuses on recent efforts devoted to engineering E. coli for the production of biofuels, with emphasis on the key aspects of both the utilization of a variety of substrates as well as the synthesis of several promising biofuels. Strategies for the efficient utilization of carbohydrates, carbohydrate mixtures, and noncarbohydrate carbon sources will be discussed along with engineering efforts for the exploitation of both fermentative and nonfermentative pathways for the production of candidate biofuels such as alcohols and higher carbon biofuels derived from fatty acid and isoprenoid pathways. Continued advancements in metabolic engineering and synthetic biology will help improve not only the titers, yields, and productivities of biofuels discussed herein, but also increase the potential range of compounds that can be produced. (orig.)

  1. Regulatory and clinical aspects of psychotropic medicinal products bioequivalence.

    Science.gov (United States)

    Bałkowiec-Iskra, Ewa; Cessak, Grzegorz; Kuzawińska, Olga; Sejbuk-Rozbicka, Katarzyna; Rokita, Konrad; Mirowska-Guzel, Dagmara

    2015-07-01

    Introduction of generic medicinal products to the market has increased access to modern therapies but also enabled significant reduction in their cost, leading to containment of public expenditures on medicinal products reimbursement. The critical assessment of bioequivalence of any reference medicinal product and its counterpart is based on comparison of their rate and extent of absorption. It is assumed that two medicinal products are bioequivalent when their rate and extent of absorption do not show significant differences when administered at the same dose under similar experimental conditions. Bioequivalent medicinal products are declared to be also therapeutically equivalent and can be used interchangeably. However, despite regulatory declaration, switching from reference to generic drugs is often associated with concerns of healthcare providers about decreased treatment effectiveness or occurrence of adverse drug reactions. The aim of this article is to provide a description of rules that guide registration of generic medicinal products in the European Union and to analyze specific examples from the scientific literature concerning therapeutic equivalence of reference and generic antidepressant and antipsychotic medicinal products. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  2. Concurrent Engineering in seafood product development

    DEFF Research Database (Denmark)

    Jonsdottir, Stella; Vesterager, Johan; Børresen, Torger

    1998-01-01

    benefit from the CE approach which can support product developers to provide concurrent specifications for raw materials, ingredients, packaging, and production methods. The approach involves the use of product models from which line extensions are more easily generated than by use of customary stepwise...... techniques. it is anticipated that other food industries also can benefit from the more simultaneous approach...

  3. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  4. User oriented definition of product requirements within mechatronic engineering

    OpenAIRE

    Gerst, M.;Gierhardt, H.;Braun, T.

    2017-01-01

    In this paper the application of a modeling technique from software engineering to mechatronic engineering is presented. The Unified Modeling Language (UML) is used to model users´ needs and relate them to product requirements. Within a bus seat development project a Use Case Model and an Analyses Model were elaborated. Advantages and Disadvantages of the presented procedure are shown.

  5. Practical dosimetric aspects of blood and blood product irradiation

    International Nuclear Information System (INIS)

    Fearon, T.C.; Luban, N.L.

    1986-01-01

    The method of choice to reduce susceptibility to transfusion-transmitted graft-versus-host disease is irradiation of allogenic blood and blood products for transfusion to immunosuppressed recipients. Optimal irradiation requires delivery of a known and homogeneous absorbed dose. The use of absorbed dose in air measured at the center of the irradiation volume without proper compensation for sample absorption can lead to approximately 20 percent underexposure. A lucite cylinder was used to provide the delivery of a homogeneous irradiation dose to blood products of different volumes by allowing rotation of the product

  6. Sanitary-hygienic and ecological aspects of beryllium production

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskykh, E.M.; Savchuk, V.V.; Sidorov, V.L.; Slobodin, D.B.; Tuzov, Y.V. [Ulba Metallurgical Plant, Ust-Kamenogorsk (Kazakhstan)

    1998-01-01

    The Report describes An organization of sanitary-hygienic and ecological control of beryllium production at Ulba metallurgical plant. It involves: (1) the consideration of main methods for protection of beryllium production personnel from unhealthy effect of beryllium, (2) main kinds of filters, used in gas purification systems at different process areas, (3) data on beryllium monitoring in water, soil, on equipment. This Report also outlines problems connected with designing devices for a rapid analysis of beryllium in air as well as problems of beryllium production on ecological situation in the town. (author)

  7. Some aspects of the development of hydrogen power engineering and technology

    Energy Technology Data Exchange (ETDEWEB)

    Shpil' rayn, E E; Malyshenko, S P

    1980-01-01

    In the USSR, FRG, United States, Japan, France, Italy and other countries, broad programs of research and development have been adopted in the area of hydrogen power engineering. Broad and multifaceted development of hydrogen power engineering and technology is expected in no earlier than the first quarter of the twenty-first century. However, the rise in prices for liquid and gaseous fuel and the rise in demand for H/sub 2/ of its traditional consumers can make it expedient to develop large-scale production of H/sub 2/ and gradual displacement of natural liquid and gaseous fuels from the processes of oil refining, synthesis of methanol and ammonia, metallurgical production of nuclear fuel and coal even before the end of the twentieth century. A natural system of energy source-production block for obtaining the energy carrier (H/sub 2/) can make it possible in the last quarter of the twentieth century to solve the problems associated with creating large autonomous energy-technological complexes which do not require hydrocarbon fuel for production of energy and products of chemical synthesis, oil refining, metallurgy and others. In this sense, even now the question must be solved of creating energy-technology which uses as the main energy resources nuclear energy and coal, as well as energy-carrier and raw material, H/sub 2/ and artificial fuels on its basis. In addition, development of large energy systems based on nuclear energy and coal as the energy sources and which include different-characteristic and numerous consumers results in the need already in the near future to use artificial fuels based on H/sub 2/ and H/sub 2/ in power engineering as the energy carriers and energy accumulators. This will make it possible to construct a more flexible system adapted to the consumers which does not depend on the type of energy sources.

  8. Aspects Regarding the Scientific Production of a University

    OpenAIRE

    Ionela DUMITRU

    2008-01-01

    The analysis of the scientific production of a university is a very complex process and it usually refers to the number of articles published in scientific journals. For most analyses, only a small number of journals is taken into consideration. Usually, there are considered the journals indexed in databases like Science Citation Index (Thompson ISI). However, we consider that for a more complex image of the scientific production of a university, we need to take into consideration several asp...

  9. Security Requirements Management in Software Product Line Engineering

    Science.gov (United States)

    Mellado, Daniel; Fernández-Medina, Eduardo; Piattini, Mario

    Security requirements engineering is both a central task and a critical success factor in product line development due to the complexity and extensive nature of product lines. However, most of the current product line practices in requirements engineering do not adequately address security requirements engineering. Therefore, in this chapter we will propose a security requirements engineering process (SREPPLine) driven by security standards and based on a security requirements decision model along with a security variability model to manage the variability of the artefacts related to security requirements. The aim of this approach is to deal with security requirements from the early stages of the product line development in a systematic way, in order to facilitate conformance with the most relevant security standards with regard to the management of security requirements, such as ISO/IEC 27001 and ISO/IEC 15408.

  10. Lactose hydrolysis and milk powder production: technological aspects

    Directory of Open Access Journals (Sweden)

    Jansen Kelis Ferreira Torres

    2017-06-01

    Full Text Available The food industry has the challenge and the opportunity to develop new products with reduced or low lactose content in order to meet the needs of a growing mass of people with lactose intolerance. The manufacture of spray dried products with hydrolyzed lactose is extremely challenging. These products are highly hygroscopic, which influence the productivity and conservation of the powders, not to mention the undesirable and inevitable technological problem of constant clogging of drying chambers. The aim of this study was to evaluate the effect of different levels (0%, 25%, 50%, 75% and > 99% of enzymatic lactose hydrolysis on the production and storage of whole milk powder. The samples were processed in a pilot plant and characterized in relation to their composition analysis; to their degree of hydrolysis of lactose; and to their sorption isotherms. The results indicated the hydrolysis of lactose may affect the milk powder production due to a higher extent of powder adhesion within the spray dryer chambers and due to a higher tendency to absorb water during storage.

  11. A REVIEW: A MODEL of CULTURAL ASPECTS for SUSTAINABLE PRODUCT DESIGN

    Directory of Open Access Journals (Sweden)

    Ihwan Ghazali,

    2012-04-01

    Full Text Available Product design stages are important to consider critically in production. Generally, product design that shall be created by designer, should consider what the customer wants and needs. Nowadays issues, product design does not only consider the “wants and needs” of user, but also how the design can be created by embedding sustainability aspects in the product. Culture is also one of the important aspects which need to be considered in product design as culture affects the way users respond to the product. This paper aims to develop a new model for design development, in which the aspects of culture are incorporated into sustainable product design. By reviewing the existing literature, the authors attempt to identify the gaps of the existing papers, which illustrate how culture affects sustainable product design. Recent papers have only shown that culture influences product design, but they do not explore sustainability and the culture aspects in product design. Due to these gaps, it is therefore important to create a model which will assist designers to elicit sustainable product design based on cultural aspects. In summary, designers need to reflect on the “wants and needs” of users. The framework presented in this paper can be integrated into designers’ and companies’ decision-making during product design development.

  12. Aspects of strangeness production with 15 -- 30 GeV proton beams

    International Nuclear Information System (INIS)

    Dover, C.B.

    1992-04-01

    We discuss the spectrum of physics questions related to strangeness which could be addressed with a 15--30 GeV proton storage ring. We focus on various aspects of strangeness production, including hyperon production in pp collisions, studies of hyperon-nucleon scattering, production of hyper-fragments in p-nucleus collisions, and hyperon spin observables in inclusive production

  13. Advances in Metabolic Engineering of Cyanobacteria for Photosynthetic Biochemical Production

    OpenAIRE

    Lai, Martin C.; Lan, Ethan I.

    2015-01-01

    Engineering cyanobacteria into photosynthetic microbial cell factories for the production of biochemicals and biofuels is a promising approach toward sustainability. Cyanobacteria naturally grow on light and carbon dioxide, bypassing the need of fermentable plant biomass and arable land. By tapping into the central metabolism and rerouting carbon flux towards desirable compound production, cyanobacteria are engineered to directly convert CO2 into various chemicals. This review discusses the d...

  14. Applying Product Configuration Systems in Engineering Companies

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde

    This Ph.D. thesis looks into the application of configuration systems in engineering companies, and how configuration systems can be used to support business processes in engineering companies. Often the motivation stated by researchers and practitioners is, that a configuration project...... and sustain competitive advantage” (Teece, Pisano, & Shuen, 1997, pp.509) This question has puzzled academics and preoccupied managers for the last century. Yet, it seems there is still no consensus regarding the meaning of strategy, and how strategy works. Type in the word “strategy” on Amazon.co.uk and 76......,133 books apply. Type it in on Google scholar and 8,580,000 homepages apply3. Obviously, strategy is an important subject. However, the subject also seems to be difficult to perceive. Although this thesis is not about strategy, or strategizing, I would like to pursue the definition of strategy one step...

  15. Aerial imaging for FABs: productivity and yield aspects

    Science.gov (United States)

    Englard, Ilan; Cohen, Yaron; Elblinger, Yair; Attal, Shay; Berns, Neil; Shoval, Lior; Ben-Yishai, Michael; Mangan, Shmoolik

    2009-03-01

    The economy of wafer fabs is changing faster for 3x geometry requirements and below. Mask set and exposure tool costs are almost certain to increase the overall cost per die requiring manufacturers to develop productivity and yield improvements to defray the lithography cell economic burden. Lithography cell cost effectiveness can be significantly improved by increasing mask availability while reducing the amount of mask sets needed during a product life cycle. Further efficiency can be gained from reducing send-ahead wafers and qualification cycle time, and elimination of inefficient metrology. Yield is the overriding die cost modulator and is significantly more sensitive to lithography as a result of masking steps required to fabricate the integrated circuit. Thus, for productivity to increase with minimal yield risk, the sample space of reticle induced source of variations should be large, with shortest measurement acquisition time possible. This paper presents the latest introduction of mask aerial imaging technology for the fab, Aera2TM for Lithography with IntenCTM, as an enabler for efficient lithography manufacturing. IntenCD is a high throughput, high density mask-based critical dimension (CD) mapping technology, with the potential for increasing productivity and yield in a wafer production environment. Connecting IntenCD to a feed forward advance process control (APC) reduces significantly the amount of traditional CD metrology required for robust wafer CD uniformity (CDU) correction and increases wafer CD uniformity. This in turn improves the lithography process window and yield and contributes to cost reduction and cycle time reduction of new reticles qualification. Advanced mask technology has introduced a new challenge. Exposure to 193nm wavelength stimulates haze growth on the mask and imposes a regular cleaning schedule. Cleaning eventually causes mask degradation. Haze growth impacts mask CD uniformity and induce global transmission fingerprint

  16. Quality aspects in nuclear engineering courses at the University of Arkansas

    International Nuclear Information System (INIS)

    West, L.

    1993-01-01

    Although quality assurance and total quality management are well-established programs in industry, almost all university academic programs lack formally organized programs for development, demonstration, and maintenance of high quality. Many academic programs do have many facets of a quality assurance program, it is simply handled as a part of the usual management of the academic program. These quality assurance programs inevitably are aimed at management of the instructor, with little or no emphasis on the ongoing quality of student work. This paper describes how the concept of quality is directed toward the entire aspect of nuclear engineering classes at the University of Arkansas, from overall university management of the instructor to details concerning instructor contact with students to improve the quality of the student's own work. One particular new concept is introduced: the use of quality points by the author in grading all students work

  17. Trade-Off Analysis between Concerns Based on Aspect-Oriented Requirements Engineering

    Science.gov (United States)

    Laurito, Abelyn Methanie R.; Takada, Shingo

    The identification of functional and non-functional concerns is an important activity during requirements analysis. However, there may be conflicts between the identified concerns, and they must be discovered and resolved through trade-off analysis. Aspect-Oriented Requirements Engineering (AORE) has trade-off analysis as one of its goals, but most AORE approaches do not actually offer support for trade-off analysis; they focus on describing concerns and generating their composition. This paper proposes an approach for trade-off analysis based on AORE using use cases and the Requirements Conflict Matrix (RCM) to represent compositions. RCM shows the positive or negative effect of non-functional concerns over use cases and other non-functional concerns. Our approach is implemented within a tool called E-UCEd (Extended Use Case Editor). We also show the results of evaluating our tool.

  18. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla

    2009-01-01

    Full Text Available Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in real engines’ exhaust pipes. This work also considers how the simulation must be made, based on the previous exploration. The results (presented as e- quations in this first paper show the great influence exerted by pressure wave movement on flow through the engine and there- fore on its final performance.

  19. Productivity improvement through industrial engineering in the semiconductor industry

    Science.gov (United States)

    Meyersdorf, Doron

    1996-09-01

    Industrial Engineering is fairly new to the semiconductor industry, though the awareness to its importance has increased in recent years. The US semiconductor industry in particular has come to the realization that in order to remain competitive in the global market it must take the lead not only in product development but also in manufacturing. Industrial engineering techniques offer one ofthe most effective strategies for achieving manufacturing excellence. Industrial engineers play an important role in the success of the manufacturing facility. This paper defines the Industrial engineers role in the IC facility, set the visions of excellence in semiconductor manufacturing and highlights 10 roadblocks on the journey towards manufacturing excellence.

  20. Commercialization potential aspects of microalgae for biofuel production: An overview

    Directory of Open Access Journals (Sweden)

    Tahani S. Gendy

    2013-06-01

    This article discusses the importance of algae-based biofuels together with the different opinions regarding its future. Advantages and disadvantages of these types of biofuels are presented. Algal growth drives around the world with special emphasis to Egypt are outlined. The article includes a brief description of the concept of algal biorefineries. It also declares the five key strategies to help producers to reduce costs and accelerate the commercialization of algal biodiesel. The internal strengths and weaknesses, and external opportunities, and threats are manifested through the SWOT analysis for micro-algae. Strategies for enhancing algae based-fuels are outlined. New process innovations and the role of genetic engineering in meeting these strategies are briefly discussed. To improve the economics of algal biofuels the concept of employing algae for wastewater treatment is presented.

  1. Re-engineering bacteria for ethanol production

    Science.gov (United States)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  2. Product engineering by high-temperature flame synthesis

    DEFF Research Database (Denmark)

    Johannessen, Tue; Johansen, Johnny; Mosleh, Majid

    product gas can be applied directly in additional product engineering concepts. A brief overview of on-going product developments and product engineering projects is outlined below. These projects, which are all founded on flame synthesis of nano-structured materials, include: • Preparation of catalyzed...... hardware by direct deposition of catalysts on process equipment • Modifications of the substrate surfaces to obtain good adhesion during flame-coating • Formation of membrane layers by gas-phase deposition of nano-particles • Catalyst deposition in micro-reactors for rapid catalyst screening...

  3. Nickel production in Serbia-technological and environmental aspects

    Directory of Open Access Journals (Sweden)

    Željko Kamberović

    2014-12-01

    Full Text Available Demand for nickel is constantly growing due to the versatility of its application, at the first place for stainless steel production. Ore reserves and possibility of nickel production of today’s Serbia and in neighboring countries were thoroughly investigated, and presented work is part of a wider project of sublimation of scientific and professional experience in the field of nickel extractive metallurgy on domestic raw materials. Presented research explores the possibility of high pressure sulfuric acid leaching of Serbian lateritic ores from localities Rudjinci, Ba and Lipovac. All three investigated ore deposits behaved differently both during preparation and during hydrometallurgical treatment. As optimal method for ore preparation proved to be crushing-milling-sieving route, but without possibility of concentrate production. Only for Rudjinci ore deposit achieved leaching efficiency reached satisfactory level of 95%. Within presented paper flow-sheet is proposed for processing high-magnesium laterite ores, with iron and magnesium oxide Both could be recirculated and used again in technological process; MgO for iron precipitation and SO2 for production of leaching agent, sulfuric acid. Final decision on the sustainability of the process will be made according to techno-economic and environmental evaluation. Estimated overall impact of the project implementation on the environment is negative.

  4. Expanding OPEC production capacity: some legal and environmental aspects

    International Nuclear Information System (INIS)

    Al-Sahlawi, M.A.

    1992-01-01

    There is general consensus that the global demand for oil will increase in the medium-to-long term. It is predicted that much of this additional demand will be for OPEC oil. Therefore, it will become necessary to expand OPEC production capacity to meet this perceived increase. In recent years, many OPEC countries have launched far-reaching and, in some cases, radical plans to expand their production capacity. However, given the various investment and political constraints faced by the 13 OPEC Members, each country differs markedly in its ability to boost production capacity sufficiently to meet self-imposed targets. In this paper, we examine the importance to the oil market of recent oil supply trends and possible future attempts to build OPEC production capacity, focussing in particular on the legal and environmental issues involved. A review is provided of the legal mechanisms currently evolving in OPEC Countries to encourage investment in their oil industries. In addition, we outline the impact of the environmental movement of OPEC's expansion programmes. (author)

  5. Quantitative aspects of crystalline lactose in milk products

    NARCIS (Netherlands)

    Roetman, K.

    1982-01-01

    The occurrence of crystalline lactose in milk products and its influence on their physical properties are briefly reviewed. The importance of the quantitive determination of crystalline lactose for scientific and industrial purposes is indicated, and a summary is given of our earlier work. This

  6. Engineering and design aspects related to the development of the ITER divertor

    International Nuclear Information System (INIS)

    Dietz, J.; Chiocchio, S.; Antipenkov, A.

    1994-01-01

    Most of the divertor concepts proposed for the Next Step devices relied on the exhaust of the SOL power to target plates which intersect the magnetic field fines. The resulting highly peaked thermal load, together with the concentrated fluxes of energetic particles, posed severe design constraints and ultimately led to unacceptably short target lifetime. The ITER high density gas target divertor concept is based on transferring the nominal power perpendicular to the magnetic field lines from the plasma edge onto large surfaces and on dissipating the particles' energy through atomic and molecular mechanisms. While the basic ideas for this approach have been motivated by recent results in present tokamaks, a full assessment of this concept still requires extensive experimental and modelling work. The paper describes the engineering and design aspects involving the development of the ITER divertor and shows how the physics assumptions translate into engineering requirements, and how the additional existing constraints (such as the limited space, neutron load, electromagnetic effects, compatibility with other components, remote maintainability) have been taken into account for the design definition. The concept developed takes advantage of the spatial separation of the several physics phenomena anticipated to take place in the divertor, thus relaxing the needs to accommodate in the same region opposing requirements

  7. NRC Reviewer Aid for Evaluating the Human Factors Engineering Aspects of Small Modular Reactors

    International Nuclear Information System (INIS)

    OHara, J.M.; Higgins, J.C.

    2012-01-01

    Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations (ConOps). The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering (HFE) and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to support NRC HFE reviewers of SMR applications by identifying some of the questions that can be asked of applicants whose designs have characteristics identified in the issues. The questions for each issue were identified and organized based on the review elements and guidance contained in Chapter 18 of the Standard Review Plan (NUREG-0800), and the Human Factors Engineering Program Review Model (NUREG-0711).

  8. Environmental aspects of eucalyptus based ethanol production and use

    International Nuclear Information System (INIS)

    González-García, Sara; Moreira, Ma. Teresa; Feijoo, Gumersindo

    2012-01-01

    A renewable biofuel economy is projected as a pathway to decrease dependence on fossil fuels as well as to reduce greenhouse gases (GHG) emissions. Ethanol produced on large-scale from lignocellulosic materials is considered the automotive fuel with the highest potential. In this paper, a life cycle assessment (LCA) study was developed to evaluate the environmental implications of the production of ethanol from a fast-growing short rotation crop (SRC): eucalyptus as well as its use in a flexi-fuel vehicle (FFV). The aim of the analysis was to assess the environmental performance of three ethanol based formulations: E10, E85 and E100, in comparison with conventional gasoline. The standard framework of LCA from International Standards Organization was followed and the system boundaries included the cultivation of the eucalyptus biomass, the processing to ethanol conversion, the blending with gasoline (when required) and the final use of fuels. The environmental results show reductions in all impact categories under assessment when shifting to ethanol based fuels, excluding photochemical oxidant formation, eutrophication as well as terrestrial and marine ecotoxicity which were considerably influenced by upstream activities related to ethanol manufacture. The LCA study remarked those stages where the researchers and technicians need to work to improve the environmental performance. Special attention must be paid on ethanol production related activities, such as on-site energy generation and distillation, as well as forest activities oriented to the biomass production. The use of forest machinery with higher efficiency levels, reduction of fertilizers dose and the control of diffuse emissions from the conversion plant would improve the environmental profile. -- Highlights: ► The identification of the environmental implications of the production and use of eucalyptus based ethanol was carried out. ► Eucalyptus is a Spanish common and abundant fast-growing short

  9. Metabolic and environmental aspects of fusion reactor activation products: niobium

    International Nuclear Information System (INIS)

    Easterly, C.E.; Shank, K.E.

    1977-11-01

    A summary of the metabolic and environmental aspects of niobium is presented. The toxicological symptoms from exposure to niobium are given, along with lethal concentration values for acute and chronic exposures. Existing human data are presented; animal uptake and retention data are analyzed for various routes of administration. Recommended metabolic values are also presented along with comments concerning their use and appropriateness. The natural distribution of niobium is given for freshwater, seawater, and the biosphere. Concentration factors and retention of 95 Nb in the environment are discussed with reference to: plant retention via leaf absorption; plant retention via root uptake; uptake in terrestrial animals from plants; uptake in freshwater organisms; uptake in marine organisms; and movement in soil. Conclusions are drawn regarding needs for future work in these areas. This review was undertaken because niobium is expected to be a key metal in the development of commercial fusion reactors. It is recognized that niobium will likely not be used in the first generation reactors as a structural material but will appear as an alloy in such materials as superconducting wire

  10. Import Substitution in Regional Industrial Production: Theoretical and Practical Aspects

    Directory of Open Access Journals (Sweden)

    Yevgeniy Georgievich Animitsa

    2015-09-01

    Full Text Available The article proves the important role of import substitution in the economic security protection of state and its regions, especially in times of crisis, geopolitical and economical instability. The authors argue that the problem of import substitution is not modern, trendy scientific stream. The issue of displacement of import goods by domestic ones was brought up in famous classic theories of mercantilists. The particular emphasis is placed on the analysis and systematization of different scientific approaches, which are utilized by native and foreign scientists to bring out the matter of “import substitution,” to determine its essential characteristics. The authors suggest their own interpretation of the import substitution notion. In the article, the most significant pro and contra arguments in import substitution policy are defined. The regional aspects in the import substitution are approved: case study — organization of industrial import substitution in the Sverdlovsk region. In the article, the authors analyze the subject matter of the Program “Development of Intraregional Industrial Cooperation and Implementation of an Import Substitution in Branches of Industry in the Sverdlovsk Region.” It is resumed, that active policy of import substitution in the industry may become the driver of regional economic development.

  11. Metabolic and environmental aspects of fusion reactor activation products: niobium

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, C.E.; Shank, K.E.

    1977-11-01

    A summary of the metabolic and environmental aspects of niobium is presented. The toxicological symptoms from exposure to niobium are given, along with lethal concentration values for acute and chronic exposures. Existing human data are presented; animal uptake and retention data are analyzed for various routes of administration. Recommended metabolic values are also presented along with comments concerning their use and appropriateness. The natural distribution of niobium is given for freshwater, seawater, and the biosphere. Concentration factors and retention of /sup 95/Nb in the environment are discussed with reference to: plant retention via leaf absorption; plant retention via root uptake; uptake in terrestrial animals from plants; uptake in freshwater organisms; uptake in marine organisms; and movement in soil. Conclusions are drawn regarding needs for future work in these areas. This review was undertaken because niobium is expected to be a key metal in the development of commercial fusion reactors. It is recognized that niobium will likely not be used in the first generation reactors as a structural material but will appear as an alloy in such materials as superconducting wire.

  12. Engineering yeast metabolism for production of fuels and chemicals

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2016-01-01

    faster development of metabolically engineered strains that can be used for production of fuels and chemicals. The yeast Saccharomyces cerevisiae is widely used for production of fuels, chemicals, pharmaceuticals and materials. Through metabolic engineering of this yeast a number of novel industrial...... as for metabolic design. In this lecture it will be demonstrated how the Design-Build-Test cycle of metabolic engineering has allowed for development of yeast cell factories for production of a range of different fuels and chemicals. Some examples of different technologies will be presented together with examples......Metabolic engineering relies on the Design-Build-Test cycle. This cycle includes technologies like mathematical modeling of metabolism, genome editing and advanced tools for phenotypic characterization. In recent years there have been advances in several of these technologies, which has enabled...

  13. Production of amino acids - Genetic and metabolic engineering approaches.

    Science.gov (United States)

    Lee, Jin-Ho; Wendisch, Volker F

    2017-12-01

    The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Separation and utilization of fission products considering economic aspects

    International Nuclear Information System (INIS)

    Beer, M.; Gorski, B.; Hennrich, M.; Pfrepper, G.; Richter, M.

    1982-01-01

    The quantity of usable fission products which will be obtained by nuclear fission till the year 2000 is estimated on the basis of prognostics for the development of nuclear energy in the world considering especially the development in the U.S.S.R. and the CMEA. The possibilities of utilization of cesium as gamma-ray source are discussed, and the present fields of application of palladium and the development of its price on the world market are shown. The fields of application of technetium, which wasn't available as artificial element in a greater quantity till now, have to be developed. The economic estimations base on data of a project for the separation of fission products in connection with a reprocessing plant, which was developed in the U.S.A. in 1978. The data show, that it is possible to produce the platinum metals and cesium with profit, the same can be expected for technetium. (author)

  15. Ethical aspects of insect production for food and feed

    DEFF Research Database (Denmark)

    Gjerris, Mickey; Gamborg, Christian; Röcklinsberg, Helena

    2016-01-01

    Given a growing global human population and high pressures on resources, interest in insects as a source of protein for human food (entomophagy) and for animal feed is growing. So far, the main issues discussed have been the embedded technical challenges of scaling up the production. The use...... as protein providers in the Western food and feed production chains. We identify five areas where ethical questions are especially pertinent: environmental impact, human and animal health, human preferences and social acceptability, animal welfare and finally broader animal ethics issues. Especially...... of insects as a major human food and feed source is thought to present two major challenges: (1) how to turn insects into safe, tasty socially acceptable feed and food; and (2) how to cheaply yet sustainably produce enough insects? Entomophagy, however, as any utilisation of animals and the rest of nature...

  16. [The gift of human body's products: philosophical and ethical aspects].

    Science.gov (United States)

    Baertschi, B

    2014-09-01

    In continental Europe, there is a very strong moral condemnation against putting parts or products of the human body on sale-and, consequently, against putting sperms and oocytes on sale. Only a gift is morally permissible. The situation is different in Anglo-Saxon countries. Who is right? Above all, it must be noticed that two views of the human body are facing each other here: for the first, the human body is a part of the person (so, it partakes of the person's dignity), whereas for the second, the human body is a possession of the person (the person is the owner of his/her body). In my opinion, the argument of dignity comes up against serious objections, and the property argument is more consistent. However, it does not follow that it would be judicious to put parts and products of the human body for sale on a market. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Technical aspects of biodiesel production from vegetable oils

    Directory of Open Access Journals (Sweden)

    Krishnakumar Janahiraman

    2008-01-01

    Full Text Available Biodiesel, a promising substitute as an alternative fuel has gained significant attention due to the finite nature of fossil energy sources and does not produce sulfur oxides and minimize the soot particulate in comparison with the existing one from petroleum diesel. The utilization of liquid fuels such as biodiesel produced from vegetable oil by transesterification process represents one of the most promising options for the use of conventional fossil fuels. In the first step of this experimental research, edible rice bran oil used as test material and converted into methyl ester and non-edible jatropha vegetable oil is converted into jatropha oil methyl ester, which are known as biodiesel and they are prepared in the presence of homogeneous acid catalyst and optimized their operating parameters like reaction temperature, quantity of alcohol and the catalyst requirement, stirring rate and time of esterification. In the second step, the physical properties such as density, flash point, kinematic viscosity, cloud point, and pour point were found out for the above vegetable oils and their methyl esters. The same characteristics study was also carried out for the diesel fuel for obtaining the baseline data for analysis. The values obtained from the rice bran oil methyl ester and jatropha oil methyl ester are closely matched with the values of conventional diesel and it can be used in the existing diesel engine without any hardware modification. In the third step the storage characteristics of biodiesel are also studied. .

  18. Numerical aspects of optimal control of penicillin production

    Czech Academy of Sciences Publication Activity Database

    Pčolka, M.; Čelikovský, Sergej

    2014-01-01

    Roč. 37, č. 1 (2014), s. 71-81 ISSN 1615-7591 R&D Projects: GA ČR(CZ) GA13-20433S Institutional support: RVO:67985556 Keywords : Optimal control * Nonlinear systems * Fermentation process * Gradient method optimization * Antibiotics production Subject RIV: BC - Control Systems Theory Impact factor: 1.997, year: 2014 http://library.utia.cas.cz/separaty/2014/TR/celikovsky-0424718.pdf

  19. Computer Applications in Production and Engineering

    DEFF Research Database (Denmark)

    Sørensen, Torben

    1997-01-01

    This paper address how neutral product model interfaces can be identified, specified, and implemented to provide intelligent and flexible means for information management in manufacturing of discrete mechanical products.The use of advanced computer based systems, such as CAD, CAE, CNC, and robotics......, offers a potential for significant cost-savings and quality improvements in manufacturing of discrete mechanical products.However, these systems are introduced into production as 'islands of automation' or 'islands of information', and to benefit from the said potential, the systems must be integrated...... domains; the CA(X) systems are placed in two different domains for design and planning, respectively. A third domain within the CIME architecture comprises the automated equipment on the shop floor....

  20. Work production of quantum rotor engines

    Science.gov (United States)

    Seah, Stella; Nimmrichter, Stefan; Scarani, Valerio

    2018-04-01

    We study the mechanical performance of quantum rotor heat engines in terms of common notions of work using two prototypical models: a mill driven by the heat flow from a hot to a cold mode, and a piston driven by the alternate heating and cooling of a single working mode. We evaluate the extractable work in terms of ergotropy, the kinetic energy associated to net directed rotation, as well as the intrinsic work based on the exerted torque under autonomous operation, and we compare them to the energy output for the case of an external dissipative load and for externally driven engine cycles. Our results connect work definitions from both physical and information-theoretical perspectives. In particular, we find that apart from signatures of angular momentum quantization, the ergotropy is consistent with the intuitive notion of work in the form of net directed motion. It also agrees with the energy output to an external load or agent under optimal conditions. This sets forth a consistent thermodynamical description of rotating quantum motors, flywheels, and clocks.

  1. Production of electroweak bosons at hadron colliders: theoretical aspects

    CERN Document Server

    Mangano, Michelangelo L.

    2016-01-01

    Since the W and Z discovery, hadron colliders have provided a fertile ground, in which continuously improving measurements and theoretical predictions allow to precisely determine the gauge boson properties, and to probe the dynamics of electroweak and strong interactions. This article will review, from a theoretical perspective, the role played by the study, at hadron colliders, of electroweak boson production properties, from the better understanding of the proton structure, to the discovery and studies of the top quark and of the Higgs, to the searches for new phenomena beyond the Standard Model.

  2. Engineering of rolled constructional microalloyed steel products

    International Nuclear Information System (INIS)

    Adamczyk, J.

    2003-01-01

    Flexibility of the microalloyed steels on manufacturing of products with high mechanical and technological properties at not exaggerated production costs, it caused of their application for different constructions and machines in many branches of economy. It is a reason of the big interest of this steel group and the improvement of metallurgical and technological processing. In the work the examples of applications of C-Mn microalloyed steels with V and N microadditions for production of long shape products of R p0.2 > 650 MPa and KCU2 > 57 Jcm -2 are presented. They are manufactured in the controlled rolling process. Moreover this work presents liquid metal treatment in ladlemann process and influence of ingots solidification conditions, controlled rolling of weldable plates with Nb, Ti, V and B microadditions which after quenching and tempering have R p0.2 > 870 MPa, KV -50 o C > 27 J and plastic strain ratio equals 1.2. This work also presents the energy saving rolling technology with controlled recrystallization (method of thermomechanical treatment) of improved Weldox 960 steel plates with Mb, Ti, V and B microadditions which have after high-temperature tempering R p0.2 > 100 MPa, KV -50 o C >90 J and plastic strain ratio is less than 1.2. The introduction of microalloyed constructional steels and the appropriate technology in the domestic industry will contribute to high-processed products with properties competitive to products manufactured in high-industrialized countries. Thanks to that it will be possible to increase the technical level as well as to reduce production costs and import. (author)

  3. Importance of systems biology in engineering microbes for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Aindrila; Redding, Alyssa M.; Rutherford, Becky J.; Keasling, Jay D.

    2009-12-02

    Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable resources has catalyzed numerous research endeavors that focus on developing microbial systems for production of such natural products. Eliminating bottlenecks in microbial metabolic pathways and alleviating the stresses due to production of these chemicals are crucial in the generation of robust and efficient production hosts. The use of systems-level studies makes it possible to comprehensively understand the impact of pathway engineering within the context of the entire host metabolism, to diagnose stresses due to product synthesis, and provides the rationale to cost-effectively engineer optimal industrial microorganisms.

  4. Microbial xylanases: engineering, production and industrial applications.

    Science.gov (United States)

    Juturu, Veeresh; Wu, Jin Chuan

    2012-01-01

    Enzymatic depolymerization of hemicellulose to monomer sugars needs the synergistic action of multiple enzymes, among them endo-xylanases (EC 3.2.1.8) and β-xylosidases (EC 3.2.1.37) (collectively xylanases) play a vital role in depolymerizing xylan, the major component of hemicellulose. Recent developments in recombinant protein engineering have paved the way for engineering and expressing xylanases in both heterologous and homologous hosts. Functional expression of endo-xylanases has been successful in many hosts including bacteria, yeasts, fungi and plants with yeasts being the most promising expression systems. Functional expression of β-xylosidases is more challenging possibly due to their more complicated structures. The structures of endo-xylanases of glycoside hydrolase families 10 and 11 have been well elucidated. Family F/10 endo-xylanases are composed of a cellulose-binding domain and a catalytic domain connected by a linker peptide with a (β/α)8 fold TIM barrel. Family G/11 endo-xylanases have a β-jelly roll structure and are thought to be able to pass through the pores of hemicellulose network owing to their smaller molecular sizes. The structure of a β-D-xylosidase belonging to family 39 glycoside hydrolase has been elucidated as a tetramer with each monomer being composed of three distinct regions: a catalytic domain of the canonical (β/α)8--TIM barrel fold, a β-sandwich domain and a small α-helical domain with the enzyme active site that binds to D-xylooligomers being present on the upper side of the barrel. Glycosylation is generally considered as one of the most important post-translational modifications of xylanases, but a few examples showed functional expression of eukaryotic xylanases in bacteria. The optimal ratio of these synergistic enzymes is very important in improving hydrolysis efficiency and reducing enzyme dosage but has hardly been addressed in literature. Xylanases have been used in traditional fields such as food, feed

  5. Re-engineering of Bacterial Luciferase; For New Aspects of Bioluminescence.

    Science.gov (United States)

    Kim, Da-Som; Choi, Jeong-Ran; Ko, Jeong-Ae; Kim, Kangmin

    2018-01-01

    Bacterial luminescence is the end-product of biochemical reactions catalyzed by the luciferase enzyme. Nowadays, this fascinating phenomenon has been widely used as reporter and/or sensors to detect a variety of biological and environmental processes. The enhancement or diversification of the luciferase activities will increase the versatility of bacterial luminescence. Here, to establish the strategy for luciferase engineering, we summarized the identity and relevant roles of key amino acid residues modulating luciferase in Vibrio harveyi, a model luminous bacterium. The current opinions on crystal structures and the critical amino acid residues involved in the substrate binding sites and unstructured loop have been delineated. Based on these, the potential target residues and/or parameters for enzyme engineering were also suggested in limited scale. In conclusion, even though the accurate knowledge on the bacterial luciferase is yet to be reported, the structure-guided site-directed mutagenesis approaches targeting the regulatory amino acids will provide a useful platform to re-engineer the bacterial luciferase in the future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Aspects and environmental impacts associated with the production of concrete

    Directory of Open Access Journals (Sweden)

    Aura Navas de García

    2015-12-01

    Full Text Available Concrete plants are important to the economy of a country. However, this industry causes major environmental impacts in each of the steps involved in the manufacturing process of concrete production which are analyzed in this research. In addition, the perception of experts and workers in the area, about the environmental impacts associated with the activity of a producer of concrete was evaluated. The methodology used for the analysis of steps in the production process was as kind documentary. For to evaluate perception of environmental impacts the methodology used was descriptive non experimental, using interviews with workers related to the manufacturing process of the concrete. Among the major identified environmental impacts are dust emissions and improper handling of effluents, hazardous and non-hazardous materials. Among the proposals put forward to address these impacts include: installation of dust collectors, settling tanks, management plans for hazardous and non-hazardous materials, among others. An analysis of the results incorporating the principles of corporate social responsibility for improving or minimizing adverse impacts are detected proposed

  7. Production aspects of broiler breeders submitted to different drinker types

    Directory of Open Access Journals (Sweden)

    LP Colvero

    2014-03-01

    Full Text Available The objective of this study was of evaluate the influence of different drinker types on the egg production, water intake, mortality, poultry litter relative humidity, egg weight, eggshell percentage, and egg specific gravity of broiler breeders. The experiment was carried out in a commercial farm with 37- to 44-wk-old broiler breeders. A randomized block experimental design, consisting of two treatments (bell or nipple drinkers with four replicates of 4.000 females each, was applied. Data were submitted to analysis of variance, and means were compared by the test of Student-Newman-Keuls at 5% significance level. Birds submitted to nipple drinkers presented lower water intake (p0.05 of drinker type on egg production or mortality. Poultry litter relative humidity was lower (p<0.05 under the nipple-drinker system. Birds drinking from bell drinkers produced heavier eggs (p<0.05 between weeks 39 and 40. Hens drinking from bell drinkers laid eggs with higher specific gravity and eggshell percentage. It was concluded that nipple drinkers can be used for broiler breeders during lay.

  8. Engineering of secondary metabolite production in streptomycetes

    DEFF Research Database (Denmark)

    Robertsen, Helene Lunde; Gram, Lone

    Streptomycetes are known for their ability to produce a range of different secondary metabolites, including antibiotics, immunosuppressive, anti-fungals, and anti-cancer compounds. Of these compounds, antibiotics play an important role in the clinics for treatment of both mild and severe bacterial...... the computational prediction of suitable 20 bp protospacers for the single guide RNAs and a USER-cloning method for construction of the CRISPR plasmids. Additional improvement to the system was achieved through the development of an optimised USER assembly workflow for cheaper and faster plasmid construction....... The workflow was verified by manual knock-down of two biosynthetic gene clusters in model organism Streptomyces coelicolor A3(2), which confirmed the applicability of the system. A second part of the thesis was devoted to engineering of Streptomyces collinus Tü 365, which is a known producer of the narrow...

  9. Product evaluation of in situ vitrification engineering, Test 4

    International Nuclear Information System (INIS)

    Loehr, C.A.; Weidner, J.R.; Bates, S.O.

    1991-09-01

    This report is one of several that evaluates the In Situ Vitrification (ISV) Engineering-Scale Test 4 (ES-4). This document describes the chemical and physical composition, microstructure, and leaching characteristics of ES-4 product samples; these data provide insight into the expected performance of a vitrified product in an ISV buried waste application similar to that studied in ES-4

  10. Engineering of Yarrowia lipolytica for production of astaxanthin

    Directory of Open Access Journals (Sweden)

    Kanchana Rueksomtawin Kildegaard

    2017-12-01

    Our study for the first time reports engineering of Y. lipolytica for the production of astaxanthin. The high astaxanthin content and titer obtained even in a small-scale cultivation demonstrates a strong potential for Y. lipolytica-based fermentation process for astaxanthin production.

  11. Engineering Documentation Control Handbook Configuration Management and Product Lifecycle Management

    CERN Document Server

    Watts, Frank B

    2011-01-01

    In this new edition of his widely-used Handbook, Frank Watts, widely recognized for his significant contributions to engineering change control processes, provides a thoroughly practical guide to the implementation and improvement of Engineering Documentation Control (EDC), Product Lifecycle Management and Product Configuration Management (CM). Successful and error-free implementation of EDC/CM is critical to world-class manufacturing. Huge amounts of time are wasted in most product manufacturing environments over EDC/CM issues such as interchangeability, document release and change control -

  12. Engineering yeast for high-level production of stilbenoid antioxidants

    DEFF Research Database (Denmark)

    Li, Mingji; Schneider, Konstantin; Kristensen, Mette

    2016-01-01

    engineered the yeast Saccharomyces cerevisiae for production of stilbenoids on a simple mineral medium typically used for industrial production. We applied a pull-push-block strain engineering strategy that included overexpression of the resveratrol biosynthesis pathway, optimization of the electron transfer...... to the cytochrome P450 monooxygenase, increase of the precursors supply, and decrease of the pathway intermediates degradation. Fed-batch fermentation of the final strain resulted in a final titer of 800 mg l(-1) resveratrol, which is by far the highest titer reported to date for production of resveratrol from...

  13. Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2013-01-01

    Production of recombinant proteins for use as pharmaceuticals, so-called biopharmaceuticals, is a multi-billion dollar industry. Many different cell factories are used for the production of biopharmaceuticals, but the yeast Saccharomyces cerevisiae is an important cell factory as it is used for p...... production. The involvement of directed metabolic engineering through the integration of tools from genetic engineering, systems biology and mathematical modeling, is also discussed....... by yeast are human serum albumin, hepatitis vaccines and virus like particles used for vaccination against human papillomavirus. Here is given a brief overview of biopharmaceutical production by yeast and it is discussed how the secretory pathway can be engineered to ensure more efficient protein...

  14. Concurrent engineering and product models in seafood companies

    DEFF Research Database (Denmark)

    Jonsdottir, Stella; Vesterager, Johan; Børresen, Torger

    1998-01-01

    Concurrent Engineering (CE) can provide an improved approach to product development for extending the lines of seafood products. Information technology (IT) support tools based on product models can provide an integrated and simultaneous approach for specifying new recipes. The seafood industry can...... benefit from the CE approach which can support product developers to provide concurrent specifications for raw materials, ingredients, packaging, and production methods. The approach involves the use of product models from which line extensions are more easily generated than by use of customary stepwise...

  15. Chlorophyll Extraction from Microalgae: A Review on the Process Engineering Aspects

    Directory of Open Access Journals (Sweden)

    Aris Hosikian

    2010-01-01

    Full Text Available Chlorophyll is an essential compound in many everyday products. It is used not only as an additive in pharmaceutical and cosmetic products but also as a natural food colouring agent. Additionally, it has antioxidant and antimutagenic properties. This review discusses the process engineering of chlorophyll extraction from microalgae. Different chlorophyll extraction methods and chlorophyll purification techniques are evaluated. Our preliminary analysis suggests supercritical fluid extraction to be superior to organic solvent extraction. When compared to spectroscopic technique, high performance liquid chromatography was shown to be more accurate and sensitive for chlorophyll analysis. Finally, through CO2 capture and wastewater treatment, microalgae cultivation process was shown to have strong potential for mitigation of environmental impacts.

  16. ASPECTS REGARDING WINE PRODUCTION AND WINE SECTOR COMPETITIVENESS IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Raluca Georgiana LADARU

    2014-10-01

    Full Text Available The paper aimed to make some assumptions regarding wine sector competitiveness in Romania. Vineyards have an important share in Romanian agriculture, Romania being ranked on 11th position in the world and on 5th position in the European Union in terms of vineyards surface, while the wine industry is an important contributor to the GDP. The research method was based on analyze of wine sector evolution in the last years. The paper presents current global context of wine market at international level and focus on Romanian wine production sector and wine trade, seen in the light of competitiveness. The competitiveness of Romanian wine sector need to be related with measures that are able to increase the attractiveness of Romanian wines, both on domestic and external markets.

  17. Some aspects of UO{sub 2} powder production

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishna, P; Asnani, C K; Prabhakar Rao, L; Kartha, R M; Pillai, P K.M. [Nuclear Fuel Complex, Hyderabad (India)

    1994-06-01

    UO{sub 2} powder is being produced in a chemical plant from enriched UF{sub 6} and supplied to the pelletizing plant. Small quantities of scrap UO{sub 2} received back from the pelletizing plant are also recycled in the chemical plant to produce UO{sub 2} powder. The powder should be of a consistently high quality so as to finally yield high density sintered pellets with minimum rejection. The final yield of acceptable finished pellets depends on the quality of the powder in the chemical plant as well as the quality of pressing in the pelletizing plant. In this paper, some examples of measures adopted for achieving good quality powder production are presented. (author). 9 refs., 2 figs.

  18. Microbiological Aspects Considering the Production of Nutraceutical Curd Containing Onion

    Directory of Open Access Journals (Sweden)

    Anca Dumuţa

    2016-10-01

    Full Text Available The curd is a traditional Romanian dairy product highly appreciated by the consumers. The purpose of this study was to produce and analyze from the microbiological point of view a nutraceutical curd containing onion, as a prebiotic source. The synbiotics generate among the organoleptic benefits also health improvement due to the different actions taken by probiotics and prebiotics, working together. The curd was produced by the traditional method using buffalo milk with reduced cholesterol content due to the treatment with crosslinked β-ciclodextrin with adipic acid.The curd prepared by rennet adding and coagulation at 30°C during 30-45 minutes was subjected to the maturation at a temperature of 12-16°C. Considering the microbiological tests, the curd recorded a pozitive evolution, being characterized by a lower microbial load compared with a control curd, prepared without onion.

  19. Product Design Engineering--A Global Education Trend in Multidisciplinary Training for Creative Product Design

    Science.gov (United States)

    de Vere, Ian; Melles, Gavin; Kapoor, Ajay

    2010-01-01

    Product design is the convergence point for engineering and design thinking and practices. Until recently, product design has been taught either as a component of mechanical engineering or as a subject within design schools but increasingly there is global recognition of the need for greater synergies between industrial design and engineering…

  20. Ethanol production using engineered mutant E. coli

    Science.gov (United States)

    Ingram, Lonnie O.; Clark, David P.

    1991-01-01

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  1. Metabolic engineering of biosynthetic pathway for production of renewable biofuels.

    Science.gov (United States)

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar

    2014-02-01

    Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.

  2. Engineering microbial electrocatalysis for chemical and fuel production.

    Science.gov (United States)

    Rosenbaum, Miriam A; Henrich, Alexander W

    2014-10-01

    In many biotechnological areas, metabolic engineering and synthetic biology have become core technologies for biocatalyst development. Microbial electrocatalysis for biochemical and fuel production is still in its infancy and reactions rates and the product spectrum are currently very low. Therefore, molecular engineering strategies will be crucial for the advancement and realization of many new bioproduction routes using electroactive microorganisms. The complex and unresolved biochemistry and physiology of extracellular electron transfer and the lack of molecular tools for these new non-model hosts for genetic engineering constitute the major challenges for this effort. This review is providing an insight into the current status, challenges and promising approaches of pathway engineering for microbial electrocatalysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. ADVANCED APPROACH TO PRODUCTION WORKFLOW COMPOSITION ON ENGINEERING KNOWLEDGE PORTALS

    OpenAIRE

    Novogrudska, Rina; Kot, Tatyana; Globa, Larisa; Schill, Alexander

    2016-01-01

    Background. In the environment of engineering knowledge portals great amount of partial workflows is concentrated. Such workflows are composed into general workflow aiming to perform real complex production task. Characteristics of partial workflows and general workflow structure are not studied enough, that affects the impossibility of general production workflowdynamic composition.Objective. Creating an approach to the general production workflow dynamic composition based on the partial wor...

  4. Biometrics in wearable products: Reverse Engineering and numerical modeling

    OpenAIRE

    Rao, Andrea

    2011-01-01

    The Reverse Engineering (RE) techniques and the Finite Element Modelling (FEM) are widely used tools in many scientific fields. They were firstly developed for the mechanics but in the last times became common for other disciplines. In the thesis these techniques are used for the customization of the wearable products. It is possible to observe that the geometry of whatever wearable product is fundamental for the comfort. In particular, starting from the need of wearable product it is possibl...

  5. The JSC Engineering Directorate Product Peer Review Process

    Science.gov (United States)

    Jenks, Kenneth C.

    2009-01-01

    The JSC Engineering Directorate has developed a Product Peer Review process in support of NASA policies for project management and systems engineering. The process complies with the requirements of NPR 7120.5, NPR 7123.1 and NPR 7150.2 and follows the guidance in NASA/SP-2007-6105. This presentation will give an overview of the process followed by a brief demonstration of an actual peer review, with audience participation.

  6. Content Production for E-Learning in Engineering

    Directory of Open Access Journals (Sweden)

    Andreas Auinger

    2007-06-01

    Full Text Available The didactic quality of lear0ning materialscan be improved by enriching learning material with didacticinformation. Such content elements assist selfdirectedlearning processes in virtual learningenvironments effectively. In order to develop didacticallymotivated for flexible use, e.g., at different terminaldevices such as PC or PDA, a structured procedure isrequired. We propose the selection and identification ofdidactically relevant information prior to enrichment ofhighly structured content with didactical information. Itcan be achieved by using the CoDEx method (ContentDidactically Explicit, and a mapping scheme to thelearning-technology standard conform XML contentstructures. Furthermore, aspects for multi-channel contentdelivery in the application field of engineering have to betaken into account. In this paper we refer to the objectivesand results of the EU-funded ELIE project (E-Learning InEngineering to demonstrate the proposed procedure’seffectiveness for content engineering.

  7. 2nd VDE-colloquium about ethical aspects of engineering. Zweites VDE-Kolloquium ueber Ingenieurethik. Vortraege und Diskussion

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This volume contains the lectures - including the following discussion - that were held on the colloquium about ethical aspects of engineering in Darmstadt in February 1980. This meeting should foster the concurrence of the science of engineering with the sociopolitical factors, to consolidate the engineers' self-conception and to provide them with discussion points for the sociological arguments. The following lectures were held under the leading motive 'Responsibility for technology': Responsibility of technicians - Remarks on the present discussion; One track and other specialists - On the responsibility in scientific - Technical evolution; Responsibility for technology; The damned technology - The author presents his new book.

  8. Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics.

    Science.gov (United States)

    Zou, Xuan; Wang, Lianrong; Li, Zhiqiang; Luo, Jie; Wang, Yunfu; Deng, Zixin; Du, Shiming; Chen, Shi

    2018-01-01

    Antibiotic production is often governed by large gene clusters composed of genes related to antibiotic scaffold synthesis, tailoring, regulation, and resistance. With the expansion of genome sequencing, a considerable number of antibiotic gene clusters has been isolated and characterized. The emerging genome engineering techniques make it possible towards more efficient engineering of antibiotics. In addition to genomic editing, multiple synthetic biology approaches have been developed for the exploration and improvement of antibiotic natural products. Here, we review the progress in the development of these genome editing techniques used to engineer new antibiotics, focusing on three aspects of genome engineering: direct cloning of large genomic fragments, genome engineering of gene clusters, and regulation of gene cluster expression. This review will not only summarize the current uses of genomic engineering techniques for cloning and assembly of antibiotic gene clusters or for altering antibiotic synthetic pathways but will also provide perspectives on the future directions of rebuilding biological systems for the design of novel antibiotics. © 2017 Wiley Periodicals, Inc.

  9. Propagation of engineering changes to multiple product data views using history of product structure changes

    NARCIS (Netherlands)

    Do, N.; Choi, I.; Song, M.S.

    2008-01-01

    Abstract The present paper proposes a comprehensive procedure for engineering change propagation in order to maintain consistency between various product data views. A product data model is also proposed for the propagation procedure, which integrates base product definitions for product design, and

  10. Production of L-valine from metabolically engineered Corynebacterium glutamicum.

    Science.gov (United States)

    Wang, Xiaoyuan; Zhang, Hailing; Quinn, Peter J

    2018-05-01

    L-Valine is one of the three branched-chain amino acids (valine, leucine, and isoleucine) essential for animal health and important in metabolism; therefore, it is widely added in the products of food, medicine, and feed. L-Valine is predominantly produced through microbial fermentation, and the production efficiency largely depends on the quality of microorganisms. In recent years, continuing efforts have been made in revealing the mechanisms and regulation of L-valine biosynthesis in Corynebacterium glutamicum, the most utilitarian bacterium for amino acid production. Metabolic engineering based on the metabolic biosynthesis and regulation of L-valine provides an effective alternative to the traditional breeding for strain development. Industrially competitive L-valine-producing C. glutamicum strains have been constructed by genetically defined metabolic engineering. This article reviews the global metabolic and regulatory networks responsible for L-valine biosynthesis, the molecular mechanisms of regulation, and the strategies employed in C. glutamicum strain engineering.

  11. Solvent production by engineered Ralstonia eutropha: channeling carbon to biofuel.

    Science.gov (United States)

    Chakravarty, Jayashree; Brigham, Christopher J

    2018-06-01

    Microbial production of solvents like acetone and butanol was a couple of the first industrial fermentation processes to gain global importance. These solvents are important feedstocks for the chemical and biofuel industry. Ralstonia eutropha is a facultatively chemolithoautotrophic bacterium able to grow with organic substrates or H 2 and CO 2 under aerobic conditions. This bacterium is a natural producer of polyhydroxyalkanoate biopolymers. Recently, with the advances in the development of genetic engineering tools, the range of metabolites R. eutropha can produce has enlarged. Its ability to utilize various carbon sources renders it an interesting candidate host for synthesis of renewable biofuel and solvent production. This review focuses on progress in metabolic engineering of R. eutropha for the production of alcohols, terpenes, methyl ketones, and alka(e)nes using various resources. Biological synthesis of solvents still presents the challenge of high production costs and competition from chemical synthesis. Better understanding of R. eutropha biology will support efforts to engineer and develop superior microbial strains for solvent production. Continued research on multiple fronts is required to engineer R. eutropha for truly sustainable and economical solvent production.

  12. Semantic modeling and interoperability in product and process engineering a technology for engineering informatics

    CERN Document Server

    2013-01-01

    In the past decade, feature-based design and manufacturing has gained some momentum in various engineering domains to represent and reuse semantic patterns with effective applicability. However, the actual scope of feature application is still very limited. Semantic Modeling and Interoperability in Product and Process Engineering provides a systematic solution for the challenging engineering informatics field aiming at the enhancement of sustainable knowledge representation, implementation and reuse in an open and yet practically manageable scale.   This semantic modeling technology supports uniform, multi-facet and multi-level collaborative system engineering with heterogeneous computer-aided tools, such as CADCAM, CAE, and ERP.  This presented unified feature model can be applied to product and process representation, development, implementation and management. Practical case studies and test samples are provided to illustrate applications which can be implemented by the readers in real-world scenarios. �...

  13. A review of engineering aspects of intensification of chemical synthesis using ultrasound.

    Science.gov (United States)

    Sancheti, Sonam V; Gogate, Parag R

    2017-05-01

    Cavitation generated using ultrasound can enhance the rates of several chemical reactions giving better selectivity based on the physical and chemical effects. The present review focuses on overview of the different reactions that can be intensified using ultrasound followed by the discussion on the chemical kinetics for ultrasound assisted reactions, engineering aspects related to reactor designs and effect of operating parameters on the degree of intensification obtained for chemical synthesis. The cavitational effects in terms of magnitudes of collapse temperatures and collapse pressure, number of free radicals generated and extent of turbulence are strongly dependent on the operating parameters such as ultrasonic power, frequency, duty cycle, temperature as well as physicochemical parameters of liquid medium which controls the inception of cavitation. Guidelines have been presented for the optimum selection based on the critical analysis of the existing literature so that maximum process intensification benefits can be obtained. Different reactor designs have also been analyzed with guidelines for efficient scale up of the sonochemical reactor, which would be dependent on the type of reaction, controlling mechanism of reaction, catalyst and activation energy requirements. Overall, it has been established that sonochemistry offers considerable potential for green and sustainable processing and efficient scale up procedures are required so as to harness the effects at actual commercial level. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Product design engineering - a global education trend in multidisciplinary training for creative product design

    Science.gov (United States)

    de Vere, Ian; Melles, Gavin; Kapoor, Ajay

    2010-03-01

    Product design is the convergence point for engineering and design thinking and practices. Until recently, product design has been taught either as a component of mechanical engineering or as a subject within design schools but increasingly there is global recognition of the need for greater synergies between industrial design and engineering training. Product design engineering (PDE) is a new interdisciplinary programme combining the strengths of the industrial design and engineering. This paper examines the emergence of PDE in an environment of critique of conventional engineering education and exemplifies the current spread of programmes endorsing a hybrid programme of design and engineering skills. The paper exemplifies PDE with the analysis of the programme offered at Swinburne University of Technology (Australia), showing how the teaching of 'designerly' thinking to engineers produces a new graduate particularly suited to the current and future environment of produce design practice. The paper concludes with reflections on the significance of this innovative curriculum model for the field of product design and for engineering design in general.

  15. Application of Product Configuration Systems in Engineering Companies

    DEFF Research Database (Denmark)

    Kristjansdottir, Katrin

    Engineering companies increasingly face the challenge of delivering highly customized products where time, cost, and quality are critical factors. To provide customized products efficiently, a product configuration system (PCS) is commonly implemented. A PCS supports the product configuration...... process, which consists of activities that involve gathering requirements from customers and generating the required product-related specifications. The application of a PCS in the industry has revealed benefits that include shorter lead-times, improved quality of specifications and products, and lower...... overall cost of the product. However, many PCS projects do encounter failure. With an increased focus on customized and personalized products, there is a growing need for the automation of business processes. For this reason, a PCS is becoming an essential part of IT strategy in different industries...

  16. Managing the uncertainty aspect of reliability in an iterative product development process

    NARCIS (Netherlands)

    Ganesh, N.

    2009-01-01

    This study identifies the design criteria for a method that can be used to manage the risk and uncertainty aspects of product reliability of Really New Innovations (RNI) in an Iterative Product Development Process (IPDP). It is based on 7 years of longitudinal research exploring more than 10

  17. Population distribution, food production and other aspects in the vicinity of the Embalse Nuclear Power Station

    International Nuclear Information System (INIS)

    Cancio, D.; Ciallella, N.R.; Zunino, R.; Perez, T.; Jordan, O.

    1978-01-01

    The paper presents some of the results of the pre-operational studies carried out in the vicinity of the site of the Embalse Nuclear Power Station, which is being built in the Province of Cordoba, Rio Tercero, next to the lake Embalse. The studies cover population distribution, food production, and other local aspects. The low population in the vicinity of the site increases in summer due to tourism. Main use of the land is grazing and cereal production. Milk production is small, but some is produced near the site. Other aspects of the study are presented in other papers of the Seminar. (author)

  18. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.

    Science.gov (United States)

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-04-01

    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.

  19. Multi-disciplinary engineering for cyber-physical production systems data models and software solutions for handling complex engineering projects

    CERN Document Server

    Lüder, Arndt; Gerhard, Detlef

    2017-01-01

    This book discusses challenges and solutions for the required information processing and management within the context of multi-disciplinary engineering of production systems. The authors consider methods, architectures, and technologies applicable in use cases according to the viewpoints of product engineering and production system engineering, and regarding the triangle of (1) product to be produced by a (2) production process executed on (3) a production system resource. With this book industrial production systems engineering researchers will get a better understanding of the challenges and requirements of multi-disciplinary engineering that will guide them in future research and development activities. Engineers and managers from engineering domains will be able to get a better understanding of the benefits and limitations of applicable methods, architectures, and technologies for selected use cases. IT researchers will be enabled to identify research issues related to the development of new methods, arc...

  20. Simulation of Production Lines in the Education of Engineers: How to Choose the Right Software?

    Directory of Open Access Journals (Sweden)

    Rostkowska Marta

    2014-12-01

    Full Text Available The article discusses the problems of modeling and simulation in the design of production lines, mainly from an educator's perspective. Nowadays, there is a wide range of computer programs that can be used to design production lines and to simulate various aspects of their operation. However, the programs being available vary considerably as to their functionality, the approach to production system design, and the visualization tools. Therefore we demonstrate and evaluate in this paper four simulation programs, focusing on the easiness of system design, area of the possible applications in education of engineers, and the limitations imposed by versions dedicated for students. We evaluate three of programs for digital factory simulation on a common, simple assembly task, then demonstrate that these programs may be also used for more specialized simulations in various areas of production, and compare with a specialized program for simulation of robotised production lines and work cells.

  1. Genetic engineering for improvement of Musa production in Africa ...

    African Journals Online (AJOL)

    The transgenic approach shows potential for the genetic improvement of the crop using a wide set of transgenes currently available which may confer resistance to nematode pests, fungal, bacterial and viral diseases. This article discusses the applications of genetic engineering for the enhancement of Musa production.

  2. Active Learning and Reflection in Product Development Engineering Education

    Science.gov (United States)

    Shekar, Aruna

    2007-01-01

    Traditional engineering courses at tertiary level have been traditionally theory-based, supported by laboratory work, but there is now a world-wide trend towards project-based learning. In product development education, project-based learning is essential in order to integrate the disciplines of design, marketing and manufacturing towards the…

  3. Metabolic engineering of yeast for fermentative production of flavonoids

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica; Strucko, Tomas; Stahlhut, Steen Gustav

    2017-01-01

    Yeast Saccharomyces cerevisiae was engineered for de novo production of six different flavonoids (naringenin, liquiritigenin, kaempferol, resokaempferol, quercetin, and fisetin) directly from glucose, without supplementation of expensive intermediates. This required reconstruction of long...... demonstrates the potential of flavonoid-producing yeast cell factories....

  4. Production Machine Shop Employment Competencies. Part Three: The Engine Lathe.

    Science.gov (United States)

    Bishart, Gus; Werner, Claire

    Competencies for production machine shop are provided for the third of four topic areas: the engine lathe. Each competency appears in a one-page format. It is presented as a goal statement followed by one or more "indicator" statements, which are performance objectives describing an ability that, upon attainment, will establish…

  5. selectivity engineering in sustainable production of chemicals, fuels ...

    Indian Academy of Sciences (India)

    admin

    Cost. Landfill. –400. Source: Tuck et al., Science, 337 (6095): 695-699 10 August ... libraries for novel enzymes that transform lignocellulosics ... Bio-process engineering for optimal production of ... fine chemicals and petrochemical industries. ..... Mole ratio : Epichlorohydrin to acetone of 1:8 , 100 % atom economy. Sr.No.

  6. Development of Management Methodology for Engineering Production Quality

    Science.gov (United States)

    Gorlenko, O.; Miroshnikov, V.; Borbatc, N.

    2016-04-01

    The authors of the paper propose four directions of the methodology developing the quality management of engineering products that implement the requirements of new international standard ISO 9001:2015: the analysis of arrangement context taking into account stakeholders, the use of risk management, management of in-house knowledge, assessment of the enterprise activity according to the criteria of effectiveness

  7. Product Lifecycle Management Architecture: A Model Based Systems Engineering Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, Nicholas James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report is an analysis of the Product Lifecycle Management (PLM) program. The analysis is centered on a need statement generated by a Nuclear Weapons (NW) customer. The need statement captured in this report creates an opportunity for the PLM to provide a robust service as a solution. Lifecycles for both the NW and PLM are analyzed using Model Based System Engineering (MBSE).

  8. Consumer attitudes and decision-making with regard to genetically engineered food products: A review of the literature and a presentation of models for future research

    DEFF Research Database (Denmark)

    Bredahl, Lone; Grunert, Klaus G.; Frewer, Lynn

    Executive summary 1. Few studies have to date explained consumer attitudes and purchase decisions with regard to genetically engineered food products. However, the increased marketing of genetically engineered food products and the considerable concern that consumers seem to express with regard t...... Likelihood Model and Social Judgment Theory. The model specifically takes into account the impact of credibility and various informational factors, such as persuasive content of the information provided, on attitudes.......Executive summary 1. Few studies have to date explained consumer attitudes and purchase decisions with regard to genetically engineered food products. However, the increased marketing of genetically engineered food products and the considerable concern that consumers seem to express with regard...... engineering in food production in general as additional determinants of behavioural intentions. 5. How consumers' attitudes towards genetically engineered food products are affected by various information strategies is explained in an attitude change model, which integrates aspects of the Elaboration...

  9. Consumer attitudes and decision-making with regard to genetically engineered food products: A review of the literature and a presentation of models for future research

    DEFF Research Database (Denmark)

    Bredahl, Lone; Grunert, Klaus G.; Frewer, Lynn

    1998-01-01

    Executive summary 1. Few studies have to date explained consumer attitudes and purchase decisions with regard to genetically engineered food products. However, the increased marketing of genetically engineered food products and the considerable concern that consumers seem to express with regard t...... Likelihood Model and Social Judgment Theory. The model specifically takes into account the impact of credibility and various informational factors, such as persuasive content of the information provided, on attitudes.......Executive summary 1. Few studies have to date explained consumer attitudes and purchase decisions with regard to genetically engineered food products. However, the increased marketing of genetically engineered food products and the considerable concern that consumers seem to express with regard...... engineering in food production in general as additional determinants of behavioural intentions. 5. How consumers' attitudes towards genetically engineered food products are affected by various information strategies is explained in an attitude change model, which integrates aspects of the Elaboration...

  10. Engineering aspects of ferrate in water and wastewater treatment - a review.

    Science.gov (United States)

    Yates, Brian J; Zboril, Radek; Sharma, Virender K

    2014-01-01

    There is renewed interest in the tetra-oxy compound of +6 oxidation states of iron, ferrate(VI) (Fe(VI)O4(2-)), commonly called ferrate. Ferrate has the potential in cleaner ("greener") technologies for water treatment and remediation processes, as it produces potentially less toxic byproducts than other treatment chemicals (e.g., chlorine). Ferrate has strong potential to oxidize a number of contaminants, including sulfur- and nitrogen-containing compounds, estrogens, and antibiotics. This oxidation capability of ferrate combines with its efficient disinfection and coagulation properties as a multi-purpose treatment chemical in a single dose. This review focuses on the engineering aspects of ferrate use at the pilot scale to remove contaminants in and enhance physical treatment of water and wastewater. In most of the pilot-scale studies, in-line and on-line electrochemical ferrate syntheses have been applied. In this ferrate synthesis, ferrate was directly prepared in solution from an iron anode, followed by direct addition to the contaminant stream. Some older studies applied ferrate as a solid. This review presents examples of removing a range of contaminants by adding ferrate solution to the stream. Results showed that ferrate alone and in combination with additional coagulants can reduce total suspended solids (TSS), chemical oxygen demand (COD), biological oxygen demand (BOD), and organic matter. Ferrate also oxidizes cyanide, sulfide, arsenic, phenols, anilines, and dyes and disinfects a variety of viruses and bacteria. Limitations and drawbacks of the application of ferrate in treating contaminated water on the pilot scale are also presented.

  11. 40 CFR 1048.301 - When must I test my production-line engines?

    Science.gov (United States)

    2010-07-01

    ... engines? 1048.301 Section 1048.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.301 When must I test my production-line engines? (a) If you produce engines...

  12. Business aspects and cost advantages of partnering for fossil engineering services

    International Nuclear Information System (INIS)

    Featham, M.D.; Sensenig, R.G.

    1995-01-01

    In today's environment where utility companies are attempting to reduce costs, alternative cost competitive approaches are being adopted to traditional fossil power plant engineering. One approach is to utilize Partnering of multiple organizations to provide cost competitive and quality engineering services. An approach to Partnering that involves Florida Power Corporation Partnering with multiple architect/engineers to provide the fossil plant engineering services is described in this paper

  13. Trend report on international and Japanese standardization activities for bioceramics and tissue engineered medical products

    Directory of Open Access Journals (Sweden)

    Sadami Tsutsumi

    2010-01-01

    Full Text Available Since porous and injectable bioceramics have recently been utilized often as scaffolds for bone regenerative medicine, the need for their standardization has increased. One of the standard proposals in ISO/TC150 and JIS has been a draft for characterization of the porous bioceramic scaffolds in both micro- and macro-scopic aspects. ISO/TC150/SC7 (Tissue engineered medical products has been co-chaired by Professor J E Lemons, Department of Surgery, University of Alabama at Birmingham and Dr R Nakaoka, Division of Medical Devices, National Institute of Health Sciences, Japan. The scope of SC7 has been specified as 'Standardization for the general requirements and performance of tissue engineered medical products with the exclusion of gene therapy, transplantation and transfusion'.

  14. Does Engineering Education Need to Engage More with the Economic and Social Aspects of Sustainability?

    Science.gov (United States)

    Fitzpatrick, John J.

    2017-01-01

    This paper questions if engineering educators are producing engineers that are accelerating humanity along an unsustainable path. Even though technology and engineering are important drivers in trying to move humanity towards an environmentally sustainable paradigm, the paper suggests that maybe the most important levers and challenges lie in the…

  15. Aspect-based sentiment analysis to review products using Naïve Bayes

    Science.gov (United States)

    Mubarok, Mohamad Syahrul; Adiwijaya, Aldhi, Muhammad Dwi

    2017-08-01

    Product reviews can provide great benefits for consumers and producers. Number of reviews could be ranging from hundreds to thousands and containing various opinions. These make the process of analyzing and extracting information on existing reviews become increasingly difficult. In this research, sentiment analysis was used to analyze and extract sentiment polarity on product reviews based on a specific aspect of the product. This research was conducted in three phases, such as data preprocessing which involves part-of-speech (POS) tagging, feature selection using Chi Square, and classification of sentiment polarity of aspects using Naïve Bayes. Based on evaluation results, it is known that the system is able to perform aspect-based sentiment analysis with its highest F1-Measure of 78.12%.

  16. Environmental aspects and renewable energy sources in the production of construction aggregate

    Science.gov (United States)

    Skrzypczak, Izabela; Kokoszka, Wanda; Buda-Ożóg, Lidia; Kogut, Janusz; Słowik, Marta

    2017-11-01

    The main activity of open pit mining of aggregates are aggregates' exploitation of natural mineral deposits and its modification in order to obtain high-quality aggregates. The development of aggregate production is conditioned by a number of factors. The most important are: documented material resources, mining and manufacturing capabilities, the need of environmental protection (environmental aspects), the subordination of the plan of spatial development, formal and legal issues, as well as economic and financial aspects. While identifying and assessing the environmental impacts of manufacturing aggregates one may distinguish those environmental aspects that have or may have the greatest magnitude of the impact on the environment as a result of industrial activities. Manufacturers producing aggregates located in the areas covered by the special environmental protection require extra diligence in the conduct of mining activities for preservation of natural resources. The article discusses some main environmental aspects of the production of construction aggregates on the example of one of the largest producers of this material in Subcarpathian province of Poland. Environmental protection in production of aggregates may refer to four aspects: the use of natural resources, having excluded land from agriculture and forestry, land reclamation after exploitation, and use of energy from renewable energy sources. The economic and environmental impact of production volume of aggregates is evaluated by the index information capacity method and the method of graphs.

  17. Genetic Engineering In BioButanol Production And Tolerance

    Directory of Open Access Journals (Sweden)

    Ashok Rao

    Full Text Available ABSTRACT The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. Higher-chain alcohols possess chemical properties that are more similar to gasoline. Ethanol and butanol are two products which are used as biofuel. Butanol production was more concerned than ethanol because of its high octane number. Unfortunately, these alcohols are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. The synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of bio-butanol. Knock out and over-expression of genes is the major approaches towards genetic manipulation and metabolic engineering of microbes. Yet there are TargeTron Technology, Antisense RNA and CRISPR technology has a vital role in genome manipulation of C.acetobutylicum. This review concentrates on the recent developments for efficient production of butanol and butanol tolerance by various genetically engineered microbes.

  18. Cyanobacterial metabolic engineering for biofuel and chemical production.

    Science.gov (United States)

    Oliver, Neal J; Rabinovitch-Deere, Christine A; Carroll, Austin L; Nozzi, Nicole E; Case, Anna E; Atsumi, Shota

    2016-12-01

    Rising levels of atmospheric CO 2 are contributing to the global greenhouse effect. Large scale use of atmospheric CO 2 may be a sustainable and renewable means of chemical and liquid fuel production to mitigate global climate change. Photosynthetic organisms are an ideal platform for efficient, natural CO 2 conversion to a broad range of chemicals. Cyanobacteria are especially attractive for these purposes, due to their genetic malleability and relatively fast growth rate. Recent years have yielded a range of work in the metabolic engineering of cyanobacteria and have led to greater knowledge of the host metabolism. Understanding of endogenous and heterologous carbon regulation mechanisms leads to the expansion of productive capacity and chemical variety. This review discusses the recent progress in metabolic engineering of cyanobacteria for biofuel and bulk chemical production since 2014. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Metabolic Engineering of Microorganisms for the Production of Higher Alcohols

    Science.gov (United States)

    Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin

    2014-01-01

    ABSTRACT Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols. PMID:25182323

  20. Developing engineering design core competences through analysis of industrial products

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp; Lenau, Torben Anker

    2011-01-01

    Most product development work carried out in industrial practice is characterised by being incremental, i.e. the industrial company has had a product in production and on the market for some time, and now time has come to design a new and upgraded variant. This type of redesign project requires...... that the engineering designers have core design competences to carry through an analysis of the existing product encompassing both a user-oriented side and a technical side, as well as to synthesise solution proposals for the new and upgraded product. The authors of this paper see an educational challenge in staging...... a course module, in which students develop knowledge, understanding and skills, which will prepare them for being able to participate in and contribute to redesign projects in industrial practice. In the course module Product Analysis and Redesign that has run for 8 years we have developed and refined...

  1. Biobased organic acids production by metabolically engineered microorganisms

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2016-01-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further...... expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high...... performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed...

  2. Aspects of consolidation of engineering capability related to nuclear power plants

    International Nuclear Information System (INIS)

    Mueller, A.E.F.; Gasparian, A.E.; Calvet Filho, H.J.

    1980-01-01

    A major interest of countries launching nuclear program is to consolidate an engineering capability for Nuclear Power Plants design by performing part of the engineering services locally. A decade of nuclear power plant engineering and construction has exposed Brazilian architect-engineers to this new challenge. To cope with it, technology sources were identified, agreements were made and transfer is going on between foreign and local companies. Services performed by Brazilian architect-engineers are summarized. Foreign technology must be judiciously examined before implementation in a different environment. The receiver has to be prepared to develop his own capabilities and absorb the know-how being offered, taking into consideration the local engineering experience and construction practices. Some of the problems faced are outlined herein. The performed efforts brought Brazilian architect-engineers to a consolidated level of experience. (Author) [pt

  3. Sustainable Product Design, Engineering and Management Education for Industrial Design Engineering

    NARCIS (Netherlands)

    Boks, C.; Diehl, J.C.; Wever, R.

    2006-01-01

    Developments in the field of sustainable product design are manifold, which means that education in this field is rapidly evolving as well. In this paper, the continuously evolving portfolio of courses offered at Delft University of Technology’s Industrial Design Engineering faculty is

  4. 40 CFR 1045.305 - How must I prepare and test my production-line engines?

    Science.gov (United States)

    2010-07-01

    ... production-line engines? 1045.305 Section 1045.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Testing Production-line Engines § 1045.305 How must I prepare and test my production-line engines...

  5. 40 CFR 1048.305 - How must I prepare and test my production-line engines?

    Science.gov (United States)

    2010-07-01

    ... production-line engines? 1048.305 Section 1048.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.305 How must I prepare and test my production-line engines? This...

  6. Production of vanillin by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Yoon, Sang-Hwal; Li, Cui; Kim, Ju-Eun; Lee, Sook-Hee; Yoon, Ji-Young; Choi, Myung-Suk; Seo, Weon-Taek; Yang, Jae-Kyung; Kim, Jae-Yeon; Kim, Seon-Won

    2005-11-01

    E. coli was metabolically engineered to produce vanillin by expression of the fcs and ech genes from Amycolatopsis sp. encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively. Vanillin production was optimized by leaky expression of the genes, under the IPTG-inducible trc promoter, in complex 2YT medium. Supplementation with glucose, fructose, galactose, arabinose or glycerol severely decreased vanillin production. The highest vanillin production of 1.1 g l(-1) was obtained with cultivation for 48 h in 2YT medium with 0.2% (w/v) ferulate, without IPTG and no supplementation of carbon sources.

  7. Traditional technologies of fuels production for air-jet engines

    Directory of Open Access Journals (Sweden)

    Бойченко С. В.

    2013-07-01

    Full Text Available Available energy resources for various fuels, mainly for gas-turbine engines are presented in the given article. Traditional technologies for jet fuels production from nonrenewable raw materials, such as crude oil, coal, natural gas, oil-shales and others are analyzed in details. Cause and effect relationship between production and use of such fuels and their impact on natural environment is defined. The timeliness and necessity for development of alternative technologies of aviation biofuels production are determined in the given article.

  8. Harnessing natural product assembly lines: structure, promiscuity, and engineering.

    Science.gov (United States)

    Ladner, Christopher C; Williams, Gavin J

    2016-03-01

    Many therapeutically relevant natural products are biosynthesized by the action of giant mega-enzyme assembly lines. By leveraging the specificity, promiscuity, and modularity of assembly lines, a variety of strategies has been developed that enables the biosynthesis of modified natural products. This review briefly summarizes recent structural advances related to natural product assembly lines, discusses chemical approaches to probing assembly line structures in the absence of traditional biophysical data, and surveys efforts that harness the inherent or engineered promiscuity of assembly lines for the synthesis of non-natural polyketides and non-ribosomal peptide analogues.

  9. Microbial engineering for the production of advanced biofuels.

    Science.gov (United States)

    Peralta-Yahya, Pamela P; Zhang, Fuzhong; del Cardayre, Stephen B; Keasling, Jay D

    2012-08-16

    Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.

  10. Engineering strategy of yeast metabolism for higher alcohol production

    Directory of Open Access Journals (Sweden)

    Shimizu Hiroshi

    2011-09-01

    Full Text Available Abstract Background While Saccharomyces cerevisiae is a promising host for cost-effective biorefinary processes due to its tolerance to various stresses during fermentation, the metabolically engineered S. cerevisiae strains exhibited rather limited production of higher alcohols than that of Escherichia coli. Since the structure of the central metabolism of S. cerevisiae is distinct from that of E. coli, there might be a problem in the structure of the central metabolism of S. cerevisiae. In this study, the potential production of higher alcohols by S. cerevisiae is compared to that of E. coli by employing metabolic simulation techniques. Based on the simulation results, novel metabolic engineering strategies for improving higher alcohol production by S. cerevisiae were investigated by in silico modifications of the metabolic models of S. cerevisiae. Results The metabolic simulations confirmed that the high production of butanols and propanols by the metabolically engineered E. coli strains is derived from the flexible behavior of their central metabolism. Reducing this flexibility by gene deletion is an effective strategy to restrict the metabolic states for producing target alcohols. In contrast, the lower yield using S. cerevisiae originates from the structurally limited flexibility of its central metabolism in which gene deletions severely reduced cell growth. Conclusions The metabolic simulation demonstrated that the poor productivity of S. cerevisiae was improved by the introduction of E. coli genes to compensate the structural difference. This suggested that gene supplementation is a promising strategy for the metabolic engineering of S. cerevisiae to produce higher alcohols which should be the next challenge for the synthetic bioengineering of S. cerevisiae for the efficient production of higher alcohols.

  11. Animal Board Invited Review: Comparing conventional and organic livestock production systems on different aspects of sustainability.

    Science.gov (United States)

    van Wagenberg, C P A; de Haas, Y; Hogeveen, H; van Krimpen, M M; Meuwissen, M P M; van Middelaar, C E; Rodenburg, T B

    2017-10-01

    To sustainably contribute to food security of a growing and richer world population, livestock production systems are challenged to increase production levels while reducing environmental impact, being economically viable, and socially responsible. Knowledge about the sustainability performance of current livestock production systems may help to formulate strategies for future systems. Our study provides a systematic overview of differences between conventional and organic livestock production systems on a broad range of sustainability aspects and animal species available in peer-reviewed literature. Systems were compared on economy, productivity, environmental impact, animal welfare and public health. The review was limited to dairy cattle, beef cattle, pigs, broilers and laying hens, and to Europe, North America and New Zealand. Results per indicators are presented as in the articles without performing additional calculations. Out of 4171 initial search hits, 179 articles were analysed. Studies varied widely in indicators, research design, sample size and location and context. Quite some studies used small samples. No study analysed all aspects of sustainability simultaneously. Conventional systems had lower labour requirements per unit product, lower income risk per animal, higher production per animal per time unit, higher reproduction numbers, lower feed conversion ratio, lower land use, generally lower acidification and eutrophication potential per unit product, equal or better udder health for cows and equal or lower microbiological contamination. Organic systems had higher income per animal or full time employee, lower impact on biodiversity, lower eutrophication and acidification potential per unit land, equal or lower likelihood of antibiotic resistance in bacteria and higher beneficial fatty acid levels in cow milk. For most sustainability aspects, sometimes conventional and sometimes organic systems performed better, except for productivity, which was

  12. Recycling of waste engine oil for diesel production.

    Science.gov (United States)

    Maceiras, R; Alfonsín, V; Morales, F J

    2017-02-01

    The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Biocombinatorial Engineering of Fungal PKS-NRPS Hybrids for Production of Novel Synthetic Natural Products

    DEFF Research Database (Denmark)

    Nielsen, Maria Lund

    encoding a PKS-NRPS hybrid responsible for the production of a medically relevant compound in Talaromyces atroroseus. To the best of my knowledge, this study represents the first example of reverse engineering of a Talaromyces species. In the fourth study (chapter 5), I used the CRISPR-Cas9 system...... structure optimization. Within the last decade, an alternative approach for expanding natural product chemodiversity has been applied. This strategy, known as combinatorial biosynthesis, involves the re-engineering of biosynthetic pathways and ultimately the rational engineering of new natural product...... analogs. This field, however, has proved very challenging and many engineering efforts have resulted in enzymatic loss-of-function or reduced yields. Thus, the future success in combinatorial biosynthetic studies requires a thorough understanding of the structure and function of biosynthetic enzymes...

  14. Engineering cyanobacteria to generate high-value products.

    Science.gov (United States)

    Ducat, Daniel C; Way, Jeffrey C; Silver, Pamela A

    2011-02-01

    Although many microorganisms have been used for the bioindustrial generation of valuable metabolites, the productive potential of cyanobacterial species has remained largely unexplored. Cyanobacteria possess several advantages as organisms for bioindustrial processes, including simple input requirements, tolerance of marginal agricultural environments, rapid genetics, and carbon-neutral applications that could be leveraged to address global climate change concerns. Here, we review recent research involving the engineering of cyanobacterial species for the production of valuable bioindustrial compounds, including natural cyanobacterial products (e.g. sugars and isoprene), biofuels (e.g. alcohols, alkanes and hydrogen), and other commodity chemicals. Biological and economic obstacles to scaled cyanobacterial production are highlighted, and methods for increasing cyanobacterial production efficiencies are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Engineering aspects of earthquake risk mitigation: Lessons from management of recent earthquakes, and consequential mudflows and landslides

    International Nuclear Information System (INIS)

    1992-01-01

    The Proceedings contain 30 selected presentations given at the Second and Third UNDRO/USSR Training Seminars: Engineering Aspects of Earthquake Risk Assessment and Mitigation of Losses, held in Dushanbe, October 1988; and Lessons from Management of Recent Earthquakes, and Consequential Mudflows and Landslides, held in Moscow, October 1989. The annexes to the document provide information on the participants, the work programme and the resolution adopted at each of the seminars. Refs, figs and tabs

  16. Does engineering education need to engage more with the economic and social aspects of sustainability?

    Science.gov (United States)

    Fitzpatrick, John J.

    2017-11-01

    This paper questions if engineering educators are producing engineers that are accelerating humanity along an unsustainable path. Even though technology and engineering are important drivers in trying to move humanity towards an environmentally sustainable paradigm, the paper suggests that maybe the most important levers and challenges lie in the economic and social domains. Short case studies of energy efficiency, the experience of the industrialist Ray Anderson and the authors own reflection of teaching chemical engineering students are used to highlight this. Engineering/technological innovation may not be enough and is often counteracted by the rebound effect and the current dominant neoclassical economic paradigm. The paper discusses what engineering educators can do to produce sustainability informed engineers who are better able to engage with the economic and social dimensions of sustainability. Some suggestions for engaging engineering students with the economic and social dimensions of environmental sustainability are provided. Engineers must somehow find ways, not just to influence technological levers (which are very important) but also to influence economic and social levers so that changes in economic and social behaviours can complement and facilitate technological change in moving humanity to an environmentally sustainable paradigm.

  17. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Kwak, Suryang; Kim, Soo Rin; Xu, Haiqing; Zhang, Guo-Chang; Lane, Stephan; Kim, Heejin; Jin, Yong-Su

    2017-11-01

    Saccharomyces cerevisiae has limited capabilities for producing fuels and chemicals derived from acetyl-CoA, such as isoprenoids, due to a rigid flux partition toward ethanol during glucose metabolism. Despite numerous efforts, xylose fermentation by engineered yeast harboring heterologous xylose metabolic pathways was not as efficient as glucose fermentation for producing ethanol. Therefore, we hypothesized that xylose metabolism by engineered yeast might be a better fit for producing non-ethanol metabolites. We indeed found that engineered S. cerevisiae on xylose showed higher expression levels of the enzymes involved in ethanol assimilation and cytosolic acetyl-CoA synthesis than on glucose. When genetic perturbations necessary for overproducing squalene and amorphadiene were introduced into engineered S. cerevisiae capable of fermenting xylose, we observed higher titers and yields of isoprenoids under xylose than glucose conditions. Specifically, co-overexpression of a truncated HMG1 (tHMG1) and ERG10 led to substantially higher squalene accumulation under xylose than glucose conditions. In contrast to glucose utilization producing massive amounts of ethanol regardless of aeration, xylose utilization allowed much less amounts of ethanol accumulation, indicating ethanol is simultaneously re-assimilated with xylose consumption and utilized for the biosynthesis of cytosolic acetyl-CoA. In addition, xylose utilization by engineered yeast with overexpression of tHMG1, ERG10, and ADS coding for amorphadiene synthase, and the down-regulation of ERG9 resulted in enhanced amorphadiene production as compared to glucose utilization. These results suggest that the problem of the rigid flux partition toward ethanol production in yeast during the production of isoprenoids and other acetyl-CoA derived chemicals can be bypassed by using xylose instead of glucose as a carbon source. Biotechnol. Bioeng. 2017;114: 2581-2591. © 2017 Wiley Periodicals, Inc. © 2017 Wiley

  18. Analyzing the competences of production engineering graduates: an industry perspective

    Directory of Open Access Journals (Sweden)

    Patrícia Fernanda dos Santos

    2017-11-01

    Full Text Available Abstract This paper aims at conducting an analysis the competences of production engineering graduates, building on an industry view. To this end, we conducted a survey addressing 103 medium and large companies within the Brazilian manufacturing industry. The results suggest that companies do recognize the importance of competences. Some gaps in the competences of graduates were also pointed out by respondents. This study suggests the need for the development of efforts for providing the production engineer with a better professional background. The links between university and industry are likely to contribute towards such direction, notably as a starting point for institutions and industries to foster their student’s competences, aiming their aptitude for an ever-competitive job market, which values the flexible, creative being, who is capable of creating innovative solutions.

  19. Cell Therapy and Tissue Engineering Products for Chondral Knee Injuries

    Directory of Open Access Journals (Sweden)

    Adriana Flórez Cabrera

    2017-07-01

    Full Text Available The articular cartilage is prone to suffer lesions of different etiology, being the articular cartilage lesions of the knee the most common. Although most conventional treatments reduce symptoms they lead to the production of fibrocartilage, which has different characteristics than the hyaline cartilage of the joint. There are few therapeutic approaches that promote the replacement of damaged tissue by functional hyaline cartilage. Among them are the so-called advanced therapies, which use cells and tissue engineering products to promote cartilage regeneration. Most of them are based on scaffolds made of different biomaterials, which seeded or not with endogenous or exogenous cells, can be used as cartilage artificial replacement to improve joint function. This paper reviews some therapeutic approaches focused on the regeneration of articular cartilage of the knee and the biomaterials used to develop scaffolds for cell therapy and tissue engineering of cartilage.

  20. Genetic engineering, a hope for sustainable biofuel production: review

    Directory of Open Access Journals (Sweden)

    Sudip Paudel

    2014-06-01

    Full Text Available The use of recently developed genetic engineering tools in combination with organisms that have the potential to produce precursors for the production of biodiesel, promises a sustainable and environment friendly energy source. Enhanced lipid production in wild type and/or genetically engineered organisms can offer sufficient raw material for industrial transesterification of plant-based triglycerides. Bio-diesel, produced with the help of genetically modified organisms, might be one of the best alternatives to fossil fuels and to mitigate various environmental hazards. DOI: http://dx.doi.org/10.3126/ije.v3i2.10644 International Journal of the Environment Vol.3(2 2014: 311-323

  1. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller

    NARCIS (Netherlands)

    Soons, Z.I.T.A.; IJssel, van den J.; Pol, van der L.A.; Straten, van G.; Boxtel, van A.J.B.

    2009-01-01

    Abstract This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation

  2. The effect of season on aspects of in vitro embryo production in sub ...

    African Journals Online (AJOL)

    The effect of season on aspects of in vitro embryo production in sub-fertile beef cows. ... Forty beef (40) cows of different breeds and parities were used in a trial ... in follicular populations could be established for different months of the year.

  3. Various aspects of research of the SI engine with an additional expansion process

    Directory of Open Access Journals (Sweden)

    Noga Marcin

    2017-01-01

    Full Text Available The paper presents an analysis of the results of the both experimental results and theoretical works on the SI engine with additional expansion of exhaust gases, also known as five-stroke engine. The engine like this was constructed at Cracow University of Technology as a retrofitted in-line four cylinder engine in which outer cylinders (1st and 4th work as fired cylinders and inner cylinders (2nd and 3rd work as volume for the additional expansion. The aim of development of such an engine is to gain higher energy recovery ratio of the combusted fuel through the second expansion of exhaust in a separate cylinder. The operating parameters of the engine in various versions were analyzed: as naturally aspirated, supercharged using a turbocharger with a waste-gate valve and a turbocharger with variable nozzle turbine. Selected results of the indicating measurements of the engine with special emphasis on the indicated thermal efficiency were presented. The results pointed out the directions of further optimization of the engine. These results are all the more important, because according to the author’s knowledge, the research on the real object of this type are carried out in only one science center in the world besides Cracow University of Technology.

  4. Challenges to Cognitive Systems Engineering:Understanding Qualitative Aspects of Control Actions

    DEFF Research Database (Denmark)

    Lind, Morten

    2009-01-01

    The paper discusses the future role of Cognitive Systems Engineering (CSE) in contributing to integrated design of process, automation and human machine systems. Existing concepts and methods of Cognitive Systems Engineering do not integrate well with control theory and industrial automation tools...

  5. Fission product source terms and engineered safety features

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1984-01-01

    The author states that new, technically defensible, methodologies to establish realistic source term values for nuclear reactor accidents will soon be available. Although these methodologies will undoubtedly find widespread use in the development of accident response procedures, the author states that it is less clear that the industry is preparing to employ the newer results to develop a more rational approach to strategies for the mitigation of fission product releases. Questions concerning the performance of existing engineered safety systems are reviewed

  6. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

    Science.gov (United States)

    Tan, Zaigao; Yoon, Jong Moon; Nielsen, David R; Shanks, Jacqueline V; Jarboe, Laura R

    2016-05-01

    Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Sustainability aspects of biobased products : comparison of different crops and products from the vegetable oil platform

    NARCIS (Netherlands)

    Meesters, K.P.H.; Corré, W.J.; Conijn, J.G.; Patel, M.K.; Bos, H.L.

    2012-01-01

    This study focusses on the production of vegetable oil based products. A limited number of aspacts of the sustainability of the full chain (from agriculture to product at the factory gate) was evaluated. Three different vegetable oils were taken into account: palm oil, soy oil and rapeseed oil. Also

  8. The Effect of English Verbal Songs on Connected Speech Aspects of Adult English Learners’ Speech Production

    Directory of Open Access Journals (Sweden)

    Farshid Tayari Ashtiani

    2015-02-01

    Full Text Available The present study was an attempt to investigate the impact of English verbal songs on connected speech aspects of adult English learners’ speech production. 40 participants were selected based on the results of their performance in a piloted and validated version of NELSON test given to 60 intermediate English learners in a language institute in Tehran. Then they were equally distributed in two control and experimental groups and received a validated pretest of reading aloud and speaking in English. Afterward, the treatment was performed in 18 sessions by singing preselected songs culled based on some criteria such as popularity, familiarity, amount, and speed of speech delivery, etc. In the end, the posttests of reading aloud and speaking in English were administered. The results revealed that the treatment had statistically positive effects on the connected speech aspects of English learners’ speech production at statistical .05 level of significance. Meanwhile, the results represented that there was not any significant difference between the experimental group’s mean scores on the posttests of reading aloud and speaking. It was thus concluded that providing the EFL learners with English verbal songs could positively affect connected speech aspects of both modes of speech production, reading aloud and speaking. The Findings of this study have pedagogical implications for language teachers to be more aware and knowledgeable of the benefits of verbal songs to promote speech production of language learners in terms of naturalness and fluency. Keywords: English Verbal Songs, Connected Speech, Speech Production, Reading Aloud, Speaking

  9. 40 CFR 1051.301 - When must I test my production-line vehicles or engines?

    Science.gov (United States)

    2010-07-01

    ... vehicles or engines? 1051.301 Section 1051.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.301 When must I test my production-line vehicles or engines? (a...

  10. 40 CFR 1045.301 - When must I test my production-line engines?

    Science.gov (United States)

    2010-07-01

    ... engines? 1045.301 Section 1045.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Testing Production-line Engines § 1045.301 When must I test my production-line engines? (a) If you produce...

  11. Aspects of 238Pu production in the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Osaka, Masahiko; Koyama, Shin-ichi; Tanaka, Kenya; Itoh, Masahiko; Saito, Masaki

    2005-01-01

    Experimental determination of 238 Pu in 237 Np samples irradiated in the experimental fast reactor JOYO was done as part of the demonstration of 238 Pu production from 237 Np in fast reactors within the framework of the protected Pu production project, which aims at reinforcement of proliferation resistance of Pu by increasing the 238 Pu isotopic ratio. 238 Pu production amount in the irradiated 237 Np samples was determined by a radioanalytical technique. Aspects of 238 Pu production were examined on the basis of the present radioanalysis. The 238 Pu production amount depends on the neutron spectrum which can range from that of a typical fast reactor to a nearly epi-thermal spectrum. It is concluded that the fast reactor has not only high potential for use in protected Pu production, but also as an incinerator for excess Pu

  12. Sustainable Product Design, Engineering and Management Education for Industrial Design Engineering

    OpenAIRE

    Boks, C.; Diehl, J.C.; Wever, R.

    2006-01-01

    Developments in the field of sustainable product design are manifold, which means that education in this field is rapidly evolving as well. In this paper, the continuously evolving portfolio of courses offered at Delft University of Technology’s Industrial Design Engineering faculty is systematically discussed, with a focus on content, course formats, assignments and lessons learned from course evaluations in recent years. It is concluded that in particular integration in existing contexts (a...

  13. Chosen aspects of evaluation of productive processes on the example of productive chains of gear

    OpenAIRE

    M. Roszak

    2005-01-01

    Purpose: The purpose of the study was to present an original approach to evaluation of the real productive chains, including its utilization as a benchmarking method.Design/methodology/approach: In the paper an analysis of value in the productive chains with account of activities based costs was used. The evaluation of the effectivity was made by econometric coefficients.Findings: The paper presents obtained particular results of the analysis of value in the productive chains indicating effec...

  14. Potential Errors and Test Assessment in Software Product Line Engineering

    Directory of Open Access Journals (Sweden)

    Hartmut Lackner

    2015-04-01

    Full Text Available Software product lines (SPL are a method for the development of variant-rich software systems. Compared to non-variable systems, testing SPLs is extensive due to an increasingly amount of possible products. Different approaches exist for testing SPLs, but there is less research for assessing the quality of these tests by means of error detection capability. Such test assessment is based on error injection into correct version of the system under test. However to our knowledge, potential errors in SPL engineering have never been systematically identified before. This article presents an overview over existing paradigms for specifying software product lines and the errors that can occur during the respective specification processes. For assessment of test quality, we leverage mutation testing techniques to SPL engineering and implement the identified errors as mutation operators. This allows us to run existing tests against defective products for the purpose of test assessment. From the results, we draw conclusions about the error-proneness of the surveyed SPL design paradigms and how quality of SPL tests can be improved.

  15. Metabolic engineering of Candida glabrata for diacetyl production.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available In this study, Candida glabrata, an efficient pyruvate-producing strain, was metabolically engineered for the production of the food ingredient diacetyl. A diacetyl biosynthetic pathway was reconstructed based on genetic modifications and medium optimization. The former included (i channeling carbon flux into the diacetyl biosynthetic pathway by amplification of acetolactate synthase, (ii elimination of the branched pathway of α-acetolactate by deleting the ILV5 gene, and (iii restriction of diacetyl degradation by deleting the BDH gene. The resultant strain showed an almost 1∶1 co-production of α-acetolactate and diacetyl (0.95 g L(-1. Furthermore, addition of Fe3+ to the medium enhanced the conversion of α-acetolactate to diacetyl and resulted in a two-fold increase in diacetyl production (2.1 g L(-1. In addition, increased carbon flux was further channeled into diacetyl biosynthetic pathway and a titer of 4.7 g L(-1 of diacetyl was achieved by altering the vitamin level in the flask culture. Thus, this study illustrates that C. glabrata could be tailored as an attractive platform for enhanced biosynthesis of beneficial products from pyruvate by metabolic engineering strategies.

  16. Reverse electrodialysis heat engine for sustainable power production

    International Nuclear Information System (INIS)

    Tamburini, A.; Tedesco, M.; Cipollina, A.; Micale, G.; Ciofalo, M.; Papapetrou, M.; Van Baak, W.; Piacentino, A.

    2017-01-01

    Graphical abstract: State of the art technologies for the conversion of heat into power. Grey circles refer to technologies at very early stage of development and non-available at industrial level. The Carnot efficiency (on the secondary horizontal axis) is evaluated assuming a cold sink temperature of 25 °C. SRC-hot gases: Steam Rankine Cycle integrated with gas turbine/other topping cycles; SRC-fuel: Steam Rankine Cycle directly fuelled by oil, coal or other fuels; KC: Kalina Cycle; ORC: Organic Rankine Cycle; TEG: Thermoelectric Generation; PEPG: Piezoelectric Power Generation with waste heat-powered expansion/compression cycle; OHE: Osmotic Heat Engine; REDHE, Reverse Electrodialysis Heat Engine (this paper). Display Omitted -- Highlights: •For the first time, the potential of Reverse Electrodialysis Heat Engine is assessed. •An overview of the possible regeneration methods is presented. •Performance of the RED unit fed by different salty solutions was suitably optimized. •Three different RED Heat Engine scenarios were studied. •Exergetic efficiency of about 85% could be achieved in the foreseen future. -- Abstract: Reverse Electrodialysis Heat Engine (REDHE) is a promising technology to convert waste heat at temperatures lower than 100 °C into electric power. In the present work an overview of the possible regeneration methods is presented and the technological challenges for the development of the RED Heat Engine (REDHE) are identified. The potential of this power production cycle was investigated through a simplified mathematical model. In the first part of the work, several salts were singularly modelled as possible solutes in aqueous solutions feeding the RED unit and the corresponding optimal conditions were recognized via an optimization study. In the second part, three different RED Heat Engine scenarios were studied. Results show that power densities much higher than those relevant to NaCl-water solutions can be obtained by using different

  17. Production of extracellular fatty acid using engineered Escherichia coli

    Directory of Open Access Journals (Sweden)

    Liu Hui

    2012-04-01

    Full Text Available Abstract Background As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. Results In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing ‘TesA and the deletion of fadL in E. coli BL21 (DE3 improved extracellular fatty acid production, while deletion of fadD didn’t strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-‘tesA-ΔfadL produced 4.8 g L−1 extracellular fatty acid, with the specific productivity of 0.02 g h−1 g−1dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-‘tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired

  18. Glyco-engineering for biopharmaceutical production in moss bioreactors

    Directory of Open Access Journals (Sweden)

    Eva L. Decker

    2014-07-01

    Full Text Available The production of recombinant biopharmaceuticals (pharmaceutical proteins is a strongly growing area in the pharmaceutical industry. While most products to date are produced in mammalian cell cultures, namely CHO cells, plant-based production systems gained increasing acceptance over the last years. Different plant systems have been established which are suitable for standardization and precise control of cultivation conditions, thus meeting the criteria for pharmaceutical production.The majority of biopharmaceuticals comprise glycoproteins. Therefore, differences in protein glycosylation between humans and plants have to be taken into account and plant-specific glycosylation has to be eliminated to avoid adverse effects on quality, safety and efficacy of the products.The basal land plant Physcomitrella patens (moss has been employed for the recombinant production of high-value therapeutic target proteins (e.g., Vascular Endothelial Growth Factor, Complement Factor H, monoclonal antibodies, Erythropoietin. Being genetically excellently characterized and exceptionally amenable for precise gene targeting via homologous recombination, essential steps for the optimization of moss as a bioreactor for the production of recombinant proteins have been undertaken.Here, we discuss the glyco-engineering approaches to avoid non-human N- and O-glycosylation on target proteins produced in moss bioreactors.

  19. Production of caffeoylmalic acid from glucose in engineered Escherichia coli.

    Science.gov (United States)

    Li, Tianzhen; Zhou, Wei; Bi, Huiping; Zhuang, Yibin; Zhang, Tongcun; Liu, Tao

    2018-07-01

    To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli. We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coli-E. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L. Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.

  20. Microbial production of antioxidant food ingredients via metabolic engineering.

    Science.gov (United States)

    Lin, Yuheng; Jain, Rachit; Yan, Yajun

    2014-04-01

    Antioxidants are biological molecules with the ability to protect vital metabolites from harmful oxidation. Due to this fascinating role, their beneficial effects on human health are of paramount importance. Traditional approaches using solvent-based extraction from food/non-food sources and chemical synthesis are often expensive, exhaustive, and detrimental to the environment. With the advent of metabolic engineering tools, the successful reconstitution of heterologous pathways in Escherichia coli and other microorganisms provides a more exciting and amenable alternative to meet the increasing demand of natural antioxidants. In this review, we elucidate the recent progress in metabolic engineering efforts for the microbial production of antioxidant food ingredients - polyphenols, carotenoids, and antioxidant vitamins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Reuse of Aluminum Dross as an Engineered Product

    Science.gov (United States)

    Dai, Chen; Apelian, Diran

    To prevent the leaching of landfilled aluminum dross waste and save the energy consumed by recovering metallic aluminum from dross, aluminum dross is reused as an engineering product directly rather than "refurbished" ineffectively. The concept is to reduce waste and to reuse. Two kinds of aluminum dross from industrial streams were selected and characterized. We have shown that dross can be applied directly, or accompanied with a simple conditioning process, to manufacture refractory components. Dross particles below 50 mesh are most effective. Mechanical property evaluations revealed the possibility for dross waste to be utilized as filler in concrete, resulting in up to 40% higher flexural strength and 10% higher compressive strength compared to pure cement, as well as cement with sand additions. The potential usage of aluminum dross as a raw material for such engineering applications is presented and discussed.

  2. Special Issue: Software-engineering, Properites of Language and Aspect Technologies

    DEFF Research Database (Denmark)

    Bergmans, Lodewijk; Gybels, Kris; Ernst, Erik

    2008-01-01

    , comprehensibility and evolvability. As (aspect) languages are being pushed to meet their boundaries and limitations, the trade-offs in language design become increasingly difficult to make. In particular, a trade-off may be perfectly sensible in one application context, but much less so in another. In this special...... issue you will find three full papers, originating from the SPLAT workshop series, that address this last issue. Each of these papers resolves a fundamental language design trade-off by offering a language mechanism that lifts the design decisions to the application programmers: The first paper, "User......-Defined Join Point Selectors-An Extension Mechanism for Pointcut Languages" by Breuel and Reverbel, addresses the fact that aspect programmers are pushing the boundaries of pointcut languages. As a result, aspect language designers have to make a trade-off between limited expressiveness of traditional types...

  3. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    Science.gov (United States)

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.

  4. Metabolic engineering of yeast for lignocellulosic biofuel production.

    Science.gov (United States)

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller.

    Science.gov (United States)

    Soons, Zita I T A; van den IJssel, Jan; van der Pol, Leo A; van Straten, Gerrit; van Boxtel, Anton J B

    2009-04-01

    This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.

  6. Undergraduate courses in nuclear engineering in Italian universities: Cultural and practical aspects

    International Nuclear Information System (INIS)

    Guerrini, B.; Lombardi, C.; Naviglio, A.; Oliveri, E.; Panella, B.; Sobrero, E.

    1992-01-01

    The contents of the undergraduate courses given in Italian nuclear engineering faculties are analyzed, showing the validity of this professional profile also with reference to non-nuclear applications including relevant safety issues and the management of complex projects. The role of Italian universities is stressed, in the defense of knowledge and capability in the nuclear sector, also with reference to the years of the nuclear 'moratoria' decided at the political level after public consultation. The prospects of Italian nuclear engineers are examined, with reference to the European labour market

  7. Bovine Endotoxicosis – Some Aspects of Relevance to Production Diseases. A Review*

    OpenAIRE

    Andersen Pia

    2003-01-01

    This review describes some circumstances where endotoxins of Gram negative bacteria may be related to the pathogenesis of some common production diseases. Decisive evidence for the pathogentical role of endotoxins remains scarce, and therefore an interdisciplinary background covering epidemiological, biological, biochemical, clinical and experimental aspects is given. Several authors have suggested that endotoxins play a significant role for the development of diseases such as laminitis, abo...

  8. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller

    OpenAIRE

    Soons, Z.I.T.A.; IJssel, van den, J.; Pol, van der, L.A.; Straten, van, G.; Boxtel, van, A.J.B.

    2009-01-01

    Abstract This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst ...

  9. Genetically engineered plants in the product development pipeline in India.

    Science.gov (United States)

    Warrier, Ranjini; Pande, Hem

    2016-01-02

    In order to proactively identify emerging issues that may impact the risk assessment and risk management functions of the Indian biosafety regulatory system, the Ministry of Environment, Forests and Climate Change sought to understand the nature and diversity of genetically engineered crops that may move to product commercialization within the next 10 y. This paper describes the findings from a questionnaire designed to solicit information about public and private sector research and development (R&D) activities in plant biotechnology. It is the first comprehensive overview of the R&D pipeline for GE crops in India.

  10. EASE+PEPSE: A productivity tool for the performance engineer

    International Nuclear Information System (INIS)

    Lucier, R.D.; Gay, R.R.

    1986-01-01

    Plant performance monitoring has gained increased emphasis given the current political, economic and licensing climate. Utility planners and management can no longer rely on smooth acceptance and financing of new power stations. Therefore, the emphasis has shifted to getting more production out of existing plants. There has also been a dramatic shift towards small but powerful personal computers for engineering applications. This paper discusses how well personal computer based software can fit into utility performance programs. In particular, the use of the EASE+PEPSE software at Yankee Atomic Electric Company is outlined

  11. The physics and engineering aspects of radiology.. Textbook with questions and answers. 2. enl. and rev. ed.

    International Nuclear Information System (INIS)

    Link, T.M.; Heppe, A.

    1998-01-01

    The authors have chosen the form of questions and answers derived from practice in order to present and explain the fundamental physics and engineering aspects of radiology. The second, completely revised edition of the textbook has been updated so as to include recent legislation and the guidelines for specialized medical education and training for specialists in diagnostic radiology. One new chapters added deals with the diagnostic method of magnetic resonance imaging (MRI), and the chapters on computed tomography (CT), digital radiography and ultrasonography have been enlarged to include recent developments. The text is accompanied by illustrations that are easy to remember, showing the typical aspects and information, and the chapter containing and discussing diagnostic images has likewise been enlarged by representative CT and MRI images. The book is intended for readers preparing for their examination as specialists, for participants of courses in radiological protection, radiological medical technicians or medical students, and may also serve as a refresher course. (orig./CB) [de

  12. Towards an innovation culture : what are it's national, corporate, marketing and engineering aspects, some experimental evidence

    NARCIS (Netherlands)

    Ulijn, J.M.; Weggeman, M.C.D.P.; Cooper, C.L.; Cartwright, S.; Earley, P.C.

    2001-01-01

    This chapter addresses the issue of innovation culture (IC) and proposes and try to answer 5 research questions related to the possible impact of different elements, such as national, corporate and professional (engineering vs marketing) cultures (NC, CC, and PC), their intersection and integration

  13. Analysis of curricular aspects of economics' teaching in industrial engineering courses

    Directory of Open Access Journals (Sweden)

    Antonio Marcos Rodrigues e Silva

    2012-06-01

    Full Text Available Industrial Engineering is a field that has attracted the attention, especially because of its synergy with other areas of knowledge. In order to think about education in Industrial Engineering it is necessary to consider its relationship and interdependence with other areas. In this way, the relationship with Economics is considered. Although the objectives of both areas and their methods are distinct, they are related in many points. So, the contribution of study economy is directly related to the ways these topics will be studied in the Industrial Engineering courses. It is also implied how these topics will be chosen to be presented. The present paper’s objective is to analyze the teaching of Economics in the Industrial Engineering courses inBrazil. In order to achieve this objective, a documental research has been conducted, using the Content Analysis technique applied to the Teaching Plans of the disciplines covering the Economics contents in 15 Institutions. It has been concluded that the topics covered in the courses are of a broad nature, with emphasis in theoretic content of Economics. Furthermore, the strategies used in classroom, as well as the assessment methods are still of traditional nature.

  14. Aspects of the engineering design of whole-body nuclear magnetic resonance machines

    International Nuclear Information System (INIS)

    Young, I.R.; Collins, A.G.; Hall, A.S.; Harman, R.R.; Butson, P.C.; Gilderdale, D.J.

    1987-01-01

    The paper on whole-body nuclear magnetic resonance machines reviews the basic physics very briefly, then examines the design requirements and engineering constraints for the major components of such a system. The paper concludes with a brief resume of the techniques used, and a short presentation of the type of results that are achieved. (author)

  15. Thermal damage of power plants components and their reparation. Aspects of welding engineering

    International Nuclear Information System (INIS)

    Kautz, H.R.; Zurn, H.E.D.

    1993-01-01

    In the last years, the technology of power plants has been developed. With the recommendation in environmental protection, the research is focussed on gaseous effluents purification . In case of were an accident, the welding engineering might repair the components. 47 refs

  16. Aspects on Teaching/Learning with Object Oriented Programming for Entry Level Courses of Engineering.

    Science.gov (United States)

    de Oliveira, Clara Amelia; Conte, Marcos Fernando; Riso, Bernardo Goncalves

    This work presents a proposal for Teaching/Learning, on Object Oriented Programming for Entry Level Courses of Engineering and Computer Science, on University. The philosophy of Object Oriented Programming comes as a new pattern of solution for problems, where flexibility and reusability appears over the simple data structure and sequential…

  17. Future Trends in Production Engineering : Proceedings of the First Conference of the German Academic Society for Production Engineering

    CERN Document Server

    Neugebauer, Reimund; Uhlmann, Eckart

    2013-01-01

    To meet and adapt to the current and future trends and issues in technology and society, the science committee of The German Academic Society for Production Engineering (WGP) continues to define future topics for production technology. These themes represent not only the key focus for the scientific work of the WGP, but also the central themes of the first annual conference in June 2011, whose paper is publically available in this volume. Such themes, including electric mobility, medical technology, lightweight construction, and resource efficiency, as well as mass production ability have all been identified as future, large-scale, and long-term drivers of change. Future trends influence changes sustainably and fundamentally; they permeate society, technology, economics, and value systems and have an effect in virtually all areas of life. The WGP has, as part of its research, established for itself the goal of not only observing these emerging changes, but also of supervising and influencing their development...

  18. Pricing for finished products of the enterprise: accounting and analytical aspect

    Directory of Open Access Journals (Sweden)

    N.L. Pravdyuk

    2017-03-01

    Full Text Available The pricing policy chosen by the enterprise in respect of goods and finished products of own production, has a decisive influence on the formation of financial results. In modern economic conditions we need to strengthen managerial decisions on the choice and carrying out price policy and a means of solving this problem is accounting. To determine the boundaries and competence of decision-making we analyzed the regulation of these terms and processes, as well as the dynamics of the stocks across sectors of the economy, the consumer price index, producer price index, the price index of realization of industrial products. Widely used data analytical reviews of the national Bank of Ukraine, enterprises' expectations regarding efficiency, the analysis of financial market indicators, etc. Established that the provision of information management pricing of goods shall conform to the requirements of the economy, by deepening complexity of accounting, to ensure the needs of consumers. According to the study substantiates the basics of accounting and analytical aspect of the pricing policy for finished products businesses. In the study of pricing policies in respect of goods in accounting and analytical aspect, we have established the following. The existing normative-legal acts and definitions of researchers on economic and accounting analysis of the concept give a sufficiently wide interpretation, which depends on the orientation and activity of the enterprise. Factors and points of influence on the efficiency of the pricing policy are: information support of process of pricing assessment of pricing factors, establish the objectives of price policy, assessment of customer demand, cost analysis, competition analysis, selecting a pricing method that measures the price adjustment, the evaluation price risk. The economic impact of the market environment is the most significant to the pricing policy of agricultural enterprises, which revealed the analysis

  19. Safety aspects of the production of foods and food ingredients from insects.

    Science.gov (United States)

    Schlüter, Oliver; Rumpold, Birgit; Holzhauser, Thomas; Roth, Angelika; Vogel, Rudi F; Quasigroch, Walter; Vogel, Stephanie; Heinz, Volker; Jäger, Henry; Bandick, Nils; Kulling, Sabine; Knorr, Dietrich; Steinberg, Pablo; Engel, Karl-Heinz

    2017-06-01

    At present, insects are rarely used by the European food industry, but they are a subject of growing interest as an alternative source of raw materials. The risks associated with the use of insects in the production of foods and food ingredients have not been sufficiently investigated. There is a lack of scientifically based knowledge of insect processing to ensure food safety, especially when these processes are carried out on an industrial scale. This review focuses on the safety aspects that need to be considered regarding the fractionation of insects for the production of foods and food ingredients. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The role of food quality assurance and product certification systems on marketing aspects

    Science.gov (United States)

    Petrović, Z.; Milićević, D.; Nastasijević, I.; Đorđević, V.; Trbović, D.; Velebit, B.

    2017-09-01

    The level of quality that a product offers to consumers is a fundamental aspect of competition in many markets. Consumers’ confidence in the safety and quality of foods they buy and consume is a significant support to the economic development of production organizations of this type, and therefore the overall economic development. Consumer concerns about food safety as well as the globalization of food production have also led to the existence of a global internationally linked food production and distribution system. The necessity demanded by the consumer population to provide safe food with consistent quality at an attractive price imposes a choice of an appropriate quality assurance model in accordance with the specific properties of the product and the production processes. Modern trends, especially for the last ten years in quality assurance within specific production, such as the food industry, have marked the trend of hyperproduction and a number of production and safety standards, as well as a change of approach in the certification process of organizations according to one or more standards. This can be an additional source of costs for organizations, and can burden the food business operator`s budget in order to ensure their consistent application and maintenance. Quality assurance (QA) standards are considered to be a proven mechanism for delivering quality of product.

  1. Regulatory challenges for autologous tissue engineered products on their way from bench to bedside in Europe.

    Science.gov (United States)

    Ram-Liebig, Gouya; Bednarz, Juergen; Stuerzebecher, Burkard; Fahlenkamp, Dirk; Barbagli, Guido; Romano, Giuseppe; Balsmeyer, Ulf; Spiegeler, Maria-Elsa; Liebig, Soeren; Knispel, Helmut

    2015-03-01

    Since the late eighties of last century the high potential of tissue engineered products (TEP)s has been shown for the treatment of various diseases and many scientific publications appeared in this field. However, only few products reached the market since. Development of TEPs is a promising but owing to its novelty a very challenging task that requires experts in this still developing field as well as ample financial resources. This paper summarises relevant regulatory challenges during quality, preclinical and clinical development of autologous TEPs in Europe. Selected strategies on how to manage major issues are presented, together with some examples from the development of an autologous TEP for urethroplasty. Considering these aspects may help other investigators with potential strategies during the development of novel TEPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Additive manufacturing techniques for the production of tissue engineering constructs.

    Science.gov (United States)

    Mota, Carlos; Puppi, Dario; Chiellini, Federica; Chiellini, Emo

    2015-03-01

    'Additive manufacturing' (AM) refers to a class of manufacturing processes based on the building of a solid object from three-dimensional (3D) model data by joining materials, usually layer upon layer. Among the vast array of techniques developed for the production of tissue-engineering (TE) scaffolds, AM techniques are gaining great interest for their suitability in achieving complex shapes and microstructures with a high degree of automation, good accuracy and reproducibility. In addition, the possibility of rapidly producing tissue-engineered constructs meeting patient's specific requirements, in terms of tissue defect size and geometry as well as autologous biological features, makes them a powerful way of enhancing clinical routine procedures. This paper gives an extensive overview of different AM techniques classes (i.e. stereolithography, selective laser sintering, 3D printing, melt-extrusion-based techniques, solution/slurry extrusion-based techniques, and tissue and organ printing) employed for the development of tissue-engineered constructs made of different materials (i.e. polymeric, ceramic and composite, alone or in combination with bioactive agents), by highlighting their principles and technological solutions. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Product availability from delivery aspect: Evidence from retailers in selected Western Balkan countries

    Directory of Open Access Journals (Sweden)

    Grubor Aleksandar

    2016-01-01

    Full Text Available Bearing in mind that it represents one of the main preconditions of sales, product availability is the key task of retail companies and their delivery systems. This paper analyses its levels from the aspect of centralized and DSD systems. The research is conducted in Serbia, Bosnia and Herzegovina and Montenegro, including 84 stores and more than 70 FMCG products per each store. Thereby, the comparisons in product availability levels between alternative delivery systems are carried out within different trading formats and within different product categories. Unlike the results of similar studies and ongoing changes on retail markets, this research shows that at retailers in these Western Balkan countries, availability levels are higher in the case of DSD system.

  4. Artistic and Engineering Design of Platform-Based Production Systems: A Study of Swedish Architectural Practice

    Directory of Open Access Journals (Sweden)

    Gustav Jansson

    2018-02-01

    Full Text Available Research on platform-based production systems for house-building has focused on production and manufacturing issues. The aim of this research is to explore how the architectural design process contributes to the industrialised house-building industry from the perspective of creative design work. It also aims to describe how constraints affect architectural design work in the engineer-to-order context, when using platform-based production systems. Architects with experience in using platform-based building systems with different degrees of constraints were interviewed regarding creative aspects of the design work. The interviews, together with documents relating to platform constraints, were then analysed from the perspective of artistic and engineering design theories. The results show the benefits and issues of using platform constraints, both with prefabrication of volumetric modules, as well as prefabricated slab and wall elements. The study highlights a major research gap by describing how architectural work, from both the creative artistic and engineering design perspectives, is affected by constraints in the building platform: (1 the architectural design work goes through a series of divergent and convergent processes where the divergent processes are explorative and the convergent processes are solution-oriented; and (2, there is a trade-off between creativity and efficiency in the design work. Open parameters for layout design are key to architectural creativity, while predefinition supports efficiency. The results also provide an understanding of the potential for creativity in artistic and engineering work tasks through different phases in design, and how they are related to constraints in the platform. The main limitation of the research is the number of interviewed architects who had different background experiences of working with different types of platform constraints. More studies are needed to confirm the observations and to

  5. Natural sweetening of food products by engineering Lactococcus lactis for glucose production

    NARCIS (Netherlands)

    Pool, Wietske A.; Neves, Ana Rute; Kok, Jan; Santos, Helena; Kuipers, Oscar P.

    We show that sweetening of food products by natural fermentation can be achieved by a combined metabolic engineering and transcriptome analysis approach. A Lactococcus lactis ssp. cremoris strain was constructed in which glucose metabolism was completely disrupted by deletion of the genes coding for

  6. Simplified LCA and matrix methods in identifying the environmental aspects of a product system.

    Science.gov (United States)

    Hur, Tak; Lee, Jiyong; Ryu, Jiyeon; Kwon, Eunsun

    2005-05-01

    In order to effectively integrate environmental attributes into the product design and development processes, it is crucial to identify the significant environmental aspects related to a product system within a relatively short period of time. In this study, the usefulness of life cycle assessment (LCA) and a matrix method as tools for identifying the key environmental issues of a product system were examined. For this, a simplified LCA (SLCA) method that can be applied to Electrical and Electronic Equipment (EEE) was developed to efficiently identify their significant environmental aspects for eco-design, since a full scale LCA study is usually very detailed, expensive and time-consuming. The environmentally responsible product assessment (ERPA) method, which is one of the matrix methods, was also analyzed. Then, the usefulness of each method in eco-design processes was evaluated and compared using the case studies of the cellular phone and vacuum cleaner systems. It was found that the SLCA and the ERPA methods provided different information but they complemented each other to some extent. The SLCA method generated more information on the inherent environmental characteristics of a product system so that it might be useful for new design/eco-innovation when developing a completely new product or method where environmental considerations play a major role from the beginning. On the other hand, the ERPA method gave more information on the potential for improving a product so that it could be effectively used in eco-redesign which intends to alleviate environmental impacts of an existing product or process.

  7. Metabolic engineering of Escherichia coli for the production of riboflavin

    Science.gov (United States)

    2014-01-01

    Background Riboflavin (vitamin B2), the precursor of the flavin cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is used commercially as an animal feed supplement and food colorant. E. coli is a robust host for various genetic manipulations and has been employed for efficient production of biofuels, polymers, amino acids, and bulk chemicals. Thus, the aim of this study was to understand the metabolic capacity of E. coli for the riboflavin production by modification of central metabolism, riboflavin biosynthesis pathway and optimization of the fermentation conditions. Results The basic producer RF01S, in which the riboflavin biosynthesis genes ribABDEC from E. coli were overexpressed under the control of the inducible trc promoter, could accumulate 229.1 mg/L of riboflavin. Further engineering was performed by examining the impact of expression of zwf (encodes glucose 6-phosphate dehydrogenase) and gnd (encodes 6-phosphogluconate dehydrogenase) from Corynebacterium glutamicum and pgl (encodes 6-phosphogluconolactonase) from E. coli on riboflavin production. Deleting pgi (encodes glucose-6-phosphate isomerase) and genes of Entner-Doudoroff (ED) pathway successfully redirected the carbon flux into the oxidative pentose phosphate pathway, and overexpressing the acs (encodes acetyl-CoA synthetase) reduced the acetate accumulation. These modifications increased riboflavin production to 585.2 mg/L. By further modulating the expression of ribF (encodes riboflavin kinase) for reducing the conversion of riboflavin to FMN in RF05S, the final engineering strain RF05S-M40 could produce 1036.1 mg/L riboflavin in LB medium at 37°C. After optimizing the fermentation conditions, strain RF05S-M40 produced 2702.8 mg/L riboflavin in the optimized semi-defined medium, which was a value nearly 12-fold higher than that of RF01S, with a yield of 137.5 mg riboflavin/g glucose. Conclusions The engineered strain RF05S-M40 has the highest yield among all

  8. Metabolic engineering of Escherichia coli for the production of riboflavin.

    Science.gov (United States)

    Lin, Zhenquan; Xu, Zhibo; Li, Yifan; Wang, Zhiwen; Chen, Tao; Zhao, Xueming

    2014-07-16

    Riboflavin (vitamin B2), the precursor of the flavin cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is used commercially as an animal feed supplement and food colorant. E. coli is a robust host for various genetic manipulations and has been employed for efficient production of biofuels, polymers, amino acids, and bulk chemicals. Thus, the aim of this study was to understand the metabolic capacity of E. coli for the riboflavin production by modification of central metabolism, riboflavin biosynthesis pathway and optimization of the fermentation conditions. The basic producer RF01S, in which the riboflavin biosynthesis genes ribABDEC from E. coli were overexpressed under the control of the inducible trc promoter, could accumulate 229.1 mg/L of riboflavin. Further engineering was performed by examining the impact of expression of zwf (encodes glucose 6-phosphate dehydrogenase) and gnd (encodes 6-phosphogluconate dehydrogenase) from Corynebacterium glutamicum and pgl (encodes 6-phosphogluconolactonase) from E. coli on riboflavin production. Deleting pgi (encodes glucose-6-phosphate isomerase) and genes of Entner-Doudoroff (ED) pathway successfully redirected the carbon flux into the oxidative pentose phosphate pathway, and overexpressing the acs (encodes acetyl-CoA synthetase) reduced the acetate accumulation. These modifications increased riboflavin production to 585.2 mg/L. By further modulating the expression of ribF (encodes riboflavin kinase) for reducing the conversion of riboflavin to FMN in RF05S, the final engineering strain RF05S-M40 could produce 1036.1 mg/L riboflavin in LB medium at 37°C. After optimizing the fermentation conditions, strain RF05S-M40 produced 2702.8 mg/L riboflavin in the optimized semi-defined medium, which was a value nearly 12-fold higher than that of RF01S, with a yield of 137.5 mg riboflavin/g glucose. The engineered strain RF05S-M40 has the highest yield among all reported riboflavin production

  9. Special Aspects of Learning Objectives Design for Disciplines in Engineering Education

    Directory of Open Access Journals (Sweden)

    Yu. B. Tsvetkov

    2015-01-01

    Full Text Available The article is devoted to a problem of learning objectives design for disciplines in engineering education. It is shown that the system of well defined objectives can form a basis of discipline content analysis, acquisition control and improvement.The detailed defining of clear objectives and designing forms and content of objectives which allow to estimate their achievement are considered.For this purpose the objectives should consider the level of learners, to designate result which they will be able to show after training, conditions and how well they will be able to make it.Some examples of objective formulations are provided which allow to show in an explicit form the results reached by a learner.It is shown that cognitive process dimension can be divided into groups of initial level of thinking (to remember, understand, apply and thinking of high level (to analyze, estimate, create.Thus knowledge dimension include the factual, conceptual, procedural and metacognitive knowledges.On the basis of cognitive process dimension and knowledge dimension in engineering education it is offered to form system of learning objectives on the basis of their twodimensional classification - taxonomy.Objectives examples for engineering discipline are given. They consider conditions of their achievement and criteria of execution for various combinations of cognitive process dimension and levels of knowledge dimension.For some engineering disciplines examples of learning objectives are formulated including their achievement and criterion of execution of the corresponding actions.The given results can form a basis for design of learning objectives at realization of a competence approach in modern engineering education.Further work in this direction preplan the analysis and approbation of two-dimensional matrix applicability for objectives design on examples of various engineering disciplines.It is of profound importance to use matrixes of well defined

  10. Producer gas production of Indonesian biomass in fixed-bed downdraft gasifier as an alternative fuels for internal combustion engines

    Science.gov (United States)

    Simanjuntak, J. P.; Lisyanto; Daryanto, E.; Tambunan, B. H.

    2018-03-01

    downdraft biomass gasification reactors, coupled with reciprocating internal combustion engines (ICE) are a viable technology for small scale heat and power generation. The direct use of producer gas as fuel subtitution in an ICE could be of great interest since Indonesia has significant land area in different forest types that could be used to produce bioenergy and convert forest materials to bioenergy for use in energy production and the versatility of this engine. This paper will look into the aspect of biomass energie as a contributor to energy mix in Indonesia. This work also contains information gathered from numerous previews study on the downdraft gasifier based on experimental or simulation study on the ability of producer gas as fuels for internal combustion engines aplication. All data will be used to complement the preliminary work on biomass gasification using downdraft to produce producer gas and its application to engines.

  11. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    OpenAIRE

    Juan Miguel Mantilla; Camilo Andrés Falla; Jorge Arturo Gómez

    2010-01-01

    Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes) which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in re...

  12. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    OpenAIRE

    Juan Miguel Mantilla; Camilo Andrés Falla; Jorge Arturo Gómez

    2009-01-01

    Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes) which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in real engines’...

  13. Evaluation of Biodiesel Production, Engine Performance, and Emissions

    Science.gov (United States)

    Gürü, Metin; Keskïn, Ali

    2016-08-01

    Nowadays, to decrease environmental pollution and dependence on fossil-based fuels, research on alternative renewable energy sources has been increasing. One such renewable energy source is biodiesel, which is used as an alternative fuel for diesel engines. Biodiesel is renewable, nontoxic, biodegradable, and environmentally friendly. Biodiesel is domestically produced from vegetable oil (edible or nonedible), animal fat, and used cooking oils. In the biodiesel production process, oil or fat undergoes transesterification reaction through use of simple alcohols such as methanol, ethanol, propanol, butanol, etc. Use of methanol is most feasible because of its low cost, and physical and chemical advantages. Acid catalysis, alkali catalysis, and enzyme catalysis are usually used to improve the reaction rate and yield. Glycerol is a byproduct of the reaction and can be used as an industrial raw material. In this study, biodiesel production methods (direct use, pyrolysis, microemulsion, transesterification, supercritical processes, ultrasound- assisted, and microwave-assisted) and types of catalyst (homogeneous, heterogeneous, and enzyme) have been evaluated and compared. In addition, the effects of biodiesel and its blends on diesel engine performance and exhaust emissions are described and reviewed.

  14. Experience in isotope leak-proof control of engineering objects - technical and economical aspects

    International Nuclear Information System (INIS)

    Kras, J.; Walis, L.; Myczkowski, S.

    2002-01-01

    One of the basic uses of the tracer methods for commercial purposes is the leak-proof control and determination of location of possible leakages in engineering objects. The works in this area - development of methods and equipment, and its practical use - are being conducted at the Institute of Nuclear Chemistry and Technology in Warsaw. The paper presents the division of engineering objects according to their suitability for leak proof testing with tracer methods, alternative traditional methods, sensitivity levels and the technical effects achieved with both method groups, plus the attempts to determine the economical effects of the tracer method. The introduction to the paper describes the method of field preparation of gaseous radioactive tracer, i.e. methyl bromide CH 3 Br labelled with bromine 82 Br isotope. (author)

  15. Systems engineering aspects to installation of the phased multi-year LANSCE-refurbishment project

    International Nuclear Information System (INIS)

    Pieck, Martin; Erickson, John E.; Gulley, Mark S.; Jones, Kevin W.; Rybarcyk, Larry J.

    2009-01-01

    The LANSCE Refurbishment Project (LANSCE-R) is a phased, multiyear project. The project is scheduled to start refurbishment in the 2nd quarter of fiscal year 2011. Closeout will occur during the 4th quarter of FY2016. During the LANSCE-R project, installation of project components must be scheduled during six annual 6-month maintenance-outages and not conflict with annual LANSCE operational commitments to its user facilities. The project and operations schedules must be synchronized carefully. Therefore, the scheduled maintenance outages, functional testing (with beam off, by primarily project personnel) and commissioning (with beam on, by primarily Accelerator Operation Technology (AOT) personnel) must be managed to accommodate operation. Active and effective coordination and communication between the project and AOT personnel must be encouraged to identify, as early as possible, any operational issues. This paper will report on the systems engineering approach to the integration and control of engineering activities.

  16. Some engineering aspects of the steam generator system for the United States LMFBR demonstration plant

    International Nuclear Information System (INIS)

    Tippets, F.E.

    1975-01-01

    This paper describes the main design features of the steam generator system for the Clinch River Breeder Reactor Plant and the engineering approach being employed for some of the critical elements of this system, including in particular the sodium-steam/water boundary, the efforts to have this boundary be of highest integrity, and the system features to safely accommodate any failure of the boundary. (author)

  17. Some engineering aspects of the steam generator system for the United States LMFBR demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Tippets, F E

    1975-07-01

    This paper describes the main design features of the steam generator system for the Clinch River Breeder Reactor Plant and the engineering approach being employed for some of the critical elements of this system, including in particular the sodium-steam/water boundary, the efforts to have this boundary be of highest integrity, and the system features to safely accommodate any failure of the boundary. (author)

  18. Process engineering versus product engineering - A case study on volatile organic compounds removal

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Vilela, T.; Pereira, P.

    2005-01-01

    Three solutions for removing the dangerous volatile organic compound (VOC) xylene from an industrial coating process are presented and compared. Two of them are based on classical process engineering principles, i.e., development of separation-cleaning methods such as incineration and adsorption...... to the problem-need specified in the beginning of the project, but producing a novel formulation (chemical product design) represents a method that results to a completely xylene-free process which is environmentally and economically more interesting than those generated via the more traditional process...

  19. A low aspect ratio electrothermal gun for metal plasma vapor discharge and ceramic nanopowder production

    International Nuclear Information System (INIS)

    Kim, Kyoung Jin; Peterson, Dennis R.

    2008-01-01

    Traditionally, the electrothermal gun design has the bore of a large aspect ratio: however, a low aspect ratio design with a shorter bore length has been employed for efficient production of metal plasma vapors and synthesis of nanomaterials. In a comparison of the arc resistance-current relationship, a low aspect ratio design is found to exhibit distinctively different characteristics compared to a high aspect ratio design, and this trend is explained by the scaling law of plasma properties including theory of plasma electrical conductivity. A one-dimensional isothermal model has been applied to the present experiments to confirm the scaling laws, and it was found that the present modification of the electrothermal gun is able to produce fully ionized metal plasma vapor, while the plasma vapor produced in a conventional design is partially ionized. Also, by reacting metal plasma vapors with the controlled gases in the reaction chamber, nanoscale materials such as aluminum oxide, aluminum nitride, and titanium oxide were synthesized successfully

  20. Metabolic Engineering of Oleaginous Yeasts for Fatty Alcohol Production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Wei, Hui; Knoshaug, Eric; Van Wychen, Stefanie; Xu, Qi; Himmel, Michael E.; Zhang, Min

    2016-04-25

    To develop pathways for advanced biological upgrading of sugars to hydrocarbons, we are seeking biological approaches to produce high carbon efficiency intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels. In this study, we successfully demonstrated fatty alcohol production by oleaginous yeasts Yarrowia lipolytica and Lipomyces starkeyi by expressing a bacteria-derived fatty acyl-CoA reductase (FAR). Moreover, we find higher extracellular distribution of fatty alcohols produced by FAR-expressing L. starkeyi strain as compared to Y. lipolytica strain, which would benefit the downstream product recovery process. In both oleaginous yeasts, long chain length saturated fatty alcohols were predominant, accounting for more than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Taken together, our work demonstrates that in addition to Y. lipolytica, L. starkeyi can also serve as a platform organism for production of fatty acid-derived biofuels and bioproducts via metabolic engineering. We believe strain and process development both will significantly contribute to our goal of producing scalable and cost-effective fatty alcohols from renewable biomass.

  1. Metabolic engineering of Dunaliella salina for production of ketocarotenoids.

    Science.gov (United States)

    Anila, N; Simon, Daris P; Chandrashekar, Arun; Ravishankar, G A; Sarada, R

    2016-03-01

    Dunaliella is a commercially important marine alga producing high amount of β-carotene. The use of Dunaliella as a potential transgenic system for the production of recombinant proteins has been recently recognized. The present study reports for the first time the metabolic engineering of carotenoid biosynthesis in Dunaliella salina for ketocarotenoid production. The pathway modification included the introduction of a bkt gene from H. pluvialis encoding β-carotene ketolase (4,4'β-oxygenase) along with chloroplast targeting for the production of ketocarotenoids. The bkt under the control of Dunaliella Rubisco smaller subunit promoter along with its transit peptide sequence was introduced into the alga through standardized Agrobacterium-mediated transformation procedure. The selected transformants were confirmed using GFP and GUS expression, PCR and southern blot analysis. A notable upregulation of the endogenous hydroxylase level of transformants was observed where the BKT expression was higher in nutrient-limiting conditions. Carotenoid analysis of the transformants through HPLC and MS analysis showed the presence of astaxanthin and canthaxanthin with maximum content of 3.5 and 1.9 µg/g DW, respectively. The present study reports the feasibility of using D. salina for the production of ketocarotenoids including astaxanthin.

  2. Architectural and structural engineering aspects of protective design for nuclear power plants against terrorist attack

    International Nuclear Information System (INIS)

    Musacchio, J.M.; Rozen, A.

    1987-01-01

    This paper presents the results of several threat studies which have been performed, provides collective data on costs, and discusses, in a general sense, architectural/structural aspects of passive protection design measures which have been developed and utilized at several nuclear power plants. By combining relevant architectural and structural measures in the standard design, it is possible to substantially reduce the vulnerability of nuclear power plants to terrorist attack and the estimated damage to a manageable level with a minimal investment. (orig./HP)

  3. Modular Engineering of l-Tyrosine Production in Escherichia coli

    Science.gov (United States)

    Juminaga, Darmawi; Baidoo, Edward E. K.; Redding-Johanson, Alyssa M.; Batth, Tanveer S.; Burd, Helcio; Mukhopadhyay, Aindrila; Petzold, Christopher J.

    2012-01-01

    Efficient biosynthesis of l-tyrosine from glucose is necessary to make biological production economically viable. To this end, we designed and constructed a modular biosynthetic pathway for l-tyrosine production in E. coli MG1655 by encoding the enzymes for converting erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) to l-tyrosine on two plasmids. Rational engineering to improve l-tyrosine production and to identify pathway bottlenecks was directed by targeted proteomics and metabolite profiling. The bottlenecks in the pathway were relieved by modifications in plasmid copy numbers, promoter strength, gene codon usage, and the placement of genes in operons. One major bottleneck was due to the bifunctional activities of quinate/shikimate dehydrogenase (YdiB), which caused accumulation of the intermediates dehydroquinate (DHQ) and dehydroshikimate (DHS) and the side product quinate; this bottleneck was relieved by replacing YdiB with its paralog AroE, resulting in the production of over 700 mg/liter of shikimate. Another bottleneck in shikimate production, due to low expression of the dehydroquinate synthase (AroB), was alleviated by optimizing the first 15 codons of the gene. Shikimate conversion to l-tyrosine was improved by replacing the shikimate kinase AroK with its isozyme, AroL, which effectively consumed all intermediates formed in the first half of the pathway. Guided by the protein and metabolite measurements, the best producer, consisting of two medium-copy-number, dual-operon plasmids, was optimized to produce >2 g/liter l-tyrosine at 80% of the theoretical yield. This work demonstrates the utility of targeted proteomics and metabolite profiling in pathway construction and optimization, which should be applicable to other metabolic pathways. PMID:22020510

  4. Some nuclear chemical aspects of medical generator nuclide production at the Los Alamos hot cell facility

    CERN Document Server

    Fassbender, M; Heaton, R C; Jamriska, D J; Kitten, J J; Nortier, F M; Peterson, E J; Phillips, D R; Pitt, L R; Salazar, L L; Valdez, F O; 10.1524/ract.92.4.237.35596

    2004-01-01

    Generator nuclides constitute a convenient tool for applications in nuclear medicine. In this paper, some radiochemical aspects of generator nuclide parents regularly processed at Los Alamos are introduced. The bulk production of the parent nuclides /sup 68/Ge, /sup 82/Sr, /sup 109/Cd and /sup 88/Zr using charged particle beams is discussed. Production nuclear reactions for these radioisotopes, and chemical separation procedures are presented. Experimental processing yields correspond to 80%-98% of the theoretical thick target yield. Reaction cross sections are modeled using the code ALICE-IPPE; it is observed that the model largely disagrees with experimental values for the nuclear processes treated. Radionuclide production batches are prepared 1-6 times yearly for sales. Batch activities range from 40MBq to 75 GBq.

  5. Some nuclear chemical aspects of medical generator nuclide production at the Los Alamos hot cell facility

    International Nuclear Information System (INIS)

    Fassbender, M.; Nortier, F.M.; Phillips, D.R.; Hamilton, V.T.; Heaton, R.C.; Jamriska, D.J.; Kitten, J.J.; Pitt, L.R.; Salazar, L.L.; Valdez, F.O.; Peterson, E.J.

    2004-01-01

    Generator nuclides constitute a convenient tool for applications in nuclear medicine. In this paper, some radiochemical aspects of generator nuclide parents regularly processed at Los Alamos are introduced. The bulk production of the parent nuclides 68 Ge, 82 Sr, 109 Cd and 88 Zr using charged particle beams is discussed. Production nuclear reactions for these radioisotopes, and chemical separation procedures are presented. Experimental processing yields correspond to 80%-98% of the theoretical thick target yield. Reaction cross sections are modeled using the code ALICE-IPPE; it is observed that the model largely disagrees with experimental values for the nuclear processes treated. Radionuclide production batches are prepared 1-6 times yearly for sales. Batch activities range from 40 MBq to 75 GBq. (orig.)

  6. 76 FR 10403 - Hewlett Packard (HP), Global Product Development, Engineering Workstation Refresh Team, Working...

    Science.gov (United States)

    2011-02-24

    ...), Global Product Development, Engineering Workstation Refresh Team, Working On-Site at General Motors..., Non-Information Technology Business Development Team and Engineering Application Support Team, working... Hewlett Packard, Global Product Development, Engineering Workstation Refresh Team, working on-site at...

  7. Introduction to the discrete Fourier series considering both mathematical and engineering aspects - A linear-algebra approach

    Directory of Open Access Journals (Sweden)

    Ludwig Kohaupt

    2015-12-01

    Full Text Available The discrete Fourier series is a valuable tool developed and used by mathematicians and engineers alike. One of the most prominent applications is signal processing. Usually, it is important that the signals be transmitted fast, for example, when transmitting images over large distances such as between the moon and the earth or when generating images in computer tomography. In order to achieve this, appropriate algorithms are necessary. In this context, the fast Fourier transform (FFT plays a key role which is an algorithm for calculating the discrete Fourier transform (DFT; this, in turn, is tightly connected with the discrete Fourier series. The last one itself is the discrete analog of the common (continuous-time Fourier series and is usually learned by mathematics students from a theoretical point of view. The aim of this expository/pedagogical paper is to give an introduction to the discrete Fourier series for both mathematics and engineering students. It is intended to expand the purely mathematical view; the engineering aspect is taken into account by applying the FFT to an example from signal processing that is small enough to be used in class-room teaching and elementary enough to be understood also by mathematics students. The MATLAB program is employed to do the computations.

  8. Designing the modern pump: engineering aspects of continuous subcutaneous insulin infusion software.

    Science.gov (United States)

    Welsh, John B; Vargas, Steven; Williams, Gary; Moberg, Sheldon

    2010-06-01

    Insulin delivery systems attracted the efforts of biological, mechanical, electrical, and software engineers well before they were commercially viable. The introduction of the first commercial insulin pump in 1983 represents an enduring milestone in the history of diabetes management. Since then, pumps have become much more than motorized syringes and have assumed a central role in diabetes management by housing data on insulin delivery and glucose readings, assisting in bolus estimation, and interfacing smoothly with humans and compatible devices. Ensuring the integrity of the embedded software that controls these devices is critical to patient safety and regulatory compliance. As pumps and related devices evolve, software engineers will face challenges and opportunities in designing pumps that are safe, reliable, and feature-rich. The pumps and related systems must also satisfy end users, healthcare providers, and regulatory authorities. In particular, pumps that are combined with glucose sensors and appropriate algorithms will provide the basis for increasingly safe and precise automated insulin delivery-essential steps to developing a fully closed-loop system.

  9. Impacts Seed Technology Improvement on Economic Aspects of Chilli Production in Central Java - Indonesia

    Directory of Open Access Journals (Sweden)

    Joko Mariyono

    2016-06-01

    Full Text Available Vegetable production, including that of chillies, plays an important role in agricultural sector and rural economic development worldwide. This is because of greater farm productivity with regard to vegetables than cereal and staple crops. This paper analyses the impact of seed technology development on the economic aspects of chilli production in Central Java. Particular attention is paid to improved varieties of chilli. Potential consequences of seed technology development are discussed. Data of this study are compiled from surveys conducted in three selected chilli producing regions in 2010-2012. The results show that the major varieties of chilli grown by surveyed farmers are grouped into three broad types: hybrids, local and improved open pollinated varieties. The chilli varieties farmers selected varied according to location and cropping season. In the dry season, farmers grew similar proportions of hybrid, local, and open pollinated types. Nevertheless, there were differences among the survey sites. Farmers grew different varieties to exploit seasonal microclimates and market preferences. Mostly, farmers selected varieties for economic motives. The consequence of growing hybrids was less use of agrochemicals, particularly pesticides, than for other varieties. Overall, they show the best economic performance in the study site. Development of seed technology should consider agro-ecological and economic aspects to obtain better outcomes. Private sector and national research institutions need to collaborate more to utilise available genetic resources to produce better varieties of chilli.

  10. Hydrogen in motor car engineering. Production, storage, uses; Wasserstoff in der Fahrzeugtechnik. Erzeugung, Speicherung, Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    Eichlseder, H.; Klell, M.

    2008-07-01

    The book presents a general outline of the various aspects of properties, production, storage and application of hydrogen at university level. The focus is on the thermodynamic aspects of hydrogen storage andon its applications in transportation and power supply. In particular, car engines and fuel cells are gone into, and the state of the art is outlined with reference to research projects of TU Graz university and HyCentA. Apart from the technical aspects, also the history and possible future trends are presented. [German] Dieses Buch bietet einen allgemeinen Ueberblick ueber die verschiedenen Aspekte von Eigenschaften, Erzeugung, Speicherung und Anwendung von Wasserstoff auf Hochschulniveau. Schwerpunkte liegen auf der Thermodynamik der Speicherung von Wasserstoff sowie auf der Anwendung in der Verkehrstechnik und in der Energietechnik. Speziell wird die Anwendung in der Verbrennungskraftmaschine und in der Brennstoffzelle behandelt, wobei mit Bezug auf Forschungsvorhaben an der TU Graz und dem HyCentA der aktuelle Stand der Technik fundiert dargestellt wird. Neben einer technischen Vertiefung werden auch die geschichtliche und die moegliche kuenftige Entwicklung angesprochen.

  11. Incorporating a Product Archaeology Paradigm across the Mechanical Engineering Curriculum

    Science.gov (United States)

    Moore-Russo, Deborah; Cormier, Phillip; Lewis, Kemper; Devendorf, Erich

    2013-01-01

    Historically, the teaching of design theory in an engineering curriculum has been relegated to a senior capstone design experience. Presently, however, engineering design concepts and courses can be found through the entirety of most engineering programs. Educators have recognized that engineering design provides a foundational platform that can…

  12. Acetone production with metabolically engineered strains of Acetobacterium woodii.

    Science.gov (United States)

    Hoffmeister, Sabrina; Gerdom, Marzena; Bengelsdorf, Frank R; Linder, Sonja; Flüchter, Sebastian; Öztürk, Hatice; Blümke, Wilfried; May, Antje; Fischer, Ralf-Jörg; Bahl, Hubert; Dürre, Peter

    2016-07-01

    Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Technological and engineering solutions in the radiopharmaceuticals production

    International Nuclear Information System (INIS)

    Gonzalez Fernandez, Angel L.; Falcon Perez, Lazaro; Diaz Jilimas, Eduardo Dimas; Sanchez Anaya, Eduardo; Maqueira Morales, Juan; Fernandez Quintero, Gerardo; Suarez Beyries, Karina

    2012-01-01

    In the work, the conception and the original design of the facilities at CENTIS, and the modifications to that they were subjected during 15 years of operation in order to fulfill the requirements of Good Manufacturing Practice (GMP), non-existent at the moment of their setting in operation, are examined. Particularly we emphasize in changes carried out to hot cells and gloves boxes, and in some aspects of the technological processes also. As a result of the work done, the CENTIS productions fulfill international standards and its facilities have been validated in correspondence with the national regulations. Steps are indicated, not only to comply with the requirements set by the norms ISO 9000 and the GMP, but to assure the optimization and flexibility in the use of the facilities. (author)

  14. Technological aspects at continuous casting of semi-finished products with ϕ270mm

    International Nuclear Information System (INIS)

    Ardelean, E; Ardelean, M; Hepuţ, T; Lăscuţoni, A

    2015-01-01

    Continuous casting installation especially appreciated because steel can be poured in a more varied assortment. The flexibility of the system is not sufficient if the casting parameters are not properly adopted and adapted to the specific brand of steel. This paper presents some technical aspects relative to continuous casting of semi-finished products with ϕ270mm section. Graphical dependencies obtained in Excel and analytical equations of this allows to specialists from industry to adopt values for the addicted parameters according to the independent ones, already known. (paper)

  15. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives

    Directory of Open Access Journals (Sweden)

    Jian Zha

    2017-12-01

    Full Text Available Microbial production of plant-derived natural products by engineered microorganisms has achieved great success thanks to large extend to metabolic engineering and synthetic biology. Anthocyanins, the water-soluble colored pigments found in terrestrial plants that are responsible for the red, blue and purple coloration of many flowers and fruits, are extensively used in food and cosmetics industry; however, their current supply heavily relies on complex extraction from plant-based materials. A promising alternative is their sustainable production in metabolically engineered microbes. Here, we review the recent progress on anthocyanin biosynthesis in engineered bacteria, with a special focus on the systematic engineering modifications such as selection and engineering of biosynthetic enzymes, engineering of transportation, regulation of UDP-glucose supply, as well as process optimization. These promising engineering strategies will facilitate successful microbial production of anthocyanins in industry in the near future.

  16. Engineering cyanobacteria for direct biofuel production from CO2.

    Science.gov (United States)

    Savakis, Philipp; Hellingwerf, Klaas J

    2015-06-01

    For a sustainable future of our society it is essential to close the global carbon cycle. Oxidised forms of carbon, in particular CO2, can be used to synthesise energy-rich organic molecules. Engineered cyanobacteria have attracted attention as catalysts for the direct conversion of CO2 into reduced fuel compounds. Proof of principle for this approach has been provided for a vast range of commodity chemicals, mostly energy carriers, such as short chain and medium chain alcohols. More recently, research has focused on the photosynthetic production of compounds with higher added value, most notably terpenoids. Below we review the recent developments that have improved the state-of-the-art of this approach and speculate on future developments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The Code Aster: a product for mechanical engineers

    International Nuclear Information System (INIS)

    Levesque, J.R.

    1998-01-01

    The Code Aster is a 2D or 3D structural finite element software: analysis of structures and thermo-mechanics for evaluation and research with linear for non linear modelling. Since 1989, it has been the host structure that capitalizes on developments made by the Research and Development Division in the field of numerical modelling in structural mechanics, and user experience feedback. It is an industrial design tool, particularly for engineering of facilities in operation and for the evaluation of new projects. This software was developed using a quality Assurance methodology with independent validation. Upgrades to this product are guided by the objective of satisfying the needs of expertise studies, attempting to make functions coherent and complete. (author)

  18. TRENDS IN PRODUCT DEVELOPMENT: CONCURRENT ENGINEERING AND MECHATRONICS

    Directory of Open Access Journals (Sweden)

    Stefan IANCU

    2013-05-01

    Full Text Available This paper presents the most significant contemporary trends in new industrial product development:concurrent engineering (CE and mechatronics (M. Author defines what CE and M are, emphasizing whatconnections are between these two concepts, and which are the ways of integration in CE and M. The mainconclusion of this paper is that both these two concepts have known a strongly development in 1975-1985’s,when Information and Communication Technologies (ICT was in full swing of development. The influence ofICT is undoubted, but, from this point of view, there are differences: if M could not be implemented in theabsence of the ICT, communication and computational technologies are not strictly necessary for theimplementation of CE.

  19. Production of Aspergillus niger biomass on sugarcane distillery wastewater: physiological aspects and potential for biodiesel production.

    Science.gov (United States)

    Chuppa-Tostain, Graziella; Hoarau, Julien; Watson, Marie; Adelard, Laetitia; Shum Cheong Sing, Alain; Caro, Yanis; Grondin, Isabelle; Bourven, Isabelle; Francois, Jean-Marie; Girbal-Neuhauser, Elisabeth; Petit, Thomas

    2018-01-01

    Sugarcane distillery waste water (SDW) or vinasse is the residual liquid waste generated during sugarcane molasses fermentation and alcohol distillation. Worldwide, this effluent is responsible for serious environmental issues. In Reunion Island, between 100 and 200 thousand tons of SDW are produced each year by the three local distilleries. In this study, the potential of Aspergillus niger to reduce the pollution load of SDW and to produce interesting metabolites has been investigated. The fungal biomass yield was 35 g L -1 corresponding to a yield of 0.47 g of biomass/g of vinasse without nutrient complementation. Analysis of sugar consumption indicated that mono-carbohydrates were initially released from residual polysaccharides and then gradually consumed until complete exhaustion. The high biomass yield likely arises from polysaccharides that are hydrolysed prior to be assimilated as monosaccharides and from organic acids and other complex compounds that provided additional C-sources for growth. Comparison of the size exclusion chromatography profiles of raw and pre-treated vinasse confirmed the conversion of humic- and/or phenolic-like molecules into protein-like metabolites. As a consequence, chemical oxygen demand of vinasse decreased by 53%. Interestingly, analysis of intracellular lipids of the biomass revealed high content in oleic acid and physical properties relevant for biodiesel application. The soft-rot fungus A. niger demonstrated a great ability to grow on vinasse and to degrade this complex and hostile medium. The high biomass production is accompanied by a utilization of carbon sources like residual carbohydrates, organic acids and more complex molecules such as melanoidins. We also showed that intracellular lipids from fungal biomass can efficiently be exploited into biodiesel.

  20. Amino acid catabolism-directed biofuel production in Clostridium sticklandii: An insight into model-driven systems engineering

    Directory of Open Access Journals (Sweden)

    C Sangavai

    2017-12-01

    Full Text Available Model-driven systems engineering has been more fascinating process for the microbial production of biofuel and bio-refineries in chemical and pharmaceutical industries. Genome-scale modeling and simulations have been guided for metabolic engineering of Clostridium species for the production of organic solvents and organic acids. Among them, Clostridium sticklandii is one of the potential organisms to be exploited as a microbial cell factory for biofuel production. It is a hyper-ammonia producing bacterium and is able to catabolize amino acids as important carbon and energy sources via Stickland reactions and the development of the specific pathways. Current genomic and metabolic aspects of this bacterium are comprehensively reviewed herein, which provided information for learning about protein catabolism-directed biofuel production. It has a metabolic potential to drive energy and direct solventogenesis as well as acidogenesis from protein catabolism. It produces by-products such as ethanol, acetate, n-butanol, n-butyrate and hydrogen from amino acid catabolism. Model-driven systems engineering of this organism would improve the performance of the industrial sectors and enhance the industrial economy by using protein-based waste in environment-friendly ways. Keywords: Biofuel, Amino acid catabolism, Genome-scale model, Metabolic engineering, Systems biology, ABE fermentation, Clostridium sticklandii

  1. 40 CFR 1051.325 - What happens if an engine family fails the production-line testing requirements?

    Science.gov (United States)

    2010-07-01

    ... ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.325 What happens if an engine... for an engine family if it fails under § 1051.315. The suspension may apply to all facilities producing vehicles or engines from an engine family, even if you find noncompliant vehicles or engines only...

  2. Knowledge Service Engineering Handbook

    CERN Document Server

    Kantola, Jussi

    2012-01-01

    Covering the emerging field of knowledge service engineering, this groundbreaking handbook outlines how to acquire and utilize knowledge in the 21st century. Drawn on the expertise of the founding faculty member of the world's first university knowledge engineering service department, this book describes what knowledge services engineering means and how it is different from service engineering and service production. Presenting multiple cultural aspects including US, Finnish, and Korean, this handbook provides engineering, systemic, industry, and consumer use viewpoints to knowledge service sy

  3. Alignment of microbial fitness with engineered product formation: obligatory coupling between acetate production and photoautotrophic growth.

    Science.gov (United States)

    Du, Wei; Jongbloets, Joeri A; van Boxtel, Coco; Pineda Hernández, Hugo; Lips, David; Oliver, Brett G; Hellingwerf, Klaas J; Branco Dos Santos, Filipe

    2018-01-01

    Microbial bioengineering has the potential to become a key contributor to the future development of human society by providing sustainable, novel, and cost-effective production pipelines. However, the sustained productivity of genetically engineered strains is often a challenge, as spontaneous non-producing mutants tend to grow faster and take over the population. Novel strategies to prevent this issue of strain instability are urgently needed. In this study, we propose a novel strategy applicable to all microbial production systems for which a genome-scale metabolic model is available that aligns the production of native metabolites to the formation of biomass. Based on well-established constraint-based analysis techniques such as OptKnock and FVA, we developed an in silico pipeline-FRUITS-that specifically 'Finds Reactions Usable in Tapping Side-products'. It analyses a metabolic network to identify compounds produced in anabolism that are suitable to be coupled to growth by deletion of their re-utilization pathway(s), and computes their respective biomass and product formation rates. When applied to Synechocystis sp. PCC6803, a model cyanobacterium explored for sustainable bioproduction, a total of nine target metabolites were identified. We tested our approach for one of these compounds, acetate, which is used in a wide range of industrial applications. The model-guided engineered strain shows an obligatory coupling between acetate production and photoautotrophic growth as predicted. Furthermore, the stability of acetate productivity in this strain was confirmed by performing prolonged turbidostat cultivations. This work demonstrates a novel approach to stabilize the production of target compounds in cyanobacteria that culminated in the first report of a photoautotrophic growth-coupled cell factory. The method developed is generic and can easily be extended to any other modeled microbial production system.

  4. LHC Superconducting Dipole Production Follow-up Results of Audit on QA Aspects in Industry

    CERN Document Server

    Modena, M; Cornelis, M; Fessia, P; Liénard, P; Miles, J; de Rijk, G; Savary, F; Sgobba, Stefano; Tommasini, D; Vlogaert, J; Völlinger, C; Wildner, E

    2006-01-01

    The manufacturing of the 1232 Superconducting Main Dipoles for LHC is under way at three European Contractors: Alstom-Jeumont (Consortium), Ansaldo Superconduttori Genova and Babcock Noell Nuclear. The manufacturing is proceeding in a very satisfactory way and in March 2005 the mid production was achieved. To intercept eventually â€ワweak points” of the production process still present and in order to make a check of the Quality Assurance and Control in place for the series production, an Audit action was launched by CERN during summer-fall 2004. Aspects like: completion of Production and Quality Assurance documentation, structure of QC Teams, traceability, calibration and maintenance for tooling, incoming components inspections, were checked during a total of seven visits at the five different production sites. The results of the Audit in terms of analysis of â€ワsystematic” and â€ワrandom” problems encountered as well as corrective actions requested are presented.

  5. Spatial and temporal aspects of grain accumulation costs for ethanol production: An Australian case study

    International Nuclear Information System (INIS)

    Anderton, Nikki; Kingwell, Ross

    2008-01-01

    Ethanol production is increasingly commonplace in many grain-producing regions. This paper uses the grain-producing region of south-western Australia to illustrate spatial and temporal aspects of grain accumulation costs for ethanol production. Specifically, this study examines how price variability of various wheat grades, combined with spatial and temporal variability in production of those grades, affects the costs of grain accumulation. These costs are the main components of an ethanol plant's operating costs so lessening these costs can offer a comparative advantage for a plant owner. Logistics models based on mathematical programming are constructed for a range of plant sizes and locations for ethanol production. Modelling results identify low-cost sites that generate cost savings, in present value terms, of between 5 and 7.5 per cent, depending on plant size, over the 9-year study period. At all locations, small to medium-sized plants offer advantages of lower and less variable costs of grain accumulation. Yet, all locations and all plant sizes are characterised by marked volatility in the cost of grain accumulation. The profitability of ethanol production based on wheat in this region of Australia is particularly exposed to any prolonged period of high grain prices relative to petroleum prices, given current biofuel-policy settings in Australia. (author)

  6. Vegetable Charcoal and Pyroligneous Acid: Technological, Economical and Legal Aspects of its Production and Commerce

    Directory of Open Access Journals (Sweden)

    Doriana Daroit

    2013-04-01

    Full Text Available The production of vegetable charcoal generates atmospheric emissions, which can be controlled by the instalation of collectors for the condensation of such emissions, forming the pyroligneous acid. The development of collectors for the condensations and characterization of the acid for commerce can contribute with the local sustainable development. This study intends to investigate the technological, economical and legal aspects of the production and commerce of the pyroligneous acid. The chosen method was case study in Presidente Lucena/RS, Brazil, with use of surveys, interviews with producers and responsible government sectors’ representatives. The results indicate that the pyroligneous acid extraction technique is little-known and little used by the producers, that the current market does not absorb the pyroligneous acid offering and the ruling is not relevant.

  7. Some psychological and engineering aspects of the extravehicular activity of astronauts.

    Science.gov (United States)

    Khrunov, E V

    1973-01-01

    One of the main in-flight problems being fulfilled by astronauts is the preparation for and realization of egress into open space for the purpose of different kinds of extravehicular activity, such as, the performance of scientific experiments, repairing and dismantling operations etc. The astronaut's activity outside the space vehicle is the most difficult item of the space flight programme, which is complicated by a number of space factors affecting a man, viz. dynamic weightlessness, work in a space suit under conditions of excessive pressure, difficulties of space orientation etc. The peculiarities mentioned require special training of the cosmonaut. The physical training involves a series of exercises forming the body-control habits necessary for work in a state of weightlessness. In a new kind of training use is made of equipment simulating the state of weightlessness. From analysis of the available data and the results of my own investigations during ground training and the Soyuz 4 and 5 flights one can establish the following peculiarities of the astronaut's extravehicular activity: (1) Operator response lag in the planned algorithm; (ii) systematic appearance of some stereotype errors in the mounting and dismantling of the outer equipment and in scientific-technical experiments; (iii) a high degree of emotional strain and 30-35% decrease in in-flight working capacity of the astronaut compared with the ground training data; (iv) a positive influence of space adaptation on the cosmonaut and the efficiency of his work in open space; (v) the necessity for further engineering and psychological analysis of the astronaut's activity under conditions of the long space flight of the multi-purpose orbital station. One of the main reasons for the above peculiarities is the violation of the control-coordination functions of the astronaut in the course of the dynamical operations. The paper analyses the extravehicular activity of the astronaut and presents some

  8. Evaluation of engineering aspects of backfill placement for high level nuclear waste (HLW) deep geologic repositories

    International Nuclear Information System (INIS)

    Roberds, W.; Kleppe, J.; Gonano, L.

    1984-04-01

    This report includes the identification and subjective evaluation of alternative schemes for backfilling around waste packages and within emplacement rooms. The aspects of backfilling specifically considered in this study include construction and testing; costs have not been considered. However, because construction and testing are simply implementation and verification of design, a design basis for backfill is required. A generic basis has been developed for this study by first identifying qualitative performance objectives for backfill and then weighting each with respect to its potential influence on achieving the repository system performance objectives. Alternative backfill materials and additives have been identified and evaluated with respect to the perceived extent to which each combination can be expected to achieve the backfill design basis. Several distinctly different combinations of materials and additives which are perceived to have the highest potential for achieving the backfill design basis have been selected for further study. These combinations include zeolite/clinoptilolite, bentonite, muck, and muck mixed with bentonite. Feasible alternative construction and testing procedures for each selected combination have been discussed. Recommendations have been made regarding appropriate backfill schemes for hard rock (i.e., basalt at Hanford, Washington, tuff at Nevada Test Site, and generic granite) and salt (i.e., domal salt on the Gulf Coast and generic bedded salt). 27 references, 8 figures, 31 tables

  9. Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani

    Directory of Open Access Journals (Sweden)

    Suchi eSrivastava

    2016-05-01

    Full Text Available Rhizoctonia solani (RS is a necrotrophic fungi causing sheath blight in rice leading to substantial loss in yield. Excessive and persistent use of preventive chemicals raises human health and environment safety concerns. As an alternative, use of biocontrol agents is highly recommended. In the present study an abiotic stress tolerant, plant growth promoting rhizobacteria Bacillus amyloliquefaciens (SN13 is demonstrated to act as a biocontrol agent and enhance immune response against RS in rice by modulating various physiological, metabolic and molecular functions. A sustained tolerance by SN13 primed plant over a longer period of time, post RS infection may be attributed to several unconventional aspects of the plants’ physiological status. The prolonged stress tolerance observed in presence of SN13 is characterized by (a involvement of bacterial mycolytic enzymes, (b sustained maintenance of elicitors to keep the immune system induced involving non-metabolizable sugars such as turanose besides the known elicitors, (c a delicate balance of ROS and ROS scavengers through production of proline, mannitol and arabitol and rare sugars like fructopyranose, β-d glucopyranose and myoinositol and expression of ferric reductases and hypoxia induced proteins, (d production of metabolites like quinozoline and expression of terpene synthase and (e hormonal cross talk. As the novel aspect of biological control this study highlights the role of rare sugars, maintenance of hypoxic conditions, and sucrose and starch metabolism in Bacillus amyloliquifaciens (SN13 mediated sustained biotic stress tolerance in rice.

  10. Artificial playing surfaces research: a review of medical, engineering and biomechanical aspects.

    Science.gov (United States)

    Dixon, S J; Batt, M E; Collop, A C

    1999-05-01

    In this paper, current knowledge of artificial playing surfaces is reviewed. Research status in the fields of sports medicine, engineering and biomechanics is described. A multidisciplinary approach to the study of artificial sports surface properties is recommended. The development of modelling techniques to characterise fundamental material properties is described as the most appropriate method for the unique specification of material properties such as stiffness and damping characteristics. It is suggested that the systematic manipulation of fundamental surface material properties in biomechanics research will allow the identification of subject responses to clearly defined surface variation. It is suggested that subjects should be grouped according to characteristic behaviour on specific sports surfaces. It is speculated that future biomechanics research will identify subject criterion related to differing group responses. The literature evidence of interactions between sports shoes and sports surfaces leads to the suggestion that sports shoe and sports surface companies should work together in the development of ideal shoe - surface combinations for particular groups of subjects.

  11. Materials and structural aspects of advanced gas-turbine helicopter engines

    Science.gov (United States)

    Freche, J. C.; Acurio, J.

    1979-01-01

    Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.

  12. Some engineering aspects of the investigation into the cracking of pressure tubes in the Pickering reactors

    International Nuclear Information System (INIS)

    Ross-Ross, P.A.; Towgood, G.R.; Hunter, T.A.

    1976-01-01

    In August 1974, Pickering Unit 3 (514 MWe) was shutdown for a period of 8 months because of cracks in 17 of the 390 pressure tubes. The cracks were a result of incorrect installation procedures during construction. Improper positioning of the rolling tool used to join the Zr-2.5 wt% Nb pressure tube to the end fitting produced very high residual tensile stresses. High stresses in combination with periods with the tubes cold caused the cracking. Crack propagation was by fracture of hydrides which are brittle when cold. Subsequent investigation confirmed that properly rolled joints are not susceptible to such cracking. The resources of Canadian industry, Ontario Hydro and Atomic Energy of Canada were coordinated to find engineering solutions to the crack program. The defective tubes were removed from reactor, thoroughly examined to identify the cause of the cracks, and thoroughly tested to prove safety. Non-destructive techniques were quickly adopted for inspection of tubes in Pickering. Tools and procedures for retubing the 17 channels were prepared and Pickering Unit 3 was returned to service at the end of March 1975. (author)

  13. Systems engineering aspects of a preliminary conceptual design of the space station environmental control and life support system

    Science.gov (United States)

    Lin, C. H.; Meyer, M. S.

    1983-01-01

    The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.

  14. Implementing quality/productivity improvement initiatives in an engineering environment

    Science.gov (United States)

    Ruda, R. R.

    1985-01-01

    Quality/Productivity Improvement (QPI) initiatives in the engineering environment at McDonnell Douglas-Houston include several different, distinct activities, each having its own application, yet all targeted toward one common goal - making continuous improvement a way of life. The chief executive and the next two levels of management demonstrate their commitment to QPI with hands-on involvement in several activities. Each is a member of a QPI Council which consists of six panels - Participative Management, Communications, Training, Performance/Productivity, Human Resources Management and Strategic Management. In addition, each manager conducts Workplace Visits and Bosstalks, to enhance communications with employees and to provide a forum for the identification of problems - both real and perceived. Quality Circles and Project Teams are well established within McConnel Douglas as useful and desirable employee involvement teams. The continued growth of voluntary membership in the circles program is strong evidence of the employee interest and management support that have developed within the organization.

  15. Engineering Escherichia coli for improved ethanol production from gluconate.

    Science.gov (United States)

    Hildebrand, Amanda; Schlacta, Theresa; Warmack, Rebeccah; Kasuga, Takao; Fan, Zhiliang

    2013-10-10

    We report on engineering Escherichia coli to produce ethanol at high yield from gluconic acid (gluconate). Knocking out genes encoding for the competing pathways (l-lactate dehydrogenase and pyruvate formate lyase A) in E. coli KO11 eliminated lactate production, lowered the carbon flow toward acetate production, and improved the ethanol yield from 87.5% to 97.5% of the theoretical maximum, while the growth rate of the mutant strain was about 70% of the wild type. The corresponding genetic modifications led to a small improvement of ethanol yield from 101.5% to 106.0% on glucose. Deletion of the pyruvate dehydrogenase gene (pdh) alone improved the ethanol yield from 87.5% to 90.4% when gluconate was a substrate. The growth rate of the mutant strain was identical to that of the wild type. The corresponding genetic modification led to no improvements on ethanol yield on glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products

    Directory of Open Access Journals (Sweden)

    Andreas Hartmut Förster

    2014-05-01

    Full Text Available Mixed-acid fermentation end products have numerous applications in biotechnology. This is probably the main driving force for the development of multiple strains that are supposed to produce individual end products with high yields. The process of engineering Escherichia coli strains for applied production of ethanol, lactate, succinate, or acetate was initiated several decades ago and is still ongoing. This review follows the path of strain development from the general characteristics of aerobic versus anaerobic metabolism over the regulatory machinery that enables the different metabolic routes. Thereafter, major improvements for broadening the substrate spectrum of Escherichia coli towards cheap carbon sources like molasses or lignocellulose are highlighted before major routes of strain development for the production of ethanol, acetate, lactate and succinate are presented.

  17. The economic aspects of artificial snow production in the perspective of climate change

    Science.gov (United States)

    Gonseth, C.

    2012-04-01

    Snowmaking is now used by ski resorts worldwide as a measure to cope with both natural snow reduction and variability. This extensive recourse casts doubt on its sustainability mainly because of the large amount of natural resources being used (energy, water). In the middle to long run, this problem is expected to increase with future climate change triggering the production of more snow. The research field that focuses on the economic aspects of artificial snow production is still in its infancy but potentially covers a wide array of issues. Among these issues, benefits and costs of snowmaking are important ones. On the one hand, benefits arise as snowmaking extends or preserves the operating period of ski areas. Several empirical studies speculate or show that snowmaking considerably reduces the sensitivity of tourism consumption to variations in snow conditions. These benefits have long been neglected in studies analyzing the consequences of climate change for the winter tourism sector. While failing to introduce these benefits, many studies have generated overly high costs of climate change. On the other hand, investments and operating costs of artificial snow production depend upon several factors, such as technology and local conditions. Consequently, costs vary considerably from one location to another and over time, yet indicative values can be found in the literature. In addition, artificial snow production generates external costs, i.e. costs that are not born by those producing it. Typical of these external costs are environmental ones that are related to CO2 emissions or biodiversity losses. To our knowledge, very little has been done so far to integrate these costs in economic studies. To the extent that vertical integration is absent, it may happen as well that snow production generates important external benefits for different stakeholders at a given ski resort. From an economic point of view, both types of externalities could lead to investment

  18. Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jain Rachit

    2011-11-01

    Full Text Available Abstract Background With the increasing consumption of fossil fuels, the question of meeting the global energy demand is of great importance in the near future. As an effective solution, production of higher alcohols from renewable sources by microorganisms has been proposed to address both energy crisis and environmental concerns. Higher alcohols contain more than two carbon atoms and have better physiochemical properties than ethanol as fuel substitutes. Results We designed a novel 1-propanol metabolic pathway by expanding the well-known 1,2-propanediol pathway with two more enzymatic steps catalyzed by a 1,2-propanediol dehydratase and an alcohol dehydrogenase. In order to engineer the pathway into E. coli, we evaluated the activities of eight different methylglyoxal synthases which play crucial roles in shunting carbon flux from glycolysis towards 1-propanol biosynthesis, as well as two secondary alcohol dehydrogenases of different origins that reduce both methylglyoxal and hydroxyacetone. It is evident from our results that the most active enzymes are the methylglyoxal synthase from Bacillus subtilis and the secondary alcohol dehydrogenase from Klebsiella pneumoniae, encoded by mgsA and budC respectively. With the expression of these two genes and the E. coli ydjG encoding methylglyoxal reductase, we achieved the production of 1,2-propanediol at 0.8 g/L in shake flask experiments. We then characterized the catalytic efficiency of three different diol dehydratases on 1,2-propanediol and identified the optimal one as the 1,2-propanediol dehydratase from Klebsiella oxytoca, encoded by the operon ppdABC. Co-expressing this enzyme with the above 1,2-propanediol pathway in wild type E. coli resulted in the production of 1-propanol at a titer of 0.25 g/L. Conclusions We have successfully established a new pathway for 1-propanol production by shunting the carbon flux from glycolysis. To our knowledge, it is the first time that this pathway has been

  19. Three Aspects of PLATO Use at Chanute AFB: CBE Production Techniques, Computer-Aided Management, Formative Development of CBE Lessons.

    Science.gov (United States)

    Klecka, Joseph A.

    This report describes various aspects of lesson production and use of the PLATO system at Chanute Air Force Base. The first chapter considers four major factors influencing lesson production: (1) implementation of the "lean approach," (2) the Instructional Systems Development (ISD) role in lesson production, (3) the transfer of…

  20. Geologic aspects of seismic hazards assessment at the Idaho National Engineering Laboratory, southeastern Idaho

    International Nuclear Information System (INIS)

    Smith, R.P.; Hackett, W.R.; Rodgers, D.W.

    1989-01-01

    The Idaho National Engineering Laboratory (INEL), located on the northwestern side of the Eastern Snake River Plain (ESRP), lies in an area influenced by two distinct geologic provinces. The ESRP province is a northeast-trending zone of late Tertiary and Quaternary volcanism which transects the northwest-trending, block-fault mountain ranges of the Basin and Range province. An understanding of the interaction of these two provinces is important for realistic geologic hazards assessment. Of particular importance for seismic hazards analysis is the relationship of volcanic rift zones on the ESRP to basin-and-range faults north of the plain. The Arco Rift Zone, a 20-km-long belt of deformation and volcanism on the plain just west of the INEL, is colinear with the basin-and-range Lost River fault. Recent field studies have demonstrated that Arco Rift Zone deformation is typical of that induced by dike injection in other volcanic rift zones. The deformation is characterized by a predominance of dilational fissuring with less extensive development of faults and grabens. Cumulative vertical displacements over the past 0.6 Ma are an order of magnitude lower than those associated with the Arco Segment of the Lost River fault to the northwest. The evidence suggests that the northeast-directed extension that produces the block fault mountains of the Basin and Range is expressed by dike injection and volcanic rift zone development in the ESRP. Seismicity associated with dike injection during rift zone development is typically of low magnitude and would represent only minor hazard compared to that associated with the block faulting. Since the ESRP responds to extension in a manner distinct from basin-and-range faulting, it is not appropriate to consider the volcanic rift zones as extensions of basin-and-range faults for seismic hazard analysis

  1. PRACTICAL ASPECTS OF OSAI METHODOLOGY IN ASSESSING THE ORGANIZATIONAL CULTURE OF AN ENGINEERING COMPANY

    Directory of Open Access Journals (Sweden)

    Aleksandra Biletskaya

    2015-11-01

    Full Text Available This article is intended to generalize and highlight the practical application of certain science-based approaches to assessment of an engineering company’s organizational culture. The OSAI method application has enabled determining the type of the organizational culture existing within a company and the desirable type thereof, i.e. the one which would produce a positive effect on the competitive status of a company, as well as on the utilization of its human resources. This is important because an appropriate level of the organizational culture within a company would enhance the psychological climate within a company and would provide an opportunity for improving its performance. Methodology. In order to attain the goal of our research, it is necessary to diagnose the type of the organizational culture of some selected companies and draw a conclusion as to amendment of their organizational culture. In order to ensure the successful outcome of the corporate organizational culture diagnosing procedure, let us use the OSAI tool to determine the foundation of such culture. This organizational culture assessment tool helps to define the organizational culture which members of a company are to achieve in order to meet the demands and to respond to the dynamic changes in the business environment. The results showed that the assessment of organizational culture using the method made it possible to determine the OSAI required type of organizational culture on the test plants. Practical implications. Definition of recommendation type of organizational culture has enabled the leadership to change the style of his behavior and better motivate the labor collective. Pay attention to the existing problems and improve the psychological atmosphere in the team, as well as improve the efficiency of plant personnel. Value/originality. The data obtained for the four businesses lead to the conclusion that it is the method of evaluation the optimum procedure for

  2. Analysis of Expectations of Forest Products Industry from Forest Industry Engineering Education

    OpenAIRE

    GEDİK, Tarık; ÇİL, Muhammet; SEVİM KORKUT, Derya; CEMİL AKYÜZ, Kadri; KOŞAR, Gökşen; BEKAR, İlter

    2016-01-01

    Forest industry engineers, representing the qualified labor within the forest products industry, choose their field of study either deliberately or by chance. This study explores the main skill sets of forest industry engineers required by forest products industry. As representatives of forest industry owner of forest products companies were surveyed about their views on the qualifications a forest industry engineer must have.This study covered total 7111 companies registered to TOBB as a for...

  3. Comparative analysis between a PEM fuel cell and an internal combustion engine driving an electricity generator: Technical, economical and ecological aspects

    International Nuclear Information System (INIS)

    Braga, Lúcia Bollini; Silveira, Jose Luz; Evaristo da Silva, Marcio; Machin, Einara Blanco; Pedroso, Daniel Travieso; Tuna, Celso Eduardo

    2014-01-01

    In the recent years the fuel cells have received much attention. Among various technologies, the Proton Exchange Membrane Fuel Cell (PEMFC) is currently the most appropriate and is used in several vehicles prototype. A comparative technical, economical and ecological analysis between an Internal Combustion Engine fueled with Diesel driving an electricity Generator (ICE-G) and a PEMFC fed by hydrogen produced by ethanol steam reforming was performed. The technical analysis showed the advantages of the PEMFC in comparison to the ICE-G based in energetic and exergetic aspects. The economic analysis shows that fuel cells are not economic competitive when compared to internal combustion engine driving an electricity generator with the same generation capacity; it will only be economically feasible in a long term; due to the large investments required. The environmental analysis was based on concepts of CO 2 equivalent, pollution indicator and ecological efficiency. Different to the ICE-G system, the Fuel Cell does not emit pollutants directly and the emission related to this technology is linked mainly with hydrogen production. The ecological efficiency of PEMFC was 96% considering the carbon dioxide cycle, for ICE-G system this parameter reach 51%. -- Highlights: • The exergetic efficiency of ICE-G was 22% and for the fuel cell was 40%. • The PEM fuel cell at long-term become economically competitive compared to ICE-G. • The ecological efficiency of PEM fuel cell was 96% and Diesel ICE-G was 51%

  4. ENGINEERING APPLIED TO FOOD PRODUCTION FORMULATED BY HYDROLYZED BAGASSE. A CASE OF STUDY

    Directory of Open Access Journals (Sweden)

    Raúl Costales Sotelo

    2015-01-01

    Full Text Available Some aspects of the engineering applied to the production of formulated food by hydrolyzed bagasse are showed, as an alternative in which fibrous component with increased digestibility constitutes 77% of the portion together with molasses at 15.9%, for almost 93% the total foodstuff potentially possible to be provided for a traditional sugar industry. The others ingredients such as urea, salts and minerals are common in animal diet and also in animal health and physiology. Local agriculture can contribute significantly to this program but is not taken into account in this exercise. This alternative, possible and feasible under Cuban economy conditions is magnified by the argument of operating periods of production facilities during and exceed normal sugar mill campaign for animals confinement periods of 180 days or longer, avoiding not only animals mortality but gaining weight at a rate of 500 g/day in a dry season by the input of 12 kg of formulated product per day. We have a first hydrolyzed plant which represents the beginning of an investment program that covers four more replicates, scattered throughout the national territory and it will significantly reduce food deficits needed by cattle as the main element of care, obtained by dual purpose: milk and meat production.

  5. Safety aspects of electric energy production and supplies in conditions of the Slovenske elektrarne, a.s

    International Nuclear Information System (INIS)

    Sip, M.; Danilak, M. et al.

    2005-01-01

    In this presentation author deals with safety aspects of electric energy production and supplies in conditions of the Slovenske elektrarne, a.s. Some terrorist attack and accidents are presented. Four video-sequences are included

  6. An extensive case study of hairy-root cultures for enhanced secondary-metabolite production through metabolic-pathway engineering.

    Science.gov (United States)

    Mehrotra, Shakti; Rahman, Laiq Ur; Kukreja, Arun Kumar

    2010-08-23

    An intrinsic improvement is taking place in the methodologies for the development of culture systems with first-rate production of plant-based molecules. The blending of HR (hairy root) cultures with ME (metabolic engineering) approaches offers new insights into, and possibilities for, improving the system productivity for known and/or novel high-value plant-derived active compounds. The introduction and expression of foreign genes in plants results in improvement of cellular activities by manipulating enzymatic, regulatory and transport function of the cell. The rational amendments in the rate-limiting steps of a biosynthetic pathway as well as inactivating the inefficient pathway(s) for by-product formation can be accomplished either through single-step engineering or through the multi-step engineering. The hierarchical control of any metabolic process can lead the engineer to apply the ME ideas and principles to any of the strata, including transcriptional, moving on to translational and enzymatic activity. The HR culture systems offer a remarkable potential for commercial production of a number of low-volume, but high-value, secondary metabolites. Taking HR as a model system, in the present review, we discuss engineering principles and perceptions to exploit secondary-metabolite pathways for the production of important bioactive compounds. We also talk about requisites and possible challenges that occur during ME, with emphasis on examples of various HR systems. Furthermore, it also highlights the utilization of global information obtained from '-omic' platforms in order to explore pathway architecture, structural and functional aspects of important enzymes and genes that can support the design of sets of engineering, resulting in the generation of wide-ranging views of DNA sequence-to-metabolite passageway networking and their control to obtain desired results.

  7. Multidimensional sustainability assessment of solar products : Educating engineers and designers

    NARCIS (Netherlands)

    Flipsen, S.F.J.; Bakker, C.A.; Verwaal, M.

    2015-01-01

    Since 2008 the faculty of Industrial Design Engineering at the TU Delft hosts the minor Sustainable Design Engineering. The minor has been highly useful as a platform to pilot new ways of teaching engineering for sustainable development. Instead of having students make life cycle assessments and

  8. Some economic aspects of the conversion of raw materials into final products

    Energy Technology Data Exchange (ETDEWEB)

    Pick, H J [Univ. of Aston, Birmingham, Eng.; Becker, P E

    1978-01-01

    In a previous paper Pick and Becker analyzed the direct and indirect relations between energy and the ''physical structure'' materials used by the engineering and construction industries. The present paper provides a more general description of materials conversion from natural resources to final products. The cost of raw materials, only some 30 percent of which come from the developing countries, accounts for a relatively small proportion of final product costs, the remaining product costs arising from the progressive application of labor, capital, energy, etc. Emphasis is placed on the complete interdependence of the inputs to manufacturing; a change in any one having implications for the remainder. Materials substitution, while in principle providing an adaptive mechanism to change, also has implications for a wide range of factors of production and for social and industrial issues such as regional employment, the demand for specific trades and professions, for research and development and for industrial structure and capital investment. Full allowance for this interdependence needs to be an integral part of effective long term policy formulation and of research and development planning.

  9. Membrane engineering - A novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli.

    Science.gov (United States)

    Wu, Tao; Ye, Lijun; Zhao, Dongdong; Li, Siwei; Li, Qingyan; Zhang, Bolin; Bi, Changhao; Zhang, Xueli

    2017-09-01

    Carotenoids are a class of terpenes of commercial interest that exert important biological functions. While various strategies have been applied to engineer β-carotene production in microbial cell factories, no work has been done to study and improve the storage of hydrophobic terpene products inside the heterologous host cells. Although the membrane is thought to be the cell compartment that accumulates hydrophobic terpenes such as β-carotene, direct evidence is still lacking. In this work, we engineered the membrane of Escherichia coli in both its morphological and biosynthetic aspects, as a means to study and improve its storage capacity for β-carotene. Engineering the membrane morphology by overexpressing membrane-bending proteins resulted in a 28% increase of β-carotene specific producton value, while engineering the membrane synthesis pathway led to a 43% increase. Moreover, the combination of these two strategies had a synergistic effect, which caused a 2.9-fold increase of β-carotene specific production value (from 6.7 to 19.6mg/g DCW). Inward membrane stacks were observed in electron microscopy images of the engineered E. coli cells, which indicated that morphological changes were associated with the increased β-carotene storage capacity. Finally, membrane separation and analysis confirmed that the increased β-carotene was mainly accumulated within the cell membrane. This membrane engineering strategy was also applied to the β-carotene hyperproducing strain CAR025, which led to a 39% increase of the already high β-carotene specific production value (from 31.8 to 44.2mg/g DCW in shake flasks), resulting in one of the highest reported specific production values under comparable culture conditions. The membrane engineering strategy developed in this work opens up a new direction for engineering and improving microbial terpene producers. It is quite possible that a wide range of strains used to produce hydrophobic compounds can be further improved

  10. Power Product Equipment Technician: Outboard-Engine Systems and Service. Teacher Edition [and] Student Edition.

    Science.gov (United States)

    Hilley, Robert

    This curriculum guide contains teacher and student materials for a course on outboard-engine boat systems and service for power product equipment technician occupations. The course contains the following four units of instruction: (1) Outboard-Engine Design and Identification; (2) Operation and Service of Engine-Support Systems; (3) Operation and…

  11. Engineering aspect of the microwave ionosphere nonlinear interaction experiment (MINIX) with a sounding rocket

    Science.gov (United States)

    Nagatomo, Makoto; Kaya, Nobuyuki; Matsumoto, Hiroshi

    The Microwave Ionosphere Nonlinear Interaction Experiment (MINIX) is a sounding rocket experiment to study possible effects of strong microwave fields in case it is used for energy transmission from the Solar Power Satellite (SPS) upon the Earth's atmosphere. Its secondary objective is to develop high power microwave technology for space use. Two rocket-borne magnetrons were used to emit 2.45 GHz microwave in order to make a simulated condition of power transmission from an SPS to a ground station. Sounding of the environment radiated by microwave was conducted by the diagnostic package onboard the daughter unit which was separated slowly from the mother unit. The main design drivers of this experiment were to build such high power equipments in a standard type of sounding rocket, to keep the cost within the budget and to perform a series of experiments without complete loss of the mission. The key technology for this experiment is a rocket-borne magnetron and high voltage converter. Location of position of the daughter unit relative to the mother unit was a difficult requirement for a spin-stabilized rocket. These problems were solved by application of such a low cost commercial products as a magnetron for microwave oven and a video tape recorder and camera.

  12. Thermodynamic aspects of power production in thermal, chemical and electrochemical systems

    International Nuclear Information System (INIS)

    Sieniutycz, Stanisław; Poświata, Artur

    2012-01-01

    We apply optimization methods to study power generation limits for various energy converters, such as thermal, solar, chemical, and electrochemical engines. Methodological similarity is observed when analysing power limits in thermal machines and fuel cells which are electrochemical flow engines. Operative driving forces and voltage are suitable indicators of imperfect phenomena in energy converters. The results obtained generalize our previous findings for power yield limits in purely thermal systems with finite rates. While temperatures T i of participating media were only necessary variables in purely thermal systems, in the present work both temperatures and chemical potentials μ k are essential. This case is associated with engines propelled by fluxes of both energy and substance. In dynamical systems downgrading or upgrading of resources may occur. Energy flux (power) is created in the generator located between the resource fluid (‘upper’ fluid 1) and the environmental fluid (‘lower’ fluid, 2). Fluid properties, transfer mechanisms and conductance values of dissipative layers or conductors influence the rate of power production. Numerical approaches to the dynamical solutions are based on the dynamic programming or maximum principle. Here we focus especially on the latter method, which involves discrete algorithms of Pontryagin’s type. Downgrading or upgrading of resources may also occur in electrochemical systems of fuel cell type. Yet, in this paper we restrict ourselves to the steady-state fuel cells. We present a simple analysis showing that, in linear systems, only at most ¼ of power dissipated in the natural transfer process can be transformed into the noble form of mechanical power.

  13. THE PRODUCTION OF ORANGE PRESS LIQUOR SPIRIT: TECHNICAL AND ECONOMIC ASPECTS

    Directory of Open Access Journals (Sweden)

    J. O. FERREIRA

    2008-10-01

    Full Text Available

    The orange juice industry produces, at the end of the residue extraction, a by-product called orange press liquor. Considering its high content of soluble solids and the large volume of the liquor produced in Brazilian orange juice plants, an earlier study was conducted on the technical viability of using orange press liquor as raw material for a new distilled beverage, with promising results. With a view to increasing efficiency and possibly attracting investments in the growing international market for new and exotic beverages, the aim of the present study was to optimize the orange press liquor spirit process and to evaluate the economic aspects of its production. The results showed that this process can yield a good quality beverage, comparable to the sugar cane spirit cachaça and other similar products, as well as having economic advantages and potential for immediate further growth, without extra investment costs.

  14. Engineering bioinformatics: building reliability, performance and productivity into bioinformatics software.

    Science.gov (United States)

    Lawlor, Brendan; Walsh, Paul

    2015-01-01

    There is a lack of software engineering skills in bioinformatic contexts. We discuss the consequences of this lack, examine existing explanations and remedies to the problem, point out their shortcomings, and propose alternatives. Previous analyses of the problem have tended to treat the use of software in scientific contexts as categorically different from the general application of software engineering in commercial settings. In contrast, we describe bioinformatic software engineering as a specialization of general software engineering, and examine how it should be practiced. Specifically, we highlight the difference between programming and software engineering, list elements of the latter and present the results of a survey of bioinformatic practitioners which quantifies the extent to which those elements are employed in bioinformatics. We propose that the ideal way to bring engineering values into research projects is to bring engineers themselves. We identify the role of Bioinformatic Engineer and describe how such a role would work within bioinformatic research teams. We conclude by recommending an educational emphasis on cross-training software engineers into life sciences, and propose research on Domain Specific Languages to facilitate collaboration between engineers and bioinformaticians.

  15. Engineering bioinformatics: building reliability, performance and productivity into bioinformatics software

    Science.gov (United States)

    Lawlor, Brendan; Walsh, Paul

    2015-01-01

    There is a lack of software engineering skills in bioinformatic contexts. We discuss the consequences of this lack, examine existing explanations and remedies to the problem, point out their shortcomings, and propose alternatives. Previous analyses of the problem have tended to treat the use of software in scientific contexts as categorically different from the general application of software engineering in commercial settings. In contrast, we describe bioinformatic software engineering as a specialization of general software engineering, and examine how it should be practiced. Specifically, we highlight the difference between programming and software engineering, list elements of the latter and present the results of a survey of bioinformatic practitioners which quantifies the extent to which those elements are employed in bioinformatics. We propose that the ideal way to bring engineering values into research projects is to bring engineers themselves. We identify the role of Bioinformatic Engineer and describe how such a role would work within bioinformatic research teams. We conclude by recommending an educational emphasis on cross-training software engineers into life sciences, and propose research on Domain Specific Languages to facilitate collaboration between engineers and bioinformaticians. PMID:25996054

  16. Safety and environmental aspects of heavy water production (Paper No. 4.1)

    International Nuclear Information System (INIS)

    Singh, Mohinder

    1992-01-01

    Different processes are utilised for heavy water production in the heavy water plants in India. H 2 S is used in large quantities as carrier gas to extract deuterium content from water. The safe handling of such large quantities of H 2 S gas poses a major problem because of its toxicity, high corrosive nature and high flammability. Handling of large quantities of synthesis gas in ammonia based plants at high pressure and temperature poses a major problem because it is a mixture of hydrogen and nitrogen. H 2 is highly inflammable and explosive when mixed with air or oxygen. All the safety aspects considered while designing, fabricating, constructing and operating the plants are described. (author). 5 tabs

  17. Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation

    Directory of Open Access Journals (Sweden)

    Paul E. Brockway

    2017-02-01

    Full Text Available Capital–labour–energy Constant Elasticity of Substitution (CES production functions and their estimated parameters now form a key part of energy–economy models which inform energy and emissions policy. However, the collation and guidance as to the specification and estimation choices involved with such energy-extended CES functions is disparate. This risks poorly specified and estimated CES functions, with knock-on implications for downstream energy–economic models and climate policy. In response, as a first step, this paper assembles in one place the major considerations involved in the empirical estimation of these CES functions. Discussions of the choices and their implications lead to recommendations for CES empiricists. The extensive bibliography allows those interested to dig deeper into any aspect of the CES parameter estimation process.

  18. Metabolic engineering of ethanol production in Thermoanaerobacter mathranii

    Energy Technology Data Exchange (ETDEWEB)

    Shou Yao

    2010-11-15

    Strain BG1 is a xylanolytic, thermophilic, anaerobic, Gram-positive bacterium originally isolated from an Icelandic hot spring. The strain belongs to the species Thermoanaerobacter mathranii. The strain ferments glucose, xylose, arabinose, galactose and mannose simultaneously and produces ethanol, acetate, lactate, CO{sub 2}, and H2 as fermentation end-products. As a potential ethanol producer from lignocellulosic biomass, tailor-made BG1 strain with the metabolism redirected to produce ethanol is needed. Metabolic engineering of T. mathranii BG1 is therefore necessary to improve ethanol production. Strain BG1 contains four alcohol dehydrogenase (ADH) encoding genes. They are adhA, adhB, bdhA and adhE encoding primary alcohol dehydrogenase, secondary alcohol dehydrogenase, butanol dehydrogenase and bifunctional alcohol/acetaldehyde dehydrogenase, respectively. The presence in an organism of multiple alcohol dehydrogenases with overlapping specificities makes the determination of the specific role of each ADH difficult. Deletion of each individual adh gene in the strain revealed that the adhE deficient mutant strain fails to produce ethanol as the fermentation product. The bifunctional alcohol/acetaldehyde dehydrogenase, AdhE, is therefore proposed responsible for ethanol production in T. mathranii BG1, by catalyzing sequential NADH-dependent reductions of acetyl-CoA to acetaldehyde and then to ethanol under fermentative conditions. Moreover, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Over-expression of AdhE in strain BG1E1 with xylose as a substrate facilitates the production of ethanol at an increased yield. With a cofactor-dependent ethanol production pathway in T. mathranii BG1, it may become crucial to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol

  19. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation.

    Science.gov (United States)

    Jang, Ji-Woong; Jung, Hwi-Min; Im, Dae-Kyun; Jung, Moo-Young; Oh, Min-Kyu

    2017-11-01

    Enterobacter aerogenes was metabolically engineered for acetoin production. To remove the pathway enzymes that catalyzed the formation of by-products, the three genes encoding a lactate dehydrogenase (ldhA) and two 2,3-butanediol dehydrogenases (budC, and dhaD), respectively, were deleted from the genome. The acetoin production was higher under highly aerobic conditions. However, an extracellular glucose oxidative pathway in E. aerogenes was activated under the aerobic conditions, resulting in the accumulation of 2-ketogluconate. To decrease the accumulation of this by-product, the gene encoding a glucose dehydrogenase (gcd) was also deleted. The resulting strain did not produce 2-ketogluconate but produced significant amounts of acetoin, with concentration reaching 71.7g/L with 2.87g/L/h productivity in fed-batch fermentation. This result demonstrated the importance of blocking the glucose oxidative pathway under highly aerobic conditions for acetoin production using E. aerogenes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Metabolic engineering of Agrobacterium sp. ATCC31749 for curdlan production from cellobiose.

    Science.gov (United States)

    Shin, Hyun-Dong; Liu, Long; Kim, Mi-Kyoung; Park, Yong-Il; Chen, Rachel

    2016-09-01

    Curdlan is a commercial polysaccharide made by fermentation of Agrobacterium sp. Its anticipated expansion to larger volume markets demands improvement in its production efficiency. Metabolic engineering for strain improvement has so far been limited due to the lack of genetic tools. This research aimed to identify strong promoters and to engineer a strain that converts cellobiose efficiently to curdlan. Three strong promoters were identified and were used to install an energy-efficient cellobiose phosphorolysis mechanism in a curdlan-producing strain. The engineered strains were shown with enhanced ability to utilize cellobiose, resulting in a 2.5-fold increase in titer. The availability of metabolically engineered strain capable of producing β-glucan from cellobiose paves the way for its production from cellulose. The identified native promoters from Agrobacterium open up opportunities for further metabolic engineering for improved production of curdlan and other products. The success shown here marks the first such metabolic engineering effort in this microbe.

  1. Metabolic engineering approaches for production of biochemicals in food and medicinal plants.

    Science.gov (United States)

    Wilson, Sarah A; Roberts, Susan C

    2014-04-01

    Historically, plants are a vital source of nutrients and pharmaceuticals. Recent advances in metabolic engineering have made it possible to not only increase the concentration of desired compounds, but also introduce novel biosynthetic pathways to a variety of species, allowing for enhanced nutritional or commercial value. To improve metabolic engineering capabilities, new transformation techniques have been developed to allow for gene specific silencing strategies or stacking of multiple genes within the same region of the chromosome. The 'omics' era has provided a new resource for elucidation of uncharacterized biosynthetic pathways, enabling novel metabolic engineering approaches. These resources are now allowing for advanced metabolic engineering of plant production systems, as well as the synthesis of increasingly complex products in engineered microbial hosts. The status of current metabolic engineering efforts is highlighted for the in vitro production of paclitaxel and the in vivo production of β-carotene in Golden Rice and other food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Cost and price estimate of Brayton and Stirling engines in selected production volumes

    Science.gov (United States)

    Fortgang, H. R.; Mayers, H. F.

    1980-01-01

    The methods used to determine the production costs and required selling price of Brayton and Stirling engines modified for use in solar power conversion units are presented. Each engine part, component and assembly was examined and evaluated to determine the costs of its material and the method of manufacture based on specific annual production volumes. Cost estimates are presented for both the Stirling and Brayton engines in annual production volumes of 1,000, 25,000, 100,000 and 400,000. At annual production volumes above 50,000 units, the costs of both engines are similar, although the Stirling engine costs are somewhat lower. It is concluded that modifications to both the Brayton and Stirling engine designs could reduce the estimated costs.

  3. Defining project scenarios for the agile requirements engineering product-line development questionnaire

    OpenAIRE

    Feng, Kunwu; Lempert, Meli; Tang, Yan; Tian, Kun; Cooper, Kendra M.L.; Franch Gutiérrez, Javier

    2007-01-01

    Current agile methods are focused on practices of small, rapid developing and iteration, more people oriented, less documentation projects, and the use of the methods in large, product line projects are somehow difficult. UTD and GESSI have started a project to develop an expert system that can assist a requirements enginer in selecting a requirements engineering process that is well suited for their project, in particular with respect to the use of agile and product line engineering methods....

  4. Developing a survey to collect expertise in agile product line requirements engineering processes

    OpenAIRE

    Feng, Kunwu; Lempert, Meli; Tang, Yan; Tian, Kun; Cooper, Kendra M.L.; Franch Gutiérrez, Javier

    2007-01-01

    Current agile methods are focused on practices of small, rapid developing and iteration, more people oriented, less documentation projects, and the use of the methods in large, product line projects are somehow difficult. UTD and GESSI have started a project to develop an expert system that can assist a requirements enginer in selecting a requirements engineering process that is well suited for their project, in particular with respect to the use of agile and product line engineering methods....

  5. Teaching chemical product design to engineering students: course contents and challenges

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Kiil, Søren

    Chemical product design is not taught in the same way as traditional engineering courses like unit operations or transport phenomena. This paper gives an overview of the challenges that we, as teachers, have faced when teaching chemical product design to engineering students. Specific course...

  6. Weapon System Requirements: Detailed Systems Engineering Prior to Product Development Positions Programs for Success

    Science.gov (United States)

    2016-11-01

    modified, replaced, or sustained by consumers or different manufacturers in addition to the manufacturer that developed the system. It also allows...WEAPON SYSTEM REQUIREMENTS Detailed Systems Engineering Prior to Product Development Positions Programs for Success...Engineering Prior to Product Development Positions Programs for Success Why GAO Did This Study Cost and schedule growth in DOD major defense

  7. Studies performed in support of the proposed revision of engineering design aspects of 10CFR100, Appendix A

    International Nuclear Information System (INIS)

    Witte, M.; Prassinos, P.; Kenneally, R.; Chokshi, N.

    1991-01-01

    Part 100 of Title 10 of the Code of Federal Regulations (10CFR100) describes criteria which guide the commission in its evaluation of the suitability of proposed sites for nuclear power plants. Appendix A of this part describes seismic and geologic siting criteria for nuclear power plants. Some engineering design aspects of nuclear power plants are also briefly addressed in Appendix A. These include: definition of the operating basis earthquake (OBE) and the safe shutdown earthquake (SSE), definitions of safety related structures, systems and components, ratio of OBE to SSE, identification of acceptable analytical methods, and definition of vibratory ground motion. One of the interpretations of the regulations on the selection of the two earthquake design levels, the SSE and OBE, was that the SSE would control the design of all safety related systems while the OBE would be applied to the remaining systems required for continued power operation. In practice, however, with the load factors, damping, and service limits, the OBE, rather than the SSE, has controlled the design for some systems. The work in progress at Lawrence Livermore National Laboratory and at the Nuclear Regulatory Commission will develop the technical basis to support engineering related changes to Appendix A. Included in this effort are the following: investigation of the impact of removing the OBE from design considerations with regard to safety options and review of possible strategies regarding the definition and requirements of the OBE for future reactors. This paper reports on the status and results of studies performed to date in support of this project. These include a study to identify components that are important to plant safety and also are affected by OBE designs; a study to evaluate the impact on ASME BPVC Section 3 Division 1 of eliminating the OBE; and a study to evaluate the impact on design margins if the OBE is eliminated from design

  8. Alcohol, biomass energy: technological and economical aspects of production; Alcool, energia da biomassa: aspectos tecnologicos e economicos da producao

    Energy Technology Data Exchange (ETDEWEB)

    Ometto, Joao Guilherme Sabino [Cooperativa dos Produtores de Acucar, Cana e Alcool do Estado de Sao Paulo Ltda. (COOPERSUCAR), Piracicaba, SP (Brazil)

    1993-12-31

    This paper presents some technological and economical aspects of sugar cane and alcohol production in Brazil since 1975 until nowadays. The evolution of their production is analysed and the relationship between cost-benefit and ethanol consumption is discussed 13 figs., 11 tabs.

  9. Alcohol, biomass energy: technological and economical aspects of production; Alcool, energia da biomassa: aspectos tecnologicos e economicos da producao

    Energy Technology Data Exchange (ETDEWEB)

    Ometto, Joao Guilherme Sabino [Cooperativa dos Produtores de Acucar, Cana e Alcool do Estado de Sao Paulo Ltda. (COOPERSUCAR), Piracicaba, SP (Brazil)

    1994-12-31

    This paper presents some technological and economical aspects of sugar cane and alcohol production in Brazil since 1975 until nowadays. The evolution of their production is analysed and the relationship between cost-benefit and ethanol consumption is discussed 13 figs., 11 tabs.

  10. Best broiler husbandry system and perceived importance of production aspects by Dutch citizens, poultry farmers and veterinarians

    NARCIS (Netherlands)

    Asselt, van M.; Ekkel, E.D.; Kemp, B.; Stassen, E.N.

    2015-01-01

    The objectives of this study were to explore the views of Dutch citizens, poultry farmers and poultry veterinarians regarding: (1) best broiler husbandry systems; (2) the importance of production aspects of broiler production and (3) the relation between best husbandry system and the importance of

  11. Aspergillus niger biofilms for celulasas production: some structural and physiological aspects

    Directory of Open Access Journals (Sweden)

    Gretty K. Villena

    2013-06-01

    Full Text Available Aspergillus niger biofilms developed on polyester cloth were evaluated considering two aspects related to the growth on surfaces: structure and physiological behavior focused on cellulase production. The biofilm structure was assessed by using electron scanning microphotographs from inoculation and adsorption to 120 h growth. The microphotographs show that biofilm formation can be divided into three phases: 1 Adhesion, which is strongly increased by Aspergillus spore hydrophobicity; 2 Initial growth and development phase from spore germination, that begins 4 to 10 h after inoculation and continues up to 24 h when almost all available surface has been colonized; 3 Maturation phase in which biomass density is highly increased from 48 h after inoculation until 120 h growth when an internal channel organization that assures medium flow through biofilm is clearly evident as it is frequently reported for bacterial biofilms.Biofilm cellulolytic enzyme activity and productivity were also evaluated, being up to 40% and 55%, respectively, higher than that attained by freely suspended cultures. These results are in agreement with the behavior of most surface living microorganisms, which generally show a higher metabolic activity because of a differential gene expression. This work is a first attempt to understand the structure and physiology of industrial filamentous fungal biofilms as a response to the scarce available information in comparison with the vast and detailed information related to bacterial and pathogenic yeast biofilms.

  12. Enhancing engineering practices for productivity and profits in agro-allied industries

    International Nuclear Information System (INIS)

    Esan, A. A.

    2000-08-01

    The word productivity is a part of everyday vocabulary of industrial engineers and managers. Terms such as optimum utilization of resources, operational efficiency, product competitiveness, maintenance culture, etc., are mentioned with regular frequency. This is healthy, because productivity improvement does not happen by wishing for it or trying harder but by deliberately planning for it. The rewards of higher productivity are immense. At the firm level, such benefit include high production rates, higher profits, better quality products and services, customer satisfaction, higher take home pay for employees and high employee morale. Many of these benefits can be derived through the application of simple potential productivity improvement tools that are hinged on engineering practices

  13. Ketocarotenoid Production in Soybean Seeds through Metabolic Engineering.

    Directory of Open Access Journals (Sweden)

    Emily C Pierce

    Full Text Available The pink or red ketocarotenoids, canthaxanthin and astaxanthin, are used as feed additives in the poultry and aquaculture industries as a source of egg yolk and flesh pigmentation, as farmed animals do not have access to the carotenoid sources of their wild counterparts. Because soybean is already an important component in animal feed, production of these carotenoids in soybean could be a cost-effective means of delivery. In order to characterize the ability of soybean seed to produce carotenoids, soybean cv. Jack was transformed with the crtB gene from Pantoea ananatis, which codes for phytoene synthase, an enzyme which catalyzes the first committed step in the carotenoid pathway. The crtB gene was engineered together in combinations with ketolase genes (crtW from Brevundimonas sp. strain SD212 and bkt1 from Haematococcus pluvialis to produce ketocarotenoids; all genes were placed under the control of seed-specific promoters. HPLC results showed that canthaxanthin is present in the transgenic seeds at levels up to 52 μg/g dry weight. Transgenic seeds also accumulated other compounds in the carotenoid pathway, such as astaxanthin, lutein, β-carotene, phytoene, α-carotene, lycopene, and β-cryptoxanthin, whereas lutein was the only one of these detected in non-transgenic seeds. The accumulation of astaxanthin, which requires a β-carotene hydroxylase in addition to a β-carotene ketolase, in the transgenic seeds suggests that an endogenous soybean enzyme is able to work in combination with the ketolase transgene. Soybean seeds that accumulate ketocarotenoids could potentially be used in animal feed to reduce or eliminate the need for the costly addition of these compounds.

  14. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches...... for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites....... The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production....

  15. Product Surfaces in Precision Engineering, Micorengineering and Nanotechnology

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Kunzmann, H.; Peggs, G. N.

    2005-01-01

    This paper is and excerpt from a recently published CIRP Key-Note paper on surfaces in Precision Engineering, Micorengineering and Nanotechnology [1]. It is focussed on the relevance of surface metrology at the micrometric and nanometric length scales. The applied measurement technologies...... are strongly dependent from the functional requirements on those surfaces. Examples of surfaces obtained with precision engineering, microengineering and nanotechnology are mentioned, encompassing surfaces in computers, MEMS, biomedical systems, ligth and X-ray optics, as well as in chemical systems. Surface...... in surface metrology at micro and nanoscale are strongly required for future progress of Precision Engineering, Microengineering, and Nanotechnology; and their fundamental importance can not be overestimated....

  16. Study on the Development of Outdoor Recreation Product Considering the Ecology Aspect in Wana Wisata Curug Cilember (WWCC), Kabupaten Bogor)

    OpenAIRE

    Qurie Purnamasari; Andry Indrawan; E. K. S Harini Muntasib

    2012-01-01

    Recreation development is usually oriented toward on the mass tourism to maximise a number of tourists and rarely put the environmental aspect into consideration.  This created an effect on the sustainability of ecology.  This study’s emphasis is on figuring out an alternative of outdoor recreation product which based on the ecology aspect to support the development of outdoor recreation in the Wana Wisata Curug Cilember (WWCC). This study put the characteristic of tourist and local people i...

  17. Animal Welfare and Economic Aspects of Using Nurse Sows in Swedish Pig Production

    Directory of Open Access Journals (Sweden)

    Karin Alvåsen

    2017-12-01

    Full Text Available The number of born piglets per litter has increased in Swedish pig industry, and farmers are struggling to improve piglet survival. A common practice is to make litters more equally sized by moving piglets from large litters to smaller to make sure that all piglets get an own teat to suckle. Litter equalization is not always enough, as many sows have large litters and/or damaged teats, which results in an insufficient number of available teats. One way to solve this problem is to use nurse sows. A nurse sow raises, and weans, her own piglets before receiving a foster litter. The objectives of this study were to address how the use of nurse sows affects the welfare of sows and piglets and to explore how it impacts the contribution margin of pig production in Sweden. A literature search was made to investigate welfare aspects on sows and piglets. As there were few published studies on nurse sows, an expert group meeting was organized. In order to explore the impact on the contribution margin of pig production, a partial budgeting approach with stochastic elements was used for a fictive pig farm. Standard templates for calculating costs and benefits were supplemented with figures from existing literature and the gathered expert opinions. In Sweden, the minimum suckling period is 28 days while published studies involving nurse sows, all from outside of Sweden, weaned the piglets at 21 days. A Swedish nurse sow will thus get longer lactation period which might increase the risk of poor body condition, damaged teats, and shoulder ulcers. This indicates a reduced welfare of the sow and may lead to impaired fertility and increased culling risk. On the other hand, the piglet mortality could be reduced with the use of nurse sows, but the separation and mixing of piglets could be stressful. The partial budgeting suggested that the nurse sow system is slightly more profitable (+6,838 Swedish krona per farrowing group during one dry and one lactation

  18. Disciplinary Literacies in an Engineering Club: Exploring Productive Communication and the Engineering Design Process

    Science.gov (United States)

    Shanahan, Lynn E.; McVee, Mary B.; Slivestri, Katarina N.; Haq, Kate

    2016-01-01

    This conceptual article addresses the question: What are the disciplinary literacy practices surrounding the Engineering Design Process (EDP) at the elementary level? Recent attention has focused on developing science, technology, engineering, and math (STEM) skills for U.S. students. In the United States, the Next Generation Science Standards and…

  19. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  20. Search engines and the production of academic knowledge

    OpenAIRE

    van Dijck, J.

    2010-01-01

    This article argues that search engines in general, and Google Scholar in particular, have become significant co-producers of academic knowledge. Knowledge is not simply conveyed to users, but is co-produced by search engines’ ranking systems and profiling systems, none of which are open to the rules of transparency, relevance and privacy in a manner known from library scholarship in the public domain. Inexperienced users tend to trust proprietary engines as neutral mediators of knowledge and...

  1. Safety aspects of targets for ADTT: Activity, volatile products, residual heat release

    International Nuclear Information System (INIS)

    Gai, E.V.; Ignatyuk, A.V.; Lunev, V.P.; Shubin, Yu.N.

    1999-01-01

    Safety aspects of heavy metal liquid targets for the accelerator driven systems connected with the activity accumulation and residual energy release due to the irradiation with high energy proton beam are discussed. The results obtained for the lead-bismuth target that are under construction in IPPE now in the frame of ISTC Project No. 559 are briefly presented. The calculations and the analysis of the accumulation of the spallation reaction products, activity and energy release at various moments after the accelerator shutdown are presented. The concentrations of the reaction products, the total and partial activities, the activities of volatile products are determined. The contributions of the short-lived nuclides important for the prediction of the facility behaviour in regimes with the accelerator beam trips. The calculations and analysis of the residual energy release due to different decay type have been performed. The conclusions are as follows. The obtained results showed that long lived radioactivity accumulates mainly due to primary nuclear reactions. Secondary reactions are responsible for the production of small number of long-lived isotopes Bi-207, Po-210 and some others, being generated by radiative capture of low energy neutrons. It is possible to make a conclusion that neutrons in the energy range 20 - 800 MeV and protons with energy above 100 MeV give main contribution to the total activity generation although these parts of spectra inside the target give comparatively small contribution to the total flux. The correct consideration of short-lived nuclides contribution is the main problem in the analysis of the target behaviour in the case of short accelerator shutdowns. They make the determining contribution to the both activity and the heat release at the first moments after the accelerator shutdown, creating the intermediate links and additional channels for the long-lived nuclides accumulation chains. The strong dependence of calculated

  2. Plant nutritional and environmental aspects of organic apple production in East Hungary

    Directory of Open Access Journals (Sweden)

    Peter Tamas Nagy

    2017-07-01

    Full Text Available The recent surge in interest in fruit growing without the use of agrochemicals in order to safeguard environmental and human health has led to increased awareness of organic fruit production (OFP. Despite the widespread use of the method, there is little information on its nutritional aspects, especially in Hungary. Therefore, the aim of this three-year study was to investigate the nutrient status in an organic apple management system and the impact of nutrient applications on nutrient uptake and on the environment. The research was undertaken at the orchard Fruit Research Station of the University of Debrecen in Debrecen-Pallag, Hungary, during 2009-2011. Three cultivars (’Reanda’, ’Rewena’, and ’Retina’ were selected for the study. In the plantation, only organic manure was applied (stable manure, 30 t ha-1, in 2007. The effect of organic methods was monitored by soil and leaf analyses, as well as field observations. Leaf analysis results indicated significantly lower N, K, Mn, Cu and Zn content in cultivar ‘Retina’ than in ‘Reanda’ and ‘Rewena’. Results suggested that mobility and availability were unbalanced and obstructed, especially in the case of Ca. The study also demonstrated that the lower nutrient content of soil and also the generally poorer uptake of Ca and Zn in organic apple orchards resulted in higher production risks as compared with conventional or integrated ones. We conclude that a more balanced and more efficient nutrient supply system is needed for organic farms in order to achieve good quality and profitable yield.

  3. Effects of Dietary Garlic Powder on Productive Performance and Certain Biochemical Aspects of Laying Hens

    International Nuclear Information System (INIS)

    Elsayed, M.A.

    2013-01-01

    Sixty six, 37-wk-old laying hens, of Lohmann strain, were used in the current study to evaluate the effects of dietary garlic powder (GP) on productive performance and certain biochemical aspects of laying hens. Hens were randomly allotted into 3 dietary treatment groups, a control (no garlic addition) and 3 and 6 % GP additions to the basal diet on weight: weight ratio basis and fed for six week. Body weights (BW), egg weight (EW) and feed consumption were determined weekly. Daily egg production was recorded. Serum concentrations of lipids profile ( triglycerides (Trig), total cholesterol (Chol), high density lipids (HDL) and low density lipids (LDL) cholesterol levels) and triiodothyronine (T3) concentration were measured. Results indicated that feed efficiency and BW gain were significantly increased as garlic powder percentage increased in the diet. Garlic powder supplementation at 3 and 6 % lower serum Chol concentrations on an average by 15.3 and 22.3%, respectively, as compared to the control group. Serum Trig concentration was significantly lower by 18 and 33% respectively as compared to the control group. TLs were highly significantly decreased as the garlic powder increase by 13.9 and 27.8% respectively, and as compared to the control group. Moreover, HDL-cholesterol was significantly increased and LDL- cholesterol was significantly decreased with garlic powder increased in the diet. Serum T3 concentration was significantly higher on average by 23.2 and 28.4%, in laying hens given the 3 and 6 % garlic powder supplementation as compared to the control group. It could be concluded from the results of the current study that supplementing the diet with 3 and to a greater extent with 6 % of garlic powder decreases the major risk factors for the development and progression of atherosclerosis and coronary artery disease by lowing concentrations of serum total cholesterol, triglycerides concentrations, and HDL cholesterol, and increasing levels of HDL

  4. Assessing the economic aspects of solar hot water production in Greece

    International Nuclear Information System (INIS)

    Haralambopoulos, D.; Kovras, H.

    1997-01-01

    The long-term performance of various systems was determined and the economic aspects of solar hot water production were investigated in this work. The effect of the collector inclination angle, collector area and storage volume was examined for all systems, and various climatic conditions and their payback period was calculated. It was found that the collector inclination angle does not have a significant effect on system performance. Large collector areas have a diminishing effect on the system's overall efficiency. The increase in storage volume has a detrimental effect for small daily load volumes, but a beneficial one when there is a large daily consumption. Solar energy was found to be truly competitive when the conventional fuel being substituted is electricity, and it should not replace diesel oil on pure economic grounds. Large daily load volumes and large collector areas are in general associated with shorter payback periods. Overall, the systems are oversized and are economically suitable for large daily hot water load volumes. (Author)

  5. Bovine Endotoxicosis – Some Aspects of Relevance to Production Diseases. A Review*

    Directory of Open Access Journals (Sweden)

    Andersen Pia

    2003-03-01

    Full Text Available This review describes some circumstances where endotoxins of Gram negative bacteria may be related to the pathogenesis of some common production diseases. Decisive evidence for the pathogentical role of endotoxins remains scarce, and therefore an interdisciplinary background covering epidemiological, biological, biochemical, clinical and experimental aspects is given. Several authors have suggested that endotoxins play a significant role for the development of diseases such as laminitis, abomasal displacement, sudden death syndrome of feed-lot steers ect. While the biological, biochemical and clinical pictures of bovine endotoxicosis is quite well known, and certainly may resemble the clinical and biochemical pictures seen in some of the before mentioned diseases, it is however still not clear how or when endotoxins would gain parenteral access. This review describes excerpts of the biology of endotoxins, key clinical signs and the biochemistry associated to these. It is described how ruminal acidosis may facilitate the translocation of endotoxin from the intestinal/ruminal contents to the portal and eventually the systemic bloodstream. The function of the liver hence becomes central, and the role of hepatic fatty infiltration around parturition is discussed. The review finally suggest that acute ruminal acidosis may be viewed as an analogue to the human syndrome Gut-Derived Infectious Toxic Shock (GITS, where shock is propagated primarily by the translocation of bacterial endotoxin from the gut.

  6. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  7. Bioprocess Engineering Aspects of Biopolymer Production by the Cyanobacterium Spirulina Strain LEB 18

    Directory of Open Access Journals (Sweden)

    Roberta Guimarães Martins

    2014-01-01

    Full Text Available Microbial biopolymers can replace environmentally damaging plastics derived from petrochemicals. We investigated biopolymer synthesis by the cyanobacterium Spirulina strain LEB 18. Autotrophic culture used unmodified Zarrouk medium or modified Zarrouk medium in which the NaNO3 content was reduced to 0.25 g L−1 and the NaHCO3 content reduced to 8.4 g L−1 or increased to 25.2 g L−1. Heterotrophic culture used modified Zarrouk medium containing 0.25 g L−1 NaNO3 with the NaHCO3 replaced by 0.2 g L−1, 0.4 g L−1, or 0.6 g L−1 of glucose (C6H12O6 or sodium acetate (CH3COONa. Mixotrophic culture used modified Zarrouk medium containing 0.25 g L−1 NaNO3 plus 16.8 g L−1 NaHCO3 with the addition of 0.2 g L−1, 0.4 g L−1, or 0.6 g L−1 of glucose or sodium acetate. The highest biopolymer yield was 44% when LEB 18 was growing autotrophically in media containing 0.25 g L−1 NaNO3 and 8.4 g L−1 NaHCO3.

  8. MEMS product engineering handling the diversity of an emerging technology best practices for cooperative development

    CERN Document Server

    Ortloff, Dirk; Hahn, Kai; Bieniek, Tomasz; Janczyk, Grzegorz; Bruck, Rainer

    2014-01-01

    This book provides the methodological background to directing cooperative product engineering projects in a micro and nanotechnology setting. The methodology is based on well-established methods like PRINCE2 and StageGate, which are supplemented by best practices that can be individually tailored to the actual nature and size of the project at hand. This book is intended for everyone who takes an active role in either practical product engineering or in teaching it. This includes project and product management staff and program management offices in companies working on innovation projects, those active in innovation, as well as professors and students in engineering and management.

  9. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Shuobo Shi

    2017-11-01

    Full Text Available Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.

  10. Metabolically engineered cells for the production of polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves...... improvement of the PUFA content in the host organism through fermentation optimization, e.g. decreasing the temperature and/or designing an optimal medium, or through improving the flux towards fatty acids by metabolic engineering, e.g. through over-expression of fatty acid synthases, over-expression of other...

  11. Domain engineering product lines, languages, and conceptual models

    CERN Document Server

    Reinhartz-Berger, Iris; Clark, Tony

    2013-01-01

    Domain engineering is a set of activities intended to develop, maintain, and manage the creation and evolution of an area of knowledge suitable for processing by a range of software systems.  It is of considerable practical significance, as it provides methods and techniques that help reduce time-to-market, development costs, and project risks on one hand, and helps improve system quality and performance on a consistent basis on the other. In this book, the editors present a collection of invited chapters from various fields related to domain engineering. The individual chapters pres

  12. Audio engineering 101 a beginner's guide to music production

    CERN Document Server

    Dittmar, Tim

    2013-01-01

    Audio Engineering 101 is a real world guide for starting out in the recording industry. If you have the dream, the ideas, the music and the creativity but don't know where to start, then this book is for you!Filled with practical advice on how to navigate the recording world, from an author with first-hand, real-life experience, Audio Engineering 101 will help you succeed in the exciting, but tough and confusing, music industry. Covering all you need to know about the recording process, from the characteristics of sound to a guide to microphones to analog versus digital

  13. From Design to Production Control Through the Integration of Engineering Data Management and Workflow Management Systems

    CERN Document Server

    Le Goff, J M; Bityukov, S; Estrella, F; Kovács, Z; Le Flour, T; Lieunard, S; McClatchey, R; Murray, S; Organtini, G; Vialle, J P; Bazan, A; Chevenier, G

    1997-01-01

    At a time when many companies are under pressure to reduce "times-to-market" the management of product information from the early stages of design through assembly to manufacture and production has become increasingly important. Similarly in the construction of high energy physics devices the collection of ( often evolving) engineering data is central to the subsequent physics analysis. Traditionally in industry design engineers have employed Engineering Data Management Systems ( also called Product Data Management Systems) to coordinate and control access to documented versions of product designs. However, these systems provide control only at the collaborative design level and are seldom used beyond design. Workflow management systems, on the other hand, are employed in industry to coordinate and support the more complex and repeatable work processes of the production environment. Commer cial workflow products cannot support the highly dynamic activities found both in the design stages of product developmen...

  14. Engineered CHO cells for production of diverse, homogeneous glycoproteins

    DEFF Research Database (Denmark)

    Yang, Zhang; Wang, Shengjun; Halim, Adnan

    2015-01-01

    Production of glycoprotein therapeutics in Chinese hamster ovary (CHO) cells is limited by the cells' generic capacity for N-glycosylation, and production of glycoproteins with desirable homogeneous glycoforms remains a challenge. We conducted a comprehensive knockout screen of glycosyltransferas...

  15. Engineering cyanobacteria for direct biofuel production from CO2

    NARCIS (Netherlands)

    Savakis, P.; Hellingwerf, K.J.

    2015-01-01

    For a sustainable future of our society it is essential to close the global carbon cycle. Oxidised forms of carbon, in particular CO2, can be used to synthesise energy-rich organic molecules. Engineered cyanobacteria have attracted attention as catalysts for the direct conversion of CO2 into reduced

  16. Engineering Workflow: The Process in Product Data Technology

    NARCIS (Netherlands)

    Bijwaard, D.; Spee, J.B.R.M.; de Boer, Pieter-Tjerk

    The prevailing paradigm for enterprises in the new decade is undoubtedly speed. This enterprise view is driven by the availability of e-business technology that enables new forms of collaboration between companies. The rapid developments in e-business also have an impact on the future of engineering

  17. IT logistics support life cycle of products in air engine

    Directory of Open Access Journals (Sweden)

    М.С. Кулик

    2009-02-01

    Full Text Available  Questions of increase of efficiency of a supply with information of creation and support in operation of modern aviation engines are considered. The revealed most perspective directions of development of complex systems of support of life cycle aviation technics.

  18. Search engines and the production of academic knowledge

    NARCIS (Netherlands)

    van Dijck, J.

    2010-01-01

    This article argues that search engines in general, and Google Scholar in particular, have become significant co-producers of academic knowledge. Knowledge is not simply conveyed to users, but is co-produced by search engines’ ranking systems and profiling systems, none of which are open to the

  19. Production control in engineer-to-order firms

    NARCIS (Netherlands)

    Bertrand, J.W.M.; Muntslag, D.R.; Grübström, R.W.; Hinterhuber, H.H.; Lundquist, J.

    1993-01-01

    During the last decade many engineer-to-order firms have tried to implement MRP II systems, however, the little or no success. The choice of a MRP II system is often based on the wide availability of MRP II software and the fact that the exact reasons why this software is not suitable for

  20. Engineering of Yarrowia lipolytica for production of astaxanthin

    DEFF Research Database (Denmark)

    Kildegaard, Kanchana Rueksomtawin; Adiego Pérez, Belén; Doménech Belda, David

    2017-01-01

    Astaxanthin is a red-colored carotenoid, used as food and feed additive. Astaxanthin is mainly produced by chemical synthesis, however, the process is expensive and synthetic astaxanthin is not approved for human consumption. In this study, we engineered the oleaginous yeast Yarrowia lipolytica f...

  1. International collaboration in engineering projects on product innovation.

    NARCIS (Netherlands)

    Dr.Ir. Hay Geraedts

    2013-01-01

    Nowadays companies need higher educated engineers to develop their competences to enable them to innovate. This innovation competence is seen as a remedy for the minor profitable business they do during the financial crises. Innovation is an element to be developed on the one hand for big companies

  2. Machine Learning for Mass Production and Industrial Engineering

    OpenAIRE

    Pfingsten, Jens Tobias

    2007-01-01

    The analysis of data from simulations and experiments in the development phase and measurements during mass production plays a crucial role in modern manufacturing: Experiments and simulations are performed during the development phase to ensure the design's fitness for mass production. During production, a large number of measurements in the automated production line controls a stable quality. As the number of measurements grows, the conventional, largely manual data analysis approach...

  3. Metabolic Engineering of TCA Cycle for Production of Chemicals

    NARCIS (Netherlands)

    Vuoristo, K.S.; Mars, A.E.; Sanders, J.P.M.; Eggink, G.; Weusthuis, R.A.

    2016-01-01

    The tricarboxylic acid (TCA) cycle has been used for decades in the microbial production of chemicals such as citrate, L-glutamate, and succinate. Maximizing yield is key for cost-competitive production. However, for most TCA cycle products, the maximum pathway yield is lower than the theoretical

  4. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli

    DEFF Research Database (Denmark)

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun

    2017-01-01

    ). FPP biosynthesis diverts the carbon flux from monoterpene production to C15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate...

  5. CHO On A Detox: Removing By-Product Formation Through Cell Engineering

    DEFF Research Database (Denmark)

    Pereira, Sara; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    Chinese Hamster Ovary (CHO) cells are the preferred hosts for the production of therapeutic glycoproteins. However, there is a need for improvement of the bioprocesses towards increased cell growth and higher productivities without compromising the product quality. Efforts to obtain tailor-made p......-made products with the desired properties that meet the requirements of regulatory authorities are continuously being made. Of equal relevance is to develop methods to engineer cell lines with improved by-product metabolism....

  6. Engineering Bereitschaft as an enabler for Concurrent Engineering

    DEFF Research Database (Denmark)

    Christiansen, Kåre; Vesterager, Johan

    1999-01-01

    Industrial companies observe a general trend towards more customised products and shorter product life cycles. Furthermore, the market demands shorter lead-time and high-quality products at a competitive price. Concurrent Engineering address these challenges. Product modelling is a key aspect...... of the Concurrent Engineering literature. One problem with the product modelling literature is that it tends to assume that product development is revolutionary. Very often product development is evolutionary and it means that product modelling should have a major emphasis on reuse. In this paper it is suggested...... that industrial companies should develop an engineering development Bereitschaft (preparatory engineering knowledge) as an approach to Concurrent Engineering and product modelling. To develop such an engineering development Bereitschaft, a company must develop company generic product models.This paper...

  7. Power Product Equipment Technician: Outboard-Engine Boat Systems. Teacher Edition [and] Student Edition.

    Science.gov (United States)

    Hilley, Robert

    This curriculum guide contains teacher and student materials for a course on outboard-engine boat systems for power product equipment technician occupations. The course contains the following three units of instruction: (1) Orientation to Outboard-Engine Boat Systems and Rigging; (2) Trailers and Safe Towing and Boat Operation; and (3) Seasonal…

  8. 100 Years of Cotton Production, Harvesting and Ginning Systems Engineering: 1907 - 2007

    Science.gov (United States)

    The American Society of Agricultural and Biological Engineers (ASABE) celebrated its centennial year during 2007. As part of the ASABE centennial, the authors were asked to describe agricultural engineering accomplishments in U.S. cotton production, harvesting and ginning over the past 100 years. ...

  9. 40 CFR 1051.305 - How must I prepare and test my production-line vehicles or engines?

    Science.gov (United States)

    2010-07-01

    ... production-line vehicles or engines? 1051.305 Section 1051.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.305 How must I prepare and test my production...

  10. Metabolic engineering of Ustilago trichophora TZ1 for improved malic acid production

    Directory of Open Access Journals (Sweden)

    Thiemo Zambanini

    2017-06-01

    These results open up a wide range of possibilities for further optimization, especially combinatorial metabolic engineering to increase the flux from pyruvate to malic acid and to reduce by-product formation.

  11. Metabolic engineering of Saccharomyces cerevisiae for C4-dicarboxylic acid production

    NARCIS (Netherlands)

    Zelle, R.M.

    2011-01-01

    Biotechnological production of chemicals from renewable feedstocks offers a sustainable alternative to petrochemistry. Understanding of the biology of microorganisms and plants is increasing at an unprecedented rate and tools with which these organisms can be engineered for industrial application

  12. Engineering Ashbya gossypii strains for de novo lipid production using industrial by-products.

    Science.gov (United States)

    Lozano-Martínez, Patricia; Buey, Rubén M; Ledesma-Amaro, Rodrigo; Jiménez, Alberto; Revuelta, José Luis

    2017-03-01

    Ashbya gossypii is a filamentous fungus that naturally overproduces riboflavin, and it is currently exploited for the industrial production of this vitamin. The utilization of A. gossypii for biotechnological applications presents important advantages such as the utilization of low-cost culture media, inexpensive downstream processing and a wide range of molecular tools for genetic manipulation, thus making A. gossypii a valuable biotechnological chassis for metabolic engineering. A. gossypii has been shown to accumulate high levels of lipids in oil-based culture media; however, the lipid biosynthesis capacity is rather limited when grown in sugar-based culture media. In this study, by altering the fatty acyl-CoA pool and manipulating the regulation of the main ∆9 desaturase gene, we have obtained A. gossypii strains with significantly increased (up to fourfold) de novo lipid biosynthesis using glucose as the only carbon source in the fermentation broth. Moreover, these strains were efficient biocatalysts for the conversion of carbohydrates from sugarcane molasses to biolipids, able to accumulate lipids up to 25% of its cell dry weight. Our results represent a proof of principle showing the promising potential of A. gossypii as a competitive microorganism for industrial biolipid production using cost-effective feed stocks. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Simulation and optimization of logistics distribution for an engine production line

    Energy Technology Data Exchange (ETDEWEB)

    Song, L.; Jin, S.; Tang, P.

    2016-07-01

    In order to analyze and study the factors about Logistics distribution system, solve the problems of out of stock on the production line and improve the efficiency of the assembly line. Using the method of industrial engineering, put forward the optimization scheme of distribution system. The simulation model of logistics distribution system for engine assembly line was build based on Witness software. The optimization plan is efficient to improve Logistics distribution efficiency, production of assembly line efficiency and reduce the storage of production line. Based on the study of the modeling and simulation of engine production logistics distribution system, the result reflects some influence factors about production logistics system, which has reference value to improving the efficiency of the production line. (Author)

  14. Simulation and optimization of logistics distribution for an engine production line

    Directory of Open Access Journals (Sweden)

    Lijun Song

    2016-02-01

    Full Text Available Purpose: In order to analyze and study the factors about Logistics distribution system, solve the problems of out of stock on the production line and improve the efficiency of the assembly line. Design/methodology/approach: Using the method of industrial engineering, put forward the optimization scheme of distribution system. The simulation model of logistics distribution system for engine assembly line was build based on Witness software. Findings: The optimization plan is efficient to improve Logistics distribution efficiency, production of assembly line efficiency and reduce the storage of production line Originality/value: Based on the study of the modeling and simulation of engine production logistics distribution system, the result reflects some influence factors about production logistics system, which has reference value to improving the efficiency of the production line.

  15. Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based biofuels

    Directory of Open Access Journals (Sweden)

    Fu-Xing Niu

    2017-09-01

    Full Text Available Isoprenoids are the most abundant and highly diverse group of natural products. Many isoprenoids have been used for pharmaceuticals, nutraceuticals, flavors, cosmetics, food additives and biofuels. Carotenoids and isoprenoid-based biofuels are two classes of important isoprenoids. These isoprenoids have been produced microbially through metabolic engineering and synthetic biology efforts. Herein, we briefly review the engineered biosynthetic pathways in well-characterized microbial systems for the production of carotenoids and several isoprenoid-based biofuels.

  16. Toward systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2013-01-01

    trends in systems biology of Aspergillus and Pichia species, highlighting the relevance of these developments for systems metabolic engineering of these organisms for the production of hydrolytic enzymes, biofuels and chemicals from biomass. Metabolic engineering is moving from traditional methods...... for the production of hydrolytic enzymes, biofuels and chemicals from biomass. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  17. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    OpenAIRE

    Kang, Min Kyoung; Nielsen, Jens

    2017-01-01

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ?drop-in? biofuels. Some microo...

  18. Development of continuous pharmaceutical production processes supported by process systems engineering methods and tools

    DEFF Research Database (Denmark)

    Gernaey, Krist; Cervera Padrell, Albert Emili; Woodley, John

    2012-01-01

    The pharmaceutical industry is undergoing a radical transition towards continuous production processes. Systematic use of process systems engineering (PSE) methods and tools form the key to achieve this transition in a structured and efficient way.......The pharmaceutical industry is undergoing a radical transition towards continuous production processes. Systematic use of process systems engineering (PSE) methods and tools form the key to achieve this transition in a structured and efficient way....

  19. Modeling a distributed environment for a petroleum reservoir engineering application with software product line

    International Nuclear Information System (INIS)

    Scheidt, Rafael de Faria; Vilain, Patrícia; Dantas, M A R

    2014-01-01

    Petroleum reservoir engineering is a complex and interesting field that requires large amount of computational facilities to achieve successful results. Usually, software environments for this field are developed without taking care out of possible interactions and extensibilities required by reservoir engineers. In this paper, we present a research work which it is characterized by the design and implementation based on a software product line model for a real distributed reservoir engineering environment. Experimental results indicate successfully the utilization of this approach for the design of distributed software architecture. In addition, all components from the proposal provided greater visibility of the organization and processes for the reservoir engineers

  20. Modeling a distributed environment for a petroleum reservoir engineering application with software product line

    Science.gov (United States)

    de Faria Scheidt, Rafael; Vilain, Patrícia; Dantas, M. A. R.

    2014-10-01

    Petroleum reservoir engineering is a complex and interesting field that requires large amount of computational facilities to achieve successful results. Usually, software environments for this field are developed without taking care out of possible interactions and extensibilities required by reservoir engineers. In this paper, we present a research work which it is characterized by the design and implementation based on a software product line model for a real distributed reservoir engineering environment. Experimental results indicate successfully the utilization of this approach for the design of distributed software architecture. In addition, all components from the proposal provided greater visibility of the organization and processes for the reservoir engineers.

  1. Product design and development for dinner chair of Kansei Engineering

    OpenAIRE

    Sirichai Yodwangjai

    2014-01-01

    This research investigated the customer’s perception and product properties. The semantic differential method was employed to examine the relationship between customer’s perception and product properties. Fifty-six dinner chairs are selected from website, magazine and publishing and 10 SD words. The product properties divided 8 groups and 34 sub-groups. The new model created base on Quantification Theory Type 1. The research results show 3 high perceptions: comfortable, soft and modern. The r...

  2. How to Identify Possible Applications of Product Configuration Systems in Engineer-to-Order Companies

    DEFF Research Database (Denmark)

    Kristjansdottir, Katrin; Shafiee, Sara; Hvam, Lars

    2017-01-01

    -toorder (ETO) companies that support gradual implementation of PCS due to large product variety and, several times, higher complexity of products and processes. The overall PCS process can thereby be broken down, and the risk minimised. This paper provides a three-step framework to identify different......Product configuration systems (PCS) play an essential role when providing customised and engineered products efficiently. Literature in the field describes numerous strategies to develop PCS but neglects to identify different application areas. This topic is particularly important for engineer...

  3. The role of metabolic engineering in the production of secondary metabolites

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1998-01-01

    In the production of secondary metabolites yield and productivity are the most important design parameters. The focus is therefore to direct the carbon fluxes towards the product of interest, and this can be obtained through metabolic engineering whereby directed genetic changes are introduced...... into the production strain. In this process it is, however, important to analyze the metabolic network through measurement of the intracellular metabolites and the flux distributions. Besides playing an important role in the optimization of existing processes, metabolic engineering also offers the possibility...

  4. Metabolic engineering of Escherichia coli for itaconate production

    NARCIS (Netherlands)

    Vuoristo, K.S.

    2016-01-01

    Interest in sustainable development together with limited amounts of fossil resources have increased the demand for production of chemicals and fuels from renewable resources. The market potential for bio-based products is growing and a transition from petrochemicals to biomass-based chemicals is

  5. Metabolic engineering of Saccharomyces cerevisiae for optimizing 3HP production

    DEFF Research Database (Denmark)

    Jensen, Niels Bjerg; Maury, Jerome; Oberg, Fredrik

    2012-01-01

    . Polyacrylates are a substantial part of the different plastic varieties found on the market. This kind of plastic is derived from acrylic acid, which is currently produced from propylene, a by-product of ethylene and gasoline production. Annually, more than one billion kilograms of acrylic acid is produced...

  6. Reconfiguring The Supply Chain For Complex Engineered Products

    DEFF Research Database (Denmark)

    Wæhrens, Brian Vejrum; Asmussen, Jesper Normann

    2016-01-01

    of the SC, the product and market requirements. This paper seeks to investigate the factors which create a need for supply chain reconfiguration in the context of the Complex Product Systems, together with the enablers and barriers for successfully realizing supply chain improvements through reconfiguration....

  7. Engineering microorganisms to increase ethanol production by metabolic redirection

    Science.gov (United States)

    Deng, Yu; Olson, Daniel G.; van Dijken, Johannes Pieter; Shaw, IV, Arthur J.; Argyros, Aaron; Barrett, Trisha; Caiazza, Nicky; Herring, Christopher D.; Rogers, Stephen R.; Agbogbo, Frank

    2017-10-31

    The present invention provides for the manipulation of carbon flux in a recombinant host cell to increase the formation of desirable products. The invention relates to cellulose-digesting organisms that have been genetically modified to allow the production of ethanol at a high yield by redirecting carbon flux at key steps of central metabolism.

  8. 3D engineered fiberboard : a new structural building product

    Science.gov (United States)

    John F. Hunt; Jerrold E. Winandy

    2002-01-01

    To help meet the need for sustainable forest management tools, the USDA Forest Products Laboratory is developing an economically viable process to produce three-dimensional structural fibreboard products that can utilize a wide range of lignocellulosic fibres contained in the forest undergrowth and in underutilized timber. This will encourage the public and private...

  9. L-malate production by metabolically engineered escherichia coli

    Science.gov (United States)

    Zhang, Xueli; Wang, Xuan; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    2015-11-17

    A process for the production of malic acid in commercially significant quantities from the carbon compounds by genetically modified bacterial strains (GMBS; also referred to as biocatalysts or genetically modified microorganisms) is disclosed. Microorganisms suitable for the production of malic acid can be cultured in one or two-step processes as disclosed herein.

  10. Metabolic Engineering of TCA Cycle for Production of Chemicals.

    Science.gov (United States)

    Vuoristo, Kiira S; Mars, Astrid E; Sanders, Johan P M; Eggink, Gerrit; Weusthuis, Ruud A

    2016-03-01

    The tricarboxylic acid (TCA) cycle has been used for decades in the microbial production of chemicals such as citrate, L-glutamate, and succinate. Maximizing yield is key for cost-competitive production. However, for most TCA cycle products, the maximum pathway yield is lower than the theoretical maximum yield (Y(E)). For succinate, this was solved by creating two pathways to the product, using both branches of the TCA cycle, connected by the glyoxylate shunt (GS). A similar solution cannot be applied directly for production of compounds from the oxidative branch of the TCA cycle because irreversible reactions are involved. Here, we describe how this can be overcome and what the impact is on the yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. IMPLEMENTATION OF CONTROL CARDS AND SUPPORTING METHOD IN PRODUCTION ENGINEERING

    Directory of Open Access Journals (Sweden)

    Anna WOLNOWSKA

    2012-10-01

    Full Text Available In the article there were presented chosen method associated with statistical control of production processes. Mainly focused on control cards and Pareto‐Lorenz analysis. Showed method were implemented to analysis production process stability of hearing aids in X company (the brand name don’t give because date of production is secret. Researches were made few months after new assembly lines starts‐up. Main aim of researches was defects types identification occurred in production process and determine the scale of effect. Finally received results were satisfactory, i.e. despite of occurred errors, control cards analysis showed that production process of BTE‐type (Behind‐The‐Ear hearing aids was stable.

  12. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    DEFF Research Database (Denmark)

    Kang, Min Kyoung; Nielsen, Jens

    2017-01-01

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial...... hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ‘drop-in’ biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level...... is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks...

  13. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    OpenAIRE

    Jarboe, Laura R.; Zhang, Xueli; Wang, Xuan; Moore, Jonathan C.; Shanmugam, K. T.; Ingram, Lonnie O.

    2010-01-01

    Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibito...

  14. Product design and development for dinner chair of Kansei Engineering

    Directory of Open Access Journals (Sweden)

    Sirichai Yodwangjai

    2014-06-01

    Full Text Available This research investigated the customer’s perception and product properties. The semantic differential method was employed to examine the relationship between customer’s perception and product properties. Fifty-six dinner chairs are selected from website, magazine and publishing and 10 SD words. The product properties divided 8 groups and 34 sub-groups. The new model created base on Quantification Theory Type 1. The research results show 3 high perceptions: comfortable, soft and modern. The research is expected to help support the designer to design a new model that satisfied the customer’s perception.

  15. Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering.

    Directory of Open Access Journals (Sweden)

    Guoqiang Xu

    Full Text Available Fumaric acid (FA is a promising biomass-derived building-block chemical. Bio-based FA production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here we report on FA production by direct fermentation using metabolically engineered Saccharomyces cerevisiae with the aid of in silico analysis of a genome-scale metabolic model. First, FUM1 was selected as the target gene on the basis of extensive literature mining. Flux balance analysis (FBA revealed that FUM1 deletion can lead to FA production and slightly lower growth of S. cerevisiae. The engineered S. cerevisiae strain obtained by deleting FUM1 can produce FA up to a concentration of 610±31 mg L(-1 without any apparent change in growth in fed-batch culture. FT-IR and (1H and (13C NMR spectra confirmed that FA was synthesized by the engineered S. cerevisiae strain. FBA identified pyruvate carboxylase as one of the factors limiting higher FA production. When the RoPYC gene was introduced, S. cerevisiae produced 1134±48 mg L(-1 FA. Furthermore, the final engineered S. cerevisiae strain was able to produce 1675±52 mg L(-1 FA in batch culture when the SFC1 gene encoding a succinate-fumarate transporter was introduced. These results demonstrate that the model shows great predictive capability for metabolic engineering. Moreover, FA production in S. cerevisiae can be efficiently developed with the aid of in silico metabolic engineering.

  16. Engineered Nanoscale Materials and Derivative Products: Regulatory Challenges

    National Research Council Canada - National Science Library

    Schierow, Linda-Jo

    2008-01-01

    .... government has invested billions of dollars to ensure that American industry remains a global leader in the field, because the products of nanotechnology are seen to have great economic potential...

  17. Capturing, Sharing, and Discovering Product Data at a Semantic Level--Moving Forward to the Semantic Web for Advancing the Engineering Product Design Process

    Science.gov (United States)

    Zhu, Lijuan

    2011-01-01

    Along with the greater productivity that CAD automation provides nowadays, the product data of engineering applications needs to be shared and managed efficiently to gain a competitive edge for the engineering product design. However, exchanging and sharing the heterogeneous product data is still challenging. This dissertation first presents a…

  18. Natural products: the new engine for African trade growth

    OpenAIRE

    Bennett, Ben

    2006-01-01

    This report was to further develop the trade component of the Natural Resources Enterprise Programme (NATPRO). The field work was undertaken in Malawi, Zimbabwe, Namibia, the Republic of South Africa and the United Kingdom between 9th January and 25th February 2006. The work concentrated on ten countries in Southern Africa with potential to export significant quantities of natural products. These products are defined by the project as follows: being plant derived, occurring naturally, wild ha...

  19. Metabolic engineering of Escherichia coli for the production of riboflavin

    OpenAIRE

    Lin, Zhenquan; Xu, Zhibo; Li, Yifan; Wang, Zhiwen; Chen, Tao; Zhao, Xueming

    2014-01-01

    Background Riboflavin (vitamin B2), the precursor of the flavin cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is used commercially as an animal feed supplement and food colorant. E. coli is a robust host for various genetic manipulations and has been employed for efficient production of biofuels, polymers, amino acids, and bulk chemicals. Thus, the aim of this study was to understand the metabolic capacity of E. coli for the riboflavin production by modification...

  20. Center for By-Products Utilization (CBU) | College of Engineering & Applied

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering