WorldWideScience

Sample records for product size distribution

  1. Production, depreciation and the size distribution of firms

    Science.gov (United States)

    Ma, Qi; Chen, Yongwang; Tong, Hui; Di, Zengru

    2008-05-01

    Many empirical researches indicate that firm size distributions in different industries or countries exhibit some similar characters. Among them the fact that many firm size distributions obey power-law especially for the upper end has been mostly discussed. Here we present an agent-based model to describe the evolution of manufacturing firms. Some basic economic behaviors are taken into account, which are production with decreasing marginal returns, preferential allocation of investments, and stochastic depreciation. The model gives a steady size distribution of firms which obey power-law. The effect of parameters on the power exponent is analyzed. The theoretical results are given based on both the Fokker-Planck equation and the Kesten process. They are well consistent with the numerical results.

  2. Mars: New Determination of Impact Crater Production Function Size Distribution

    Science.gov (United States)

    Hartmann, William K.

    2006-12-01

    Several authors have questioned our knowledge of Martian impact crater production function size-frequency distribution (PFSFD), especially at small diameters D. Plescia (2005) questioned whether any area of Mars shows size distributions used for estimating crater retention ages on Mars. McEwen et al. (2005) and McEwen and Bierhaus (2006) suggested existing PFSFD’s are hopelessly confused by the presence of secondaries, and that my isochrons give primary crater densities off by factors of several thousand at small D. In 2005, I addressed some of these concerns, noting my curves do not estimate primary crater densities per se, but show total numbers of primaries + semi-randomly “distant secondaries” (negating many McEwen et al. critiques). In 2006 I have conducted new crater counts on a PFSFD test area suggested by Ken Tanaka. This area shows young lava flows of similar crater density, west of Olympus Mons (around 30 deg N, 100 deg W). Multiple crater counts were made on several adjacent Odyssey THEMIS images and MGS MOC images, giving the SFD over a range of 11mMcEwen, A.S., Bierhaus, E.B., 2006, Ann. Rev. Earth. Planet. Sci. 34, 535-567. McEwen, A.S., 2005, Icarus 176, 351-381. Plescia, J.B. 2005, LPSC 36, 2171.

  3. Product differentiation and firm size distribution: an application to carbonated soft drinks

    OpenAIRE

    Whelan, Ciara; Patrick P. Walsh

    2002-01-01

    Using brand level retail data, the firm size distribution in Carbonated Soft Drinks is shown to be an outcome of the degree to which firms have placed brands effectively (store coverage) across vertical (flavour, packaging, diet attributes) segments of the market. Regularity in the firm size distribution is not disturbed by the nature of short-run brand competition (turbulence in brand market shares) within segments. Remarkably, product differentiation resulting from firms acquiring various p...

  4. Measurement of concentration and size distribution of radon decay products in homes using air cleaners

    International Nuclear Information System (INIS)

    By removing particles, air cleaners can also eliminate radon decay products. However, by removing the particles, the open-quotes unattachedclose quotes fraction of the radon progeny is increased leading to a higher dose per unit exposure. Thus, both the concentration and size distributions of the radon decay products are needed to evaluate air cleaners. Three types of room air cleaners, NO-RAD Radon Removal System, Electronic Air Cleaner and PUREFLOW Air Treatment System were tested in a single family home in Arnprior, Ontario (Canada). Semi-continuous measurements of radon gas concentration and radon decay product activity weighted size distribution were performed in the kitchen/dining room under real living conditions. The effects of air cleaners on both the concentration and size distribution of the radon decay products were measured, and their impact on the dose of radiation given to the lung tissue were examined

  5. Firm size and productivity. Evidence from the electricity distribution industry in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Tovar, Beatriz [Departmento de Analisis Economico Aplicado y EIT, Universidad de Las Palmas de Gran Canaria (Spain); Javier Ramos-Real, Francisco [Departamento de Analisis Economico, Facultad de Ciencias Economicas y Empresariales, Campus de Guajara, Universidad de La Laguna, La Laguna, S/C de Tenerife, Espana (Spain); De Almeida, Edmar Fagundes [IE-UFRJ (Instituto de Economia-Universidade Federal do Rio de Janeiro) (Brazil)

    2011-02-15

    In this paper we apply Stochastic Frontier Analysis through a distance function to investigate the impact of firm size on productivity development in electricity distribution. We use a sample of seventeen Brazilian firms from 1998 to 2005 and decompose productivity into technical efficiency, scale efficiency and technical change. Moreover, a further step is to decompose the technical change measurement into several components. The results indicate that firm size is important for industry's productivity, and therefore a key aspect to consider when making decisions that affect the market structure in the electricity distribution industry. (author)

  6. Firm size and productivity. Evidence from the electricity distribution industry in Brazil

    International Nuclear Information System (INIS)

    In this paper we apply Stochastic Frontier Analysis through a distance function to investigate the impact of firm size on productivity development in electricity distribution. We use a sample of seventeen Brazilian firms from 1998 to 2005 and decompose productivity into technical efficiency, scale efficiency and technical change. Moreover, a further step is to decompose the technical change measurement into several components. The results indicate that firm size is important for industry's productivity, and therefore a key aspect to consider when making decisions that affect the market structure in the electricity distribution industry. (author)

  7. Firm size and productivity. Evidence from the electricity distribution industry in Brazil

    International Nuclear Information System (INIS)

    In this paper we apply Stochastic Frontier Analysis through a distance function to investigate the impact of firm size on productivity development in electricity distribution. We use a sample of seventeen Brazilian firms from 1998 to 2005 and decompose productivity into technical efficiency, scale efficiency and technical change. Moreover, a further step is to decompose the technical change measurement into several components. The results indicate that firm size is important for industry's productivity, and therefore a key aspect to consider when making decisions that affect the market structure in the electricity distribution industry. - Research Highlights: →We apply Stochastic Frontier Analysis through a distance function to investigate the impact of firm's size on productivity development in electricity distribution using a sample of eighteen Brazilian firms from 1998 to 2005. →Productivity is decomposed into technical efficiency, scale-efficiency and technical change. →Firm size is important for the industry's productivity, and therefore a key aspect to consider when making decisions that affect the market structure in the electricity distribution industry.

  8. The detection and measurement of the electrical mobility size distributions associated with radon decay products

    International Nuclear Information System (INIS)

    The potential risk of lung cancer has evoked interest in the properties of radon decay products. There are two forms of this progeny: either attached to ambient aerosols, or still in the status of ions/molecules/small clusters. This ''unattached'' activity would give a higher dose per unit of airborne activity than the ''attached'' progeny that are rather poorly deposited. In this thesis, a system for determining unattached radon decay products electrical mobility size distribution by measuring their electrical mobilities was developed, based on the fact that about 88% of 218Po atoms have unit charge at the end of their recoil after decay from 222Rn, while the remainder are neutral. Essential part of the setup is the radon-aerosol chamber with the Circular Electrical Mobility Spectrometer (CEMS) inside. CEMS is used for sampling and classifying the charged radioactive clusters produced in the chamber. An alpha- sensitive plastic, CR-39 disk, is placed in CEMS as an inlaid disk electrode and the alpha particle detector. CEMS showed good performance in fine inactive particles' classification. If it also works well for radon decay products, it can offer a convenient size distribution measurement for radioactive ultrafine particles. However, the experiments did not obtain an acceptable resolution. Suggestions are made for solving this problem

  9. Optimization of Comminution Circuit Throughput and Product Size Distribution by Simulation and Control

    Energy Technology Data Exchange (ETDEWEB)

    S.K. Kawatra; T.C. Eisele; T. Weldum; D. Larsen; R. Mariani; J. Pletka

    2005-07-01

    The goal of this project was to improve energy efficiency of industrial crushing and grinding operations (comminution). Mathematical models of the comminution process were used to study methods for optimizing the product size distribution, so that the amount of excessively fine material produced could be minimized. The goal was to save energy by reducing the amount of material that was ground below the target size, while simultaneously reducing the quantity of materials wasted as ''slimes'' that were too fine to be useful. Extensive plant sampling and mathematical modeling of the grinding circuits was carried out to determine how to correct this problem. The approaches taken included (1) Modeling of the circuit to determine process bottlenecks that restrict flowrates in one area while forcing other parts of the circuit to overgrind the material; (2) Modeling of hydrocyclones to determine the mechanisms responsible for retaining fine, high-density particles in the circuit until they are overground, and improving existing models to accurately account for this behavior; and (3) Evaluation of the potential of advanced technologies to improve comminution efficiency and produce sharper product size distributions with less overgrinding. The mathematical models were used to simulate novel circuits for minimizing overgrinding and increasing throughput, and it is estimated that a single plant grinding 15 million tons of ore per year saves up to 82.5 million kWhr/year, or 8.6 x 10{sup 11} BTU/year. Implementation of this technology in the midwestern iron ore industry, which grinds an estimated 150 million tons of ore annually to produce over 50 million tons of iron ore concentrate, would save an estimated 1 x 10{sup 13} BTU/year.

  10. Assisted spray pyrolysis production and characterisation of ZnO nanoparticles with narrow size distribution

    International Nuclear Information System (INIS)

    Nano-sized ZnO particles with a narrow size distribution and high crystallinity were prepared from aqueous solutions with high concentrations of Zn2+ containing salts and citric acid in a conventional spray pyrolysis setup. Structure, morphology and size of the produced material were compared to ZnO material produced by simple spray pyrolysis of zinc nitrates in the same experimental setup. Using transmission electron microscopy and electron tomography it has been shown that citric acid-assisted spray pyrolysed material is made up of micron sized secondary particles comprising a shell of lightly agglomerated, monocrystalline primary ZnO nanoparticles with sizes in the 20-30 nm range, separable by a simple ultrasonic treatment step.

  11. Intercomparison exercise of measurement techniques for radon, radon decay products and their particles size distributions at NIRS

    International Nuclear Information System (INIS)

    An intercomparison exercise of radon, radon decay products and particle size distribution was carried out using the radon/aerosol chamber at National Institute of Radiological Sciences, 2002. Nine institutions participated in this exercise. Radon concentrations were first compared using a domestic ionization chamber, which was regarded as the primary standard equipment in Japan. Subsequently, several types of passive radon detectors were placed in the radon/aerosol chamber and their readings were compared with each other. Radon decay products concentrations were also intercompared, though the number of participants was small. After injection of Carnauba wax aerosols with the evaporation-condensation method, the particle size distribution of radon progeny was compared with three different sampling techniques: graded screen array, diffusion battery and cascade impactor. The present paper describes an overview of the experiment and the present status of correspondence on radon devices. (author)

  12. Activity size distributions for long-lived radon decay products in aerosols collected in Barcelona (Spain)

    International Nuclear Information System (INIS)

    The activity median aerodynamic diameters (AMADs) of long-lived radon decay product (210Pb, 210Po) in aerosols collected in the Barcelona area (Northeast Spain) during the period from April 2006 to February 2008 are presented. The 210Po mean AMAD was 420 nm, while the 210Pb mean AMAD was 500 nm. The temporal evolution of 210Pb and 210Po AMADs shows maxima in autumn and winter and minima in spring and summer. 210Pb AMAD are being used to estimate the mean-residence time of atmospheric aerosols.

  13. Kinetic narrowing of size distribution

    Science.gov (United States)

    Dubrovskii, V. G.

    2016-05-01

    We present a model that reveals an interesting possibility for narrowing the size distribution of nanostructures when the deterministic growth rate changes its sign from positive to negative at a certain stationary size. Such a behavior occurs in self-catalyzed one-dimensional III-V nanowires and more generally whenever a negative "adsorption-desorption" term in the growth rate is compensated by a positive "diffusion flux." By asymptotically solving the Fokker-Planck equation, we derive an explicit representation for the size distribution that describes either Poissonian broadening or self-regulated narrowing depending on the parameters. We show how the fluctuation-induced spreading of the size distribution can be completely suppressed in systems with size self-stabilization. These results can be used for obtaining size-uniform ensembles of different nanostructures.

  14. Distribution characteristics of size-fractionated chlorophyll a,primary production and new production in the Laizhou Bay,July 1997

    Institute of Scientific and Technical Information of China (English)

    蔡煜明; 宁修仁; 刘子琳; 刘诚刚

    2002-01-01

    The distributions of chlorophyll a concentration, primary production and new production were observed in the Laizhou Bay of the Bohai Sea in both spring and neap tides during July 1997. The results showed that there were marked features of spatial zonation in the surveyed area, due to the differences between the geographic environment and the hydrological conditions. Chlorophyll a, primary production and new production were all higher in spring tides than that in neap tides in the Laizhou Bay.The highest values of these parameters were encountered in the central regions of the bay. At most stations, chlorophyll a concentrations at the bottom were higher than that at the surface. The results of size-fractionated chlorophyll a and primary production showed that contributions of nano-combining picoplankton (< 20 μm) to total chlorophyll a and primary production were dominant in phytoplankton community biomass and production of the Laizhou Bay. The environmental factors, primary production and new production in the Laizhou Bay are compared with other sea areas.

  15. Experimental determination of size distributions: analyzing proper sample sizes

    Science.gov (United States)

    Buffo, A.; Alopaeus, V.

    2016-04-01

    The measurement of various particle size distributions is a crucial aspect for many applications in the process industry. Size distribution is often related to the final product quality, as in crystallization or polymerization. In other cases it is related to the correct evaluation of heat and mass transfer, as well as reaction rates, depending on the interfacial area between the different phases or to the assessment of yield stresses of polycrystalline metals/alloys samples. The experimental determination of such distributions often involves laborious sampling procedures and the statistical significance of the outcome is rarely investigated. In this work, we propose a novel rigorous tool, based on inferential statistics, to determine the number of samples needed to obtain reliable measurements of size distribution, according to specific requirements defined a priori. Such methodology can be adopted regardless of the measurement technique used.

  16. Urban aerosol number size distributions

    Directory of Open Access Journals (Sweden)

    T. Hussein

    2004-01-01

    Full Text Available Aerosol number size distributions have been measured since 5 May 1997 in Helsinki, Finland. The presented aerosol data represents size distributions within the particle diameter size range 8-400nm during the period from May 1997 to March 2003. The daily, monthly and annual patterns of the aerosol particle number concentrations were investigated. The temporal variation of the particle number concentration showed close correlations with traffic activities. The highest total number concentrations were observed during workdays; especially on Fridays, and the lowest concentrations occurred during weekends; especially Sundays. Seasonally, the highest total number concentrations were observed during winter and spring and lower concentrations were observed during June and July. More than 80% of the number size distributions had three modes: nucleation mode (30nm, Aitken mode (20-100nm and accumulation mode (}$'>90nm. Less than 20% of the number size distributions had either two modes or consisted of more than three modes. Two different measurement sites were used; in the first (Siltavuori, 5.5.1997-5.3.2001, the arithmetic means of the particle number concentrations were 7000cm, 6500cm, and 1000cm respectively for nucleation, Aitken, and accumulation modes. In the second site (Kumpula, 6.3.2001-28.2.2003 they were 5500cm, 4000cm, and 1000cm. The total number concentration in nucleation and Aitken modes were usually significantly higher during workdays than during weekends. The temporal variations in the accumulation mode were less pronounced. The lower concentrations at Kumpula were mainly due to building construction and also the slight overall decreasing trend during these years. During the site changing a period of simultaneous measurements over two weeks were performed showing nice correlation at both sites.

  17. In situ measurement of the particle size distribution of the fragmentation product of laser-shock-melted aluminum using in-line picosecond holography

    Directory of Open Access Journals (Sweden)

    Ying-Hua Li

    2016-02-01

    Full Text Available The dynamic fragmentation of shock-melted metal is a topic of increasing interest in shock physics. However, high-quality experimental studies of the phenomenon are limited, and data that are essential for developing predictive models of the phenomenon, such as the mass and particle sizes distributions, are quite sparse. In-line holography is an effective non-contact technique for measuring particle size distribution, but critical technical requirements, in particular, particle density limits, complicate its application to the subject phenomenon. These challenges have been reasonably overcome in the present study, allowing for successful in situ measurements of the size distribution of the fragmentation product from laser-shock-melted aluminum. In this letter, we report on our experiments and present the measured data.

  18. Diurnal and seasonal variations of concentration and size distribution of nano aerosols (10-1100 nm) enclosing radon decay products in the Postojna Cave, Slovenia

    International Nuclear Information System (INIS)

    At the lowest point along the tourist route in the Postojna Cave, the activity concentration of radon (222Rn) short-lived decay products and number concentration and size distribution of background aerosol particles in the size range of 10-1100 nm were measured. In the warm yearly season, aerosol concentration was low (52 cm-3) with 21 % particles smaller than 50 nm, while in the cold season, it was higher (1238 cm-3) with 8 % of -3, and fractions of unattached radon decay products were 0.62 and 0.13, respectively. (authors)

  19. Urban aerosol number size distributions

    Directory of Open Access Journals (Sweden)

    T. Hussein

    2003-10-01

    Full Text Available Aerosol number size distributions were measured continuously in Helsinki, Finland from 5 May 1997 to 28 February 2003. The daily, monthly and annual patterns were investigated. The temporal variation of the particle number concentration was seen to follow the traffic density. The highest total particle number concentrations were usually observed during workdays; especially on Fridays, and the lower concentrations occurred during weekends; especially Sundays. Seasonally, the highest total number concentrations were usually observed during winter and spring and the lowest during June and July. More than 80\\% of the particle number size distributions were tri-modal: nucleation mode (Dp < 30 nm, Aitken mode (20–100 nm and accumulation mode (Dp > 90 nm. Less than 20% of the particle number size distributions have either two modes or consisted of more than three modes. Two different measurement sites are used; in the first place (Siltavuori, 5 May 1997–5 March 2001, the overall means of the integrated particle number concentrations were 7100 cm−3, 6320 cm−3, and 960 cm−3, respectively, for nucleation, Aitken, and accumulation modes. In the second site (Kumpula, 6 March 2001–28 February 2003 they were 5670 cm−3, 4050 cm−3, and 900 cm−3. The total number concentration in nucleation and Aitken modes were usually significantly higher during weekdays than during weekends. The variations in accumulation mode were less pronounced. The smaller concentrations in Kumpula were mainly due to building construction and also slight overall decreasing trend during these years. During the site changing a period of simultaneous measurements over two weeks were performed showing nice correlation in both sites.

  20. Particle size Distribution of Kaolinite and Halloysite in Weathering Products of Granite and Its Implications for Pedogenesis

    Institute of Scientific and Technical Information of China (English)

    WANGYONGJIN等; YANGHAO; 等

    1997-01-01

    The kaolins collected from a profile of weathered granite at Yichum County,Jiangxi Province have been subjected to particle particle size fractionation by the conventional sedimentation method and examined by XRD, SEM and TEM ,All of them exhibit a mixture phase of poorly crystallized kaolinites and halloysites(0.7nm) occurring as the mian lay minerals.Electron micrographs reveal that plate kaolinites are the principal constitution in the coarse fraciton,and more tubula and curled halloysite(0.7nm) in the fine fraction ,Both of them show normal probability curves in particle size distributions, The ratios of kaolinite and halloysite(0.7nm)in different size fractions are eamined by X-ray diffraction with a series of X-ray patterns characterized by three main peaks at d(001),d(002) and d(020), varyin in intensity,Therefor,an index Qhm,expressed as (Id(001)+Id(002))/(2×Id(020)),is designed to indicate realtive ratios of the two clay minerals in a number of mixture phases ,Because kaolinite and halloysite (0.7nm) commonly occurred,respectively,in low and medium leaching microenvironment ,the index Qhm can be used to indicate weathering and pedogenic conditions of weathering crust.

  1. EQUATIONS FOR GRAIN SIZE DISTRIBUTION CURVE

    Institute of Scientific and Technical Information of China (English)

    Prabhata K.SWAMEE; Nimisha SWAMEE

    2004-01-01

    The grain size distribution of particulate material is of particular interest in the field of sediment transport. The size distribution is described by various equations, however no equation is flexible enough to satisfy the grain size distribution data faithfully. Presented herein are the equations for unimodal and multimodal grain size distribution curves. A graphical method has been given to evaluate the parameters involved in these equations. The size distribution equation can be used to estimate many properties of sediment sample like number of sediment particles, surface area of the particles and hydraulic conductivity. It is hoped that the equations will find many applications in studying sedimentation processes.

  2. Comparative physical-chemical characterization of encapsulated lipid-based isotretinoin products assessed by particle size distribution and thermal behavior analyses

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Carla Aiolfi, E-mail: carlaaiolfi@usp.br [Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP 05508-000 (Brazil); Menaa, Farid [Department of Dermatology, School of Medicine Wuerzburg, Wuerzburg 97080 (Germany); Fluorotronics, Inc., 1425 Russ Bvld, San Diego Technology Incubator, San Diego, CA 92101 (United States); Menaa, Bouzid, E-mail: bouzid.menaa@gmail.com [Fluorotronics, Inc., 1425 Russ Bvld, San Diego Technology Incubator, San Diego, CA 92101 (United States); Quenca-Guillen, Joyce S. [Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP 05508-000 (Brazil); Matos, Jivaldo do Rosario [Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000 (Brazil); Mercuri, Lucildes Pita [Department of Exact and Earth Sciences, Federal University of Sao Paulo, Diadema, SP 09972-270 (Brazil); Braz, Andre Borges [Department of Engineering of Mines and Oil, Polytechnical School, University of Sao Paulo, SP 05508-900 (Brazil); Rossetti, Fabia Cristina [Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14015-120 (Brazil); Kedor-Hackmann, Erika Rosa Maria; Santoro, Maria Ines Rocha Miritello [Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP 05508-000 (Brazil)

    2010-06-10

    Isotretinoin is the drug of choice for the management of severe recalcitrant nodular acne. Nevertheless, some of its physical-chemical properties are still poorly known. Hence, the aim of our study consisted to comparatively evaluate the particle size distribution (PSD) and characterize the thermal behavior of the three encapsulated isotretinoin products in oil suspension (one reference and two generics) commercialized in Brazil. Here, we show that the PSD, estimated by laser diffraction and by polarized light microscopy, differed between the generics and the reference product. However, the thermal behavior of the three products, determined by thermogravimetry (TGA), differential thermal (DTA) analyses and differential scanning calorimetry (DSC), displayed no significant changes and were more thermostable than the isotretinoin standard used as internal control. Thus, our study suggests that PSD analyses in isotretinoin lipid-based formulations should be routinely performed in order to improve their quality and bioavailability.

  3. On the Size Distribution of Sand

    DEFF Research Database (Denmark)

    Sørensen, Michael

    2016-01-01

    A model is presented of the development of the size distribution of sand while it is transported from a source to a deposit. The model provides a possible explanation of the log-hyperbolic shape that is frequently found in unimodal grain size distributions in natural sand deposits, as pointed out...

  4. Aerosol Size Distribution in the marine regions

    Science.gov (United States)

    Markuszewski, Piotr; Petelski, Tomasz; Zielinski, Tymon; Pakszys, Paulina; Strzalkowska, Agata; Makuch, Przemyslaw; Kowalczyk, Jakub

    2014-05-01

    We would like to present the data obtained during the regular research cruises of the S/Y Oceania over a period of time between 2009 - 2012. The Baltic Sea is a very interesting polygon for aerosol measurements, however, also difficult due to the fact that mostly cases of a mixture of continental and marine aerosols are observed. It is possible to measure clear marine aerosol, but also advections of dust from southern Europe or even Africa. This variability of data allows to compare different conditions. The data is also compared with our measurements from the Arctic Seas, which have been made during the ARctic EXperiment (AREX). The Arctic Seas are very suitable for marine aerosol investigations since continental advections of aerosols are far less frequent than in other European sea regions. The aerosol size distribution was measured using the TSI Laser Aerosol Spectrometer model 3340 (99 channels, measurement range 0.09 μm to 7 μm), condensation particle counter (range 0.01 μm to 3 μm) and laser particle counter PMS CSASP-100-HV-SP (range 0.5 μm to 47 μm in 45 channels). Studies of marine aerosol production and transport are important for many Earth sciences such as cloud physics, atmospheric optics, environmental pollution studies and interaction between ocean and atmosphere. All equipment was placed on one of the masts of S/Y Oceania. Measurements using the laser aerosol spectrometer and condensation particle counter were made on one level (8 meters above sea level). Measurements with the laser particle counter were performed at five different levels above the sea level (8, 11, 14, 17 and 20 m). Based on aerosol size distribution the parameterizations with a Log-Normal and a Power-Law distributions were made. The aerosol source functions, characteristic for the region were also determined. Additionally, poor precision of the sea spray emission determination was confirmed while using only the aerosol concentration data. The emission of sea spray depends

  5. Aggregate size distributions in sweep flocculation

    Directory of Open Access Journals (Sweden)

    Chairoj Rattanakawin

    2005-09-01

    Full Text Available The evolution of aggregate size distributions resulting from sweep flocculation has been investigated using laser light scattering technique. By measuring the (volume distributions of floc size, it is possible to distinguish clearly among floc formation, growth and breakage. Sweep flocculation of stable kaolin suspensions with ferric chloride under conditions of the rapid/slow mixing protocol produces uni-modal size distributions. The size distribution is shifted to larger floc size especially during the rapid mixing step. The variation of the distributions is also shown in the plot of cumulative percent finer against floc size. From this plot, the distributions maintain the same S-shape curves over the range of the mixing intensities/times studied. A parallel shift of the curves indicates that self-preserving size distribution occurred in this flocculation. It is suggested that some parameters from mathematical functions derived from the curves could be used to construct a model and predict the flocculating performance. These parameters will be useful for a water treatment process selection, design criteria, and process control strategies. Thus the use of these parameters should be employed in any further study.

  6. Particle size distribution instrument. Topical report 13

    Energy Technology Data Exchange (ETDEWEB)

    Okhuysen, W.; Gassaway, J.D.

    1995-04-01

    The development of an instrument to measure the concentration of particles in gas is described in this report. An in situ instrument was designed and constructed which sizes individual particles and counts the number of occurrences for several size classes. Although this instrument was designed to detect the size distribution of slag and seed particles generated at an experimental coal-fired magnetohydrodynamic power facility, it can be used as a nonintrusive diagnostic tool for other hostile industrial processes involving the formation and growth of particulates. Two of the techniques developed are extensions of the widely used crossed beam velocimeter, providing simultaneous measurement of the size distribution and velocity of articles.

  7. Domain Size Distribution in Segregating Binary Superfluids

    Science.gov (United States)

    Takeuchi, Hiromitsu

    2016-05-01

    Domain size distribution in phase separating binary Bose-Einstein condensates is studied theoretically by numerically solving the Gross-Pitaevskii equations at zero temperature. We show that the size distribution in the domain patterns arising from the dynamic instability obeys a power law in a scaling regime according to the dynamic scaling analysis based on the percolation theory. The scaling behavior is kept during the relaxation dynamics until the characteristic domain size becomes comparable to the linear size of the system, consistent with the dynamic scaling hypothesis of the phase-ordering kinetics. Our numerical experiments indicate the existence of a different scaling regime in the size distribution function, which can be caused by the so-called coreless vortices.

  8. Langevin granulometry of the particle size distribution

    Science.gov (United States)

    Kákay, Attila; Gutowski, M. W.; Takacs, L.; Franco, V.; Varga, L. K.

    2004-06-01

    The problem of deriving the particle size distribution directly from superparamagnetic magnetization curves is studied by three mathematical methods: (1) least-squares deviation with regularization procedure, (2) simulated annealing and (3) genetic algorithm. Software has been developed for the latest versions of all these methods and its performance compared for various models of underlying particle size distributions (Dirac dgr-like, lognormal- and Gaussian-shaped). For single peak distributions all three methods give reasonable and similar results, but for bimodal distributions the genetic algorithm is the only acceptable one. The genetic algorithm is able to recover with the same precision both the lognormal and Gaussian single and double (mixed) model distributions. The sensitivity of the genetic algorithm—the most promising method—to uncertainty of measurements was also tested; correct peak position and its half width were recovered for Gaussian distributions, when the analysed data were contaminated with noise of up to 5% of MS.

  9. ANWR progress report number FY83-7: Population size, productivity and distribution of muskoxen in the Arctic National Wildlife Refuge, Alaska Series

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Data on population size and productivity of muskoxen (Ovibos moschatus) Ln the Arctic National Wildlife Refuge were collected during surveys in April and October...

  10. Sequential Testing with Uniformly Distributed Size

    OpenAIRE

    Stanislav Anatolyev; Grigory Kosenok

    2011-01-01

    Sequential procedures of testing for structural stability do not provide enough guidance on the shape of boundaries that are used to decide on acceptance or rejection, requiring only that the overall size of the test is asymptotically controlled. We introduce and motivate a reasonable criterion for a shape of boundaries which requires that the test size be uniformly distributed over the testing period. Under this criterion, we numerically construct boundaries for most popular sequential tests...

  11. Aerosol and air pollution size distribution

    Science.gov (United States)

    Shani, Gad; Haccoun, A.; Kushelevsky, A.

    The size distribution of aerosols was measured in a moderately industrial city, in a semi-arid zone on the Negev desert border. The aerosols in the city of Beer Sheva are from two sources: the dust coming from the desert and urban pollution. The size measurements were done with a cascade impactor. The elemental content of the aerosols was investigated by neutron activation analysis and X-ray fluorescence. The main elements of the dust are: Ca, Si, Fe, Na and the trace elements are: Sc, Se, La, Sm, Hf and others. The main elements of the urban pollution are S, Br, Pb, Cl, Hg and others. It was found that the elements belonging to each group can easily be classified by the size distribution. The analytical consideration of the aerosol size distribution of each group are discussed and two corresponding analytical expressions are suggested. It is shown that aerosols originating in the dust have a hump shape distribution around ~ 4μm, and those originating in urban pollution have a distribution decreasing with increasing aerosol diameter. Many examples are given to prove the conclusions.

  12. Scale invariance of incident size distributions in response to sizes of their causes.

    Science.gov (United States)

    Englehardt, James D

    2002-04-01

    Incidents can be defined as low-probability, high-consequence events and lesser events of the same type. Lack of data on extremely large incidents makes it difficult to determine distributions of incident size that reflect such disasters, even though they represent the great majority of total losses. If the form of the incident size distribution can be determined, then predictive Bayesian methods can be used to assess incident risks from limited available information. Moreover, incident size distributions have generally been observed to have scale invariant, or power law, distributions over broad ranges. Scale invariance in the distributions of sizes of outcomes of complex dynamical systems has been explained based on mechanistic models of natural and built systems, such as models of self-organized criticality. In this article, scale invariance is shown to result also as the maximum Shannon entropy distribution of incident sizes arising as the product of arbitrary functions of cause sizes. Entropy is shown by simulation and derivation to be maximized as a result of dependence, diversity, abundance, and entropy of multiplicative cause sizes. The result represents an information-theoretic explanation of invariance, parallel to those of mechanistic models. For example, distributions of incident size resulting from 30 partially dependent causes are shown to be scale invariant over several orders of magnitude. Empirical validation of power law distributions of incident size is reviewed, and the Pareto (power law) distribution is validated against oil spill, hurricane, and insurance data. The applicability of the Pareto distribution, in particular, for assessment of total losses over a planning period is discussed. Results justify the use of an analytical, predictive Bayesian version of the Pareto distribution, derived previously, to assess incident risk from available data.

  13. Learning transformed product distributions

    OpenAIRE

    Daskalakis, Constantinos; Diakonikolas, Ilias; Servedio, Rocco A.

    2011-01-01

    We consider the problem of learning an unknown product distribution $X$ over $\\{0,1\\}^n$ using samples $f(X)$ where $f$ is a \\emph{known} transformation function. Each choice of a transformation function $f$ specifies a learning problem in this framework. Information-theoretic arguments show that for every transformation function $f$ the corresponding learning problem can be solved to accuracy $\\eps$, using $\\tilde{O}(n/\\eps^2)$ examples, by a generic algorithm whose running time may be expon...

  14. Size from Specular Highlights for Analyzing Droplet Size Distributions

    Science.gov (United States)

    Jalba, Andrei C.; Westenberg, Michel A.; Grooten, Mart H. M.

    In mechanical engineering, heat-transfer models by dropwise condensation are under development. The condensation process is captured by taking many pictures, which show the formation of droplets, of which the size distribution and area coverage are of interest for model improvement. The current analysis method relies on manual measurements, which is time consuming. In this paper, we propose an approach to automatically extract the positions and radii of the droplets from an image. Our method relies on specular highlights that are visible on the surfaces of the droplets. We show that these highlights can be reliably extracted, and that they provide sufficient information to infer the droplet size. The results obtained by our method compare favorably with those obtained by laborious and careful manual measurements. The processing time per image is reduced by two orders of magnitude.

  15. The size-distribution of Earth's lakes.

    Science.gov (United States)

    Cael, B B; Seekell, D A

    2016-01-01

    Globally, there are millions of small lakes, but a small number of large lakes. Most key ecosystem patterns and processes scale with lake size, thus this asymmetry between area and abundance is a fundamental constraint on broad-scale patterns in lake ecology. Nonetheless, descriptions of lake size-distributions are scarce and empirical distributions are rarely evaluated relative to theoretical predictions. Here we develop expectations for Earth's lake area-distribution based on percolation theory and evaluate these expectations with data from a global lake census. Lake surface areas ≥8.5 km(2) are power-law distributed with a tail exponent (τ = 1.97) and fractal dimension (d = 1.38), similar to theoretical expectations (τ = 2.05; d = 4/3). Lakes change and topographic behavior at sub-kilometer scales is not self-similar. Our results provide a robust characterization and theoretical explanation for the lake size-abundance relationship, and form a fundamental basis for understanding and predicting patterns in lake ecology at broad scales. PMID:27388607

  16. The size distribution of 'gold standard' nanoparticles.

    Science.gov (United States)

    Bienert, Ralf; Emmerling, Franziska; Thünemann, Andreas F

    2009-11-01

    The spherical gold nanoparticle reference materials RM 8011, RM 8012, and RM 8013, with a nominal radius of 5, 15, and 30 nm, respectively, have been available since 2008 from NIST. These materials are recommended as standards for nanoparticle size measurements and for the study of the biological effects of nanoparticles, e.g., in pre-clinical biomedical research. We report on determination of the size distributions of these gold nanoparticles using different small-angle X-ray scattering (SAXS) instruments. Measurements with a classical Kratky type SAXS instrument are compared with a synchrotron SAXS technique. Samples were investigated in situ, positioned in capillaries and in levitated droplets. The number-weighted size distributions were determined applying model scattering functions based on (a) Gaussian, (b) log-normal, and (c) Schulz distributions. The mean radii are 4.36 +/- 0.04 nm (RM 8011), 12.20 +/- 0.03 nm (RM 8012), and 25.74 +/- 0.27 nm (RM 8013). Low polydispersities, defined as relative width of the distributions, were detected with values of 0.067 +/- 0.006 (RM 8011), 0.103 +/- 0.003, (RM 8012), and 0.10 +/- 0.01 (RM 8013). The results are in agreement with integral values determined from classical evaluation procedures, such as the radius of gyration (Guinier) and particle volume (Kratky). No indications of particle aggregation and particle interactions--repulsive or attractive--were found. We recommend SAXS as a standard method for a fast and precise determination of size distributions of nanoparticles.

  17. Product Distributions for Distributed Optimization. Chapter 1

    Science.gov (United States)

    Bieniawski, Stefan R.; Wolpert, David H.

    2004-01-01

    With connections to bounded rational game theory, information theory and statistical mechanics, Product Distribution (PD) theory provides a new framework for performing distributed optimization. Furthermore, PD theory extends and formalizes Collective Intelligence, thus connecting distributed optimization to distributed Reinforcement Learning (FU). This paper provides an overview of PD theory and details an algorithm for performing optimization derived from it. The approach is demonstrated on two unconstrained optimization problems, one with discrete variables and one with continuous variables. To highlight the connections between PD theory and distributed FU, the results are compared with those obtained using distributed reinforcement learning inspired optimization approaches. The inter-relationship of the techniques is discussed.

  18. Crater size distributions on Ganymede and Callisto: fundamental issues

    Science.gov (United States)

    Wagner, Roland; Schmedemann, Nico; Werner, Stefanie; Ivanov, Boris; Stephan, Katrin; Jaumann, Ralf

    2015-04-01

    Crater size distributions on the two largest Jovian satellites Ganymede and Callisto and the origin of impactors are subject of intense and controversial debates. In this paper, we reinvestigate crater size distributions measured in surface units derived from a recently published global geologic map, based on Voyager and Galileo SSI images at a scale of 1 km/pxl (Collins G. C. et al. (2013), U. S. Geol. Surv., Sci. Inv. Map 3237). These units are used as a context to units mapped in more detail at higher resolution in Galileo SSI images. We focus on the following fundamental issues: (1) Similarity between shapes of crater distributions on the Galilean satellites and on inner solar system bodies; (2) production versus equilibrium distributions; (3) apex/antapex variations in crater distributions. First, our results show a strong similarity in shape between the crater distributions on the most densely cratered regions on Ganymede and Callisto with those in the lunar highlands. We conclude that the shape of the crater distributions on these two Jovian satellites implies the craters were preferentially formed from members of a collisionally evolved projectile family, derived either from Main Belt asteroids as candidates of impactors on the Jovian satellites, or from projectiles stemming from the outer solar system which have undergone collisional evolution, resulting in a size distribution similar to those of Main Belt asteroids. Second, the complex shape of the crater distributions on Ganymede and Callisto indicates they are mostly production distributions and can be used to infer the underlying shape of the projectile size distribution. Locally, equilibrium distributions occur, especially at smaller sub-kilometer diameters. Third, the most densely cratered regions on both satellites do not show apex-antapex variations in crater frequency, as inferred for bodies from heliocentric orbits (e.g., Zahnle K. et al. (2003), Icarus 163, 263-289). This indicates that these

  19. The distribution feature of size-fractionated chlorophyll a and primary productivity in Prydz Bay and its north sea area during the austral summer

    Institute of Scientific and Technical Information of China (English)

    刘子琳; 陈忠元

    2003-01-01

    The investigation of size-fractionated chlorophyll a and primary productivity were carried out in three longitudinal sections (63°-69°12′S, 70°30′E, 73°E and 75(30′E) at December 18 -26, 1998 and January 12 -18, 1999 in Prydz Bay and its north sea area, Antarctica. The results showed that surface chlorophyll a concentration were 0.16 - 3.99 μg dm -3. The high values of chlorophyll a concentration ( more than 3.5 μg dm -3 ) were in Prydz Bay and in the west Ladies Bank. The average chlorophyll a concentration at sub-surface layer was higher than that at surface layer; its concentration at the deeper layers of 50 m decreased with increasing depth and that at 200 m depth was only 0.01 -0.95 μg dm-3. The results of size-fractionated chlorophyll a showed that the contribution of the netplanktion to total chlorophyll a was 56% , those of the nanoplankton and the picoplankton were 24% and 20% respectively in the surveyed area. The potential primary productivity at the euphotic zone in the surveyed area was 0. 11 - 11.67 mgC m-3 h -1 and average value was 2.00 ±2.80 mgC m-3h-1. The in-situ productivity in the bay and the continental shelf was higher and that in the deep-sea area was lower. The assimilation number of ted primary productivity show that the contribution of the netplanktion to total productivity was 58% , those of the nanoplankton and the picoplankton were 26% and 16% respectively. The cell abundance of phytoplankton was 1. 6 + 103 - 164. 8 + 103 cell dm-3 in the surface water.

  20. Charge and Size Distributions of Electrospray Drops

    Science.gov (United States)

    de Juan L; de la Mora JF

    1997-02-15

    The distributions of charge q and diameter d of drops emitted from electrified liquid cones in the cone-jet mode are investigated with two aerosol instruments. A differential mobility analyzer (DMA, Vienna type) first samples the spray drops, selects those with electrical mobilities within a narrow band, and either measures the associated current or passes them to a second instrument. The drops may also be individually counted optically and sized by sampling them into an aerodynamic size spectrometer (API's Aerosizer). For a given cone-jet, the distribution of charge q for the main electrospray drops is some 2.5 times broader than their distribution of diameters d, with qmax/qmin approximately 4. But mobility-selected drops have relative standard deviations of only 5% for both d and q, showing that the support of the (q, d) distribution is a narrow band centered around a curve q(d). The approximate one-dimensionality of this support region is explained through the mechanism of jet breakup, which is a random process with only one degree of freedom: the wavelength of axial modulation of the jet. The observed near constancy of the charge over volume ratio (q approximately d3) shows that the charge is frozen in the liquid surface at the time scale of the breakup process. The charge over volume ratio of the primary drops varies between 98 and 55% of the ratio of spray current I over liquid flow rate Q, and decreases at increasing Q. I/Q is therefore an unreliable measure of the charge density of these drops.

  1. New-particle formation, growth and climate-relevant particle production in Egbert, Canada: analysis from 1 year of size-distribution observations

    Science.gov (United States)

    Pierce, J. R.; Westervelt, D. M.; Atwood, S. A.; Barnes, E. A.; Leaitch, W. R.

    2014-08-01

    Aerosol particle nucleation, or new-particle formation, is the dominant contributor to particle number in the atmosphere. However, these particles must grow through condensation of low-volatility vapors without coagulating with the larger, preexisting particles in order to reach climate-relevant sizes (diameters larger than 50-100 nm), where the particles may affect clouds and radiation. In this paper, we use 1 year of size-distribution measurements from Egbert, Ontario, Canada to calculate the frequency of regional-scale new-particle-formation events, new-particle-formation rates, growth rates and the fraction of new particles that survive to reach climate-relevant sizes. Regional-scale new-particle-formation events occur on 14-31% of the days (depending on the stringency of the classification criteria), with event frequency peaking in the spring and fall. New-particle-formation rates and growth rates are similar to those measured at other midlatitude continental sites. We calculate that roughly half of the climate-relevant particles (with diameters larger than 50-100 nm) at Egbert are formed through new-particle-formation events. With the addition of meteorological and SO2 measurements, we find that new-particle formation at Egbert often occurs under synoptic conditions associated with high surface pressure and large-scale subsidence that cause sunny conditions and clean-air flow from the north and west. However, new-particle formation also occurs when air flows from the polluted regions to the south and southwest of Egbert. The new-particle-formation rates tend to be faster during events under the polluted south/southwest flow conditions.

  2. Particle size distributions of several commonly used seeding aerosols

    Science.gov (United States)

    Crosswy, F. L.

    1985-01-01

    During the course of experimentation, no solid particle powder could be found which produced an aerosol with a narrow particle size distribution when fluidization was the only flow process used in producing the aerosol. The complication of adding particle size fractionation processes to the aerosol generation effort appears to be avoidable. In this regard, a simple sonic orifice is found to be effective in reducing the percentage of agglomerates in the several metal oxide powders tested. Marginally beneficial results are obtained for a 0.5/99.5 percent by weight mixture of the flow agent and metal oxide powder. However, agglomeration is observed to be enhanced when the flow agent percentage is increased to 5 percent. Liquid atomization using the Collison nebulizer as well as a version of the Laskin nozzle resulted in polydispersed aerosols with particle size distributions heavily weighted by the small particle end of the size spectrum. The aerosol particle size distributions produced by the vaporization/condensation seeder are closer to the ideal monodispersed aerosol than any of the other aerosols tested. In addition, this seeding approach affords a measure of control over particle size and particle production rate.

  3. Fisher Information in Flow Size Distribution

    CERN Document Server

    Tune, Paul

    2011-01-01

    The flow size distribution is a useful metric for traffic modeling and management. Its estimation based on sampled data, however, is problematic. Previous work has shown that flow sampling (FS) offers enormous statistical benefits over packet sampling but high resource requirements precludes its use in routers. We present Dual Sampling (DS), a two-parameter family, which, to a large extent, provide FS-like statistical performance by approaching FS continuously, with just packet-sampling-like computational cost. Our work utilizes a Fisher information based approach recently used to evaluate a number of sampling schemes, excluding FS, for TCP flows. We revise and extend the approach to make rigorous and fair comparisons between FS, DS and others. We show how DS significantly outperforms other packet based methods, including Sample and Hold, the closest packet sampling-based competitor to FS. We describe a packet sampling-based implementation of DS and analyze its key computational costs to show that router impl...

  4. Statistical inference and crystallite size distributions

    International Nuclear Information System (INIS)

    An information theory approach is devised in order to obtain crystallite size distributions from X-ray line broadening. The method is shown to be superior to those based on Fourier expansions, as illustrated by numerical examples and a realistic situation. The powder model of Warren and Averbach is considered, in which the sample is thought of as a 'column-like' structure of unit cells perpendicular to the diffraction plane. Errors in excess of 100% arise as a result of truncating the diffraction peak. It is shown that, with the present approach, the corresponding figure is reduced to 5%, which confirms the power of information theory, and makes this method especially convenient in those cases in which there are large overlaps between the tails of two diffraction peaks. (orig.)

  5. Statistical inference and crystallite size distributions

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, D.M.A.; Alvarez, A.G.; Rebollo Neira, L.E.; Plastino, A.; Bonetto, R.D.

    1986-01-01

    An information theory approach is devised in order to obtain crystallite size distributions from X-ray line broadening. The method is shown to be superior to those based on Fourier expansions, as illustrated by numerical examples and a realistic situation. The powder model of Warren and Averbach is considered, in which the sample is thought of as a 'column-like' structure of unit cells perpendicular to the diffraction plane. Errors in excess of 100% arise as a result of truncating the diffraction peak. It is shown that, with the present approach, the corresponding figure is reduced to 5%, which confirms the power of information theory, and makes this method especially convenient in those cases in which there are large overlaps between the tails of two diffraction peaks. (orig.).

  6. Refinement of size distributions for primary crystallizations

    International Nuclear Information System (INIS)

    The microstructure developed in primary crystallizations is studied under realistic conditions. The primary crystallization of an amorphous alloy is modeled by considering the thermodynamics of a metastable phase transition and the kinetics of nucleation and crystal growth under isothermal annealing. A realistic growth rate, including an interface controlled growth at the beginning of the growth of each single grain and diffusion controlled growth process with soft impingement afterwards is considered. The reduction in the nucleation rate due to the compositional change in the remaining amorphous matrix is also taken into account. The microstructures developed during the transformation are obtained by using the Populational KJMA method, from the above thermodynamic and kinetic factors. Experimental data of transformed fraction, grain density, average grain size, grain size distribution and other related parameters obtained from annealed metallic glasses are modeled. The authors will focus on the nanocrystallization of a FINEMET alloy. In particular, they will analyze the isothermal nanocrystalline precipitation of an α-Fe(Si) phase, with a DO3 defective in Si superstructure, in a FINEMET material of composition Fe73.5Si17.5Cu1Nb3B5

  7. Aggregate size distribution of the soil loss

    Science.gov (United States)

    Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka; Józsa, Sándor; Szalai, Zoltán; Centeri, Csaba

    2016-04-01

    In agricultural areas the soil erosion and soil loss estimation is vital information in long-term planning. During the initial period of the erosion a part of the soil particles and aggregates get transportable and nutrients and organic matter could be transported due to the effect of water or wind. This preliminary phase was studied with laboratory-scale rainfall simulator. Developed surface crust and aggregate size composition of the runoff was examined in six different slope-roughness-moisture content combination of a Cambisol and a Regosol. The ratio of micro- and macro aggregates in the runoff indicate the stability of the aggregates and determine the transport capacity of the runoff. Both soil samples were taken from field where the water erosion is a potential hazard. During the experiment the whole amount of runoff and sediment was collected through sieve series to a bucket to separate the micro- and macro aggregates. In case of both samples the micro aggregates dominate in the runoff and the runoff rates are similar. Although the runoff of the Regosol - with dominant >1000μm macro aggregate content - contained almost nothing but ratio 250-1000μm sized macro aggregates. This difference occurred because the samples are resistant against drop erosion differently. In case of both sample the selectivity of the erosion and substance matrix redistribution manifested in mineral crusts in the surface where the quartz deposited in place while the lighter organic matter transported with the sediment. The detachment of the aggregates and the redistribution of the particles highly effect on the aggregate composition of the runoff which is connected with the quality of the soil loss. So while the estimation of soil loss quantity is more or less is easy, measuring aggregate size distribution which is led to nutrient and organic matter redistribution is one of a key questions to improve erosion estimation. G. Jakab was supported by the János Bolyai fellowship of the

  8. Economies of Size in Production Agriculture.

    Science.gov (United States)

    Duffy, Michael

    2009-07-01

    Economies of size refer to the ability of a farm to lower costs of production by increasing production. Agriculture production displays an L-shaped average cost curve where costs are lower initially but reach a point where no further gains are achieved. Spreading fixed costs, bulk purchases, and marketing power are cited as reasons for economies of size. Labor-reducing technologies may be the primary reason. Most studies do not include the external costs from prophylactic antibiotic use, impact on rural communities, and environmental damage associated with large-scale production. These can contribute to the economies of size.

  9. Parameterizing Size Distribution in Ice Clouds

    Energy Technology Data Exchange (ETDEWEB)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice

  10. Size distribution of wet crushed waste printed circuit boards

    Institute of Scientific and Technical Information of China (English)

    Tan Zhihai; He Yaqun; Xie Weining; Duan Chenlong; Zhou Enhui; Yu Zheng

    2011-01-01

    A wet impact crusher was used to breakdown waste printed circuit boards (PCB's) in a water medium.The relationship between the yield of crushed product and the operating parameters was established.The crushing mechanism was analyzed and the effects of hammerhead style,rotation speed,and inlet water volume on particle size distribution were investigated.The results show that the highest yield of -1 + 0.75 mm sized product was obtained with an inlet water volume flow rate of 5.97 m3/h and a smooth hammerhead turning at 1246.15 r/min.Cumulative undersize-product yield curves were fitted to a nonlinear function:the fitting correlation coefficient was greater than 0.998.These research results provide a theoretical basis for the highly effective wet crushing of PCB's.

  11. A New Method to Generate Micron-Sized AerosolS With Narrow Size Distribution

    Science.gov (United States)

    Gañón-Calvo, Alfonso; Barrero, Antonio

    1996-11-01

    Aerosols in the micron-size range with a remarkable monodisperse size distribution can be generated from the breaking up process of a capillary microjet. The size of the main droplets and satellites depend on the jet diameter, d_j, as well as the flow rate, Q, and liquid properties which eventually determine the jet`s breaking up. Therefore, the generation and control of capillary microjets is essential to produce sprays of small droplets with narrow size histograms. Electrosprays has been up to now one of the most successful techniques to produce monodisperse micron-size aerosols. As an alternative, we report here a new method, aerospray, to generate capillary micro jets which can compete against the electrospray for the production of aerosols of small droplets with very narrow size distribution. The method is outlined in the following. Liquid coming out from the exit of a capillary needle is sucked by means of a high speed gas stream (usually air) which flows throughout a hole separating two chambers at different pressures. Under certain parametric conditions of liquid properties, liquid and air flow rates, and geometric characteristics (needle and hole diameters, distance from the needle to the hole, etc), the liquid forms a steady capillary microjet of very small diameter which is speeded up an stabilized by the action of the viscous stresses at the gas liquid interface. The jet passes through the hole and goes out the outside chamber where eventually breaks up into microdroplets by varicose instabilities. Measurements from Laser-Doppler PDA Analizer of these aerosprays show that both the droplet size and its standard deviation are comparable to those obtained by electrospray techniques. On the other hand, using the aerospray, the standard deviation of the resulting droplet size distribution is of the order of those that can be obtained by ultrasonic atomization but the mean diameters can be more than one order of magnitude smaller.

  12. Raindrop size distribution: Fitting performance of common theoretical models

    Science.gov (United States)

    Adirosi, E.; Volpi, E.; Lombardo, F.; Baldini, L.

    2016-10-01

    Modelling raindrop size distribution (DSD) is a fundamental issue to connect remote sensing observations with reliable precipitation products for hydrological applications. To date, various standard probability distributions have been proposed to build DSD models. Relevant questions to ask indeed are how often and how good such models fit empirical data, given that the advances in both data availability and technology used to estimate DSDs have allowed many of the deficiencies of early analyses to be mitigated. Therefore, we present a comprehensive follow-up of a previous study on the comparison of statistical fitting of three common DSD models against 2D-Video Distrometer (2DVD) data, which are unique in that the size of individual drops is determined accurately. By maximum likelihood method, we fit models based on lognormal, gamma and Weibull distributions to more than 42.000 1-minute drop-by-drop data taken from the field campaigns of the NASA Ground Validation program of the Global Precipitation Measurement (GPM) mission. In order to check the adequacy between the models and the measured data, we investigate the goodness of fit of each distribution using the Kolmogorov-Smirnov test. Then, we apply a specific model selection technique to evaluate the relative quality of each model. Results show that the gamma distribution has the lowest KS rejection rate, while the Weibull distribution is the most frequently rejected. Ranking for each minute the statistical models that pass the KS test, it can be argued that the probability distributions whose tails are exponentially bounded, i.e. light-tailed distributions, seem to be adequate to model the natural variability of DSDs. However, in line with our previous study, we also found that frequency distributions of empirical DSDs could be heavy-tailed in a number of cases, which may result in severe uncertainty in estimating statistical moments and bulk variables.

  13. Particle size distributions in the Eastern Mediterranean troposphere

    Science.gov (United States)

    Kalivitis, N.; Birmili, W.; Stock, M.; Wehner, B.; Massling, A.; Wiedensohler, A.; Gerasopoulos, E.; Mihalopoulos, N.

    2008-11-01

    Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October, 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm 10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm-3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm-3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm-3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1 1.7 cm-3 s-1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm-3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.

  14. Determination of size distribution of elliptical microvessels from size distribution measurement of their section profiles.

    Science.gov (United States)

    Krasnoperov, R A; Gerasimov, A N

    2003-01-01

    In transmission electron microscopy, microvessels (MVs) are studied as profiles on ultrathin sections. To determine MV sizes from measurements made on MV profiles, an assumption must be made about MV shape, a circular cylinder being used to approximate the latter on limited lengths. However, this model is irrelevant in case MVs have some flatness. The elliptical cylinder model is preferable, although relationships between the cylinder profile (two-dimensional; 2D) and its true (three-dimensional; 3D) sizes are not yet known. We have obtained the 2D/3D functions that express the relationships between such profile sizes as the minor radius (Y), major radius (X), axial ratio (X/Y), area (S), and perimeter (P) on the one hand, and the corresponding MV sizes (Y(0), X(0), X(0)/Y(0), S(0), and P(0)) on the other. The 2D/3D functions make it possible to derive elliptical MV sizes from section profile size distributions, probability density functions (PDFs) for the latter being determined. We have applied the 2D/3D functions in studying axial ratios of thyroid hemocapillaries. A factual X/Y frequency histogram has been constructed and fitted by theoretical X/Y PDFs plotted for different sets of capillary sizes. The thyroid capillaries have been revealed to be clustered, 72.7% of them having X(0)/Y(0) approximately 1.6, 17.6%, X(0)/Y(0) approximately 1.0, and 9.7%, X(0)/Y(0) approximately 3.2. The proposed technique is instrumental in precise modeling of microcirculatory network geometry. PMID:12524478

  15. SEGREGATION IN A FLUIDIZED POWDER OF A CONTINUOUS SIZE DISTRIBUTION

    NARCIS (Netherlands)

    HOFFMANN, AC; ROMP, EJ

    1991-01-01

    The state of mixing in a gas fluidised bed of sand of a continuous size distribution has been investigated at various fluidisation velocities. The results are shown mainly as axial concentration profiles of the individual size fractions obtained by sieving. It was found that the local size distribut

  16. Evolution of Particle Size Distributions in Fragmentation Over Time

    Science.gov (United States)

    Charalambous, C. A.; Pike, W. T.

    2013-12-01

    We present a new model of fragmentation based on a probabilistic calculation of the repeated fracture of a particle population. The resulting continuous solution, which is in closed form, gives the evolution of fragmentation products from an initial block, through a scale-invariant power-law relationship to a final comminuted powder. Models for the fragmentation of particles have been developed separately in mainly two different disciplines: the continuous integro-differential equations of batch mineral grinding (Reid, 1965) and the fractal analysis of geophysics (Turcotte, 1986) based on a discrete model with a single probability of fracture. The first gives a time-dependent development of the particle-size distribution, but has resisted a closed-form solution, while the latter leads to the scale-invariant power laws, but with no time dependence. Bird (2009) recently introduced a bridge between these two approaches with a step-wise iterative calculation of the fragmentation products. The development of the particle-size distribution occurs with discrete steps: during each fragmentation event, the particles will repeatedly fracture probabilistically, cascading down the length scales to a final size distribution reached after all particles have failed to further fragment. We have identified this process as the equivalent to a sequence of trials for each particle with a fixed probability of fragmentation. Although the resulting distribution is discrete, it can be reformulated as a continuous distribution in maturity over time and particle size. In our model, Turcotte's power-law distribution emerges at a unique maturation index that defines a regime boundary. Up to this index, the fragmentation is in an erosional regime with the initial particle size setting the scaling. Fragmentation beyond this index is in a regime of comminution with rebreakage of the particles down to the size limit of fracture. The maturation index can increment continuously, for example under

  17. Unimodal tree size distributions possibly result from relatively strong conservatism in intermediate size classes.

    Directory of Open Access Journals (Sweden)

    Yue Bin

    Full Text Available Tree size distributions have long been of interest to ecologists and foresters because they reflect fundamental demographic processes. Previous studies have assumed that size distributions are often associated with population trends or with the degree of shade tolerance. We tested these associations for 31 tree species in a 20 ha plot in a Dinghushan south subtropical forest in China. These species varied widely in growth form and shade-tolerance. We used 2005 and 2010 census data from that plot. We found that 23 species had reversed J shaped size distributions, and eight species had unimodal size distributions in 2005. On average, modal species had lower recruitment rates than reversed J species, while showing no significant difference in mortality rates, per capita population growth rates or shade-tolerance. We compared the observed size distributions with the equilibrium distributions projected from observed size-dependent growth and mortality. We found that observed distributions generally had the same shape as predicted equilibrium distributions in both unimodal and reversed J species, but there were statistically significant, important quantitative differences between observed and projected equilibrium size distributions in most species, suggesting that these populations are not at equilibrium and that this forest is changing over time. Almost all modal species had U-shaped size-dependent mortality and/or growth functions, with turning points of both mortality and growth at intermediate size classes close to the peak in the size distribution. These results show that modal size distributions do not necessarily indicate either population decline or shade-intolerance. Instead, the modal species in our study were characterized by a life history strategy of relatively strong conservatism in an intermediate size class, leading to very low growth and mortality in that size class, and thus to a peak in the size distribution at intermediate sizes.

  18. The Distribution of Bubble Sizes During Reionization

    CERN Document Server

    Lin, Yin; Furlanetto, Steven R; Sutter, P M

    2015-01-01

    A key physical quantity during reionization is the size of HII regions. Previous studies found a characteristic bubble size which increases rapidly during reionization, with apparent agreement between simulations and analytic excursion set theory. Using four different methods, we critically examine this claim. In particular, we introduce the use of the watershed algorithm -- widely used for void finding in galaxy surveys -- which we show to be an unbiased method with the lowest dispersion and best performance on Monte-Carlo realizations of a known bubble size PDF. We find that a friends-of-friends algorithm declares most of the ionized volume to be occupied by a network of volume-filling regions connected by narrow tunnels. For methods tuned to detect those volume-filling regions, previous apparent agreement between simulations and theory is spurious, and due to a failure to correctly account for the window function of measurement schemes. The discrepancy is already obvious from visual inspection. Instead, HI...

  19. Fooling functions of halfspaces under product distributions

    CERN Document Server

    Gopalan, P; Wu, Y; Zuckerman, D

    2010-01-01

    We construct pseudorandom generators that fool functions of halfspaces (threshold functions) under a very broad class of product distributions. This class includes not only familiar cases such as the uniform distribution on the discrete cube, the uniform distribution on the solid cube, and the multivariate Gaussian distribution, but also includes any product of discrete distributions with probabilities bounded away from 0. Our first main result shows that a recent pseudorandom generator construction of Meka and Zuckerman [MZ09], when suitably modifed, can fool arbitrary functions of d halfspaces under product distributions where each coordinate has bounded fourth moment. To eps-fool any size-s, depth-d decision tree of halfspaces, our pseudorandom generator uses seed length O((d log(ds/eps)+log n) log(ds/eps)). For monotone functions of d halfspaces, the seed length can be improved to O((d log(d/eps)+log n) log(d/eps)). We get better bounds for larger eps; for example, to 1/polylog(n)-fool all monotone functi...

  20. The Size Distribution of Casein Micelles in Camel Milk

    OpenAIRE

    Farah, Z.; Ruegg, M. W.

    1989-01-01

    The size distribution of casein micelles in camel milk has been determined by electron microscopy. Individual and pooled samples were cryo-fixed by rapid freezing and freeze-fractured. Electron micrographs of the freeze-fracture replica revealed a relatively broad size distribution, with an average micelle dimeter around 280 nm in the volume distribution curve. The distribution was significantly broader than that of the particles of cow's or human milk and showed a greater number of large ...

  1. The economic production lot size model with several production rates

    DEFF Research Database (Denmark)

    Larsen, Christian

    should be chosen in the interval between the demand rate and the production rate, which minimize unit production costs, and should be used in an increasing order. Then, given the production rates, we derive closed form solutions for the optimal runtimes as well as the minimum average cost. Finally we......We study an extension of the economic production lot size model, where more than one production rate can be used during a cycle. The production rates and their corresponding runtimes are decision variables. We decompose the problem into two subproblems. First, we show that all production rates...

  2. The distribution of bubble sizes during reionization

    Science.gov (United States)

    Lin, Yin; Oh, S. Peng; Furlanetto, Steven R.; Sutter, P. M.

    2016-09-01

    A key physical quantity during reionization is the size of H II regions. Previous studies found a characteristic bubble size which increases rapidly during reionization, with apparent agreement between simulations and analytic excursion set theory. Using four different methods, we critically examine this claim. In particular, we introduce the use of the watershed algorithm - widely used for void finding in galaxy surveys - which we show to be an unbiased method with the lowest dispersion and best performance on Monte Carlo realizations of a known bubble size probability density function (PDF). We find that a friends-of-friends algorithm declares most of the ionized volume to be occupied by a network of volume-filling regions connected by narrow tunnels. For methods tuned to detect the volume-filling regions, previous apparent agreement between simulations and theory is spurious, and due to a failure to correctly account for the window function of measurement schemes. The discrepancy is already obvious from visual inspection. Instead, H II regions in simulations are significantly larger (by factors of 10-1000 in volume) than analytic predictions. The size PDF is narrower, and evolves more slowly with time, than predicted. It becomes more sharply peaked as reionization progresses. These effects are likely caused by bubble mergers, which are inadequately modelled by analytic theory. Our results have important consequences for high-redshift 21 cm observations, the mean free path of ionizing photons, and the visibility of Lyα emitters, and point to a fundamental failure in our understanding of the characteristic scales of the reionization process.

  3. Bimodal Size-distribution of Bainite Plates

    OpenAIRE

    Hase, K.; García Mateo, Carlos; Bhadeshia, H. K. D. H.

    2006-01-01

    There are two well-known phenomena associated with the bainite reaction, which have been exploited in the present work to enhance the mechanical behaviour of steel. Firstly, the bainite plate size decreases as the transformation temperature is reduced. Secondly, it is bad to have large regions of untransformed austenite in the microstructure; this is because they can transform, under the influence of external stress, into corresponding large regions of untempered, brittle martensite. By ad...

  4. Ultrasonically controlled particle size distribution of explosives: a safe method.

    Science.gov (United States)

    Patil, Mohan Narayan; Gore, G M; Pandit, Aniruddha B

    2008-03-01

    Size reduction of the high energy materials (HEM's) by conventional methods (mechanical means) is not safe as they are very sensitive to friction and impact. Modified crystallization techniques can be used for the same purpose. The solute is dissolved in the solvent and crystallized via cooling or is precipitated out using an antisolvent. The various crystallization parameters such as temperature, antisolvent addition rate and agitation are adjusted to get the required final crystal size and morphology. The solvent-antisolvent ratio, time of crystallization and yield of the product are the key factors for controlling antisolvent based precipitation process. The advantages of cavitationally induced nucleation can be coupled with the conventional crystallization process. This study includes the effect of the ultrasonically generated acoustic cavitation phenomenon on the solvent antisolvent based precipitation process. CL20, a high-energy explosive compound, is a polyazapolycyclic caged polynitramine. CL-20 has greater energy output than existing (in-use) energetic ingredients while having an acceptable level of insensitivity to shock and other external stimuli. The size control and size distribution manipulation of the high energy material (CL20) has been successfully carried out safely and quickly along with an increase in the final mass yield, compared to the conventional antisolvent based precipitation process. PMID:17532248

  5. The size distribution of inhabited planets

    Science.gov (United States)

    Simpson, Fergus

    2016-02-01

    Earth-like planets are expected to provide the greatest opportunity for the detection of life beyond the Solar system. However, our planet cannot be considered a fair sample, especially if intelligent life exists elsewhere. Just as a person's country of origin is a biased sample among countries, so too their planet of origin may be a biased sample among planets. The magnitude of this effect can be substantial: over 98 per cent of the world's population live in a country larger than the median. In the context of a simple model where the mean population density is invariant to planet size, we infer that a given inhabited planet (such as our nearest neighbour) has a radius r < 1.2r⊕ (95 per cent confidence bound). We show that this result is likely to hold not only for planets hosting advanced life, but also for those which harbour primitive life forms. Further, inferences may be drawn for any variable which influences population size. For example, since population density is widely observed to decline with increasing body mass, we conclude that most intelligent species are expected to exceed 300 kg.

  6. Estimation of Nanoparticle Size Distributions by Image Analysis

    DEFF Research Database (Denmark)

    Fisker, Rune; Carstensen, Jens Michael; Hansen, Mikkel Fougt;

    2000-01-01

    Knowledge of the nanoparticle size distribution is important for the interpretation of experimental results in many studies of nanoparticle properties. An automated method is needed for accurate and robust estimation of particle size distribution from nanoparticle images with thousands of particles...

  7. Evaluation of droplet size distributions using univariate and multivariate approaches

    DEFF Research Database (Denmark)

    Gauno, M.H.; Larsen, C.C.; Vilhelmsen, T.;

    2013-01-01

    Pharmaceutically relevant material characteristics are often analyzed based on univariate descriptors instead of utilizing the whole information available in the full distribution. One example is droplet size distribution, which is often described by the median droplet size and the width of the d...

  8. Crystal size distribution of struvite in preparation process by mother liquor from magnesium-hydroxide production%脱镁母液制备磷酸铵镁过程中的粒度分布

    Institute of Scientific and Technical Information of China (English)

    刘刚; 王学魁; 段瑛锋; 沙作良; 袁建军

    2011-01-01

    Struvite was prepared by semi-batch method with phosphoric acid and the mother liquor from magnesium-hydroxide production as raw materials. Influences of operating conditions, such as stirring speed, feed location, feed rate, reactant concentration,and adding amount of seed,on crystal size distribution ( CSD) of struvite were investigated. Results showed properly increasing stirring speed,decreasing feed rate, or decreasing reactant concentration all could make the average crystal size increase and the coefficient of variation ( C. V. ) decrease; feeding in the propeller area could create larger crystal size and better CSD than feeding in the surface;and seeding appropriately could cause average size of products increase significantly and the CSD more uniform.%以脱镁母液和磷酸为原料,采用半间歇操作方式制备磷酸铵镁,研究了操作条件(包括搅拌转速、加料位置、加料速度、反应物浓度、晶种加入量)对磷酸铵镁晶体粒度分布的影响.结果表明:适当提高搅拌转速、降低加料速度和降低反应物浓度均可增大产品的平均粒径并减小其变异系数;在桨区加料所得产品平均粒径较大且粒度分布较好;加入适量晶种可以显著增大产品的平均粒径并使其粒度分布更加均匀.

  9. Distributions of region size and GDP and their relation

    Science.gov (United States)

    Sen, Hu; Chunxia, Yang; Xueshuai, Zhu; Zhilai, Zheng; Ya, Cao

    2015-07-01

    We first analyze the distribution of metropolitan (city) size, the distribution of metropolitan (city) GDP and the relation of both distributions. It is found that (1) the tails of distributions of size and GDP both obey Pareto Law with the Pareto exponent 1; (2) compared with Pareto exponent in GDP, Pareto exponent in size is bigger. Then an agent model is built to study the underlying formation mechanism of distributions of region size and GDP. Our model presents the mechanism how economic factors flow between regions to reproduce the tail behavior and the difference between the Pareto exponents of size and those of GDP. At last, the simulated results agree with the real empirical well.

  10. Re-examination of the size distribution of firms

    CERN Document Server

    Kaizoji, T; Iyetomi, H; Kaizoji, Taisei; Ikeda, Yuichi; Iyetomi, Hiroshi

    2006-01-01

    In this paper we address the question of the size distribution of firms. To this aim, we use the Bloomberg database comprising firms around the world within the years 1995-2003, and analyze the data of the sales and the total assets of the consolidation base of the Japanese and the US companies, and make a comparison of the size distributions between the Japanese companies and the US companies. We find that (i) the size distribution of the US firms is approximately log-normal, in agreement with Gibrat's observation \\cite{Gibrat}, and in contrast (ii) the size distribution of the Japanese firms is clearly not log-normal, and the upper tail of the size distribution follows the Pareto law. It agree with the predictions of the Simon model \\cite{Simon}.

  11. Calculating Confidence Intervals for Effect Sizes Using Noncentral Distributions.

    Science.gov (United States)

    Norris, Deborah

    This paper provides a brief review of the concepts of confidence intervals, effect sizes, and central and noncentral distributions. The use of confidence intervals around effect sizes is discussed. A demonstration of the Exploratory Software for Confidence Intervals (G. Cuming and S. Finch, 2001; ESCI) is given to illustrate effect size confidence…

  12. Particle size distribution in the tilapia Recirculating Aquaculture System

    OpenAIRE

    Stokic, Jelena

    2012-01-01

    This study was to evaluate methods for measuring and describing particle size distribution from three different spots in Tilapia recirculating system at University of Life Ccience in Ås, Norway. For this purpose serial filtration over different mesh size and parallel filtration over different mesh size methods were compared. Water samples were taken from before drum filter, after drum filter and after bio-filter (MBBR) and filtrated through eight different mesh size classes and calculated in ...

  13. Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): uncertainties in particle sizing and number size distribution

    Science.gov (United States)

    Pfeifer, Sascha; Müller, Thomas; Weinhold, Kay; Zikova, Nadezda; Martins dos Santos, Sebastiao; Marinoni, Angela; Bischof, Oliver F.; Kykal, Carsten; Ries, Ludwig; Meinhardt, Frank; Aalto, Pasi; Mihalopoulos, Nikolaos; Wiedensohler, Alfred

    2016-04-01

    Aerodynamic particle size spectrometers are a well-established method to measure number size distributions of coarse mode particles in the atmosphere. Quality assurance is essential for atmospheric observational aerosol networks to obtain comparable results with known uncertainties. In a laboratory study within the framework of ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure Network), 15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA) were compared with a focus on flow rates, particle sizing, and the unit-to-unit variability of the particle number size distribution. Flow rate deviations were relatively small (within a few percent), while the sizing accuracy was found to be within 10 % compared to polystyrene latex (PSL) reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was within 10 % to 20 % for particles in the range of 0.9 up to 3 µm, which is acceptable for atmospheric measurements. For particles smaller than that, the variability increased up to 60 %, probably caused by differences in the counting efficiencies of individual units. Number size distribution data for particles smaller than 0.9 µm in aerodynamic diameter should only be used with caution. For particles larger than 3 µm, the unit-to-unit variability increased as well. A possible reason is an insufficient sizing accuracy in combination with a steeply sloping particle number size distribution and the increasing uncertainty due to decreasing counting. Particularly this uncertainty of the particle number size distribution must be considered if higher moments of the size distribution such as the particle volume or mass are calculated, which require the conversion of the aerodynamic diameter measured to a volume equivalent diameter. In order to perform a quantitative quality assurance, a traceable reference method for the particle number concentration in the size range 0.5-3 µm

  14. Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321: uncertainties in particle sizing and number size distribution

    Directory of Open Access Journals (Sweden)

    S. Pfeifer

    2015-11-01

    Full Text Available Aerodynamic particle size spectrometers are a well-established method to measure number size distributions of coarse mode particles in the atmosphere. Quality assurance is essential for atmospheric observational aerosol networks to obtain comparable results with known uncertainties. In a laboratory study within the framework of ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure Network, 15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA were compared with a focus on flow rates accuracy, particle sizing, and unit-to-unit variability of the particle number size distribution. Flow rate deviations were relatively small (within a few percent, while the sizing accuracy was found to be within 10 % compared to polystyrene latex (PSL reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was within 10–20 % for particles in the range of 0.9 up to 3 μm, which is acceptable for atmospheric measurements. For particles smaller than that, the variability increased up to 60 %, probably caused by differences in the counting efficiencies of individual units. Number size distribution data for particles smaller than 0.9 μm in aerodynamic diameter should be only used with caution. For particles larger than 3 μm, the unit-to-unit variability increased as well. A possible reason is an insufficient sizing accuracy in combination with a steeply sloping particle number size distribution and the increasing uncertainty due to decreasing counting. This uncertainty of the particle number size distribution has especially to be considered if higher moments of the size distribution such as the particle volume or mass are calculated, which require the conversion of the aerodynamic diameter measured to a volume equivalent diameter. In order to perform a quantitative quality assurance, a traceable reference method for the particle number concentration in the size

  15. Size distribution and seasonal variation of atmospheric cellulose

    Science.gov (United States)

    Puxbaum, Hans; Tenze-Kunit, Monika

    Atmospheric cellulose is a main constituent of the insoluble organic aerosol and a "macrotracer" for plant debris. A time series of the cellulose concentration at a downtown site in Vienna showed a maximum concentration during fall and a secondary maximum during spring. The fall maximum appears to be associated with leaf litter production, the spring maximum with increased biological activity involving repulsion of cellulose-containing particles, e.g. seed production. The grand average of the time series over 9 months was 0.374 μg m -3 cellulose, respectively, 0.75 μg m -3 plant debris. Compared to an annual average of 5.7 μg m -3 organic carbon as observed at a Vienna downtown site it becomes clear that plant debris is a major contributor to the organic aerosol and has to be considered in source attribution studies. Simultaneous measurements at the downtown and a suburban site indicated that particulate cellulose is obviously not produced within the city in notable amounts, at least during the campaign in December. Size distribution measurements with impactors showed the unexpected result that "fine aerosol" size particles (0.1- 1.6 μm aerodynamic diameter) contained 0.7% "free cellulose" on a mass basis, forming a wettable, but insoluble part of the accumulation mode aerosol.

  16. Inversion of spheroid particle size distribution in wider size range and aspect ratio range

    Directory of Open Access Journals (Sweden)

    Tang Hong

    2013-01-01

    Full Text Available The non-spherical particle sizing is very important in the aerosol science, and it can be determined by the light extinction measurement. This paper studies the effect of relationship of the size range and aspect ratio range on the inversion of spheroid particle size distribution by the dependent mode algorithm. The T matrix method and the geometric optics approximation method are used to calculate the extinction efficiency of the spheroids with different size range and aspect ratio range, and the inversion of spheroid particle size distribution in these different ranges is conducted. Numerical simulation indicates that a fairly reasonable representation of the spheroid particle size distribution can be obtained when the size range and aspect ratio range are suitably chosen.

  17. Size distribution of natural radioactive aerosols in an underground building

    International Nuclear Information System (INIS)

    The size distribution of natural radioactive aerosols is a very important factor for evaluating the exposure dose contributed by radon. In order to measure the size distribution, a cascade impactor was employed for sampling in an underground building. The results of 4-time measurements at 58 places show that the sizes of natural radioactive aerosols are lognormal distribution, and the AMAD is between 0.087 and 0.427 μm with an average of 0.194 μm. The AMADs ranging from 0.1 to 0.3 μm cover 85% of all data. (authors)

  18. Experimental study of particle size distribution in suspension polymerization

    International Nuclear Information System (INIS)

    Particle size distribution is an important characteristic in suspension polymerization. Special condition must satisfy for achievement of an appropriate particle size distribution This condition is studied for some systems. In this work the effect of parameters affecting the suspension polymerization system of styrene was studied and then the approximate optimum range was determined to obtain narrow particle size distribution mainly in the range of 200 to 400 microns. The studied parameters are: position of impeller, impeller type, impeller speed, baffles, stabilizer concentration, initiator concentration and divinylbenzene concentration as cross-linking agent

  19. Pore-size-distribution of cationic polyacrylamide hydrogels. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga`s mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  20. Pore-size-distribution of cationic polyacrylamide hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga's mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  1. Research on product size and grinding dynamics of vibration mills

    Institute of Scientific and Technical Information of China (English)

    YIN Zhong-jun; HAN Tian; CHEN Bing; ZHANG Wen-zhong

    2007-01-01

    In order to improve vibration mills grinding effect and increase productive efficiency, prime factors of vibration mills were gained much attention. The purpose of this study is to reveal product size distribution and grinding dynamics of vibration mills by orthogonal experi-ments. The metallurgical refractory materials were used as research object. In order to explore the relationships between grinding effect and primary factors, lots of milling experiments were carried out. Based on the results, the conclusions can be summarized: as time runs, the size distri-bution shows exponential trend, and range becomes more and more narrow. Also the quantitative analysis result between grinding effect and primary factors was obtained by non-linear regres-sion: high frequency, high amplitude and low fill ratio can increase grinding speed.

  2. What We Can Learn From Supernova Remnant Size Distributions

    Science.gov (United States)

    Elwood, Benjamin; Murphy, Jeremiah; Diaz, Mariangelly

    2016-01-01

    Previous literature regarding size distributions of supernova remnants generally discuss a uniform distribution for the radius, occasionally considering a Gaussian alternative. We indeed show that these distributions are consistent with log-normal, which can be considered a natural consequence of the Central Limit Theorem and Sedov expansion. Modeling explosion energy, remnant age, and ambient density as independent, random distributions, we show, using simple Monte Carlo simulations, that the size distribution is indistinguishable from log-normal when the SNR sample size is of order three hundred. This implies that these SNR distributions provide only information on the mean and variance, yielding additional information only when the sample size grows large. We then proceed to Bayesian statistical inference to characterize the information provided by the size distributions. In particular, we use the mean and variance of sizes and explosion energies to subsequently estimate the mean and variance of the ambient medium surrounding SNR progenitors. This in turn allows us to characterize potential bias in studies involving samples of supernova remnants.

  3. Methods of assessing grain-size distribution during grain growth

    DEFF Research Database (Denmark)

    Tweed, Cherry J.; Hansen, Niels; Ralph, Brian

    1985-01-01

    This paper considers methods of obtaining grain-size distributions and ways of describing them. In order to collect statistically useful amounts of data, an automatic image analyzer is used, and the resulting data are subjected to a series of tests that evaluate the differences between two related...... distributions (before and after grain growth). The distributions are measured from two-dimensional sections, and both the data and the corresponding true three-dimensional grain-size distributions (obtained by stereological analysis) are collected. The techniques described here are illustrated by reference to...

  4. Size Segregation in Rapid Flows of Inelastic Particles with Continuous Size Distributions

    Institute of Scientific and Technical Information of China (English)

    LI Rui; ZHANG Duan-Ming; LI Zhi-Hao

    2012-01-01

    Two-dimensional numerical simulations are employed to gain insight into the segregation behavior of granular mixtures with a power-law particle size distribution in the presence of a granular temperature gradient.It is found that particles of all sizes move toward regions of low granular temperature.Species segregation is also observed.Large particles demonstrate a higher affinity for the low-temperature regions and accumulate in these cool regions to a greater extent than their smaller counterparts.Furthermore,the local particle size distribution maintains the same form as the overall (including all particles) size distribution.%Two-dimensional numerical simulations are employed to gain insight into the segregation behavior of granular mixtures with a power-law particle size distribution in the presence of a granular temperature gradient. It is found that particles of all sizes move toward regions of low granular temperature. Species segregation is also observed. Large particles demonstrate a higher affinity for the low-temperature regions and accumulate in these cool regions to a greater extent than their smaller counterparts. Furthermore, the local particle size distribution maintains the same form as the overall (including all particles) size distribution.

  5. INTEGRATING NEPHELOMETER RESPONSE CORRECTIONS FOR BIMODAL SIZE DISTRIBUTIONS

    Science.gov (United States)

    Correction factors are calculated for obtaining true scattering extinction coefficients from integrating nephelometer measurements. The corrections are based on the bimodal representation of ambient aerosol size distributions, and take account of the effects of angular truncation...

  6. Size distribution measurements and chemical analysis of aerosol components

    Energy Technology Data Exchange (ETDEWEB)

    Pakkanen, T.A.

    1995-12-31

    The principal aims of this work were to improve the existing methods for size distribution measurements and to draw conclusions about atmospheric and in-stack aerosol chemistry and physics by utilizing size distributions of various aerosol components measured. A sample dissolution with dilute nitric acid in an ultrasonic bath and subsequent graphite furnace atomic absorption spectrometric analysis was found to result in low blank values and good recoveries for several elements in atmospheric fine particle size fractions below 2 {mu}m of equivalent aerodynamic particle diameter (EAD). Furthermore, it turned out that a substantial amount of analyses associated with insoluble material could be recovered since suspensions were formed. The size distribution measurements of in-stack combustion aerosols indicated two modal size distributions for most components measured. The existence of the fine particle mode suggests that a substantial fraction of such elements with two modal size distributions may vaporize and nucleate during the combustion process. In southern Norway, size distributions of atmospheric aerosol components usually exhibited one or two fine particle modes and one or two coarse particle modes. Atmospheric relative humidity values higher than 80% resulted in significant increase of the mass median diameters of the droplet mode. Important local and/or regional sources of As, Br, I, K, Mn, Pb, Sb, Si and Zn were found to exist in southern Norway. The existence of these sources was reflected in the corresponding size distributions determined, and was utilized in the development of a source identification method based on size distribution data. On the Finnish south coast, atmospheric coarse particle nitrate was found to be formed mostly through an atmospheric reaction of nitric acid with existing coarse particle sea salt but reactions and/or adsorption of nitric acid with soil derived particles also occurred. Chloride was depleted when acidic species reacted

  7. Elemental mass size distribution of the Debrecen urban aerosol

    International Nuclear Information System (INIS)

    Complete text of publication follows. Size distribution is one of the basic properties of atmospheric aerosol. It is closely related to the origin, chemical composition and age of the aerosol particles, and it influences the optical properties, environmental effects and health impact of aerosol. As part of the ongoing aerosol research in the Group of Ion Beam Applications of the Atomki, elemental mass size distribution of urban aerosol were determined using particle induced X-ray emission (PIXE) analytical technique. Aerosol sampling campaigns were carried out with 9-stage PIXE International cascade impactors, which separates the aerosol into 10 size fractions in the 0.05-30 ?m range. Five 48-hours long samplings were done in the garden of the Atomki, in April and in October, 2007. Both campaigns included weekend and working day samplings. Basically two different kinds of particles could be identified according to the size distribution. In the size distribution of Al, Si, Ca, Fe, Ba, Ti, Mn and Co one dominant peak can be found around the 3 m aerodynamic diameter size range, as it is shown on Figure 1. These are the elements of predominantly natural origin. Elements like S, Cl, K, Zn, Pb and Br appears with high frequency in the 0.25-0.5 mm size range as presented in Figure 2. These elements are originated mainly from anthropogenic sources. However sometimes in the size distribution of these elements a 2nd, smaller peak appears at the 2-4 μm size ranges, indicating different sources. Differences were found between the size distribution of the spring and autumn samples. In the case of elements of soil origin the size distribution was shifted towards smaller diameters during October, and a 2nd peak appeared around 0.5 μm. A possible explanation to this phenomenon can be the different meteorological conditions. No differences were found between the weekend and working days in the size distribution, however the concentration values were smaller during the weekend

  8. A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions

    Science.gov (United States)

    Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.

    2005-01-01

    Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.

  9. A multivariate rank test for comparing mass size distributions

    KAUST Repository

    Lombard, F.

    2012-04-01

    Particle size analyses of a raw material are commonplace in the mineral processing industry. Knowledge of particle size distributions is crucial in planning milling operations to enable an optimum degree of liberation of valuable mineral phases, to minimize plant losses due to an excess of oversize or undersize material or to attain a size distribution that fits a contractual specification. The problem addressed in the present paper is how to test the equality of two or more underlying size distributions. A distinguishing feature of these size distributions is that they are not based on counts of individual particles. Rather, they are mass size distributions giving the fractions of the total mass of a sampled material lying in each of a number of size intervals. As such, the data are compositional in nature, using the terminology of Aitchison [1] that is, multivariate vectors the components of which add to 100%. In the literature, various versions of Hotelling\\'s T 2 have been used to compare matched pairs of such compositional data. In this paper, we propose a robust test procedure based on ranks as a competitor to Hotelling\\'s T 2. In contrast to the latter statistic, the power of the rank test is not unduly affected by the presence of outliers or of zeros among the data. © 2012 Copyright Taylor and Francis Group, LLC.

  10. Measurements of size distributions of radon progeny for improved quantification of the lung cancer risk emanating from exposure to radon decay products; Messungen der Groessenverteilungen von Radon-Folgeprodukten zur Verbesserung der Quantifizierung des durch Radonexposition verursachten Lungenkrebsrisikos

    Energy Technology Data Exchange (ETDEWEB)

    Haninger, T.

    1997-12-31

    A major issue in radiation protection is to protect the population from the harmful effects of exposure to radon and radon progeny. Quantification of the lung cancer risk emanating from exposure to radon decay products in residential and working environments poses problems, as epidemiologic studies yield information deviating from the results obtained by the indirect method of assessment based on dosimetric respiratory tract models. One important task of the publication here was to characterize the various exposure conditions and to quantify uncertainties that may result from application of the ``dose conversion convention``. A special aerosol spectrometer was therefore designed and built in order to measure the size distributions of the short-lived radon decay products in the range between 0.5 nm and 10 000 nm. The aerosol spectrometer consists of a three-step diffusion battery with wire nets, an 11-step BERNER impactor, and a detector system with twelve large-surface proportional detectors. From the measured size distributions, dose conversion coefficients, E/P{sup eq}, were calculated using the PC software RADEP; the RADEP program was developed by BIRCHALL and JAMES and is based on the respiratory tract model of the ICRP. The E/P{sup eq} coefficients indicate the effective dose E per unit exposure P{sup eq} to radon decay products. (orig./CB) [Deutsch] Eines der groessten Probleme des Strahlenschutzes ist der Schutz der Bevoelkerung vor einer Strahlenexposition durch Radon und seine Folgeprodukte. Die Quantifizierung des Lungenkrebsrisikos, das durch Radonexpositionen in Wohnungen und an Arbeitsplaetzen verursacht wird, ist ein grosses Problem, weil epidemiologische Studien ein anderes Ergebnis liefern, als die indirekte Methode der Abschaetzung mit dosimetrischen Atemtrakt-Modellen. Eine wichtige Aufgabe der vorliegenden Arbeit war es, unterschiedliche Expositionsbedingungen zu charakterisieren und die Unsicherheiten zu quantifizieren, die sich aus der

  11. Bipartite Producer-Consumer Networks and the Size Distribution of Firms

    CERN Document Server

    Dahui, W; Zengru, D; Dahui, Wang; Li, Zhou; Zengru, Di

    2005-01-01

    A bipartite producer-consumer network is constructed to describe the industrial structure. The edges from consumer to producer represent the choices of the consumer for the final products and the degree of producer can represent its market share. So the size distribution of firms can be characterized by producer's degree distribution. The probability for a producer receiving a new consumption is determined by its competency described by initial attractiveness and the self-reinforcing mechanism in the competition described by preferential attachment. The cases with constant total consumption and with growing market are studied. The following results are obtained: 1, Without market growth and a uniform initial attractiveness $a$, the final distribution of firm sizes is Gamma distribution for $a>1$ and is exponential for $a=1$. If $a<1$, the distribution is power in small size and exponential in upper tail; 2, For a growing market, the size distribution of firms obeys the power law. The exponent is affected b...

  12. Particle size and shape distributions of hammer milled pine

    Energy Technology Data Exchange (ETDEWEB)

    Westover, Tyler Lott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Matthews, Austin Colter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, Christopher Luke [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ryan, John Chadron Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Both materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.

  13. Self-consistent size and velocity distributions of collisional cascades

    CERN Document Server

    Pan, Margaret

    2011-01-01

    The standard theoretical treatment of collisional cascades derives a steady-state size distribution assuming a single constant velocity dispersion for all bodies regardless of size. Here we relax this assumption and solve self-consistently for the bodies' steady-state size and size-dependent velocity distributions. Specifically, we account for viscous stirring, dynamical friction, and collisional damping of the bodies' random velocities in addition to the mass conservation requirement typically applied to find the size distribution in a steady-state cascade. The resulting size distributions are significantly steeper than those derived without velocity evolution. For example, accounting self-consistently for the velocities can change the standard q=3.5 power-law index of the Dohnanyi (1969) differential size spectrum to an index as large as q=4. Similarly, for bodies held together by their own gravity, the corresponding power-law index range 2.88

  14. Packing fraction of particles with lognormal size distribution.

    Science.gov (United States)

    Brouwers, H J H

    2014-05-01

    This paper addresses the packing and void fraction of polydisperse particles with a lognormal size distribution. It is demonstrated that a binomial particle size distribution can be transformed into a continuous particle-size distribution of the lognormal type. Furthermore, an original and exact expression is derived that predicts the packing fraction of mixtures of particles with a lognormal distribution, which is governed by the standard deviation, mode of packing, and particle shape only. For a number of particle shapes and their packing modes (close, loose) the applicable values are given. This closed-form analytical expression governing the packing fraction is thoroughly compared with empirical and computational data reported in the literature, and good agreement is found.

  15. Estimation of Particle Size Distribution and Aspect Ratio of Non-Spherical Particles From Chord Length Distribution

    CERN Document Server

    Agimelen, Okpeafoh S; Vasile, Massimiliano; Nordon, Alison; Haley, Ian; Mulholland, Anthony J

    2014-01-01

    Information about size and shape of particles produced in various manufacturing processes is very important for process and product development because design of downstream processes as well as final product properties strongly depend on these geometrical particle attributes. However, recovery of particle size and shape information in situ during crystallisation processes has been a major challenge. The focused beam reflectance measurement (FBRM) provides the chord length distribution (CLD) of a population of particles in a suspension flowing close to the sensor window. Recovery of size and shape information from the CLD requires a model relating particle size and shape to its CLD as well as solving the corresponding inverse problem. This paper presents a comprehensive algorithm which produces estimates of particle size distribution and particle aspect ratio from measured CLD data. While the algorithm searches for a global best solution to the inverse problem without requiring further a priori information on ...

  16. Recurrent frequency-size distribution of characteristic events

    Directory of Open Access Journals (Sweden)

    S. G. Abaimov

    2009-04-01

    Full Text Available Statistical frequency-size (frequency-magnitude properties of earthquake occurrence play an important role in seismic hazard assessments. The behavior of earthquakes is represented by two different statistics: interoccurrent behavior in a region and recurrent behavior at a given point on a fault (or at a given fault. The interoccurrent frequency-size behavior has been investigated by many authors and generally obeys the power-law Gutenberg-Richter distribution to a good approximation. It is expected that the recurrent frequency-size behavior should obey different statistics. However, this problem has received little attention because historic earthquake sequences do not contain enough events to reconstruct the necessary statistics. To overcome this lack of data, this paper investigates the recurrent frequency-size behavior for several problems. First, the sequences of creep events on a creeping section of the San Andreas fault are investigated. The applicability of the Brownian passage-time, lognormal, and Weibull distributions to the recurrent frequency-size statistics of slip events is tested and the Weibull distribution is found to be the best-fit distribution. To verify this result the behaviors of numerical slider-block and sand-pile models are investigated and the Weibull distribution is confirmed as the applicable distribution for these models as well. Exponents β of the best-fit Weibull distributions for the observed creep event sequences and for the slider-block model are found to have similar values ranging from 1.6 to 2.2 with the corresponding aperiodicities CV of the applied distribution ranging from 0.47 to 0.64. We also note similarities between recurrent time-interval statistics and recurrent frequency-size statistics.

  17. Charge distribution over dust particles configured with size distribution in a complex plasma

    Science.gov (United States)

    Misra, Shikha; Mishra, Sanjay K.

    2016-02-01

    A theoretical kinetic model describing the distribution of charge on the dust particles configured with generalized Kappa size distribution in a complex plasma has been developed. The formulation is based on the manifestation of uniform potential theory with an analytical solution of the master differential equation for the probability density function of dust charge; the number and energy balance of the plasma constituents are utilized in writing the kinetic equations. A parametric study to determine the steady state plasma parameters and the charge distribution corresponding to a size distribution of dust grains in the complex plasma has been made; the numerical results are presented graphically. The charge distribution is seen sensitive to the population of small grains in the particle size distribution and thus in contrast to symmetrical distribution of charge around a mean value for uniform sized grains, the charge distribution in the present case peaks around lower charge.

  18. Particle size distribution in ferrofluid macro-clusters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wah-Keat, E-mail: wklee@bnl.gov [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States); Ilavsky, Jan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States)

    2013-03-15

    Under an applied magnetic field, many commercial and concentrated ferrofluids agglomerate and form large micron-sized structures. Although large diameter particles have been implicated in the formation of these macro-clusters, the question of whether the particle size distribution of the macro-clusters are the same as the original fluid remains open. Some studies suggest that these macro-clusters consist of larger particles, while others have shown that there is no difference in the particle size distribution between the macro-clusters and the original fluid. In this study, we use X-ray imaging to aid in a sample (diluted EFH-1 from Ferrotec) separation process and conclusively show that the average particle size in the macro-clusters is significantly larger than those in the original sample. The average particle size in the macro-clusters is 19.6 nm while the average particle size of the original fluid is 11.6 nm. - Highlights: Black-Right-Pointing-Pointer X-ray imaging was used to isolate ferrofluid macro-clusters under an applied field. Black-Right-Pointing-Pointer Small angle X-ray scattering was used to determine particle size distributions. Black-Right-Pointing-Pointer Results show that macro-clusters consist of particles that are larger than average.

  19. Size Dependency of Income Distribution and Its Implications

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiang; WANG You-Gui

    2011-01-01

    We systematically study the size dependency of income distributions, i.e. income distribution versus the population of a country. Using the generalized Lotka--Uolterra model to fit the empirical income data for 1996-2007 in the U.S.A,we find an important parameter A that can scale with a βpower of the size(population) of the U.S.A.in that year. We point out that the size dependency of income distributions, which is a very important property but seldom addressed in previous studies, has two non-trivial implications:(1) the allometric growth pattern,i.e. the power-law relationship between population and GDP in different years, can be mathematically derived from the size-dependent income distributions and also supported by the empirical data;(2)the connection with the anomalous scaling for the probability density function in critical phenomena, since the re-scaled form of the income distributions has asymptotically exactly the same mathematical expression for the limit distribution of the sum of many correlated random variables.

  20. Particle size distribution and particle size-related crystalline silica content in granite quarry dust.

    Science.gov (United States)

    Sirianni, Greg; Hosgood, Howard Dean; Slade, Martin D; Borak, Jonathan

    2008-05-01

    Previous studies indicate that the relationship between empirically derived particle counts, particle mass determinations, and particle size-related silica content are not constant within mines or across mine work tasks. To better understand the variability of particle size distributions and variations in silica content by particle size in a granite quarry, exposure surveys were conducted with side-by-side arrays of four closed face cassettes, four cyclones, four personal environmental monitors, and a real-time particle counter. In general, the proportion of silica increased as collected particulate size increased, but samples varied in an inconstant way. Significant differences in particle size distributions were seen depending on the extent of ventilation and the nature and activity of work performed. Such variability raises concerns about the adequacy of silica exposure assessments based on only limited numbers of samples or short-term samples.

  1. Global patterns of city size distributions and their fundamental drivers.

    Directory of Open Access Journals (Sweden)

    Ethan H Decker

    Full Text Available Urban areas and their voracious appetites are increasingly dominating the flows of energy and materials around the globe. Understanding the size distribution and dynamics of urban areas is vital if we are to manage their growth and mitigate their negative impacts on global ecosystems. For over 50 years, city size distributions have been assumed to universally follow a power function, and many theories have been put forth to explain what has become known as Zipf's law (the instance where the exponent of the power function equals unity. Most previous studies, however, only include the largest cities that comprise the tail of the distribution. Here we show that national, regional and continental city size distributions, whether based on census data or inferred from cluster areas of remotely-sensed nighttime lights, are in fact lognormally distributed through the majority of cities and only approach power functions for the largest cities in the distribution tails. To explore generating processes, we use a simple model incorporating only two basic human dynamics, migration and reproduction, that nonetheless generates distributions very similar to those found empirically. Our results suggest that macroscopic patterns of human settlements may be far more constrained by fundamental ecological principles than more fine-scale socioeconomic factors.

  2. SYNTHESIS OF ZnO NANOPARTICLES WITH NARROW SIZE DISTRIBUTION UNDER PULSED MICROWAVE HEATING

    Institute of Scientific and Technical Information of China (English)

    Yongjun He

    2004-01-01

    ZnO nanoparticles with very narrow size distribution were synthesized by coupling homogeneous precipitation with microemulsion under pulsed microwave heating. The conditions of preparing ZnO nanoparticles were investigated. The products were characterized with DTA, TGA, XRD, TEM and UV-Vis. The synthesized ZnO nanopartices had much stronger ultraviolet absorptivity than normal ZnO powders; the average size of products was sensitive to the variation of the power or duration of microwave irradiation.

  3. Portfolio effects and firm size distribution : carbonated soft drinks

    OpenAIRE

    Whelan, Ciara; Patrick P. Walsh

    2002-01-01

    PUBLISHED We use rich brand level retail data to demonstrate that the firm size distribution in Carbonated Soft Drinks is mainly an outcome of the degree to which firms own a portfolio of brands across segments of the market, and not from performance within segments. In addition, while the number of firms in each segment is limited by segment size relative to sunk cost and competition in a segment, idiosyncratic firm effects make some firms more likely to participate in any given segment. ...

  4. Theory of Nanocluster Size Distributions from Ion Beam Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C.W.; Yi, D.O.; Sharp, I.D.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-06-13

    Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict the existence of a steady state shape for the cluster size distribution that depends only on a characteristic length determined by the ratio of the effective diffusion coefficient to the ion flux. The average cluster size in the steady state regime is determined by the implanted species/matrix interface energy.

  5. Comparison of aerosol size distribution in coastal and oceanic environments

    Science.gov (United States)

    Kusmierczyk-Michulec, Jolanta; van Eijk, Alexander M.

    2006-08-01

    The results of applying the empirical orthogonal functions (EOF) method to decomposition and approximation of aerosol size distributions are presented. A comparison was made for two aerosol data sets, representing coastal and oceanic environments. The first data set includes measurements collected at the Irish Atlantic coast in 1994 and 1995, the second one data collected during the Rough Evaporation Duct (RED) experiment that took place off Oahu, Hawaii in 2001. The main finding is that aerosol size distributions can be represented by a superposition of the mean size distribution and the first eigenvector multiplied by an amplitude function. For the two aerosol data sets the mean size distribution is very similar in the range of small particles sizes (radius 1μm). It is also reflected by the spectral shape of the eigenvector. The differences can be related to the type of aerosols present at both locations, and the amplitude function can be associated to meteorological conditions. The amplitude function also indicates the episodes with the maximum/minimum continental influence. The results of this analysis will be used in upgrades of the ANAM model.

  6. Modal character of atmospheric black carbon size distributions

    Science.gov (United States)

    Berner, A.; Sidla, S.; Galambos, Z.; Kruisz, C.; Hitzenberger, R.; ten Brink, H. M.; Kos, G. P. A.

    1996-08-01

    Samples of atmospheric aerosols, collected with cascade impactors in the urban area of Vienna (Austria) and at a coastal site on the North Sea, were investigated for black carbon (BC) as the main component of absorbing material and for mass. The size distributions are structured. The BC distributions of these samples show a predominant mode, the accumulation aerosol, in the upper submicron size range, a less distinct finer mode attributable to fresh emissions from combustion sources, and a distinct coarse mode of unclear origin. It is important to note that some parameters of the accumulation aerosol are related statistically, indicating the evolution of the atmospheric accumulation aerosol.

  7. Size distribution of Portuguese firms between 2006 and 2012

    Science.gov (United States)

    Pascoal, Rui; Augusto, Mário; Monteiro, A. M.

    2016-09-01

    This study aims to describe the size distribution of Portuguese firms, as measured by annual sales and total assets, between 2006 and 2012, giving an economic interpretation for the evolution of the distribution along the time. Three distributions are fitted to data: the lognormal, the Pareto (and as a particular case Zipf) and the Simplified Canonical Law (SCL). We present the main arguments found in literature to justify the use of distributions and emphasize the interpretation of SCL coefficients. Methods of estimation include Maximum Likelihood, modified Ordinary Least Squares in log-log scale and Nonlinear Least Squares considering the Levenberg-Marquardt algorithm. When applying these approaches to Portuguese's firms data, we analyze if the evolution of estimated parameters in both lognormal power and SCL is in accordance with the known existence of a recession period after 2008. This is confirmed for sales but not for assets, leading to the conclusion that the first variable is a best proxy for firm size.

  8. Size Evolution and Stochastic Models: Explaining Ostracod Size through Probabilistic Distributions

    Science.gov (United States)

    Krawczyk, M.; Decker, S.; Heim, N. A.; Payne, J.

    2014-12-01

    The biovolume of animals has functioned as an important benchmark for measuring evolution throughout geologic time. In our project, we examined the observed average body size of ostracods over time in order to understand the mechanism of size evolution in these marine organisms. The body size of ostracods has varied since the beginning of the Ordovician, where the first true ostracods appeared. We created a stochastic branching model to create possible evolutionary trees of ostracod size. Using stratigraphic ranges for ostracods compiled from over 750 genera in the Treatise on Invertebrate Paleontology, we calculated overall speciation and extinction rates for our model. At each timestep in our model, new lineages can evolve or existing lineages can become extinct. Newly evolved lineages are assigned sizes based on their parent genera. We parameterized our model to generate neutral and directional changes in ostracod size to compare with the observed data. New sizes were chosen via a normal distribution, and the neutral model selected new sizes differentials centered on zero, allowing for an equal chance of larger or smaller ostracods at each speciation. Conversely, the directional model centered the distribution on a negative value, giving a larger chance of smaller ostracods. Our data strongly suggests that the overall direction of ostracod evolution has been following a model that directionally pushes mean ostracod size down, shying away from a neutral model. Our model was able to match the magnitude of size decrease. Our models had a constant linear decrease while the actual data had a much more rapid initial rate followed by a constant size. The nuance of the observed trends ultimately suggests a more complex method of size evolution. In conclusion, probabilistic methods can provide valuable insight into possible evolutionary mechanisms determining size evolution in ostracods.

  9. The degree distribution of fixed act-size collaboration networks

    Indian Academy of Sciences (India)

    Qinggui Zhao; Xiangxing Kong; Zhenting Hou

    2009-11-01

    In this paper, we investigate a special evolving model of collaboration net-works, where the act-size is fixed. Based on the first-passage probability of Markov chain theory, this paper provides a rigorous proof for the existence of a limiting degree distribution of this model and proves that the degree distribution obeys the power-law form with the exponent adjustable between 2 and 3.

  10. Dust Particle Size Distributions during Spring in Yinchuan, China

    OpenAIRE

    Jiangfeng Shao; Jiandong Mao

    2016-01-01

    Dust particle size distributions in Yinchuan, China, were measured during March and April 2014, using APS-3321 sampler. The distributions were measured under different dust conditions (background, floating dust, blowing dust, and dust storm) and statistical analyses were performed. The results showed that, under different dust conditions, the instantaneous number concentrations of dust particles differed widely. For example, during blowing sand and dust storm conditions, instantaneous dust pa...

  11. Size distribution of native cytosolic proteins of Thermoplasma acidophilum.

    Science.gov (United States)

    Sun, Na; Tamura, Noriko; Tamura, Tomohiro; Knispel, Roland Wilhelm; Hrabe, Thomas; Kofler, Christine; Nickell, Stephan; Nagy, István

    2009-07-01

    We used molecular sieve chromatography in combination with LC-MS/MS to identify protein complexes that can serve as templates in the template matching procedures of visual proteomics approaches. By this method the sample complexity was lowered sufficiently to identify 464 proteins and - on the basis of size distribution and bioinformatics analysis - 189 of them could be assigned as subunits of macromolecular complexes over the size of 300 kDa. From these we purified six stable complexes of Thermoplasma acidophilum whose size and subunit composition - analyzed by electron microscopy and MALDI-TOF-MS, respectively - verified the accuracy of our method.

  12. Aerosol mobility imaging for rapid size distribution measurements

    Science.gov (United States)

    Wang, Jian; Hering, Susanne Vera; Spielman, Steven Russel; Kuang, Chongai

    2016-07-19

    A parallel plate dimensional electrical mobility separator and laminar flow water condensation provide rapid, mobility-based particle sizing at concentrations typical of the remote atmosphere. Particles are separated spatially within the electrical mobility separator, enlarged through water condensation, and imaged onto a CCD array. The mobility separation distributes particles in accordance with their size. The condensation enlarges size-separated particles by water condensation while they are still within the gap of the mobility drift tube. Once enlarged the particles are illuminated by a laser. At a pre-selected frequency, typically 10 Hz, the position of all of the individual particles illuminated by the laser are captured by CCD camera. This instantly records the particle number concentration at each position. Because the position is directly related to the particle size (or mobility), the particle size spectra is derived from the images recorded by the CCD.

  13. Deposition Rate and Size Distribution of Volcanic Ash

    Science.gov (United States)

    Hikida, M.

    2006-12-01

    Sakurajima Volcano has been in violent activity since 1955 and erupting large amount of volcanic ash and stones from the crater. Volcanic fallouts have caused damages to the agricaltural products in the area and denuded the mountainside of vegitation. Deposited ash and stones on the mountainside has also caused hazardrous debris flows in the rivers. Therefore, it is necessary to know the deposition rate of the fallouts in prediction of debris flow. Due to the violent volcanic activity, however, it is prohibited to enter within two kilometers of the crater, making it impossible to measure the depth of deposited fallouts in the area. Theoretical study on deposition rate of volcanic fallouts should be needed to estimate the amount of fallouts in the upstream area. At first, motion of a particle erupted from the crater into the air was computed to examine its trajectory. From the simulation of the trajectory, a particle was assumed to fall at its terminal veloctity, and theoretical equation which give the deposition rate of volcanic ash and the distribution of deposited ash were obtained. In the derivation of these equations, the probability density functions of eruption column height, the terminal velocity of the erupted particles and the wind velocity were introduced. The computed values of amount of deposited ash show good agreement with the data taken from 93 collection points around Sakurajima Volcano. The annual amount of erupted volcanic ash was estimated to be about thirteen millions tons. The sample of deposited fallouts were taken to analize the size distribution. The data was also used to check the applicability of the theory presented.

  14. Distributional shifts in size structure of phytoplankton community

    Science.gov (United States)

    Waga, H.; Hirawake, T.; Fujiwara, A.; Nishino, S.; Kikuchi, T.; Suzuki, K.; Takao, S.

    2015-12-01

    Increased understanding on how marine species shift their distribution is required for effective conservation of fishery resources under climate change. Previous studies have often predicted distributional shifts of fish using satellite derived sea surface temperature (SST). However, SST may not fully represent the changes in species distribution through food web structure and as such this remains an open issue due to lack of ecological perspective on energy transfer process in the earlier studies. One of the most important factors in ecosystem is composition of phytoplankton community, and its size structure determines energy flow efficiency from base to higher trophic levels. To elucidate spatiotemporal variation in phytoplankton size structure, chlorophyll-a size distribution (CSD) algorithm was developed using spectral variance of phytoplankton absorption coefficient through principal component analysis. Slope of CSD (CSD slope) indicates size structure of phytoplankton community where, strong and weak magnitudes of CSD slope indicate smaller and larger phytoplankton structure, respectively. Shifts in CSD slope and SST were derived as the ratio of temporal trend over the 12-year period (2003-2014) to 2-dimensional spatial gradient and the resulting global median velocity of CSD slope and SST were 0.361 and 0.733 km year-1, respectively. In addition, the velocity of CSD slope monotonically increases with increasing latitude, while relatively complex latitudinal pattern for SST emerged. Moreover, angle of shifts suggest that species are required to shift their distribution toward not limited to simple pole-ward migration, and some regions exhibit opposite direction between the velocity of CSD slope and SST. These findings further imply that combined phytoplankton size structure and SST may contribute for more accurate prediction of species distribution shifts relative to existing studies which only considering variations in thermal niches.

  15. Fluid bed agglomeration with a narrow droplet size distribution

    NARCIS (Netherlands)

    Schaafsma, SH; Vonk, P; Kossen, NWF

    2000-01-01

    In the fluid bed agglomeration processes liquid distribution influences the agglomerate growth. We developed a new nozzle that produces uniform droplets, which allows droplets to be easily controlled in size independently of liquid- and airflow of the nozzle. It was found that the spray rate and the

  16. Tracing Particle Size Distribution Curves Using an Analogue Circuit.

    Science.gov (United States)

    Bisschop, F. De; Segaert, O.

    1986-01-01

    Proposes an analog circuit for use in sedimentation analysis of finely divided solid materials. Discusses a method of particle size distribution analysis and provides schematics of the circuit with list of components as well as a discussion about the operation of the circuit. (JM)

  17. Aerosol Particle Size Distributions at a Rural Coastal Site

    NARCIS (Netherlands)

    Leeuw, G. de; Vignati, E.

    1998-01-01

    Aerosol particle size distributions were measured on the Swedish island Ostergamsholm, about 3 km east of Gotland, from 26 April until 13 May, 1998. In this contribution preliminary results are presented of the dialysis of data collected at the south tip of the island at 10 m above sea level using a

  18. Comparison of aerosol size distribution in coastal and oceanic environments

    NARCIS (Netherlands)

    Kusmierczyk-Michulec, J.T.; Eijk, A.M.J. van

    2006-01-01

    The results of applying the empirical orthogonal functions (EOF) method to decomposition and approximation of aerosol size distributions are presented. A comparison was made for two aerosol data sets, representing coastal and oceanic environments. The first data set includes measurements collected a

  19. Global abundance and size distribution of streams and rivers

    NARCIS (Netherlands)

    Downing, J.A.; Cole, J.J.; Duarte, C.M.; Middelburg, J.J.; Melack, J.M.; Prairie, Y.T.; Kortelainen, P.; Striegl, R.G.; McDowell, W.H.; Tranvik, L.J.

    2012-01-01

    To better integrate lotic ecosystems into global cycles and budgets, we provide approximations of the size-distribution and areal extent of streams and rivers. One approach we used was to employ stream network theory combined with data on stream width. We also used detailed stream networks on 2 cont

  20. Size distribution and structure of Barchan dune fields

    Directory of Open Access Journals (Sweden)

    O. Durán

    2011-07-01

    Full Text Available Barchans are isolated mobile dunes often organized in large dune fields. Dune fields seem to present a characteristic dune size and spacing, which suggests a cooperative behavior based on dune interaction. In Duran et al. (2009, we propose that the redistribution of sand by collisions between dunes is a key element for the stability and size selection of barchan dune fields. This approach was based on a mean-field model ignoring the spatial distribution of dune fields. Here, we present a simplified dune field model that includes the spatial evolution of individual dunes as well as their interaction through sand exchange and binary collisions. As a result, the dune field evolves towards a steady state that depends on the boundary conditions. Comparing our results with measurements of Moroccan dune fields, we find that the simulated fields have the same dune size distribution as in real fields but fail to reproduce their homogeneity along the wind direction.

  1. Size distribution and structure of Barchan dune fields

    DEFF Research Database (Denmark)

    Duran, O.; Schwämmle, Veit; Lind, P. G.;

    2011-01-01

    Barchans are isolated mobile dunes often organized in large dune fields. Dune fields seem to present a characteristic dune size and spacing, which suggests a co-operative behavior based on dune interaction. In Duran et al. (2009), we propose that the redistribution of sand by collisions between...... dunes is a key element for the stability and size selection of barchan dune fields. This approach was based on a mean-field model ignoring the spatial distribution of dune fields. Here, we present a simplified dune field model that includes the spatial evolution of individual dunes as well...... as their interaction through sand exchange and binary collisions. As a result, the dune field evolves towards a steady state that depends on the boundary conditions. Comparing our results with measurements of Moroccan dune fields, we find that the simulated fields have the same dune size distribution as in real fields...

  2. Thresholded Power Law Size Distributions of Instabilities in Astrophysics

    CERN Document Server

    Aschwanden, Markus J

    2015-01-01

    Power law-like size distributions are ubiquitous in astrophysical instabilities. There are at least four natural effects that cause deviations from ideal power law size distributions, which we model here in a generalized way: (1) a physical threshold of an instability; (2) incomplete sampling of the smallest events below a threshold $x_0$; (3) contamination by an event-unrelated background $x_b$; and (4) truncation effects at the largest events due to a finite system size. These effects can be modeled in simplest terms with a "thresholded power law" distribution function (also called generalized Pareto [type II] or Lomax distribution), $N(x) dx \\propto (x+x_0)^{-a} dx$, where $x_0 > 0$ is positive for a threshold effect, while $x_0 < 0$ is negative for background contamination. We analytically derive the functional shape of this thresholded power law distribution function from an exponential-growth evolution model, which produces avalanches only when a disturbance exceeds a critical threshold $x_0$. We app...

  3. Lognormal field size distributions as a consequence of economic truncation

    Science.gov (United States)

    Attanasi, E.D.; Drew, L.J.

    1985-01-01

    The assumption of lognormal (parent) field size distributions has for a long time been applied to resource appraisal and evaluation of exploration strategy by the petroleum industry. However, frequency distributions estimated with observed data and used to justify this hypotheses are conditional. Examination of various observed field size distributions across basins and over time shows that such distributions should be regarded as the end result of an economic filtering process. Commercial discoveries depend on oil and gas prices and field development costs. Some new fields are eliminated due to location, depths, or water depths. This filtering process is called economic truncation. Economic truncation may occur when predictions of a discovery process are passed through an economic appraisal model. We demonstrate that (1) economic resource appraisals, (2) forecasts of levels of petroleum industry activity, and (3) expected benefits of developing and implementing cost reducing technology are sensitive to assumptions made about the nature of that portion of (parent) field size distribution subject to economic truncation. ?? 1985 Plenum Publishing Corporation.

  4. Size distributions and failure initiation of submarine and subaerial landslides

    Science.gov (United States)

    ten Brink, U.S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.

    2009-01-01

    Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area

  5. Effect of disjunct size distributions on foraminiferal species abundance determinations

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.E.; Liddell, W.D.

    1988-02-01

    Studies of foraminiferal distribution and abundance have typically employed a procedure (standard method) that entails counting approximately 300 specimens from a size range greater than some specified minimum (commonly 63 or 125 ..mu..m). This method fails to take into account that foraminifera may be found only within certain size fractions, either because of species specific size ranges or taphonomic processes (sorting, transport, abrasion). Use of a modified counting procedure (sieve method) takes into account foraminiferal size distributions. The sieve method uses counts of up to 300 specimens in each sand-size fraction (0.125-0.25, 0.25-0.5, 0.5-1, 1-2 mm) of each sample. Counts are then totaled for each sample (up to 1200 specimens per site) and used in determination of species abundances for each site. The sieve method has been of considerable utility in recognition of a foraminiferal bathymetric zonation preserved in sediment assemblages from fringing reef environments at Discovery Bay, north Jamaica. Well-documented reef zones (based on corals and physiography) are clearly defined in Q-mode cluster analysis (UPGMA) of species abundances determined using the sieve method. In contrast, individual fore reef zones are not recognized in cluster analysis of foraminiferal species abundances based on the standard method, nor by cluster analysis of species abundances within individual size fractions.

  6. Critical Exponent of Species-Size Distribution in Evolution

    CERN Document Server

    Adami, C; Yirdaw, R; Adami, Christoph; Seki, Ryoichi; Yirdaw, Robel

    1998-01-01

    We analyze the geometry of the species- and genotype-size distribution in evolving and adapting populations of single-stranded self-replicating genomes: here programs in the Avida world. We find that a scale-free distribution (power law) emerges in complex landscapes that achieve a separation of two fundamental time scales: the relaxation time (time for population to return to equilibrium after a perturbation) and the time between mutations that produce fitter genotypes. The latter can be dialed by changing the mutation rate. In the scaling regime, we determine the critical exponent of the distribution of sizes and strengths of avalanches in a system without coevolution, described by first-order phase transitions in single finite niches.

  7. CHANGES IN DISTRIBUTION OF STEEL PRODUCTS

    OpenAIRE

    Beata Œlusarczyk

    2009-01-01

    Steel industry is one of the most globalized branch, globalization has had the influence on iron ore supply, steel production and distribution as well. In last years, steel products distribution process has changed significantly, because of rising competitiveness due to common world market influence and main global players actions. The paper presents changes in steel products distribution in Poland focusing on main steel producers activity in distribution as well as distributors response on n...

  8. Packing fraction of particles with a Weibull size distribution

    Science.gov (United States)

    Brouwers, H. J. H.

    2016-07-01

    This paper addresses the void fraction of polydisperse particles with a Weibull (or Rosin-Rammler) size distribution. It is demonstrated that the governing parameters of this distribution can be uniquely related to those of the lognormal distribution. Hence, an existing closed-form expression that predicts the void fraction of particles with a lognormal size distribution can be transformed into an expression for Weibull distributions. Both expressions contain the contraction coefficient β. Likewise the monosized void fraction φ1, it is a physical parameter which depends on the particles' shape and their state of compaction only. Based on a consideration of the scaled binary void contraction, a linear relation for (1 - φ1)β as function of φ1 is proposed, with proportionality constant B, depending on the state of compaction only. This is validated using computational and experimental packing data concerning random close and random loose packing arrangements. Finally, using this β, the closed-form analytical expression governing the void fraction of Weibull distributions is thoroughly compared with empirical data reported in the literature, and good agreement is found. Furthermore, the present analysis yields an algebraic equation relating the void fraction of monosized particles at different compaction states. This expression appears to be in good agreement with a broad collection of random close and random loose packing data.

  9. The Changing Size Distribution of U.S. Trade Unions and Its Description by Pareto's Distribution

    OpenAIRE

    John Pencavel

    2013-01-01

    The size distribution of trade unions in the United States and changes in this distribution are documented. Because the most profound changes are taking place among very large unions, these are subject to special analysis by invoking Pareto’s distribution. This represents a new application of this distribution. Extensions to trade union wealth and to Britain are broached. The role of the public sector in these changes receives particular attention. A simple model helps account both for the lo...

  10. Permeability & Grain Size Distribution of Wenchuan Earthquake Fault Rocks

    Science.gov (United States)

    Yang, X.; Chen, J.; Ma, S.

    2010-12-01

    Permeability and grain size distribution of fault rocks from two outcrops of Wenchuan earthquake fault zone were measured. The results show that the permeability (at 40MPa) varies obviously across the fault zone, from 10-13 m2 -10-15 m2 for fractured and shattered breccias, ~ 10-17 m2 for crushed breccias to 10-18 m2 - sieve weighting and laser analyzer, were combined to analyze the grain size distribution of the fault rocks. The measurements indicate that the slope of log(N) ~ log(d) changes at a critical diameter dc with 1 - 2 mm, which corresponds to grinding limit of rocks and may represent a change from grinding process to attrition one. The fractal dimension (D), calculated based on the grains with size larger than dc, of gouges is higher than 3.0 with the fresh gouges having the highest value (≥ 3.4), of crushed breccias ranges from 2.56 to 2.99, and of fractured and shattered breccias has the lowest value, about 2.63 in average. However, the fractal dimension matching smaller grains (> 2 mm) becomes much lower, ranging from 1.7 to 2.2. It is expected that the estimation of surface fracture energy associated with faulting is less than that we thought if the grain size distribution is considered.

  11. The size-distribution of Earth’s lakes

    Science.gov (United States)

    Cael, B. B.; Seekell, D. A.

    2016-07-01

    Globally, there are millions of small lakes, but a small number of large lakes. Most key ecosystem patterns and processes scale with lake size, thus this asymmetry between area and abundance is a fundamental constraint on broad-scale patterns in lake ecology. Nonetheless, descriptions of lake size-distributions are scarce and empirical distributions are rarely evaluated relative to theoretical predictions. Here we develop expectations for Earth’s lake area-distribution based on percolation theory and evaluate these expectations with data from a global lake census. Lake surface areas ≥8.5 km2 are power-law distributed with a tail exponent (τ = 1.97) and fractal dimension (d = 1.38), similar to theoretical expectations (τ = 2.05 d = 4/3). Lakes change and topographic behavior at sub-kilometer scales is not self-similar. Our results provide a robust characterization and theoretical explanation for the lake size-abundance relationship, and form a fundamental basis for understanding and predicting patterns in lake ecology at broad scales.

  12. Product Quality, Advertising Intensity and Market Size

    OpenAIRE

    Bing Han; Hayley Chouinard

    2013-01-01

    We develop a model of product differentiation in which firms strategically compete in product quality and advertising intensity. Consumers face a trade-off between higher quality goods and price. Increased competition may lead to higher or lower quality products. Consumers always benefit from more competition as a reduction in price offsets reduced quality.

  13. The size-frequency distribution of elliptical impact craters

    Science.gov (United States)

    Collins, G. S.; Elbeshausen, D.; Davison, T. M.; Robbins, S. J.; Hynek, B. M.

    2011-10-01

    Impact craters are elliptical in planform if the impactor's trajectory is below a threshold angle of incidence. Laboratory experiments and 3D numerical simulations demonstrate that this threshold angle decreases as the ratio of crater size to impactor size increases. According to impact cratering scaling laws, this implies that elliptical craters occur at steeper impact angles as crater size or target strength increases. Using a standard size-frequency distribution for asteroids impacting the terrestrial planets we estimate the fraction of elliptical craters as a function of crater size on the Moon, Mars, Earth, Venus and Mercury. In general, the expected fraction of elliptical craters is ~ 2-4% for craters between 5 and 100-km in diameter, consistent with the observed population of elliptical craters on Mars. At larger crater sizes both our model and observations suggest a dramatic increase in the fraction of elliptical craters with increasing crater diameter. The observed fraction of elliptical craters larger than 100-km diameter is significantly greater than our model predictions, which may suggest that there is an additional source of large elliptical craters other than oblique impact.

  14. Effects of process parameters on particle size distribution and productivity of narrow level product in turbo air classifier%涡流空气分级机工艺参数对窄级别产品粒径分布和产率的影响

    Institute of Scientific and Technical Information of China (English)

    张胜林; 谌永祥; 李双跃

    2014-01-01

    On the basis of establishing the narrow level experimental system of turbo air classifier,and in order to study the effects of process parameters on particle size distribution and productivity of narrow level product in turbo air classifier,the rotation speed difference of two-stage rotor cages and the second wind speed of the second classifier were used as experimental factors. Particle size distribution curve of the product was used as experimental index. Narrow level experiment system of turbo air classifier was investigated. The experimental results showed that with the rotation speed difference decreasing,the particle size distribution curve of the product became narrower. When the second wind speed increased,the content of the fine powder of product reduced and the particle size distribution curve of the product became narrower. In addition,the relationship among productivity, uniformity of narrow level product and rotation speed difference was studied. Results showed that with rotation speed difference decreasing,productivity of narrow level product decreased and the uniformity increased. Further study indicated that there was a best rotation speed difference Δn0,under which product could be able to both meet the requirement of uniformity and productivity.%在建立涡流空气分级机的窄级别实验系统的基础上,为了研究工艺参数对窄级别产品粒径分布和产率的影响,确定了以两级分级机的转笼转速差和第二级分级机的二次风速为实验因素,以产品的粒径分布曲线为实验指标,对涡流空气分级机的窄级别实验系统进行实验。实验结果表明,随着转速差的减小,产品的粒径分布曲线变窄;随着二次风速的增大,产品中的细粉含量减少,粒径分布曲线变窄。进一步研究了窄级别产品的产率、均匀度和转速差的关系。结果表明,窄级别产品的产率随转速差的减小而降低,均匀度随转速差的减小而

  15. Comparison of aerosol size distribution in coastal and oceanic environments

    OpenAIRE

    Kusmierczyk-Michulec, J.T.; Eijk, A.M.J. van

    2006-01-01

    The results of applying the empirical orthogonal functions (EOF) method to decomposition and approximation of aerosol size distributions are presented. A comparison was made for two aerosol data sets, representing coastal and oceanic environments. The first data set includes measurements collected at the Irish Atlantic coast in 1994 and 1995, the second one data collected during the Rough Evaporation Duct (RED) experiment that took place off Oahu, Hawaii in 2001. The main finding is that aero...

  16. Building predictive models of soil particle-size distribution

    OpenAIRE

    Alessandro Samuel-Rosa; Ricardo Simão Diniz Dalmolin; Pablo Miguel

    2013-01-01

    Is it possible to build predictive models (PMs) of soil particle-size distribution (psd) in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographi...

  17. Particle size distribution dynamics during precipitative softening: declining solution composition.

    Science.gov (United States)

    Nason, Jeffrey A; Lawler, Desmond F

    2009-02-01

    Particle removal is a critical step in the treatment of surface water for potable use, and the majority of drinking water treatment plants employ precipitative coagulation processes such as alum and iron "sweep-floc" coagulation or lime softening for particle pre-treatment. Unfortunately, little is quantitatively known about how particle size distributions are shaped by simultaneous precipitation and flocculation. In an earlier paper, we demonstrated the effects of the saturation ratio, the mixing intensity and the seed concentration on the rates of homogeneous nucleation, precipitative growth and flocculation during precipitation of calcium carbonate at constant solution composition using electronic particle counting techniques. In this work, we extend those findings to systems more closely emulating the conditions in actual softening processes (i.e., declining solution composition). Key findings include the strong dependence of the rate of flocculation on the initial saturation ratio and demonstration of the benefits of seeding precipitative softening from the perspective of optimizing the effluent particle size distribution. The mixing intensity during precipitation was also shown to strongly influence the final particle size distribution. Implications of the findings with respect to softening practice are discussed. PMID:18976791

  18. Particle Size Distribution in Saturn’s Ring C

    Science.gov (United States)

    Marouf, Essam A.; Wong, K.; French, R.; Rappaport, N.

    2012-10-01

    Information about particle sizes in Saturn’s rings is provided by two complementary types of Cassini radio occultation measurements. The first is differential extinction of three coherent sinusoidal signals transmitted by Cassini through the rings back to Earth (wavelength = 0.94, 3.6, and 13 cm, respectively). The differential measurements strongly constraint three parameters of an assumed power-law size distribution n(a) = n0 (a/a0)q, amin ≤ a ≤ amax: namely, the power law index q, the minimum radius amin, and reference abundance n0 at reference radius a0. The differential measurements are particularly sensitive to radii in the range 0.1 mm features of width as small several hundred kilometers can be identified and isolated in the measured spectra for a small subset of Cassini orbits of favorable geometry. We use three inverse scattering algorithms (Bayes, constrained linear inversion, generalized singular-value-decomposition) to recover the size distribution of particles of resolved ring features over the size range 1 m consistency of the results with a single power-law model extending over 0.1 mm selected features across Saturn’s Ring C where little evidence for gravitational wakes is present, hence the approaches above are applicable.

  19. Reasonable Ball Size of Ball Mill for Preparing Coal Water Fuel and Forecasting Productive Capacity

    Institute of Scientific and Technical Information of China (English)

    张荣曾; 刘炯天; 徐志强; 郑明

    2002-01-01

    By using the matrix theory, a 5-parameter grinding mathema tical model is established. Based on the properties of feed coal and requirement s for size distribution of final product, the model gives the required grinding probability for various particles and corresponding ball size distribution. By u sing this model, 3 different sizes of ball mill are designed and put into commer cial use for coal water fuel. The forecasted ball mill capacity, the particle si zes and particle size distribution as well as the coal water fuel quality parame ters are all in line with industrial operation results, which have proved the su itability of the model.

  20. Magnetic heating effect of nanoparticles with different sizes and size distributions

    International Nuclear Information System (INIS)

    We present a comparative study of dynamic and quasistatic magnetic properties of iron oxide nanoparticles. The samples are prepared by different wet chemical precipitation methods resulting in different sizes and size distributions. The structural characterization was performed by X-ray diffraction and transmission electron microscopy. The heating effect in an ac field in the range 0-30 kA/m at 210 kHz was measured calorimetrically. In addition, a vibrating sample magnetometer was used for hysteresis and remanence curve measurements. - Highlights: ► Preparation of 4 different types of magnetic nanoparticles with mean sizes from 10–20 nm. ► Basic characterization by X-ray diffraction and vibrating sample magnetometry. ► Determination of sizes and size distributions from X-ray and TEM data. ► Calorimetric measurements of the specific heating power in an ac field of 210 kHz and field amplitudes up to 30 kA/m.

  1. Use of the truncated shifted Pareto distribution in assessing size distribution of oil and gas fields

    Science.gov (United States)

    Houghton, J.C.

    1988-01-01

    The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a "J-shape," and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment. ?? 1988 International Association for Mathematical Geology.

  2. Truncated shifted pareto distribution in assessing size distribution of oil and gas fields

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, J.C.

    1988-11-01

    The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a J-shape, and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment.

  3. Size Distribution and Rate of Dust Generated During Grain Elevator Handling

    Science.gov (United States)

    Dust generated during grain handling is an air pollutant that produces safety and health hazards. This study was conducted to characterize the particle size distribution (PSD) of dust generated during handling of wheat and shelled corn in the research elevator of the USDA Grain Marketing and Product...

  4. Measuring Technique of Bubble Size Distributions in Dough

    Science.gov (United States)

    Maeda, Tatsurou; Do, Gab-Soo; Sugiyama, Junichi; Oguchi, Kosei; Tsuta, Mizuki

    A novel technique to recognize bubbles in bread dough and analyze their size distribution was developed by using a Micro-Slicer Image Processing System (MSIPS). Samples were taken from the final stage of the mixing process of bread dough which generally consists of four distinctive stages. Also, to investigate the effect of freeze preservation on the size distribution of bubbles, comparisons were made between fresh dough and the dough that had been freeze preserved at .30°C for three months. Bubbles in the dough samples were identified in the images of MSIPS as defocusing spots due to the difference in focal distance created by vacant spaces. In case of the fresh dough, a total of 910 bubbles were recognized and their maximum diameter ranged from 0.4 to 70.5μm with an average of 11.1μm. On the other hand, a total of 1,195 bubbles were recognized from the freeze-preserved sample, and the maximum diameter ranged from 0.9 to 32.7μm with an average of 6.7μm. Small bubbles with maximum diameters less than 10μm comprised approximately 59% and 78% of total bubbles for fresh and freeze-preserved dough samples, respectively. The results indicated that the bubble size of frozen dough is smaller than that of unfrozen one. The proposed method can provide a novel tool to investigate the effects of mixing and preservation treatments on the size, morphology and distribution of bubbles in bread dough.

  5. Building predictive models of soil particle-size distribution

    Directory of Open Access Journals (Sweden)

    Alessandro Samuel-Rosa

    2013-04-01

    Full Text Available Is it possible to build predictive models (PMs of soil particle-size distribution (psd in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index. The PMs explained more than half of the data variance. This performance is similar to (or even better than that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd of soils in regions of complex geology.

  6. SIZE DISTRIBUTIONS OF SOLAR FLARES AND SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Cliver, E. W. [Space Vehicles Directorate, Air Force Research Laboratory, Sunspot, NM 88349 (United States); Ling, A. G. [Atmospheric Environmental Research, Lexington, MA 02421 (United States); Belov, A. [IZMIRAN, Troitsk, Moscow Region 142190 (Russian Federation); Yashiro, S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-09-10

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast ({>=}1000 km s{sup -1}) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes ({alpha} values) of power-law size distributions of the peak 1-8 A fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes {>=}1 pr cm{sup -2} s{sup -1} sr{sup -1}) and (b) fast CMEs were {approx}1.3-1.4 compared to {approx}1.2 for the peak proton fluxes of >10 MeV SEP events and {approx}2 for the peak 1-8 A fluxes of all SXR flares. The difference of {approx}0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  7. Grain size effects on He bubbles distribution and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Gao, X.; Gao, N. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Z.G., E-mail: zhgwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Cui, M.H.; Wei, K.F.; Yao, C.F.; Sun, J.R.; Li, B.S.; Zhu, Y.B.; Pang, L.L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Y.F. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xie, E.Q. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2015-02-15

    Highlights: • SMAT treated T91 and conventional T91 were implanted by 200 keV He{sup 2+} to 1 × 10{sup 21} He m{sup −2} at room temperature and annealed at 450 °C for 3.5 h. • He bubbles in nanometer-size-grained T91 are smaller in as-implanted case. • The bubbles in the matrix of nanograins were hard to detect and those along the nanograin boundaries coalesced and filled with the grain boundaries after annealing. • Brownian motion and coalescence and Ostwald ripening process might lead to bubbles morphology presented in the nanometer-size-grained T91 after annealing. - Abstract: Grain boundary and grain size effects on He bubble distribution and evolution were investigated by He implantation into nanometer-size-grained T91 obtained by Surface Mechanical Attrition Treatment (SMAT) and the conventional coarse-grained T91. It was found that bubbles in the nanometer-size-grained T91 were smaller than those in the conventional coarse-grained T91 in as-implanted case, and bubbles in the matrix of nanograins were undetectable while those at nanograin boundaries (GBs) coalesced and filled in GBs after heat treatment. These results suggested that the grain size of structural material should be larger than the mean free path of bubble’s Brownian motion and/or denuded zone around GBs in order to prevent bubbles accumulation at GBs, and multiple instead of one type of defects should be introduced into structural materials to effectively reduce the susceptibility of materials to He embrittlement and improve the irradiation tolerance of structural materials.

  8. Method for measuring the size distribution of airborne rhinovirus

    Energy Technology Data Exchange (ETDEWEB)

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  9. New finite-size correction for local alignment score distributions

    Directory of Open Access Journals (Sweden)

    Park Yonil

    2012-06-01

    Full Text Available Abstract Background Local alignment programs often calculate the probability that a match occurred by chance. The calculation of this probability may require a “finite-size” correction to the lengths of the sequences, as an alignment that starts near the end of either sequence may run out of sequence before achieving a significant score. Findings We present an improved finite-size correction that considers the distribution of sequence lengths rather than simply the corresponding means. This approach improves sensitivity and avoids substituting an ad hoc length for short sequences that can underestimate the significance of a match. We use a test set derived from ASTRAL to show improved ROC scores, especially for shorter sequences. Conclusions The new finite-size correction improves the calculation of probabilities for a local alignment. It is now used in the BLAST+ package and at the NCBI BLAST web site (http://blast.ncbi.nlm.nih.gov.

  10. Better Size Estimation for Sparse Matrix Products

    DEFF Research Database (Denmark)

    Amossen, Rasmus Resen; Campagna, Andrea; Pagh, Rasmus

    2010-01-01

    We consider the problem of doing fast and reliable estimation of the number of non-zero entries in a sparse Boolean matrix product. Let n denote the total number of non-zero entries in the input matrices. We show how to compute a 1 ± ε approximation (with small probability of error) in expected...

  11. Study of columnar aerosol size distribution in Hong Kong

    Directory of Open Access Journals (Sweden)

    X. Yang

    2009-08-01

    Full Text Available This paper presents studies on columnar aerosol optical properties in Hong Kong with focus on aerosol volume size distribution, which helps understand local aerosol properties, variation, hygroscopic growth and coagulation. Long-term ground measurements in the wet season in the years of 2002, 2003, 2004 and 2008 have been performed using a sun-sky radiometer. Data validation made using MODIS and local AERONET shows agreement. A bimodal size distribution is found with the fine mode centering at ~0.2 μm and coarse mode centering at ~3 μm respectively. The fine and coarse mode have close volume concentrations of nearly 50% fraction in composing local aerosols. Intercomparison of different years shows similar aerosol properties while a small increase of fine mode aerosol could be observed. A systematic shift of size distribution parameters is observed with different atmospheric conditions, where higher aerosol loadings and Angstrom exponent correspond to more fine mode aerosols. The fine mode is found to be more closely correlated with this shift than the coarse mode. A higher fine mode volume fraction and smaller median fine radius correspond to a larger Angstrom exponent. The fine mode aerosol hygroscopic growth is one of the main mechanisms for such systematic shifting. A third mode centering at ~1–2 μm could be discovered under high aerosol loading and high fine mode aerosol conditions. It becomes more pronounced with high aerosol optical depth and larger Angstrom exponent. Investigation of its variation with corresponding optical parameters and correlation with atmospheric conditions appears to support the hypothesis that it is mainly due to the fine mode aerosol hygroscopic growth and coagulation rather than the contribution from the coarse mode. While the very humid environment facilitates the aerosol hygroscopic growth, aerosol coagulation might further produce larger aerosols under high fine aerosol conditions. The continental outflow

  12. Study of columnar aerosol size distribution in Hong Kong

    Directory of Open Access Journals (Sweden)

    X. Yang

    2009-03-01

    Full Text Available This paper presents studies on columnar aerosol optical properties in Hong Kong with focus on aerosol volume size distribution. Long-term ground measurements in the wet season in the years of 2002, 2003, 2004 and 2008 have been performed using a sun-sky radiometer. A bimodal size distribution is found with the fine mode centering at ~0.2 μm and coarse mode centering at ~6 μm, respectively. The fine and coarse mode have close volume concentrations of nearly 50% fraction in composing local aerosols. Intercomparison of different years shows similar aerosol properties while a small increase of fine mode aerosol could be observed. A systematic shift of size distribution parameters is observed with different atmospheric conditions, where higher aerosol loadings and Angstrom exponent correspond to more fine aerosols. The fine mode is found to be more closely correlated with this shift than the coarse mode. A higher fine mode volume fraction and smaller median fine radius correspond to a larger Angstrom exponent. The fine aerosol hygroscopic growth is one of the main mechanisms for such systematic shifting. A third mode centering at ~1–2 μm could be discovered under high aerosol loading and high fine aerosol conditions. It becomes more pronounced with high aerosol optical depth and larger Angstrom exponent. Investigation of its variation with corresponding optical parameters and correlation with atmospheric conditions indicates that it is mainly due to the fine aerosol hygroscopic growth and coagulation rather than the contribution from the coarse mode. While the very humid environment facilitates the aerosol hygroscopic growth, aerosol coagulation might further produce more large aerosols under high fine aerosol conditions. The continental outflow with transported ageing aerosols and biomass burning might have also contributed to this additional mode.

  13. The Size Distribution of Arecibo Interstellar Particles and Its Implications

    Science.gov (United States)

    Meisel, David D.; Janches, Diego; Mathews, John D.

    2002-11-01

    Size histograms of all Arecibo ultra-high-frequency radar micrometeors detected in 1997-1998 whose radii were measured by atmospheric drag are presented. Most can be fitted with either a lognormal function or, alternatively, one or more power-law functions. Either form is indicative of significant fragmentation. The interplanetary dust particle (IDP) histogram results are discussed and compared with those considered to be extrasolar particles, including a subset of those deemed to be true interstellar particles (ISPs). The Arecibo IDP power-law results are shown to agree well with those derived from IRAS dust bands and Long-Duration Exposure Facility cratering, thus confirming the applicability of the sample to the derivation of mass estimates. A dichotomy between size histograms of particles with preperihelion Earth encounters and those with postperihelion encounters is evidence that significant size histogram change occurs when the smallest particles, including all ISPs, pass close to the Sun, even if only once. A small sample of previously undetected Arecibo postperihelion ISPs coming from the direction of the known Ulysses gas and dust flow are shown to have a size distribution and solar system dynamical properties similar to other Arecibo ISPs and therefore can be combined with previous ISP results to obtain a more robust sample. Derived mass flux points for the Arecibo ISPs agree well (over 5 orders of magnitude of mass) with a previously derived mass flux distribution function for Ulysses/Galileo spacecraft dust. This combined spacecraft and ground-based mass flux function is then used to infer a number of interesting mass-related solar system and astrophysical quantities.

  14. A theoretical explanation of grain size distributions in explosive rock fragmentation

    Science.gov (United States)

    Fowler, A. C.; Scheu, Bettina

    2016-06-01

    We have measured grain size distributions of the results of laboratory decompression explosions of volcanic rock. The resulting distributions can be approximately represented by gamma distributions of weight per cent as a function of ϕ =-log2⁡d , where d is the grain size in millimetres measured by sieving, with a superimposed long tail associated with the production of fines. We provide a description of the observations based on sequential fragmentation theory, which we develop for the particular case of `self-similar' fragmentation kernels, and we show that the corresponding evolution equation for the distribution can be explicitly solved, yielding the long-time lognormal distribution associated with Kolmogorov's fragmentation theory. Particular features of the experimental data, notably time evolution, advection, truncation and fines production, are described and predicted within the constraints of a generalized, `reductive' fragmentation model, and it is shown that the gamma distribution of coarse particles is a natural consequence of an assumed uniform fragmentation kernel. We further show that an explicit model for fines production during fracturing can lead to a second gamma distribution, and that the sum of the two provides a good fit to the observed data.

  15. Evolution of Pore Size Distribution and Mean Pore Size in Lotus-type Porous Magnesium Fabricated with Gasar Process

    Institute of Scientific and Technical Information of China (English)

    Yuan LIU; Yanxiang LI; Huawei ZHANG; Jiang WAN

    2006-01-01

    The effect of gas pressures on the mean pore size, the porosity and the pore size distribution of lotus-type porous magnesium fabricated with Gasar process were investigated. The theoretical analysis and the experimental results all indicate that there exists an optimal ratio of the partial pressures of hydrogen pH2 to argon pAr for producing lotus-type structures with narrower pore size distribution and smaller pore size. The effect of solidification mode on the pore size distribution and pore size was also discussed.

  16. Grain size distribution of the matrix in the Allende chondrite

    Science.gov (United States)

    Toriumi, M.

    1989-03-01

    Results are presented from analytical TEM, high-resolution TEM, and SEM studies of the Allende chondrite, showing that the matrix consists of very fine-grained Fe-rich olivine, Ca-poor and Fe-rich clinopyroxene, Fe-rich spinel, and Ni-bearing troilite. Slightly sintered and non-sintered very fine-grained aggregates are observed. The results suggest that the coarse-grained olivine aggregates experienced a heating event, whereas the ultrafine-grained aggregates did not. The size and frequency distributions of matrix grains are measured. The frequency distribution displays a long-term tail with power law and a log-normal pattern with a peak at 5 nm in the range from 1 to 10 nm. This suggests that the fine-grained matrix was probably formed at conditions far from equilibrium in the protosolar cloud.

  17. Effects of dust size distribution in ultracold quantum dusty plasmas

    Institute of Scientific and Technical Information of China (English)

    Qi Xue-Hong; Duan Wen-Shan; Chen Jian-Min; Wang Shan-Jin

    2011-01-01

    The effect of dust size distribution in ultracold quantum dusty plasmas are investigated in this paper. How the dispersion relation and the propagation velocity for the quantum dusty plasma vary with the system parameters and the different dust distribution are studied. It is found that as the Fermi temperature of the dust grains increases the frequency of the wave increases for large wave number dust acoustic wave. The quantum parameter of Hd also increases the frequency of the large wave number dust acoustic wave. It is also found that the frequency ω0 and the propagation velocity v0 of quantum dust acoustic waves all increase as the total number density increases. They are greater for unusual dusty plasmas than those of the usual dusty plasma.

  18. Empirical Reference Distributions for Networks of Different Size

    CERN Document Server

    Smith, Anna; Browning, Christopher R

    2015-01-01

    Network analysis has become an increasingly prevalent research tool across a vast range of scientific fields. Here, we focus on the particular issue of comparing network statistics, i.e. graph-level measures of network structural features, across multiple networks that differ in size. Although "normalized" versions of some network statistics exist, we demonstrate via simulation why direct comparison of raw and normalized statistics is often inappropriate. We examine a recent suggestion to normalize network statistics relative to Erdos-Renyi random graphs and demonstrate via simulation how this is an improvement over direct comparison, but still sometimes problematic. We propose a new adjustment method based on a reference distribution constructed as a mixture model of random graphs which reflect the dependence structure exhibited in the observed networks. We show that using simple Bernoulli models as mixture components in this reference distribution can provide adjusted network statistics that are relatively ...

  19. Top pair production distributions at the Tevatron

    Directory of Open Access Journals (Sweden)

    Takeuchi Yuji

    2013-05-01

    Full Text Available At the Tevatron, the top quark is mainly produced in pairs through the strong interaction and decays before forming hadrons. Thus the kinematical distributions at top pair production possess rich information on the tt¯$tar t$ production vertex including polarizations of top and anti-top quarks. In this article, recent measurements on top quark pair production distributions at Tevatron (CDF and DO are presented.

  20. Size Distribution of Main-Belt Asteroids with High Inclination

    CERN Document Server

    Terai, Tsuyoshi

    2010-01-01

    We investigated the size distribution of high-inclination main-belt asteroids (MBAs) to explore asteroid collisional evolution under hypervelocity collisions of around 10 km/s. We performed a wide-field survey for high-inclination sub-km MBAs using the 8.2-m Subaru Telescope with the Subaru Prime Focus Camera (Suprime-Cam). Suprime-Cam archival data were also used. A total of 616 MBA candidates were detected in an area of 9.0 deg^2 with a limiting magnitude of 24.0 mag in the SDSS r filter. Most of candidate diameters were estimated to be smaller than 1 km. We found a scarcity of sub-km MBAs with high inclination. Cumulative size distributions (CSDs) were constructed using Subaru data and published asteroid catalogs. The power-law indexes of the CSDs were 2.17 +/- 0.02 for low-inclination ( 15 deg) MBAs in the 0.7-50 km diameter range. The high-inclination MBAs had a shallower CSD. We also found that the CSD of S-like MBAs had a small slope with high inclination, whereas the slope did not vary with inclinatio...

  1. Bble Size Distribution for Waves Propagating over A Submerged Breakwater

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Experiments are carried out to study the characteristics of active bubbles entrained by breaking waves as these propagate over an abruptly topographical change or a submerged breakwater. Underwater sounds generated by the entrained air bubbles are detected by a hydrophone connected to a charge amplifier and a data acquisition system. The size distribution of the bubbles is then determined inversely from the received sound frequencies. The sound signals are converted from time domain to time-frequency domain by applying Gabor transform. The number of bubbles with different sizes are counted from the signal peaks in the time-frequency domain. The characteristics of the bubbles are in terms of bubble size spectra, which account for the variation in bubble probability density related to the bubble radius r. The experimental data demonstrate that the bubble probability density function shows a-2.39 power-law scaling with radius for r>0.8 mm, and a-1.11 power law for r<0.8 mm.

  2. The Angstrom Exponent and Bimodal Aerosol Size Distributions

    Science.gov (United States)

    Schuster, Gregory L.; Dubovik, Oleg; Holben, Brent H.

    2005-01-01

    Powerlaws have long been used to describe the spectral dependence of aerosol extinction, and the wavelength exponent of the aerosol extinction powerlaw is commonly referred to as the Angstrom exponent. The Angstrom exponent is often used as a qualitative indicator of aerosol particle size, with values greater than two indicating small particles associated with combustion byproducts, and values less than one indicating large particles like sea salt and dust. In this study, we investigate the relationship between the Angstrom exponent and the mode parameters of bimodal aerosol size distributions using Mie theory calculations and Aerosol Robotic Network (AERONET) retrievals. We find that Angstrom exponents based upon seven wavelengths (0.34, 0.38, 0.44, 0.5, 0.67, 0.87, and 1.02 micrometers) are sensitive to the volume fraction of aerosols with radii less then 0.6 micrometers, but not to the fine mode effective radius. The Angstrom exponent is also known to vary with wavelength, which is commonly referred to as curvature; we show how the spectral curvature can provide additional information about aerosol size distributions for intermediate values of the Angstrom exponent. Curvature also has a significant effect on the conclusions that can be drawn about two-wavelength Angstrom exponents; long wavelengths (0.67, 0.87 micrometers) are sensitive to fine mode volume fraction of aerosols but not fine mode effective radius, while short wavelengths (0.38, 0.44 micrometers) are sensitive to the fine mode effective radius but not the fine mode volume fraction.

  3. Size distribution analysis of influenza virus particles using size exclusion chromatography.

    Science.gov (United States)

    Vajda, Judith; Weber, Dennis; Brekel, Dominik; Hundt, Boris; Müller, Egbert

    2016-09-23

    Size exclusion chromatography is a standard method in quality control of biopharmaceutical proteins. In contrast, vaccine analysis is often based on activity assays. The hemagglutination assay is a widely accepted influenza quantification method, providing no insight in the size distribution of virus particles. Capabilities of size exclusion chromatography to complement the hemagglutination assay are investigated. The presented method is comparatively robust regarding different buffer systems, ionic strength and additive concentrations. Addition of 200mM arginine or sodium chloride is necessary to obtain complete virus particle recovery. 0.5 and 1.0M arginine increase the hydrodynamic radius of the whole virus particles by 5nm. Sodium citrate induces virus particle aggregation. Results are confirmed by dynamic light scattering. Retention of a H1N1v strain correlates with DNA contents between 5ng/mL and 670ng/mL. Quantitative elution of the virus preparations is verified on basis of hemagglutination activity. Elution of hemagglutination inducing compounds starts at a flow channel diameter of 7000nm. The universal applicability is demonstrated with three different influenza virus samples, including an industrially produced, pandemic vaccine strain. Size distribution of the pandemic H1N1v 5258, H1N1 PR/8/34, and H3N2 Aichi/2/68 preparations spreads across inter- and intra-particle volume and extends to the secondary interaction dominated range. Thus, virus particle debris seems to induce hemagglutination. Fragments generated by 0.5% Triton™ X-100 treatment increase overall hemagglutination activity. PMID:27578410

  4. Scale effects on the variability of the raindrop size distribution

    Science.gov (United States)

    Raupach, Timothy; Berne, Alexis

    2016-04-01

    The raindrop size distribution (DSD) is of utmost important to the study of rainfall processes and microphysics. All important rainfall variables can be calculated as weighted moments of the DSD. Qualitative precipitation estimation (QPE) algorithms and numerical weather prediction (NWP) models both use the DSD in order to calculate quantities such as the rain rate. Often these quantities are calculated at a pixel scale: radar reflectivities, for example, are integrated over a volume, so a DSD for the volume must be calculated or assumed. We present results of a study in which we have investigated the change of support problem with respect to the DSD. We have attempted to answer the following two questions. First, if a DSD measured at point scale is used to represent an area, how much error does this introduce? Second, how representative are areal DSDs calculated by QPE and NWP algorithms of the microphysical process happening inside the pixel of interest? We simulated fields of DSDs at two representative spatial resolutions: at the 2.1x2.1 km2 resolution of a typical NWP pixel, and at the 5x5 km2 resolution of a Global Precipitation Mission (GPM) satellite-based weather radar pixel. The simulation technique uses disdrometer network data and geostatistics to simulate the non-parametric DSD at 100x100 m2 resolution, conditioned by the measured DSD values. From these simulations, areal DSD measurements were derived and compared to point measurements of the DSD. The results show that the assumption that a point represents an area introduces error that increases with areal size and drop size and decreases with integration time. Further, the results show that current areal DSD estimation algorithms are not always representative of sub-grid DSDs. Idealised simulations of areal DSDs produced representative values for rain rate and radar reflectivity, but estimations of drop concentration and characteristic drop size that were often outside the sub-grid value ranges.

  5. Ultrasonic attenuation model for measuring particle size and inverse calculation of particle size distribution in mineral slurries

    Institute of Scientific and Technical Information of China (English)

    HE Gui-chun; NI Wen

    2006-01-01

    Based on various ultrasonic loss mechanisms, the formula of the cumulative mass percentage of minerals with different particle sizes was given, with which the particle size distribution was integrated into an ultrasonic attenuation model. And then the correlations between the ultrasonic attenuation and the pulp density, and the particle size were obtained. The derived model was combined with the experiment and the analysis of experimental data to determine the inverse model relating ultrasonic attenuation coefficient with size distribution. Finally, an optimization method of inverse parameter, genetic algorithm was applied for particle size distribution. The results of inverse calculation show that the precision of measurement was high.

  6. Bubble size distribution in surface wave breaking entraining process

    Institute of Scientific and Technical Information of China (English)

    HAN; Lei; YUAN; YeLi

    2007-01-01

    From the similarity theorem,an expression of bubble population is derived as a function of the air entrainment rate,the turbulent kinetic energy (TKE) spectrum density and the surface tension.The bubble size spectrum that we obtain has a dependence of a-2.5+nd on the bubble radius,in which nd is positive and dependent on the form of TKE spectrum within the viscous dissipation range.To relate the bubble population with wave parameters,an expression about the air entrainment rate is deduced by introducing two statistical relations to wave breaking.The bubble population vertical distribution is also derived,based on two assumptions from two typical observation results.

  7. Pore Size Distribution of High Performance Metakaolin Concrete

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Compressive strength, porosity and pore size distribution of high performance metakaolin (MK) concrete were investigated. Concretes containing 0,5%,10% and 20% metakaolin were prepared at a water/cementitious material ratio (W/C) of 0.30. In parallel, concrete mixtures with the replacement of cement by 20% fly ash or 5 and 10% silica fume were prepared for comparison. The specimens were cured in water at 27℃ for 3 to 90 days. The results show that at the early age of curing (3 days and 7 days), metakaolin replacements increase the compressive strength, but silica fume replacement slightly reduces the compressive strength. At the age of and after 28 days, the compressive strength of the concrete with metakaolin and silica fume replacement increases.A strong reduction in the total porosity and average pore diameter were observed in the concrete with MK 20% and 10% in the first 7 days.

  8. Particle size distribution dynamics during precipitative softening: constant solution composition.

    Science.gov (United States)

    Nason, Jeffrey A; Lawler, Desmond F

    2008-08-01

    In the treatment of surface water for potable use, precipitative coagulation (e.g., lime softening, alum or iron sweep coagulation) is widely utilized prior to particle removal processes. The particle size distribution (PSD) formed during such processes is a prime determinant of the removal efficiency for suspended and dissolved contaminants, but little is known quantitatively about how PSDs change by simultaneous precipitation and flocculation. Using precipitative softening as an example, detailed measurements of the PSD (using electronic particle counting) were made during precipitation of CaCO(3) under conditions of constant solution composition. Examination of the time-varying PSDs revealed dramatic changes resulting from nucleation, crystal growth, and flocculation. The influence of the saturation ratio, seed concentration, and mixing intensity on those processes was quantified. Implications with respect to the design and operation of water treatment facilities are discussed. PMID:18656223

  9. Optimization of bridging agents size distribution for drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, Alex; Andrade, Alex Rodrigues de; Pires Junior, Idvard Jose; Martins, Andre Leibsohn [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)]. E-mails: awaldmann@petrobras.com.br; andradear.gorceix@petrobras.com.br; idvard.gorceix@petrobras.com.br; aleibsohn@petrobras.com.br

    2008-07-01

    The conventional drilling technique is based on positive hydrostatic pressure against well walls to prevent inflows of native fluids into the well. Such inflows can cause security problems for the team well and to probe. As the differential pressure of the well to reservoir is always positive, the filtrate of the fluid tends to invade the reservoir rock. Minimize the invasion of drilling fluid is a relevant theme in the oil wells drilling operations. In the design of drilling fluid, a common practice in the industry is the addition of bridging agents in the composition of the fluid to form a cake of low permeability at well walls and hence restrict the invasive process. The choice of drilling fluid requires the optimization of the concentration, shape and size distribution of particles. The ability of the fluid to prevent the invasion is usually evaluated in laboratory tests through filtration in porous media consolidated. This paper presents a description of the methods available in the literature for optimization of the formulation of bridging agents to drill-in fluids, predicting the pore throat from data psychotherapy, and a sensitivity analysis of the main operational parameters. The analysis is based on experimental results of the impact of the size distribution and concentration of bridging agents in the filtration process of drill-in fluids through porous media submitted to various different differential of pressure. The final objective is to develop a software for use of PETROBRAS, which may relate different types and concentrations of bridging agents with the properties of the reservoir to minimize the invasion. (author)

  10. Airborne Measurements of Aerosol Size Distributions During PACDEX

    Science.gov (United States)

    Rogers, D. C.; Gandrud, B.; Campos, T.; Kok, G.; Stith, J.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) is an airborne project that attempts to characterize the indirect aerosol effect by tracing plumes of dust and pollution across the Pacific Ocean. This project occurred during April-May 2007 and used the NSF/NCAR HIAPER research aircraft. When a period of strong generation of dust particles and pollution was detected by ground-based and satellite sensors, then the aircraft was launched from Colorado to Alaska, Hawaii, and Japan. Its mission was to intercept and track these plumes from Asia, across the Pacific Ocean, and ultimately to the edges of North America. For more description, see the abstract by Stith and Ramanathan (this conference) and other companion papers on PACDEX. The HIAPER aircraft carried a wide variety of sensors for measuring aerosols, cloud particles, trace gases, and radiation. Sampling was made in several weather regimes, including clean "background" air, dust and pollution plumes, and regions with cloud systems. Altitude ranges extended from 100 m above the ocean to 13.4 km. This paper reports on aerosol measurements made with a new Ultra-High Sensitivity Aerosol Spectrometer (UHSAS), a Radial Differential Mobility Analyzer (RDMA), a water-based CN counter, and a Cloud Droplet Probe (CDP). These cover the size range 10 nm to 10 um diameter. In clear air, dust was detected with the UHSAS and CDP. Polluted air was identified with high concentrations of carbon monoxide, ozone, and CN. Aerosol size distributions will be presented, along with data to define the context of weather regimes.

  11. Size distribution measurements of stable Pb and 210Pb

    International Nuclear Information System (INIS)

    High volume impactor measurements were taken to define the particle size distribution of atmospheric stable Pb and 210Pb. This was done in an effort to establish if a particle size effect could be responsible for the differences in wet and dry deposition values of stable Pb and 210Pb. Duplicate impactor tests were run on the roof of the Environmental Measurements Laboratory (EML) and at the Regional Baseline Station in Chester, NJ, to determine the feasibility of collecting flow controlled impactor samples over extended sampling periods. The test results indicate that 210Pb is associated more with smaller particles than is the stable Pb (63% vs 53%, on the average for particles less than 0.58 μm). This difference, although not large, is beyond the experimental error. The duplicate samples gave results that are in good agreement. The differences observed between the total air concentrations at the urban and rural sites are as expected, since 210Pb has a natural source while Pb is of anthropogenic origin

  12. Vesicle Size Distribution as a Novel Nuclear Forensics Tool

    Science.gov (United States)

    Simonetti, Antonio

    2016-01-01

    The first nuclear bomb detonation on Earth involved a plutonium implosion-type device exploded at the Trinity test site (33°40′38.28″N, 106°28′31.44″W), White Sands Proving Grounds, near Alamogordo, New Mexico. Melting and subsequent quenching of the local arkosic sand produced glassy material, designated “Trinitite”. In cross section, Trinitite comprises a thin (1–2 mm), primarily glassy surface above a lower zone (1–2 cm) of mixed melt and mineral fragments from the precursor sand. Multiple hypotheses have been put forward to explain these well-documented but heterogeneous textures. This study reports the first quantitative textural analysis of vesicles in Trinitite to constrain their physical and thermal history. Vesicle morphology and size distributions confirm the upper, glassy surface records a distinct processing history from the lower region, that is useful in determining the original sample surface orientation. Specifically, the glassy layer has lower vesicle density, with larger sizes and more rounded population in cross-section. This vertical stratigraphy is attributed to a two-stage evolution of Trinitite glass from quench cooling of the upper layer followed by prolonged heating of the subsurface. Defining the physical regime of post-melting processes constrains the potential for surface mixing and vesicle formation in a post-detonation environment. PMID:27658210

  13. Laser induced mechanisms controlling the size distribution of metallic nanoparticles.

    Science.gov (United States)

    Liu, Zeming; Vitrant, Guy; Lefkir, Yaya; Bakhti, Said; Destouches, Nathalie

    2016-09-21

    This paper describes a model to simulate changes in the size distribution of metallic nanoparticles (NPs) in TiO2 films upon continuous wave light excitation. Interrelated laser induced physical and chemical processes initiated directly by photon absorption or by plasmon induced thermal heating are considered. Namely the model takes into account the NP coalescence, Ostwald ripening, the reduction of silver ions and the oxidation of metallic NPs, competitive mechanisms that can lead to counter-intuitive behaviors depending on the exposure conditions. Theoretical predictions are compared successfully to the experimental results deduced from a thorough analysis of scanning transmission electron microscopy (STEM) pictures of Ag:TiO2 films processed with a scanning visible laser beam at different speeds. Ag:TiO2 systems are considered for many applications in solar energy conversion, photocatalysis or secured data printing. Numerical investigations of such a system provide a better understanding of light induced growth and shrinking processes and open up prospects for designing more efficient photocatalytic devices based on metal NP doped TiO2 or for improving the size homogeneity in self-organized metallic NP patterns, for instance. PMID:27539293

  14. Colony size-frequency distribution of pocilloporid juvenile corals along a natural environmental gradient in the Red Sea

    KAUST Repository

    Lozano-Cortes, Diego

    2015-10-29

    Coral colony size-frequency distributions can be used to assess population responses to local environmental conditions and disturbances. In this study, we surveyed juvenile pocilloporids, herbivorous fish densities, and algal cover in the central and southern Saudi Arabian Red Sea. We sampled nine reefs with different disturbance histories along a north–south natural gradient of physicochemical conditions (higher salinity and wider temperature fluctuations in the north, and higher turbidity and productivity in the south). Since coral populations with negatively skewed size-frequency distributions have been associated with unfavorable environmental conditions, we expected to find more negative distributions in the southern Red Sea, where corals are potentially experiencing suboptimal conditions. Although juvenile coral and parrotfish densities differed significantly between the two regions, mean colony size and size-frequency distributions did not. Results suggest that pocilloporid colony size-frequency distribution may not be an accurate indicator of differences in biological or oceanographic conditions in the Red Sea.

  15. Event-based total suspended sediment particle size distribution model

    Science.gov (United States)

    Thompson, Jennifer; Sattar, Ahmed M. A.; Gharabaghi, Bahram; Warner, Richard C.

    2016-05-01

    One of the most challenging modelling tasks in hydrology is prediction of the total suspended sediment particle size distribution (TSS-PSD) in stormwater runoff generated from exposed soil surfaces at active construction sites and surface mining operations. The main objective of this study is to employ gene expression programming (GEP) and artificial neural networks (ANN) to develop a new model with the ability to more accurately predict the TSS-PSD by taking advantage of both event-specific and site-specific factors in the model. To compile the data for this study, laboratory scale experiments using rainfall simulators were conducted on fourteen different soils to obtain TSS-PSD. This data is supplemented with field data from three construction sites in Ontario over a period of two years to capture the effect of transport and deposition within the site. The combined data sets provide a wide range of key overlooked site-specific and storm event-specific factors. Both parent soil and TSS-PSD in runoff are quantified by fitting each to a lognormal distribution. Compared to existing regression models, the developed model more accurately predicted the TSS-PSD using a more comprehensive list of key model input parameters. Employment of the new model will increase the efficiency of deployment of required best management practices, designed based on TSS-PSD, to minimize potential adverse effects of construction site runoff on aquatic life in the receiving watercourses.

  16. ANALYTICAL MODEL FOR MARS CRATER-SIZE FREQUENCY DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    W. Bruckman

    2009-01-01

    Full Text Available We present a theoretical and analytical curve that reproduces essential features of the frequency distributions vs. diameter of the 42,000 impact craters contained in Barlow's Mars Catalog. The model is derived using reasonable simple assumptions that allow us to relate the present craters population with the craters population at each particular epoch. The model takes into consideration the reduction of the number of craters as a function of time caused by their erosion and obliteration, and this provides a simple and natural explanation for the presence of di erent slopes in the empirical log-log plot of number of craters (N vs. diameter (D. A mean life for martians craters as a function of diameter is deduced, and it is shown that this result is consistent with the corresponding determination of craters mean life based on Earth data. Arguments are given to suggest that this consistency follows from the fact that a crater mean life is proportional to its volumen. It also follows that in the absence of erosions and obliterations, when craters are preserved, we would have N / 1=D4:3, which is a striking conclusion, since the exponent 4:3 is larger than previously thought. Such an exponent implies a similar slope in the extrapolated impactors size-frequency distribution.

  17. Influence of Milling Process of Roasted Cocoa Beans on Size Distribution Change of Cocoa Cotyledon

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2007-05-01

    Full Text Available One of important steps in secondarycocoa process is deshelling cocoa beans roasted. The aim of deshelling is to enrich cotyledon cocoa surface area which affects to reduce energy and processing time with good quality of the chocolate product. The objective of this research is to study the influence of milling process on physical characteristic change of cocoa beans roasted such as size distribution change, geometrical diameter average, uniformity index, fineness modulus, and average dimension of cotyledoncocoa roasted. The Indonesian Coffee and Cocoa Research Institute has designed and tested deshelling of roasted cocoa beans which will be used in this research. Before deshelling process, C grade bulk cocoa beans has been roasted up to 2.5—3% water contents. The result showed that optimal milling process by rotary cutter type milling unit has good size distribution change, geometrical diameter average, uniformity index, fineness modulus, and average dimension on 500 rpm rotary speed and 2.8 m/s air flow. On optimal process condition, 74.5% of cocoa cotyledon roasted has diameter size between 2.0—4.75 mm, 2.116 mm average of geometrical diameter, 0.864 mm average dimension, 3.052 fineness modulus, and 80% as crude size particel-20% as temperate size particel on uniformity index. Therefore, more than 80% of cocoa cotyledon roasted has diameter size between 2.0—4.75 mm with 700—900 rpm rotary cutter speed. Average of geometric diameter was 1.65—2.19 mm, and the dimension average was 0.69—0.89 mm. Uniformity index was crude size particle up to 80—90%, and in temperate size particle10—20%. Fineness modulus value was 2.73—3.09. Key words: cocoa, milling, size distribution, roasted beans.

  18. Rank-size Distributions of Chinese Cities: Macro and Micro Patterns

    Institute of Scientific and Technical Information of China (English)

    LI Shujuan

    2016-01-01

    A large number of studies have been conducted to find a better fit for city rank-size distributions in different countries.Many theoretical curves have been proposed,but no consensus has been reached.This study argues for the importance of examining city rank-size distribution across different city size scales.In addition to focusing on macro patterns,this study examines the micro patterns of city rank-size distributions in China.A moving window method is developed to detect rank-size distributions of cities in different sizes incrementally.The results show that micro patterns of the actual city rank-size distributions in China are much more complex than those suggested by the three theoretical distributions examined (Pareto,quadratic,and q-exponential distributions).City size distributions present persistent discontinuities.Large cities are more evenly distributed than small cities and than that predicted by Zipf's law.In addition,the trend is becoming more pronounced over time.Medium-sized cities became evenly distributed first and then unevenly distributed thereafter.The rank-size distributions of small cities are relatively consistent.While the three theoretical distributions examined in this study all have the ability to detect the overall dynamics of city rank-size distributions,the actual macro distribution may be composed of a combination of the three theoretical distributions.

  19. Crystal Size Distributions in Igneous rocks: Where are we now?

    Science.gov (United States)

    Higgins, M.

    2003-12-01

    Modern Crystal Size Distributions (CSD) studies started in 1988 and have expanded since then, albeit somewhat slowly. We have now measured CSDs in a variety of different compositions and for both plutonic and volcanic rocks. However, the subject still lags far behind chemical petrology and we need many more studies. CSD methodology has advanced considerably, both for 3D and 2D methods, but it is unfortunate that some 2D studies still do not use appropriate stereological conversions or publish their raw data. The nature of the lower size limit is very important, real or measurement artefact, but is not commonly stated. All this is especially important for comparing data with earlier studies. Individual CSDs of minerals are not always very informative. A much better approach is to look at suites of related CSDs. For instance, different minerals within a single sample, ensembles of related whole rock samples, comparison of late and early textures as preserved in oikocrysts, dykes or volcanic rocks. As more data become available it will be possible to compare usefully unrelated suites of rocks. Straight or nearly straight CSDs in volcanic rocks can be produced by steady-state crystallisation. If the growth rate is known then the residence time can be determined. In some rocks there is a good agreement with other chronometric techniques, but others show no such concordance. In the latter case another model may be more appropriate, such as textural coarsening. This model has been applied in some cases in inappropriate situations, which has cast doubt on the whole subject of CSDs. For plutonic rocks exponentially increasing undercooling can also produce straight CSDs. However, many CSDs are slightly curved and other models are possible, especially if no small crystals are present. Within ensembles of straight CSDs the slope and intercept are commonly correlated. This is mostly accounted for by closure and hence this correlation is not significant, although the variation

  20. High-Resolution UV Holography Lens for Particle Size Distribution Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Malone, Morris Kaufman; Capelle, Gene; Grover, Mike; Sorenson, Dan; Pazuchanics, Pete

    2010-01-01

    A high-resolution UV holography relay lens, shown in Figure 1, has been developed for measuring particle size distributions down to 0.5 μm in a 12-mm-diameter by 5-mm-thick volume. This work has been selected by an independent judging panel and editors of R&D Magazine as a recipient of a 2009 R&D 100 Award. This award recognizes the 100 most technologically significant products introduced during the past year.

  1. Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution

    Science.gov (United States)

    Kostadinov, Tihomir S.; Milutinović, Svetlana; Marinov, Irina; Cabré, Anna

    2016-04-01

    Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the "unit of accounting" in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size - picophytoplankton (0.5-2 µm in diameter), nanophytoplankton (2-20 µm) and microphytoplankton (20-50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global text">SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield ˜ 0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the

  2. Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution

    Science.gov (United States)

    Kostadinov, Tihomir S.; Milutinović, Svetlana; Marinov, Irina; Cabré, Anna

    2016-04-01

    Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the "unit of accounting" in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size - picophytoplankton (0.5-2 µm in diameter), nanophytoplankton (2-20 µm) and microphytoplankton (20-50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield ˜ 0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the

  3. Productivity in Swedish electricity retail distribution

    International Nuclear Information System (INIS)

    This paper examines productivity growth in electricity retail distribution in Sweden in a multiple output-multiple input framework. The approach used is nonparametric Data Envelopment Analysis (DEA). Productivity is measured by means of the Malmquist index. Productivity comparisons are made between different types of ownership and between different service areas. The study indicates a high rate of productivity growth, due to economics of density, when measured over a period of 17 years. The results show no significant differences in productivity growth between different types of ownership or economic organization. (20 refs., 1 fig., 4 tabs.)

  4. Effects of Fractal Size Distributions on Velocity Distributions and Correlations of a Polydisperse Granular Gas

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-Yuan; ZHANG Duan-Ming

    2008-01-01

    By the Monte Carlo method,the effect of dispersion of disc size distribution on the velocity distributions and correlations of a polydisperse granular gas with fractal size distribution is investigated in the same inelasticity.The dispersion can be described by a fractal dimension D,and the smooth hard discs are engaged in a twodimensional horizontal rectangular box,colliding inelastically with each other and driven by a homogeneous heat bath.In the steady state,the tails of the velocity distribution functions rise more significantly above a Ganssian as D increases,but the non-Ganssian velocity distribution functions do not demonstrate any apparent universal form for any value of D.The spatial velocity correlations are apparently stronger with the increase of D.The perpendicular correlations are about half the parallel correlations,and the two correlations are a power-law decay function of dimensionless distance and are of a long range.Moreover,the parallel velocity correlations of postcollisional state at contact are more than twice as large as the precollisionaJ correlations,and both of them show almost linear behaviour of the fractal dimension D.

  5. Observed oil and gas field size distributions: A consequence of the discovery process and prices of oil and gas

    Science.gov (United States)

    Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.

    1988-01-01

    If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions. ?? 1988 International Association for Mathematical Geology.

  6. Observed oil and gas field size distributions: a consequence of the discovery process and prices of oil and gas

    Energy Technology Data Exchange (ETDEWEB)

    Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.

    1988-11-01

    If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions.

  7. Effect of Pour Size on Concrete Placing Productivity in Nigeria

    Directory of Open Access Journals (Sweden)

    Olaoluwa Olatunde

    2012-06-01

    Full Text Available Pour size as one of the site factors affecting concreting was examined to determine its effects on concreting productivity. A total of 167 separate concrete pours were observed on 25 building construction sites in Lagos, Nigeria,comprising 35 pours placed by crane and skip; 26 pours placed by dumper; 58 pours placed by wheelbarrow; 37 pours placed by head pan; and 11 pours placed jointly by pump, wheelbarrow and head pan. Data collected from the daily concrete pours were analyzed to determine operational productivity rates. The relationship between concreting productivity and pour size was examined using regression analyses to develop a model relating productivity to pour size. The results showed that irrespective of placing method, productivity generally increased by 1.1 m3/h for every 10 m3 increase in pour size. It was recommended that the obtained index of productivity increase per pour size be standardised for use in improving on-site productivity in the Nigerian construction industry.

  8. Determination of Size Distribution of Nano-particles by Capillary Zone Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Yan XUE; Hai Ying YANG; Yong Tan YANG

    2005-01-01

    A new method was developed for the determination of the size distribution of nano-particles by capillary zone electrophoresis (CZE). Scattering effect of nanoparticles was studied. This method for the determination of size distribution was statistical.

  9. Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic

    Science.gov (United States)

    Asmi, E.; Kondratyev, V.; Brus, D.; Laurila, T.; Lihavainen, H.; Backman, J.; Vakkari, V.; Aurela, M.; Hatakka, J.; Viisanen, Y.; Uttal, T.; Ivakhov, V.; Makshtas, A.

    2016-02-01

    Four years of continuous aerosol number size distribution measurements from the Arctic Climate Observatory in Tiksi, Russia, are analyzed. Tiksi is located in a region where in situ information on aerosol particle properties has not been previously available. Particle size distributions were measured with a differential mobility particle sizer (in the diameter range of 7-500 nm) and with an aerodynamic particle sizer (in the diameter range of 0.5-10 μm). Source region effects on particle modal features and number, and mass concentrations are presented for different seasons. The monthly median total aerosol number concentration in Tiksi ranges from 184 cm-3 in November to 724 cm-3 in July, with a local maximum in March of 481 cm-3. The total mass concentration has a distinct maximum in February-March of 1.72-2.38 μg m-3 and two minimums in June (0.42 μg m-3) and in September-October (0.36-0.57 μg m-3). These seasonal cycles in number and mass concentrations are related to isolated processes and phenomena such as Arctic haze in early spring, which increases accumulation and coarse-mode numbers, and secondary particle formation in spring and summer, which affects the nucleation and Aitken mode particle concentrations. Secondary particle formation was frequently observed in Tiksi and was shown to be slightly more common in marine, in comparison to continental, air flows. Particle formation rates were the highest in spring, while the particle growth rates peaked in summer. These results suggest two different origins for secondary particles, anthropogenic pollution being the important source in spring and biogenic emissions being significant in summer. The impact of temperature-dependent natural emissions on aerosol and cloud condensation nuclei numbers was significant: the increase in both the particle mass and the CCN (cloud condensation nuclei) number with temperature was found to be higher than in any previous study done over the boreal forest region. In addition

  10. Single and Joint Multifractal Analysis of Soil Particle Size Distributions

    Institute of Scientific and Technical Information of China (English)

    LI Yi; LI Min; R.HORTON

    2011-01-01

    It is noted that there has been little research to compare volume-based and number-based soil particle size distributions (PSDs).Our objectives were to characterize the scaling properties and the possible connections between volume-based and number-based PSDs by applying single and joint multifractal analysis.Twelve soil samples were taken from selected sites in Northwest China and their PSDs were analyzed using laser diffractometry.The results indicated that the volume-based PSDs of all 12 samples and thc number-based PSDs of 4 samples had multifractal scalings for moment order -6 < q < 6.Some empirical relationships were identified between the extreme probability values, maximum probability (Pmax), minimum probability (Pmin), and Pmax/Pmin, and the multifractal indices,the difference and the ratio of generalized dimensions at q=0 and 1(D0-D1 and D1/D0), maximum and minimum singularity strength (αmax and αmin) and their difference (αmax - αmin, spectrum width), and asymmetric index (RD).An increase in Pmax generally resulted in corresponding increases of D0 - D1, αmax, αmax - αmin, and RD, which indicated that a large Pmax increased the multifractality of a distribution.Joint multifractal analysis showed that there was significant correlation between the scaling indices of volume-based and number-based PSDs.The multifractality indices indicated that for a given soil, the volume-based PSD was more homogeneous than the number-based PSD, and more likely to display monofractal rather than multifractal scaling.

  11. ESTIMATING SOIL PARTICLE-SIZE DISTRIBUTION FOR SICILIAN SOILS

    Directory of Open Access Journals (Sweden)

    Vincenzo Bagarello

    2009-09-01

    Full Text Available The soil particle-size distribution (PSD is commonly used for soil classification and for estimating soil behavior. An accurate mathematical representation of the PSD is required to estimate soil hydraulic properties and to compare texture measurements from different classification systems. The objective of this study was to evaluate the ability of the Haverkamp and Parlange (HP and Fredlund et al. (F PSD models to fit 243 measured PSDs from a wide range of 38 005_Bagarello(547_33 18-11-2009 11:55 Pagina 38 soil textures in Sicily and to test the effect of the number of measured particle diameters on the fitting of the theoretical PSD. For each soil textural class, the best fitting performance, established using three statistical indices (MXE, ME, RMSE, was obtained for the F model with three fitting parameters. In particular, this model performed better in the fine-textured soils than the coarse-textured ones but a good performance (i.e., RMSE < 0.03 was detected for the majority of the investigated soil textural classes, i.e. clay, silty-clay, silty-clay-loam, silt-loam, clay-loam, loamy-sand, and loam classes. Decreasing the number of measured data pairs from 14 to eight determined a worse fitting of the theoretical distribution to the measured one. It was concluded that the F model with three fitting parameters has a wide applicability for Sicilian soils and that the comparison of different PSD investigations can be affected by the number of measured data pairs.

  12. Number size distributions and seasonality of submicron particles in Europe 2008-2009

    Science.gov (United States)

    Asmi, A.; Wiedensohler, A.; Laj, P.; Fjaeraa, A.-M.; Sellegri, K.; Birmili, W.; Weingartner, E.; Baltensperger, U.; Zdimal, V.; Zikova, N.; Putaud, J.-P.; Marinoni, A.; Tunved, P.; Hansson, H.-C.; Fiebig, M.; Kivekäs, N.; Lihavainen, H.; Asmi, E.; Ulevicius, V.; Aalto, P. P.; Swietlicki, E.; Kristensson, A.; Mihalopoulos, N.; Kalivitis, N.; Kalapov, I.; Kiss, G.; de Leeuw, G.; Henzing, B.; Harrison, R. M.; Beddows, D.; O'Dowd, C.; Jennings, S. G.; Flentje, H.; Weinhold, K.; Meinhardt, F.; Ries, L.; Kulmala, M.

    2011-06-01

    Mediterranean aerosol exhibit high seasonality, and a strong accumulation mode in the summer. The greatest concentrations were observed at the Ispra station in Northern Italy with high accumulation mode number concentrations in the winter. The aerosol number concentrations at the Arctic station Zeppelin in Ny-Ålesund in Svalbard have also a strong seasonal cycle, with greater concentrations of accumulation mode particles in winter, and dominating summer Aitken mode indicating more recently formed particles. Observed particles did not show any statistically significant regional work-week or weekday related variation in number concentrations studied. Analysis products are made for open-access to the research community, available in a freely accessible internet site. The results give to the modelling community a reliable, easy-to-use and freely available comparison dataset of aerosol size distributions.

  13. Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution

    Directory of Open Access Journals (Sweden)

    T. S. Kostadinov

    2015-05-01

    Full Text Available Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C biomass, which is a fundamental biogeochemical and ecological variable and the "unit of accounting" in Earth System models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing algorithms to estimate particle volume from a power-law particle size distribution (PSD. Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size – picophytoplankton (0.5–2 μm in diameter, nanophytoplankton (2–20 μm and microphytoplankton (20–50 μm. The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e. oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have large biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield on average ~0.2–0.3 Gt of C, consistent with analogous estimates from two other ocean color algorithms, and several state-of-the-art Earth System models. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, because the PSD-based algorithm is not a priori empirically constrained and introduces improvement over the assumptions of the other approaches. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the

  14. Analytical Approach for Loss Minimization in Distribution Systems by Optimum Placement and Sizing of Distributed Generation

    Directory of Open Access Journals (Sweden)

    Bakshi Surbhi

    2016-01-01

    Full Text Available Distributed Generation has drawn the attention of industrialists and researchers for quite a time now due to the advantages it brings loads. In addition to cost-effective and environmentally friendly, but also brings higher reliability coefficient power system. The DG unit is placed close to the load, rather than increasing the capacity of main generator. This methodology brings many benefits, but has to address some of the challenges. The main is to find the optimal location and size of DG units between them. The purpose of this paper is distributed generation by adding an additional means to reduce losses on the line. This paper attempts to optimize the technology to solve the problem of optimal location and size through the development of multi-objective particle swarm. The problem has been reduced to a mathematical optimization problem by developing a fitness function considering losses and voltage distribution line. Fitness function by using the optimal value of the size and location of this algorithm was found to be minimized. IEEE-14 bus system is being considered, in order to test the proposed algorithm and the results show improved performance in terms of accuracy and convergence rate.

  15. The size distribution of Jupiter Family comet nuclei

    CERN Document Server

    Snodgrass, C; Lowry, S C; Weissman, P

    2011-01-01

    We present an updated cumulative size distribution (CSD) for Jupiter Family comet (JFC) nuclei, including a rigourous assessment of the uncertainty on the slope of the CSD. The CSD is expressed as a power law, N(>r_N) \\propto r_N^{-q}, where r_N is the radius of the nuclei and q is the slope. We include a large number of optical observations published by ourselves and others since the comprehensive review in the "Comets II" book (Lamy et al. 2004), and make use of an improved fitting method. We assess the uncertainty on the CSD due to all of the unknowns and uncertainties involved (photometric uncertainty, assumed phase function, albedo and shape of the nucleus) by means of Monte Carlo simulations. In order to do this we also briefly review the current measurements of these parameters for JFCs. Our final CSD has a slope q=1.92\\pm 0.20 for nuclei with radius r_N \\ge 1.25 km.

  16. Controllable microgels from multifunctional molecules: structure control and size distribution

    Science.gov (United States)

    Gu, Zhenyu; Patterson, Gary; Cao, Rong; Armitage, Bruce

    2004-03-01

    Supramolecular microgels with fractal structures were produced by engineered multifunctional molecules. The combination of static and dynamic light scattering was utilized to characterize the fractal dimension (Df) of the microgels and analyze the aggregation process of the microgels. The microgels are assembled from (1) a tetrafunctional protein (avidin), (2) a trifunctional DNA construct known as a three-way junction, and (3) a biotinylated peptide nucleic acid (PNA) that acts as a crosslinker by binding irreversibly to four equivalent binding sites on the protein and thermoreversibly to three identical binding sites on the DNA. The structure of microgels can be controlled through different aggregation mechanisms. The initial microgels formed by titration have a compact structure with Df ˜2.6; while the reversible microgels formed from melted aggregates have an open structure with Df ˜1.8. The values are consistent with the point-cluster and the cluster-cluster aggregation mechanisms, respectively. A narrow size distribution of microgels was observed and explained in terms of the Flory theory of reversible self-assembly.

  17. Modeling of the lithium-air battery cathodes with broad pore size distribution

    Science.gov (United States)

    Sergeev, Artem V.; Chertovich, Alexander V.; Itkis, Daniil M.

    2016-09-01

    Achieving theoretical promises of 1000 W h/kg specific energy for lithium-air batteries is quite challenging due to limited transport in the cathode along with electrode passivation. Transport can be enhanced in the electrodes with complex hierarchical pore architecture. Here, using computer simulations we analyze the effects of cathode pore size distribution (PSD) on capacity and discharge curve shape. Calculations considering a broad PSD revealed that even small discharge product resistivity prevents larger pores from accumulating the discharge product and thus turning them into non-clogging oxygen supply channels. Thus optimization of cathode architecture by adding of large-scale cavities enables cell capacity enhancement.

  18. Integrated Lot Sizing in Serial Supply Chains with Production Capacities

    OpenAIRE

    Romero-Morales, Dolores; Wagelmans, Albert; Romeijn, H. Edwin; Hoesel, Stan van

    2005-01-01

    We consider a model for a serial supply chain in which production, inventory, and transportation decisions are integrated in the presence of production capacities and concave cost functions. The model we study generalizes the uncapacitated serial single-item multilevel economic lot-sizing model by adding stationary production capacities at the manufacturer level. We present algorithms with a running time that is polynomial in the planning horizon when all cost functions are concave. In additi...

  19. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    Science.gov (United States)

    Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.

    2016-06-01

    size distribution is particularly sensitive to the mass emissions flux, fire area, wind speed, and time, and we provide simplified fits of the aged size distribution to just these input variables. The simplified fits were tested against 11 aged biomass-burning size distributions observed at the Mt. Bachelor Observatory in August 2015. The simple fits captured over half of the variability in observed Dpm and modal width even though the freshly emitted Dpm and modal widths were unknown. These fits may be used in global and regional aerosol models. Finally, we show that coagulation generally leads to greater changes in the particle size distribution than OA evaporation/formation does, using estimates of OA production/loss from the literature.

  20. Single-peak distribution model of particulate size for welding aerosols

    Institute of Scientific and Technical Information of China (English)

    施雨湘; 李爱农

    2003-01-01

    A large number of particulate size distributions of welding aerosols are measured by means of DMPS method, several distribution types are presented. Among them the single-peak distribution is the basic composing unit of particulate size. The research on the mathematic models and distributions functions shows that the single-peak distribution features the log-normal distribution. The diagram-estimating method (DEM) is a concise approach to dealing with distribution types, obtaining distribution functions for the particulate sizes of welding aerosols. It proves that the distribution function of particulate size possesses the extending property, being from quantity distribution to volume, as well as high-order moment distributions, with K-S method verifying the application of single-peak distribution and of DEM.

  1. Optimizing Greenhouse Rice Production: What Is the Best Pot Size?

    OpenAIRE

    Eddy, Robert; Hahn, Daniel T.

    2012-01-01

    This publication describes our studies to determine the best pot size to optimize greenhouse rice production. We recommend 9-cm (4-inch) diameter square pot. Pots as small as 7-cm diameter yielded seed. This version is updated to include observations of larger pots with multiple plants. Photos of the plants growing under differing pot sizes are provided. This document is one entry in a series of questions and answers originally posted to the Purdue University Department of Horticulture & L...

  2. Thermal Properties, Sizes, and Size Distribution of Jupiter-Family Cometary Nuclei

    CERN Document Server

    Fernandez, Y R; Lamy, P L; Toth, I; Groussin, O; Lisse, C M; A'Hearn, M F; Bauer, J M; Campins, H; Fitzsimmons, A; Licandro, J; Lowry, S C; Meech, K J; Pittichova, J; Reach, W T; Snodgrass, C; Weaver, H A

    2013-01-01

    We present results from SEPPCoN, an on-going Survey of the Ensemble Physical Properties of Cometary Nuclei. In this report we discuss mid-infrared measurements of the thermal emission from 89 nuclei of Jupiter-family comets (JFCs). All data were obtained in 2006 and 2007 with the Spitzer Space Telescope. For all 89 comets, we present new effective radii, and for 57 comets we present beaming parameters. Thus our survey provides the largest compilation of radiometrically-derived physical properties of nuclei to date. We conclude the following. (a) The average beaming parameter of the JFC population is 1.03+/-0.11, consistent with unity, and indicating low thermal inertia. (b) The known JFC population is not complete even at 3 km radius, and even for comets with perihelia near ~2 AU. (c) We find that the JFC nuclear cumulative size distribution (CSD) has a power-law slope of around -1.9. (d) This power-law is close to that derived from visible-wavelength observations, suggesting that there is no strong dependenc...

  3. Predicting hillslope sediment size distribution using remote sensing data, Inyo Creek, California

    Science.gov (United States)

    Leclere, S.; Genetti, J. R.; Sklar, L. S.

    2015-12-01

    The size distribution of sediments produced on hillslopes and supplied to channels depends on the geomorphic processes that weather, detach and transport rock fragments down slopes. Little in the way of theory or data is available to predict patterns in hillslope size distributions at the catchment scale from topographic and geologic maps. To address this knowledge gap, we map the steep granitic catchment of Inyo Creek, eastern Sierra Nevada, California and categorize geomorphic landscape units (GLUs) by overlaying basic GIS attributes to create polygons of similar inferred sediment production process regimes. Key attributes include elevation, slope, aspect, and land cover, which varies across 2 km of relief from bare bedrock cliffs at higher elevations to vegetated, regolith-covered slopes at lower elevations. We expect that factors that influence temperature and water residence time, and thus the intensity of chemical versus mechanical weathering, will correlate with resulting hillslope sediment size. For example, GLUs constructed from binned combinations of slope, elevation and aspect were used to predict three categories of sediment size on an ordinal scale. We used a map of predicted sediment size to guide field measurements, using point counts and photogrammetry to quantify hillslope surface size distributions. Areas predicted to have relatively large sediments were primarily covered in boulders and cobble-sized particles, whereas areas predicted to have small sediments were primarily covered in scree and gruss. Although hillslope sediment size at Inyo Creek correlates strongly with elevation, incorporation of slope and aspect creates a significantly better predictive model. We combine this result with supervised classification of aerial images using eCognition to estimate that more than half the catchment area produces boulder and cobble-rich sediment. Further analysis will include characterizing the local contributing areas to each field sampling point to

  4. Determination of optimal lot size and production rate for multi-production channels with limited capacity

    Science.gov (United States)

    Huang, Yeu-Shiang; Wang, Ruei-Pei; Ho, Jyh-Wen

    2015-07-01

    Due to the constantly changing business environment, producers often have to deal with customers by adopting different procurement policies. That is, manufacturers confront not only predictable and regular orders, but also unpredictable and irregular orders. In this study, from the perspective of upstream manufacturers, both regular and irregular orders are considered in coping with the situation in which an uncertain demand is faced by the manufacturer, and a capacity confirming mechanism is used to examine such demand. If the demand is less than or equal to the capacity of the ordinary production channel, the general supply channel is utilised to fully account for the manufacturing process, but if the demand is greater than the capacity of the ordinary production channel, the contingency production channel would be activated along with the ordinary channel to satisfy the upcoming high demand. Besides, the reproductive property of the probability distribution is employed to represent the order quantity of the two types of demand. Accordingly, the optimal production rates and lot sizes for both channels are derived to provide managers with insights for further production planning.

  5. Effects of the grain size distribution on the temperature-dependent magnetic susceptibility of magnetite nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Magnetite is an important magnetic remanence carrier in natural samples and therefore is of great interest in paleo-, rock-, and environmental magnetism. The magnetic properties of magnetite depend on many factors, e.g., concentration and grain size distribution (GSD). In this study, we theoretically investigated the temperature-dependent susceptibility (TDS) of magnetite nanoparticles with a lognormal GSD. Results show that the TDS is affected highly by the GSD mainly in three aspects. Firstly, the unblocking process becomes smoother with the increase of distribution width, characterizing as a wider Hopkinson peak on the TDS curve. Secondly, the blocking temperature increases with the increase of the median diameter or/and the distribution width. Thirdly, the maximum susceptibility decreases with the increase of distribution width, and has a logarithmic function relation with the standard deviation of the distribution. As a case study, this model was further applied to the thermal products of the Chinese loess/paleosol samples to determine the granulometry of newly-formed magnetite upon heating based on TDS curves. The results demonstrate the fidelity and feasibility of this method to determine the GSD of nano-sized magnetic particles.

  6. Estimation of size distribution of primary particles after evaporation or urane(IV) oxide

    International Nuclear Information System (INIS)

    Studying the behaviour of urane oxide aerossoles in a closed system the size distribution of the particles resulting from evaporation of UO2 was also investigated. They were precipitated on formfar coated specimen supports grids and photographed with an electron microscope. For the estimation of the size distribution the projected diameter was used. The results show that the size distribution of the primary particles corresponds to a logarithmic normal distribution. (author)

  7. Diverging geometric and magnetic size distributions of iron oxide nanocrystals

    NARCIS (Netherlands)

    Luigjes, B.; Woudenberg, S.M.C.; de Groot, R.; Meeldijk, J.D.; Torres Galvis, H.M.; de Jong, K.P.; Philipse, A.P.; Erné, B.H.

    2011-01-01

    An important reason to prepare magnetic nanoparticles of uniform size and shape is to ensure uniform magnetic properties. However, here, we demonstrate that magnetic iron oxide crystals of 20 nm or less with a low polydispersity of the geometric size can nevertheless have a strikingly broad distribu

  8. A hybrid mathematical model for controlling particle size, particle size distribution, and color properties of toner particles

    Science.gov (United States)

    Ataeefard, Maryam; Shadman, Alireza; Saeb, Mohammad Reza; Mohammadi, Yousef

    2016-08-01

    A mathematical modeling approach was proposed combining the capabilities of response surface methodology (RSM) and desirability function (DF) and implemented successfully in production of printing toner particles. Toner powders were systematically synthesized through suspension copolymerization process. Applying RSM, a series of experiments were designed and toner particles were prepared and the effects of monomer ratio, colorant and surfactant content on the particle size (PS), particle size distribution (PSD), thermal and colorimetric properties (∆ E) of the resulting toner were monitored and discussed. The second-order models corresponding to each target characteristic, i.e., PS, PSD, and ∆ E of different types of toner powders, were obtained by individual optimization to express variation of each property in terms of polymerization parameters. Applying statistical calculations, the best reduced models were identified to be fed in the second step of optimization. Since toners with appropriate PS, PSD, and CP were needed, we applied multi-objective optimization based on DF approach. The results show that exact tuning of toner properties is closely possible with the aid of hybrid mathematical model developed in this work. Noticeably, desirabilities are very close to 100 %.

  9. Calculation method for particle mean diameter and particle size distribution function under dependent model algorithm

    Institute of Scientific and Technical Information of China (English)

    Hong Tang; Xiaogang Sun; Guibin Yuan

    2007-01-01

    In total light scattering particle sizing technique, the relationship among Sauter mean diameter D32, mean extinction efficiency Q, and particle size distribution function is studied in order to inverse the mean diameter and particle size distribution simply. We propose a method which utilizes the mean extinction efficiency ratio at only two selected wavelengths to solve D32 and then to inverse the particle size distribution associated with (Q) and D32. Numerical simulation results show that the particle size distribution is inversed accurately with this method, and the number of wavelengths used is reduced to the greatest extent in the measurement range. The calculation method has the advantages of simplicity and rapidness.

  10. Hybrid Organization of Production and Distribution

    Directory of Open Access Journals (Sweden)

    Claude Menard

    2006-03-01

    Full Text Available This paper emphasizes the central role of arrangements called “hybrids” in the organization of production and distribution in market economies. Several forms are taken into account, such as subcontracting, supply-chain systems, distribution networks, franchising, partnerships, alliances, or cooperatives. It is argued that under the apparent heterogeneity of these forms are shared characteristics qualifying them as specific “institutional structures of production”. The paper stresses that beyond their relevance for economists wishing to understand the coexistence of alternative modes of governance in market economies, hybrid arrangements provide unique opportunities for theoretical investigation on the nature of inter-firm coordination.

  11. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  12. Micro-Sized Particle Production of Momordicas sp Extract Using Spray Dryer

    OpenAIRE

    Maizirwan Mel; Emirul Adzhar Yahya; and Mohd Rushdi Abu Bakar

    2011-01-01

    Spray drying is the most widely used industrial process involving particle formation and drying. It is highly suited for the continuous production of dry solids in either powder, granulate or agglomerate form from liquid feed-stocks as solutions, emulsions and pump able suspensions. Therefore, spray drying is an ideal process where the end-product must comply with precise quality standards regarding particle size distribution, residual moisture content, bulk density, and particle shape. In th...

  13. Progresses in the production of large-size THGEM boards

    International Nuclear Information System (INIS)

    The THicK GEM (THGEM) electron multipliers are derived from the GEM design, by scaling the geometrical parameters and changing the production technology. Small-size (a few cm2) detectors exhibit superb performance, while larger ones exhibit gain response and uniformity limitations. We have studied with a systematic approach several aspects concerning the material (type and thickness of the fibreglass plates) and the production procedure, in particular the cleaning and polishing stages. The net result is the production of large THGEM multipliers reproducing the performance of the small ones. We report in detail about the studies and the results

  14. Automatic milking systems, farm size, and milk production.

    Science.gov (United States)

    Rotz, C A; Coiner, C U; Soder, K J

    2003-12-01

    Automatic milking systems (AMS) offer relief from the demanding routine of milking. Although many AMS are in use in Europe and a few are used in the United States, the potential benefit for American farms is uncertain. A farm-simulation model was used to determine the long-term, whole-farm effect of implementing AMS on farm sizes of 30 to 270 cows. Highest farm net return to management and unpaid factors was when AMS were used at maximal milking capacity. Adding stalls to increase milking frequency and possibly increase production generally did not improve net return. Compared with new traditional milking systems, the greatest potential economic benefit was a single-stall AMS on a farm size of 60 cows at a moderate milk production level (8600 kg/cow). On other farm sizes using single-stall type robotic units, losses in annual net return of 0 dollars to 300 dollars/cow were projected, with the greatest losses on larger farms and at high milk production (10,900 kg/cow). Systems with one robot serving multiple stalls provided a greater net return than single-stall systems, and this net return was competitive with traditional parlors for 50- to 130-cow farm sizes. The potential benefit of AMS was improved by 100 dollars/cow per year if the AMS increased production an additional 5%. A 20% reduction in initial equipment cost or doubling milking labor cost also improved annual net return of an AMS by up to 100 dollars/cow. Annual net return was reduced by 110 dollars/cow, though, if the economic life of the AMS was reduced by 3 yr for a more rapid depreciation than that normally used with traditional milking systems. Thus, under current assumptions, the economic return for an AMS was similar to that of new parlor systems on smaller farms when the milking capacity of the AMS was well matched to herd size and milk production level.

  15. The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion?

    Science.gov (United States)

    Kueppers, U.; Schauroth, J.; Taddeucci, J.

    2013-12-01

    Explosive volcanic eruptions expel a mixture of pyroclasts and lithics. Pyroclasts, fragments of the juvenile magma, record the state of the magma at fragmentation in terms of porosity and crystallinity. The grain size distribution of pyroclasts is generally considered to be a direct consequence of the conditions at magma fragmentation that is mainly driven by gas overpressure in bubbles, high shear rates, contact with external water or a combination of these factors. Stress exerted by any of these processes will lead to brittle fragmentation by overcoming the magma's relaxation timescale. As a consequence, most pyroclasts exhibit angular shapes. Upon magma fragmentation, the gas pyroclast mixture is accelerated upwards and eventually ejected from the vent. The total grain size distribution deposited is a function of fragmentation conditions and transport related sorting. Porous pyroclasts are very susceptible to abrasion by particle-particle or particle-conduit wall interaction. Accordingly, pyroclastic fall deposits with angular clasts should proof a low particle abrasion upon contact to other surfaces. In an attempt to constrain the degree of particle interaction during conduit flow, monomodal batches of washed pyroclasts have been accelerated upwards by rapid decompression and subsequently investigated for their grain size distribution. In our set-up, we used a vertical cylindrical tube without surface roughness as conduit. We varied grain size (0.125-0.25; 0.5-1; 1-2 mm), porosity (0; 10; 30 %), gas-particle ratio (10 and 40%), conduit length (10 and 28 cm) and conduit diameter (2.5 and 6 cm). All ejected particles were collected after settling at the base of a 3.3 m high tank and sieved at one sieve size below starting size (half-Φ). Grain size reduction showed a positive correlation with starting grain size, porosity and overpressure at the vent. Although milling in a volcanic conduit may take place, porous pyroclasts are very likely to be a primary product

  16. A prognostic model of the sea ice floe size and thickness distribution

    OpenAIRE

    Horvat, C.; E. Tziperman

    2015-01-01

    Sea ice exhibits considerable seasonal and longer-term variations in extent, concentration, thickness and age, and is characterized by a complex and continuously changing distribution of floe sizes and thicknesses. Models of sea ice used in current climate models keep track of its concentration and of the distribution of ice thicknesses, but do not account for the floe size distribution an...

  17. Pyroprocessing Product and Waste Estimation with Storage Sizing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo Jik; Lee, Sun Hee; Ko, Won Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A dynamic material flow model was built to estimate annual product and waste generation in the pyroprocessing. Dynamic material flow is analyzed for evaluation of buffer size to accommodate various kinds of WIP in the integrated pyroprocessing. The discrete event simulations contribute to find out the optimal buffer size enough to accommodate WIP generated. These results are needed to design pyroprocessing facility as well as to establish a management plan of final product and waste. As one of promising spent nuclear fuel (SNF) reprocessing options, pyroprocessing is facing many issues to solve in terms of technical and economic feasibilities. More reasonable evaluation to support those feasibilities can come from estimation of product and waste generated in pyroprocessing.

  18. PREPARATION OF PARTICLE SIZE NARROWLY DISTRIBUTED LOW-DENSITY STYRENE DIVINYLBENZENE COPOLYMER MICROBEADS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In view of the importance of dispersion agent, the amount of the crosslinking monomer andthe diluent in suspension polymerization for the production of particle size narrowly distributedIow-density styrene divinylbenzene copolymer microbeads (LDPS), their actions are preliminarilyinvestigated in this paper. Experimental results indicate that when both the gelatine and polyvinylalcohol (PVA) are used as dispersion agents, the better effect is achieved. DVB is helpful to theformation of the lower density fine particles, the proportion of the DVB/St should be between1:1~1.5:1. Compared with toluene, gasoline is the more effective diluent for the above target.

  19. Infinite Products of Random Isotropically Distributed Matrices

    CERN Document Server

    Il'yn, A S; Zybin, K P

    2016-01-01

    Statistical properties of infinite products of random isotropically distributed matrices are investigated. Both for continuous processes with finite correlation time and discrete sequences of independent matrices, a formalism that allows to calculate easily the Lyapunov spectrum and generalized Lyapunov exponents is developed. This problem is of interest to probability theory, statistical characteristics of matrix T-exponentials are also needed for turbulent transport problems, dynamical chaos and other parts of statistical physics.

  20. Simulating the particle size distribution of rockfill materials based on its statistical regularity

    Institute of Scientific and Technical Information of China (English)

    YAN Zongling; QIU Xiande; YU Yongqiang

    2003-01-01

    The particle size distribution of rockfill is studied by using granular mechanics, mesomechanics and probability statistics to reveal the relationship of the distribution of particle size to that of the potential energy intensity before fragmentation,which finds out that the potential energy density has a linear relation to the logarithm of particle size and deduces that the distribution of the logarithm of particle size conforms to normal distribution because the distribution of the potential energy density does so. Based on this finding and by including the energy principle of rock fragmentation, the logarithm distribution model of particle size is formulated, which uncovers the natural characteristics of particle sizes on statistical distribution. Exploring the properties of the average value, the expectation, and the unbiased variance of particle size indicates that the expectation does notequal to the average value, but increases with increasing particle size and its ununiformity, and is always larger than the average value, and the unbiased variance increases as the ununiformity and geometric average value increase. A case study proves that the simulated results by the proposed logarithm distribution model accord with the actual data. It is concluded that the logarithm distribution model and Kuz-Ram model can be used to forecast the particle-size distribution of inartificial rockfill while for blasted rockfill, Kuz-Ram model is an option, and in combined application of the two models, it is necessary to do field tests to adjust some parameters of the model.

  1. Size-fractionated production and bioavailability of dissolved organic matter

    DEFF Research Database (Denmark)

    Knudsen-Leerbeck, Helle; Bronk, Deborah A.; Markager, Stiig

    Production and bioavailability of dissolved organic matter was quantified on a time scale of two days from size fractions ranging from bacteria to zooplankton in the York River, Virginia. The goal was to find the main contributor to DOM. Batch incubation experiments were labeled with N15-ammonium...... mainly in the phytoplankton size fraction, which on average contributed 62 % of total particulate nitrogen and 61 % of total particulate carbon. Up to 5 ± 0.4 μmol dissolved organic nitrogen L-1 and 33 ± 6.2 μmol dissolved organic carbon L-1 was produced during the incubation. Bioavailability of...

  2. Vaccine production, distribution, access, and uptake.

    Science.gov (United States)

    Smith, Jon; Lipsitch, Marc; Almond, Jeffrey W

    2011-07-30

    For human vaccines to be available on a global scale, complex production methods, meticulous quality control, and reliable distribution channels are needed to ensure that the products are potent and effective at the point of use. The technologies used to manufacture different types of vaccines can strongly affect vaccine cost, ease of industrial scale-up, stability, and, ultimately, worldwide availability. The complexity of manufacturing is compounded by the need for different formulations in different countries and age-groups. Reliable vaccine production in appropriate quantities and at affordable prices is the cornerstone of developing global vaccination policies. However, to ensure optimum access and uptake, strong partnerships are needed between private manufacturers, regulatory authorities, and national and international public health services. For vaccines whose supply is insufficient to meet demand, prioritisation of target groups can increase the effect of these vaccines. In this report, we draw from our experience of vaccine development and focus on influenza vaccines as an example to consider production, distribution, access, and other factors that affect vaccine uptake and population-level effectiveness. PMID:21664680

  3. Radioactivity size distributions of ambient aerosols in Helsinki, Finland during May 1986 after Chernobyl accident

    International Nuclear Information System (INIS)

    Ambient aerosol size distributions oof 131I, 103Ru, 132Te and 137Cs radionuclides were measured in Helsinki, Finland during May 7 - 14, 1986. Radioactivity size distributions were unimodal. Geometric mean diameter of 131I was in the size range 0.33 - 0.57 μm a.e.d.. Other isotopes had geometric mean diameters in the size range 0.65 - 0.93 μm a.e.d.. (author)

  4. The limit distribution of the maximum increment of a random walk with regularly varying jump size distribution

    DEFF Research Database (Denmark)

    Mikosch, Thomas Valentin; Rackauskas, Alfredas

    2010-01-01

    In this paper, we deal with the asymptotic distribution of the maximum increment of a random walk with a regularly varying jump size distribution. This problem is motivated by a long-standing problem on change point detection for epidemic alternatives. It turns out that the limit distribution...... of the maximum increment of the random walk is one of the classical extreme value distributions, the Fréchet distribution. We prove the results in the general framework of point processes and for jump sizes taking values in a separable Banach space...

  5. Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles

    OpenAIRE

    Hagendorfer, Harald; Lorenz, Christiane; Kaegi, Ralf; Sinnet, Brian; Gehrig, Robert; Goetz, Natalie V.; Scheringer, Martin; Ludwig, Christian; Ulrich, Andrea

    2010-01-01

    This study describes methods developed for reliable quantification of size- and element-specific release of engineered nanoparticles (ENP) from consumer spray products. A modified glove box setup was designed to allow controlled spray experiments in a particle-minimized environment. Time dependence of the particle size distribution in a size range of 10-500 nm and ENP release rates were studied using a scanning mobility particle sizer (SMPS). In parallel, the aerosol was transferred to a size...

  6. Multi-component Erlang distribution of plant seed masses and sizes

    Science.gov (United States)

    Fan, San-Hong; Wei, Hua-Rong

    2012-12-01

    The mass and the size distributions of plant seeds are very similar to the multi-component Erlang distribution of final-state particle multiplicities in high-energy collisions. We study the mass, length, width, and thickness distributions of pumpkin and marrow squash seeds in this paper. The corresponding distribution curves are obtained and fitted by using the multi-component Erlang distribution. In the comparison, the method of χ2-testing is used. The mass and the size distributions of the mentioned seeds are shown to obey approximately the multi-component Erlang distribution with the component number being 1.

  7. Distribution, size and sex of bear kills and composition of Kodiak Island bear population

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Distribution of kill dates, from existing records, by fifteen day periods from April 1 to November 30th and distribution by size, sex, and other variables.

  8. The Modelled Raindrop Size Distribution of Skudai, Peninsular Malaysia, Using Exponential and Lognormal Distributions

    Directory of Open Access Journals (Sweden)

    Mahadi Lawan Yakubu

    2014-01-01

    Full Text Available This paper presents the modelled raindrop size parameters in Skudai region of the Johor Bahru, western Malaysia. Presently, there is no model to forecast the characteristics of DSD in Malaysia, and this has an underpinning implication on wet weather pollution predictions. The climate of Skudai exhibits local variability in regional scale. This study established five different parametric expressions describing the rain rate of Skudai; these models are idiosyncratic to the climate of the region. Sophisticated equipment that converts sound to a relevant raindrop diameter is often too expensive and its cost sometimes overrides its attractiveness. In this study, a physical low-cost method was used to record the DSD of the study area. The Kaplan-Meier method was used to test the aptness of the data to exponential and lognormal distributions, which were subsequently used to formulate the parameterisation of the distributions. This research abrogates the concept of exclusive occurrence of convective storm in tropical regions and presented a new insight into their concurrence appearance.

  9. On Size-Biased Negative Binomial Distribution and its Use in Zero-Truncated Cases

    Science.gov (United States)

    Mir, Khurshid Ahmad

    2009-01-01

    A size-biased negative binomial distribution, a particular case of the weighted negative binomial distribution, taking the weights as the variate values has been defined. A Bayes' estimator of size-biased negative binomial distribution (SBNBD) has been obtained by using non-informative and gamma prior distributions. Also comparison has been made of this estimator with the corresponding maximum likelihood estimator (MLE) with the help of R- Software.

  10. Effect of Particle Size Distribution on Wall Heat Flux in Pulverized-Coal Furnaces and Boilers

    Science.gov (United States)

    Lu, Jun

    A mathematical model of combustion and heat transfer within a cylindrical enclosure firing pulverized coal has been developed and tested against two sets of measured data (one is 1993 WSU/DECO Pilot test data, the other one is the International Flame Research Foundation 1964 Test (Beer, 1964)) and one independent code FURN3D from the Argonne National Laboratory (Ahluwalia and IM, 1992). The model called PILC assumes that the system is a sequence of many well-stirred reactors. A char burnout model combining diffusion to the particle surface, pore diffusion, and surface reaction is employed for predicting the char reaction, heat release, and evolution of char. The ash formation model included relates the ash particle size distribution to the particle size distribution of pulverized coal. The optical constants of char and ash particles are calculated from dispersion relations derived from reflectivity, transmissivity and extinction measurements. The Mie theory is applied to determine the extinction and scattering coefficients. The radiation heat transfer is modeled using the virtual zone method, which leads to a set of simultaneous nonlinear algebraic equations for the temperature field within the furnace and on its walls. This enables the heat fluxes to be evaluated. In comparisons with the experimental data and one independent code, the model is successful in predicting gas temperature, wall temperature, and wall radiative flux. When the coal with greater fineness is burnt, the particle size of pulverized coal has a consistent influence on combustion performance: the temperature peak was higher and nearer to burner, the radiation flux to combustor wall increased, and also the absorption and scattering coefficients of the combustion products increased. The effect of coal particle size distribution on absorption and scattering coefficients and wall heat flux is significant. But there is only a small effect on gas temperature and fuel fraction burned; it is speculated

  11. Effect of Pour Size on Concrete Placing Productivity in Nigeria

    OpenAIRE

    Olaoluwa Olatunde; Ojo Stephen Okunlola; Adesanya David Abiodun

    2012-01-01

    Pour size as one of the site factors affecting concreting was examined to determine its effects on concreting productivity. A total of 167 separate concrete pours were observed on 25 building construction sites in Lagos, Nigeria,comprising 35 pours placed by crane and skip; 26 pours placed by dumper; 58 pours placed by wheelbarrow; 37 pours placed by head pan; and 11 pours placed jointly by pump, wheelbarrow and head pan. Data collected from the daily concrete pours were analyzed to determine...

  12. Extracting magnetic cluster size and its distributions in advanced perpendicular recording media with shrinking grain size using small angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken; Terris, Bruce D.; Hellwig, Olav [San Jose Research Center, HGST a Western Digital company, 3403 Yerba Buena Rd., San Jose, California 95135 (United States); Wang, Tianhan [Department of Materials Science and Engineering, Stanford University, Stanford, California 94035 (United States); Stanford Institute for Materials and Energy Science (SIMES), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Wu, Benny; Graves, Catherine [Stanford Institute for Materials and Energy Science (SIMES), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94035 (United States); Dürr, Hermann A.; Scherz, Andreas; Stöhr, Jo [Stanford Institute for Materials and Energy Science (SIMES), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)

    2015-05-18

    We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizes of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.

  13. Size and distribution of prizes and efforts in contests

    OpenAIRE

    Gil S. Epstein; Shmuel Nitzan

    2005-01-01

    The intensity of competition in contests is affected by the sum of the awarded prizes and by the prize distribution among the contestants. The current paper examines which of these two parameters has a larger effect on the players' extent of participation in the contest.

  14. Coagulation-flocculation of beech condensate: particles size distribution.

    Science.gov (United States)

    Irmouli, Mohammed; Haluk, Jean Pierre

    2002-05-01

    Beech wood (Fagus sylvatica L.) condensate from a steaming operation was studied. The objective of our work was to study the precipitation of these wood extracts in presence of calcium ion after autoxidation at basic pH (8). The autoxidation was carried out at 250 rpm for 30 min, and flocculation was followed up for 30 min. An investigation with a laser sizer Mastersizer of Malvern has been done in order to study the influence of the agitation on the state of aggregation of the condensate. A negative correlation was observed between the mean size of particles and the agitation rate. Without stirring, flocculation rapidly occurred and the mean size of particles was high. Calcium-induced aggregation of the condensate was also found to be reversible toward agitation. PMID:16290593

  15. Size distribution of particle systems analyzed with organic photodetectors

    CERN Document Server

    Sentis, Matthias

    2015-01-01

    As part of a consortium between academic and industry, this PhD work investigates the interest and capabilities of organic photo-sensors (OPS) for the optical characterization of suspensions and two-phase flows. The principle of new optical particle sizing instruments is proposed to characterize particle systems confined in a cylinder glass (standard configuration for Process Analytical Technologies). To evaluate and optimize the performance of these systems, a Monte-Carlo model has been specifically developed. This model accounts for the numerous parameters of the system: laser beam profile, mirrors, lenses, sample cell, particle medium properties (concentration, mean & standard deviation, refractive indices), OPS shape and positions, etc. Light scattering by particles is treated either by using Lorenz-Mie theory, Debye, or a hybrid model (that takes into account the geometrical and physical contributions). For diluted media (single scattering), particle size analysis is based on the inversion of scatter...

  16. Apollo 14 soils - Size distribution and particle types.

    Science.gov (United States)

    Mckay, D. S.; Heiken, G. H.; Taylor, R. M.; Clanton, U. S.; Morrison, D. A.; Ladle, G. H.

    1972-01-01

    Particle size characteristics are discussed together with particle types, abundances, variation in the soils, questions of soil maturity, coarse fines, and ropy glasses. It is found that agglutinates are formed primarily by micrometeorite impact into lunar soil. Agglutinates appear to be the major particle type now being formed on the lunar surface. Agglutinate content of a soil increases with particle track densities and with surface exposure time.

  17. Linking species abundance distributions and body size in monogenean communities

    OpenAIRE

    Poulin, R.; Justine, Jean-Lou

    2008-01-01

    Parasite communities are characterised by one or a few numerically dominant species and many rare species. Although this pattern is well recognised, its underlying causes remain unknown. In this study, we tested whether variation in abundance among species within parasite communities can be explained by interspecific variation in body size. We used data on nine fish species (families Serranidae and Lethrinidae) from New Caledonia, each harbouring strictly host-specific diplectanid monogenean ...

  18. Retrieval of the particle size distribution from satellite ocean color observations

    Science.gov (United States)

    Kostadinov, T. S.; Siegel, D. A.; Maritorena, S.

    2009-09-01

    The particle size distribution (PSD) provides important information about pelagic ocean ecosystem structure and function. Knowledge of the PSD and its changes in time can be used to assess the contributions made by phytoplankton functional groups to primary production, particle sinking, and carbon sequestration by the ocean. However, few field measurements of the PSD have been made in the pelagic ocean, and little is known about its space-time variation. Here, a novel bio-optical algorithm is introduced to retrieve the parameters of a power law particle size spectrum from satellite ocean color observations. First, the particle backscattering coefficient spectrum, bbp(λ), is retrieved from monthly Sea-viewing Wide Field-of-view Sensor (SeaWiFS) normalized water-leaving radiance observations following Loisel et al. (2006). Mie modeling is then used to estimate the parameters of a power law PSD (the PSD slope and the particle differential number concentration for a given reference diameter) as a function of the particulate backscattering spectrum. Algorithm uncertainties are greater when bbp(λ) slopes are low, which occurs in high-productivity areas. Satellite-based retrievals of PSD parameters are reasonably consistent with available field observations. As an example, the algorithm was applied to monthly SeaWiFS global imagery from August 2007. Global spatial distributions show subtropical oligotrophic gyres characterized by higher PSD slopes and smaller particle number concentrations, as compared with coastal and other high-productivity areas. Partitioning particle number and volume concentrations into picophytoplankton-, nanophytoplankton-, and microphytoplankton-sized classes indicates that the abundance of picoplankton-sized particles is roughly constant spatially and that they dominate the particle volume concentrations in oligotrophic regions. On the other hand, abundances of microplankton-sized particles vary over many orders of magnitude, and they

  19. Influence of flow rate on aerosol particle size distributions from pressurized and breath-actuated inhalers.

    Science.gov (United States)

    Smith, K J; Chan, H K; Brown, K F

    1998-01-01

    Particle size distribution of delivered aerosols and the total mass of drug delivered from the inhaler are important determinants of pulmonary deposition and response to inhalation therapy. Inhalation flow rate may vary between patients and from dose to dose. The Andersen Sampler (AS) cascade impactor operated at flow rates of 30 and 55 L/min and the Marple-Miller Impactor (MMI) operated at flow rates of 30, 55, and 80 L/min were used in this study to investigate the influence of airflow rate on the particle size distributions of inhalation products. Total mass of drug delivered from the inhaler, fine particle mass, fine particle fraction, percentage of nonrespirable particles, and amount of formulation retained within the inhaler were determined by ultraviolet spectrophotometry for several commercial bronchodilator products purchased in the marketplace, including a pressurized metered-dose inhaler (pMDI), breath-actuated pressurized inhaler (BAMDI), and three dry powder inhalers (DPIs), two containing salbutamol sulphate and the other containing terbutaline sulphate. Varying the flow rate through the cascade impactor produced no significant change in performance of the pressurized inhalers. Increasing the flow rate produced a greater mass of drug delivered and an increase in respirable particle mass and fraction from all DPIs tested. PMID:10346666

  20. A new approach in the prediction of the dissolution behavior of suspended particles by means of their particle size distribution.

    NARCIS (Netherlands)

    Tinke, A.P.; Houtte, K.J.A. van; Maesschalck, R. de; Verheyen, S.; Winter, H. de

    2005-01-01

    Though various attempts have been made in literature to model the particle size distribution of an active pharmaceutical ingredient (API) in function of the required release profile of the pharmaceutical product, so far one has not succeeded to develop a universal approach in the correlation of part

  1. Systematic Procedure for Generating Operational Policies to Achieve Target Crystal Size Distribution (CSD) in Batch Cooling Crystallization

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Singh, Ravendra; Sin, Gürkan;

    Batch cooling crystallization is one of the important unit operations involving separation of solid-liquid phases. Usually the most common crystal product qualities are directly related to the crystal size distribution (CSD). However the main difficulty in batch crystallization is to obtain a uni...

  2. Convergence of the frequency-size distribution of global earthquakes

    Science.gov (United States)

    Bell, Andrew F.; Naylor, Mark; Main, Ian G.

    2013-06-01

    The Gutenberg-Richter (GR) frequency-magnitude relation is a fundamental empirical law of seismology, but its form remains uncertain for rare extreme events. Here, we show that the temporal evolution of model likelihoods and parameters for the frequency-magnitude distribution of the global Harvard Centroid Moment Tensor catalog is inconsistent with an unbounded GR relation, despite if being the preferred model at the current time. During the recent spate of 12 great earthquakes in the last 8 years, record-breaking events result in profound steps in favor of the unbounded GR relation. However, between such events the preferred model gradually converges to the tapered GR relation, and the form of the convergence cannot be explained by random sampling of an unbounded GR distribution. The convergence properties are consistent with a global catalog composed of superposed randomly-sampled regional catalogs, each with different upper bounds, many of which have not yet sampled their largest event.

  3. Interpretation of size-exclusion chromatography for the determination of molecular-size distribution of human immunoglobulins.

    Science.gov (United States)

    Christians, S; Schluender, S; van Treel, N D; Behr-Gross, M-E

    2016-01-01

    Molecular-size distribution by size-exclusion chromatography (SEC) [1] is used for the quantification of unwanted aggregated forms in therapeutic polyclonal antibodies, referred to as human immunoglobulins (Ig) in the European Pharmacopoeia. Considering not only the requirements of the monographs for human normal Ig (0338, 0918 and 2788) [2-4], but also the general chapter on chromatographic techniques (2.2.46) [5], several chromatographic column types are allowed for performing this test. Although the EDQM knowledge database gives only 2 examples of suitable columns as a guide for the user, these monographs permit the use of columns with different lengths and diameters, and do not prescribe either particle size or pore size, which are considered key characteristics of SEC columns. Therefore, the columns used may differ significantly from each other with regard to peak resolution, potentially resulting in ambiguous peak identity assignment. In some cases, this may even lead to situations where the manufacturer and the Official Medicines Control Laboratory (OMCL) in charge of Official Control Authority Batch Release (OCABR) have differing molecular-size distribution profiles for aggregates of the same batch of Ig, even though both laboratories follow the requirements of the relevant monograph. In the present study, several formally acceptable columns and the peak integration results obtained therewith were compared. A standard size-exclusion column with a length of 60 cm and a particle size of 10 µm typically detects only 3 Ig fractions, namely monomers, dimers and polymers. This column type was among the first reliable HPLC columns on the market for this test and very rapidly became the standard for many pharmaceutical manufacturers and OMCLs for batch release testing. Consequently, the distribution of monomers, dimers and polymers was established as the basis for the interpretation of the results of the molecular-size distribution test in the relevant monographs

  4. A model study of the size and composition distribution of aerosols in an aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, A.A. [SRC `ECOLEN`, Moscow (Russian Federation)

    1997-12-31

    A two-dimensional, axisymmetric flow field model which includes water and sulphate aerosol formation represented by moments of the size and composition distribution function is used to calculate the effect of radial turbulent jet mixing on the aerosol size distribution and mean modal composition. (author) 6 refs.

  5. An analysis of the size distribution of Italian firms by age

    Science.gov (United States)

    Cirillo, Pasquale

    2010-02-01

    In this paper we analyze the size distribution of Italian firms by age. In other words, we want to establish whether the way that the size of firms is distributed varies as firms become old. As a proxy of size we use capital. In [L.M.B. Cabral, J. Mata, On the evolution of the firm size distribution: Facts and theory, American Economic Review 93 (2003) 1075-1090], the authors study the distribution of Portuguese firms and they find out that, while the size distribution of all firms is fairly stable over time, the distributions of firms by age groups are appreciably different. In particular, as the age of the firms increases, their size distribution on the log scale shifts to the right, the left tails becomes thinner and the right tail thicker, with a clear decrease of the skewness. In this paper, we perform a similar analysis with Italian firms using the CEBI database, also considering firms’ growth rates. Although there are several papers dealing with Italian firms and their size distribution, to our knowledge a similar study concerning size and age has not been performed yet for Italy, especially with such a big panel.

  6. Determination of Size Distributions in Nanocrystalline Powders by TEM, XRD and SAXS

    DEFF Research Database (Denmark)

    Jensen, Henrik; Pedersen, Jørgen Houe; Jørgensen, Jens Erik;

    2006-01-01

    Crystallite size distributions and particle size distributions were determined by TEM, XRD, and SAXS for three commercially available TiO2 samples and one homemade. The theoretical Guinier Model was fitted to the experimental data and compared to analytical expressions. Modeling of the XRD spectr...

  7. Dust coagulation and fragmentation in molecular clouds. II. The opacity of the dust aggregate size distribution

    NARCIS (Netherlands)

    Ormel, C.W.; Min, M.; Tielens, A. G. G. M.; Dominik, C.; Paszun, D.

    2011-01-01

    The dust size distribution in molecular clouds can be strongly affected by ice-mantle formation and (subsequent) grain coagulation. Following previous work where the dust size distribution has been calculated from a state-of-the art collision model for dust aggregates that involves both coagulation

  8. Dust coagulation and fragmentation in molecular clouds: II. The opacity of the dust aggregate size distribution

    NARCIS (Netherlands)

    C.W. Ormel; M. Min; A.G.G.M. Tielens; C. Dominik; D. Paszun

    2011-01-01

    The dust size distribution in molecular clouds can be strongly affected by ice-mantle formation and (subsequent) grain coagulation. Following previous work where the dust size distribution has been calculated from a state-of-the art collision model for dust aggregates that involves both coagulation

  9. 3D Hail Size Distribution Interpolation/Extrapolation Algorithm

    Science.gov (United States)

    Lane, John

    2013-01-01

    Radar data can usually detect hail; however, it is difficult for present day radar to accurately discriminate between hail and rain. Local ground-based hail sensors are much better at detecting hail against a rain background, and when incorporated with radar data, provide a much better local picture of a severe rain or hail event. The previous disdrometer interpolation/ extrapolation algorithm described a method to interpolate horizontally between multiple ground sensors (a minimum of three) and extrapolate vertically. This work is a modification to that approach that generates a purely extrapolated 3D spatial distribution when using a single sensor.

  10. Evidence of bimodal crystallite size distribution in {mu}c-Si:H films

    Energy Technology Data Exchange (ETDEWEB)

    Ram, Sanjay K. [Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 du CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex (France); Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)], E-mail: sanjayk.ram@gmail.com; Islam, Md. Nazrul [QAED-SRG, Space Application Centre (ISRO), Ahmedabad 380015 (India); Kumar, Satyendra [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Roca i Cabarrocas, P. [Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 du CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2009-03-15

    We report on the microstructural characterization studies carried out on plasma deposited highly crystalline undoped microcrystalline silicon films to explore the crystallite size distribution present in this material. The modeling of results of spectroscopic ellipsometry using two different sized crystallites is corroborated by the deconvolution of experimental Raman profiles using a modeling method that incorporates a bimodal size distribution of crystallites. The presence of a bimodal size distribution of crystallites is demonstrated as well by the results of atomic force microscopy and X-ray diffraction studies. The qualitative agreement between the results of different studies is discussed.

  11. Size distribution of trace metals in Ponce, Puerto Rico air particulate matter

    Science.gov (United States)

    Infante, Rafael; Acosta, Iris L.

    The atmospheric particulate size distribution of nine heavy metals was measured in Ponce, a moderately industrial city in the south of Puerto Rico. Samples were collected in the city center and outlying suburban and rural locations during 1986. The size measurements were done with a cascade impactor. The elemental content of the size fractionated aerosol samples was determined by inductively coupled plasma atomic emission spectroscopy. The particle size distributions observed for Cu, Cd, Pb, Mn and Fe were bimodal with a gradual progression from mainly coarse mode to mainly fine mode. Al, Ni and Zn were mostly associated with coarse particles and V size distribution was unimodal with maxima associated with fine particles. The particle size distribution did not vary significantly with the sites sampled in the urban area although some regional characteristics are observed. The data obtained strongly suggest motor vehicle traffic and fuel combustion as the principal pollution pources in Ponce aerosol.

  12. The economic production lot size model extended to include more than one production rate

    DEFF Research Database (Denmark)

    Larsen, Christian

    2001-01-01

    btween the demand rate and the production rate which minimizes unit production costs, and should be used in an increasing order. Then, given the production rates, we derive closed-form expressions for all optimal runtimes as well as the minimum average cost. This analysis reveals that it is the size......We study an extension of the economic production lot size model, where more than one production rate can be used during a cycle. Moreover, the production rates, as well as their corresponding runtimes are decision variables. First, we show that all production rates should be choosen in the interval...... of the setup cost that determines the need for being able to use several production rates. Finally, we show how to derive a near-optimal solution of the general problem....

  13. The economic production lot size model extended to include more than one production rate

    DEFF Research Database (Denmark)

    Larsen, Christian

    2005-01-01

    production rates should be chosen in the interval between the demand rate and the production rate which minimizes unit production costs, and should be used in an increasing order. Then, given the production rates, we derive closed-form expressions for all optimal runtimes as well as the minimum average cost......We study an extension of the economic production lot size model, where more than one production rate can be used during a cycle. Moreover, the production rates, as well as their corresponding runtimes are decision variables. We decompose the problem into two subproblems. First, we show that all....... This analysis reveals that it is the size of the setup cost that determines the need for being able to use several production rates. We also show how to derive a near-optimal solution of the general problem....

  14. Iteration method for the inversion of simulated multiwavelength lidar signals to determine aerosol size distribution

    Institute of Scientific and Technical Information of China (English)

    Tao Zong-Ming; Zhang Yin-Chao; Liu Xiao-Qin; Tan Kun; Shao Shi-Sheng; Hu Huan-Ling; Zhang Gai-Xia; Lü Yong-Hui

    2004-01-01

    A new method is proposed to derive the size distribution of aerosol from the simulated multiwavelength lidar extinction coefficients. The basis for this iteration is to consider the extinction efficiency factor of particles as a set of weighting function covering the entire radius region of a distribution. The weighting functions are calculated exactly from Mie theory. This method extends the inversion region by subtracting some extinction coefficient. The radius range of simulated size distribution is 0.1-10.0μm, the inversion radius range is 0.1-2.0μm, but the inverted size distributions are in good agreement with the simulated one.

  15. Quantitative analysis of crystal/grain sizes and their distributions in 2D and 3D

    DEFF Research Database (Denmark)

    Berger, Alfons; Herwegh, Marco; Schwarz, Jens-Oliver;

    2011-01-01

    root) to calculate statistical parameters as the mean, median, mode or the skewness of a crystal size distribution. The finally calculated average grain sizes have to be compatible between the different grain size estimation approaches in order to be properly applied, for example, in paleo-piezometers...

  16. Size distribution of aerosol particles produced during mining and processing uranium ore.

    Science.gov (United States)

    Mala, Helena; Tomasek, Ladislav; Rulik, Petr; Beckova, Vera; Hulka, Jiri

    2016-06-01

    The aerosol particle size distributions of uranium and its daughter products were studied and determined in the area of the Rožná mine, which is the last active uranium mine in the Czech Republic. A total of 13 samples were collected using cascade impactors from three sites that had the highest expected levels of dust, namely, the forefield, the end of the ore chute and an area close to workers at the crushing plant. The characteristics of most size distributions were very similar; they were moderately bimodal, with a boundary approximately 0.5 μm between the modes. The activity median aerodynamic diameter (AMAD) and geometric standard deviation (GSD) were obtained from the distributions beyond 0.39 μm, whereas the sizes of particles below 0.39 μm were not differentiated. Most AMAD and GSD values in the samples ranged between 3.5 and 10.5 μm and between 2.8 and 5.0, respectively. The geometric means of the AMADs and GSDs from all of the underground sampling sites were 4.2 μm and 4.4, respectively, and the geometric means of the AMADs and GSDs for the crushing plant samplings were 9.8 μm and 3.3, respectively. The weighted arithmetic mean of the AMADs was 4.9 μm, with a standard error of 0.7 μm, according to the numbers of workers at the workplaces. The activity proportion of the radon progeny to (226)Ra in the aerosol was 0.61. PMID:27032340

  17. A High-Throughput Size Exclusion Chromatography Method to Determine the Molecular Size Distribution of Meningococcal Polysaccharide Vaccine.

    Science.gov (United States)

    Khan, Imran; Rahman, K M Taufiqur; Siraj, S M Saad Us; Karim, Mahbubul; Muktadir, Abdul; Maheshwari, Arpan; Kabir, Md Azizul; Nahar, Zebun; Ahasan, Mohammad Mainul

    2016-01-01

    Molecular size distribution of meningococcal polysaccharide vaccine is a readily identifiable parameter that directly correlates with the immunogenicity. In this paper, we report a size exclusion chromatography method to determine the molecular size distribution and distribution coefficient value of meningococcal polysaccharide serogroups A, C, W, and Y in meningococcal polysaccharide (ACWY) vaccines. The analyses were performed on a XK16/70 column packed with sepharose CL-4B with six different batches of Ingovax® ACWY, a meningococcal polysaccharide vaccine produced by Incepta Vaccine Ltd., Bangladesh. A quantitative rocket immunoelectrophoresis assay was employed to determine the polysaccharide contents of each serogroup. The calculated distribution coefficient values of serogroups A, C, W, and Y were found to be 0.26 ± 0.16, 0.21 ± 0.11, 0.21 ± 0.11, and 0.14 ± 0.12, respectively, and met the requirements of British Pharmacopeia. The method was proved to be robust for determining the distribution coefficient values which is an obligatory requirement for vaccine lot release. PMID:27688770

  18. RESUSPENSION METHOD FOR ROAD SURFACE DUST COLLECTION AND AERODYNAMIC SIZE DISTRIBUTION CHARACTERIZATION

    Institute of Scientific and Technical Information of China (English)

    Jianhua Chen; Hongfeng Zheng; Wei Wang; Hongjie Liu; Ling Lu; Linfa Bao; Lihong Ren

    2006-01-01

    Traffic-generated fugitive dust is a source of urban atmospheric particulate pollution in Beijing. This paper introduces the resuspension method, recommended by the US EPA in AP-42 documents, for collecting Beijing road-surface dust. Analysis shows a single-peak distribution in the number size distribution and a double-peak mode for mass size distribution of the road surface dust. The median diameter of the mass concentration distribution of the road dust on a high-grade road was higher than that on a low-grade road. The ratio of PM2.5 to PM10 was consistent with that obtained in a similar study for Hong Kong. For the two selected road samples, the average relative deviation of the size distribution was 10.9% and 11.9%. All results indicate that the method introduced in this paper can effectively determine the size distribution of fugitive dust from traffic.

  19. Dust size distributions in coagulation/fragmentation equilibrium: Numerical solutions and analytical fits

    CERN Document Server

    Birnstiel, T; Dullemond, C P

    2010-01-01

    Context. Grains in circumstellar disks are believed to grow by mutual collisions and subsequent sticking due to surface forces. Results of many fields of research involving circumstellar disks, such as radiative transfer calculations, disk chemistry, magneto-hydrodynamic simulations largely depend on the unknown grain size distribution. Aims. As detailed calculations of grain growth and fragmentation are both numerically challenging and computationally expensive, we aim to find simple recipes and analytical solutions for the grain size distribution in circumstellar disks for a scenario in which grain growth is limited by fragmentation and radial drift can be neglected. Methods. We generalize previous analytical work on self-similar steady-state grain distributions. Numerical simulations are carried out to identify under which conditions the grain size distributions can be understood in terms of a combination of power-law distributions. A physically motivated fitting formula for grain size distributions is der...

  20. Bimodal distribution of the magnetic dipole moment in nanoparticles with a monomodal distribution of the physical size

    NARCIS (Netherlands)

    van Rijssel, Jozef; Kuipers, Bonny W M; Erne, Ben

    2015-01-01

    High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal d

  1. Vertical profile and aerosol size distribution measurements in Iceland (LOAC)

    Science.gov (United States)

    Dagsson Waldhauserova, Pavla; Olafsson, Haraldur; Arnalds, Olafur; Renard, Jean-Baptiste; Vignelles, Damien; Verdier, Nicolas

    2014-05-01

    Cold climate and high latitudes regions contain important dust sources where dust is frequently emitted, foremost from glacially-derived sediments of riverbeds or ice-proximal areas (Arnalds, 2010; Bullard, 2013). Iceland is probably the most active dust source in the arctic/sub-arctic region (Dagsson-Waldhauserova, 2013). The frequency of days with suspended dust exceeds 34 dust days annually. Icelandic dust is of volcanic origin; it is very dark in colour and contains sharp-tipped shards with bubbles. Such properties allow even large particles to be easily transported long distances. Thus, there is a need to better understand the spatial and temporal variability of these dusts. Two launch campaigns of the Light Optical Aerosols Counter (LOAC) were conducted in Iceland with meteorological balloons. LOAC use a new optical design that allows to retrieve the size concentrations in 19 size classes between 0.2 and 100 microm, and to provide an estimate of the main nature of aerosols. Vertical stratification and aerosol composition of the subarctic atmosphere was studied in detail. The July 2011 launch represented clean non-dusty season with low winds while the November 2013 launch was conducted during the high winds after dusty period. For the winter flight (performed from Reykjavik), the nature of aerosols strongly changed with altitude. In particular, a thin layer of volcanic dust was observed at an altitude of 1 km. Further LOAC measurements are needed to understand the implication of Icelandic dust to the Arctic warming and climate change. A new campaign of LAOC launches is planned for May 2014. Reference: Arnalds, O., 2010. Dust sources and deposition of aeolian materials in Iceland. Icelandic Agricultural Sciences 23, 3-21. Bullard, J.E., 2013. Contemporary glacigenic inputs to the dust cycle. Earth Surface Processes and Landforms 38, 71-89. Dagsson-Waldhauserova, P., Arnalds O., Olafsson H. 2013. Long-term frequency and characteristics of dust storm events in

  2. Bimodal distribution of the magnetic dipole moment in nanoparticles with a monomodal distribution of the physical size

    Energy Technology Data Exchange (ETDEWEB)

    Rijssel, Jos van; Kuipers, Bonny W.M.; Erné, Ben H., E-mail: B.H.Erne@uu.nl

    2015-04-15

    High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal distribution of the magnetic dipole moment. Here, we test this assumption for different types of superparamagnetic iron oxide nanoparticles in the 5–20 nm range, by multimodal fitting of magnetization curves using the MINORIM inversion method. The particles are studied while in dilute colloidal dispersion in a liquid, thereby preventing hysteresis and diminishing the effects of magnetic anisotropy on the interpretation of the magnetization curves. For two different types of well crystallized particles, the magnetic distribution is indeed log-normal, as expected from the physical size distribution. However, two other types of particles, with twinning defects or inhomogeneous oxide phases, are found to have a bimodal magnetic distribution. Our qualitative explanation is that relatively low fields are sufficient to begin aligning the particles in the liquid on the basis of their net dipole moment, whereas higher fields are required to align the smaller domains or less magnetic phases inside the particles. - Highlights: • Multimodal fits of dilute ferrofluids reveal when the particles are multidomain. • No a priori shape of the distribution is assumed by the MINORIM inversion method. • Well crystallized particles have log-normal TEM and magnetic size distributions. • Defective particles can combine a monomodal size and a bimodal dipole moment.

  3. Fissure formation in coke. 3: Coke size distribution and statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Jenkins; D.E. Shaw; M.R. Mahoney [CSIRO, North Ryde, NSW (Australia). Mathematical and Information Sciences

    2010-07-15

    A model of coke stabilization, based on a fundamental model of fissuring during carbonisation is used to demonstrate the applicability of the fissuring model to actual coke size distributions. The results indicate that the degree of stabilization is important in determining the size distribution. A modified form of the Weibull distribution is shown to provide a better representation of the whole coke size distribution compared to the Rosin-Rammler distribution, which is generally only fitted to the lump coke. A statistical analysis of a large number of experiments in a pilot scale coke oven shows reasonably good prediction of the coke mean size, based on parameters related to blend rank, amount of low rank coal, fluidity and ash. However, the prediction of measures of the spread of the size distribution is more problematic. The fissuring model, the size distribution representation and the statistical analysis together provide a comprehensive capability for understanding and predicting the mean size and distribution of coke lumps produced during carbonisation. 12 refs., 16 figs., 4 tabs.

  4. Estimating Functions of Distributions Defined over Spaces of Unknown Size

    Directory of Open Access Journals (Sweden)

    David H. Wolpert

    2013-10-01

    Full Text Available We consider Bayesian estimation of information-theoretic quantities from data, using a Dirichlet prior. Acknowledging the uncertainty of the event space size m and the Dirichlet prior’s concentration parameter c, we treat both as random variables set by a hyperprior. We show that the associated hyperprior, P(c, m, obeys a simple “Irrelevance of Unseen Variables” (IUV desideratum iff P(c, m = P(cP(m. Thus, requiring IUV greatly reduces the number of degrees of freedom of the hyperprior. Some information-theoretic quantities can be expressed multiple ways, in terms of different event spaces, e.g., mutual information. With all hyperpriors (implicitly used in earlier work, different choices of this event space lead to different posterior expected values of these information-theoretic quantities. We show that there is no such dependence on the choice of event space for a hyperprior that obeys IUV. We also derive a result that allows us to exploit IUV to greatly simplify calculations, like the posterior expected mutual information or posterior expected multi-information. We also use computer experiments to favorably compare an IUV-based estimator of entropy to three alternative methods in common use. We end by discussing how seemingly innocuous changes to the formalization of an estimation problem can substantially affect the resultant estimates of posterior expectations.

  5. 9 CFR 104.5 - Products for distribution and sale.

    Science.gov (United States)

    2010-01-01

    ... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PERMITS FOR BIOLOGICAL PRODUCTS § 104.5 Products for distribution and sale. An application for a U.S. Veterinary Biological Product Permit to import a biological product for Distribution and Sale shall be accompanied...

  6. Methods for determining particle size distribution and growth rates between 1 and 3 nm using the Particle Size Magnifier

    CERN Document Server

    Lehtipalo, Katrianne; Kontkanen, Jenni; Kangasluoma, Juha; Franchin, Alessandro; Wimmer, Daniela; Schobesberger, Siegfried; Junninen, Heikki; Petäjä, Tuukka; Sipilä, Mikko; Mikkilä, Jyri; Vanhanen, Joonas; Worsnop, Douglas R; Kulmala, Markku

    2014-01-01

    The most important parameters describing the atmospheric new particle formation process are the particle formation and growth rates. These together determine the amount of cloud condensation nuclei attributed to secondary particle formation. Due to difficulties in detecting small neutral particles, it has previously not been possible to derive these directly from measurements in the size range below about 3 nm. The Airmodus Particle Size Magnifier has been used at the SMEAR II station in Hyytiälä, southern Finland, and during nucleation experiments in the CLOUD chamber at CERN for measuring particles as small as about 1 nm in mobility diameter. We developed several methods to determine the particle size distribution and growth rates in the size range of 1–3 nm from these data sets. Here we introduce the appearance-time method for calculating initial growth rates. The validity of the method was tested by simulations with the Ion-UHMA aerosol dynamic model.

  7. Soil fertility controls the size-specific distribution of eukaryotes.

    Science.gov (United States)

    Mulder, Christian

    2010-05-01

    The large range of body-mass values of soil organisms provides a tool to assess the organization of soil ecological communities. Relationships between log-transformed body mass M and log-transformed numerical abundance N of all eukaryotes occurring under organic pastures, mature grasslands, and seminatural heathlands in the Netherlands were investigated. The observed allometry of (M,N) assemblages of below-ground communities strongly reflects the availability of primary macronutrients and essential micronutrients. This log-linear model describes the continuous variation in the allometric slope of animals and fungi along an increasing soil fertility gradient. The aggregate contribution of small invertebrates (M ground primary production of ecosystems. PMID:20586775

  8. Diel size distributions reveal seasonal growth dynamics of a coastal phytoplankter

    Science.gov (United States)

    Hunter-Cevera, Kristen R.; Neubert, Michael G.; Solow, Andrew R.; Olson, Robert J.; Shalapyonok, Alexi; Sosik, Heidi M.

    2014-01-01

    Phytoplankton account for roughly half of global primary production; it is vital that we understand the processes that control their abundance. A key process is cell division. We have, however, been unable to estimate division rate in natural populations at the appropriate timescale (hours to days) for extended periods of time (months to years). For phytoplankton, the diel change in cell size distribution is related to division rate, which offers an avenue to obtain estimates from in situ observations. We show that a matrix population model, fit to hourly cell size distributions, accurately estimates division rates of both cultured and natural populations of Synechococcus. Application of the model to Synechococcus at the Martha’s Vineyard Coastal Observatory provides an unprecedented view that reveals a distinct seasonality in division rates. This information allows us to separate the effects of growth and loss quantitatively over an entire seasonal cycle. We find that division and loss processes are tightly coupled throughout the year. The large seasonal changes in cell abundance are the result of periods of time (weeks to months) when there are small systematic differences that favor either net growth or loss. We also find that temperature plays a critical role in limiting division rate during the annual spring bloom. This approach opens a path to quantify the role of Synechococcus in ecological and biogeochemical processes in natural systems. PMID:24958866

  9. A new perspective on paleo-piezometry: Dynamically recrystallized grain size distributions indicate mechanism changes

    OpenAIRE

    Stipp, Michael; Tullis, Jan; Scherwath, Martin; Behrmann, Jan Hinrich

    2010-01-01

    The dynamically recrystallized grain size is a material parameter associated with dislocation creep of crystalline solids that is especially important as a flow stress indicator via piezometer calibrations. Grain sizes have been measured in many studies of deformed rocks as well as metals and ceramics, but global analyses of the frequency distribution of dynamically recrystallized grain sizes are lacking. Here we present the first systematic investigation of the recrystallized grain size dist...

  10. Sifting attacks in finite-size quantum key distribution

    Science.gov (United States)

    Pfister, Corsin; Lütkenhaus, Norbert; Wehner, Stephanie; Coles, Patrick J.

    2016-05-01

    A central assumption in quantum key distribution (QKD) is that Eve has no knowledge about which rounds will be used for parameter estimation or key distillation. Here we show that this assumption is violated for iterative sifting, a sifting procedure that has been employed in some (but not all) of the recently suggested QKD protocols in order to increase their efficiency. We show that iterative sifting leads to two security issues: (1) some rounds are more likely to be key rounds than others, (2) the public communication of past measurement choices changes this bias round by round. We analyze these two previously unnoticed problems, present eavesdropping strategies that exploit them, and find that the two problems are independent. We discuss some sifting protocols in the literature that are immune to these problems. While some of these would be inefficient replacements for iterative sifting, we find that the sifting subroutine of an asymptotically secure protocol suggested by Lo et al (2005 J. Cryptol. 18 133–65), which we call LCA sifting, has an efficiency on par with that of iterative sifting. One of our main results is to show that LCA sifting can be adapted to achieve secure sifting in the finite-key regime. More precisely, we combine LCA sifting with a certain parameter estimation protocol, and we prove the finite-key security of this combination. Hence we propose that LCA sifting should replace iterative sifting in future QKD implementations. More generally, we present two formal criteria for a sifting protocol that guarantee its finite-key security. Our criteria may guide the design of future protocols and inspire a more rigorous QKD analysis, which has neglected sifting-related attacks so far.

  11. Two-size approximation: a simple way of treating the evolution of grain size distribution in galaxies

    CERN Document Server

    Hirashita, Hiroyuki

    2014-01-01

    Full calculations of the evolution of grain size distribution in galaxies are in general computationally heavy. In this paper, we propose a simple model of dust enrichment in a galaxy with a simplified treatment of grain size distribution by imposing a `two-size approximation'; that is, all the grain population is represented by small (grain radius a 0.03 micron) grains. We include in the model dust supply from stellar ejecta, destruction in supernova shocks, dust growth by accretion, grain growth by coagulation and grain disruption by shattering, considering how these processes work on the small and large grains. We show that this simple framework reproduces the main features found in full calculations of grain size distributions as follows. The dust enrichment starts with the supply of large grains from stars. At a metallicity level referred to as the critical metallicity of accretion, the abundance of the small grains formed by shattering becomes large enough to rapidly increase the grain abundance by acc...

  12. Does the size distribution of mineral dust aerosols depend on the wind speed at emission?

    Directory of Open Access Journals (Sweden)

    J. F. Kok

    2011-07-01

    Full Text Available The size distribution of mineral dust aerosols greatly affects their interactions with clouds, radiation, ecosystems, and other components of the Earth system. Several theoretical dust emission models predict that the dust size distribution depends on the wind speed at emission, with larger wind speeds predicted to produce smaller aerosols. The present study investigates this prediction using a compilation of published measurements of the size-resolved vertical dust flux emitted by eroding soils. Surprisingly, these measurements indicate that the size distribution of naturally emitted dust aerosols is independent of the wind speed. This finding is consistent with the recently formulated brittle fragmentation theory of dust emission, but inconsistent with other theoretical dust emission models. The independence of the emitted dust size distribution with wind speed simplifies both the parameterization of dust emission in atmospheric circulation models as well as the interpretation of geological records of dust deposition.

  13. Does the size distribution of mineral dust aerosols depend on the wind speed at emission?

    CERN Document Server

    Kok, Jasper F

    2011-01-01

    The size distribution of mineral dust aerosols partially determines their interactions with clouds, radiation, ecosystems, and other components of the Earth system. Several theoretical models predict that the dust size distribution depends on the wind speed at emission, with larger wind speeds predicted to produce smaller aerosols. The present study investigates this prediction using a compilation of published measurements of the size-resolved vertical dust flux emitted by eroding soils. Surprisingly, these measurements indicate that the size distribution of naturally emitted dust aerosols is independent of the wind speed. The recently formulated brittle fragmentation theory of dust emission is consistent with this finding, whereas other theoretical dust emission models are not. The independence of the emitted dust size distribution with wind speed simplifies both the interpretation of geological records of dust deposition and the parameterization of dust emission in atmospheric circulation models.

  14. Earthquake Size Distribution: Power-Law with Exponent Beta = 1/2 ?

    CERN Document Server

    Kagan, Yan Y

    2009-01-01

    We propose that the widely observed and universal Gutenberg-Richter relation is a mathematical consequence of the critical branching nature of earthquake process in a brittle fracture environment. These arguments, though preliminary, are confirmed by recent investigations of the seismic moment distribution in global earthquake catalogs and by the results on the distribution in crystals of dislocation avalanche sizes. We consider possible systematic and random errors in determining earthquake size, especially its seismic moment. These effects increase the estimate of the parameter beta of the power-law distribution of earthquake sizes. In particular we find that the decrease in relative moment uncertainties with earthquake size causes inflation in the beta-value by about 1-3%. Moreover, earthquake clustering greatly influences the beta-parameter. If clusters (aftershock sequences) are taken as the entity to be studied, then the exponent value for their size distribution would decrease by 5-10%. The complexity ...

  15. Research on measurement method of 220Rn progeny aerosol size distribution

    International Nuclear Information System (INIS)

    The method for measuring 220Rn progeny aerosol activity particle size distributions was introduced through ELPI system, α spectroscopy and the energy discrimination method. The different particle sizes of the 220Rn progeny aerosols were collected and the activity size distributions in the 220Rn laboratory of the University of South China were measured by this method. The experiment results show that the activity median aerodynamic diameter (AMAD) of ThB aerosol is 237 nm, and that of ThC is 245 nm. The simple and quick method can be used to monitor the particle size distributions of 220Rn progeny aerosol in real time, the aerosol activity size distributions of ThB and ThC can be obtained by this method at the same time, and the measurement accuracy of the energy spectrum is higher than that of custom method. (authors)

  16. On wildfire complexity, simple models and environmental templates for fire size distributions

    Science.gov (United States)

    Boer, M. M.; Bradstock, R.; Gill, M.; Sadler, R.

    2012-12-01

    Vegetation fires affect some 370 Mha annually. At global and continental scales, fire activity follows predictable spatiotemporal patterns driven by gradients and seasonal fluctuations of primary productivity and evaporative demand that set constraints for fuel accumulation rates and fuel dryness, two key ingredients of fire. At regional scales, fires are also known to affect some landscapes more than others and within landscapes to occur preferentially in some sectors (e.g. wind-swept ridges) and rarely in others (e.g. wet gullies). Another common observation is that small fires occur relatively frequent yet collectively burn far less country than relatively infrequent large fires. These patterns of fire activity are well known to management agencies and consistent with their (informal) models of how the basic drivers and constraints of fire (i.e. fuels, ignitions, weather) vary in time and space across the landscape. The statistical behaviour of these landscape fire patterns has excited the (academic) research community by showing some consistency with that of complex dynamical systems poised at a phase transition. The common finding that the frequency-size distributions of actual fires follow power laws that resemble those produced by simple cellular models from statistical mechanics has been interpreted as evidence that flammable landscapes operate as self-organising systems with scale invariant fire size distributions emerging 'spontaneously' from simple rules of contagious fire spread and a strong feedback between fires and fuel patterns. In this paper we argue that the resemblance of simulated and actual fire size distributions is an example of equifinality, that is fires in model landscapes and actual landscapes may show similar statistical behaviour but this is reached by qualitatively different pathways or controlling mechanisms. We support this claim with two key findings regarding simulated fire spread mechanisms and fire-fuel feedbacks. Firstly, we

  17. Size distribution of autotrophy and microheterotrophy in reservoirs: implications for foodweb structure

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, B.L.

    1981-01-01

    Particle size is a primary determinant of resources available to consumers and of the efficiency of energy transfer through planktonic food chains. Dual radioisotopic labeling (with /sup 14/C-bicarbonate and /sup 3/H-acetate) and size fractionation of naturally-occurring phytoplankton-bacterioplankton assemblages were employed to examine the particle size distributions of planktonic autotrophy and microheterotrophy in four limnologically-dissimilar US reservoirs (Lake Mead, Arizona-Nevada, oligo-mesotrophic; Broken Bow Lake, Oklahoma, mesotrophic; Lake Texoma, Oklahoma-Texas, eutrophic; and Normandy Lake, Tennessee, eutrophic). Small nano- and ultraphytoplankton (< 8.0 ..mu..m) and free-living bacteria (< 3.0 ..mu..m) were primarly responsible for planktonic autotrophy and microheterotrophy, respecitvely, even in eutrophic conditions. Zooplankton grazing experiments indicated that (1) most grazing pressure occurs on 3.0 to 8.0 ..mu..m particles, (2) grazer limitation of the occurrence of attached bacteria amd microbial-detrital aggregates is unlikely, and (3) free-living bacteria are inefficiently harvested, relative to algae, by most reservoir zooplankton. Relative to autorophy, the microheterotrophic conversion of allochthonous dissolved organic matter and algal excretion products to bacterial biomass appears unlikely to be a significant source of organic carbon for planktonic grazers in most reservoirs.

  18. Size distribution of autotrophy and microheterotrophy in reservoirs: implications for foodweb structure

    International Nuclear Information System (INIS)

    Particle size is a primary determinant of resources available to consumers and of the efficiency of energy transfer through planktonic food chains. Dual radioisotopic labeling (with 14C-bicarbonate and 3H-acetate) and size fractionation of naturally-occurring phytoplankton-bacterioplankton assemblages were employed to examine the particle size distributions of planktonic autotrophy and microheterotrophy in four limnologically-dissimilar US reservoirs (Lake Mead, Arizona-Nevada, oligo-mesotrophic; Broken Bow Lake, Oklahoma, mesotrophic; Lake Texoma, Oklahoma-Texas, eutrophic; and Normandy Lake, Tennessee, eutrophic). Small nano- and ultraphytoplankton (< 8.0 μm) and free-living bacteria (< 3.0 μm) were primarly responsible for planktonic autotrophy and microheterotrophy, respecitvely, even in eutrophic conditions. Zooplankton grazing experiments indicated that (1) most grazing pressure occurs on 3.0 to 8.0 μm particles, (2) grazer limitation of the occurrence of attached bacteria amd microbial-detrital aggregates is unlikely, and (3) free-living bacteria are inefficiently harvested, relative to algae, by most reservoir zooplankton. Relative to autorophy, the microheterotrophic conversion of allochthonous dissolved organic matter and algal excretion products to bacterial biomass appears unlikely to be a significant source of organic carbon for planktonic grazers in most reservoirs

  19. Determination of the particle size distribution of aerosols by means of a diffusion battery

    International Nuclear Information System (INIS)

    The different methods allowing to determine the particle size distribution of aerosols by means of diffusion batteries are described. To that purpose, a new method for the processing of experimental data (percentages of particles trapped by the battery vs flow rate) was developed on the basis of calculation principles which are described and assessed. This method was first tested by numerical simulation from a priori particle size distributions and then verified experimentally using a fine uranine aerosol whose particle size distribution as determined by our method was compared with the distribution previously obtained by electron microscopy. The method can be applied to the determination of particle size distribution spectra of fine aerosols produced by 'radiolysis' of atmospheric gaseous impurities. Two other applications concern the detection threshold of the condensation nuclei counter and the 'critical' radii of 'radiolysis' particles

  20. Nanomaterial size distribution analysis via liquid nebulization coupled with ion mobility spectrometry (LN-IMS).

    Science.gov (United States)

    Jeon, Seongho; Oberreit, Derek R; Van Schooneveld, Gary; Hogan, Christopher J

    2016-02-21

    We apply liquid nebulization (LN) in series with ion mobility spectrometry (IMS, using a differential mobility analyzer coupled to a condensation particle counter) to measure the size distribution functions (the number concentration per unit log diameter) of gold nanospheres in the 5-30 nm range, 70 nm × 11.7 nm gold nanorods, and albumin proteins originally in aqueous suspensions. In prior studies, IMS measurements have only been carried out for colloidal nanoparticles in this size range using electrosprays for aerosolization, as traditional nebulizers produce supermicrometer droplets which leave residue particles from non-volatile species. Residue particles mask the size distribution of the particles of interest. Uniquely, the LN employed in this study uses both online dilution (with dilution factors of up to 10(4)) with ultra-high purity water and a ball-impactor to remove droplets larger than 500 nm in diameter. This combination enables hydrosol-to-aerosol conversion preserving the size and morphology of particles, and also enables higher non-volatile residue tolerance than electrospray based aerosolization. Through LN-IMS measurements we show that the size distribution functions of narrowly distributed but similarly sized particles can be distinguished from one another, which is not possible with Nanoparticle Tracking Analysis in the sub-30 nm size range. Through comparison to electron microscopy measurements, we find that the size distribution functions inferred via LN-IMS measurements correspond to the particle sizes coated by surfactants, i.e. as they persist in colloidal suspensions. Finally, we show that the gas phase particle concentrations inferred from IMS size distribution functions are functions of only of the liquid phase particle concentration, and are independent of particle size, shape, and chemical composition. Therefore LN-IMS enables characterization of the size, yield, and polydispersity of sub-30 nm particles.

  1. Nanomaterial size distribution analysis via liquid nebulization coupled with ion mobility spectrometry (LN-IMS).

    Science.gov (United States)

    Jeon, Seongho; Oberreit, Derek R; Van Schooneveld, Gary; Hogan, Christopher J

    2016-02-21

    We apply liquid nebulization (LN) in series with ion mobility spectrometry (IMS, using a differential mobility analyzer coupled to a condensation particle counter) to measure the size distribution functions (the number concentration per unit log diameter) of gold nanospheres in the 5-30 nm range, 70 nm × 11.7 nm gold nanorods, and albumin proteins originally in aqueous suspensions. In prior studies, IMS measurements have only been carried out for colloidal nanoparticles in this size range using electrosprays for aerosolization, as traditional nebulizers produce supermicrometer droplets which leave residue particles from non-volatile species. Residue particles mask the size distribution of the particles of interest. Uniquely, the LN employed in this study uses both online dilution (with dilution factors of up to 10(4)) with ultra-high purity water and a ball-impactor to remove droplets larger than 500 nm in diameter. This combination enables hydrosol-to-aerosol conversion preserving the size and morphology of particles, and also enables higher non-volatile residue tolerance than electrospray based aerosolization. Through LN-IMS measurements we show that the size distribution functions of narrowly distributed but similarly sized particles can be distinguished from one another, which is not possible with Nanoparticle Tracking Analysis in the sub-30 nm size range. Through comparison to electron microscopy measurements, we find that the size distribution functions inferred via LN-IMS measurements correspond to the particle sizes coated by surfactants, i.e. as they persist in colloidal suspensions. Finally, we show that the gas phase particle concentrations inferred from IMS size distribution functions are functions of only of the liquid phase particle concentration, and are independent of particle size, shape, and chemical composition. Therefore LN-IMS enables characterization of the size, yield, and polydispersity of sub-30 nm particles. PMID:26750519

  2. Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite

    Science.gov (United States)

    Cabada, Juan C.; Rees, Sarah; Takahama, Satoshi; Khlystov, Andrey; Pandis, Spyros N.; Davidson, Cliff I.; Robinson, Allen L.

    Size-resolved aerosol mass and chemical composition were measured during the Pittsburgh Air Quality Study. Daily samples were collected for 12 months from July 2001 to June 2002. Micro-orifice uniform deposit impactors (MOUDIs) were used to collect aerosol samples of fine particulate matter smaller than 10 μm. Measurements of PM 0.056, PM 0.10, PM 0.18, PM 0.32, PM 0.56, PM 1.0, PM 1.8 and PM 2.5 with the MOUDI are available for the full study period. Seasonal variations in the concentrations are observed for all size cuts. Higher concentrations are observed during the summer and lower during the winter. Comparison between the PM 2.5 measurements by the MOUDI and other integrated PM samplers reveals good agreement. Good correlation is observed for PM 10 between the MOUDI and an integrated sampler but the MOUDI underestimates PM 10 by 20%. Bouncing of particles from higher stages of the MOUDI (>PM 2.5) is not a major problem because of the low concentrations of coarse particles in the area. The main cause of coarse particle losses appears to be losses to the wall of the MOUDI. Samples were collected on aluminum foils for analysis of carbonaceous material and on Teflon filters for analysis of particle mass and inorganic anions and cations. Daily samples were analyzed during the summer (July 2001) and the winter intensives (January 2002). During the summer around 50% of the organic material is lost from the aluminum foils as compared to a filter-based sampler. These losses are due to volatilization and bounce-off from the MOUDI stages. High nitrate losses from the MOUDI are also observed during the summer (above 70%). Good agreement between the gravimetrically determined mass and the sum of the masses of the individual compounds is obtained, if the lost mass from organics and the aerosol water content are included for the summer. For the winter no significant losses of material are detected and there exists reasonable agreement between the gravimetrical mass and the

  3. Why Does Zipf's Law Break Down in Rank-Size Distribution of Cities?

    CERN Document Server

    Kuninaka, Hiroto

    2008-01-01

    We study rank-size distribution of cities in Japan on the basis of data analysis. From the census data after World War II, we find that the rank-size distribution of cities is composed of two parts, each of which has independent power exponent. In addition, the power exponent of the head part of the distribution changes in time and Zipf's law holds only in a restricted period. We show that Zipf's law broke down due to both of Showa and Heisei great mergers and recovered due to population growth in middle-sized cities after the great Showa merger.

  4. Ostwald ripening of supported Pt nanoclusters with initial size-selected distributions

    Science.gov (United States)

    Zhdanov, Vladimir P.; Schweinberger, Florian F.; Heiz, Ueli; Langhammer, Christoph

    2015-07-01

    The use of a laser ablation cluster source made it recently possible to study Ostwald ripening of supported Pt nanoclusters with atomic control of the initial size distributions, such as Pt68 or Pt22 + Pt68 (K. Wettergren et al., Nano Lett. (2014)). Monodispersed clusters were found to be more stable compared to the bimodal ones and to those with wide polydisperse initial size distribution. To clarify the results of the experiments, we present here the corresponding kinetic Monte Carlo simulations of Ostwald ripening with emphasis on the role of the initial size distribution with control at the atomic level.

  5. Linear and nonlinear excitations in complex plasmas with nonadiabatic dust charge fluctuation and dust size distribution

    Institute of Scientific and Technical Information of China (English)

    Zhang Li-Ping; Xue Ju-Kui; Li Yan-Long

    2011-01-01

    Both linear and nonlinear excitation in dusty plasmas have been investigated including the nonadiabatic dust charge fluctuation and Gaussian size distribution dust particles.A linear dispersion relation and a Korteweg-de VriesBurgers equation governing the dust acoustic shock waves are obtained.The relevance of the instability of wave and the wave evolution to the dust size distribution and nonadiabatic dust charge fluctuation is illustrated both analytically and numerically.The numerical results show that the Gaussian size distribution of dust particles and the nonadiabatic dust charge fluctuation have strong common influence on the propagation of both linear and nonlinear excitations.

  6. Effect of a polynomial arbitrary dust size distribution on dust acoustic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Ishak-Boushaki, M.; Djellout, D.; Annou, R. [Faculty of Physics, USTHB, P.B. 32 El Alia, Bab-ezzouar, Algiers (Algeria)

    2012-07-15

    The investigation of dust-acoustic solitons when dust grains are size-distributed and ions adiabatically heated is conducted. The influence of an arbitrary dust size-distribution described by a polynomial function on the properties of dust acoustic waves is investigated. An energy-like integral equation involving Sagdeev potential is derived. The solitary solutions are shown to undergo a transformation into cnoidal ones under some physical conditions. The dust size-distribution can significantly affect both lower and upper critical Mach numbers for both solitons and cnoidal solutions.

  7. Characterization of energy barrier and particle size distribution of lyophilized ferrofluids by magnetic relaxation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schmidl, Frank [Institut of Solid State Physics, Friedrich-Schiller-University Jena, D-07743 Jena (Germany)]. E-mail: Frank.Schmidl@uni-jena.de; Weber, Peter [Institut of Solid State Physics, Friedrich-Schiller-University Jena, D-07743 Jena (Germany); Koettig, Torsten [Institut of Solid State Physics, Friedrich-Schiller-University Jena, D-07743 Jena (Germany); Buettner, Markus [Institut of Solid State Physics, Friedrich-Schiller-University Jena, D-07743 Jena (Germany); Prass, Stefan [Institut of Solid State Physics, Friedrich-Schiller-University Jena, D-07743 Jena (Germany); Becker, Christoph [Institut of Solid State Physics, Friedrich-Schiller-University Jena, D-07743 Jena (Germany); Mans, Michael [Institut of Solid State Physics, Friedrich-Schiller-University Jena, D-07743 Jena (Germany); Heinrich, Jochen [Innovent Technologieentwicklung, Pruessingstrasse 27B, D-07743 Jena (Germany); Roeder, Michael [Innovent Technologieentwicklung, Pruessingstrasse 27B, D-07743 Jena (Germany); Wagner, Kerstin [Innovent Technologieentwicklung, Pruessingstrasse 27B, D-07743 Jena (Germany); Berkov, Dimitr V. [Innovent Technologieentwicklung, Pruessingstrasse 27B, D-07743 Jena (Germany); Goernert, Peter [Innovent Technologieentwicklung, Pruessingstrasse 27B, D-07743 Jena (Germany); Gloeckl, Gunnar [Institute of Pharmacy, Ernst-Moritz-Arndt-University, D-17487 Greifswald (Germany); Weitschies, Werner [Institute of Pharmacy, Ernst-Moritz-Arndt-University, D-17487 Greifswald (Germany); Seidel, Paul [Institut of Solid State Physics, Friedrich-Schiller-University Jena, D-07743 Jena (Germany)

    2007-04-15

    The magnetic properties of a ferrofluid are strongly influenced by its particle size distribution. We analyzed a ferrofluid with an unknown particle size distribution as well as fractionated samples of the original material. The ferrofluid in our investigations consists of a mixture of maghemite and magnetite. We investigated these different samples using temperature-dependent magnetorelaxometry method. The evaluation of the Neel relaxation signal allows us a direct determination of the energy barrier distribution, which is one of the most important parameters of such systems of magnetic nanoparticles. The calculated particle volumes were compared with particle sizes determined by transmission electron microscopy.

  8. Scale-free Universal Spectrum for Atmospheric Aerosol Size Distribution for Davos, Mauna Loa and Izana

    CERN Document Server

    Selvam, A M

    2011-01-01

    Atmospheric flows exhibit fractal fluctuations and inverse power law form for power spectra indicating an eddy continuum structure for the selfsimilar fluctuations. A general systems theory for fractal fluctuations developed by the author is based on the simple visualisation that large eddies form by space-time integration of enclosed turbulent eddies, a concept analogous to Kinetic Theory of Gases in Classical Statistical Physics. The ordered growth of atmospheric eddy continuum is in dynamical equilibrium and is associated with Maximum Entropy Production. The model predicts universal (scale-free) inverse power law form for fractal fluctuations expressed in terms of the golden mean. Atmospheric particulates are held in suspension in the fractal fluctuations of vertical wind velocity. The mass or radius (size) distribution for homogeneous suspended atmospheric particulates is expressed as a universal scale-independent function of the golden mean, the total number concentration and the mean volume radius. Mode...

  9. Spatial Distribution of Pair Production over the Pulsar Polar Cap

    CERN Document Server

    Belyaev, Mikhail A

    2016-01-01

    Using an analytic, axisymmetric approach that includes general relativity, coupled to a condition for pair production deduced from simulations, we derive general results about the spatial distribution of pair-producing field lines over the pulsar polar cap. In particular, we show that pair production by curvature photons on magnetic field lines operates over only a fraction of the polar cap for an aligned rotator for general magnetic field configurations, assuming the magnetic field varies spatially on a scale that is larger than the size of the polar cap. We compare our result to force-free simulations of a pulsar with a dipole surface field and find excellent agreement. Our work has implications for first-principles simulations of pulsar magnetospheres, and for explaining observations of pulsed radio and high-energy emission.

  10. Undersampling power-law size distributions: effect on the assessment of extreme natural hazards

    Science.gov (United States)

    Geist, Eric L.; Parsons, Thomas E.

    2014-01-01

    The effect of undersampling on estimating the size of extreme natural hazards from historical data is examined. Tests using synthetic catalogs indicate that the tail of an empirical size distribution sampled from a pure Pareto probability distribution can range from having one-to-several unusually large events to appearing depleted, relative to the parent distribution. Both of these effects are artifacts caused by limited catalog length. It is more difficult to diagnose the artificially depleted empirical distributions, since one expects that a pure Pareto distribution is physically limited in some way. Using maximum likelihood methods and the method of moments, we estimate the power-law exponent and the corner size parameter of tapered Pareto distributions for several natural hazard examples: tsunamis, floods, and earthquakes. Each of these examples has varying catalog lengths and measurement thresholds, relative to the largest event sizes. In many cases where there are only several orders of magnitude between the measurement threshold and the largest events, joint two-parameter estimation techniques are necessary to account for estimation dependence between the power-law scaling exponent and the corner size parameter. Results indicate that whereas the corner size parameter of a tapered Pareto distribution can be estimated, its upper confidence bound cannot be determined and the estimate itself is often unstable with time. Correspondingly, one cannot statistically reject a pure Pareto null hypothesis using natural hazard catalog data. Although physical limits to the hazard source size and by attenuation mechanisms from source to site constrain the maximum hazard size, historical data alone often cannot reliably determine the corner size parameter. Probabilistic assessments incorporating theoretical constraints on source size and propagation effects are preferred over deterministic assessments of extreme natural hazards based on historic data.

  11. Influence of particle size on the distributions of liposomes to atherosclerotic lesions in mice.

    Science.gov (United States)

    Chono, Sumio; Tauchi, Yoshihiko; Morimoto, Kazuhiro

    2006-01-01

    In order to confirm the efficacy of liposomes as a drug carrier for atherosclerotic therapy, the influence of particle size on the distribution of liposomes to atherosclerotic lesions in mice was investigated. In brief, liposomes of three different particle sizes (500, 200, and 70 nm) were prepared, and the uptake of liposomes by the macrophages and foam cells in vitro and the biodistributions of liposomes administered intravenously to atherogenic mice in vivo were examined. The uptake by the macrophages and foam cells increased with the increase in particle size. Although the elimination rate from the blood circulation and the hepatic and splenic distribution increased with the increase in particle size in atherogenic mice, the aortic distribution was independent of the particle size. The aortic distribution of 200 nm liposomes was the highest in comparison with the other sizes. Surprisingly, the aortic distribution of liposomes in vivo did not correspond with the uptake by macrophages and foam cells in vitro. These results suggest that there is an optimal size for the distribution of liposomes to atherosclerotic lesions.

  12. Cloud particle size distributions measured with an airborne digital in-line holographic instrument

    Directory of Open Access Journals (Sweden)

    J. P. Fugal

    2009-03-01

    Full Text Available Holographic data from the prototype airborne digital holographic instrument HOLODEC (Holographic Detector for Clouds, taken during test flights are digitally reconstructed to obtain the size (equivalent diameters in the range 23 to 1000 μm, three-dimensional position, and two-dimensional profile of ice particles and then ice particle size distributions and number densities are calculated using an automated algorithm with minimal user intervention. The holographic method offers the advantages of a well-defined sample volume size that is not dependent on particle size or airspeed, and offers a unique method of detecting shattered particles. The holographic method also allows the volume sample rate to be increased beyond that of the prototype HOLODEC instrument, limited solely by camera technology.

    HOLODEC size distributions taken in mixed-phase regions of cloud compare well to size distributions from a PMS FSSP probe also onboard the aircraft during the test flights. A conservative algorithm for detecting shattered particles utilizing the particles depth-position along the optical axis eliminates the obvious ice particle shattering events from the data set. In this particular case, the size distributions of non-shattered particles are reduced by approximately a factor of two for particles 15 to 70 μm in equivalent diameter, compared to size distributions of all particles.

  13. THE TEMPORAL DYNAMICS OF REGIONAL CITY SIZE DISTRIBUTION: ANDHRA PRADESH (1951-2001

    Directory of Open Access Journals (Sweden)

    G. Kumar

    2014-01-01

    Full Text Available Systems with measurable entities are characterized by certain properties of their size distribution. City Size Distribution (CSD and the underlying city size dynamics have received attention in the urban economic literature in recent years. In this approach we aim at evaluating the temporal dynamics of city size distribution in Andhra Pradesh, an Indian state for the period 1951-2001. The research framework-which is based on a function relating population size to rank-is used to test for the trends of deconcentration cities of population over the study period. The expansion methodology is used to investigate the dynamics of rank size function in temporal dimension. We have studied the threshold size and its influence on temporal trends. The size distribution of cities/towns from one period to another is modeled by way of a Markov Chain. Our findings reveal that all places in the urban system are growing with small towns growing at a faster rate during study period. The largest cities and the smallest towns display higher persistence than the medium sized cities.

  14. Droplet Size Distribution in Sprays Based on Maximization of Entropy Generation

    Directory of Open Access Journals (Sweden)

    Meishen Li

    2003-12-01

    Full Text Available Abstract: The maximum entropy principle (MEP, which has been popular in the modeling of droplet size and velocity distribution in sprays, is, strictly speaking, only applicable for isolated systems in thermodynamic equilibrium; whereas the spray formation processes are irreversible and non-isolated with interaction between the atomizing liquid and its surrounding gas medium. In this study, a new model for the droplet size distribution has been developed based on the thermodynamically consistent concept - the maximization of entropy generation during the liquid atomization process. The model prediction compares favorably with the experimentally measured size distribution for droplets, near the liquid bulk breakup region, produced by an air-blast annular nozzle and a practical gas turbine nozzle. Therefore, the present model can be used to predict the initial droplet size distribution in sprays.

  15. Regression modeling of particle size distributions in urban storm water: advancements through improved sample collection methods

    Science.gov (United States)

    Fienen, Michael N.; Selbig, William R.

    2012-01-01

    A new sample collection system was developed to improve the representation of sediment entrained in urban storm water by integrating water quality samples from the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of suspended-sediment concentration and particle size distribution at three independent study locations. Use of the DISA decreased variability, which improved statistical regression to predict particle size distribution using surrogate environmental parameters, such as precipitation depth and intensity. The performance of this statistical modeling technique was compared to results using traditional fixed-point sampling methods and was found to perform better. When environmental parameters can be used to predict particle size distributions, environmental managers have more options when characterizing concentrations, loads, and particle size distributions in urban runoff.

  16. A Sign of Superspreading in Tuberculosis Highly Skewed Distribution of Genotypic Cluster Sizes

    NARCIS (Netherlands)

    Ypma, Rolf J. F.; Altes, Hester Korthals; van Soolingen, Dick; Wallinga, Jacco; van Ballegooijen, W. Marijn

    2013-01-01

    Background: Molecular typing is a valuable tool for gaining insight into spread of Mycobacterium tuberculosis. Typing allows for clustering of cases whose isolates share an identical genotype, revealing epidemiologic relatedness. Observed distributions of genotypic cluster sizes of tuberculosis (TB)

  17. A sign of superspreading in tuberculosis: highly skewed distribution of genotypic cluster sizes.

    NARCIS (Netherlands)

    Ypma, R.J.; Altes, H.K.; Soolingen, D. van; Wallinga, J.; Ballegooijen, W.M. van

    2013-01-01

    BACKGROUND: Molecular typing is a valuable tool for gaining insight into spread of Mycobacterium tuberculosis. Typing allows for clustering of cases whose isolates share an identical genotype, revealing epidemiologic relatedness. Observed distributions of genotypic cluster sizes of tuberculosis (TB)

  18. Particle Size Distribution, Powder Agglomerates and Their Effects on Sinterability of Ultrafine Alumina Powders

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An intensive study of the particle size distribution of four commercial ultrafine alumina powders to obtain information about the powder agglomeration and relate them to the compactibility and the sinterability has been made.

  19. Evolutionary implications of a power-law distribution of protein family sizes

    CERN Document Server

    Bader, J S

    1999-01-01

    Current-day genomes bear the mark of the evolutionary processes. One of the strongest indications is the sequence homology among families of proteins that perform similar biological functions in different species. The number of proteins in a family can grow over time as genetic information is duplicated through evolution. We explore how evolution directs the size distribution of these families. Theoretical predictions for family sizes are obtained from two models, one in which individual genes duplicate and a second in which the entire genome duplicates. Predictions from these models are compared with the family size distributions for several organisms whose complete genome sequence is known. We find that protein family size distributions in nature follow a power-law distribution. Comparing these results to the model systems, we conclude that genome duplication is the dominant mechanism leading to increased genetic material in the species considered.

  20. Notes on representing grain size distributions obtained by electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Toth, Laszlo S., E-mail: laszlo.metz@univ-lorraine.fr [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR 7239, CNRS/Université de Lorraine, F-57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (DAMAS), Université de Lorraine (France); Biswas, Somjeet, E-mail: somjeetbiswas@gmail.com [Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (DAMAS), Université de Lorraine (France); Gu, Chengfan, E-mail: chengfan.gu@unsw.edu.au [School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Beausir, Benoit, E-mail: benoit.beausir@univ-lorraine.fr [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR 7239, CNRS/Université de Lorraine, F-57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (DAMAS), Université de Lorraine (France)

    2013-10-15

    Grain size distributions measured by electron backscatter diffraction are commonly represented by histograms using either number or area fraction definitions. It is shown here that they should be presented in forms of density distribution functions for direct quantitative comparisons between different measurements. Here we make an interpretation of the frequently seen parabolic tales of the area distributions of bimodal grain structures and a transformation formula between the two distributions are given in this paper. - Highlights: • Grain size distributions are represented by density functions. • The parabolic tales corresponds to equal number of grains in a bin of the histogram. • A simple transformation formula is given to number and area weighed distributions. • The particularities of uniform and lognormal distributions are examined.

  1. Calibration of the passive cavity aerosol spectrometer probe for airborne determination of the size distribution

    Directory of Open Access Journals (Sweden)

    Y. Cai

    2013-05-01

    Full Text Available This work describes calibration methods for the particle sizing and particle concentration systems of the passive cavity aerosol spectrometer probe (PCASP. Laboratory calibrations conducted over six years, in support of the deployment of a PCASP on a cloud physics research aircraft, are analyzed. Instead of using the many calibration sizes recommended by the PCASP manufacturer, a relationship between particle diameter and scattered light intensity is established using three sizes of mobility-selected polystyrene latex particles, one for each amplifier gain stage. In addition, studies of two factors influencing the PCASP's determination of the particle size distribution – amplifier baseline and particle shape – are conducted. It is shown that the PCASP-derived size distribution is sensitive to adjustments of the sizing system's baseline voltage, and that for aggregate spheres, a PCASP-derived particle size and a sphere-equivalent particle size agree within uncertainty dictated by the PCASP's sizing resolution. Robust determination of aerosol concentration, and size distribution, also require calibration of the PCASP's aerosol flowrate sensor. Sensor calibrations, calibration drift, and the sensor's non-linear response are documented.

  2. Calibration of the passive cavity aerosol spectrometer probe for airborne determination of the size distribution

    Directory of Open Access Journals (Sweden)

    Y. Cai

    2013-09-01

    Full Text Available This work describes calibration methods for the particle sizing and particle concentration systems of the passive cavity aerosol spectrometer probe (PCASP. Laboratory calibrations conducted over six years, in support of the deployment of a PCASP on a cloud physics research aircraft, are analyzed. Instead of using the many calibration sizes recommended by the PCASP manufacturer, a relationship between particle diameter and scattered light intensity is established using three sizes of mobility-selected polystyrene latex particles, one for each amplifier gain stage. In addition, studies of two factors influencing the PCASP's determination of the particle size distribution – amplifier baseline and particle shape – are conducted. It is shown that the PCASP-derived size distribution is sensitive to adjustments of the sizing system's baseline voltage, and that for aggregates of spheres, a PCASP-derived particle size and a sphere-equivalent particle size agree within uncertainty dictated by the PCASP's sizing resolution. Robust determinations of aerosol concentration, and size distribution, also require calibration of the PCASP's aerosol flowrate sensor. Sensor calibrations, calibration drift, and the sensor's non-linear response are documented.

  3. Mass Size Distribution of Water Soluble Ions in Prague and Wiena in Summer

    OpenAIRE

    Schwarz, J; Vodička, P.; Zíková, N. (Naděžda); Hitzenberger, R.

    2012-01-01

    Aerosol mass size distribution is a key factor that influences aerosol behavior both on local (health effects, visibility) and global (global warming) level. The content of water soluble ions is the most important factor controlling hygroscopic behavior of aerosol particles. Hygroscopicity is a substantial parameter for particle deposition in lungs, particle – cloud interactions, aerosol optical effects etc. Therefore we studied size distribution of water soluble ions in two Central Europea...

  4. FRACTAL SCALING OF PARTICLE AND PORE SIZE DISTRIBUTIONS AND ITS RELATION TO SOIL HYDRAULIC CONDUCTIVITY

    Directory of Open Access Journals (Sweden)

    BACCHI O.O.S.

    1996-01-01

    Full Text Available Fractal scaling has been applied to soils, both for void and solid phases, as an approach to characterize the porous arrangement, attempting to relate particle-size distribution to soil water retention and soil water dynamic properties. One important point of such an analysis is the assumption that the void space geometry of soils reflects its solid phase geometry, taking into account that soil pores are lined by the full range of particles, and that their fractal dimension, which expresses their tortuosity, could be evaluated by the fractal scaling of particle-size distribution. Other authors already concluded that although fractal scaling plays an important role in soil water retention and porosity, particle-size distribution alone is not sufficient to evaluate the fractal structure of porosity. It is also recommended to examine the relationship between fractal properties of solids and of voids, and in some special cases, look for an equivalence of both fractal dimensions. In the present paper data of 42 soil samples were analyzed in order to compare fractal dimensions of pore-size distribution, evaluated by soil water retention curves (SWRC of soils, with fractal dimensions of soil particle-size distributions (PSD, taking the hydraulic conductivity as a standard variable for the comparison, due to its relation to tortuosity. A new procedure is proposed to evaluate the fractal dimension of pore-size distribution. Results indicate a better correlation between fractal dimensions of pore-size distribution and the hydraulic conductivity for this set of soils, showing that for most of the soils analyzed there is no equivalence of both fractal dimensions. For most of these soils the fractal dimension of particle-size distribution does not indicate properly the pore trace tortuosity. A better equivalence of both fractal dimensions was found for sandy soils.

  5. Placement and Sizing of DG Using PSO&HBMO Algorithms in Radial Distribution Networks

    Directory of Open Access Journals (Sweden)

    M. A.Taghikhani

    2012-09-01

    Full Text Available Optimal placement and sizing of DG in distribution network is an optimization problem with continuous and discrete variables. Many researchers have used evolutionary methods for finding the optimal DG placement and sizing. This paper proposes a hybrid algorithm PSO&HBMO for optimal placement and sizing of distributed generation (DG in radial distri-bution system to minimize the total power loss and improve the voltage profile. The proposed method is tested on a standard 13 bus radial distribution system and simulation results carried out using MATLAB software. The simulation results indicate that PSO&HBMO method can obtain better results than the simple heuristic search method and PSO algorithm. The method has a potential to be a tool for identifying the best location and rating of a DG to be installed for improving voltage profile and line losses reduction in an electrical power system. Moreover, current reduction is obtained in distribution system.

  6. Narrow size distributed Ag nanoparticles grown by spin coating and thermal reduction: effect of processing parameters

    Science.gov (United States)

    Ansari, A. A.; Sartale, S. D.

    2016-08-01

    A simple method to grow uniform sized Ag nanoparticles with narrow size distribution on flat support (glass and Si substrates) via spin coating of Ag+ ions (AgNO3) solution followed by thermal reduction in H2 is presented. These grown nanoparticles can be used as model catalytic system to study size dependent oxygen reduction reaction (ORR) activity. Ag nanoparticles formation was confirmed by local surface plasmon resonance and x-ray photoelectron spectroscopy measurements. Influences of process parameters (revolution per minute (rpm), ramp and salt concentration) on grown Ag nanoparticles size, density and size uniformity are studied. With increase in rpm and ramp the size decreases and the particle number density increases, whereas the size dispersion improves. The catalytic activity of the grown Ag particles for ORR is studied and it is found that the catalytic performance is dependent on the size as well as the number density of the grown Ag nanoparticles.

  7. Development and validation of a molecular size distribution method for polysaccharide vaccines.

    Science.gov (United States)

    Clément, G; Dierick, J-F; Lenfant, C; Giffroy, D

    2014-01-01

    Determination of the molecular size distribution of vaccine products by high performance size exclusion chromatography coupled to refractive index detection is important during the manufacturing process. Partial elution of high molecular weight compounds in the void volume of the chromatographic column is responsible for variation in the results obtained with a reference method using a TSK G5000PWXL chromatographic column. GlaxoSmithKline Vaccines has developed an alternative method relying on the selection of a different chromatographic column with a wider separation range and the generation of a dextran calibration curve to determine the optimal molecular weight cut-off values for all tested products. Validation of this method was performed according to The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The new method detected product degradation with the same sensitivity as that observed for the reference method. All validation parameters were within the pre-specified range. Precision (relative standard deviation (RSD) of mean values) was 70 per cent for all polysaccharide conjugates and for the Haemophilus influenzae type B final container vaccine. All results obtained for robustness met the acceptance criteria defined in the validation protocol (≤ 2 times (RSD) or ≤ 2 per cent difference between the modified and the reference parameter value if RSD = 0 per cent). The new method was shown to be a suitable quality control method for the release and stability follow-up of polysaccharide-containing vaccines. The new method gave comparable results to the reference method, but with less intra- and inter-assay variability. PMID:25655242

  8. Measurement of particle size distribution of soil and selected aggregate sizes using the hydrometer method and laser diffractometry

    Science.gov (United States)

    Guzmán, G.; Gómez, J. A.; Giráldez, J. V.

    2010-05-01

    Soil particle size distribution has been traditionally determined by the hydrometer or the sieve-pipette methods, both of them time consuming and requiring a relatively large soil sample. This might be a limitation in situations, such as for instance analysis of suspended sediment, when the sample is small. A possible alternative to these methods are the optical techniques such as laser diffractometry. However the literature indicates that the use of this technique as an alternative to traditional methods is still limited, because the difficulty in replicating the results obtained with the standard methods. In this study we present the percentages of soil grain size determined using laser diffractometry within ranges set between 0.04 - 2000 μm. A Beckman-Coulter ® LS-230 with a 750 nm laser beam and software version 3.2 in five soils, representative of southern Spain: Alameda, Benacazón, Conchuela, Lanjarón and Pedrera. In three of the studied soils (Alameda, Benacazón and Conchuela) the particle size distribution of each aggregate size class was also determined. Aggregate size classes were obtained by dry sieve analysis using a Retsch AS 200 basic ®. Two hundred grams of air dried soil were sieved during 150 s, at amplitude 2 mm, getting nine different sizes between 2000 μm and 10 μm. Analyses were performed by triplicate. The soil sample preparation was also adapted to our conditions. A small amount each soil sample (less than 1 g) was transferred to the fluid module full of running water and disaggregated by ultrasonication at energy level 4 and 80 ml of sodium hexametaphosphate solution during 580 seconds. Two replicates of each sample were performed. Each measurement was made for a 90 second reading at a pump speed of 62. After the laser diffractometry analysis, each soil and its aggregate classes were processed calibrating its own optical model fitting the optical parameters that mainly depends on the color and the shape of the analyzed particle. As a

  9. Modeling Size-number Distributions of Seeds for Use in Soil Bank Studies

    Institute of Scientific and Technical Information of China (English)

    Hugo Casco; Alexandra Soveral Dias; Luís Silva Dias

    2008-01-01

    Knowledge of soil seed banks is essential to understand the dynamics of plant populations and communities and would greatly benefit from the integration of existing knowledge on ecological correlations of seed size and shape. The present study aims to establish a feasible and meaningful method to describe size-number distributions of seeds in multi-species situations. For that purpose, size-number distributions of seeds with known length, width and thickness were determined by sequential sieving. The most appropriate combination of sieves and seeds dimensions was established, and the adequacy of the power function and the Weibull model to describe size-number distributions of spherical, non.spherical, and all seeds was investigated. We found that the geometric mean of seed length, width and thickness was the most adequate size estimator, providing shape-independent measures of seeds volume directly related to sieves mesh side, and that both the power function and the Weibuli model provide high quality descriptions of size-number distributions of spherical,non-spherical, and all seeds. We also found that, in spite of its slightly lower accuracy, the power function is, at this stage, a more trustworthy model to characterize size-number distributions of seeds in soil banks because in some Weibull equations the estimates of the scale parameter were not acceptable.

  10. A facile synthesis of Tenanoparticles with binary size distribution by green chemistry

    Science.gov (United States)

    He, Weidong; Krejci, Alex; Lin, Junhao; Osmulski, Max E.; Dickerson, James H.

    2011-04-01

    Our work reports a facile route to colloidal Tenanocrystals with binary uniform size distributions at room temperature. The binary-sized Tenanocrystals were well separated into two size regimes and assembled into films by electrophoretic deposition. The research provides a new platform for nanomaterials to be efficiently synthesized and manipulated.Our work reports a facile route to colloidal Tenanocrystals with binary uniform size distributions at room temperature. The binary-sized Tenanocrystals were well separated into two size regimes and assembled into films by electrophoretic deposition. The research provides a new platform for nanomaterials to be efficiently synthesized and manipulated. Electronic supplementary information (ESI) available: Synthetic procedures, FTIR analysis, ED pattern, AFM image, and EPD current curve. See DOI: 10.1039/c1nr10025d

  11. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-concentration Size Distributions

    International Nuclear Information System (INIS)

    We have developed a fast-response nanometer aerosol size analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 s. The analyzer includes a bipolar charger (Po210), an extended-length nanometer differential mobility analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 s per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the tandem differential mobility analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T-38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented below

  12. Aerosol size distribution and classification. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The bibliography contains citations concerning aerosol particle size distribution and classification pertaining to air pollution detection and health studies. Aerosol size measuring methods, devices, and apparatus are discussed. Studies of atmospheric, industrial, radioactive, and marine aerosols are presented.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Fat globule size distribution in milk of a German buffalo herd

    OpenAIRE

    Thiele, M; Swalve, H. H.; R. Schmidt; R. Schafberg

    2010-01-01

    The volume-surface average diameter of fat globules are larger in buffalo milk than in cow milk and the volume frequency distribution in buffalo milk is more balanced. The globule size was affected by animal, stage of lactation, and test day. An interesting contrast compared to cow milk is the negative correlation between diurnal fat yield and globule size.

  14. Fat globule size distribution in milk of a German buffalo herd

    Directory of Open Access Journals (Sweden)

    M. Thiele

    2010-02-01

    Full Text Available The volume-surface average diameter of fat globules are larger in buffalo milk than in cow milk and the volume frequency distribution in buffalo milk is more balanced. The globule size was affected by animal, stage of lactation, and test day. An interesting contrast compared to cow milk is the negative correlation between diurnal fat yield and globule size.

  15. ON THE PROPORTIONALITY OF FINE MASS CONCENTRATION AND EXTINCTION COEFFICIENT FOR BIMODAL SIZE DISTRIBUTIONS

    Science.gov (United States)

    For a bimodal size distribution of ambient aerosol, an upper limit in particle size can be chosen for the fine aerosol fraction so that the extinction coefficient for light scattering and absorption is directly proportional to the fine mass concentration, with no dependence on th...

  16. Evaluation of 1H NMR relaxometry for the assessment of pore size distribution in soil samples

    NARCIS (Netherlands)

    Jaeger, F.; Bowe, S.; As, van H.; Schaumann, G.E.

    2009-01-01

    1H NMR relaxometry is used in earth science as a non-destructive and time-saving method to determine pore size distributions (PSD) in porous media with pore sizes ranging from nm to mm. This is a broader range than generally reported for results from X-ray computed tomography (X-ray CT) scanning, wh

  17. Maximum size distributions in tropical forest communities: relationships with rainfall and disturbance

    NARCIS (Netherlands)

    Poorter, L.; Hawthorne, W.D.; Sheil, D.; Bongers, F.J.J.M.

    2008-01-01

    The diversity and structure of communities are partly determined by how species partition resource gradients. Plant size is an important indicator of species position along the vertical light gradient in the vegetation. 2. Here, we compared the size distribution of tree species in 44 Ghanaian tropic

  18. Model independent determination of colloidal silica size distributions via analytical ultracentrifugation

    NARCIS (Netherlands)

    Planken, K.L.; Kuipers, B.W.M.; Philipse, A.P.

    2008-01-01

    We report a method to determine the particle size distribution of small colloidal silica spheres via analytical ultracentrifugation and show that the average particle size, variance, standard deviation, and relative polydispersity can be obtained from a single sedimentation velocity (SV) analytical

  19. The Effect of Mineralization on Pore-size Distribution Patterns in Sandstone

    Science.gov (United States)

    Emmanuel, S.; Ague, J. J.

    2008-12-01

    In geological media, pore-size distributions can strongly influence important physical parameters such as permeability and specific surface area. Mineralization in rock and soil often reduces the overall porosity and can also induce changes in the distribution of pore sizes. However, the way in which mineralization affects pore size is poorly understood, with relatively little data available from field-based studies. Here, we present a high-resolution profile of pore-size distributions from a variably mineralized sandstone section. The samples were obtained from a Barents Sea core in which quartz cement had preferentially precipitated around stylolite (pressure solution) interfaces; pore-size distributions were measured in 15 samples using mercury injection porosimetry. The results demonstrate that mineralization led to a reduction in porosity of around 40% in samples closest to the stylolite. However, this reduction was not uniform over the range of pore-sizes: the greatest level of porosity reduction occurred in the 10-5-10-4 m size range, while there was no discernible change in the porosity associated with smaller pores. A reactive transport model - simulating the dissolution of quartz at the stylolite interface and subsequent reprecipitation in the rock matrix - was used to predict the evolution of the porosity associated with multiple pore-sizes; the model was successfully able to reproduce the observed porosity patterns, indicating that such an approach could be integrated into efforts to model the evolution of porosity in geological formations, including during CO2 sequestration.

  20. Nanofiltration membranes with narrowed pore size distribution via pore wall modification.

    Science.gov (United States)

    Du, Yong; Lv, Yan; Qiu, Wen-Ze; Wu, Jian; Xu, Zhi-Kang

    2016-06-30

    We propose a novel strategy for narrowing down the pore size distribution of ready-made nanofiltration membranes (NFMs) via pore wall modification. NFMs were subjected to the filtration of a highly reactive molecule solution, during which large pores were selectively reduced in size. The as-treated NFMs have high monovalent ion/divalent ion selectivity. PMID:27321407

  1. Size distribution and chemical composition of secondary organic aerosol formed from Cl-initiated oxidation of toluene

    Institute of Scientific and Technical Information of China (English)

    Mingqiang Huang; Weijun Zhang; Xuejun Gu; Changjin Hu; Weixiong Zhao; Zhenya Wang; Li Fang

    2012-01-01

    Secondary organic aerosol (SOA) formed from Cl-initiated oxidation of toluene was investigated in a home-made smog chamber.The size distribution and chemical composition of SOA particles were measured using aerodynamic particle sizer spectrometer and the aerosol laser time-of-flight mass spectrometer (ALTOFMS),respectively.According to a large number of single aerosol diameter and mass spectra,the size distribution and chemical composition of SOA were obtained statistically.Experimental results showed that SOA particles created by Cl-initiated oxidation of toluene is predominantly in the form of fine particles,which have diameters less than 2.5 μm (i.e.,PM2.5),and glyoxal,benzaldehyde,benzyl alcohol,benzoquinone,benzoic acid,benzyl hydroperoxide and benzyl methyl nitrate are the major products components in the SOA.The possible reaction mechanisms leading to these products are also proposed.

  2. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates

    Indian Academy of Sciences (India)

    M Nidhin; R Indumathy; K J Sreeram; Balachandran Unni Nair

    2008-02-01

    We report here the preparation of nanoparticles of iron oxide in the presence of polysaccharide templates. Interaction between iron (II) sulfate and template has been carried out in aqueous phase, followed by the selective and controlled removal of the template to achieve narrow distribution of particle size. Particles of iron oxide obtained have been characterized for their stability in solvent media, size, size distribution and crystallinity and found that when the negative value of the zeta potential increases, particle size decreases. A narrow particle size distribution with 100 = 275 nm was obtained with chitosan and starch templates. SEM measurements further confirm the particle size measurement. Diffuse reflectance UV–vis spectra values show that the template is completely removed from the final iron oxide particles and powder XRD measurements show that the peaks of the diffractogram are in agreement with the theoretical data of hematite. The salient observations of our study shows that there occurs a direct correlation between zeta potential, polydispersity index, bandgap energy and particle size. The crystallite size of the particles was found to be 30–35 nm. A large negative zeta potential was found to be advantageous for achieving lower particle sizes, owing to the particles remaining discrete without agglomeration.

  3. Evaluation of eruptive energy of a pyroclastic deposit applying fractal geometry to fragment size distributions

    Science.gov (United States)

    Paredes Marino, Joali; Morgavi, Daniele; Di Vito, Mauro; de Vita, Sandro; Sansivero, Fabio; Perugini, Diego

    2016-04-01

    Fractal fragmentation theory has been applied to characterize the particle size distribution of pyroclastic deposits generated by volcanic explosions. Recent works have demonstrated that fractal dimension on grain size distributions can be used as a proxy for estimating the energy associated with volcanic eruptions. In this work we seek to establish a preliminary analytical protocol that can be applied to better characterize volcanic fall deposits and derive the potential energy for fragmentation that was stored in the magma prior/during an explosive eruption. The methodology is based on two different techniques for determining the grain-size distribution of the pyroclastic samples: 1) dry manual sieving (particles larger than 297μm), and 2) automatic grain size analysis via a CamSizer-P4®device, the latter measure the distribution of projected area, obtaining a cumulative distribution based on volume fraction for particles up to 30mm. Size distribution data have been analyzed by applying the fractal fragmentation theory estimating the value of Df, i.e. the fractal dimension of fragmentation. In order to test our protocol we studied the Cretaio eruption, Ischia island, Italy. Results indicate that size distributions of pyroclastic fall deposits follow a fractal law, indicating that the fragmentation process of these deposits reflects a scale-invariant fragmentation mechanism. Matching the results from manual and automated techniques allows us to obtain a value of the "fragmentation energy" from the explosive eruptive events that generate the Cretaio deposits. We highlight the importance of these results, based on fractal statistics, as an additional volcanological tool for addressing volcanic risk based on the analyses of grain size distributions of natural pyroclastic deposits. Keywords: eruptive energy, fractal dimension of fragmentation, pyroclastic fallout.

  4. Computer Simulation of Packing of Particles with Size Distributions Produced by Fragmentation Processes

    OpenAIRE

    Martin Martin, Miguel Angel; Muñoz Ortega, Francisco Javier; Reyes Castro, Miguel E.; Taguas Coejo, Francisco Javier

    2015-01-01

    Fragmentation schemes inspired by theoretical results and conjectures of Kolmogorov are applied to produce particle size distributions of different natures, depending on fragmentation parameters. A two-dimensional computer simulation method of packing is applied to the resulting distributions and the void fraction is evaluated. The relationship between the void fraction and characteristic parameters of the fragmentation process is studied.

  5. Multi-beam raindrop size distribution retrievals on the Doppler spectra

    NARCIS (Netherlands)

    Unal, C.M.H.

    2012-01-01

    Acquiring the raindrop size distribution from radar data is still a challenge. Generally this distribution is retrieved using the reflectivity, Z, and the differential reflectivity, Zdr, at S-band. The specific differential phase, Kdp, provides a third radar observable in the case of heavy precipita

  6. A Possible Divot in the Size Distribution of the Kuiper Belt's Scattering Objects

    Science.gov (United States)

    Shankman, C.; Gladman, B. J.; Kaib, N.; Kavelaars, J. J.; Petit, J. M.

    2013-02-01

    Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we explore the scattering-object (SO) size distribution. Although for D > 100 km the number of objects quickly rise as diameters decrease, we find a relative lack of smaller objects, ruling out a single power law at greater than 99% confidence. After studying traditional "knees" in the size distribution, we explore other formulations and find that, surprisingly, our analysis is consistent with a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, which then rises again as a power law. Motivated by other dynamically hot populations and the Centaurs, we argue for a divot size distribution where the number of smaller objects rises again as expected via collisional equilibrium. Extrapolation yields enough kilometer-scale SOs to supply the nearby Jupiter-family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now "frozen in" to portions of the Kuiper Belt sharing a "hot" orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's SO inclination distribution, the supply source that was scattered outward must have already been vertically heated to the of order 10°.

  7. The temperature and size distribution of large water clusters from a non-equilibrium model

    Energy Technology Data Exchange (ETDEWEB)

    Gimelshein, N. [Gimel, Inc., San Jose, California 95124 (United States); Gimelshein, S., E-mail: gimelshe@usc.edu [University of Southern California, Los Angeles, California 90089 (United States); Pradzynski, C. C.; Zeuch, T., E-mail: tzeuch1@gwdg.de [Institut für Physikalische Chemie, Universität Göttingen, Tammanstr. 6, D-37077 Göttingen (Germany); Buck, U., E-mail: ubuck@gwdg.de [Max-Planck-Institut für Dynamik und Selbstorganisation, Am Faßberg 17, D-37077 Göttingen (Germany)

    2015-06-28

    A hybrid Lagrangian-Eulerian approach is used to examine the properties of water clusters formed in neon-water vapor mixtures expanding through microscale conical nozzles. Experimental size distributions were reliably determined by the sodium doping technique in a molecular beam machine. The comparison of computed size distributions and experimental data shows satisfactory agreement, especially for (H{sub 2}O){sub n} clusters with n larger than 50. Thus validated simulations provide size selected cluster temperature profiles in and outside the nozzle. This information is used for an in-depth analysis of the crystallization and water cluster aggregation dynamics of recently reported supersonic jet expansion experiments.

  8. Effects of transverse electron beam size on transition radiation angular distribution

    Energy Technology Data Exchange (ETDEWEB)

    Chiadroni, E., E-mail: enrica.chiadroni@lnf.infn.it [Laboratori Nazionali di Frascati-INFN, via E. Fermi, 40, 00044 Frascati (Italy); Castellano, M. [Laboratori Nazionali di Frascati-INFN, via E. Fermi, 40, 00044 Frascati (Italy); Cianchi, A. [University of Rome ' Tor Vergata' and INFN-Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Honkavaara, K.; Kube, G. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg (Germany)

    2012-05-01

    In this paper we consider the effect of the transverse electron beam size on the Optical Transition Radiation (OTR) angular distribution in case of both incoherent and coherent emission. Our results confute the theoretical argumentations presented first in Optics Communications 211, 109 (2002), which predicts a dependence of the incoherent OTR angular distribution on the beam size and emission wavelength. We present here theoretical and experimental data not only to validate the well-established Ginzburg-Frank theory, but also to show the impact of the transverse beam size in case of coherent emission.

  9. Size distributions, sources and source areas of water-soluble organic carbon in urban background air

    Directory of Open Access Journals (Sweden)

    H. Timonen

    2008-09-01

    Full Text Available This paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC, inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III by using a micro-orifice uniform deposit impactor (MOUDI. The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC and monosaccharide anhydrides from the filter samples (particle aerodynamic diameter smaller than 1 μm, PM1. Gravimetric mass concentration varied during the MOUDI samplings between 3.4 and 55.0 μg m−3 and the WSOC concentrations were between 0.3 and 7.4 μg m−3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6 to convert the analyzed carbon mass to organic matter mass comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1–10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1–10 aerosol mass.

    Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas. Categories were identified mainly using levoglucosan concentration level for wood combustion and air mass backward trajectories for other groups. Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs and aerosols as well as various transformation processes are likely

  10. Size distributions, sources and source areas of water-soluble organic carbon in urban background air

    Directory of Open Access Journals (Sweden)

    H. Timonen

    2008-04-01

    Full Text Available This paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC, inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III by using a micro-orifice uniform deposit impactor (MOUDI. The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC and monosaccharide anhydrides from the filter samples. During the measurements gravimetric mass in the MOUDI collections varied between 3.4 and 55.0 μg m−3 and the WSOC concentration was between 0.3 and 7.4 μg m−3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6 comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1−10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1−10 aerosol mass.

    Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas. Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs and aerosols as well as various transformation processes are likely to have an impact on the measured aerosol composition. Using the source categories, it was identified that especially the oxidation products of biogenic VOCs in summer had a clear effect on WSOC concentrations.

  11. How stand productivity results from size- and competition-dependent growth and mortality.

    Directory of Open Access Journals (Sweden)

    John P Caspersen

    Full Text Available BACKGROUND: A better understanding of the relationship between stand structure and productivity is required for the development of: a scalable models that can accurately predict growth and yield dynamics for the world's forests; and b stand management regimes that maximize wood and/or timber yield, while maintaining structural and species diversity. METHODS: We develop a cohort-based canopy competition model ("CAIN", parameterized with inventory data from Ontario, Canada, to examine the relationship between stand structure and productivity. Tree growth, mortality and recruitment are quantified as functions of diameter and asymmetric competition, using a competition index (CAI(h defined as the total projected area of tree crowns at a given tree's mid-crown height. Stand growth, mortality, and yield are simulated for inventoried stands, and also for hypothetical stands differing in total volume and tree size distribution. RESULTS: For a given diameter, tree growth decreases as CAI(h increases, whereas the probability of mortality increases. For a given CAI(h, diameter growth exhibits a humped pattern with respect to diameter, whereas mortality exhibits a U-shaped pattern reflecting senescence of large trees. For a fixed size distribution, stand growth increases asymptotically with total density, whereas mortality increases monotonically. Thus, net productivity peaks at an intermediate volume of 100-150 m(3/ha, and approaches zero at 250 m(3/ha. However, for a fixed stand volume, mortality due to senescence decreases if the proportion of large trees decreases as overall density increases. This size-related reduction in mortality offsets the density-related increase in mortality, resulting in a 40% increase in yield. CONCLUSIONS: Size-related variation in growth and mortality exerts a profound influence on the relationship between stand structure and productivity. Dense stands dominated by small trees yield more wood than stands dominated by fewer

  12. Size distributions of major elements in residual ash particles from coal combustion

    Institute of Scientific and Technical Information of China (English)

    YU DunXi; XU MingHou; YAO Hong; LIU XiaoWei

    2009-01-01

    Combustion experiments for three coals of different ranks were conducted in an electrically-heated drop tube furnace. The size distributions of major elements in the residual ash particles (>0.4μm) such as AI, Si, S, P, Na, Mg, K, Ca and Fe were investigated. The experimental results showed that the concentrations of AI and Si in the residual ash particles decreased with decreasing particle size, while the concentrations of S and P increased with decreasing particle size. No consistent size distributions were obtained for Na, Mg, K, Ca and Fe. The established deposition model accounting for trace element distributions was demonstrated to be applicable to some major elements as well. The modeling results indicated that the size distributions of the refractory elements, AI and Si, were mainly influenced by the deposition of vaporized elements on particle surfaces. A dominant fraction of S and P vaporized during coal combustion. Their size distributions were determined by surface condensation, reaction or adsorption. The partitioning mechanisms of Na, Mg, K, Ca and Fe were more complex.

  13. Dust Particle Size Distribution Inversion Based on the Multi Population Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Jiandong Mao and Juan Li

    2014-01-01

    Full Text Available The aerosol number size distribution is the main parameter for characterizing aerosol optical properties and physical properties, it has a major influence on radiation forcing. With regard to some disadvantages in the traditional methods, a method based on the multi population genetic algorithm (MPGA is proposed and employed to retrieve the aerosol size distribution of dust particles. The MPGA principles and design are presented in detail. The MPGA has better performance compared with conventional methods. In order to verify the feasibility of the inversion method, the measured aerosol optical thickness (AOT data of dust particles taken by a sun photometer are used and a series of comparisons between the simple genetic algorithm (SGA and MPGA are carried out. The results show that the MPGA presents better properties when compared with the SGA with smaller inversion errors, smaller population size and fewer generation numbers to retrieve the aerosol size distribution. The MPGA inversion method is analyzed using the background day, dust storm event and seasonal size distribution. The method proposed in this study has important applications and reference value for aerosol particle size distribution inversion.

  14. Cell size distribution in a random tessellation of space governed by the Kolmogorov-Johnson-Mehl-Avrami model: Grain size distribution in crystallization

    OpenAIRE

    Farjas Silva, Jordi; Roura Grabulosa, Pere

    2008-01-01

    The space subdivision in cells resulting from a process of random nucleation and growth is a subject of interest in many scientific fields. In this paper, we deduce the expected value and variance of these distributions while assuming that the space subdivision process is in accordance with the premises of the Kolmogorov-Johnson-Mehl-Avrami model. We have not imposed restrictions on the time dependency of nucleation and growth rates. We have also developed an approximate analytical cell size ...

  15. Analysis of tecniques for measurement of the size distribution of solid particles

    Directory of Open Access Journals (Sweden)

    F. O. Arouca

    2005-03-01

    Full Text Available Determination of the size distribution of solid particles is fundamental for analysis of the performance several pieces of equipment used for solid-fluid separation. The main objective of this work is to compare the results obtained with two traditional methods for determination of the size grade distribution of powdery solids: the gamma-ray attenuation technique (GRAT and the LADEQ test tube technique. The effect of draining the suspension in the two techniques used was also analyzed. The GRAT can supply the particle size distribution of solids through the monitoring of solid concentration in experiments on batch settling of diluted suspensions. The results show that use of the peristaltic pump in the GRAT and the LADEQ methods produced a significant difference between the values obtained for the parameters of the particle size model.

  16. A Stochastic Theory for Deep Bed Filtration Accounting for Dispersion and Size Distributions

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Bedrikovetsky, P. G.

    2010-01-01

    We develop a stochastic theory for filtration of suspensions in porous media. The theory takes into account particle and pore size distributions, as well as the random character of the particle motion, which is described in the framework of the theory of continuous-time random walks (CTRW......). In the limit of the infinitely many small walk steps we derive a system of governing equations for the evolution of the particle and pore size distributions. We consider the case of concentrated suspensions, where plugging the pores by particles may change porosity and other parameters of the porous medium....... A procedure for averaging of the derived system of equations is developed for polydisperse suspensions with several distinctive particle sizes. A numerical method for solution of the flow equations is proposed. Sample calculations are applied to compare the roles of the particle size distribution...

  17. Influence of pore size distribution on the adsorption of phenol on PET-based activated carbons.

    Science.gov (United States)

    Lorenc-Grabowska, Ewa; Diez, María A; Gryglewicz, Grazyna

    2016-05-01

    The role of pore size distribution in the adsorption of phenol in aqueous solutions on polyethylene terephthalate (PET)-based activated carbons (ACs) has been analyzed. The ACs were prepared from PET and mixtures of PET with coal-tar pitch (CTP) by means of carbonization and subsequent steam and carbon dioxide activation at 850 and 950 °C, respectively. The resultant ACs were characterized on the basis of similarities in their surface chemical features and differences in their micropore size distributions. The adsorption of phenol was carried out in static conditions at ambient temperature. The pseudo-second order kinetic model and Langmuir model were found to fit the experimental data very well. The different adsorption capacities of the ACs towards phenol were attributed to differences in their micropore size distributions. Adsorption capacity was favoured by the volume of pores with a size smaller than 1.4 nm; but restricted by pores smaller than 0.8 nm.

  18. Comparison of outdoor activity size distributions of {sup 220}Rn and {sup 222}Rn progeny

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A. [Physics Department, Faculty of Science, El-Minia University (Egypt)]. E-mail: amermohamed6@hotmail.com; El-Hussein, A. [Physics Department, Faculty of Science, El-Minia University (Egypt)

    2005-06-01

    Inhalation of {sup 222}Rn and {sup 220}Rn progeny from the domestic environment contributes the greatest fraction of the natural radiation exposure to the public. Dosimetric models are most often used in the assessment of human lung doses due to inhaled radioactivity because of the difficulty in making direct measurements. These models require information about the parameters of activity size distributions of thoron and radon progeny. The present study presents measured data on the attached and unattached activity size distributions of thoron and radon progeny in outdoor air in El-Minia, Egypt. The attached fraction was collected using a low-pressure Berner cascade impactor technique. A screen diffusion battery was used for collecting the unattached fraction. Most of the attached activities for {sup 222}Rn and {sup 220}Rn progeny were associated with aerosol particles of the accumulation mode. The activity size distribution of thoron progeny was found to be shifted to slightly smaller particle size compared to radon progeny.

  19. Detailed mass size distributions of atmospheric aerosol species in the Negev desert, Israel, during ARACHNE-96

    International Nuclear Information System (INIS)

    As part of the 1996 summer intensive of the Aerosol, RAdiation and CHemistry Experiment (ARACHNE-96), the mass size distribution of various airborne particulate elements was studied at a remote site in the Negev Desert, Israel. Aerosol collections were made with 8-stage PIXE International cascade impactors (PCIs) and 12-stage small deposit area low pressure impactors (SDIs) and the samples were analyzed by PIXE for about 20 elements. The mineral elements (Al, Si, Ca, Ti, Fe) exhibited a unimodal size distribution which peaked at about 6 μm, but the contribution of particles larger than 10 μm was clearly more pronounced during the day than during night. Sulphur and Br had a tendency to exhibit two modes in the submicrometer size range, with diameters at about 0.3 and 0.6 μm, respectively. The elements V and Ni, which are indicators of residual fuel burning, showed essentially one fine mode (at 0.3 μm) in addition to a coarse mode which represented the mineral dust contribution. Overall, good agreement was observed between the mass size distributions from the PCI and SDI devices. The PCI was superior to the SDI for studying the size distribution in the coarse size range, but the SDI was clearly superior for unravelling the various modes in the submicrometer size range

  20. An Empirical Bayes Mixture Model for Effect Size Distributions in Genome-Wide Association Studies

    DEFF Research Database (Denmark)

    Thompson, Wesley K.; Wang, Yunpeng; Schork, Andrew J.;

    2015-01-01

    for discovery, and polygenic risk prediction. To this end, previous work has used effect-size models based on various distributions, including the normal and normal mixture distributions, among others. In this paper we propose a scale mixture of two normals model for effect size distributions of genome......-wide association study (GWAS) test statistics. Test statistics corresponding to null associations are modeled as random draws from a normal distribution with zero mean; test statistics corresponding to non-null associations are also modeled as normal with zero mean, but with larger variance. The model is fit via...... minimizing discrepancies between the parametric mixture model and resampling-based nonparametric estimates of replication effect sizes and variances. We describe in detail the implications of this model for estimation of the non-null proportion, the probability of replication in de novo samples, the local...

  1. Estimates of zooplankton abundance and size distribution with the Optical Plankton Counter (OPC)

    DEFF Research Database (Denmark)

    Wieland, Kai; Petersen, D.; Schnack, D.

    1997-01-01

    and widely overlapping size ranges prevented a detailed analysis of the fine scale vertical distribution and the horizontal variability of abundance for distinct species. These results are used to discuss the limitations of the OPC for rapid and continuous surveying of spatial distribution and abundance......The capability of the Optical Plankton Count er (OPC) to examine the abundance and size distribution of zooplankton was tested in Storfjorden, Norway, in June 1993. Selected material obtained from net sampling was measured with a laboratory version of the OPC and compared with microscope analysis...... in order to identify main species in the in situ size frequency distributions obtained by the submersible version of the OPC. Differences in the particle concentration between shallow and deep water layers were clearly resolved by the submersible OPC, but the high diversity of the zooplankton community...

  2. Evaluation of the effective thermal conductivity of composite polymers by considering the filler size distribution law

    Institute of Scientific and Technical Information of China (English)

    Sorin HOLOTESCU; Floriana D.STOIAN

    2009-01-01

    We present an empirical model for the effective thermal conductivity(ETC)of a polymer composite that includes dependency on the filler size distribution-chosen as the Rosin-Rammler distribution.The ETC is determined based on certain hypotheses that connect the behavior of a real composite matefial A.to that of a model composite material B,filled with mono-dimensional filler.The application of these hypotheses to the Maxwell model for ETC is presented.The validation of the new model and its characteristic equation was carried out using experimental data from the reference.The comparison showed that by using the size distribution law a very good fit between the equation of the new model(the size distribution model for the ETC)and the reference experimental results is obtained,even for high volume fractions,up to about 50%.

  3. Improved statistical characterization of particle-size distributions in sand-bedded rivers

    Science.gov (United States)

    Huzurbazar, S.; Hajek, E.; Lynds, R.; Heller, P.; Mohrig, D.

    2007-12-01

    Measured particle-size distributions are commonly reduced to one characteristic value (e.g., median grain diameter) that is used in sediment transport modeling. While convenient, this approach cannot be used to explore the potential influence grain-size distributions may have on sediment transport and deposition. We statistically characterize grain-size distributions in samples of bed-material load, suspended load, and slackwater deposits from the sand-bedded Calamus, North Loup, and Niobrara rivers (Nebraska, USA). Transported sediment samples are best modeled with log-hyperbolic distributions, and slackwater deposits are bi- or multi-modal mixtures. Despite large overlaps in the grain sizes of bed-material-load and suspended-load samples, estimated parameters of fitted log-hyperbolic distributions show consistent differences between these samples across all rivers. Bed-material load samples have higher modes and positive (coarse-grained) asymmetry, whereas suspended load samples have lower modes and weaker asymmetry. In all three rivers, slackwater deposits contain the entire range of grain sizes present in suspended load, but with a significant component of very fine-grained (< 0.02 mm) material that is undetectable in suspended sediment samples. This suggests some degree of fractionated deposition of suspended sediment in areas of near-zero flow velocities. Ultimately, in order to explore the effect of grain-size distributions on sediment transport and river processes, these modeled distributions can be incorporated into a Bayesian hierarchical framework where standard sediment transport equations can be modeled in relation to probability-density particle curves for grain size.

  4. Spatial and temporal variability in aggregated grain-size distributions, with implications for sediment dynamics

    Science.gov (United States)

    Wheatcroft, Robert A.; Butman, Cheryl Ann

    1997-04-01

    The grain-size distribution of bottom sediments has important implications for diverse aspects of sediment dynamics, including prediction of the critical boundary shear stress and calibration of suspended sediment sensors. Past sampling strategies to obtain estimates of the seabed grain-size distribution typically have not considered spatial and temporal variability, and have been insufficient to resolve potential millimeter-scale vertical variations in grain size. Moreover, laboratory analyses have been predicated on chemically and/or ultrasonically disaggregating the sediments before resolving particle diameter, therefore the more dynamically relevant in situ grain-size spectrum is not measured. To test for such effects, three sites on the northern California continental shelf comprising a cross-shelf transect from a sandy, inner-shelf (60 m) site, to a muddy, mid-shelf (90 m) site and a relict, outer-shelf (130 m) site were studied. Replicate box cores were collected over two winter field seasons, and multiple subcores from each box core were vertically sectioned at 2-mm intervals. Gentle wet sieving techniques were used to determine the mass fraction in the 300,um size classes. In addition, a lesser number of standard disaggregated grain-size analyses were performed using a Coulter Counter. Results from the sandy, inner-shelf site indicate the presence of an ephemeral fine-grained (flow. In addition, there is evidence for a progressive and substantial winnowing of fine-grained sediment from the surface layer over the course of a winter storm season. At the deeper sites, the upper 2 mm of the bed contained 5-20% more material meters) scale spatial variability is modest. In addition, the disaggregated grain-size distribution at the two muddy sites is, in all cases, markedly finer than the in situ grain-size distribution. Therefore, calibrations and predictions based on a knowledge of the size distribution of the primary (i.e. disaggregated) particles could be in

  5. NUMBER CONCENTRATION, SIZE DISTRIBUTION AND FINE PARTICLE FRACTION OF TROPOSPHERIC AND STRATOSPHERIC AEROSOLS

    Institute of Scientific and Technical Information of China (English)

    Li Xu; Guangyu Shi; Li Zhang; Jun Zhou; Yasunobu Iwasaka

    2003-01-01

    Aerosol observations were carried out at Xianghe Scientific Balloon Base (39.45°N, 117°E) using a stratospheric balloon. The particle number concentrations of the tropospheric and stratospheric aerosols were directly explored.The vertical distributions of the number concentration, number-size (that is, particle number versus particle size)distribution, and the fraction of fine particles (0.5 μm>r>0.15 μm/r>0.15 μm) are reported in this paper. The profiles of particle concentration present multi-peak phenomenon. The pattern of size distribution for atmospheric aerosol indicates a tri-modal (r=~0.2 μm, ~0.88 μm and ~7.0 μm) and a bi-modal (r=~0.13 μm and 2.0 μm). The number-size distribution almost fits the Junge distribution for particles with r<0.5 μm in the stratosphere of 1993 and the troposphere of 1994. But the distributions of coarse particles (r>0.5 μm) are not uniform. The number-size distribution exhibits also a wide size range in the troposphere of 1993. The results demonstrate that fine particles represent the major portion in the troposphere during the measurement period, reaching as high as 95% in 1994. Certain coarse particle peaks in the troposphere were attributed to clouds and other causes, and in the stratosphere to volcanic eruption. The stratospheric aerosol layer consists of unique fractions of fine or coarse particles depending on their sources. In summary, the process of gas-to-particles conversion was active and the coarse particles were rich over the Xianghe area. The measurements also demonstrate that the spatial and temporal atmospheric aerosol distributions are nonuniform and changeful.

  6. Exogenous Application of Abscisic Acid or Gibberellin Acid Has Different Effects on Starch Granule Size Distribution in Grains of Wheat

    Institute of Scientific and Technical Information of China (English)

    PENG Dian-liang; CAI Tie; YIN Yan-ping; YANG Wei-bing; NI Ying-li; YANG Dong-qing; WANG Zhen-lin

    2013-01-01

    Granule size distribution of wheat starch is an important characteristic that can affect its chemical composition and the functionality of wheat products. Two high-yield winter wheat cultivars were used to evaluate the effects of the application of exogenous ABA or GA during the reproductive phase of the initial grain filling on starch granule size distribution and starch components in grains at maturity. The results indicated that a bimodal curve was found in the volume and surface area distribution of grain starch granules, and a unimodal curve was observed for the number distribution under all treatments. The exogenous ABA resulted in a significant increase in the proportions (both by volume and by surface area) of B-type (9.9μm) starch granules, while, the exogenous GA3 led to converse effects on size distribution of those starch granules. The exogenous ABA also increased starch, amylose and amylopectin contents at maturity but significantly reduced the ratio of amylose to amylopectin. Application of GA3 significantly reduced starch content, amylopectin content but increased the ratio of amylose to amylopectin. The ratio of amylose to amylopectin showed a significant and negative relationship with the volume proportion of granules<9.9μm, but was positively related to the volume proportion of granules 22.8-42.8μm.

  7. New Instrument for Measuring Size-resolved Submicron Sea Spray Particle Production From Ocean

    Science.gov (United States)

    Meskhidze, N.; Petters, M. D.; Reed, R. E.; Dawson, K. W.; Phillips, B.; Royalty, T. M.

    2015-12-01

    Marine aerosols play an important role in controlling the Earth's radiation balance, cloud formation and microphysical properties, and the chemistry of the marine atmosphere. As aerosol effects on climate are estimated from the difference between model simulations with present-day and with preindustrial aerosol and precursor emissions, accurate knowledge of size- and composition-dependent production flux of sea spray particles is important for correct assessment of the role of anthropogenic aerosols in climate change. One particular knowledge gap in sea spray particle emissions resides in yet uncharacterized contributions of sea spray to the cloud condensation nuclei (CCN) budget over the marine boundary layer. The chemical composition of 50 to 200 nm sized sea spray particles, most critical to modeling CCN concentration from size distribution data is often simplified as purely organic, purely sea-salt or mixture of both. The lack of accurate information of the size-dependent production flux of sub-micron sea spray particles prevents the modeling community from resolving discrepancies between model-predicted and measured CCN number concentration in the marine boundary layer. We designed a new system for size-selected sea spray aerosol flux measurement that is composed of a 3D sonic anemometer, two thermodenuders, three differential mobility analyzers, two condensation particle counters, and a CCN counter. The system is designed to operate in both Eddy Covariance (EC) and Relaxed Eddy Accumulation (REA) modes. The system is based on the volatility/humidified tandem differential mobility analyzer technique and is therefore designed to measure the size-resolved turbulent fluxes of sub-micron sized sea-salt particles for a wide range of meteorological, hydrological and ocean chemical/biological conditions. The method and the setup will be presented along with some results from a recent field-deployment of the instrument at the North Carolina coast. This presentation

  8. Distribution System’s Loss Reduction by Optimal Allocation and Sizing of Distributed Generation via Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Shivaleela Kori

    2014-06-01

    Full Text Available Distributed generation (DG refers to generation applied at the distribution level. It offers a valuable alternative to traditional sources of electric power for industrial, residential and commercial applications, particularly where transmission and distribution costs are high. Great attention should be rendered to the problem of allocation and sizing of DG. The installation of DG units at non optimal places can result in an increase in system losses, implying in an increase in costs and therefore, having an effect opposite to the desired. An Algorithm proposed in this paper is Artificial Bee Colony (ABC. This method helps in optimal allocation and sizing of DG’s in order to minimize the total system real power loss.

  9. The uniqueness of company size distribution function from tent-shaped growth rate distribution

    CERN Document Server

    Ishikawa, A

    2007-01-01

    We report the proof that the extension of Gibrat's law in the middle scale region is unique and the probability distribution function (pdf) is also uniquely derived from the extended Gibrat's law and the law of detailed balance. In the proof, two approximations are employed. The pdf of growth rate is described as tent-shaped exponential functions and the value of the origin of the growth rate distribution is constant. These approximations are confirmed in profits data of Japanese companies 2003 and 2004. The resultant profits pdf fits with the empirical data with high accuracy. This guarantees the validity of the approximations.

  10. Are range-size distributions consistent with species-level heritability?

    Science.gov (United States)

    Borregaard, Michael K; Gotelli, Nicholas J; Rahbek, Carsten

    2012-07-01

    The concept of species-level heritability is widely contested. Because it is most likely to apply to emergent, species-level traits, one of the central discussions has focused on the potential heritability of geographic range size. However, a central argument against range-size heritability has been that it is not compatible with the observed shape of present-day species range-size distributions (SRDs), a claim that has never been tested. To assess this claim, we used forward simulation of range-size evolution in clades with varying degrees of range-size heritability, and compared the output of three different models to the range-size distribution of the South American avifauna. Although there were differences among the models, a moderate-to-high degree of range-size heritability consistently leads to SRDs that were similar to empirical data. These results suggest that range-size heritability can generate realistic SRDs, and may play an important role in shaping observed patterns of range sizes. PMID:22759297

  11. Remote sensing of water cloud droplet size distributions using the backscatter glory: a case study

    Directory of Open Access Journals (Sweden)

    B. Mayer

    2004-05-01

    Full Text Available Cloud single scattering properties are mainly determined by the effective radius of the droplet size distribution. There are only few exceptions where the shape of the size distribution affects the optical properties, in particular the rainbow and the glory directions of the scattering phase function. Using observations by the Compact Airborne Spectrographic Imager (CASI in 180° backscatter geometry, we found that high angular resolution aircraft observations of the glory provide unique new information which is not available from traditional remote sensing techniques: Using only one single wavelength, 753 nm, we were able to determine not only optical thickness and effective radius, but also the width of the size distribution at cloud top. Applying this novel technique to the ACE-2 CLOUDYCOLUMN experiment, we found that the size distributions were much narrower than usually assumed in radiation calculations which is in agreement with in-situ observations during this campaign. While the shape of the size distribution has only little relevance for the radiative properties of clouds, it is extremely important for understanding their formation and evolution.

  12. Determining proportions of lunar crater populations by fitting crater size distribution

    CERN Document Server

    Wang, Nan

    2016-01-01

    We determine the proportions of two mixed crater populations distinguishable by size distributions on the Moon. A "multiple power-law" model is built to formulate crater size distribution $N(D) \\propto D^{-\\alpha}$ whose slope $\\alpha$ varies with crater diameter $D$. Fitted size distribution of lunar highland craters characterized by $\\alpha = 1.17 \\pm 0.04$, $1.88 \\pm 0.07$, $3.17 \\pm 0.10$ and $1.40 \\pm 0.15$ for consecutive $D$ intervals divided by 49, 120 and 251 km and that of lunar Class 1 craters with a single slope $\\alpha = 1.96 \\pm 0.14$, are taken as Population 1 and 2 crater size distribution respectively, whose sum is then fitted to the size distribution of global lunar craters with $D$ between 10 and 100 km. Estimated crater densities of Population 1 and 2 are $44 \\times 10^{-5}$ and $5 \\times 10^{-5}$ km$^{-2}$ respectively, leading to the proportion of the latter $10 \\%$. The results underlines the need for considering the Population 1 craters and the relevant impactors, the primordial main-b...

  13. Multi-Scale Particle Size Distributions of Mars, Moon and Itokawa based on a time-maturation dependent fragmentation model

    Science.gov (United States)

    Charalambous, C. A.; Pike, W. T.

    2013-12-01

    We present the development of a soil evolution framework and multiscale modelling of the surface of Mars, Moon and Itokawa thus providing an atlas of extra-terrestrial Particle Size Distributions (PSD). These PSDs are profoundly based on a tailoring method which interconnects several datasets from different sites captured by the various missions. The final integrated product is then fully justified through a soil evolution analysis model mathematically constructed via fundamental physical principles (Charalambous, 2013). The construction of the PSD takes into account the macroscale fresh primary impacts and their products, the mesoscale distributions obtained by the in-situ data of surface missions (Golombek et al., 1997, 2012) and finally the microscopic scale distributions provided by Curiosity and Phoenix Lander (Pike, 2011). The distribution naturally extends at the magnitudinal scales at which current data does not exist due to the lack of scientific instruments capturing the populations at these data absent scales. The extension is based on the model distribution (Charalambous, 2013) which takes as parameters known values of material specific probabilities of fragmentation and grinding limits. Additionally, the establishment of a closed-form statistical distribution provides a quantitative description of the soil's structure. Consequently, reverse engineering of the model distribution allows the synthesis of soil that faithfully represents the particle population at the studied sites (Charalambous, 2011). Such representation essentially delivers a virtual soil environment to work with for numerous applications. A specific application demonstrated here will be the information that can directly be extracted for the successful drilling probability as a function of distance in an effort to aid the HP3 instrument of the 2016 Insight Mission to Mars. Pike, W. T., et al. "Quantification of the dry history of the Martian soil inferred from in situ microscopy

  14. X-Ray Diffraction Microstructural Analysis of Bimodal-Size-Distribution MgO Nanopowders

    Science.gov (United States)

    Pratapa, Suminar; Hartono, Budi

    2010-01-01

    Investigation on the characteristics of x-ray diffraction data for MgO powdered mixture of nano and sub-nano particles has been carried out to reveal the crystallite-size-related microstructural information. The MgO powders were prepared by co-precipitation method followed by heat treatment at 500, 800 and 1200° C for 1 hour, being the difference in the temperature was to obtain two powders with distinct crystallite size and size-distribution. The powders were then carefully blended in air to give the presumably strain-free, bimodal-size-distribution MgO nanopowder. High-quality laboratory X-ray diffraction data for the powders were collected and then analysed using Rietveld-based MAUD software using the lognormal size distribution. Results show that the single-mode powders exhibit spherical crystallite size (Dv) of 29(1) nm, 36(1) and 185(0) nm for the 500, 800 and 1200° C data respectively with the nanometric powder displays slightly narrower crystallite size distribution character, indicated by lognormal dispersion parameter (σ) of 0.22 as compared to 0.18 for the sub-nanometric 1200° C powder. The mixture exhibits relatively more asymmetric peak broadening. By analysing the x-ray diffraction data of the latter specimen by using the single phase approach the results obtained was not according to experimental finding. Introducing two phase models for the `double-phase' 500-1200 mixture to accommodate the bimodal-size-distribution characteristics give Dv = 34(2) and σ = 0.10 for the `nanometric phase' and Dv = 363(0) and σ = 1.38 for the `sub-nanometric phase'.

  15. Methods for obtaining true particle size distributions from cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lord, Kristina Alyse [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Sectioning methods are frequently used to measure grain sizes in materials. These methods do not provide accurate grain sizes for two reasons. First, the sizes of features observed on random sections are always smaller than the true sizes of solid spherical shaped objects, as noted by Wicksell [1]. This is the case because the section very rarely passes through the center of solid spherical shaped objects randomly dispersed throughout a material. The sizes of features observed on random sections are inversely related to the distance of the center of the solid object from the section [1]. Second, on a plane section through the solid material, larger sized features are more frequently observed than smaller ones due to the larger probability for a section to come into contact with the larger sized portion of the spheres than the smaller sized portion. As a result, it is necessary to find a method that takes into account these reasons for inaccurate particle size measurements, while providing a correction factor for accurately determining true particle size measurements. I present a method for deducing true grain size distributions from those determined from specimen cross sections, either by measurement of equivalent grain diameters or linear intercepts.

  16. The Effects of Grain Size and Temperature Distributions on the Formation of Interstellar Ice Mantles

    CERN Document Server

    Pauly, Tyler

    2015-01-01

    Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry on dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote ...

  17. Changes in concentration and size distribution of aerosols during fog over the south Indian Ocean

    Indian Academy of Sciences (India)

    Vimlesh Pant; C G Deshpande; A K Kamra

    2010-08-01

    Measurements of the concentration and size distribution of aerosol particles in the size-ranges of 0.5–20 m and 16–700 nm diameters were made during six fog episodes over the south Indian Ocean. Observations show that concentrations of particles of all sizes start decreasing 1–2 hours before the occurrence of fog. This decrease is more prominent for coarse particles of < 1 m diameter and continues until 10–20 minutes before the onset of fog when particle concentrations in all size ranges rapidly increase by one/two orders of magnitude in ∼20 minutes. Thereafter, concentrations of particles of all sizes gradually decrease until the dissipation of fog. After the fog dissipation, concentrations of coarse mode particles rapidly increase and restore to their pre-fog levels but concentrations of the Aitken mode particles decrease slowly and reach their pre-fog levels only after 1–2 hours. The net effect of fog is to change the bimodal size distributions of aerosols with a coarse mode at 1.0 m and an accumulation mode at 40–60 nm to a power law size distribution. It is proposed that the preferential growth and sedimentation of the coarse mode hygroscopic particles in the initial phase cause a large decrease in the aerosol surface area. As a result, the low vapour pressure gases which were initially being used for the growth of coarse mode particles, now accelerate the growth rates of the accumulation and Aitken mode particles.

  18. Effect of Particle Size Distribution on Ammonium Sulphate Dried in a Rotary Dryer

    Directory of Open Access Journals (Sweden)

    Susianto Susianto

    2010-08-01

    Full Text Available The aim of this work is to study theoretically, by mathematical model development, the effect of particle size distribution on the performance of rotary dryer to dry ammonium sulphate fertilizer assuming plug flow with axial dispersion pattern (PFDA model for solid particle flow. The mathematical model development was carried out by combining the drying processes model with particle size distribution model. Particle size distribution models used are Rosin-Rommler model and Gamma distribution model. For simplicity, the model of drying processes of solid particles in the rotary dryer was developed by assuming of uniform air conditions (temperature and humidity along the rotary dryer as in the entry conditions. The resulting differential equations were solved analytically under Matlab 6.1 facility.Since this model, solid hold up, and axial dispersion number were obtained from empirical correlations in the literatures. The drying rate of ammonium sulphate fertilizer in rotary dryer was estimated using isothermal diffusion model with effective diffusivity of moisture in the particle obtained from previous study [2]. Using Gamma function distribution, this research showed that for the value of the coefficient of variance (CV less than 0.5, particle size distribution does not have significant effect on dryer performance. For the value of CV greater than 0.5, the dryer performance increase (or outlet solid moisture content decrease with increasing the value of CV. The application of Rosin-Rammler model gives lower prediction of outlet solid moisture content compared to the application of Gamma function model.

  19. Tail Index for a Distributed Storage System with Pareto File Size Distribution

    OpenAIRE

    Aggarwal, Vaneet; Lan, Tian

    2016-01-01

    Distributed storage systems often employ erasure codes to achieve high data reliability while attaining space efficiency. Such storage systems are known to be susceptible to long tails in response time. It has been shown that in modern online applications such as Bing, Facebook, and Amazon, the long tail of latency is of particular concern, with $99.9$th percentile response times that are orders of magnitude worse than the mean. Taming tail latency is very challenging in erasure-coded storage...

  20. Optimal sizing and allocation of distributed generation for reliable energy distribution accounting for uncertainty

    OpenAIRE

    Mena, Rodrigo; Li, Yan-Fu; Hennebel, Martin; Ruiz, Carlos; Zio, Enrico

    2013-01-01

    This paper presents a computational framework for the integration of renewable generators DG into an electrical power distribution network. Reliability of power supply is targeted, taking into account the uncertainty of loads and renewable energy sources and, in addition to the failure behavior of the system components. The computational framework developed integrates Monte Carlo simulation for the generation of the uncertain scenarios of operation and Optimal Power Flow (MCS-OPF) into a mult...

  1. Size distribution of trace organic species emitted from biomass combustion and meat charbroiling

    Science.gov (United States)

    Kleeman, Michael J.; Robert, Michael A.; Riddle, Sarah G.; Fine, Philip M.; Hays, Michael D.; Schauer, James J.; Hannigan, Michael P.

    Size-resolved particulate matter emissions from pine, California oak, east coast oak, eucalyptus, rice straw, cigarette smoke, and meat cooking were analyzed for trace organic species using solvent-extraction followed by GC-MS analysis. Six particle size fractions were studied between 0.056, 0.1, 0.18, 0.32, 0.56, 1.0, and 1.8 μm particle diameter. The smallest particle size fraction analyzed was in the ultrafine (Dpvanillin (0.12-0.46 mg kg -1 burned). The size distribution of each of these compounds was highly correlated ( R2>0.9) with the size distribution of particle-phase organic carbon (OC) and/or elemental carbon (EC). The only organic compounds besides PAHs detected in the ultrafine size fraction of rice straw and cigarette smoke were benz[ de]anthracen-7-one (0.19 mg kg -1 rice straw burned) and 4-methylphenylacetone (2.64 mg cigarette -1), respectively. Caffeine was measured in cigarette smoke size fractions >0.1 μm with a total PM 1.8 emissions rate of 1 (mg cigarette -1). The most abundant organic species measured in meat cooking smoke was cholesterol with a size distribution that was highly correlated with both OC and EC. The concentration of each compound normalized by the concentration of total OC was relatively uniform for all particle sizes. Cholesterol and levoglucosan should prove to be useful tracers for meat cooking and wood smoke emissions in the ultrafine size range.

  2. Polar organic marker compounds in atmospheric aerosols: Determination, time series, size distributions and sources

    Science.gov (United States)

    Kourtchev, Ivan

    Terrestrial vegetation releases substantial amounts of reactive volatile organic compounds (VOCs; e.g., isoprene, monoterpenes) into the atmosphere. The VOCs can be rapidly photooxidized under conditions of high solar radiation, yielding products that can participate in new particle formation and growth processes above forests. This thesis focuses on the characterization, identification and quantification of oxidation products of biogenic VOC (BVOCs) as well as other species (tracer compounds) that provide information on aerosol sources and source processes. Atmospheric aerosols from various forested sites (i.e., Hyytiala, southern Finland; Rondonia, Brazil; K-Puszta, Hungary and Julich, Germany) were analyzed with Gas Chromotography/Mass Spectrometry (GC/MS) using analytical procedure that targets polar organic compounds. The study demonstrated that isoprene (i.e., 2-methyerythritol, 2-methylthreitol, 2-methylglyceric acid and C5-alkene triols (2-methyl-1,3,4-trihydroxy-l-butene (cis and trans) and 3 methyl-2,3,4-trihydroxy-1-butene)) and monoterpene (pinic acid, norpinic acid, 3-hydroxyglutaric acid and 3-methyl-1,2,3-butanetricarboxylic acid) oxidation products were present in substantial concentrations in atmospheric aerosols suggesting that oxidation of BVOC from the vegetation is an important process in all studied sites. On the other hand, presence of levoglucosan, biomass burning marker, especially in Amazonian rain forest site at Rondonia, Brazil, pointed that all sites were affected by anthropogenic activities, namely biomass burning. Other identified compounds included plyols, arabitol, mannitol and erythritol, which are marker compounds for fungal spores and monosacharides, glucose and fructose, markers for plant polens. Temporal variations as well as mass size distributions of the detected species confirmed the possible formation mechanisms of marker compounds.

  3. Crystal size distributions of plagioclase in lavas from the July-August 2001 Mount Etna eruption

    Science.gov (United States)

    Fornaciai, Alessandro; Perinelli, Cristina; Armienti, Pietro; Favalli, Massimiliano

    2015-08-01

    During the 2001 eruption of Mount Etna, two independent vent systems simultaneously erupted two different lavas. The Upper Vents system (UV), opened between 3100 and 2650 m a.s.l., emitted products that are markedly porphyritic and rich in plagioclase, while the Lower Vents system (LV), opened at 2100 and 2550 m a.s.l., emitted products that are sparsely porphyritic with scarce plagioclase. In this study, the crystal size distributions (CSDs) of plagioclase were measured for a series of 14 samples collected from all the main flows of the 2001 eruption. The coefficient of R 2 determination was used to evaluate the goodness of fit of linear models to the CSDs, and the results are represented as a grid of R 2 values by using a numerical code developed ad hoc. R 2 diagrams suggest that the 2001 products can be separated into two main groups with slightly different characteristics: plagioclase CSDs from the UVs can be modeled by three straight lines with different slopes while the plagioclase CSDs from the LVs are largely concave. We have interpreted the CSDs of the UVs as representing three different populations of plagioclases: (i) the large phenocrysts (type I), which started to crystallize at lower cooling rate in a deep reservoir from 13 to 8 months before eruption onset; (ii) the phenocrysts (type II), which crystallized largely during continuous degassing in a shallow reservoir; and (iii) the microlites, which crystallized during magma ascent immediately prior to the eruption. The plagioclase CSD curves for the LVs lava are interpreted to reflect strong and rapid changes in undercooling induced by strong and sudden degassing.

  4. Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Pajola, Maurizio; Vincent, Jean-Baptiste; Güttler, Carsten; Lee, Jui-Chi; Bertini, Ivano; Massironi, Matteo; Simioni, Emanuele; Marzari, Francesco; Giacomini, Lorenza; Lucchetti, Alice; Barbieri, Cesare; Cremonese, Gabriele; Naletto, Giampiero; Pommerol, Antoine; El-Maarry, Mohamed R.; Besse, Sébastien; Küppers, Michael; La Forgia, Fiorangela; Lazzarin, Monica; Thomas, Nicholas; Auger, Anne-Thérèse; Sierks, Holger; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst U.; Agarwal, Jessica; A'Hearn, Michael F.; Barucci, Maria A.; Bertaux, Jean-Loup; Da Deppo, Vania; Davidsson, Björn; De Cecco, Mariolino; Debei, Stefano; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Groussin, Olivier; Gutierrez, Pedro J.; Hviid, Stubbe F.; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kramm, J.-Rainer; Kürt, Ekkehard; Lara, Luisa M.; Lin, Zhong-Yi; Lopez Moreno, Jose J.; Magrin, Sara; Marchi, Simone; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Oklay, Nilda; Preusker, Frank; Scholten, Frank; Tubiana, Cecilia

    2015-11-01

    Aims: We derive for the first time the size-frequency distribution of boulders on a comet, 67P/Churyumov-Gerasimenko (67P), computed from the images taken by the Rosetta/OSIRIS imaging system. We highlight the possible physical processes that lead to these boulder size distributions. Methods: We used images acquired by the OSIRIS Narrow Angle Camera, NAC, on 5 and 6 August 2014. The scale of these images (2.44-2.03 m/px) is such that boulders ≥7 m can be identified and manually extracted from the datasets with the software ArcGIS. We derived both global and localized size-frequency distributions. The three-pixel sampling detection, coupled with the favorable shadowing of the surface (observation phase angle ranging from 48° to 53°), enables unequivocally detecting boulders scattered all over the illuminated side of 67P. Results: We identify 3546 boulders larger than 7 m on the imaged surface (36.4 km2), with a global number density of nearly 100/km2 and a cumulative size-frequency distribution represented by a power-law with index of -3.6 +0.2/-0.3. The two lobes of 67P appear to have slightly different distributions, with an index of -3.5 +0.2/-0.3 for the main lobe (body) and -4.0 +0.3/-0.2 for the small lobe (head). The steeper distribution of the small lobe might be due to a more pervasive fracturing. The difference of the distribution for the connecting region (neck) is much more significant, with an index value of -2.2 +0.2/-0.2. We propose that the boulder field located in the neck area is the result of blocks falling from the contiguous Hathor cliff. The lower slope of the size-frequency distribution we see today in the neck area might be due to the concurrent processes acting on the smallest boulders, such as i) disintegration or fragmentation and vanishing through sublimation; ii) uplifting by gas drag and consequent redistribution; and iii) burial beneath a debris blanket. We also derived the cumulative size-frequency distribution per km2 of

  5. Size distributions and aerodynamic equivalence of metal chondrules and silicate chondrules in Acfer 059

    Science.gov (United States)

    Skinner, William R.; Leenhouts, James M.

    1993-01-01

    The CR2 chondrite Acfer 059 is unusual in that the original droplet shapes of metal chondrules are well preserved. We determined separate size distributions for metal chondrules and silicate chondrules; the two types are well sorted and have similar size distributions about their respective mean diameters of 0.74 mm and 1.44 mm. These mean values are aerodynamically equivalent for the contrasting densities, as shown by calculated terminal settling velocities in a model solar nebula. Aerodynamic equivalence and similarity of size distributions suggest that metal and silicate fractions experienced the same sorting process before they were accreted onto the parent body. These characteristics, together with depletion of iron in Acfer 059 and essentially all other chondrites relative to primitive CI compositions, strongly suggest that sorting in the solar nebula involved a radial aerodynamic component and that sorting and siderophile depletion in chondrites are closely related.

  6. Effects of dust size distribution on nonlinear waves in a dusty plasma

    Institute of Scientific and Technical Information of China (English)

    Chen Jian-Hong

    2009-01-01

    For two-dimensional unmagnetized dusty plasmas with many different dust grain species, a Kadomtsev-Petviashvili (KP) equation, a modified KP (mKP) equation and a coupled KP(cKP) equation for small, but finite amplitude dustacoustic solitary waves are obtained for different physical conditions respectively. The influence of an arbitrary dust size distribution described by a polynomial expressed function on the properties of dust-acoustic solitary waves is investigated numerically. How dust size distribution affects the sign and the magnitude of nonlinear coefficient A (D) of KP (mKP)equation is also discussed in detail. It is noted that whether a compressive or a rarefactive solitary wave exists depends on the dust size distribution in some dusty plasmas.

  7. INCREASING RETURNS TO SCALE, DYNAMICS OF INDUSTRIAL STRUCTURE AND SIZE DISTRIBUTION OF FIRMS

    Institute of Scientific and Technical Information of China (English)

    Ying FAN; Menghui LI; Zengru DI

    2006-01-01

    A multi-agent model is presented to discuss the market dynamics and the size distribution of firms.The model emphasizes the effects of increasing returns to scale and gives the description of the born and death of adaptive producers. The evolution of market structure and its behavior under the technological shocks are investigated. Its dynamical results are in good agreement with some empirical "stylized facts" of industrial evolution. With the diversity of demand and adaptive growth strategies of firms, the firm size in the generalized model obeys the power-law distribution. Three factors mainly determine the competitive dynamics and the skewed size distributions of firms: 1. Self-reinforcing mechanism; 2. Adaptive firm growing strategies; 3. Demand diversity or widespread heterogeneity in the technological capabilities of firms.

  8. Soft Sensing of Overflow Particle Size Distributions in Hydrocyclones Using a Combined Method

    Institute of Scientific and Technical Information of China (English)

    SUN Zhe; WANG Huangang; ZHANG Zengke

    2008-01-01

    Precise, real-time measurements of overflow particle size distributions in hydrocyclones are ne-cessary for accurate control of the comminution circuits. Soft sensing measurements provide real-time,flexible, and low-cost measurements appropriate for the overflow particle size distributions in hydrocyclones.Three soft sensing methods were investigated for measuring the overflow particle size distributions in hy-drocyclones. Simulations show that these methods have various advantages and disadvantages. Optimal Bayesian estimation fusion was then used to combine three methods with the fusion parameters determined according to the performance of each method with validation samples. The combined method compensates for the disadvantages of each method for more precise measurements. Simulations using real operating data show that the absolute root mean square measurement error of the combined method was always about 2% and the method provides the necessary accuracy for beneflciation plants.

  9. Numerical Simulation of Sub-cooled Cavitating Flow by Using Bubble Size Distribution

    Institute of Scientific and Technical Information of China (English)

    Yutaka ITO; Hideki WAKAMATSU; Takao NAGASAKI

    2003-01-01

    A new cavitating model by using bubble size distribution based on mass of bubbles is proposed. Liquid phase is treated with Eulerian framework as a mixture containing minute cavitating bubbles. Vapor phase consists of various sizes of minute vapor bubbles, which is distributed to classes based on their mass. The change of bubble number density for each class was solved by considering the change of bubble mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method the mass of bubbles is treated as an independent variable, in other word, a new coordinate, and dependant variables are solved in Eulerian framework for spatial coordinates and bubble-mass coordinate. The present method is applied to a cavitating flow in a convergent-divergent nozzle, and the two-phase flow with bubble size distribution and phase change was successfully predicted.

  10. Bayesian inference on earthquake size distribution: a case study in Italy

    Science.gov (United States)

    Licia, Faenza; Carlo, Meletti; Laura, Sandri

    2010-05-01

    This paper is focused on the study of earthquake size statistical distribution by using Bayesian inference. The strategy consists in the definition of an a priori distribution based on instrumental seismicity, and modeled as a power law distribution. By using the observed historical data, the power law is then modified in order to obtain the posterior distribution. The aim of this paper is to define the earthquake size distribution using all the seismic database available (i.e., instrumental and historical catalogs) and a robust statistical technique. We apply this methodology to the Italian seismicity, dividing the territory in source zones as done for the seismic hazard assessment, taken here as a reference model. The results suggest that each area has its own peculiar trend: while the power law is able to capture the mean aspect of the earthquake size distribution, the posterior emphasizes different slopes in different areas. Our results are in general agreement with the ones used in the seismic hazard assessment in Italy. However, there are areas in which a flattening in the curve is shown, meaning a significant departure from the power law behavior and implying that there are some local aspects that a power law distribution is not able to capture.

  11. Martensitic transformations in nanostructured nitinol: Finite element modeling of grain size and distribution effects

    DEFF Research Database (Denmark)

    Liu, Hong-Sheng; Mishnaevsky, Leon

    2013-01-01

    A computational model of martensitic phase transformation in nanostructured nitinol is developed which takes into account the grain size effect. On the basis of the theoretical analysis of the thermodynamic transformation criterion and the energy barrier for phase transformation......, it was demonstrated that the energy barrier for martensitic phase transformation in nanocrystalline nitinol increase drastically with decreasing the grain size. Finite element simulations of phase transformations and structure evolution in nanocrystalline nitinol under mechanical (tensile) loading are carried out...... transformation are totally suppressed. Graded and localized distributions of grain sizes of nitinol were compared with nitinol samples with homogeneous grain size distribution. In the materials with localized region of small grains, it was observed that the martensite rich regions form first on the border...

  12. Broadening of Photoluminescence by Nonhomogeneous Size Distribution of Self-Assembled InAs Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    YANG Xi-Feng; LIU Zhao-Lin; CHEN Ping-Ping; CHEN Xiao-Shuang; LI Tian-Xin; LU Wei

    2008-01-01

    @@ The photoluminescence spectrum (PL) of InAs quantum dots (QDs) at 80 K is studied by comparison between the theoretical calculation and experimental measurement. The Gaussian line shape is used to approximate the size distribution of QDs. Its mean volume and the standard size deviation are well correlated with the peak and full width at half maximum (FWHM) of the PL spectrum. The experimental PL spectrum is well reproduced by the theoretical model based on the effect mass approximation including the size distribution without any adjustable parameters. Compared with the standard size deviation value σs = 9 × 10-2 determined by atomic force microscopic method a small value σs = 7 × 10-2 is obtained by the best fitting process from the measured and calculated PL spectra.

  13. Decoding size distribution patterns in marine and transitional water phytoplankton: from community to species level.

    Directory of Open Access Journals (Sweden)

    Leonilde Roselli

    Full Text Available Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape. We tested the hypothesis focusing on resource availability (nutrients and light and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism's behavior which exploring patch resources in transitional and marine phytoplankton communities.

  14. Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan; Heine, Ruben A.; Ickes, Brian

    2016-01-01

    In this study, we compared pre-lock-and-dam (ca. 1925) with a modern longitudinal survey of main-channel-bed sediments along a 740-km segment of the upper Mississippi River (UMR) between Davenport, IA, and Cairo, IL. This comparison was undertaken to gain a better understanding of how bed sediments are distributed longitudinally and to assess change since the completion of the UMR lock and dam navigation system and Missouri River dams (i.e., mid-twentieth century). The comparison of the historic and modern longitudinal bed sediment surveys showed similar bed sediment sizes and distributions along the study segment with the majority (> 90%) of bed sediment samples having a median diameter (D50) of fine to coarse sand. The fine tail (≤ D10) of the sediment size distributions was very fine to medium sand, and the coarse tail (≥ D90) of sediment-size distribution was coarse sand to gravel. Coarsest sediments in both surveys were found within or immediately downstream of bedrock-floored reaches. Statistical analysis revealed that the particle-size distributions between the survey samples were statistically identical, suggesting no overall difference in main-channel-bed sediment-size distribution between 1925 and present. This was a surprising result given the magnitude of river engineering undertaken along the study segment over the past ~ 90 years. The absence of substantial differences in main-channel-bed-sediment size suggests that flow competencies within the highly engineered navigation channel today are similar to conditions within the less-engineered historic channel.

  15. Receptor modelling of both particle composition and size distribution from a background site in London, UK

    Directory of Open Access Journals (Sweden)

    D. C. S. Beddows

    2015-04-01

    Full Text Available Positive Matrix Factorisation (PMF analysis was applied to PM10 chemical composition and particle Number Size Distribution (NSD data measured at an urban background site (North Kensington in London, UK for the whole of 2011 and 2012. The PMF analyses revealed six and four factors respectively which described seven sources or aerosol types. These included Nucleation, Traffic, Diffuse Urban, Secondary, Fuel Oil, Marine and Non-Exhaust/Crustal sources. Diffuse Urban, Secondary and Traffic sources were identified by both the chemical composition and particle number size distribution analysis, but a Nucleation source was identified only from the particle Number Size Distribution dataset. Analysis of the PM10 chemical composition dataset revealed Fuel Oil, Marine, Non-Exhaust Traffic/Crustal sources which were not identified from the number size distribution data. The two methods appear to be complementary, as the analysis of the PM10 chemical composition data is able to distinguish components contributing largely to particle mass whereas the number particle size distribution dataset is more effective for identifying components making an appreciable contribution to particle number. Analysis was also conducted on the combined chemical composition and number size distribution dataset revealing five factors representing Diffuse Urban, Nucleation, Secondary, Aged Marine and Traffic sources. However, the combined analysis appears not to offer any additional power to discriminate sources above that of the aggregate of the two separate PMF analyses. Day-of-the-week and month-of-the-year associations of the factors proved consistent with their assignment to source categories, and bivariate polar plots which examined the wind directional and wind speed association of the different factors also proved highly consistent with their inferred sources.

  16. Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan W. F.; Heine, Reuben A.; Ickes, Brian S.

    2016-07-01

    In this study, we compared pre-lock-and-dam (ca. 1925) with a modern longitudinal survey of main-channel-bed sediments along a 740-km segment of the upper Mississippi River (UMR) between Davenport, IA, and Cairo, IL. This comparison was undertaken to gain a better understanding of how bed sediments are distributed longitudinally and to assess change since the completion of the UMR lock and dam navigation system and Missouri River dams (i.e., mid-twentieth century). The comparison of the historic and modern longitudinal bed sediment surveys showed similar bed sediment sizes and distributions along the study segment with the majority (> 90%) of bed sediment samples having a median diameter (D50) of fine to coarse sand. The fine tail (≤ D10) of the sediment size distributions was very fine to medium sand, and the coarse tail (≥ D90) of sediment-size distribution was coarse sand to gravel. Coarsest sediments in both surveys were found within or immediately downstream of bedrock-floored reaches. Statistical analysis revealed that the particle-size distributions between the survey samples were statistically identical, suggesting no overall difference in main-channel-bed sediment-size distribution between 1925 and present. This was a surprising result given the magnitude of river engineering undertaken along the study segment over the past ~ 90 years. The absence of substantial differences in main-channel-bed-sediment size suggests that flow competencies within the highly engineered navigation channel today are similar to conditions within the less-engineered historic channel.

  17. The Distribution of Firm Start-Up Size Across Geographic Space

    OpenAIRE

    Audretsch, David B.; Tamvada, Jagannadha Pawan

    2008-01-01

    A growing body of literature shows that geographic location plays an important role in influencing economic phenomena. Despite the renewed interest in economic geography, the existing literature on the firm size distribution (FSD) has ignored the impact of geographic location. A wave of recent studies has examined the determinants and evolution of FSD (Cabral and Mata, 2003; Angelini and Generale 2008, AER) and a component of this literature has focused on the size of the new firm start-ups. ...

  18. Performance of DMPS/C System in Determining Aerosol Particle Size Distribution

    International Nuclear Information System (INIS)

    An evaluation of performance of DMPS/C system TSI-3932 in determining aerosol particle size has been carried out. The evaluation consist of validity of experimentally transfer function, instrument resolution, and test of measurement accuracy and precision for monodisperse and polydisperse aerosol size distribution. Evaluation of measurement accuracy gave a deviation of 0.74 %, and evaluation of measurement precision gave variation coefficient of 0,50 % and 1.63 % for monodisperse aerosol and polydisperse aerosol respectively

  19. Estimation of Pore Size Distribution by CO2 Adsorptionand Its Application in Physical Activation of Precursors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The CO2 adsorption data may show more than one section in theDubinin-Radushkevich-Kaganer(DRK) plot ifsamples had been over-activated. Each section in the plot represents arange of pore size.The whole DRK plot provided information on the pore size distribution(PSD)of a sample, which may be used to monitor the effect of activationconditions in activation processes.

  20. Explaining National Differences in the Size and Industry Distribution of Employment

    OpenAIRE

    Davis, Steven J; Magnus Henrekson

    1997-01-01

    What factors determine national differences in the size and industry distribution of employment? We stress the role of the economic policy environment as determined by business taxes, employment securitylaws, credit market regulations, the national pension system, wage-setting institutions and the size of the public sector. We characterize these aspects of the policy environment in Sweden prior to 1990-91 and compare them to the situation in other European countries and the United States. Our...

  1. Occlusion Effects and the Distribution of Interstellar Cloud Sizes and Masses

    OpenAIRE

    Scalo, J.; A. Lazarian

    1995-01-01

    The frequency distributions of sizes of ``clouds" and ``clumps" within clouds are significantly flatter for extinction surveys than for CO spectral line surveys, even for comparable size ranges. A possible explanation is the blocking of extinction clouds by larger foreground clouds (occlusion), which should not affect spectral line surveys much because clouds are resolved in velocity space along a given line of sight. We present a simple derivation of the relation between the true and occlude...

  2. Condensation on surface energy gradient shifts drop size distribution toward small drops.

    Science.gov (United States)

    Macner, Ashley M; Daniel, Susan; Steen, Paul H

    2014-02-25

    During dropwise condensation from vapor onto a cooled surface, distributions of drops evolve by nucleation, growth, and coalescence. Drop surface coverage dictates the heat transfer characteristics and depends on both drop size and number of drops present on the surface at any given time. Thus, manipulating drop distributions is crucial to maximizing heat transfer. On earth, manipulation is achieved with gravity. However, in applications with small length scales or in low gravity environments, other methods of removal, such as a surface energy gradient, are required. This study examines how chemical modification of a cooled surface affects drop growth and coalescence, which in turn influences how a population of drops evolves. Steam is condensed onto a horizontally oriented surface that has been treated by silanization to deliver either a spatially uniform contact angle (hydrophilic, hydrophobic) or a continuous radial gradient of contact angles (hydrophobic to hydrophilic). The time evolution of number density and associated drop size distributions are measured. For a uniform surface, the shape of the drop size distribution is unique and can be used to identify the progress of condensation. In contrast, the drop size distribution for a gradient surface, relative to a uniform surface, shifts toward a population of small drops. The frequent sweeping of drops truncates maturation of the first generation of large drops and locks the distribution shape at the initial distribution. The absence of a shape change indicates that dropwise condensation has reached a steady state. Previous reports of heat transfer enhancement on chemical gradient surfaces can be explained by this shift toward smaller drops, from which the high heat transfer coefficients in dropwise condensation are attributed to. Terrestrial applications using gravity as the primary removal mechanism also stand to benefit from inclusion of gradient surfaces because the critical threshold size required for

  3. Grain-size distribution in suspension over a sand-gravel bed in open channel flow

    Institute of Scientific and Technical Information of China (English)

    Koeli GHOSHAL; Debasish PAL

    2014-01-01

    Grain-size distributions of suspended load over a sand-gravel bed at two different flow velocities were studied in a laboratory flume. The experiments had been performed to study the influence of flow velocity and suspension height on grain-size distribution in suspension over a sand-gravel bed. The experimental findings show that with an increase of flow velocity, the grain-size distribution of suspended load changed from a skewed form to a bimodal one at higher suspension heights. This study focuses on the determination of the parameter βn which is the ratio of the sediment diffusion coefficient to the momentum diffusion coefficient of n th grain-size. A new relationship has been proposed involvingβn , the normalizing settling velocity of sediment particles and suspension height, which is applicable for widest range of normalizing settling velocity available in literature so far. A similar parameter β for calculating total suspension concentration is also developed. The classical Rouse equation is modified with βn and β and used to compute grain-size distribution and total concentration in suspension, respectively. The computed values have shown good agreement with the measured values of experimental data.

  4. Effect of non uniform void size and shape distributions on deformation failure in cast aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jun Su; Kang, Dong Hwan; Kim, Tae Won; Bae, Dae Sung [Hanyang Univ., Seoul (Korea, Republic of); Yoon, Hyung Sop [Hyundai Kia Motors R and D Division, Hwaseong (Korea, Republic of)

    2012-07-15

    Tensile tests were conducted on several cast aluminum specimens with different degrees of porosity. The effects of non uniform void size and shape distributions, including spherical and non spherical types, on stress-strain behavior resulting from different initiation mechanisms were investigated. A micro mechanics based statistical approach was employed, and the heterogeneous microstructures could therefore be modeled during the deformation process. The predicted changes of the distributions of void size and void shape generally agreed with experimental results. Void spatial variation was also quantified, and its effects on the level of failure were analyzed. The void spatial variation facilitated development of inhomogeneous deformation, which results in failure.

  5. A study of the pore-size distributions of some virgin Oldbury test-well graphites

    International Nuclear Information System (INIS)

    The pore-size distributions of some virgin Oldbury test-well graphite specimens have been determined using both image analysis and mercury porosimetry. Image analysis has revealed that the pore-size distribution (PSD) is not a function of distance from the channel wall (fuel and interstitial). Differences found between the PSDs of individual specimens have led to predicted weight losses which exhibit a variability similar to that found in installed-specimen data. The results, therefore, confirm that the channel wall densification is unlikely to be pore related, but rather to be due to short-range inhibition in the gas phase. (author)

  6. Estimating the 3D pore size distribution of biopolymer networks from directionally biased data.

    Science.gov (United States)

    Lang, Nadine R; Münster, Stefan; Metzner, Claus; Krauss, Patrick; Schürmann, Sebastian; Lange, Janina; Aifantis, Katerina E; Friedrich, Oliver; Fabry, Ben

    2013-11-01

    The pore size of biopolymer networks governs their mechanical properties and strongly impacts the behavior of embedded cells. Confocal reflection microscopy and second harmonic generation microscopy are widely used to image biopolymer networks; however, both techniques fail to resolve vertically oriented fibers. Here, we describe how such directionally biased data can be used to estimate the network pore size. We first determine the distribution of distances from random points in the fluid phase to the nearest fiber. This distribution follows a Rayleigh distribution, regardless of isotropy and data bias, and is fully described by a single parameter--the characteristic pore size of the network. The bias of the pore size estimate due to the missing fibers can be corrected by multiplication with the square root of the visible network fraction. We experimentally verify the validity of this approach by comparing our estimates with data obtained using confocal fluorescence microscopy, which represents the full structure of the network. As an important application, we investigate the pore size dependence of collagen and fibrin networks on protein concentration. We find that the pore size decreases with the square root of the concentration, consistent with a total fiber length that scales linearly with concentration. PMID:24209841

  7. Retrieval of size distribution for urban aerosols using multispectral optical data

    International Nuclear Information System (INIS)

    We are dealing with retrieval of aerosol size distribution using multispectral extinction data collected in highly industrialized urban region. Especially, a role of the particle morphology is in the focus of this work. As well known, at present, still many retrieval algorithms are based on simple Lorenz-Mie's theory applicable for perfectly spherical and homogeneous particles, because that approach is fast and can handle the whole size distribution of particles. However, the solid-phase aerosols never render simple geometries, and rather than being spherical or spheroidal they are quite irregular. It is shown, that identification of the modal radius aM of both, the size distribution f(a) and the distribution of geometrical cross section s(a) of aerosol particles is not significantly influenced by the particle's morphology in case the aspect ratio is smaller than 2 and the particles are randomly oriented in the atmospheric environment. On the other hand, the amount of medium-sized particles (radius of which is larger than the modal radius) can be underestimated if distribution of non-spherical grains is substituted by system of volume equivalent spheres. Retrieved volume content of fine aerosols (as characterized by PM2.5 and PM1.0) can be potentially affected by inappropriate assumption on the particle shape

  8. (99m)Tc-human serum albumin nanocolloids: particle sizing and radioactivity distribution.

    Science.gov (United States)

    Persico, Marco G; Lodola, Lorenzo; Buroni, Federica E; Morandotti, Marco; Pallavicini, Piersandro; Aprile, Carlo

    2015-07-01

    Several parameters affect the biodistribution of administered nanocolloids (NC) for Sentinel Lymph Node (SLN) detection: particle size distribution, number of Tc atoms per particle and specific activity (SA). Relatively few data are available with frequently conflicting results. (99m)Tc-NC-human serum albumin (HSA) Nanocoll®, Nanoalbumon® and Nanotop® were analysed for particles' dimensional and radioactivity distribution, and a mathematical model was elaborated to estimate the number of particles involved. Commercially available kits were reconstituted at maximal SA of 11 MBq/µg HSA. Particles size distribution was evaluated by Dynamic Light Scattering. These data were related to the radioactivity distribution analysis passing labelled NC through three polycarbonate filters (15-30-50-nm pore size) under vacuum. Highest radioactivity was carried by 30-50 nm particles. The smallest ones, even though most numerous, carried only the 10% of (99m)Tc atoms. Nanocoll and Nanotop are not significantly different, while Nanoalbumon is characterized by largest particles (>30 nm) that carried the most of radioactivity (80%). Smallest particles could saturate the clearing capacity of macrophages; therefore, if the tracer is used for SLN detection, more node tiers could be visualized, reducing accuracy of SLN mapping. Manufacturers could implement technical leaflets with particle size distribution and could improve the labelling protocol to provide clinicians useful information.

  9. The variability of tidewater-glacier calving: origin of event-size and interval distributions

    CERN Document Server

    Chapuis, Anne

    2012-01-01

    Calving activity at the front of tidewater glaciers is characterized by a large variability in iceberg sizes and inter-event intervals. We present calving-event data obtained from continuous observations of the fronts of two tidewater glaciers on Svalbard, and show that the distributions of event sizes and inter-event intervals can be reproduced by a simple calving model focusing on the mutual interplay between calving and the destabilization of the glacier front. The event-size distributions of both the field and the model data extend over several orders of magnitude and resemble power laws. The distributions of inter-event intervals are broad, but have a less pronounced tail. In the model, the width of the size distribution increases with the calving susceptibility of the glacier front, a parameter measuring the effect of calving on the stress in the local neighborhood of the calving region. Inter-event interval distributions, in contrast, are insensitive to the calving susceptibility. Above a critical susc...

  10. Effect of Dimethyl Ether Mixing on Soot Size Distribution in Premixed Ethylene Flame

    KAUST Repository

    Li, Zepeng

    2016-04-21

    As a byproduct of incomplete combustion, soot attracts increasing attentions as extensive researches exploring serious health and environmental effects from soot particles. Soot emission reduction requires a comprehensive understanding of the mechanism for polycyclic aromatic hydrocarbons and of soot formation and aging processes. Therefore, advanced experimental techniques and numerical simulations have been conducted to investigate this procedure. In order to investigate the effects of dimethyl ether (DME) mixing on soot particle size distribution functions (PSDFs), DME was mixed in premixed ethylene/oxygen/argon at flames at the equivalence ratio of 2.0 with a range of mixing ratio from 0% to 30% of the total carbon fed. Two series of atmospheric pressure flames were tested in which cold gas velocity was varied to obtain different flame temperatures. The evolution of PSDFs along the centerline of the flame was determined by burner stabilized stagnation probe and scanning mobility particle sizer (SMPS) techniques, yielding the PSDFs for various separation distances above the burner surface. Meanwhile, the flame temperature profiles were carefully measured by a thermocouple and the comparison to that of simulated laminar premixed burner-stabilized stagnation flame was satisfactory. Additionally, to understand the chemical role of DME mixing in soot properties, characterization measurements were conducted on soot samples using thermo-gravimetric analysis (TGA) and elemental analysis (EA). Results of the evolution of PSDFs and soot volume fraction showed that adding DME into ethylene flame could reduce soot yield significantly. The addition of DME led to the decrease of both the soot nucleation rate and the particle mass growth rate. To explain the possible mechanism for the observation, numerical simulations were performed. Although DME addition resulted in the slight increase of methyl radicals from pyrolysis, the decrease in acetylene and propargyl radicals

  11. The Degree Distribution of Random Birth-and-Death Network with Network Size Decline

    CERN Document Server

    Zhang, Xiaojun

    2016-01-01

    In this paper, we provide a general method to obtain the exact solutions of the degree distributions for RBDN with network size decline. First by stochastic process rules, the steady state transformation equations and steady state degree distribution equations are given in the case of m>2, 0distribution. Especially, taking m=3 as an example, we explain the detailed solving process, in which computer simulation is used to verify our degree distribution solutions. In addition, the tail characteristics of the degree distribution are discussed. Our findings suggest that the degree distributions will exhibit Poisson tail property for the declining RBDN.

  12. Market size, competition, and the product mix of exporters

    OpenAIRE

    Mayer, Thierry; Melitz, Marc J.; Ottaviano, Gianmarco I. P.

    2012-01-01

    We build a theoretical model of multi-product firms that highlights how competition across market destinations affects both a firm's exported product range and product mix. We show how tougher competition in an export market induces a firm to skew its export sales towards its best performing products. We find very strong confirmation of this competitive effect for French exporters across export market destinations. Theoretically, this within firm change in product mix driven by the trading en...

  13. Market Size, Competition, and the Product Mix of Exporters

    OpenAIRE

    Mayer, Thierry; Melitz, Marc J.; Ottaviano, Gianmarco

    2014-01-01

    We build a theoretical model of multi-product firms that highlights how competition across market destinations affects both a firm's exported product range and product mix. We show how tougher competition in an export market induces a firm to skew its export sales toward its best performing products. We find very strong confirmation of this competitive effect for French exporters across export market destinations. Theoretically, this within-firm change in product mix driven by the trading env...

  14. Market Size, Competition, and the Product Mix of Exporters

    OpenAIRE

    Thierry Mayer; Melitz, Marc J.; Ottaviano, Gianmarco I. P.

    2011-01-01

    We build a theoretical model of multi-product firms that highlights how competition across market destinations affects both a firm's exported product range and product mix. We show how tougher competition in an export market induces a firm to skew its export sales towards its best performing products. We find very strong confirmation of this competitive effect for French exporters across export market destinations. Theoretically, this within firm change in product mix driven by the trading en...

  15. Market Size, Competition, and the Product Mix of Exporters

    OpenAIRE

    Thierry Mayer; Melitz, Marc J.; Ottaviano, Gianmarco I. P.

    2012-01-01

    We build a theoretical model of multi-product firms that highlights how competition across market destinations affects both a firm's exported product range and product mix. We show how tougher competition in an export market induces a firm to skew its export sales towards its best performing products. We find very strong confirmation of this competitive effect for French exporters across export market destinations. Theoretically, this within firm change in product mix driven by the trading en...

  16. Effect of particle size and distribution of the sizing agent on the carbon fibers surface and interfacial shear strength (IFSS) of its composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.L. [Open Project of State Key Laboratory Breeding Base for Mining Disaster Prevention and Control, Shandong University of Science and Technology (China); School of Materials Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao (China); Liu, Y. [School of Materials Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao (China); Huang, Y.D., E-mail: rlzhit@126.com [School of Chemical Engineering and Technology, State Key laboratory of Urban Water Resource and Environment Department of Applied Chemistry, Harbin Institute of Technology, 150001 Harbin (China); Liu, L. [School of Chemical Engineering and Technology, State Key laboratory of Urban Water Resource and Environment Department of Applied Chemistry, Harbin Institute of Technology, 150001 Harbin (China)

    2013-12-15

    Effect of particle size and distribution of the sizing agent on the performance of carbon fiber and carbon fiber composites has been investigated. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize carbon fiber surface topographies. At the same time, the single fiber strength and Weibull distribution were also studied in order to investigate the effect of coatings on the fibers. The interfacial shear strength and hygrothermal aging of the carbon fiber/epoxy resin composites were also measured. The results indicated that the particle size and distribution is important for improving the surface of carbon fibers and its composites performance. Different particle size and distribution of sizing agent has different contribution to the wetting performance of carbon fibers. The fibers sized with P-2 had higher value of IFSS and better hygrothermal aging resistant properties.

  17. Optimum siting and sizing of a large distributed generator in a mesh connected system

    Energy Technology Data Exchange (ETDEWEB)

    Elnashar, Mohab M.; El Shatshat, Ramadan; Salama, Magdy M.A. [Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario (Canada)

    2010-06-15

    This paper proposes a new approach to optimally determine the appropriate size and location of the distributed generator (DG) in a large mesh connected system. This paper presents a visual optimization approach in which the planner plays an important role in determining the optimal siting and sizing of the DG through the choice of the appropriate weight factors of the parameters included in the optimization technique according to the system deficiencies. Losses, voltage profile and short circuit level are used in the algorithm to determine the optimum sizes and locations of the DG. The short circuit level parameter is introduced to represent the protective device requirements in the selection of the size and location of the DG. The proposed technique has been tested on the IEEE 24 - bus mesh connected test system. The obtained results showed clearly that the optimal size and location can be simply determined through the proposed approach. (author)

  18. Particle Size Distribution and Characterization of High Siliceous and Microporous Materials

    Institute of Scientific and Technical Information of China (English)

    S.K. Durrani; J.Akhtar; M. Ahmad; M.J. Moughal

    2005-01-01

    Particle size, textural and surface characteristics influence some major technological properties of high siliceous aluminosilicate zeolite and sillicoaluminophosphate (SAPO) microporous materials. A comparative study was furnished for measuring surface characteristics, particle size and particle size distribution using particle size analyzer (PSA)and scanning electron microscope (SEM). The PSA is capable of measuring particle diameter in micron range. The results of these techniques for estimation of particle size were compared and correlated statistically. Student t-test and variance ratio test (F-test) methods were performed for the significance of results by the analysis of variance (ANONA) and multiple-range tests. Textural and surface characteristics were evaluated by Brunauer, Emmett &Teller (BET) volumetric technique and v-αs plotting method. The textural results shows that the external surface area and micropore volume of microporous materials were higher than those of the high siliceous zeolites and its zeotype materials.

  19. Statistical physics studies of multilayer adsorption isotherm in food materials and pore size distribution

    Science.gov (United States)

    Aouaini, F.; Knani, S.; Ben Yahia, M.; Ben Lamine, A.

    2015-08-01

    Water sorption isotherms of foodstuffs are very important in different areas of food science engineering such as for design, modeling and optimization of many processes. The equilibrium moisture content is an important parameter in models used to predict changes in the moisture content of a product during storage. A formulation of multilayer model with two energy levels was based on statistical physics and theoretical considerations. Thanks to the grand canonical ensemble in statistical physics. Some physicochemical parameters related to the adsorption process were introduced in the analytical model expression. The data tabulated in literature of water adsorption at different temperatures on: chickpea seeds, lentil seeds, potato and on green peppers were described applying the most popular models applied in food science. We also extend the study to the newest proposed model. It is concluded that among studied models the proposed model seems to be the best for description of data in the whole range of relative humidity. By using our model, we were able to determine the thermodynamic functions. The measurement of desorption isotherms, in particular a gas over a solid porous, allows access to the distribution of pore size PSD.

  20. International intercalibration and intercomparison measurements of radon progeny particle size distribution

    International Nuclear Information System (INIS)

    Because there is no standard method for 222Rn progeny size measurements, verifying the performance of various measurement techniques is important. This report describes results of an international intercomparison and calibration of 222Rn progeny size measurements involving low pressure impactors (MOUDI and Berner) and diffusion battery systems, as well as both alpha- and gamma- counting methods. The intercomparison was at EML on June 12-15, 1995. 5 different particle sizes (80, 90, 165, 395, 1200 nm) of near monodisperse condensation Carbauba wax aerosol and 2 bimodal size spectra (160 and 365 nm, and 70 and 400 nm) were used. 20 tests were completed, covering both low and high concentrations of 222Rn and test aerosols. For the single-mode test aerosol, the measurements agreed within the size range. Best agreement was found between the two low pressure impactors. Some differences between the impactor and diffusion battery methods were observed in the specific peak locations and the resultant geometric mean diameters. For the two bimodal size distribution aerosols, the MOUDI measurements showed two modes, while the other 3 devices showed a single mode size distribution

  1. International intercalibration and intercomparison measurements of radon progeny particle size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Keng-Wu

    1997-07-01

    Because there is no standard method for {sup 222}Rn progeny size measurements, verifying the performance of various measurement techniques is important. This report describes results of an international intercomparison and calibration of {sup 222}Rn progeny size measurements involving low pressure impactors (MOUDI and Berner) and diffusion battery systems, as well as both alpha- and gamma- counting methods. The intercomparison was at EML on June 12-15, 1995. 5 different particle sizes (80, 90, 165, 395, 1200 nm) of near monodisperse condensation Carbauba wax aerosol and 2 bimodal size spectra (160 and 365 nm, and 70 and 400 nm) were used. 20 tests were completed, covering both low and high concentrations of {sup 222}Rn and test aerosols. For the single-mode test aerosol, the measurements agreed within the size range. Best agreement was found between the two low pressure impactors. Some differences between the impactor and diffusion battery methods were observed in the specific peak locations and the resultant geometric mean diameters. For the two bimodal size distribution aerosols, the MOUDI measurements showed two modes, while the other 3 devices showed a single mode size distribution.

  2. A statistical analysis of North East Atlantic (submicron) aerosol size distributions

    Science.gov (United States)

    Dall'Osto, M.; Monahan, C.; Greaney, R.; Beddows, D. C. S.; Harrison, R. M.; Ceburnis, D.; O'Dowd, C. D.

    2011-12-01

    The Global Atmospheric Watch research station at Mace Head (Ireland) offers the possibility to sample some of the cleanest air masses being imported into Europe as well as some of the most polluted being exported out of Europe. We present a statistical cluster analysis of the physical characteristics of aerosol size distributions in air ranging from the cleanest to the most polluted for the year 2008. Data coverage achieved was 75% throughout the year. By applying the Hartigan-Wong k-Means method, 12 clusters were identified as systematically occurring. These 12 clusters could be further combined into 4 categories with similar characteristics, namely: coastal nucleation category (occurring 21.3 % of the time), open ocean nucleation category (occurring 32.6% of the time), background clean marine category (occurring 26.1% of the time) and anthropogenic category (occurring 20% of the time) aerosol size distributions. The coastal nucleation category is characterised by a clear and dominant nucleation mode at sizes less than 10 nm while the open ocean nucleation category is characterised by a dominant Aitken mode between 15 nm and 50 nm. The background clean marine aerosol exhibited a clear bimodality in the sub-micron size distribution, with although it should be noted that either the Aitken mode or the accumulation mode may dominate the number concentration. However, peculiar background clean marine size distributions with coarser accumulation modes are also observed during winter months. By contrast, the continentally-influenced size distributions are generally more monomodal (accumulation), albeit with traces of bimodality. The open ocean category occurs more often during May, June and July, corresponding with the North East (NE) Atlantic high biological period. Combined with the relatively high percentage frequency of occurrence (32.6%), this suggests that the marine biota is an important source of new nano aerosol particles in NE Atlantic Air.

  3. A statistical analysis of North East Atlantic (submicron aerosol size distributions

    Directory of Open Access Journals (Sweden)

    M. Dall'Osto

    2011-12-01

    Full Text Available The Global Atmospheric Watch research station at Mace Head (Ireland offers the possibility to sample some of the cleanest air masses being imported into Europe as well as some of the most polluted being exported out of Europe. We present a statistical cluster analysis of the physical characteristics of aerosol size distributions in air ranging from the cleanest to the most polluted for the year 2008. Data coverage achieved was 75% throughout the year. By applying the Hartigan-Wong k-Means method, 12 clusters were identified as systematically occurring. These 12 clusters could be further combined into 4 categories with similar characteristics, namely: coastal nucleation category (occurring 21.3 % of the time, open ocean nucleation category (occurring 32.6% of the time, background clean marine category (occurring 26.1% of the time and anthropogenic category (occurring 20% of the time aerosol size distributions. The coastal nucleation category is characterised by a clear and dominant nucleation mode at sizes less than 10 nm while the open ocean nucleation category is characterised by a dominant Aitken mode between 15 nm and 50 nm. The background clean marine aerosol exhibited a clear bimodality in the sub-micron size distribution, with although it should be noted that either the Aitken mode or the accumulation mode may dominate the number concentration. However, peculiar background clean marine size distributions with coarser accumulation modes are also observed during winter months. By contrast, the continentally-influenced size distributions are generally more monomodal (accumulation, albeit with traces of bimodality. The open ocean category occurs more often during May, June and July, corresponding with the North East (NE Atlantic high biological period. Combined with the relatively high percentage frequency of occurrence (32.6%, this suggests that the marine biota is an important source of new nano aerosol particles in NE Atlantic Air.

  4. Production of sized particles of uranium oxides and uranium oxyfluorides

    International Nuclear Information System (INIS)

    A process for converting uranium hexafluoride to uranium dioxide of a relatively large particle size in a fluidized bed reactor by mixing uranium hexafluoride with a mixture of steam and hydrogen to form a mixture of uranium oxide and uranium oxyfluoride seed particles of varying sizes, separating the larger particles from the smaller particles in a cyclone separator, recycling the smaller seed particles through the ejector to increase their size, and introducing the larger seed particles from the cyclone separator into a fluidized bed reactor where the seed particles serve as nuclei on which coarser particles of uranium dioxide are formed. (Patent Office Record)

  5. Pore Size Distribution as a Soil Physical Quality Index for Agricultural and Pasture Soils in Northeastern Iran

    Institute of Scientific and Technical Information of China (English)

    H.SHAHAB, H.EMAMI; G.H.HAGHNIA; A.KARIMI

    2013-01-01

    Assessment of soil quality is important for optimum production and natural resources conservation.Agricultural and pasture soil qualities of Deh-Sorkh region located at south of Mashhad,northeastern Iran were assessed using the integrated quality index (IQI) and Nemero quality index (NQI) models in combination with two datasets,i.e.,total data set (TDS) and minimum data set (MDS).In this study 6 soil properties considered as MDS were selected out of 18 properties as TDS using principle component analysis.Soil samples were divided into 3 groups based on optimum ranges of 8 soil physical quality indicators.Soil samples with the most indicators at optimum range were selected as group 1 and the samples having fewer indicators at optimum range were located in groups 2 and 3.Optimum ranges of soil pore size distribution functions were also determined as soil physical quality indices based on 8 soil physical quality indicators.Pore size distribution curves of group 1 were considered as the optimum pore size functions.The results showed that relatively high organic carbon contents could improve pore size distribution.Mean comparisons of soil physical quality indicators demonstrated that mean weight diameter of wet aggregates,structural stability index,the slope of moisture retention curve at inflection point,and plant available water content in agricultural land use decreased significantly in relation to pasture land use.In addition,the results demonstrated that the studied MDS could be a suitable representative of TDS.78% of pasture soils had the optimum pore size distribution functions,while this parameter for agricultural soils was only 13%.In general,the soils of the studied region showed high limitations for plant growth according to the studied indicators.

  6. Effect of lubricant oil additive on size distribution, morphology, and nanostructure of diesel particulate matter

    International Nuclear Information System (INIS)

    Highlights: • Pour point depressant (PPD) has great impact on particulate matters. • The number of nanoparticles increases sharply after PPD is added. • Ambiguous boundaries can be found when the PPD additive was added. • PPD changes the size distribution into bimodal logarithmic. • Three nanostructure parameters are changed greatly by PPD. - Abstract: Effects of lubricant oil additive on the characterization of particles from a four-cylinder turbocharged diesel engine were investigated. Neat diesel and blended fuel containing oil pour point depressant (PPD) additive were chosen as the test fuels. Effects of different fuels on size distribution, morphology, and nanostructure of the diesel particles were studied. Transmission electron microscopy (TEM) and high resolution TEM (HRTEM) were employed to study the morphology and nanostructure parameters. Particle size distribution was measured by fast particulate spectrometer (DMS 500). According to the experimental results, distribution of the primary particles size of the two fuels conforms to Gaussian distribution, whereas the mean diameter of blended fuel is larger than that of neat diesel at 1200 rpm, which is contrarily smaller at 2400 rpm. Besides, fractal dimension (Df) of aggregates increases close to 2 (Df = 1.991), indicating that the structure became compacter with adding PPD. As to the nanostructure parameters of the blended fuel particles, the layer fringe length decreases from 1.191 nm to 1.064 nm, while both the separation distance and tortuosity increase. The changes in the nanostructure parameters indicate that the particles are more ordered and compressed with burning pure diesel. Results of blended fuel from DMS show that more particles, particularly nucleation mode particles, were discharged. In addition, its size distribution become bimodal logarithmic at 2400 rpm. All these results can provide new information of the effects of oil PPD additive on the formation and characterization of

  7. Size Distribution Studies on Sulfuric Acid-Water Particles in a Photolytic Reactor

    Science.gov (United States)

    Abdullahi, H. U.; Kunz, J. C.; Hanson, D. R.; Thao, S.; Vences, J.

    2015-12-01

    The size distribution of particles composed of sulfuric acid and water were measured in a Photolytic cylindrical Flow Reactor (PhoFR, inner diameter 5 cm, length ~ 100 cm). In the reactor, nitrous acid, water and sulfur dioxide gases along with ultraviolet light produced sulfuric acid. The particles formed from these vapors were detected with a scanning mobility particle spectrometer equipped with a diethylene glycol condensation particle counter (Jiang et al. 2011). For a set of standard conditions, particles attained a log-normal distribution with a peak diameter of 6 nm, and a total number of about 3x105 cm-3. The distributions show that ~70 % of the particles are between 4 and 8 nm diameter (lnσ ~ 0.37). These standard conditions are: 296 K, 25% relative humidity, total flow = 3 sLpm, ~10 ppbv HONO, SO2 in excess. With variations of relative humidity, the total particle number varied strongly, with a power relationship of ~3.5, and the size distributions showed a slight increase in peak diameter with relative humidity, increasing about 1 nm from 8 to 33 % relative humidity. Variations of HONO at a constant light intensity (wavelength of ~ 360 nm) were performed and particle size and total number changed dramatically. Size distributions also changed drastically with variations of light intensity, accomplished by turning on/off some of the black light flourescent bulbs that illuminated the flow reactor. Comparisons of these size distributions to recently published nucleation experiments (e.g. Zollner et al., Glasoe et al.) as well as to simulations of PhoFR reveal important details about the levels of sulfuric acid present in PhoFR as well as possible base contaminants.

  8. Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data.

    Science.gov (United States)

    de Winter, Joost C F; Gosling, Samuel D; Potter, Jeff

    2016-09-01

    The Pearson product-moment correlation coefficient () and the Spearman rank correlation coefficient () are widely used in psychological research. We compare and on 3 criteria: variability, bias with respect to the population value, and robustness to an outlier. Using simulations across low (N = 5) to high (N = 1,000) sample sizes we show that, for normally distributed variables, and have similar expected values but is more variable, especially when the correlation is strong. However, when the variables have high kurtosis, is more variable than . Next, we conducted a sampling study of a psychometric dataset featuring symmetrically distributed data with light tails, and of 2 Likert-type survey datasets, 1 with light-tailed and the other with heavy-tailed distributions. Consistent with the simulations, had lower variability than in the psychometric dataset. In the survey datasets with heavy-tailed variables in particular, had lower variability than , and often corresponded more accurately to the population Pearson correlation coefficient () than did. The simulations and the sampling studies showed that variability in terms of standard deviations can be reduced by about 20% by choosing instead of . In comparison, increasing the sample size by a factor of 2 results in a 41% reduction of the standard deviations of and . In conclusion, is suitable for light-tailed distributions, whereas is preferable when variables feature heavy-tailed distributions or when outliers are present, as is often the case in psychological research. (PsycINFO Database Record

  9. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts.

    Science.gov (United States)

    Babu, S Suresh; Kompalli, Sobhan Kumar; Moorthy, K Krishna

    2016-09-01

    Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~15-15,000nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter <100nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167nm and 1150 to 1760nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from

  10. The limit distribution of the maximum increment of a random walk with dependent regularly varying jump sizes

    DEFF Research Database (Denmark)

    Mikosch, Thomas Valentin; Moser, Martin

    2013-01-01

    We investigate the maximum increment of a random walk with heavy-tailed jump size distribution. Here heavy-tailedness is understood as regular variation of the finite-dimensional distributions. The jump sizes constitute a strictly stationary sequence. Using a continuous mapping argument acting...... on the point processes of the normalized jump sizes, we prove that the maximum increment of the random walk converges in distribution to a Fréchet distributed random variable....

  11. Morphology, chemical compositions and size distribution of rare earth oxides in pure iron

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The pure iron was melted and deoxidized by metallic Al and rare earth elements La, Ce and Y respectively at 1600℃ in avertical resistance furnace. The morphology, chemical composition and size distribution of the inclusions in deoxidized liquid ironhave been investigated by using of SEM and image-analysis techniques. The investigated results show that the deoxidation productsin molten iron are complex inclusions of rare earth oxide or Al2O3 combined with FeO finely distributed. The proper holding timeand rapid cooling rate can make inclusions finer. La, Y and Al are more effective than Ce for obtaining finely distributed inclusions.

  12. A Survey on Particle Swarm Optimization for Use in Distributed Generation Placement and Sizing

    Directory of Open Access Journals (Sweden)

    Arif Syed Muhammad

    2016-01-01

    Full Text Available This paper surveys the research and development of Particle Swarm Optimization (PSO algorithm for use in selecting a suitable position for Distributed Generation (DG units within a distribution network. Our discussion first covers the algorithm development of PSO and its use in neural networks. After establishing the foundations of PSO, we then explore its use in sizing and sitting of DG units in distribution network. Combining PSO with other optimization techniques for attaining better results is also discussed in this paper.

  13. Assessing tephra total grain-size distribution: Insights from field data analysis

    Science.gov (United States)

    Costa, A.; Pioli, L.; Bonadonna, C.

    2016-06-01

    The Total Grain-Size Distribution (TGSD) of tephra deposits is crucial for hazard assessment and provides fundamental insights into eruption dynamics. It controls both the mass distribution within the eruptive plume and the sedimentation processes and can provide essential information on the fragmentation mechanisms. TGSD is typically calculated by integrating deposit grain-size at different locations. The result of such integration is affected not only by the number, but also by the spatial distribution and distance from the vent of the sampling sites. In order to evaluate the reliability of TGSDs, we assessed representative sampling distances for pyroclasts of different sizes through dedicated numerical simulations of tephra dispersal. Results reveal that, depending on wind conditions, a representative grain-size distribution of tephra deposits down to ∼100 μm can be obtained by integrating samples collected at distances from less than one tenth up to a few tens of the column height. The statistical properties of TGSDs representative of a range of eruption styles were calculated by fitting the data with a few general distributions given by the sum of two log-normal distributions (bi-Gaussian in Φ-units), the sum of two Weibull distributions, and a generalized log-logistic distribution for the cumulative number distributions. The main parameters of the bi-lognormal fitting correlate with height of the eruptive columns and magma viscosity, allowing general relationships to be used for estimating TGSD generated in a variety of eruptive styles and for different magma compositions. Fitting results of the cumulative number distribution show two different power law trends for coarse and fine fractions of tephra particles, respectively. Our results shed light on the complex processes that control the size of particles being injected into the atmosphere during volcanic explosive eruptions and represent the first attempt to assess TGSD on the basis of pivotal physical

  14. Product Classification in E-Commerce using Distributional Semantics

    OpenAIRE

    Gupta, Vivek; Karnick, Harish; Bansal, Ashendra; Jhala, Pradhuman

    2016-01-01

    Product classification is the task of automatically predicting a taxonomy path for a product in a predefined taxonomy hierarchy given a textual product description or title. For efficient product classification we require a suitable representation for a document (the textual description of a product) feature vector and efficient and fast algorithms for prediction. To address the above challenges, we propose a new distributional semantics representation for document vector formation. We also d...

  15. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Tazelaar, Edwin; Shen, Y.; Veenhuizen, Bram; Hofman, T.; Bosch, P. van den

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define

  16. M(H) dependence and size distribution of SPIONs measured by atomic magnetometry

    CERN Document Server

    Colombo, Simone; Grujic, Zoran D; Dolgovskiy, Vladimir; Weis, Antoine

    2016-01-01

    We demonstrate that the quasistatic recording of the magnetic excitation function M(H) of superparamagnetic iron oxide magnetic nanoparticle (SPION) suspensions by an atomic magnetometer allows a precise determination of the sample's iron mass content mFe and the particle size distribution.

  17. Ripening and Focusing of Aggregate Size Distributions with Overall Volume Growth

    Directory of Open Access Journals (Sweden)

    Jürgen eVollmer

    2014-04-01

    Full Text Available We explore the evolution of the aggregate size distribution in systems where aggregates grow by diffusive accretion of mass. Supersaturation is controlled in such a way that the overall aggregate volume grows linearly in time. Classical Ostwald ripening, which is recovered in the limit of vanishing overall growth, constitutes an unstable solution of the dynamics. In the presence of overall growth evaporation of aggregates always drives the dynamics into a new, qualitatively different growth regime where ripening ceases, and growth proceeds at a constant number density of aggregates. We provide a comprehensive description of the evolution of the aggregate size distribution in the constant density regime: the size distribution does not approach a universal shape, and even for moderate overall growth rates the standard deviation of the aggregate radius decays monotonically. The implications of this theory for the focusing of aggregate size distributions are discussed for a range of different settings including the growth of tiny rain droplets in clouds, as long as they do not yet feel gravity, and the synthesis of nano-particles and quantum dots.

  18. Grain size distribution and annual variation along the beaches from Poompuhar to Nagoor, Tamilnadu, India

    Digital Repository Service at National Institute of Oceanography (India)

    Chandrasekaran, R.; Angusamy, N.; Manickaraj, D.S.; Loveson, V.J.; Gujar, A.R.; Chandrasekar, N.; Rajamanickam, G.V.

    , G.M. (1967) Dynamic Processes and Statistical parameters compared for size frequency distribution of beach river sands. Jour. Sed. Petrol,V.37, pp.327-354. Rajamanickam, G.V. and Gujar, A.R. (1984) Sediment depositional environment in some...

  19. Fabrication of silver nanoparticles with limited size distribution on TiO2 containing zeolites.

    Science.gov (United States)

    Mazzocut, Andrea; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Sels, Bert; Hofkens, Johan; Vosch, Tom

    2014-09-21

    Here we present a simple route to produce well-defined photo-reduced silver nanoparticles on TiO2 containing zeolites. We used natural and artificial irradiation sources to study their effect on the particle size distribution. The samples were investigated by electron microscopy, X-ray diffraction, fluorescence microscopy and UV-Vis diffuse reflectance spectroscopy. PMID:25083739

  20. Direct correlation of diffusion and pore size distributions with low field NMR

    Science.gov (United States)

    Zhang, Yan; Xiao, Lizhi; Liao, Guangzhi; Song, Yi-Qiao

    2016-08-01

    The time-dependent diffusion coefficient (D) is a powerful tool to probe microstructure in porous media, and can be obtained by the NMR method. In a real porous sample, molecular diffusion is very complex. Here we present a new method which directly measures the relationship between effective diffusion coefficients and pore size distributions without knowing surface relaxivity. This method is used to extract structural information and explore the relationship between D and a in porous media having broad pore size distributions. The diffusion information is encoded by the Pulsed Field Gradient (PFG) method and the pore size distributions are acquired by the Decay due to Diffusion in the Internal Field (DDIF) method. Two model samples were measured to verify this method. Restricted diffusion was analyzed, and shows that most fluid molecules experience pore wall. The D(a) curves obtained from correlation maps were fitted to the Padé approximant equation and a good agreement was found between the fitting lines and the measured data. Then a sandstone sample with unknown structure was measured. The state of confined fluids was analyzed and structural information, such as pore size distributions, were extracted. The D - T1 correlation maps were also obtained using the same method, which yielded surface relaxivities for different samples. All the experiments were conducted on 2 MHz NMR equipment to obtain accurate diffusion information, where internal gradients can be neglected. This method is expected to have useful applications in the oil industry, particularly for NMR logging in the future.

  1. Particle-size distribution and packing fraction of geometric random packings

    NARCIS (Netherlands)

    Brouwers, H.J.H.

    2006-01-01

    This paper addresses the geometric random packing and void fraction of polydisperse particles. It is demonstrated that the bimodal packing can be transformed into a continuous particle-size distribution of the power law type. It follows that a maximum packing fraction of particles is obtained when t

  2. Prediction of Hydraulic Conductivity as Related to Pore Size Distribution in Unsaturated Soils

    Science.gov (United States)

    Soil pore volume as well as pore size, shape, type (i.e. biopore versus crack), continuity, and distribution in soil affect soil water and gas exchange. Vertical and lateral drainage of water by gravitational forces occurs through large, non-capillary soil pores, but redistribution and upward moveme...

  3. Permporometry study on the size distribution of active pores in porous ceramic membranes

    NARCIS (Netherlands)

    Cao, G.Z.; Meijerink, J.; Brinkman, H.W.; Burggraaf, A.J.

    1993-01-01

    Permporometry as well as nitrogen adsorption-desorption techniques have been applied to study the pore size distribution in γ-alumina membranes with a pore radius ranging from about 2 nm to 10 nm. The permporometry technique measures the active pores only, while nitrogen adsorption-desorption measur

  4. Multivariate models for prediction of rheological characteristics of filamentous fermentation broth from the size distribution

    DEFF Research Database (Denmark)

    Petersen, Nanna; Stocks, S.; Gernaey, Krist

    2008-01-01

    The main purpose of this article is to demonstrate that principal component analysis (PCA) and partial least squares regression (PLSR) can be used to extract information from particle size distribution data and predict rheological properties. Samples from commercially relevant Aspergillus oryzae...

  5. Measuring Particle Size Distribution using Laser Diffraction: Implications for Predicting Soil Hydraulic Properties

    Science.gov (United States)

    Methods to predict soil hydraulic properties frequently require information on the particle size distribution (PSD). The objectives of this study were to investigate various protocols for rapidly measuring PSD using the laser diffraction technique, compare the obtained PSDs with those determined usi...

  6. A stochastic model of range profiles of raindrop size distributions: application to radar attenuation correction

    NARCIS (Netherlands)

    Berne, A.D.; Uijlenhoet, R.

    2005-01-01

    To analyze the influence of the spatial variability of the raindrop size distribution (DSD) on rainfall estimation using weather radar, a stochastic model is proposed in order to simulate range profiles of DSDs and consequently profiles of rainfall intensity, radar reflectivity and specific attenuat

  7. Characterization of hollow fiber hemodialysis membranes: pore size distribution and performance

    NARCIS (Netherlands)

    Broek, Arnold P.; Teunis, Herman A.; Bargeman, Derk; Sprengers, Erik D.; Smolders, Cees A.

    1992-01-01

    The effect of two commonly used sterilization methods for artificial kidneys on the morphology and performance of hollow fiber Hemophan® hemodialysis membranes was studied. A relatively new membrane characterization method, thermoporometry, was used to determine the pore size distributions and poros

  8. Theory of vesicles and droplet type microemulsions : Configurational entropy, size distribution, and measurable properties

    NARCIS (Netherlands)

    Kegel, W.K.; Reiss, H.

    1996-01-01

    A model of vesicles and droplet type microemulsions is presented. It is shown that the size distribution of the droplets (either vesicles or microemulsions) coexisting with excess fluid is determined in general by only two terms : the free energy of the interface between the drops and the continuous

  9. Water-soluble organic carbon in urban aerosol: concentrations, size distributions and contribution to particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Timonen, H. J.; Saarikoski, S. K.; Aurela, M. A.; Saarnio, K. M.; Hillamo, R. E. (Finnish Meteorological Inst., Helsinki (Finland))

    2008-07-01

    The aim of this study was to characterize the concentrations and particle mass size distributions of water-soluble organic carbon (WSOC) in urban aerosols. The sample collection was carried out in spring 2006 at the SMEAR III station in Helsinki, Finland, by using a size-segregating method (MOUDI) and by collecting sub-micrometer fraction of aerosols on the filter. During the three-month measurement period, a major 12-day biomass burning pollution episode was observed. Concentrations of WSOC, organic carbon, monosaccharide anhydrides, inorganic ions and some organic acids (oxalic, succinic and malonic acid) were analyzed from the PM{sub 1} samples. The measured OC and WSOC concentrations varied in ranges 0.67-15.7 mug m-3 and 0.26-10.7 mug m3, respectively. The WSOC/OC concentration ratio was between 0.30 and 0.89 with an average of 0.54. Size distributions of WSOC, inorganic ions and total mass were determined from the MOUDI samples. WSOC had bimodal size distributions with a clear accumulation mode below 1 mum of particle aerodynamic diameter and minor coarse mode at sizes > 1 mum. (orig.)

  10. Vertical distribution of the prokaryotic cell size in the Mediterranean Sea

    Science.gov (United States)

    La Ferla, R.; Maimone, G.; Azzaro, M.; Conversano, F.; Brunet, C.; Cabral, A. S.; Paranhos, R.

    2012-12-01

    Distributions of prokaryotic cell size and morphology were studied in different areas of the Mediterranean Sea by using image analysis on samples collected from surface down to bathypelagic layers (max depth 4,900 m) in the Southern Tyrrhenian, Southern Adriatic and Eastern Mediterranean Seas. Distribution of cell size of prokaryotes in marine ecosystem is very often not considered, which makes our study first in the context of prokaryotic ecology. In the deep Mediterranean layers, an usually-not-considered form of carbon sequestration through prokaryotic cells has been highlighted, which is consistent with an increase in cell size with the depth of the water column. A wide range in prokaryotic cell volumes was observed (between 0.045 and 0.566 μm3). Increase in cell size with depth was opposed to cell abundance distribution. Our results from microscopic observations were confirmed by the increasing HNA/LNA ratio (HNA, cells with high nucleic acid content; LNA, cells with low nucleic acid content) along the water column. Implications of our results on the increasing cell size with depth are in the fact that the quantitative estimation of prokaryotic biomass changes along the water column and the amount of carbon sequestered in the deep biota is enhanced.

  11. Confronting AeroCom models with particle size distribution data from surface in situ stations

    Science.gov (United States)

    Platt, Stephen; Fiebig, Markus; Mann, Graham; Schulz, Michael

    2016-04-01

    The size distribution is the most important property for describing any interaction of an aerosol particle population with its surroundings. In first order, it determines both, the aerosol optical properties quantifying the direct aerosol climate effect, and the fraction of aerosol particles acting as cloud condensation nuclei quantifying the indirect aerosol climate effect. Aerosol schemes of modern climate models resolve the aerosol particle size distribution (APSD) explicitly. In improving the skill of climate models, it is therefore highly useful to confront these models with precision APSD data observed at surface stations. Corresponding previous work focussed on comparing size integrated, seasonal particle concentrations at selected sites with ensemble model averages to assess overall model skill. Building on this work, this project intends to refine the approach by comparing median particle size and integral concentration of fitted modal size distributions. It will also look at skill differences between models in order to find reasons for matches and discrepancies. The presentation will outline the project, and will elaborate on input requested from modelling groups to participate in the exercise.

  12. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tsakiris, N.; Gill-Comeau, M.; Lewis, L. J. [Département de Physique et Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7 (Canada); Anoop, K. K.; Ausanio, G.; Bruzzese, R.; Amoruso, S., E-mail: amoruso@na.infn.it [Dipartimento di Fisica, Università degli Studi di Napoli Federico II and CNR-SPIN, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy)

    2014-06-28

    We address the role of laser pulse fluence on expansion dynamics and size distribution of the nanoparticles produced by irradiating a metallic target with an ultrashort laser pulse in a vacuum, an issue for which contrasting indications are present in the literature. To this end, we have carried out a combined theoretical and experimental analysis of laser ablation of a bulk copper target with ≈50 fs, 800 nm pulses, in an interval of laser fluencies going from few to several times the ablation threshold. On one side, molecular dynamics simulations, with two-temperature model, describe the decomposition of the material through the analysis of the evolution of thermodynamic trajectories in the material phase diagram, and allow estimating the size distribution of the generated nano-aggregates. On the other side, atomic force microscopy of less than one layer nanoparticles deposits on witness plates, and fast imaging of the nanoparticles broadband optical emission provide the corresponding experimental characterization. Both experimental and numerical findings agree on a size distribution characterized by a significant fraction (≈90%) of small nanoparticles, and a residual part (≈10%) spanning over a rather large size interval, evidencing a weak dependence of the nanoparticles sizes on the laser pulse fluence. Numerical and experimental findings show a good degree of consistency, thus suggesting that modeling can realistically support the search for experimental methods leading to an improved control over the generation of nanoparticles by ultrashort laser ablation.

  13. Particle-size distribution of polybrominated diphenyl ethers (PBDEs) and its implications for health

    Science.gov (United States)

    Lyu, Y.; Xu, T.; Li, X.; Cheng, T.; Yang, X.; Sun, X.; Chen, J.

    2015-12-01

    In order better to understand the particle-size distribution of particulate PBDEs and their deposition pattern in human respiratory tract, we made an one year campaign 2012-2013 for the measurement of size-resolved aerosol particles at Shanghai urban site. The results showed that particulate PBDEs exhibited a bimodal distribution with a mode peak in the accumulation particle size range and the second mode peak in the coarse particle size ranges. As the number of bromine atoms in the molecule increased, accumulation mode peak intensity increased while coarse mode peak intensity decreased. This change was the consistent with the variation of PBDEs' sub-cooled vapor pressure. Absorption and adsorption process dominated the distribution of PBDEs among the different size particles. Evaluated deposition flux of Σ13PBDE was 26.8 pg h-1, in which coarse particles contributed most PBDEs in head and tracheobronchial regions, while fine mode particles contributed major PBDEs in the alveoli region. In associated with the fact that fine particles can penetrate deeper into the respiratory system, fine particle-bound highly brominated PBDEs can be inhaled more deeply into human lungs and cause a greater risk to human health.

  14. Size distribution of particle-associated polybrominated diphenyl ethers (PBDEs) and their implications for health

    Science.gov (United States)

    Lyu, Yan; Xu, Tingting; Li, Xiang; Cheng, Tiantao; Yang, Xin; Sun, Xiaomin; Chen, Jianmin

    2016-03-01

    In order to better understand the size distribution of particle-associated PBDEs and their deposition pattern in the human respiratory tract, we carried out a 1-year campaign during 2012-2013 for the measurement of size-resolved particles at the urban site of Shanghai. The results showed that particulate PBDEs exhibited a bimodal distribution with a mode peak in the accumulation particle size range and the second mode peak in the coarse particle size ranges. As the number of bromine atoms in the molecule increases, accumulation-mode peak intensity increased while coarse-mode peak intensity decreased. This change was consistent with the variation of PBDEs' subcooled vapor pressure. Absorption and adsorption processes dominated the distribution of PBDEs among the different size particles. The evaluated deposition flux of Σ13 PBDEs was 26.8 pg h-1, in which coarse particles contributed most PBDEs in head and tracheobronchial regions, while fine-mode particles contributed major PBDEs in the alveoli region. In association with the fact that fine particles can penetrate deeper into the respiratory system, fine-particle-bound highly brominated PBDEs can be inhaled more deeply into human lungs and cause a greater risk to human health.

  15. Dependence of Particle Size and Size Distribution on Mechanical Sensitivity and Thermal Stability of Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine

    Directory of Open Access Journals (Sweden)

    Xiaolan Song

    2009-01-01

    Full Text Available Two kinds of RDX samples, with broad and narrow particle size distribution, have been fabricated by wet riddling and solvent/non-solvent methods, respectively. By controlling the technical condition, the RDX powders with different particle sizes were obtained for each sample. All samples were characterised by laser granularity measurement and scanning electron microscope (SEM. Using mechanical sensitivity tests, slow cook-off test and differential scanning calorimetry (DSC, the mechanical safety and thermal stability of RDX samples, depending on the particle sizes and size distribution, were studied. Results indicated that, for each kind of RDX particles, the mechanical sensitivity and thermal stability of samples changed according to the particle size. However, although two samples had almost the same average particle size, their safety changed when two particle size distributions differed. Concretely, the mechanical sensitivity of RDX reduced and their thermal stability increased gradually along with the decreasing of particle size. Meanwhile, RDX with broad size distribution had higher mechanical sensitivity and thermal stability than samples with narrow size distribution.Defence Science Journal, 2009, 59(1, pp.37-42, DOI:http://dx.doi.org/10.14429/dsj.59.1482

  16. Market size, competition and the product mix of exporters

    OpenAIRE

    Mayer, Thierry; Melitz, Marc J.; Ottaviano, Gianmarco I. P.

    2010-01-01

    Recent empirical evidence has highlighted how the export patterns of multi-product firms dominate world trade flows, and how these multi-product firms respond to different economic conditions across export markets by varying the number of products they export. In this paper, we further analyze the effects of those export market conditions on the relative export sales of those goods: we refer to this as the firm's product mix choice. We build a theoretical model of multi-product firms that hig...

  17. The Distribution of Family Sizes Under a Time-Homogeneous Birth and Death Process.

    Science.gov (United States)

    Moschopoulos, Panagis; Shpak, Max

    2010-05-11

    The number of extant individuals within a lineage, as exemplified by counts of species numbers across genera in a higher taxonomic category, is known to be a highly skewed distribution. Because the sublineages (such as genera in a clade) themselves follow a random birth process, deriving the distribution of lineage sizes involves averaging the solutions to a birth and death process over the distribution of time intervals separating the origin of the lineages. In this article, we show that the resulting distributions can be represented by hypergeometric functions of the second kind. We also provide approximations of these distributions up to the second order, and compare these results to the asymptotic distributions and numerical approximations used in previous studies. For two limiting cases, one with a relatively high rate of lineage origin, one with a low rate, the cumulative probability densities and percentiles are compared to show that the approximations are robust over a wide range of parameters. It is proposed that the probability distributions of lineage size may have a number of relevant applications to biological problems such as the coalescence of genetic lineages and in predicting the number of species in living and extinct higher taxa, as these systems are special instances of the underlying process analyzed in this article. PMID:23543815

  18. Modal structure of chemical mass size distribution in the high Arctic aerosol

    Science.gov (United States)

    Hillamo, Risto; Kerminen, Veli-Matti; Aurela, Minna; MäKelä, Timo; Maenhaut, Willy; Leek, Caroline

    2001-11-01

    Chemical mass size distributions of aerosol particles were measured in the remote marine boundary layer over the central Arctic Ocean as part of the Atmospheric Research Program on the Arctic Ocean Expedition 1996 (AOE-96). An inertial impaction method was used to classify aerosol particles into different size classes for subsequent chemical analysis. The particle chemical composition was determined by ion chromatography and by the particle-induced X-ray emission technique. Continuous particle size spectra were extracted from the raw data using a data inversion method. Clear and varying modal structures for aerosols consisting of primary sea-salt particles or of secondary particles related to dimethyl sulfide emissions were found. Concentration levels of all modes decreased rapidly when the distance from open sea increased. In the submicrometer size range the major ions found by ion chromatography were sulfate, methane sulfonate, and ammonium. They had most of the time a clear Aitken mode and one or two accumulation modes, with aerodynamic mass median diameters around 0.1 μm, 0.3 μm, and between 0.5-1.0 μm, respectively. The overall submicron size distributions of these three ions were quite similar, suggesting that they were internally mixed over most of this size range. The corresponding modal structure was consistent with the mass size distributions derived from the particle number size distributions measured with a differential mobility particle sizer. The Aitken to accumulation mode mass ratio for nss-sulfate and MSA was substantially higher during clear skies than during cloudy periods. Primary sea-salt particles formed a mode with an aerodynamic mass median diameter around 2 μm. In general, the resulting continuous mass size distributions displayed a clear modal structure consistent with our understanding of the two known major source mechanisms. One is the sea-salt aerosol emerging from seawater by bubble bursting. The other is related to

  19. Evaluation and interpretation of bubble size distributions in pulsed megasonic fields

    Science.gov (United States)

    Hauptmann, M.; Struyf, H.; De Gendt, S.; Glorieux, C.; Brems, S.

    2013-05-01

    The occurrence of acoustic cavitation is incorporating a multitude of interdependent effects that strongly depend on the bubble size. Therefore, bubble size control would be beneficial for biological and industrial processes that rely on acoustic cavitation. A pulsed acoustic field can result in bubble size control and the repeated dissolution and reactivation ("recycling") of potentially active bubbles. As a consequence, a pulsed field can strongly enhance cavitation activity. In this paper, we present a modified methodology for the evaluation of the active bubble size distribution by means of a combination of cavitation noise measurements and ultrasonic pulsing. The key component of this modified methodology is the definition of an upper size limit, below which bubbles—in between subsequent pulses—have to dissolve, in order to be sustainably recycled. This upper limit makes it possible to explain and link the enhancement of cavitation activity to a bubble size distribution. The experimentally determined bubble size distributions for different power densities are interpreted in the frame of numerical calculations of the oscillatory responses of the bubbles to the intermittent driving sound field. The distributions are found to be shaped by the size dependent interplay between bubble pulsations, rectified diffusion, coalescence, and the development of parametrically amplified shape instabilities. Also, a phenomenological reactivation-deactivation model is proposed to explain and quantify the observed enhancement of cavitation activity under pulsed, with respect to continuous sonication. In this model, the pulse-duration determines the magnitude of the reactivation of partially dissolved bubbles and the deactivation of activated bubbles by coalescence. It is shown that the subsequent recycling of previously active bubbles leads to an accumulation of cavitation activity, which saturates after a certain number of pulses. The model is fitted to the experimental

  20. Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division

    Science.gov (United States)

    Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.

    2011-10-01

    Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.

  1. Hydrodynamic Properties of Fe3O4 Kerosene-Based Ferrofluids with Narrow Particle Size Distribution

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-Hui; XU Xue-Fei; SI Ming-Su; ZHOU You-He; XUE De-Sheng

    2005-01-01

    @@ We investigate the hydrodynamic properties of Fe3O4 kerosene-based ferrofluids with narrow particle size distri-bution. The ferrofluids are synthesized by improving chemical coprecipitation technique. A narrow distribution of 8.6-10.8nm particle sizes is obtained from the magnetization curve with the free-form model based on the Bayesian inference theory. The fitting result is consistent with average particle size obtained from x-ray diffraction. With the increase of applied magnetic field and magnetic particle concentration, apparent viscosity of ferrofluids increases. At concentration 4.04%, the type of flow for the ferrofluid transforms from Newtonian to Bingham plastic fluid as the applied magnetic field increases.

  2. Information Measure for Size Distribution of Avalanches in the Bak-Sneppen Evolution Model

    Science.gov (United States)

    Li, Wei; Cai, Xu

    2003-01-01

    Information of avalanche size distribution is measured by calculating information entropy (IE) in the Bak-Sneppen evolution model. It is found that the IE increases as the model evolves. Specifically, we establish the relation between the IE and the self-organized threshold fc. The variation of the IE near the critical point yields an exponent entropy index E = (tau-1)/sigma, where tau and sigma represent the critical exponents for avalanche size distribution and avalanche size cutoff, respectively. A new quantity Dtau(g) (g = 1-(fc-G)(tau-1)/sigma, where G is the gap of the current state), defined as 1-Itau(g)/Itau(1), with Itau(g) and Itau(1) being the IE for the current state and the critical one respectively, is suggested that it represents the distance between the state with gap G and the critical one.

  3. Variation of particle number concentration and size distributions at the urban environment in Vilnius (Lithuania)

    Science.gov (United States)

    Ulevicius, Vidmantas; Byčenkienë, Steigvilë; Plauškaitë, Kristina; Dudoitis, Vadimas

    2013-05-01

    This study presents results of research on urban aerosol particles with a focus on the particle size distribution and the aerosol particle number concentration (PNC). The real time measurements of the aerosol PNC in the size range of 9-840 nm were performed at the urban background site using a Condensed Particle Counter and Scanning Mobility Particle Sizer (SMPS). Strong diurnal patterns in aerosol PNC were evident as a direct effect of three sources of the aerosol particles (nucleation, traffic, and residential heating appliances). The traffic exhaust emissions were a major contributor of the pollution observed at the roadside site that was dominated by the nucleation mode particles, while particles formed due to the residential heating appliances and secondary formation processes contributed to the accumulation mode particles and could impact the variation of PNC and its size distribution during the same day.

  4. Size effects on void growth in single crystals with distributed voids

    DEFF Research Database (Denmark)

    Borg, Ulrik; Niordson, Christian Frithiof; Kysar, J.W.

    2008-01-01

    The effect of void size on void growth in single crystals with uniformly distributed cylindrical voids is studied numerically using a finite deformation strain gradient crystal plasticity theory with an intrinsic length parameter. A plane strain cell model is analyzed for a single crystal...... with three in-plane slip systems. It is observed that small voids allow much larger overall stress levels than larger voids for all the stress triaxialities considered. The amount of void growth is found to be suppressed for smaller voids at low stress triaxialities. Significant differences are observed...... in the distribution of slips and on the shape of the deformed voids for different void sizes. Furthermore, the orientation of the crystalline lattice is found to have a pronounced effect on the results, especially for the smaller void sizes....

  5. Grain-size related nitrogen distribution in southern Yellow Sea surface sediments

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Forty-eight surface sediments of the southern Yellow Sea are separated into three grain-size fractions. Four forms of extractable nitrogen (nitrogen in ion-exchangeable form (Nie), nitrogen in weak-acid extractable form (Nwa), nitrogen in strong-alkali extractable form (Nsa) and nitrogen in strong-oxidant form (Nso)) are obtained by the sequential extraction. The results show that the contents and the distributions of the extractable nitrogen in the southern Yellow Sea surface sediments are closely related to sediment grain size. The distributions of Nie, Nso and total nitrogen (TN) present positive correlations with fine particles content, while Nwa and Nsa does not have such correlation. The net contents of all the forms of nitrogen increase with sediment grain size finer.

  6. A uniform measurement expression for cross method comparison of nanoparticle aggregate size distributions

    DEFF Research Database (Denmark)

    Dudkiewicz, Agnieszka; Wagner, Stephan; Lehner, Angela;

    2015-01-01

    Available measurement methods for nanomaterials are based on very different measurement principles and hence produce different values when used on aggregated nanoparticle dispersions. This paper provides a solution for relating measurements of nanomaterials comprised of nanoparticle aggregates...... by increased retention of smaller nanomaterials (SEM). This study thereby presents a successful and conclusive cross-method comparison of size distribution measurements of aggregated nanomaterials. The authors recommend the uniform MED size expression for application in nanomaterial risk assessment studies...... determined by different techniques using a uniform expression of a mass equivalent diameter (MED). The obtained solution is used to transform into MED the size distributions of the same sample of synthetic amorphous silica (nanomaterial comprising aggregated nanoparticles) measured by six different...

  7. Strategies for Tailoring the Pore-Size Distribution of Virus Retention Filter Papers.

    Science.gov (United States)

    Gustafsson, Simon; Mihranyan, Albert

    2016-06-01

    The goal of this work is to demonstrate how the pore-size distribution of the nanocellulose-based virus-retentive filter can be tailored. The filter paper was produced using cellulose nanofibers derived from Cladophora sp. green algae using the hot-press drying at varying drying temperatures. The produced filters were characterized using scanning electron microscopy, atomic force microscopy, and N2 gas sorption analysis. Further, hydraulic permeability and retention efficiency toward surrogate 20 nm model particles (fluorescent carboxylate-modified polystyrene spheres) were assessed. It was shown that by controlling the rate of water evaporation during hot-press drying the pore-size distribution can be precisely tailored in the region between 10 and 25 nm. The mechanism of pore formation and critical parameters are discussed in detail. The results are highly valuable for development of advanced separation media, especially for virus-retentive size-exclusion filtration. PMID:27144657

  8. Algorithm of Data Reduce in Determination of Aerosol Particle Size Distribution at Damps/C

    International Nuclear Information System (INIS)

    The analysis had to do for algorithm of data reduction on Damps/C (Differential Mobility Particle Sizer with Condensation Particle Counter) system, this is for determine aerosol particle size distribution with range 0,01 μm to 1 μm in diameter. Damps/C (Differential Mobility Particle Sizer with Condensation Particle Counter) system contents are software and hardware. The hardware used determine of mobilities of aerosol particle and so the software used determine aerosol particle size distribution in diameter. The mobilities and diameter particle had connection in the electricity field. That is basic program for reduction of data and particle size conversion from particle mobility become particle diameter. The analysis to get transfer function value, Ω, is 0.5. The data reduction program to do conversation mobility basis become diameter basis with number efficiency correction, transfer function value, and poly charge particle. (author)

  9. Information Measure for Size Distribution of Avalanches in the Bak-Sneppen Evolution Model

    Institute of Scientific and Technical Information of China (English)

    LI Wei; CAI Xu

    2003-01-01

    Information of avalanche size distribution is measured by calculating information entropy (IE) in the Bak-Sneppen evolution model. It is found that the IE increases as the model evolves. Specifically, we establish the relation between the IE and the self-organized threshold fc ? The variation of the IE near the critical point yields an exponent entropy index E = (T - l)/size distribution and avalanche size cutoff, respectively. A new quantity DT(g) (g = 1 - (fc - G)'r-1' , where G is the gap of the current state), denned as 1 - IT(g)/IT(l), with IT(g) and /T(l) being the IE for the current state and the critical one respectively, is suggested that it represents the distance between the state with gap G and the critical one.

  10. Controlling Pore Size and its Distribution of γ-Al2O3 Nanofiltration Membranes

    Institute of Scientific and Technical Information of China (English)

    Rong Chun XIONG; Xiao Dong LEI; Gang WEI

    2003-01-01

    The preparation process of γ-Al2O3 nanofiltration membranes were studied by N2absorption and desorption test and retention rate vs thickness gradient curve method. It was foundthat template and thermal treatment were key factors for controlling pore size and its distribution.Under the optimized experimental conditions, the BJH (Barret-Joyner-Halenda) desorption averagepore diameter, BJH desorption cumulative volume of pores and BET (Brunauer-Emmett-Teller)surface area of obtained membranes were about 3.9 nm, 0.33 cm3/g and 245 m2/g respectively, thepore size distribution was very narrow. Pore size decreased with the increasing of thickness andno evident change after the dense top layer was formed. The optimum thickness can becontrolled by retention rate vs thickness gradient curve method.

  11. Explicit expressions of the Pietra index for the generalized function for the size distribution of income

    Science.gov (United States)

    Sarabia, José María; Jordá, Vanesa

    2014-12-01

    The importance of the Pietra index in socioeconomic systems and econophysics has been highlighted by Eliazar and Sokolov (2010). In this paper, we obtain closed expressions for the Pietra index for the generalized function for the size of income proposed by McDonald (1984). This family is composed of three classes of distributions: the generalized gamma distribution (GG), the generalized beta of the first kind (GB1) and the generalized beta of the second kind (GB2). For the different distributions, we obtain closed and simple expressions of the Pietra index, which can be easily computed. We also obtain the Pietra index for other relevant income models including finite mixtures of distributions and the κ-generalized distribution (Clementi et al., 2008). Finally, two empirical applications with real income data are given.

  12. Degree distribution of random birth-and-death network with network size decline

    Science.gov (United States)

    Xiao-Jun, Zhang; Hui-Lan, Yang

    2016-06-01

    In this paper, we provide a general method to obtain the exact solutions of the degree distributions for random birth-and-death network (RBDN) with network size decline. First, by stochastic process rules, the steady state transformation equations and steady state degree distribution equations are given in the case of m ≥ 3 and 0 process, in which computer simulation is used to verify our degree distribution solutions. In addition, the tail characteristics of the degree distribution are discussed. Our findings suggest that the degree distributions will exhibit Poisson tail property for the declining RBDN. Project supported by the National Natural Science Foundation of China (Grant No. 61273015) and the Chinese Scholarship Council.

  13. Size Distribution and Anisotropy of Self-assembled MnAs Nanoparticles in GaAs

    Science.gov (United States)

    Dipietro, Robert; Johnson, Hannah; Bennett, Steve; Nummy, Tom; Lewis, Laura; Heiman, Don

    2010-03-01

    The size distribution and anisotropy of composite films of MnAs nanoparticles in a GaAs matrix have been determined by thermomagnetic measurement and subsequently confirmed by electron microscopy studies. The composite was fabricated from a homogeneous Ga0.9Mn0.1As film grown by MBE and annealed at 520-570 C to produce superparamagnetic particles of diameter 10-50 nm. Magnetization measurements show a peak in the temperature-dependent zero field cooling (ZFC) moment, mZFC(T), near the system blocking temperature TB. The distribution in TB was first obtained from f(TB) d/dT [T.mZFC(T)], derived assuming that the moment of a particle below its blocking temperature is zero and varies as 1/T above the blocking temperature. The distribution in particle diameter f(D) was obtained using the usual relation between blocking temperature and particle volume, KeffV/kBTB=25, where Keff is the effective MnAs anisotropy constant. A value for the anisotropy constant was obtained by comparing the thermomagnetic f(D) with the size distribution obtained visually from SEM micrographs, where =12 nm and width δD=7nm for a 50-nm-thick film. The visual and thermomagnetic size distribution functions are found to be nearly identical using Keff=160,000 erg/cm^3. Work supported by NSF DMR-097007.

  14. Size distributions and source function of sea spray aerosol over the South China Sea

    Science.gov (United States)

    Chu, Yingjia; Sheng, Lifang; Liu, Qian; Zhao, Dongliang; Jia, Nan; Kong, Yawen

    2016-08-01

    The number concentrations in the radius range of 0.06-5 μm of aerosol particles and meteorological parameters were measured on board during a cruise in the South China Sea from August 25 to October 12, 2012. Effective fluxes in the reference height of 10 m were estimated by steady state dry deposition method based on the observed data, and the influences of different air masses on flux were discussed in this paper. The number size distribution was characterized by a bimodal mode, with the average total number concentration of (1.50 ± 0.76)×103 cm-3. The two mode radii were 0.099 µm and 0.886 µm, both of which were within the scope of accumulation mode. A typical daily average size distribution was compared with that measured in the Bay of Bengal. In the whole radius range, the number concentrations were in agreement with each other; the modes were more distinct in this study than that abtained in the Bay of Bengal. The size distribution of the fluxes was fitted with the sum of log-normal and power-law distribution. The impact of different air masses was mainly on flux magnitude, rather than the shape of spectral distribution. A semiempirical source function that is applicable in the radius range of 0.06 µm< r 80<0.3 µm with the wind speed varying from 1.00 m s-1 to 10.00 m s-1 was derived.

  15. Direct correlation of internal gradients and pore size distributions with low field NMR

    Science.gov (United States)

    Zhang, Yan; Xiao, Lizhi; Liao, Guangzhi; Blümich, Bernhard

    2016-06-01

    Internal magnetic field gradients Gint, which arise from the magnetic susceptibility difference Δχ between solid matrix and fluid in porous media relate to the pore geometry. However, this relationship is complex and not well understood. Here we correlate internal-gradient distributions to pore-size distributions directly to examine internal gradients in detail at low field NMR. The pore-size distributions were obtained by the method of Decay due to Diffusion in the Internal Field (DDIF), and the internal-gradient distributions were measured with the Carr-Purcell-Meiboom-Gill (CPMG) method. The internal-gradient-pore-size distributions correlation maps were obtained for water in packs of glass beads with different diameter and in a sandstone sample. The relationship between internal gradients and pore structure is analyzed in detail by considering the restricted diffusion of fluids in porous samples. For each case diffusion regimes are assigned by plotting normalized CPMG data and comparing the diffusion lengths, the dephasing lengths and pore diameters. In the free-diffusion limit, the correlation maps reveal the true relationship between pore structure and internal gradients so that Δχ can be approximated from the correlation maps. This limit is met most easily at low field. It provides information about porous media, which is expected to benefit the oil industry, in particular NMR well logging.

  16. Empirical Analysis on Factors Influencing Distribution of Vegetal Production

    Institute of Scientific and Technical Information of China (English)

    Wenjie; WU

    2015-01-01

    Since the reform and opening-up,there has been a great change in spatial pattern of China’s vegetable production. This paper studied vegetable production in provinces of China in 1978- 2013. From the sequential characteristics,China’s vegetable production area is constantly growing and takes on stage characteristic. From the spatial distribution,China’s vegetable production takes on the trend of " going down the south" and " marching the west". In order to grasp rules of changes of vegetable production and the influence factors,this paper made theoretical and empirical analysis on factors possibly influencing distribution of vegetable production. Results show that major factors influencing distribution of China’s vegetable production include irrigation condition,non-agricultural employment,market demand,knowledge spillover,comparative effectiveness,rural road and government policies.

  17. Lot Sizing at the Operational Planning and Shop Floor Scheduling Levels of the Decision Hierarchy of Various Production Systems

    OpenAIRE

    Chen, Ming

    2007-01-01

    The research work presented in this dissertation relates to lot sizing and its applications in the areas of operational planning and shop floor scheduling and control. Lot sizing enables a proper loading of requisite number of jobs on the machines in order to optimize the performance of an underlying production system. We address lot sizing problems that are encountered at the order entry level as well as those that are faced at the time of distributing the jobs from one machine to another an...

  18. Relationships between annual plant productivity, nitrogen deposition and fire size in low-elevation California desert scrub

    Science.gov (United States)

    Rao, Leela E.; Matchett, John R.; Brooks, Matthew L.; Johns, Robert; Minnich, Richard A.; Allen, Edith B.

    2014-01-01

    Although precipitation is correlated with fire size in desert ecosystems and is typically used as an indirect surrogate for fine fuel load, a direct link between fine fuel biomass and fire size has not been established. In addition, nitrogen (N) deposition can affect fire risk through its fertilisation effect on fine fuel production. In this study, we examine the relationships between fire size and precipitation, N deposition and biomass with emphasis on identifying biomass and N deposition thresholds associated with fire spreading across the landscape. We used a 28-year fire record of 582 burns from low-elevation desert scrub to evaluate the relationship of precipitation, N deposition and biomass with the distribution of fire sizes using quantile regression. We found that models using annual biomass have similar predictive ability to those using precipitation and N deposition at the lower to intermediate portions of the fire size distribution. No distinct biomass threshold was found, although within the 99th percentile of the distribution fire size increased with greater than 125 g m–2 of winter fine fuel production. The study did not produce an N deposition threshold, but did validate the value of 125 g m–2 of fine fuel for spread of fires.

  19. Intra-community spatial variability of particulate matter size distributions in southern California/Los Angeles

    Directory of Open Access Journals (Sweden)

    M. Krudysz

    2008-05-01

    Full Text Available Ultrafine particle (UFP number concentrations vary significantly on small spatial and temporal scales due to their short atmospheric lifetimes and multiplicity of sources. To determine UFP exposure gradients within a community, simultaneous particle number concentration measurements at a network of sites are necessary. Concurrent particle size distribution measurements aid in identifying UFP sources, while providing data to investigate local scale effects of both photochemical and physical processes on UFP. From April to December 2007, we monitored particle size distributions at 13 sites within 350 m to 11 km of each other in the vicinity of the Ports of Los Angeles and Long Beach using Scanning Mobility Particle Sizers (SMPS. Typically, three SMPS units were simultaneously deployed and rotated among sites at 1–2 week intervals. Total particle number concentration measurements were conducted continuously at all sites. Seasonal and diurnal size distribution patterns are complex, highly dependent on local meteorology, nearby PM sources, and times of day, and cannot be generalized over the study area nor inferred from one or two sampling locations. Spatial variation in particle number size distributions was assessed by calculating the coefficient of divergence (COD and correlation coefficients (r between site pairs. Results show an overall inverse relationship between particle size and CODs, implying that number concentrations of smaller particles (<40 nm differ from site to site, whereas larger particles tend to have similar concentrations at various sampling locations. In addition, variations in r values as a function of particle size are not necessarily consistent with corresponding COD values, indicating that using results from correlation analysis alone may not accurately assess spatial variability.

  20. Seasonal cycle and modal structure of particle number size distribution at Dome C, Antarctica

    Directory of Open Access Journals (Sweden)

    E. Järvinen

    2013-08-01

    Full Text Available We studied new particle formation and modal behavior of ultrafine aerosol particles on the high East Antarctic plateau at the Concordia station, Dome C (75°06' S, 123°23' E. Aerosol particle number size distributions were measured in the size range 10–600 nm from 14 December 2007 to 7 November 2009. We used an automatic algorithm for fitting up to three modes to the size distribution data. The total particle number concentration was low with the median of 109 cm−3. There was a clear seasonal cycle in the total particle number and the volume concentrations. The concentrations were at their highest during the austral summer with the median values of 260 cm−3 and 0.086 μm3 cm−3, and at their lowest during the austral winter with corresponding values of 15 cm−3 and 0.009 μm3 cm−3. New particle formation events were determined from the size distribution data. During the measurement period, natural new particle formation was observed on 60 days and for 15 of these days the particle growth rates from 10 to 25 nm in size could be determined. The median particle growth rate during all these events was 2.5 nm h−1 and the median formation rate of 10 nm particles was 0.023 cm−3 s−1. Most of the events were similar to those observed at other continental locations, yet also some variability in event types was observed. Exceptional features in Dome C were the winter events that occurred during dark periods, as well as the events for which the growth could be followed during several consecutive days. We called these latter events slowly growing events. This paper is the first one to analyze long-term size distribution data from Dome C, and also the first paper to show that new particle formation events occur in central Antarctica.

  1. Andean Condor (Vultur gryphus) in Ecuador: Geographic Distribution, Population Size and Extinction Risk.

    Science.gov (United States)

    Naveda-Rodríguez, Adrián; Vargas, Félix Hernán; Kohn, Sebastián; Zapata-Ríos, Galo

    2016-01-01

    The Andean Condor (Vultur gryphus) in Ecuador is classified as Critically Endangered. Before 2015, standardized and systematic estimates of geographic distribution, population size and structure were not available for this species, hampering the assessment of its current status and hindering the design and implementation of effective conservation actions. In this study, we performed the first quantitative assessment of geographic distribution, population size and population viability of Andean Condor in Ecuador. We used a methodological approach that included an ecological niche model to study geographic distribution, a simultaneous survey of 70 roosting sites to estimate population size and a population viability analysis (PVA) for the next 100 years. Geographic distribution in the form of extent of occurrence was 49 725 km2. During a two-day census, 93 Andean Condors were recorded and a population of 94 to 102 individuals was estimated. In this population, adult-to-immature ratio was 1:0.5. In the modeled PVA scenarios, the probability of extinction, mean time to extinction and minimum population size varied from zero to 100%, 63 years and 193 individuals, respectively. Habitat loss is the greatest threat to the conservation of Andean Condor populations in Ecuador. Population size reduction in scenarios that included habitat loss began within the first 15 years of this threat. Population reinforcement had no effects on the recovery of Andean Condor populations given the current status of the species in Ecuador. The population size estimate presented in this study is the lower than those reported previously in other countries where the species occur. The inferences derived from the population viability analysis have implications for Condor management in Ecuador. This study highlights the need to redirect efforts from captive breeding and population reinforcement to habitat conservation.

  2. Andean Condor (Vultur gryphus) in Ecuador: Geographic Distribution, Population Size and Extinction Risk.

    Science.gov (United States)

    Naveda-Rodríguez, Adrián; Vargas, Félix Hernán; Kohn, Sebastián; Zapata-Ríos, Galo

    2016-01-01

    The Andean Condor (Vultur gryphus) in Ecuador is classified as Critically Endangered. Before 2015, standardized and systematic estimates of geographic distribution, population size and structure were not available for this species, hampering the assessment of its current status and hindering the design and implementation of effective conservation actions. In this study, we performed the first quantitative assessment of geographic distribution, population size and population viability of Andean Condor in Ecuador. We used a methodological approach that included an ecological niche model to study geographic distribution, a simultaneous survey of 70 roosting sites to estimate population size and a population viability analysis (PVA) for the next 100 years. Geographic distribution in the form of extent of occurrence was 49 725 km2. During a two-day census, 93 Andean Condors were recorded and a population of 94 to 102 individuals was estimated. In this population, adult-to-immature ratio was 1:0.5. In the modeled PVA scenarios, the probability of extinction, mean time to extinction and minimum population size varied from zero to 100%, 63 years and 193 individuals, respectively. Habitat loss is the greatest threat to the conservation of Andean Condor populations in Ecuador. Population size reduction in scenarios that included habitat loss began within the first 15 years of this threat. Population reinforcement had no effects on the recovery of Andean Condor populations given the current status of the species in Ecuador. The population size estimate presented in this study is the lower than those reported previously in other countries where the species occur. The inferences derived from the population viability analysis have implications for Condor management in Ecuador. This study highlights the need to redirect efforts from captive breeding and population reinforcement to habitat conservation. PMID:26986004

  3. Andean Condor (Vultur gryphus in Ecuador: Geographic Distribution, Population Size and Extinction Risk.

    Directory of Open Access Journals (Sweden)

    Adrián Naveda-Rodríguez

    Full Text Available The Andean Condor (Vultur gryphus in Ecuador is classified as Critically Endangered. Before 2015, standardized and systematic estimates of geographic distribution, population size and structure were not available for this species, hampering the assessment of its current status and hindering the design and implementation of effective conservation actions. In this study, we performed the first quantitative assessment of geographic distribution, population size and population viability of Andean Condor in Ecuador. We used a methodological approach that included an ecological niche model to study geographic distribution, a simultaneous survey of 70 roosting sites to estimate population size and a population viability analysis (PVA for the next 100 years. Geographic distribution in the form of extent of occurrence was 49 725 km2. During a two-day census, 93 Andean Condors were recorded and a population of 94 to 102 individuals was estimated. In this population, adult-to-immature ratio was 1:0.5. In the modeled PVA scenarios, the probability of extinction, mean time to extinction and minimum population size varied from zero to 100%, 63 years and 193 individuals, respectively. Habitat loss is the greatest threat to the conservation of Andean Condor populations in Ecuador. Population size reduction in scenarios that included habitat loss began within the first 15 years of this threat. Population reinforcement had no effects on the recovery of Andean Condor populations given the current status of the species in Ecuador. The population size estimate presented in this study is the lower than those reported previously in other countries where the species occur. The inferences derived from the population viability analysis have implications for Condor management in Ecuador. This study highlights the need to redirect efforts from captive breeding and population reinforcement to habitat conservation.

  4. Andean Condor (Vultur gryphus) in Ecuador: Geographic Distribution, Population Size and Extinction Risk

    Science.gov (United States)

    Naveda-Rodríguez, Adrián; Vargas, Félix Hernán; Kohn, Sebastián; Zapata-Ríos, Galo

    2016-01-01

    The Andean Condor (Vultur gryphus) in Ecuador is classified as Critically Endangered. Before 2015, standardized and systematic estimates of geographic distribution, population size and structure were not available for this species, hampering the assessment of its current status and hindering the design and implementation of effective conservation actions. In this study, we performed the first quantitative assessment of geographic distribution, population size and population viability of Andean Condor in Ecuador. We used a methodological approach that included an ecological niche model to study geographic distribution, a simultaneous survey of 70 roosting sites to estimate population size and a population viability analysis (PVA) for the next 100 years. Geographic distribution in the form of extent of occurrence was 49 725 km2. During a two-day census, 93 Andean Condors were recorded and a population of 94 to 102 individuals was estimated. In this population, adult-to-immature ratio was 1:0.5. In the modeled PVA scenarios, the probability of extinction, mean time to extinction and minimum population size varied from zero to 100%, 63 years and 193 individuals, respectively. Habitat loss is the greatest threat to the conservation of Andean Condor populations in Ecuador. Population size reduction in scenarios that included habitat loss began within the first 15 years of this threat. Population reinforcement had no effects on the recovery of Andean Condor populations given the current status of the species in Ecuador. The population size estimate presented in this study is the lower than those reported previously in other countries where the species occur. The inferences derived from the population viability analysis have implications for Condor management in Ecuador. This study highlights the need to redirect efforts from captive breeding and population reinforcement to habitat conservation. PMID:26986004

  5. Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres.

    Science.gov (United States)

    Berkland, Cory; Kipper, Matt J; Narasimhan, Balaji; Kim, Kyekyoon Kevin; Pack, Daniel W

    2004-01-01

    A thorough understanding of the factors affecting drug release mechanisms from surface-erodible polymer devices is critical to the design of optimal delivery systems. Poly(sebacic anhydride) (PSA) microspheres were loaded with three model drug compounds (rhodamine B, p-nitroaniline and piroxicam) with a range of polarities (water solubilities). The drug release profiles from monodisperse particles of three different sizes were compared to release from polydisperse microspheres. Each of the model drugs exhibited different release mechanisms. Drug distribution within the polymer was investigated by laser scanning confocal microscopy and scanning electron microscopy. Rhodamine, the most hydrophilic compound investigated, was localized strongly toward the microsphere surface, while the much more hydrophobic compound, piroxicam, distributed more evenly. Furthermore, all three compounds were most uniformly distributed in the smallest microspheres, most likely due to the competing effects of drug diffusion out of the nascent polymer droplets and the precipitation of polymer upon solvent extraction, which effectively "traps" the drug in the polymer matrix. The differing drug distributions were manifested in the drug release profiles. Rhodamine was released very quickly independent of microsphere size. Thus, extended release profiles may not be obtainable if the drug strongly redistributes in the microspheres. The release of p-nitroaniline was more prolonged, but still showed little dependence on microsphere size. Hence, when water-soluble drugs are encapsulated with hydrophobic polymers, it may be difficult to tailor release profiles by controlling microsphere size. The piroxicam-loaded microspheres exhibit the most interesting release profiles, showing that release duration can be increased by decreasing microsphere size, resulting in a more uniform drug distribution. PMID:14684277

  6. Effects of target size on the comparison of photon and charged particle dose distributions

    International Nuclear Information System (INIS)

    The work presented here is part of an ongoing project to quantify and evaluate the differences in the use of different radiation types and irradiation geometries in radiosurgery. We are examining dose distributions for photons using the ''Gamma Knife'' and the linear accelerator arc methods, as well as different species of charged particles from protons to neon ions. A number of different factors need to be studied to accurately compare the different modalities such as target size, shape and location, the irradiation geometry, and biological response. This presentation focuses on target size, which has a large effect on the dose distributions in normal tissue surrounding the lesion. This work concentrates on dose distributions found in radiosurgery, as opposed to those usually found in radiotherapy. 5 refs., 2 figs

  7. A collaborative ant colony metaheuristic for distributed multi-level lot-sizing

    CERN Document Server

    Buer, Tobias; Gehring, Hermann

    2012-01-01

    The paper presents an ant colony optimization metaheuristic for collaborative planning. Collaborative planning is used to coordinate individual plans of self-interested decision makers with private information in order to increase the overall benefit of the coalition. The method consists of a new search graph based on encoded solutions. Distributed and private information is integrated via voting mechanisms and via a simple but effective collaborative local search procedure. The approach is applied to a distributed variant of the multi-level lot-sizing problem and evaluated by means of 352 benchmark instances from the literature. The proposed approach clearly outperforms existing approaches on the sets of medium and large sized instances. While the best method in the literature so far achieves an average deviation from the best known non-distributed solutions of 46 percent for the set of the largest instances, for example, the presented approach reduces the average deviation to only 5 percent.

  8. Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation

    KAUST Repository

    Carney, Randy P.

    2011-06-07

    Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation allow for the extraction of the sedimentation (s) and diffusion coefficients (D). Here we report an approach to transform the s and D distributions of nanoparticles in solution into precise molecular weight (M), density (?P) and particle diameter (dp) distributions. M for mixtures of discrete nanocrystals is found within 4% of the known quantities. The accuracy and the density information we achieve on nanoparticles are unparalleled. A single experimental run is sufficient for full nanoparticle characterization, without the need for standards or other auxiliary measurements. We believe that our method is of general applicability and we discuss its limitations. 2011 Macmillan Publishers Limited. All rights reserved.

  9. Location and Size of Distributed Generation Using a Modified Water Cycle Algorithm

    Directory of Open Access Journals (Sweden)

    John Edwin Candelo Becerra

    2015-06-01

    Full Text Available This paper presents a modified water cycle algorithm (WCA adapted to the problem of finding the location and size of distributed generation (DG. Power losses minimization was used as an objective function to compare the proposed algorithm with particle swarm optimization (PSO, the batinspired Algorithm (BA, and harmony search (HS. The test scenarios consisted of locating five to seven generators with a maximum real and reactive power in the 33-node and 69-node radial distribution networks. The experiment was designed to start iterations from the same initial population to identify the algorithms’ performance when searching for the best solutions. The results demonstrate that the modified WCA found the minimum power losses after locating and sizing distributed generators for most of the test scenarios. The algorithm converged quickly to the best solution and the solutions for all repetitions tested were close to the best for each case simulated.

  10. Theoretical size distribution of fossil taxa: analysis of a null model

    Directory of Open Access Journals (Sweden)

    Hughes Barry D

    2007-03-01

    Full Text Available Abstract Background This article deals with the theoretical size distribution (of number of sub-taxa of a fossil taxon arising from a simple null model of macroevolution. Model New species arise through speciations occurring independently and at random at a fixed probability rate, while extinctions either occur independently and at random (background extinctions or cataclysmically. In addition new genera are assumed to arise through speciations of a very radical nature, again assumed to occur independently and at random at a fixed probability rate. Conclusion The size distributions of the pioneering genus (following a cataclysm and of derived genera are determined. Also the distribution of the number of genera is considered along with a comparison of the probability of a monospecific genus with that of a monogeneric family.

  11. Effect of ship structure and size on grounding and collision damage distributions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    2000-01-01

    of the ship have the same probability density distributions regardless of a particular structural design and ship size.The present paper explores analytical methods for assessing the overall effect of structural design on the damage distributions in accidental grounding and collisions. The results...... are expressed in simple expressions involving structural dimensions and the building material of the ships. The study shows that the density distribution for collision and grounding damages normalized by the main dimensions of the ship depends on the size of the ship. A larger ship has a higher probability......It has been argued that a major shortcoming in the International Maritime Organization (IMO) Interim Guidelines for Approval of Alternative Methods of Design and Construction of Oil Tankers in Collision and Grounding is that grounding and collision damages normalized by the main dimensions...

  12. Micro-Sized Particle Production of Momordicas sp Extract Using Spray Dryer

    Directory of Open Access Journals (Sweden)

    Maizirwan Mel

    2011-12-01

    Full Text Available Spray drying is the most widely used industrial process involving particle formation and drying. It is highly suited for the continuous production of dry solids in either powder, granulate or agglomerate form from liquid feed-stocks as solutions, emulsions and pump able suspensions. Therefore, spray drying is an ideal process where the end-product must comply with precise quality standards regarding particle size distribution, residual moisture content, bulk density, and particle shape. In this study, Momordica sp extract product has been successfully spray dried into micro scale of powder particle and will be used as plant-based insulin. The process optimized using Taguchi method with four factors and three levels has given a good quality of the product. The average of particle size was obtained at about 11 microns.ABSTRAK: Kering sembur digunakan secara meluas dalam proses industri yang melibatkan pembentukan zarah dan pengeringan. Ia amat sesuai dalam penghasilan pepejal kering secara beterusan dalam bentuk serbuk, butiran atau gumpalan daripada simpanan suapan bendalir sebagai larutan, emulsi dan ampaian boleh dipam. Maka, kering sembur adalah proses yang ideal apabila hasil akhir harus mematuhi piawaian kualiti yang tepat berkaitan dengan pengagihan saiz zarah, kandungan kelengsaan sisa, ketumpatan pukal dan bentuk zarah. Dalam kajian ini, produk ekstrak Momordica sp (dikenali juga sebagai peria katak telah berjaya dikering sembur menjadi serbuk zarah berskala mikro dan akan digunakan sebagai insulin berasaskan tumbuhan. Proses ini dioptimumkan dengan pengunaan kaedah Taguchi empat faktor dan tiga peringkat, agar memberikan hasil produk yang berkualiti. Kadar purata saiz zarah yang terhasil adalah lebih kurang 11 mikron.KEY WORDS: micro-sized, particle, Momordica sp, spray dryer.

  13. Tailoring the size and distribution of Ag nanoparticles in silica glass by defects

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yitao, E-mail: yangyt@impcas.ac.cn [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, Chonghong; Song, Yin; Gou, Jie; Zhang, Liqing [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, Hengqing; Liu, Juan; Xian, Yongqiang [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Yizhun [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-02-15

    The composites embedded with metallic nanoparticles show large nonlinear optical susceptibility and strong surface plasmon resonance absorption, which enable potential application in opto-electronics. Ion implantation has been proven to be a powerful technique of synthesis of metallic nanoparticles due to its versatility and compatibility. However, the synthesis of nanoparticles by ion implantation inevitably leads to a broad size distribution due to Ostwald ripening process. The broad size distribution has a negative effect on improving the figure of merits for nonlinear optics. In this paper, we tried to introduce defects in silica glass to act as pre-nucleation centers to mediate the size and distribution of Ag nanoparticles. In experiment, the silica glass samples were pre-irradiated by 200 keV Ar ions to fluences of 0.8, 2.0 and 5.0 × 10{sup 16} ions/cm{sup 2}, and then 200 keV Ag ions were implanted into the pre-irradiated samples to fluence of 2.0 × 10{sup 16} ions/cm{sup 2}. UV–VIS results show that the absorbance intensity of Ag SPR peak initially increases and then decreases with pre-irradiation fluence, which implies the change in size and density of Ag nanoparticles in samples. TEM results verify that Ag nanoparticles in the sample pre-irradiated to the fluence of 0.8 × 10{sup 16} ions/cm{sup 2} grow bigger and distribute in a relatively narrow region comparing with that without pre-irradiation. With further increase of pre-irradiation fluence, the size of Ag nanoparticles shows a depth dependent distribution. A boundary can be clear seen at the depth of 110 nm, larger Ag nanoparticles disperse in region shallower than 110 nm, and smaller Ag nanoparticles disperse in the region deeper than 110 nm. The average size of Ag nanoparticles initially increases and then decreases with pre-irradiation fluence. Therefore, the introduction of defects by pre-irradiation could be an effective way to tailor the size and distribution of metallic nanoparticles in

  14. Size distribution of planktonic autotrophy and microheterotrophy in DeGray Reservoir, Arkansas

    International Nuclear Information System (INIS)

    Naturally occurring assemblages of phytoplankton and bacterioplankton were radiolabelled with sodium 14C-bicarbonate and sodium 3H-acetate and size fractionated to determine the size structure of planktonic autotrophy and microheterotrophy in DeGray Reservoir, an oligotrophic impoundment of the Caddo River in south-central Arkansas. Size distributions of autotrophy and microheterotrophy were remarkably uniform seasonally, vertically within the water column, and along the longitudinal axis of the reservoir despite significant changes in environmental conditions. Planktonic autotrophy was dominated by small algal cells with usually >50% of the photosynthetic carbon uptake accounted for by organisms 75% of the planktonic microheterotrophy. Longitudinal patterns in autotrophic and microheterotrophic activities associated with >3-μm and >1-μm size fractions, respectively, suggest an uplake to downlake shift from riverine to lacustrine environmental influences within the reservoir. 83 references, 7 figures

  15. Pore size distribution, strength, and microstructure of portland cement paste containing metal hydroxide waste

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Z.A.; Mahmud, H.; Shaaban, M.G.

    1996-12-31

    Stabilization/solidification of hazardous wastes is used to convert hazardous metal hydroxide waste sludge into a solid mass with better handling properties. This study investigated the pore size development of ordinary portland cement pastes containing metal hydroxide waste sludge and rice husk ash using mercury intrusion porosimetry. The effects of acre and the addition of rice husk ash on pore size development and strength were studied. It was found that the pore structures of mixes changed significantly with curing acre. The pore size shifted from 1,204 to 324 {angstrom} for 3-day old cement paste, and from 956 to 263 {angstrom} for a 7-day old sample. A reduction in pore size distribution for different curing ages was also observed in the other mixtures. From this limited study, no conclusion could be made as to any correlation between strength development and porosity. 10 refs., 6 figs., 3 tabs.

  16. Mass distribution of products of cluster impacts

    International Nuclear Information System (INIS)

    Mass distributions of ionic atomic and molecular fragments sputtered from carbon surfaces by singly charged positive cluster ions containing 80 water molecules have been determined. With cluster kinetic energy of 240 keV significant yields of molecular fragments containing up to 21 carbon atoms were observed. Ion yields were used to estimate relative yields of neutral fragments with the assumption that relative yields of the respective ionic and neutral sputtering processes were determined by kinetic factors which could be evaluated independently. The derived neutral yields were then used to estimate the fraction of total projectile energy utilized in evaporative cooling, i.e., sputtering. The results indicate a major fraction of the energy available is used in the cluster sputtering process. 9 refs., 1 tab

  17. Determination of the particle size distribution in a powder using radiotracers

    International Nuclear Information System (INIS)

    To determine experimentally the particle size distribution in a powder the meshed method is generally used. This method has the disadvantage that in the obtained distribution is not observed at detail the fine structure of such distribution. In this work, a method for obtaining the distribution of particle size using radiotracers is presented. In the obtained distribution by this method it is observed with more detail the fine structure of the distribution, comparing with the obtained results by the classical method of meshed. The radiotracer method has major resolution for the experimental determination mentioned. In the chapter 1, it is done a brief analysis about theoretical aspects related with the method. In the first part it is analysed the particle behavior (sedimenting) in a fluid. The second part treats the relating with the radioactivity of an activated material as well as its detection. In the chapter 2, a description of the method is done also the experimental problems to applying to the alumina crystals sample are discussed. In the chapter 3 the obtained results and the mistake calculations in such results are showed. Finally, in the chapter 4 the conclusions and recommendations are given which is possible to obtain better results and improve to those in this work were obtained. (Author)

  18. Lot-sizing for inventory systems with product recovery

    NARCIS (Netherlands)

    R.H. Teunter (Ruud)

    2003-01-01

    textabstractWe study inventory systems with product recovery. Recovered items are as-good-as-new and satisfy the same demands as new items. The demand rate and return fraction are deterministic. The relevant costs are those for ordering recovery lots, for ordering production lots, for holding recove

  19. Controlling the size distribution of lipid-coated bubbles via fluidity regulation.

    Science.gov (United States)

    Wang, Chung-Hsin; Yeh, Chih-Kuang

    2013-05-01

    Lipid-coated bubbles exhibit oscillation responses capable of enhancing the sensitivity of ultrasound imaging by improving contrast. Further improvements in performance enhancement require control of the size distribution of bubbles to promote correspondence between their resonance frequency and the frequency of the ultrasound. Here we describe a size-controlling technique that can shift the size distribution using a currently available agitation method. This technique is based on regulating the membrane dynamic fluidity of lipid mixtures and provides a general size-controlling variable that could also be applied in other fabrication methods. Three materials (1,2-dihexadecanoyl-sn-glycero-3-phosphocholine, 1,2-dioctadecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) and polyethylene glycol 40 stearate) with distinct initial fluidities and phase behaviors were used to demonstrate the use of fluidity regulation to control bubble sizes. Bubble size distributions of different formulations were determined by electrical impedance sensing, and bubble volumes and surface areas were calculated. To confirm the relationship between regulated fluidity and mean bubble size, the membrane fluidity of each composition was determined by fluorescence anisotropy, with the results indicating linear relations in the compositions with similar main transition temperatures. Compositions with a higher molar proportion of polyethylene glycol 40 stearate showed higher fluidities and larger bubbles. B-mode ultrasound imaging was performed to investigate the echogenicity and lifetime of the fabricated bubbles, with the results indicating that co-mixing a high-transition-temperature charged lipid (i.e., 1,2-dioctadecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol)) extends the tailoring range of this fluidity regulation technique, allowing refined and continuous changes in mean bubble size (from 0.93 to 2.86 μm in steps of ∼0.5 μm), and also prolongs bubble lifetime. The polydispersity of each

  20. 40 CFR Table F-3 to Subpart F of... - Critical Parameters of Idealized Ambient Particle Size Distributions

    Science.gov (United States)

    2010-07-01

    ... Ambient Particle Size Distributions F Table F-3 to Subpart F of Part 53 Protection of Environment... Ambient Particle Size Distributions Idealized Distribution Fine Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) Coarse Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) PM2.5/PM10 Ratio FRM...

  1. Production, Distribution, and Applications of Californium-252 Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-10-03

    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial

  2. Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles

    International Nuclear Information System (INIS)

    This study describes methods developed for reliable quantification of size- and element-specific release of engineered nanoparticles (ENP) from consumer spray products. A modified glove box setup was designed to allow controlled spray experiments in a particle-minimized environment. Time dependence of the particle size distribution in a size range of 10-500 nm and ENP release rates were studied using a scanning mobility particle sizer (SMPS). In parallel, the aerosol was transferred to a size-calibrated electrostatic TEM sampler. The deposited particles were investigated using electron microscopy techniques in combination with image processing software. This approach enables the chemical and morphological characterization as well as quantification of released nanoparticles from a spray product. The differentiation of solid ENP from the released nano-sized droplets was achieved by applying a thermo-desorbing unit. After optimization, the setup was applied to investigate different spray situations using both pump and gas propellant spray dispensers for a commercially available water-based nano-silver spray. The pump spray situation showed no measurable nanoparticle release, whereas in the case of the gas spray, a significant release was observed. From the results it can be assumed that the homogeneously distributed ENP from the original dispersion grow in size and change morphology during and after the spray process but still exist as nanometer particles of size <100 nm. Furthermore, it seems that the release of ENP correlates with the generated aerosol droplet size distribution produced by the spray vessel type used. This is the first study presenting results concerning the release of ENP from spray products.

  3. Beyond initiation-limited translational bursting: the effects of burst size distributions on the stability of gene expression

    KAUST Repository

    Kuwahara, Hiroyuki

    2015-11-04

    A main source of gene expression noise in prokaryotes is translational bursting. It arises from efficient translation of mRNAs with low copy numbers, which makes the production of protein copies highly variable and pulsatile. To obtain analytical solutions, previous models to capture this noise source had to assume translation to be initiation-limited, representing the burst size by a specific type of a long-tail distribution. However, there is increasing evidence suggesting that the initiation is not the rate-limiting step in certain settings, for example, under stress conditions. Here, to overcome the limitations imposed by the initiation-limited assumption, we present a new analytical approach that can evaluate biological consequences of the protein burst size with a general distribution. Since our new model can capture the contribution of other factors to the translational noise, it can be used to analyze the effects of gene expression noise in more general settings. We used this new model to analytically analyze the connection between the burst size and the stability of gene expression processes in various settings. We found that the burst size with different distributions can lead to quantitatively and qualitatively different stability characteristics of protein abundance and can have non-intuitive effects. By allowing analysis of how the stability of gene expression processes changes based on various distributions of translational noise, our analytical approach is expected to enable deeper insights into the control of cell fate decision-making, the evolution of cryptic genetic variations, and fine-tuning of gene circuits.

  4. Effects of the confining solvent on the size distribution of silver NPs by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Oseguera-Galindo, D. O., E-mail: david.omar0927@hotmail.com; Martinez-Benitez, A.; Chavez-Chavez, A.; Gomez-Rosas, G.; Perez-Centeno, A.; Santana-Aranda, M. A., E-mail: miguelangelsantana@gmail.com [CUCEI, Universidad de Guadalajara, Departamento de Fisica (Mexico)

    2012-09-15

    Laser ablation of a silver target confined in acetone, ethanol, methanol, propanol, and distilled water allowed us to obtain silver nanoparticles with different size distributions. We employed a pulsed Nd:YAG laser ({lambda} = 532 nm, 0.5 J/pulse) with a high fluence of 64 J/cm{sup 2} with a scanning density of 2,500 pulses/cm{sup 2}, having overlapping of consecutive pulses. The analysis of transmission electron micrographs showed that the smaller particle sizes were obtained confining the target in propanol, while the larger ones were obtained employing ethanol. Nanoparticle size distributions were fitted with two Gaussian peaks in all five cases, being the smaller sizes the most frequent. Predominant peaks were centered at 4.8 and 13.9 nm in propanol and ethanol, respectively, having a broader distribution for the nanoparticles obtained in ethanol. Furthermore, comparison of electron micrographs taken the day of synthesis and 4 and 9 months later in the case of water and propanol, respectively, shows that nanoparticle suspension is more stable in propanol.

  5. Evidence for a colour dependence in the size distribution of main belt asteroids

    CERN Document Server

    Wiegert, P A; Moss, A; Veillet, C; Connors, M; Shelton, I; Wiegert, Paul; Balam, David; Moss, Andrea; Veillet, Christian; Connors, Martin; Shelton, Ian

    2006-01-01

    We present the results of a project to detect small (~1 km) main-belt asteroids with the 3.6 meter Canada-France-Hawaii Telescope (CFHT). We observed in 2 filters (MegaPrime g' and r') in order to compare the results in each band. Owing to the observational cadence we did not observe the same asteroids through each filter and thus do not have true colour information. However strong differences in the size distributions as seen in the two filters point to a colour-dependence at these sizes, perhaps to be expected in this regime where asteroid cohesiveness begins to be dominated by physical strength and composition rather than by gravity. The best fit slopes of the cumulative size distributions (CSDs) in both filters tend towards lower values for smaller asteroids, consistent with the results of previous studies. In addition to this trend, the size distributions seen in the two filters are distinctly different, with steeper slopes in r' than in g'. Breaking our sample up according to semimajor axis, the differe...

  6. Influence of particle size distribution on random close packing of spheres.

    Science.gov (United States)

    Desmond, Kenneth W; Weeks, Eric R

    2014-08-01

    The densest amorphous packing of rigid particles is known as random close packing. It has long been appreciated that higher densities are achieved by using collections of particles with a variety of sizes. For spheres, the variety of sizes is often quantified by the polydispersity of the particle size distribution: the standard deviation of the radius divided by the mean radius. Several prior studies quantified the increase of the packing density as a function of polydispersity. A particle size distribution is also characterized by its skewness, kurtosis, and higher moments, but the influence of these parameters has not been carefully quantified before. In this work, we numerically generate many sphere packings with different particle radii distributions, varying polydispersity and skewness independently of one another. We find that the packing density can increase significantly with increasing skewness and in some cases skewness can have a larger effect than polydispersity. However, the packing fraction is relatively insensitive to the higher moment value of the kurtosis. We present a simple empirical formula for the value of the random close packing density as a function of polydispersity and skewness.

  7. Aerosol Size Distribution in a City Influenced by Both Rural and Urban Regions

    Science.gov (United States)

    Fitzgerald, R. M.; Polanco, J.; Lozano, A.

    2006-12-01

    Most atmospheric studies have focused on sites located in either rural or urban areas. However, there are regions affected by air from both, such as the city of El Paso. Adjacent to the neighboring city of Juarez, Mexico, and in close proximity to rural areas, it is affected by desert particles and both biogenic, anthropogenic emissions. Aerosol properties largely depend upon particle size and this makes it the most important parameter for characterizing the aerosol. We focus on studies using inverse reconstruction models for particle size distribution using aerosol optical depth data. Our methodology uses Twomey's regularization technique that suppresses ill-posedness by imposing smoothing and non-negativity constraints on the desired size distributions. We have also applied T-matrix codes to study the scattering from irregularly shaped particles that exhibit rotational symmetry. Furthermore, our studies include analysis of aerosol size distributions using optic probes and soot photometers, sampled from aircraft at different heights. This work will lead to better characterization of aerosols and their impact in our rural-urban interface region. In addition, it will provide a more accurate assessment of regional transport and better boundary conditions for air quality models.

  8. Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Ilker; Kramer, Nicolaas J.; Westermann, Rene H. J.; Verheijen, Marcel A. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dohnalova, Katerina; Gregorkiewicz, Tom [Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Smets, Arno H. M. [Photovoltaic Materials and Devices Laboratory, Delft University of Technology, P.O. Box 5031, 2600 GA Delft (Netherlands); Sanden, Mauritius C. M. van de [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2013-04-07

    We demonstrate a method for synthesizing free standing silicon nanocrystals in an argon/silane gas mixture by using a remote expanding thermal plasma. Transmission electron microscopy and Raman spectroscopy measurements reveal that the distribution has a bimodal shape consisting of two distinct groups of small and large silicon nanocrystals with sizes in the range 2-10 nm and 50-120 nm, respectively. We also observe that both size distributions are lognormal which is linked with the growth time and transport of nanocrystals in the plasma. Average size control is achieved by tuning the silane flow injected into the vessel. Analyses on morphological features show that nanocrystals are monocrystalline and spherically shaped. These results imply that formation of silicon nanocrystals is based on nucleation, i.e., these large nanocrystals are not the result of coalescence of small nanocrystals. Photoluminescence measurements show that silicon nanocrystals exhibit a broad emission in the visible region peaked at 725 nm. Nanocrystals are produced with ultrahigh throughput of about 100 mg/min and have state of the art properties, such as controlled size distribution, easy handling, and room temperature visible photoluminescence.

  9. Decision trees are PAC-learnable from most product distributions: a smoothed analysis

    CERN Document Server

    Kalai, Adam Tauman

    2008-01-01

    We consider the problem of PAC-learning decision trees, i.e., learning a decision tree over the n-dimensional hypercube from independent random labeled examples. Despite significant effort, no polynomial-time algorithm is known for learning polynomial-sized decision trees (even trees of any super-constant size), even when examples are assumed to be drawn from the uniform distribution on {0,1}^n. We give an algorithm that learns arbitrary polynomial-sized decision trees for {\\em most product distributions}. In particular, consider a random product distribution where the bias of each bit is chosen independently and uniformly from, say, [.49,.51]. Then with high probability over the parameters of the product distribution and the random examples drawn from it, the algorithm will learn any tree. More generally, in the spirit of smoothed analysis, we consider an arbitrary product distribution whose parameters are specified only up to a [-c,c] accuracy (perturbation), for an arbitrarily small positive constant c.

  10. Cancerous epithelial cell lines shed extracellular vesicles with a bimodal size distribution that is sensitive to glutamine inhibition

    Science.gov (United States)

    Santana, Steven Michael; Antonyak, Marc A.; Cerione, Richard A.; Kirby, Brian J.

    2014-12-01

    Extracellular shed vesicles (ESVs) facilitate a unique mode of cell-cell communication wherein vesicle uptake can induce a change in the recipient cell's state. Despite the intensity of ESV research, currently reported data represent the bulk characterization of concentrated vesicle samples with little attention paid to heterogeneity. ESV populations likely represent diversity in mechanisms of formation, cargo and size. To better understand ESV subpopulations and the signaling cascades implicated in their formation, we characterize ESV size distributions to identify subpopulations in normal and cancerous epithelial cells. We have discovered that cancer cells exhibit bimodal ESV distributions, one small-diameter and another large-diameter population, suggesting that two mechanisms may govern ESV formation, an exosome population and a cancer-specific microvesicle population. Altered glutamine metabolism in cancer is thought to fuel cancer growth but may also support metastatic niche formation through microvesicle production. We describe the role of a glutaminase inhibitor, compound 968, in ESV production. We have discovered that inhibiting glutamine metabolism significantly impairs large-diameter microvesicle production in cancer cells.

  11. Experimental study of the relationship between local particle-size distributions and local ordering in random close packing.

    Science.gov (United States)

    Kurita, Rei

    2015-12-01

    We experimentally study the structural properties of a sediment of size distributed colloids. By determining each particle size using a size estimation algorithm, we are able to investigate the relationship between local environment and local ordering. Our results show that ordered environments of particles tend to generate where the local particle-size distribution is within 5%. In addition, we show that particles whose size is close to the average size have 12 coordinate neighbors, which matches the coordination number of the fcc and hcp crystals. On the other hand, bcc structures are observed around larger particles. Our results represent experiments to show a size dependence of the specific ordering in colloidal systems.

  12. Simulation of the Brownian coagulation of nanoparticles with initial bimodal size distribution via moment method

    Institute of Scientific and Technical Information of China (English)

    Jian-Zhong Lin; Fu-Jun Gan

    2012-01-01

    The Brownian coagulation of nanoparticles with initial bimodal size distribution,i.e.,mode i and j,is numerically studied using the moment method.Evolutions of particle number concentration,geometric average diameter and geometric standard deviation are given in the free molecular regime,the continuum regime,the free molecular regimand transition regime,the free molecular regime and contin-uum regime,respectively.The results show that,both in the free molecular regime and the continuum regime,the number concentration of mode i and j decreases with increasing time.The evolutions of particle geometric average diameter with different initial size distribution are quite different.Both intra-modal and inter-modal coagulation finally make the polydispersed size distribution become monodispersed.As time goes by,the size distribution with initial bimodal turns to be unimodal and shifts to a larger particle size range.In the free molecular regime and transition regime,the intermodal coagulation becomes dominant when the number concentrations of mode i and j are of the same order.The effects of the number concentration of mode i and mode j on the evolution of geometric average diameter of mode j are negligible,while the effects of the number concentration of mode j on the evolution of geometric average diameter of mode j is distinct.In the free molecular regime and continuum regime,the higher the initial number concentration of mode j,the more obvious the variation of the number concentration of mode i.

  13. Comparison of black carbon (BC) aerosols in two urban areas - concentrations and size distributions

    Science.gov (United States)

    Hitzenberger, R.; Tohno, S.

    In this study, the BC aerosol measured at two very different urban sites is compared in terms of concentration, seasonal variation, and size distribution. During a 14 month study, one impactor sample was performed each month on a day with typical meteorological conditions. One (Vienna) or three (Uji) filter samples were obtained during the sampling time of the impactors. BC concentration in both the filter and impactor samples was analyzed with an optical technique (integrating sphere technique), where a calibration curve obtained from commercial carbon black is used to convert the optical signal to BC mass. Gravimetric mass concentration was measured at both sites. The gravimetric mass size distribution was measured only in Vienna. At both sites, the yearly average of the BC concentration on the sampling days was around 5 μg m -3. In Vienna, some seasonal trend with high concentrations during the cold season was observed, while in Uji, no pronounced seasonal trend was found. The BC size distribution in Uji was distinctly bimodal in the submicron size range. Log-normal distributions were fitted through the impactor data. The average BC mass median diameters (MMD) of the two submicron modes were 0.15 and 0.39 μm. Each mode contained about the same amount of BC mass. In Vienna only one submicron BC mode (average MMD 0.3 μm) was found because of the low size resolution of the impactor. An analysis of humidity effects on the MMDs of BC (both sites) and gravimetric mass (Vienna only) indicates that the Vienna aerosol is partly mixed internally with respect to BC, while the Uji aerosol seems to be externally mixed.

  14. The effect of cell size distribution on predicted osmotic responses of cells.

    Science.gov (United States)

    Elmoazzen, H Y; Chan, C C V; Acker, J P; Elliott, J A W; McGann, L E

    2005-01-01

    An understanding of the kinetics of the osmotic response of cells is important in understanding permeability properties of cell membranes and predicting cell responses during exposure to anisotonic conditions. Traditionally, a mathematical model of cell osmotic response is obtained by applying mass transport and Boyle-vant Hoff equations using numerical methods. In the usual application of these equations, it is assumed that all cells are the same size equal to the mean or mode of the population. However, biological cells (even if they had identical membranes and hence identical permeability characteristics--which they do not) have a distribution in cell size and will therefore shrink or swell at different rates when exposed to anisotonic conditions. A population of cells may therefore exhibit a different average osmotic response than that of a single cell. In this study, a mathematical model using mass transport and Boyle-van't Hoff equations was applied to measured size distributions of cells. Chinese hamster fibroblast cells (V-79W) and Madin-Darby canine kidney cells (MDCK), were placed in hypertonic solutions and the kinetics of cell shrinkage were monitored. Consistent with the theoretical predictions, the size distributions of these cells were found to change over time, therefore the selection of the measure of central tendency for the population may affect the calculated osmotic parameters. After examining three different average volumes (mean, median, and mode) using four different theoretical cell size distributions, it was determined that, for the assumptions used in this study, the mean or median were the best measures of central tendency to describe osmotic volume changes in cell suspensions. PMID:16082441

  15. Particle concentrations and number size distributions in the planetary boundary layer derived from airship based measurements

    Science.gov (United States)

    Tillmann, Ralf; Zhao, Defeng; Ehn, Mikael; Hofzumahaus, Andreas; Holland, Frank; Rohrer, Franz; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    Atmospheric particles play a key role for regional and global climate due to their direct and indirect radiative forcing effects. The concentration and size of the particles are important variables to these effects. Within the continental planetary boundary layer (PBL) the particle number size distribution is influenced by meteorological parameters, local sinks and sources resulting in variable spatial distributions. However, measurements of particle number size distributions over a broad vertical range of the PBL are rare. The airship ZEPPELIN NT is an ideal platform to measure atmospheric aerosols on a regional scale within an altitude range up to 1000 m. For campaigns in the Netherlands, Northern Italy and South Finland in 2012 and 2013 the airship was deployed with a wide range of instruments, including measurements of different trace gases, short lived radicals, solar radiation, aerosols and meteorological parameters. Flights were carried out at different times of the day to investigate the influence of the diurnal evolution of the PBL on atmospheric trace gases and aerosols. During night and early morning hours the concentration and size distribution of atmospheric particles were found to be strongly influenced by the layered structure of the PBL, i.e. the nocturnal boundary layer and the residual layer. Within the residual layer particle concentrations stay relatively constant as this layer is decoupled from ground sources. The particles persist in the accumulation mode as expected for an aged aerosol. In the nocturnal boundary layer particle concentrations and size are more dynamic with higher concentrations than in the residual layer. A few hours after sunrise, the layered structure of the PBL intermixes. During daytime the PBL is well mixed and a negative concentration gradient with increasing height is observed. Several height profiles at different times of the day and at different locations in Europe were measured. The aerosol measurements will be

  16. Lung deposited surface area size distributions of particulate matter in different urban areas

    Science.gov (United States)

    Kuuluvainen, Heino; Rönkkö, Topi; Järvinen, Anssi; Saari, Sampo; Karjalainen, Panu; Lähde, Tero; Pirjola, Liisa; Niemi, Jarkko V.; Hillamo, Risto; Keskinen, Jorma

    2016-07-01

    Lung deposited surface area (LDSA) concentration is considered as a relevant metric for the negative health effects of aerosol particles. We report for the first time the size distributions of the LDSA measured in urban air. The measurements were carried out in the metropolitan area of Helsinki, including mobile laboratory and stationary measurements in different outdoor environments, such as traffic sites, a park area, the city center and residential areas. The main instrument in this study was an electrical low pressure impactor (ELPI), which was calibrated in the field to measure the LDSA concentration. The calibration factor was determined to be 60 μm2/(cm3 pA). In the experiments, the LDSA size distributions were found to form two modes at the traffic sites and in the city center. Both of these traffic related particle modes, the nucleation mode and the soot mode, had a clear contribution to the total LDSA concentration. The average total concentrations varied from 12 to 94 μm2/cm3, measured in the park area and at the traffic site next to a major road, respectively. The LDSA concentration was found to correlate with the mass of fine particles (PM2.5), but the relation of these two metrics varied between different environments, emphasizing the influence of traffic on the LDSA. The results of this study provide valuable information on the total concentrations and size distributions of the LDSA for epidemiological studies. The size distributions are especially important in estimating the contribution of outdoor concentrations on the concentrations inside buildings and vehicles through size-dependent penetration factors.

  17. [Particle Size Distribution and Pollutant Speciation Analyses of Stormwater Runoff in the Ancient Town of Suzhou].

    Science.gov (United States)

    Li, Huai; Wu, Wei; Tian, Yong-jing; Huang, Tian-yin

    2016-02-15

    The particle size distribution (PSD) and its transformation processes in the stormwater runoffs in the ancient town of Suzhou were studied based on the particles size analyses, the water-quality monitoring data and the parameters of the rainfall-runoff models. The commercial districts, the modern residential area, the old residential area, the traffic area and the landscape tourist area were selected as the five functional example areas in the ancient town of Suzhou. The effects of antecedent dry period, the rainfall intensity and the amount of runoffs on the particle size distributions were studied, and the existing forms of the main pollutants in different functional areas and their possible relations were analyzed as well. The results showed that the particle size distribution, the migration processes and the output characteristics in the stormwater runoffs were greatly different in these five functional areas, which indicated different control measures for the pollution of the runoffs should be taken in the design process. The antecedent dry period, the rainfall intensity and the amount of runoffs showed significant correlations with the particle size distribution, showing these were the important factors. The output of the particles was greatly influenced by the flow scouring in the early period of the rainfall, and the correlations between the amount of runoffs and the particle migration ability presented significant difference in 30% (early period) and 70% (later period) of the runoff volume. The major existence form of the output pollutants was particle, and the correlation analyses of different diameter particles showed that the particles smaller than 150 microm were the dominant carrier of the pollutants via adsorption and accumulation processes. PMID:27363145

  18. Aerosol Optical Properties and Determination of Aerosol Size Distribution in Wuhan, China

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2014-01-01

    Full Text Available Columnar aerosol volume size distributions from March 2012 to February 2013 in Wuhan, China, were investigated with a focus on monthly and seasonal variations in the aerosol optical depths (AODs and Ångström exponents. AOD is wavelength dependent, and for AOD at, for example, 500 nm, the seasonal averaged AOD value decreased in the order of winter (~0.84, spring (~0.83, summer (~0.76 and autumn (~0.55. The Ångström exponent suggested that the aerosol sizes in summer (~1.22, winter (~1.14, autumn (~1.06 and spring (~0.99 varied from fine to coarse particles. The Ångström exponent and AOD could provide a qualitative evaluation of ASD. Moreover, aerosol size distribution (ASD was larger in winter than the other three seasons, especially from 1.0 µm to 15 µm due to heavy anthropogenic aerosol and damp climate. The ASD spectral shape showed a bimodal distribution in autumn, winter, and spring, with one peak (<0.1 in the fine mode range and the other (>0.14 in the coarse mode range. However, there appeared to be a trimodal distribution during summer, with two peaks in the coarse mode, which might be due to the hygroscopic growth of the local particles and the generation of aerosol precursor resulting from the extreme-high temperature and relative humidity.

  19. Finite size effects in stimulated laser pair production

    CERN Document Server

    Heinzl, Thomas; Marklund, Mattias

    2010-01-01

    We consider stimulated pair production in a strong laser background, using the language of lightcone field theory. In an infinite plane wave, we show that the lightcone momentum transfer to the pair must be a multiple of the laser frequency, which results in the usual interpretation of multi-photon production of pairs with an effective mass. In a pulse, the momentum transfer is continuous, exhibiting resonant behaviour for effective mass pair production. We show that this is completely analogous to a diffraction process, and that the fine structure of the emission rate is that of a diffraction pattern resulting from interference of the produced pairs' wavefunctions.

  20. Commercial milk distribution profiles and production locations

    International Nuclear Information System (INIS)

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation doses that people could have received from nuclear operations at the Hanford Site since 1944. For this period iodine-131 is the most important offsite contributor to radiation doses from Hanford operations. Consumption of milk from cows that ate vegetation contaminated by iodine-131 is the dominant radiation pathway for individuals who drank milk (Napier 1992). Information has been developed on commercial milk cow locations and commercial milk distribution during 1945 and 1951. The year 1945 was selected because during 1945 the largest amount of iodine-131 was released from Hanford facilities in a calendar year (Heeb 1993); therefore, 1945 was the year in which an individual was likely to have received the highest dose. The year 1951 was selected to provide data for comparing the changes that occurred in commercial milk flows (i.e., sources, processing locations, and market areas) between World War II and the post-war period. To estimate the doses people could have received from this milk flow, it is necessary to estimate the amount of milk people consumed, the source of the milk, the specific feeding regime used for milk cows, and the amount of iodine-131 contamination deposited on feed