WorldWideScience

Sample records for product moment correlation

  1. Phenomenology of scaled factorial moments and future approaches for correlation studies

    International Nuclear Information System (INIS)

    Seibert, D.

    1991-01-01

    We show that the definitions of the exclusive and inclusive scaled factorial moments are not equivalent, and propose the use of scaled factorial moments that reduce to the exclusive moments in the case of fixed multiplicity. We then present a new derivation of the multiplicity scaling law for scaled factorial moment data. This scaling law seems to hold, independent of collision energy, for events with fixed projectile and target. However, deviations from this scaling law indicate that correlations in S-Au collisions are 30 times as strong as correlations in hadronic collisions. Finally, we discuss 'split-bin' correlation functions, the most useful tool for future investigations of these anomalously strong hadronic correlations. (orig.)

  2. Knee adduction moment and medial contact force--facts about their correlation during gait.

    Directory of Open Access Journals (Sweden)

    Ines Kutzner

    Full Text Available The external knee adduction moment is considered a surrogate measure for the medial tibiofemoral contact force and is commonly used to quantify the load reducing effect of orthopedic interventions. However, only limited and controversial data exist about the correlation between adduction moment and medial force. The objective of this study was to examine whether the adduction moment is indeed a strong predictor for the medial force by determining their correlation during gait. Instrumented knee implants with telemetric data transmission were used to measure tibiofemoral contact forces in nine subjects. Gait analyses were performed simultaneously to the joint load measurements. Skeletal kinematics, as well as the ground reaction forces and inertial parameters, were used as inputs in an inverse dynamics approach to calculate the external knee adduction moment. Linear regression analysis was used to analyze the correlation between adduction moment and medial force for the whole stance phase and separately for the early and late stance phase. Whereas only moderate correlations between adduction moment and medial force were observed throughout the whole stance phase (R(2 = 0.56 and during the late stance phase (R(2 = 0.51, a high correlation was observed at the early stance phase (R(2 = 0.76. Furthermore, the adduction moment was highly correlated to the medial force ratio throughout the whole stance phase (R(2 = 0.75. These results suggest that the adduction moment is a surrogate measure, well-suited to predicting the medial force ratio throughout the whole stance phase or medial force during the early stance phase. However, particularly during the late stance phase, moderate correlations and high inter-individual variations revealed that the predictive value of the adduction moment is limited. Further analyses are necessary to examine whether a combination of other kinematic, kinetic or neuromuscular factors may lead to a more

  3. AN EMPIRICAL INVESTIGATION OF THE EFFECTS OF NONNORMALITY UPON THE SAMPLING DISTRIBUTION OF THE PROJECT MOMENT CORRELATION COEFFICIENT.

    Science.gov (United States)

    HJELM, HOWARD; NORRIS, RAYMOND C.

    THE STUDY EMPIRICALLY DETERMINED THE EFFECTS OF NONNORMALITY UPON SOME SAMPLING DISTRIBUTIONS OF THE PRODUCT MOMENT CORRELATION COEFFICIENT (PMCC). SAMPLING DISTRIBUTIONS OF THE PMCC WERE OBTAINED BY DRAWING NUMEROUS SAMPLES FROM CONTROL AND EXPERIMENTAL POPULATIONS HAVING VARIOUS DEGREES OF NONNORMALITY AND BY CALCULATING CORRELATION COEFFICIENTS…

  4. Intra-event correlations and the statistical moments of the identified particle multiplicity distributions in the RHIC beam energy scan data collected by STAR

    Science.gov (United States)

    Llope, W. J.; STAR Collaboration

    2013-10-01

    Specific products of the statistical moments of the multiplicity distributions of identified particles can be directly compared to susceptibility ratios obtained from lattice QCD calculations. They may also diverge for nuclear systems formed close to a possible QCD critical point due to the phenomenon of critical opalescence. Of particular interest are the moments products for net-protons, net-kaons, and net-charge, as these are considered proxies for conserved quantum numbers. The moments products have been measured by the STAR experiment for Au+Au collisions at seven beam energies ranging from 7.7 to 200 GeV. In this presentation, the experimental results are compared to data-based calculations in which the intra-event correlations of the numbers of positive and negative particles are broken by construction. The importance of intra-event correlations to the moments products values for net-protons, net-kaons, and net-charge can thus be evaluated. Work supported by the U.S. Dept of Energy under grant DE-PS02-09ER09.

  5. Quadrupole moments as measures of electron correlation in two-electron atoms

    International Nuclear Information System (INIS)

    Ceraulo, S.C.; Berry, R.S.

    1991-01-01

    We have calculated quadrupole moments, Q zz , of helium in several of its doubly excited states and in two of its singly excited Rydberg states, and of the alkaline-earth atoms Be, Mg, Ca, Sr, and Ba in their ground and low-lying excited states. The calculations use well-converged, frozen-core configuration-interaction (CI) wave functions and, for interpretive purposes, Hartree-Fock (HF) atomic wave functions and single-term, optimized, molecular rotor-vibrator (RV) wave functions. The quadrupole moments calculated using RV wave functions serve as a test of the validity of the correlated, moleculelike model, which has been used to describe the effects of electron correlation in these two-electron and pseudo-two-electron atoms. Likewise, the quadrupole moments calculated with HF wave functions test the validity of the independent-particle model. In addition to their predictive use and their application to testing simple models, the quadrupole moments calculated with CI wave functions reveal previously unavailable information about the electronic structure of these atoms. Experimental methods by which these quadrupole moments might be measured are also discussed. The quadrupole moments computed from CI wave functions are presented as predictions; measurements of Q zz have been made for only two singly excited Rydberg states of He, and a value of Q zz has been computed previously for only one of the states reported here. We present these results in the hope of stimulating others to measure some of these quadrupole moments

  6. Second-order moments of Schell-model beams with various correlation functions in atmospheric turbulence.

    Science.gov (United States)

    Zheng, Guo; Wang, Jue; Wang, Lin; Zhou, Muchun; Xin, Yu; Song, Minmin

    2017-11-15

    The general formulae for second-order moments of Schell-model beams with various correlation functions in atmospheric turbulence are derived and validated by the Bessel-Gaussian Schell-model beams and cosine-Gaussian-correlated Schell-model beams. Our finding shows that the second-order moments of partially coherent Schell-model beams are related to the second-order partial derivatives of source spectral degree of coherence at the origin. The formulae we provide are much more convenient to analyze and research propagation problems in turbulence.

  7. Moments analysis of concurrent Poisson processes

    International Nuclear Information System (INIS)

    McBeth, G.W.; Cross, P.

    1975-01-01

    A moments analysis of concurrent Poisson processes has been carried out. Equations are given which relate combinations of distribution moments to sums of products involving the number of counts associated with the processes and the mean rate of the processes. Elimination of background is discussed and equations suitable for processing random radiation, parent-daughter pairs in the presence of background, and triple and double correlations in the presence of background are given. The theory of identification of the four principle radioactive series by moments analysis is discussed. (Auth.)

  8. The Pharmaceutical Capping Process-Correlation between Residual Seal Force, Torque Moment, and Flip-off Removal Force.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian; Vorgrimler, Lothar; Steinberg, Henrik; Dreher, Sascha; Roggo, Yves; Nieto, Alejandra; Brown, Helen; Roehl, Holger; Adler, Michael; Luemkemann, Joerg; Huwyler, Joerg; Lam, Philippe; Stauch, Oliver; Mohl, Silke; Streubel, Alexander

    2016-01-01

    The majority of parenteral drug products are manufactured in glass vials with an elastomeric rubber stopper and a crimp cap. The vial sealing process is a critical process step during fill-and-finish operations, as it defines the seal quality of the final product. Different critical capping process parameters can affect rubber stopper defects, rubber stopper compression, container closure integrity, and also crimp cap quality. A sufficiently high force to remove the flip-off button prior to usage is required to ensure quality of the drug product unit by the flip-off button during storage, transportation, and until opening and use. Therefore, the final product is 100% visually inspected for lose or defective crimp caps, which is subjective as well as time- and labor-intensive. In this study, we sealed several container closure system configurations with different capping equipment settings (with corresponding residual seal force values) to investigate the torque moment required to turn the crimp cap. A correlation between torque moment and residual seal force has been established. The torque moment was found to be influenced by several parameters, including diameter of the vial head, type of rubber stopper (serum or lyophilized) and type of crimp cap (West(®) or Datwyler(®)). In addition, we measured the force required to remove the flip-off button of a sealed container closure system. The capping process had no influence on measured forces; however, it was possible to detect partially crimped vials. In conclusion, a controlled capping process with a defined target residual seal force range leads to a tight crimp cap on a sealed container closure system and can ensure product quality. The majority of parenteral drug products are manufactured in a glass vials with an elastomeric rubber stopper and a crimp cap. The vial sealing process is a critical process step during fill-and-finish operations, as it defines the seal quality of the final product. An adequate force

  9. INVESTIGATION OF THE RELATIONSHIP OF THE STATISTICAL MOMENTS OF THE FAT PHASE MASS DISTRIBUTION AND RELAXATION SPECTRA OF DAIRY PRODUCTS

    Directory of Open Access Journals (Sweden)

    V. E. Merzlikin

    2015-01-01

    Full Text Available The article deals with the search for optimal parameter estimation of the parameters of the process of homogenization of dairy products. Provides a theoretical basis for relationship of the relaxation time of the fat globules and attenuation coefficient of ultrasonic oscillations in dairy products. Suggested from the measured acoustic properties of milk to make the calculations of the mass distribution of fat globules. Studies on the proof of this hypothesis. Morphological analysis procedure carried out for homogenized milk samples at different pressures, as well as homogenized. As a result of research obtained distribution histogram of fat globules in dependence on the homogenization pressure. Also performed acoustic studies to obtain the frequency characteristics of loss modulus as a function of homogenization pressure. For further research the choice of method for approximating dependences is obtained using statistical moments of distributions. The parameters for the approximation of the distribution of fat globules and loss modulus versus pressure homogenization were obtained. Was carried out to test the hypothesis on the relationship parameters of approximation of the distribution of the fat globules and loss modulus as a function of pressure homogenization. Correlation analysis showed a clear dependence of the first and second statistical moment distributions of the pressure homogenization. The obtain ed dependence is consistent with the physical meaning of the first two moments of a statistical distribution. Correlation analysis was carried out according to the statistical moments of the distribution of the fat globules from moments of loss modulus. It is concluded that the possibility of ultrasonic testing the degree of homogenization and mass distribution of the fat globules of milk products.

  10. Do all roads lead to Rome? A comparison of brain networks derived from inter-subject volumetric and metabolic covariance and moment-to-moment hemodynamic correlations in old individuals.

    Science.gov (United States)

    Di, Xin; Gohel, Suril; Thielcke, Andre; Wehrl, Hans F; Biswal, Bharat B

    2017-11-01

    Relationships between spatially remote brain regions in human have typically been estimated by moment-to-moment correlations of blood-oxygen-level dependent signals in resting-state using functional MRI (fMRI). Recently, studies using subject-to-subject covariance of anatomical volumes, cortical thickness, and metabolic activity are becoming increasingly popular. However, question remains on whether these measures reflect the same inter-region connectivity and brain network organizations. In the current study, we systematically analyzed inter-subject volumetric covariance from anatomical MRI images, metabolic covariance from fluorodeoxyglucose positron emission tomography images from 193 healthy subjects, and resting-state moment-to-moment correlations from fMRI images of a subset of 44 subjects. The correlation matrices calculated from the three methods were found to be minimally correlated, with higher correlation in the range of 0.31, as well as limited proportion of overlapping connections. The volumetric network showed the highest global efficiency and lowest mean clustering coefficient, leaning toward random-like network, while the metabolic and resting-state networks conveyed properties more resembling small-world networks. Community structures of the volumetric and metabolic networks did not reflect known functional organizations, which could be observed in resting-state network. The current results suggested that inter-subject volumetric and metabolic covariance do not necessarily reflect the inter-regional relationships and network organizations as resting-state correlations, thus calling for cautions on interpreting results of inter-subject covariance networks.

  11. Second-moment sum rules for correlation functions in a classical ionic mixture

    NARCIS (Netherlands)

    Suttorp, L.G.; Ebeling, W.

    1992-01-01

    The complete set of second-moment sum rules for the correlation functions of arbitrarily high order describing a classical multi-component ionic mixture in equilibrium is derived from the grand-canonical ensemble. The connection of these sum rules with the large-scale behaviour of fluctuations in an

  12. Exact closed-form expression for the inverse moments of one-sided correlated Gram matrices

    KAUST Repository

    Elkhalil, Khalil

    2016-08-15

    In this paper, we derive a closed-form expression for the inverse moments of one sided-correlated random Gram matrices. Such a question is mainly motivated by applications in signal processing and wireless communications for which evaluating this quantity is a question of major interest. This is for instance the case of the best linear unbiased estimator, in which the average estimation error corresponds to the first inverse moment of a random Gram matrix.

  13. Exact closed-form expression for the inverse moments of one-sided correlated Gram matrices

    KAUST Repository

    Elkhalil, Khalil; Kammoun, Abla; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we derive a closed-form expression for the inverse moments of one sided-correlated random Gram matrices. Such a question is mainly motivated by applications in signal processing and wireless communications for which evaluating this quantity is a question of major interest. This is for instance the case of the best linear unbiased estimator, in which the average estimation error corresponds to the first inverse moment of a random Gram matrix.

  14. Correlation of Fault Size, Moment Magnitude, and Tsunami Height to Proved Paleo-tsunami Data in Sulawesi Indonesia

    Science.gov (United States)

    Julius, A. M.; Pribadi, S.

    2016-02-01

    Sulawesi (Indonesia) island is located in the meeting of three large plates i.e. Indo-Australia, Pacific, and Eurasia. This configuration surely make high risk on tsunami by earthquake and by sea floor landslide. NOAA and Russia Tsunami Laboratory show more than 20 tsunami data recorded in Sulawesi since 1820. Based on this data, determine of correlation between all tsunami parameter need to be done to proved all event in the past. Complete data of magnitudes, fault sizes and tsunami heights in this study sourced from NOAA and Russia Tsunami database and completed with Pacific Tsunami Warning Center (PTWC) catalog. This study aims to find correlation between fault area, moment magnitude, and tsunami height by simple regression in Sulawesi. The step of this research are data collect, processing, and regression analysis. Result shows very good correlation, each moment magnitude, tsunami heights, and fault parameter i.e. long, wide, and slip are correlate linier. In increasing of fault area, the tsunami height and moment magnitude value also increase. In increasing of moment magnitude, tsunami height also increase. This analysis is enough to proved all Sulawesi tsunami parameter catalog in NOAA, Russia Tsunami Laboratory and PTWC are correct. Keyword: tsunami, magnitude, height, fault

  15. Why and how to normalize the factorial moments of intermittency

    International Nuclear Information System (INIS)

    Peschanski, R.

    1990-01-01

    The normalization of factorial moments of intermittency, which is often the subject of controverses, is justified and (re-)derived from the general assumption of multi-Poissonian statistical noise in the production of particles at high-energy. Correction factors for the horizontal vs. Vertical analyses are derived in general cases, including the factorial multi-bin correlation moments

  16. Production facility layout by comparing moment displacement using BLOCPLAN and ALDEP Algorithms

    Science.gov (United States)

    Tambunan, M.; Ginting, E.; Sari, R. M.

    2018-02-01

    Production floor layout settings include the organizing of machinery, materials, and all the equipments used in the production process in the available area. PT. XYZ is a company that manufactures rubber and rubber compounds for retreading tire threaded with hot and cold cooking system. In the production of PT. XYZ is divided into three interrelated parts, namely Masterbatch Department, Department Compound, and Procured Thread Line Department. PT. XYZ has a production process with material flow is irregular and the arrangement of machine is complicated and need to be redesigned. The purpose of this study is comparing movement displacement using BLOCPLAN and ALDEP algorithm in order to redesign existing layout. Redesigning the layout of the production floor is done by applying algorithms of BLOCPLAN and ALDEP. The algorithm used to find the best layout design by comparing the moment displacement and the flow pattern. Moment displacement on the floor layout of the company’s production currently amounts to 2,090,578.5 meters per year and material flow pattern is irregular. Based on the calculation, the moment displacement for the BLOCPLAN is 1,551,344.82 meter per year and ALDEP is 1,600,179 meter per year. Flow Material resulted is in the form of straight the line.

  17. Analytical Derivation of the Inverse Moments of One-Sided Correlated Gram Matrices With Applications

    KAUST Repository

    Elkhalil, Khalil

    2016-02-03

    This paper addresses the development of analytical tools for the computation of the inverse moments of random Gram matrices with one side correlation. Such a question is mainly driven by applications in signal processing and wireless communications wherein such matrices naturally arise. In particular, we derive closed-form expressions for the inverse moments and show that the obtained results can help approximate several performance metrics such as the average estimation error corresponding to the Best Linear Unbiased Estimator (BLUE) and the Linear Minimum Mean Square Error (LMMSE) estimator or also other loss functions used to measure the accuracy of covariance matrix estimates.

  18. Magnetic moment of inertia within the torque-torque correlation model.

    Science.gov (United States)

    Thonig, Danny; Eriksson, Olle; Pereiro, Manuel

    2017-04-19

    An essential property of magnetic devices is the relaxation rate in magnetic switching which strongly depends on the energy dissipation. This is described by the Landau-Lifshitz-Gilbert equation and the well known damping parameter, which has been shown to be reproduced from quantum mechanical calculations. Recently the importance of inertia phenomena have been discussed for magnetisation dynamics. This magnetic counterpart to the well-known inertia of Newtonian mechanics, represents a research field that so far has received only limited attention. We present and elaborate here on a theoretical model for calculating the magnetic moment of inertia based on the torque-torque correlation model. Particularly, the method has been applied to bulk itinerant magnets and we show that numerical values are comparable with recent experimental measurements. The theoretical analysis shows that even though the moment of inertia and damping are produced by the spin-orbit coupling, and the expression for them have common features, they are caused by very different electronic structure mechanisms. We propose ways to utilise this in order to tune the inertia experimentally, and to find materials with significant inertia dynamics.

  19. Decompositions of the polyhedral product functor with applications to moment-angle complexes and related spaces.

    Science.gov (United States)

    Bahri, A; Bendersky, M; Cohen, F R; Gitler, S

    2009-07-28

    This article gives a natural decomposition of the suspension of a generalized moment-angle complex or partial product space which arises as the polyhedral product functor described below. The introduction and application of the smash product moment-angle complex provides a precise identification of the stable homotopy type of the values of the polyhedral product functor. One direct consequence is an analysis of the associated cohomology. For the special case of the complements of certain subspace arrangements, the geometrical decomposition implies the homological decomposition in earlier work of others as described below. Because the splitting is geometric, an analogous homological decomposition for a generalized moment-angle complex applies for any homology theory. Implied, therefore, is a decomposition for the Stanley-Reisner ring of a finite simplicial complex, and natural generalizations.

  20. Local moments and electronic correlations in Fe-based Heusler alloys: Kα x-ray emission spectra measurements

    International Nuclear Information System (INIS)

    Svyazhin, Artem; Kurmaev, Ernst; Shreder, Elena; Shamin, Sergey; Sahle, Christoph J.

    2016-01-01

    Heusler alloys are a property-rich class of materials, intensively investigated today from both theoretical and real-world application points of view. In this paper, we attempt to shed light on the role of electronic correlations in the Fe_2MeAl group (where Me represents all 3d elements from Ti to Ni) of Heusler alloys. For this purpose, we have investigated the local moments of iron by means of the x-ray emission spectroscopy technique. To obtain numerical values of local moments, the Kα-FWHM method has been employed for the first time. In every compound of the group, the presence of a local moment on the Fe atom was detected. As has been revealed, the values of these moments are temperature-independent, pointing to an insufficiency of a pure itinerant approach to magnetism in these alloys. We also comprehensively compare the usage of Kβ main lines and Kα spectra as tools for the probing of local moments and point out the significant advantages of the latter. - Highlights: • Local spin moments of iron in Fe_2MeAl (Me = Ti … Ni) Heusler alloys were investigated by means of x-ray emission spectroscopy. • Independence of the local moments from temperature confirms their localized nature. • A local moment value of iron in Fe_2MeAl raises with the atomic number of element Me. • The applicability of the Kα x-ray emission line for extracting local moment values of 3d elements was established.

  1. Molecular physics. Production of trilobite Rydberg molecule dimers with kilo-Debye permanent electric dipole moments.

    Science.gov (United States)

    Booth, D; Rittenhouse, S T; Yang, J; Sadeghpour, H R; Shaffer, J P

    2015-04-03

    Permanent electric dipole moments are important for understanding symmetry breaking in molecular physics, control of chemical reactions, and realization of strongly correlated many-body quantum systems. However, large molecular permanent electric dipole moments are challenging to realize experimentally. We report the observation of ultralong-range Rydberg molecules with bond lengths of ~100 nanometers and kilo-Debye permanent electric dipole moments that form when an ultracold ground-state cesium (Cs) atom becomes bound within the electronic cloud of an extended Cs electronic orbit. The electronic character of this hybrid class of "trilobite" molecules is dominated by degenerate Rydberg manifolds, making them difficult to produce by conventional photoassociation. We used detailed coupled-channel calculations to reproduce their properties quantitatively. Our findings may lead to progress in ultracold chemistry and strongly correlated many-body physics. Copyright © 2015, American Association for the Advancement of Science.

  2. Authigenic 10Be/9Be ratio signatures of the cosmogenic nuclide production linked to geomagnetic dipole moment variation since the Brunhes/Matuyama boundary.

    Science.gov (United States)

    Simon, Quentin; Thouveny, Nicolas; Bourlès, Didier L; Valet, Jean-Pierre; Bassinot, Franck; Ménabréaz, Lucie; Guillou, Valéry; Choy, Sandrine; Beaufort, Luc

    2016-11-01

    Geomagnetic dipole moment variations associated with polarity reversals and excursions are expressed by large changes of the cosmogenic nuclide beryllium-10 ( 10 Be) production rates. Authigenic 10 Be/ 9 Be ratios (proxy of atmospheric 10 Be production) from oceanic cores therefore complete the classical information derived from relative paleointensity (RPI) records. This study presents new authigenic 10 Be/ 9 Be ratio results obtained from cores MD05-2920 and MD05-2930 collected in the west equatorial Pacific Ocean. Be ratios from cores MD05-2920, MD05-2930 and MD90-0961 have been stacked and averaged. Variations of the authigenic 10 Be/ 9 Be ratio are analyzed and compared with the geomagnetic dipole low series reported from global RPI stacks. The largest 10 Be overproduction episodes are related to dipole field collapses (below a threshold of 2 × 10 22  Am 2 ) associated with the Brunhes/Matuyama reversal, the Laschamp (41 ka) excursion, and the Iceland Basin event (190 ka). Other significant 10 Be production peaks are correlated to geomagnetic excursions reported in literature. The record was then calibrated by using absolute dipole moment values drawn from the Geomagia and Pint paleointensity value databases. The 10 Be-derived geomagnetic dipole moment record, independent from sedimentary paleomagnetic data, covers the Brunhes-Matuyama transition and the whole Brunhes Chron. It provides new and complementary data on the amplitude and timing of millennial-scale geomagnetic dipole moment variations and particularly on dipole moment collapses triggering polarity instabilities.

  3. Rapidity and multiplicity correlations in high energy hadronic collisions

    International Nuclear Information System (INIS)

    Heiselberg, H.

    1993-01-01

    Rapidity and multiplicity correlations of particle production in high energy hadronic collisions are studied. A simple model including short range correlations in rapidity due to clustering and long range correlations due to energy conservation is able to describe the two-body correlation functions well hadron-nucleon collisions around lab energies of 250 GeV. In this model fractional moments are calculated and compared to data. The strong rise of the factorial moments in rapidity intervals by size δy∝1 can be explained by long and short range correlation alone whereas the factorial moments approach a constant value at very small δy due to lack of correlations also in agreement with experiment. There is therefore no need for introducing intermittency in the particle production in hadronic collisions at these energies. (orig.)

  4. Measuring and testing dependence by correlation of distances

    OpenAIRE

    Székely, Gábor J.; Rizzo, Maria L.; Bakirov, Nail K.

    2007-01-01

    Distance correlation is a new measure of dependence between random vectors. Distance covariance and distance correlation are analogous to product-moment covariance and correlation, but unlike the classical definition of correlation, distance correlation is zero only if the random vectors are independent. The empirical distance dependence measures are based on certain Euclidean distances between sample elements rather than sample moments, yet have a compact representation analogous to the clas...

  5. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Tai [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  6. Correlation Equation of Fault Size, Moment Magnitude, and Height of Tsunami Case Study: Historical Tsunami Database in Sulawesi

    Science.gov (United States)

    Julius, Musa, Admiral; Pribadi, Sugeng; Muzli, Muzli

    2018-03-01

    Sulawesi, one of the biggest island in Indonesia, located on the convergence of two macro plate that is Eurasia and Pacific. NOAA and Novosibirsk Tsunami Laboratory show more than 20 tsunami data recorded in Sulawesi since 1820. Based on this data, determination of correlation between tsunami and earthquake parameter need to be done to proved all event in the past. Complete data of magnitudes, fault sizes and tsunami heights on this study sourced from NOAA and Novosibirsk Tsunami database, completed with Pacific Tsunami Warning Center (PTWC) catalog. This study aims to find correlation between moment magnitude, fault size and tsunami height by simple regression. The step of this research are data collecting, processing, and regression analysis. Result shows moment magnitude, fault size and tsunami heights strongly correlated. This analysis is enough to proved the accuracy of historical tsunami database in Sulawesi on NOAA, Novosibirsk Tsunami Laboratory and PTWC.

  7. Closed-Form Representations of the Density Function and Integer Moments of the Sample Correlation Coefficient

    Directory of Open Access Journals (Sweden)

    Serge B. Provost

    2015-07-01

    Full Text Available This paper provides a simplified representation of the exact density function of R, the sample correlation coefficient. The odd and even moments of R are also obtained in closed forms. Being expressed in terms of generalized hypergeometric functions, the resulting representations are readily computable. Some numerical examples corroborate the validity of the results derived herein.

  8. On the Higher Moments of Particle Multiplicity, Chemical Freeze-Out, and QCD Critical Endpoint

    Directory of Open Access Journals (Sweden)

    A. Tawfik

    2013-01-01

    Full Text Available We calculate the first six nonnormalized moments of particle multiplicity within the framework of the hadron resonance gas model. In terms of the lower order moments and corresponding correlation functions, general expressions of higher order moments are derived. Thermal evolution of the first four normalized moments and their products (ratios are studied at different chemical potentials, so that it is possible to evaluate them at chemical freeze-out curve. It is found that a nonmonotonic behaviour reflecting the dynamical fluctuation and strong correlation of particles starts to appear from the normalized third order moment. We introduce novel conditions for describing the chemical freeze-out curve. Although the hadron resonance gas model does not contain any information on the criticality related to the chiral dynamics and singularity in the physical observables, we are able to find out the location of the QCD critical endpoint at μ ~ 350  MeV and temperature T ~ 162  MeV.

  9. Finite Blaschke products with prescribed critical points, Stieltjes polynomials, and moment problems

    Science.gov (United States)

    Semmler, Gunter; Wegert, Elias

    2017-09-01

    The determination of a finite Blaschke product from its critical points is a well-known problem with interrelations to several other topics. Though existence and uniqueness of solutions are established for long, we present new aspects which have not yet been explored to their full extent. In particular, we show that the following three problems are equivalent: (i) determining a finite Blaschke product from its critical points, (ii) finding the equilibrium position of moveable point charges interacting with a special configuration of fixed charges, and (iii) solving a moment problem for the canonical representation of power moments on the real axis. These equivalences are not only of theoretical interest, but also open up new perspectives for the design of algorithms. For instance, the second problem is closely linked to the determination of certain Stieltjes and Van Vleck polynomials for a second order ODE and characterizes solutions as global minimizers of an energy functional.

  10. Statistical properties of a filtered Poisson process with additive random noise: distributions, correlations and moment estimation

    International Nuclear Information System (INIS)

    Theodorsen, A; Garcia, O E; Rypdal, M

    2017-01-01

    Filtered Poisson processes are often used as reference models for intermittent fluctuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of model parameter estimation and to identify methods for distinguishing the noise types. It is shown that the probability density function and the three lowest order moments provide accurate estimations of the model parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of identifying the noise type. The number of times the signal crosses a prescribed threshold level in the positive direction also promises to be able to differentiate the noise type. (paper)

  11. Sum rules and moments for lepton-pair production. [Cross sections, Drell--Yan formula

    Energy Technology Data Exchange (ETDEWEB)

    Hwa, R.C.

    1978-01-01

    Sum rules on lepton-pair production cross sections are derived on the bases of the Drell--Yan formula and the known sum rules in leptoproduction. Also exact relations are obtained between the average transverse momenta squared of the valence quarks and moments of the dilepton cross sections. 12 references.

  12. Correlations between Optical Variability and Physical Parameters of ...

    Indian Academy of Sciences (India)

    ever, the predicted positive correlation between variability and black hole mass seems to be ... Introduction. Variability is one of the .... Accompanied by the slope b_X and y-axis intercept value a_X, the Pearson product- moment correlation ...

  13. Gross shell structure of moments of inertia

    International Nuclear Information System (INIS)

    Deleplanque, M.A.; Frauendorf, S.; Pashkevich, V.V.; Chu, S.Y.; Unzhakova, A.

    2002-01-01

    Average yrast moments of inertia at high spins, where the pairing correlations are expected to be largely absent, were found to deviate from the rigid-body values. This indicates that shell effects contribute to the moment of inertia. We discuss the gross dependence of moments of inertia and shell energies on the neutron number in terms of the semiclassical periodic orbit theory. We show that the ground-state shell energies, nuclear deformations and deviations from rigid-body moments of inertia are all due to the same periodic orbits

  14. Higher-moment measurements of net-kaon, net-charge and net-proton multiplicity distributions at STAR

    International Nuclear Information System (INIS)

    Sarkar, Amal

    2014-01-01

    In this paper, we report the measurements of the various moments, such as mean, standard deviation (σ), skewness (S) and kurtosis (κ) of the net-kaon, net-charge and net-proton multiplicity distributions at mid-rapidity in Au + Au collisions from √(s NN )=7.7 to 200 GeV with the STAR experiment at RHIC. This work has been done with the aim to locate the critical point on the QCD phase diagram. These moments and their products are related to the thermodynamic susceptibilities of conserved quantities such as net baryon number, net charge, and net strangeness as well as to the correlation length of the system which diverges in an ideal infinite thermodynamic system at the critical point. For a finite system, existing for a finite time, a non-monotonic behavior of these variables would indicate the presence of the critical point. Furthermore, we also present the moment products Sσ, κσ 2 of net-kaon, net-charge and net-proton multiplicity distributions as a function of collision centrality and energy. The energy and the centrality dependence of higher moments and their products have been compared with different models

  15. Analysis of scaled-factorial-moment data

    International Nuclear Information System (INIS)

    Seibert, D.

    1990-01-01

    We discuss the two standard constructions used in the search for intermittency, the exclusive and inclusive scaled factorial moments. We propose the use of a new scaled factorial moment that reduces to the exclusive moment in the appropriate limit and is free of undesirable multiplicity correlations that are contained in the inclusive moment. We show that there are some similarities among most of the models that have been proposed to explain factorial-moment data, and that these similarities can be used to increase the efficiency of testing these models. We begin by calculating factorial moments from a simple independent-cluster model that assumes only approximate boost invariance of the cluster rapidity distribution and an approximate relation among the moments of the cluster multiplicity distribution. We find two scaling laws that are essentially model independent. The first scaling law relates the moments to each other with a simple formula, indicating that the different factorial moments are not independent. The second scaling law relates samples with different rapidity densities. We find evidence for much larger clusters in heavy-ion data than in light-ion data, indicating possible spatial intermittency in the heavy-ion events

  16. Moment stability for a predator–prey model with parametric dichotomous noises

    International Nuclear Information System (INIS)

    Jin Yan-Fei

    2015-01-01

    In this paper, we investigate the solution moment stability for a Harrison-type predator–prey model with parametric dichotomous noises. Using the Shapiro–Loginov formula, the equations for the first-order and second-order moments are obtained and the corresponding stable conditions are given. It is found that the solution moment stability depends on the noise intensity and correlation time of noise. The first-order and second-order moments become unstable with the decrease of correlation time. That is, the dichotomous noise can improve the solution moment stability with respect to Gaussian white noise. Finally, some numerical results are presented to verify the theoretical analyses. (paper)

  17. Handling of computational in vitro/in vivo correlation problems by Microsoft Excel II. Distribution functions and moments.

    Science.gov (United States)

    Langenbucher, Frieder

    2003-01-01

    MS Excel is a useful tool to handle in vitro/in vivo correlation (IVIVC) distribution functions, with emphasis on the Weibull and the biexponential distribution, which are most useful for the presentation of cumulative profiles, e.g. release in vitro or urinary excretion in vivo, and differential profiles such as the plasma response in vivo. The discussion includes moments (AUC and mean) as summarizing statistics, and data-fitting algorithms for parameter estimation.

  18. Moments of the Wigner delay times

    International Nuclear Information System (INIS)

    Berkolaiko, Gregory; Kuipers, Jack

    2010-01-01

    The Wigner time delay is a measure of the time spent by a particle inside the scattering region of an open system. For chaotic systems, the statistics of the individual delay times (whose average is the Wigner time delay) are thought to be well described by random matrix theory. Here we present a semiclassical derivation showing the validity of random matrix results. In order to simplify the semiclassical treatment, we express the moments of the delay times in terms of correlation functions of scattering matrices at different energies. In the semiclassical approximation, the elements of the scattering matrix are given in terms of the classical scattering trajectories, requiring one to study correlations between sets of such trajectories. We describe the structure of correlated sets of trajectories and formulate the rules for their evaluation to the leading order in inverse channel number. This allows us to derive a polynomial equation satisfied by the generating function of the moments. Along with showing the agreement of our semiclassical results with the moments predicted by random matrix theory, we infer that the scattering matrix is unitary to all orders in the semiclassical approximation.

  19. Moment stability for a predator-prey model with parametric dichotomous noises

    Science.gov (United States)

    Jin, Yan-Fei

    2015-06-01

    In this paper, we investigate the solution moment stability for a Harrison-type predator-prey model with parametric dichotomous noises. Using the Shapiro-Loginov formula, the equations for the first-order and second-order moments are obtained and the corresponding stable conditions are given. It is found that the solution moment stability depends on the noise intensity and correlation time of noise. The first-order and second-order moments become unstable with the decrease of correlation time. That is, the dichotomous noise can improve the solution moment stability with respect to Gaussian white noise. Finally, some numerical results are presented to verify the theoretical analyses. Project supported by the National Natural Science Foundation of China (Grant No. 11272051).

  20. Calculation of the atomic electric dipole moment of Pb2+ induced by nuclear Schiff moment

    Science.gov (United States)

    Ramachandran, S. M.; Latha, K. V. P.; Meenakshisundaram, N.

    2017-07-01

    We report the atomic electric dipole moment induced by the P, T violating interactions in the nuclear/sub-nuclear level, for 207Pb2+ and 207Pb, owing to the recent interest in the ferroelectric crystal PbTiO3 as one of the candidates for investigating macroscopic P, T-odd effects. In this paper, we calculate the atomic electric dipole moments of 207Pb and Pb2+, parametrized in terms of the P, T-odd coupling parameter, the nuclear Schiff moment (NSM), S, in the frame-work of the coupled-perturbed Hartree-Fock theory. We estimate the Schiff moment of Pb2+ using the experimental result of a system, which is electronically similar to the Pb2+ ion. We present the dominant contributions of the electric dipole moment (EDM) matrix elements and the important correlation effects contributing to the atomic EDM of Pb2+. Our results provide the first ever calculated EDM of the Pb2+ ion, and an estimate of its NSM from which the P, T-odd energy shift in a PbTiO3 crystal can be evaluated.

  1. Moment approach to charged particle beam dynamics

    International Nuclear Information System (INIS)

    Channell, P.J.

    1983-01-01

    We have derived the hierarchy of moment equations that describes the dynamics of charged-particle beams in linear accelerators and can truncate the hierarchy at any level either by discarding higher moments or by a cumulant expansion discarding only correlation functions. We have developed a procedure for relating the density expansion linearly to the moments to any order. The relation of space-charge fields to the density has been derived; and an accurate, systematic, and computationally convenient expansion of the resultant integrals has been developed

  2. Moment of inertia and the interacting boson model

    International Nuclear Information System (INIS)

    Yoshida, N.; Sagawa, H.; Otsuka, T.; Arima, A.

    1989-01-01

    Mass-number dependence of the moment of inertia is studied in relation with the boson number in the SU(3) limit of the interacting boson model 1 (IBM-1). The analytic formula in the limit indicates the pairing correlation between nucleons is directly related to the moment of inertia in the IBM. It is shown in general that the kink of the moment of inertia coincides with the maximum boson number of each element. (author)

  3. Transverse target moments of dihadron production in semi-inclusive deep inelastic scattering at HERMES

    International Nuclear Information System (INIS)

    Gliske, Stephen V.

    2011-09-01

    Pseudo-scalar meson production in semi-inclusive deep inelastic scattering (SIDIS) at HERMES has provided essential information towards the understanding of the transverse momentum dependent structure of the proton. SIDIS dihadron (hadron pair) production also provides access to the structure of the proton and is complimentary to that provided by pseudo-scalars production, as the same parton distribution functions are involved. For example, while pion and kaon final states allow access to flavor combinations of the Sivers distribution function, SIDIS φ meson production (included in the K + K - dihadron sample) allows direct access to the Sivers function for the strange quarks. The Sivers function for strange quarks is also related to the orbital angular momentum of the gluons. In the SIDIS cross section, the distribution functions are integrated with fragmentation functions for the respective final states. These fragmentation functions yield information regarding the quark hadronization process. Of particular interest, the Lund/Artru model of fragmentation makes specific predictions regarding the relation between results for dihadron and pseudo-scalar meson production for certain transverse momentum dependent moments. This dissertation presents the first transverse momentum dependent (non-collinear) analysis of the transverse target moments in SIDIS dihadron production, extracting results from the 2002-2005 HERMES data set for π + π 0 , π + π - , π - π 0 and K + K - dihadrons. A new transverse momentum dependent Monte Carlo generator, TMDGen, is also introduced. Additionally, several theoretical developments have been completed, including a new partial wave analysis of the fragmentation functions, computation of the next-to-leading twist dihadron cross section, and the first model calculation for transverse momentum dependent dihadron fragmentation functions. (orig.)

  4. Effects of anomalous magnetic moment and temperature on pair production in an external magnetic field

    International Nuclear Information System (INIS)

    Dittrich, W.; Bauhoff, W.

    1981-01-01

    It is re-examined the problem of spontaneous pair creation in an external magnetic field. In contrast to earlier findings, it is shown that pair production does not occur due to the anomalous magnetic moment interaction. However, pairs may be observed in a situation of thermodynamic equilibrium at finite temperatures. (author)

  5. Generalized moment analysis of magnetic field correlations for accumulations of spherical and cylindrical magnetic pertubers

    Directory of Open Access Journals (Sweden)

    Felix Tobias Kurz

    2016-12-01

    Full Text Available In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.

  6. Variational local moment approach: From Kondo effect to Mott transition in correlated electron systems

    International Nuclear Information System (INIS)

    Kauch, Anna; Byczuk, Krzysztof

    2012-01-01

    The variational local moment approach (VLMA) solution of the single impurity Anderson model is presented. It generalizes the local moment approach of Logan et al. by invoking the variational principle to determine the lengths of local moments and orbital occupancies. We show that VLMA is a comprehensive, conserving and thermodynamically consistent approximation and treats both Fermi and non-Fermi liquid regimes as well as local moment phases on equal footing. We tested VLMA on selected problems. We solved the single- and multi-orbital impurity Anderson model in various regions of parameters, where different types of Kondo effects occur. The application of VLMA as an impurity solver of the dynamical mean-field theory, used to solve the multi-orbital Hubbard model, is also addressed.

  7. Table of Nuclear Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2013-12-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended value of the moment is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary reference EFG/moment references are required and their use is specified. The literature search covers the period to mid-2013. (author)

  8. Transverse target moments of dihadron production in semi-inclusive deep inelastic scattering at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Gliske, Stephen V.

    2011-09-15

    Pseudo-scalar meson production in semi-inclusive deep inelastic scattering (SIDIS) at HERMES has provided essential information towards the understanding of the transverse momentum dependent structure of the proton. SIDIS dihadron (hadron pair) production also provides access to the structure of the proton and is complimentary to that provided by pseudo-scalars production, as the same parton distribution functions are involved. For example, while pion and kaon final states allow access to flavor combinations of the Sivers distribution function, SIDIS {phi} meson production (included in the K{sup +}K{sup -} dihadron sample) allows direct access to the Sivers function for the strange quarks. The Sivers function for strange quarks is also related to the orbital angular momentum of the gluons. In the SIDIS cross section, the distribution functions are integrated with fragmentation functions for the respective final states. These fragmentation functions yield information regarding the quark hadronization process. Of particular interest, the Lund/Artru model of fragmentation makes specific predictions regarding the relation between results for dihadron and pseudo-scalar meson production for certain transverse momentum dependent moments. This dissertation presents the first transverse momentum dependent (non-collinear) analysis of the transverse target moments in SIDIS dihadron production, extracting results from the 2002-2005 HERMES data set for {pi}{sup +}{pi}{sup 0}, {pi}{sup +}{pi}{sup -}, {pi}{sup -}{pi}{sup 0} and K{sup +}K{sup -} dihadrons. A new transverse momentum dependent Monte Carlo generator, TMDGen, is also introduced. Additionally, several theoretical developments have been completed, including a new partial wave analysis of the fragmentation functions, computation of the next-to-leading twist dihadron cross section, and the first model calculation for transverse momentum dependent dihadron fragmentation functions. (orig.)

  9. An inequality between the weighted average and the rowwise correlation coefficient for proximity matrices

    NARCIS (Netherlands)

    Krijnen, WP

    De Vries (1993) discusses Pearson's product-moment correlation, Spearman's rank correlation, and Kendall's rank-correlation coefficient for assessing the association between the rows of two proximity matrices. For each of these he introduces a weighted average variant and a rowwise variant. In this

  10. AN INEQUALITY BETWEEN THE WEIGHTED AVERAGE AND THE ROWWISE CORRELATION-COEFFICIENT FOR PROXIMITY MATRICES

    NARCIS (Netherlands)

    KRIJNEN, WP

    De Vries (1993) discusses Pearson's product-moment correlation, Spearman's rank correlation, and Kendall's rank-correlation coefficient for assessing the association between the rows of two proximity matrices. For each of these he introduces a weighted average variant and a rowwise variant. In this

  11. Study of the disintegration process and of the angular moments of the excited levels of Pm-147 using spectrographic and angular correlation measurements (1963); Etude du schema de desintegration et des moments angulaires des niveaux excites du Pm 147 par des mesures de spectrographie et de correlations angulaires (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Philis, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-05-15

    A direct spectrographic study together with a manual decomposition have made it possible for us to calculate the energies and the relative intensities, together with their error, of fifteen {gamma} lines. During this work a new {gamma}{sub 1} line having an energy of 77 {+-} 2 keV and a relative intensity of 8 {+-} 1 (with respect to {gamma}{sub 2}) has been found. A spectrographic study at the coincidences has enabled us to confirm the positions of the excited levels of {sup 147}Pm. We have thus been able to place the {gamma}{sub 1} line of 77 {+-} 2 keV between the 409 and 490 keV levels. We have measured five angular correlations: W (434 - 91); W (319 - 92); W (272 - 319); W (121 - 319), W (121 - 92) with a well defined aim: that of providing the double correlation results in two triple cascades having three common levels. By using a method making it possible to isolate the parameters relative to the intermediate transition in a triple cascade, we have deduced a unique value for the angular moment, respectively 5/2, 7/2 and 5/2 for the energy levels 92 keV, 409 keV and 532 keV, and two values 5/3 or 7/2 for the 685 keV energy level. The associated mixing coefficients are: {delta}{sub (92)} = 0.18 {+-} 0.06; {delta}{sub (121)} = 0.12 {+-} 0.3; {delta}{sub (310)} = 0.38 {+-} 0.06; {delta}{sub (436)} = 0.05 {+-} 0.05 or {delta}{sub (436)} < -7; if the 685 keV level has an angular moment of 5/2, {delta}{sub (372)} = 0.16 {+-} 0.02 or -22 {+-} 2 and if the 685 keV level has an angular moment of 7/2, {delta}{sub (272)} = -0.50 {+-} 0.02. (author) [French] Une etude spectrographlque directe nous a permis de donner, par une decomposition manuelle, les energies et les intensites relatives avec leur erreur, de quinze lignes {gamma}. Au cours de cette etude une nouvelle ligne {gamma}{sub 1} d'energie 77 {+-} 2 keV et d'intensite relative 8 {+-} 1 (par rapport a {gamma}{sub 2}) a ete trouvee. Une etude spectrographique en coincidences nous a permis de confirmer les

  12. The cranking moment of inertia in a static potential

    International Nuclear Information System (INIS)

    Bengtsson, R.; Hamamoto, I.; Ibarra, R.H.

    1978-01-01

    Taking into account the self-consistency condition for the deformation, the authors estimate the cranking moment of inertia in the absence of pair-correlations for the Woods-Saxon potential and various versions of the modified oscillator potential. The authors investigate the expectation that in a static potential the moment of inertia is almost equal to the rigid-body moment of inertia at the self-consistent deformation. They examine especially the consequence of the presence of the l 2 term in the conventional modified oscillator potential. (Auth.)

  13. Vibrational transition moments of CH4 from first principles

    Science.gov (United States)

    Yurchenko, Sergei N.; Tennyson, Jonathan; Barber, Robert J.; Thiel, Walter

    2013-09-01

    New nine-dimensional (9D), ab initio electric dipole moment surfaces (DMSs) of methane in its ground electronic state are presented. The DMSs are computed using an explicitly correlated coupled cluster CCSD(T)-F12 method in conjunction with an F12-optimized correlation consistent basis set of the TZ-family. A symmetrized molecular bond representation is used to parameterise these 9D DMSs in terms of sixth-order polynomials. Vibrational transition moments as well as band intensities for a large number of IR-active vibrational bands of 12CH4 are computed by vibrationally averaging the ab initio dipole moment components. The vibrational wavefunctions required for these averages are computed variationally using the program TROVE and a new ‘spectroscopic’ 12CH4 potential energy surface. The new DMSs will be used to produce a hot line list for 12CH4.

  14. On multipole moments in general relativity

    International Nuclear Information System (INIS)

    Hoenselaers, C.

    1986-01-01

    In general situations, involving gravitational waves the question of multiple moments in general relativity restricts the author to stationary axisymmetric situations. Here it has been shown that multipole moments, a set of numbers defined at spatial infinity as far away from the source as possible, determine a solution of Einstein's equations uniquely. With the rather powerful methods for generating solutions one might hope to get solutions with predefined multipole moments. Before doing so, however, one needs an efficient algorithm for calculating the moments of a given solution. Chapter 2 deals with a conjecture pertaining to such a calculational procedure and shows it to be not true. There is another context in which multipole moments are important. Consider a system composed of several objects. To separate, if possible, the various parts of their interaction, one needs a definition for multipole moments of individual members of a many body system. In spite of the fact that there is no definition for individual moments, with the exception of mass and angular momentum, Chapter 3 shows what can be done for the double Kerr solution. The authors can identify various terms in he interaction of two aligned Kerr objects and show that gravitational spin-spin interaction is indeed proportional to the product of the angular momenta

  15. Numerically Stable Evaluation of Moments of Random Gram Matrices With Applications

    KAUST Repository

    Elkhalil, Khalil; Kammoun, Abla; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2017-01-01

    This paper focuses on the computation of the positive moments of one-side correlated random Gram matrices. Closed-form expressions for the moments can be obtained easily, but numerical evaluation thereof is prone to numerical stability, especially in high-dimensional settings. This letter provides a numerically stable method that efficiently computes the positive moments in closed-form. The developed expressions are more accurate and can lead to higher accuracy levels when fed to moment based-approaches. As an application, we show how the obtained moments can be used to approximate the marginal distribution of the eigenvalues of random Gram matrices.

  16. Numerically Stable Evaluation of Moments of Random Gram Matrices With Applications

    KAUST Repository

    Elkhalil, Khalil

    2017-07-31

    This paper focuses on the computation of the positive moments of one-side correlated random Gram matrices. Closed-form expressions for the moments can be obtained easily, but numerical evaluation thereof is prone to numerical stability, especially in high-dimensional settings. This letter provides a numerically stable method that efficiently computes the positive moments in closed-form. The developed expressions are more accurate and can lead to higher accuracy levels when fed to moment based-approaches. As an application, we show how the obtained moments can be used to approximate the marginal distribution of the eigenvalues of random Gram matrices.

  17. Higher moments of net kaon multiplicity distributions at RHIC energies for the search of QCD Critical Point at STAR

    Directory of Open Access Journals (Sweden)

    Sarkar Amal

    2013-11-01

    Full Text Available In this paper we report the measurements of the various moments mean (M, standard deviation (σ skewness (S and kurtosis (κ of the net-Kaon multiplicity distribution at midrapidity from Au+Au collisions at √sNN = 7.7 to 200 GeV in the STAR experiment at RHIC in an effort to locate the critical point in the QCD phase diagram. These moments and their products are related to the thermodynamic susceptibilities of conserved quantities such as net baryon number, net charge, and net strangeness as also to the correlation length of the system. A non-monotonic behavior of these variable indicate the presence of the critical point. In this work we also present the moments products Sσ, κσ2 of net-Kaon multiplicity distribution as a function of collision centrality and energies. The energy and the centrality dependence of higher moments of net-Kaons and their products have been compared with it0s Poisson expectation and with simulations from AMPT which does not include the critical point. From the measurement at all seven available beam energies, we find no evidence for a critical point in the QCD phase diagram for √sNN below 200 GeV.

  18. Theory of nuclear magnetic moments - LT-35

    Energy Technology Data Exchange (ETDEWEB)

    Kerman, A. K.

    1952-09-15

    The purpose of these notes is to give an account of some attempts at interpreting the observed values of nuclear magnetic moments. There is no attempt at a complete summary of the field as that would take much more space than is used here. In many cases the arguments are only outlined and references are given for those interested in further details. A discussion of the theory of nuclear magnetic moments necessitates many excursions into the details of the nuclear models because the magnetic moments have a direct bearing on the validity of these models. However the main emphasis here is on those features which tend to explain the magnetic moments and other evidence is not discussed unless it has a direct bearing on the problem. In the first part of the discussion the Shell Model of the nucleus is used, as this model seems to correlate a large body of data relating to the heavier nuclei. Included here are the modifications proposed to explain the fact that the experimental magnetic moments do not fit quantitatively with the exact predictions of the Shell Model. The next sections deal with some of the more drastic modifications introduced to explain the large nuclear quadrupole moments and the effect of these modifications on the magnetic moments. Finally we turn to more detailed investigations of the light nuclei, in particular the - Conjugate nuclei. (author)

  19. Source Determination of Red Gel Pen Inks using Raman Spectroscopy and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy combined with Pearson's Product Moment Correlation Coefficients and Principal Component Analysis.

    Science.gov (United States)

    Mohamad Asri, Muhammad Naeim; Mat Desa, Wan Nur Syuhaila; Ismail, Dzulkiflee

    2018-01-01

    The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112). © 2017 American Academy of Forensic Sciences.

  20. Optimal moment determination in POME-copula based hydrometeorological dependence modelling

    Science.gov (United States)

    Liu, Dengfeng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi

    2017-07-01

    Copula has been commonly applied in multivariate modelling in various fields where marginal distribution inference is a key element. To develop a flexible, unbiased mathematical inference framework in hydrometeorological multivariate applications, the principle of maximum entropy (POME) is being increasingly coupled with copula. However, in previous POME-based studies, determination of optimal moment constraints has generally not been considered. The main contribution of this study is the determination of optimal moments for POME for developing a coupled optimal moment-POME-copula framework to model hydrometeorological multivariate events. In this framework, margins (marginals, or marginal distributions) are derived with the use of POME, subject to optimal moment constraints. Then, various candidate copulas are constructed according to the derived margins, and finally the most probable one is determined, based on goodness-of-fit statistics. This optimal moment-POME-copula framework is applied to model the dependence patterns of three types of hydrometeorological events: (i) single-site streamflow-water level; (ii) multi-site streamflow; and (iii) multi-site precipitation, with data collected from Yichang and Hankou in the Yangtze River basin, China. Results indicate that the optimal-moment POME is more accurate in margin fitting and the corresponding copulas reflect a good statistical performance in correlation simulation. Also, the derived copulas, capturing more patterns which traditional correlation coefficients cannot reflect, provide an efficient way in other applied scenarios concerning hydrometeorological multivariate modelling.

  1. Low-energy moments of non-diagonal quark current correlators at four loops

    International Nuclear Information System (INIS)

    Maier, A.

    2015-06-01

    We complete the leading four physical terms in the low-energy expansions of heavy-light quark current correlators at four-loop order. As a by-product we reproduce the corresponding top-induced non-singlet correction to the electroweak ρ parameter.

  2. Nuclear moments

    CERN Document Server

    Kopferman, H; Massey, H S W

    1958-01-01

    Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl

  3. Wavelet-based moment invariants for pattern recognition

    Science.gov (United States)

    Chen, Guangyi; Xie, Wenfang

    2011-07-01

    Moment invariants have received a lot of attention as features for identification and inspection of two-dimensional shapes. In this paper, two sets of novel moments are proposed by using the auto-correlation of wavelet functions and the dual-tree complex wavelet functions. It is well known that the wavelet transform lacks the property of shift invariance. A little shift in the input signal will cause very different output wavelet coefficients. The autocorrelation of wavelet functions and the dual-tree complex wavelet functions, on the other hand, are shift-invariant, which is very important in pattern recognition. Rotation invariance is the major concern in this paper, while translation invariance and scale invariance can be achieved by standard normalization techniques. The Gaussian white noise is added to the noise-free images and the noise levels vary with different signal-to-noise ratios. Experimental results conducted in this paper show that the proposed wavelet-based moments outperform Zernike's moments and the Fourier-wavelet descriptor for pattern recognition under different rotation angles and different noise levels. It can be seen that the proposed wavelet-based moments can do an excellent job even when the noise levels are very high.

  4. The vector meson with anomalous magnetic moment

    International Nuclear Information System (INIS)

    Boyarkin, O.M.

    1976-01-01

    The possibility of introducing an anomalous magnetic moment into the Stuckelberg version of the charged vector meson theory is considered. It is shown that the interference of states with spins equal to one and zero is absent in the presence of an anomalous magnetic moment of a particle. The differential cross section of scattering on the Coulomb field of a nucleus is calculated, and so are the differential and integral cross sections of meson pair production on annihilation of two gamma quanta. The two-photon mechanism of production of a meson pair in colliding electron-positron beams is considered. It is shown that with any value of the anomalous magnetic moment the cross section of the esup(+)esup(-) → esup(+)esup(-)γsup(*)γsup(*) → esup(+)esup(-)Wsup(+)Wsup(-) reaction exceeds that of the esup(+)esup(-) → γsup(*) → Wsup(+)Wsup(-) at sufficiently high energies

  5. Correcting transport errors during advection of aerosol and cloud moment sequences in eulerian models

    Energy Technology Data Exchange (ETDEWEB)

    McGraw R.

    2012-03-01

    Moment methods are finding increasing usage for simulations of particle population balance in box models and in more complex flows including two-phase flows. These highly efficient methods have nevertheless had little impact to date for multi-moment representation of aerosols and clouds in atmospheric models. There are evidently two reasons for this: First, atmospheric models, especially if the goal is to simulate climate, tend to be extremely complex and take many man-years to develop. Thus there is considerable inertia to the implementation of novel approaches. Second, and more fundamental, the nonlinear transport algorithms designed to reduce numerical diffusion during advection of various species (tracers) from cell to cell, in the typically coarse grid arrays of these models, can and occasionally do fail to preserve correlations between the moments. Other correlated tracers such as isotopic abundances, composition of aerosol mixtures, hydrometeor phase, etc., are subject to this same fate. In the case of moments, this loss of correlation can and occasionally does give rise to unphysical moment sets. When this happens the simulation can come to a halt. Following a brief description and review of moment methods, the goal of this paper is to present two new approaches that both test moment sequences for validity and correct them when they fail. The new approaches work on individual grid cells without requiring stored information from previous time-steps or neighboring cells.

  6. A successful backward step correlates with hip flexion moment of supporting limb in elderly people.

    Science.gov (United States)

    Takeuchi, Yahiko

    2018-01-01

    The objective of this study was to determine the positional relationship between the center of mass (COM) and the center of pressure (COP) at the time of step landing, and to examine their relationship with the joint moments exerted by the supporting limb, with regard to factors of the successful backward step response. The study population comprised 8 community-dwelling elderly people that were observed to take successive multi steps after the landing of a backward stepping. Using a motion capture system and force plate, we measured the COM, COP and COM-COP deviation distance on landing during backward stepping. In addition, we measured the moment of the supporting limb joint during backward stepping. The multi-step data were compared with data from instances when only one step was taken (single-step). Variables that differed significantly between the single- and multi-step data were used as objective variables and the joint moments of the supporting limb were used as explanatory variables in single regression analyses. The COM-COP deviation in the anteroposterior was significantly larger in the single-step. A regression analysis with COM-COP deviation as the objective variable obtained a significant regression equation in the hip flexion moment (R2 = 0.74). The hip flexion moment of supporting limb was shown to be a significant explanatory variable in both the PS and SS phases for the relationship with COM-COP distance. This study found that to create an appropriate backward step response after an external disturbance (i.e. the ability to stop after 1 step), posterior braking of the COM by a hip flexion moment are important during the single-limbed standing phase.

  7. Factorial-moment and fractal analyses of γ families from atmospheric cascades

    International Nuclear Information System (INIS)

    Kalmakhelidze, M. E.; Roinishvili, N. N.; Svanidze, M. S.; Khizanishvili, L. A.; Chadranyan, L. Kh.

    1997-01-01

    Methods of factorial moments and fractal dimensions are used to analyze γ families from nuclear-electromagnetic cascades in the atmosphere. The analysis aims at estimating the sensitivity of these methods to multiparticle density fluctuations in γ families as considered in spaces of various variables. The mean characteristics of factorial and fractal moments in the azimuthal plane are studied and compared with those of the statistical ensemble of random families. It is shown that fluctuations of the photon distribution in the azimuthal angle Φ are of a dynamic origin. The mean model parameters are analyzed as functions of the radius vector R, an analog of pseudorapidity, and the product ER (E is the energy of an individual photon), an analog of the transverse momentum. Particle densities for two-dimensional partitions into both rings (in the radius R) and sectors (in the azimuthal angle Φ), d 2 N/dΦdR, are also considered. The distributions of various factorial and fractal features of individual γ families are compared with those for the statistical ensemble of random families. Correlations of these features for a γ family treated in terms of different variables (sectors and rings) are studied. Correlations between different factorial-fractal parameters of γ families are analyzed

  8. Combinatorial theory of the semiclassical evaluation of transport moments II: Algorithmic approach for moment generating functions

    Energy Technology Data Exchange (ETDEWEB)

    Berkolaiko, G. [Department of Mathematics, Texas A and M University, College Station, Texas 77843-3368 (United States); Kuipers, J. [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany)

    2013-12-15

    Electronic transport through chaotic quantum dots exhibits universal behaviour which can be understood through the semiclassical approximation. Within the approximation, calculation of transport moments reduces to codifying classical correlations between scattering trajectories. These can be represented as ribbon graphs and we develop an algorithmic combinatorial method to generate all such graphs with a given genus. This provides an expansion of the linear transport moments for systems both with and without time reversal symmetry. The computational implementation is then able to progress several orders further than previous semiclassical formulae as well as those derived from an asymptotic expansion of random matrix results. The patterns observed also suggest a general form for the higher orders.

  9. Unusual temperature dependence of the magnetic moment in URu2Si2

    International Nuclear Information System (INIS)

    Faak, B.; Flouquet, J.; Lejay, P.

    1994-01-01

    The influence of the sample quality on the magnetic properties of the heavy-fermion superconductor URu 2 Si 2 has been studied by elastic neutron scattering. Two single crystals prepared under identical conditions received different heat treatments. The as-grown crystal shows an unusual temperature dependence of the magnetic Bragg peak intensity. The annealed sample behaves normally. The low-temperature magnetic moment is identical for the two samples, showing that the small moment of 0.023 (3) μ B is intrinsic. By varying the instrumental resolution, we show that the ordered moment as well as the limited correlation length (200-400 A) are of static origin. The finite correlation length appears related to defects. (author). 9 refs., 1 fig

  10. Study of the disintegration process and of the angular moments of the excited levels of Pm-147 using spectrographic and angular correlation measurements (1963); Etude du schema de desintegration et des moments angulaires des niveaux excites du Pm 147 par des mesures de spectrographie et de correlations angulaires (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Philis, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-05-15

    A direct spectrographic study together with a manual decomposition have made it possible for us to calculate the energies and the relative intensities, together with their error, of fifteen {gamma} lines. During this work a new {gamma}{sub 1} line having an energy of 77 {+-} 2 keV and a relative intensity of 8 {+-} 1 (with respect to {gamma}{sub 2}) has been found. A spectrographic study at the coincidences has enabled us to confirm the positions of the excited levels of {sup 147}Pm. We have thus been able to place the {gamma}{sub 1} line of 77 {+-} 2 keV between the 409 and 490 keV levels. We have measured five angular correlations: W (434 - 91); W (319 - 92); W (272 - 319); W (121 - 319), W (121 - 92) with a well defined aim: that of providing the double correlation results in two triple cascades having three common levels. By using a method making it possible to isolate the parameters relative to the intermediate transition in a triple cascade, we have deduced a unique value for the angular moment, respectively 5/2, 7/2 and 5/2 for the energy levels 92 keV, 409 keV and 532 keV, and two values 5/3 or 7/2 for the 685 keV energy level. The associated mixing coefficients are: {delta}{sub (92)} = 0.18 {+-} 0.06; {delta}{sub (121)} = 0.12 {+-} 0.3; {delta}{sub (310)} = 0.38 {+-} 0.06; {delta}{sub (436)} = 0.05 {+-} 0.05 or {delta}{sub (436)} < -7; if the 685 keV level has an angular moment of 5/2, {delta}{sub (372)} = 0.16 {+-} 0.02 or -22 {+-} 2 and if the 685 keV level has an angular moment of 7/2, {delta}{sub (272)} = -0.50 {+-} 0.02. (author) [French] Une etude spectrographlque directe nous a permis de donner, par une decomposition manuelle, les energies et les intensites relatives avec leur erreur, de quinze lignes {gamma}. Au cours de cette etude une nouvelle ligne {gamma}{sub 1} d'energie 77 {+-} 2 keV et d'intensite relative 8 {+-} 1 (par rapport a {gamma}{sub 2}) a ete trouvee. Une etude spectrographique en coincidences nous a permis de confirmer

  11. Estimation of the biserial correlation and its sampling variance for use in meta-analysis.

    Science.gov (United States)

    Jacobs, Perke; Viechtbauer, Wolfgang

    2017-06-01

    Meta-analyses are often used to synthesize the findings of studies examining the correlational relationship between two continuous variables. When only dichotomous measurements are available for one of the two variables, the biserial correlation coefficient can be used to estimate the product-moment correlation between the two underlying continuous variables. Unlike the point-biserial correlation coefficient, biserial correlation coefficients can therefore be integrated with product-moment correlation coefficients in the same meta-analysis. The present article describes the estimation of the biserial correlation coefficient for meta-analytic purposes and reports simulation results comparing different methods for estimating the coefficient's sampling variance. The findings indicate that commonly employed methods yield inconsistent estimates of the sampling variance across a broad range of research situations. In contrast, consistent estimates can be obtained using two methods that appear to be unknown in the meta-analytic literature. A variance-stabilizing transformation for the biserial correlation coefficient is described that allows for the construction of confidence intervals for individual coefficients with close to nominal coverage probabilities in most of the examined conditions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. The method of moments and its application to the description of liquid He4

    International Nuclear Information System (INIS)

    Parlinski, K.

    1974-01-01

    The method of moments used to calculate the time dependent correlation functions is discussed. To reconstruct the approximate correlation function the finite number of the moments of a given function is needed. Every such approximation is an exact solution of the problem described by some model Hamiltonian. The formulae for any order of the approximation are given. Also described is another way of using the moments, which relies on the expansion of the Fourier transform of the correlation function into the series of the Hermitian polynomials, the coefficient of which are combinations of the moments. The method of moments was applied to the description of liquid He 4 which is at absolute zero temperature. The calculated moments of the density-density correlation function were applied to the description of the experimentally observed oscillations of width and average energy of the distribution of neutrons scattered by liquid helium as a function of the wave vector greater than 2 Angstroem -1 . Good agreement between the calculated and experimentally observed oscillations was obtained. It was also shown that the dynamics structure factor is highly asymmetrical. Using the calculated moments of the velocity-velocity correlation function, the expansion coefficients of the incoherent, double differential scattering cross-section into the series over the inverse wave vector were found up to the term of third order. The coefficients of this expansion do not depend explicitly on the relative particle occupation fraction of the zero-momentum state, i.e. the condensate. This expansion describes well the expermentally observed distributions of scattered neutrons for the wave vector 14.33 Angstroem -1 . The obtained results indicate that the inelastic neutron scattering method for high momentum transfers cannot be used as a straightforward method of measuring the relative occupation number of the zero-momentum state. The methods of elaboration of neutron scattering results at

  13. Moment-to-moment changes in feeling moved match changes in closeness, tears, goosebumps, and warmth: time series analyses.

    Science.gov (United States)

    Schubert, Thomas W; Zickfeld, Janis H; Seibt, Beate; Fiske, Alan Page

    2018-02-01

    Feeling moved or touched can be accompanied by tears, goosebumps, and sensations of warmth in the centre of the chest. The experience has been described frequently, but psychological science knows little about it. We propose that labelling one's feeling as being moved or touched is a component of a social-relational emotion that we term kama muta (its Sanskrit label). We hypothesise that it is caused by appraising an intensification of communal sharing relations. Here, we test this by investigating people's moment-to-moment reports of feeling moved and touched while watching six short videos. We compare these to six other sets of participants' moment-to-moment responses watching the same videos: respectively, judgements of closeness (indexing communal sharing), reports of weeping, goosebumps, warmth in the centre of the chest, happiness, and sadness. Our eighth time series is expert ratings of communal sharing. Time series analyses show strong and consistent cross-correlations of feeling moved and touched and closeness with each other and with each of the three physiological variables and expert-rated communal sharing - but distinctiveness from happiness and sadness. These results support our model.

  14. Seismic b-values and its correlation with seismic moment and Bouguer gravity anomaly over Indo-Burma ranges of northeast India: Tectonic implications

    Science.gov (United States)

    Bora, Dipok K.; Borah, Kajaljyoti; Mahanta, Rinku; Borgohain, Jayanta Madhab

    2018-03-01

    b-value is one of the most significant seismic parameters for describing the seismicity of a given region at a definite time window. In this study, high-resolution map of the Gutenberg-Richter b-value, seismic moment-release, Bouguer gravity anomaly and fault-plane solutions containing faulting styles are analyzed in the Indo-Burma ranges of northeast India using the unified and homogeneous part of the seismicity record in the region (January 1964-December 2016). The study region is subdivided into few square grids of geographical window size 1° × 1° and b-values are calculated in each square grid. Our goal is to explore the spatial correlations and anomalous patterns between the b-value and parameters like seismic moment release, Bouguer gravity anomaly and faulting styles that can help us to better understand the seismotectonics and the state of present-day crustal stress within the Indo-Burma region. Most of the areas show an inverse correlation between b-value and seismic moment release as well as convergence rates. While estimating the b-value as a function of depth, a sudden increase of b-value at a depth of 50-60 km was found out and the receiver function modeling confirms that this depth corresponds to the crust-mantle transition beneath the study region. The region is also associated with negative Bouguer gravity anomalies and an inverse relation is found between Gravity anomaly and b-value. Comparing b-values with different faulting styles, reveal that the areas containing low b-values show thrust mechanism, while the areas associated with intermediate b-values show strike-slip mechanism. Those areas, where the events show thrust mechanism but containing a strike-slip component has the highest b-value.

  15. Assembling Transgender Moments

    Science.gov (United States)

    Greteman, Adam J.

    2017-01-01

    In this article, the author seeks to assemble moments--scholarly, popular, and aesthetic--in order to explore the possibilities that emerge as moments collect in education's encounters with the needs, struggles, and possibilities of transgender lives and practices. Assembling moments, the author argues, illustrates the value of "moments"…

  16. Intermittency analysis of correlated data

    International Nuclear Information System (INIS)

    Wosiek, B.

    1992-01-01

    We describe the method of the analysis of the dependence of the factorial moments on the bin size in which the correlations between the moments computed for different bin sizes are taken into account. For large multiplicity nucleus-nucleus data inclusion of the correlations does not change the values of the slope parameter, but gives errors significantly reduced as compared to the case of fits with no correlations. (author)

  17. Nuclear moments of inertia at high spin

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1982-10-01

    The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei

  18. Effects of a non-standard W± magnetic moment in W± production via deep inelastic e-P scattering

    International Nuclear Information System (INIS)

    Boehm, M.; Rosado, A.

    1989-01-01

    We calculate the production of charged bosons in deep inelastic e - P scattering in the context of an electroweak model in which the vector boson self interactions may be different from those prescribed by the electroweak standard model. We present results which show the dependence of the cross section on the anomalous magnetic dipole moment κ of the W ± . We find for energies available at HERA that even small deviations from the standard model value of κ imply observable deviations in the W ± production rates. We also show that the contributions from heavy boson exchange diagrams are very important. (orig.)

  19. Multiplicity distribution and multiplicity moment of black and grey particles in high energy nucleus–nucleus interactions

    International Nuclear Information System (INIS)

    Ghosh, Dipak; Deb, Argha; Datta, Utpal; Bhattacharyya, S.

    2011-01-01

    In this paper we have studied the multiplicity distribution of black and grey particles emitted from 16 O–AgBr interactions at 2.1 AGeV and 60 AGeV. We have also calculated the multiplicity moment up to the fifth order for both the interactions and for both kinds of emitted particles. The variation of multiplicity moment with the order number has been investigated. It is seen that in the case of black particles multiplicity moment up to fourth order remains almost constant as energy increases from 2.1 AGeV to 60 AGeV. Fifth order multiplicity moment increases insignificantly with energy. However in the case of grey particles no such constancy of multiplicity moment with energy of the projectile beam is obtained. Later we have extended our study on the basis of Regge–Mueller approach to find the existence of second order correlation during the emission of black as well as the grey particles. The second Mueller moment is found to be positive and it increases as energy increases in the case of black particles. On the contrary in the case of grey particles the second Mueller moment decreases with energy. It can be concluded that as energy increases correlation among the black particles increases. On the other hand with the increase of energy correlation among the grey particles is found to diminish. (author)

  20. CP-odd Phase Correlations and Electric Dipole Moments

    CERN Document Server

    Olive, Keith A; Ritz, A; Santoso, Y; Olive, Keith A.; Pospelov, Maxim; Ritz, Adam; Santoso, Yudi

    2005-01-01

    We revisit the constraints imposed by electric dipole moments (EDMs) of nucleons and heavy atoms on new CP-violating sources within supersymmetric theories. We point out that certain two-loop renormalization group corrections induce significant mixing between the basis-invariant CP-odd phases. In the framework of the constrained minimal supersymmetric standard model (CMSSM), the CP-odd invariant related to the soft trilinear A-phase at the GUT scale, theta_A, induces non-trivial and distinct CP-odd phases for the three gaugino masses at the weak scale. The latter give one-loop contributions to EDMs enhanced by tan beta, and can provide the dominant contribution to the electron EDM induced by theta_A. We perform a detailed analysis of the EDM constraints within the CMSSM, exhibiting the reach, in terms of sparticle spectra, which may be obtained assuming generic phases, as well as the limits on the CP-odd phases for some specific parameter points where detailed phenomenological studies are available. We also i...

  1. Anomalous Quantum Correlations of Squeezed Light

    Science.gov (United States)

    Kühn, B.; Vogel, W.; Mraz, M.; Köhnke, S.; Hage, B.

    2017-04-01

    Three different noise moments of field strength, intensity, and their correlations are simultaneously measured. For this purpose a homodyne cross-correlation measurement [1] is implemented by superimposing the signal field and a weak local oscillator on an unbalanced beam splitter. The relevant information is obtained via the intensity noise correlation of the output modes. Detection details like quantum efficiencies or uncorrelated dark noise are meaningless for our technique. Yet unknown insight in the quantumness of a squeezed signal field is retrieved from the anomalous moment, correlating field strength with intensity noise. A classical inequality including this moment is violated for almost all signal phases. Precognition on quantum theory is superfluous, as our analysis is solely based on classical physics.

  2. Investigation on Thrust and Moment Coefficients of a Centrifugal Turbomachine

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2018-04-01

    Full Text Available In radial pumps and turbines, the centrifugal through-flow in both the front and the back chambers is quite common. It strongly impacts the core swirl ratio, pressure distribution, axial thrust and frictional torque. In order to investigate these relationships experimentally, a test rig was designed at the University of Duisburg-Essen and described in this paper. Based on both the experimental and numerical results, correlations are determined to predict the impacts of the centrifugal through-flow on the core swirl ratio, the thrust coefficient and the moment coefficient. Two correlations respectively are determined to associate the core swirl ratio with the local through-flow coefficient for both Batchelor type flow and Stewartson type flow. The correlations describing the thrust coefficient and the moment coefficient in a rotor-stator cavity with centripetal through-flow (Hu et al., 2017 are modified for the case of centrifugal through-flow. The Daily and Nece diagram distinguishing between different flow regimes in rotor-stator cavities is extended with a through-flow coordinate into 3D. The achieved results provide a comprehensive data base which is intended to support the calculation of axial thrust and moment coefficients during the design process of radial pumps and turbines in a more accurate manner.

  3. Locking of iridium magnetic moments to the correlated rotation of oxygen octahedra in Sr2IrO4 revealed by x-ray resonant scattering

    DEFF Research Database (Denmark)

    Boseggia, S.; Walker, H. C.; Vale, J.

    2013-01-01

    Sr2IrO4 is a prototype of the class of Mott insulators in the strong spin–orbit interaction (SOI) limit described by a Jeff = 1/2 ground state. In Sr2IrO4, the strong SOI is predicted to manifest itself in the locking of the canting of the magnetic moments to the correlated rotation by 11.8(1)° o...

  4. Correlation of recent fission product release data

    International Nuclear Information System (INIS)

    Kress, T.S.; Lorenz, R.A.; Nakamura, T.; Osborne, M.F.

    1989-01-01

    For the calculation of source terms associated with severe accidents, it is necessary to model the release of fission products from fuel as it heats and melts. Perhaps the most definitive model for fission product release is that of the FASTGRASS computer code developed at Argonne National Laboratory. There is persuasive evidence that these processes, as well as additional chemical and gas phase mass transport processes, are important in the release of fission products from fuel. Nevertheless, it has been found convenient to have simplified fission product release correlations that may not be as definitive as models like FASTGRASS but which attempt in some simple way to capture the essence of the mechanisms. One of the most widely used such correlation is called CORSOR-M which is the present fission product/aerosol release model used in the NRC Source Term Code Package. CORSOR has been criticized as having too much uncertainty in the calculated releases and as not accurately reproducing some experimental data. It is currently believed that these discrepancies between CORSOR and the more recent data have resulted because of the better time resolution of the more recent data compared to the data base that went into the CORSOR correlation. This document discusses a simple correlational model for use in connection with NUREG risk uncertainty exercises. 8 refs., 4 figs., 1 tab

  5. Estimation of the simple correlation coefficient.

    Science.gov (United States)

    Shieh, Gwowen

    2010-11-01

    This article investigates some unfamiliar properties of the Pearson product-moment correlation coefficient for the estimation of simple correlation coefficient. Although Pearson's r is biased, except for limited situations, and the minimum variance unbiased estimator has been proposed in the literature, researchers routinely employ the sample correlation coefficient in their practical applications, because of its simplicity and popularity. In order to support such practice, this study examines the mean squared errors of r and several prominent formulas. The results reveal specific situations in which the sample correlation coefficient performs better than the unbiased and nearly unbiased estimators, facilitating recommendation of r as an effect size index for the strength of linear association between two variables. In addition, related issues of estimating the squared simple correlation coefficient are also considered.

  6. Moments of structure functions in full QCD

    International Nuclear Information System (INIS)

    Dolgov, D.; Brower, R.; Capitani, S.; Negele, J.W.; Pochinsky, A.; Renner, D.; Eicker, N.; Lippert, T.; Schilling, K.; Edwards, R.G.; Heller, U.M.

    2001-01-01

    Moments of the quark density distribution, moments of the quark helicity distribution, and the tensor charge are calculated in full QCD. Calculations of matrix elements of operators from the operator product expansion have been performed on 16 3 x 32 lattices for Wilson fermions at β = 5.6 using configurations from the SESAM collaboration and at β = 5.5 using configurations from SCRI. One-loop perturbative renormalization corrections are included. Selected results are compared with corresponding quenched calculations and with calculations using cooled configurations

  7. Meta-Analysis of Correlations Among Usability Measures

    DEFF Research Database (Denmark)

    Hornbæk, Kasper Anders Søren; Effie Lai Chong, Law

    2007-01-01

    are generally low: effectiveness measures (e.g., errors) and efficiency measures (e.g., time) has a correlation of .247 ± .059 (Pearson's product-moment correlation with 95% confidence interval), efficiency and satisfaction (e.g., preference) one of .196 ± .064, and effectiveness and satisfaction one of .164......Understanding the relation between usability measures seems crucial to deepen our conception of usability and to select the right measures for usability studies. We present a meta-analysis of correlations among usability measures calculated from the raw data of 73 studies. Correlations...... ± .062. Changes in task complexity do not influence these correlations, but use of more complex measures attenuates them. Standard questionnaires for measuring satisfaction appear more reliable than homegrown ones. Measures of users' perceptions of phenomena are generally not correlated with objective...

  8. Trunk muscle cocontraction: the effects of moment direction and moment magnitude.

    Science.gov (United States)

    Lavender, S A; Tsuang, Y H; Andersson, G B; Hafezi, A; Shin, C C

    1992-09-01

    This study investigated the cocontraction of eight trunk muscles during the application of asymmetric loads to the torso. External moments of 10, 20, 30, 40, and 50 Nm were applied to the torso via a harness system. The direction of the applied moment was varied by 30 degrees increments to the subjects' right side between the sagittally symmetric orientations front and rear. Electromyographic (EMG) data from the left and right latissimus dorsi, erector spinae, external oblique, and rectus abdominus were collected from 10 subjects. The normalized EMG data were tested using multivariate and univariate analyses of variance procedures. These analyses showed significant interactions between the moment magnitude and the moment direction for seven of the eight muscles. Most of the interactions could be characterized as due to changes in muscle recruitment with changes in the direction of the external moment. Analysis of the relative activation levels, which were computed for each combination of moment magnitude and direction, indicated large changes in muscle recruitment due to asymmetry, but only small adjustments in the relative activation levels due to increased moment magnitude.

  9. Local electric dipole moments for periodic systems via density functional theory embedding.

    Science.gov (United States)

    Luber, Sandra

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  10. Local electric dipole moments for periodic systems via density functional theory embedding

    Energy Technology Data Exchange (ETDEWEB)

    Luber, Sandra, E-mail: sandra.luber@chem.uzh.ch [Institut für Chemie, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange–correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  11. Even-odd charged multiplicity distributions and energy dependence of normalized multiplicity moments in different rapidity windows

    International Nuclear Information System (INIS)

    Wu Yuanfang; Liu Lianshou

    1990-01-01

    The even and odd multiplicity distributions for hadron-hadron collision in different rapidity windows are calculated, starting from a simple picture for charge correlation with non-zero correlation length. The coincidence and separation of these distributions are explained. The calculated window-and energy-dependence of normalized moments recovered the behaviour found in experiments. A new definition for normalized moments is propossed, especially suitable for narrow rapidity windows

  12. Staff Training As Correlate Of Workers' Productivity In Selected ...

    African Journals Online (AJOL)

    Many studies have been carried out on the relationship between training and productivity of workers but none has been carried out on the correlation of training on the individual indices of productivity and workers productivity. It is against this background that this paper investigate the correlation of training on indices of ...

  13. Moments of F2 Structure Functions and Multiparton Correlations in Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, Mikhail [Moscow State Univ., Moscow (Russian Federation)

    2002-10-01

    The inclusive inelastic electron scattering o the proton was measured at five different beam energies 1.5, 2.5, 4.0, 4.2 and 4.4 GeV. The data were taken, during February-March 1999, on a liquid hydrogen target with the CLAS detector installed in Hall-B of the Thomas Jefferson National Accelerator Facility (TJNAF). The obtained high statistics and high precision data appear to be in good agreement with previously measured world data and permit to integrate experimental values of F2 over x at fixed Q2 , allowing for the first time the evaluation of its experimental moments at low and moderate values of Q2 . In a combined analysis of CLAS and world data, the Q2-evolution of the experimental moments was explored in the range from 0.3 up to 100 GeV2 . This offered a unique possibility to trace changes of the proton structure function from hard DIS down to the non-perturbative regime through the transition region, which is of particular interest for the TJNAF physics program. The obtained experimental moments allowed to perform a separation between the leading twist, calculable in the framework of the perturbative QCD (pQCD), and higher twists, treated effectively. A comparison with theoretical predictions based either on lattice QCD simulations or obtained within models of the nucleon structure may represent an important test of our understanding of the nucleon structure as observed at large wavelengths.

  14. Nuclear Anapole Moments

    Energy Technology Data Exchange (ETDEWEB)

    Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu

    2002-03-29

    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.

  15. Nuclear Anapole Moments

    International Nuclear Information System (INIS)

    Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu

    2002-01-01

    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments

  16. CP-odd phase correlations and electric dipole moments

    International Nuclear Information System (INIS)

    Olive, Keith A.; Pospelov, Maxim; Ritz, Adam; Santoso, Yudi

    2005-01-01

    We revisit the constraints imposed by electric dipole moments (EDMs) of nucleons and heavy atoms on new CP-violating sources within supersymmetric theories. We point out that certain two-loop renormalization group corrections induce significant mixing between the basis-invariant CP-odd phases. In the framework of the constrained minimal supersymmetric standard model, the CP-odd invariant related to the soft trilinear A-phase at the grand unified theory (GUT) scale, θ A , induces nontrivial and distinct CP-odd phases for the three gaugino masses at the weak scale. The latter give one-loop contributions to EDMs enhanced by tanβ, and can provide the dominant contribution to the electron EDM induced by θ A . We perform a detailed analysis of the EDM constraints within the constrained minimal supersymmetric standard model, exhibiting the reach, in terms of sparticle spectra, which may be obtained assuming generic phases, as well as the limits on the CP-odd phases for some specific parameter points where detailed phenomenological studies are available. We also illustrate how this reach will expand with results from the next generation of experiments which are currently in development

  17. Thouless-Valatin rotational moment of inertia from linear response theory

    Science.gov (United States)

    Petrík, Kristian; Kortelainen, Markus

    2018-03-01

    Spontaneous breaking of continuous symmetries of a nuclear many-body system results in the appearance of zero-energy restoration modes. These so-called spurious Nambu-Goldstone modes represent a special case of collective motion and are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total-angular-momentum operator. We examine the role and effects of the pairing correlations on the rotational characteristics of heavy deformed nuclei in order to extend our understanding of superfluidity in general. We use the finite-amplitude method of the quasiparticle random-phase approximation on top of the Skyrme energy density functional framework with the Hartree-Fock-Bogoliubov theory. We have successfully extended this formalism and established a practical method for extracting the Thouless-Valatin rotational moment of inertia from the strength function calculated in the symmetry-restoration regime. Our results reveal the relation between the pairing correlations and the moment of inertia of axially deformed nuclei of rare-earth and actinide regions of the nuclear chart. We have also demonstrated the feasibility of the method for obtaining the moment of inertia for collective Hamiltonian models. We conclude that from the numerical and theoretical perspective, the finite-amplitude method can be widely used to effectively study rotational properties of deformed nuclei within modern density functional approaches.

  18. Lepton dipole moments

    CERN Document Server

    Marciano, William J

    2010-01-01

    This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many o

  19. The moment problem

    CERN Document Server

    Schmüdgen, Konrad

    2017-01-01

    This advanced textbook provides a comprehensive and unified account of the moment problem. It covers the classical one-dimensional theory and its multidimensional generalization, including modern methods and recent developments. In both the one-dimensional and multidimensional cases, the full and truncated moment problems are carefully treated separately. Fundamental concepts, results and methods are developed in detail and accompanied by numerous examples and exercises. Particular attention is given to powerful modern techniques such as real algebraic geometry and Hilbert space operators. A wide range of important aspects are covered, including the Nevanlinna parametrization for indeterminate moment problems, canonical and principal measures for truncated moment problems, the interplay between Positivstellensätze and moment problems on semi-algebraic sets, the fibre theorem, multidimensional determinacy theory, operator-theoretic approaches, and the existence theory and important special topics of multidime...

  20. Performance Evaluation of Moment Connections of Moment Resisting Frames Against Progressive Collapse

    Directory of Open Access Journals (Sweden)

    M. Mahmoudi

    2017-02-01

    Full Text Available When a primary structural element fails due to sudden load such as explosion, the building undergoes progressive collapse. The method for design of moment connections during progressive collapse is different to seismic design of moment connections. Because in this case, the axial force on the connections makes it behave differently. The purpose of this paper is to evaluate the performance of a variety of moment connections in preventing progressive collapse in steel moment frames. To achieve this goal, three prequalified moment connections (BSEEP, BFP and WUP-W were designed according seismic codes. These moment connections were analyzed numerically using ABAQUS software for progressive collapse. The results show that the BFP connection (bolted flange plate has capacity much more than other connections because of the use of plates at the junction of beam-column.

  1. MODELING OF AN AIRPLANE WING MOMENTS INDUCED BY ATMOSPHERIC TURBULENCE

    Directory of Open Access Journals (Sweden)

    Anna Antonova

    2014-07-01

    Full Text Available We have used Diederich’s theory of wingspan average correlation functions to obtain analytical expressions for the local spectral density of aircraft wing moments induced by horizontal and vertical wind gusts. We have assumed that the correlation functions of atmospheric turbulence belong to the Bullen family which includes both partial cases of known Dryden’s model as well as von Karman’s  model.

  2. Magnetic moments of baryons

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1983-06-01

    The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties are encountered which are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing present in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks; e.g. from a pion cloud. The large magnitude of the ω - moment may indicate that the strange quark contribution to the ω moments is considerably larger than the value μ(#betta#) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the μ - moment include a value very close to -(1/2)μ(μ + ) which would indicate that strange quarks do not contribute at all to the μ moments. (author)

  3. Generalized position-momentum uncertainty products: Inclusion of moments with negative order and application to atoms

    International Nuclear Information System (INIS)

    Angulo, J. C.

    2011-01-01

    Rigorous and universal relationships among radial expectation values of any D-dimensional quantum-mechanical system are obtained, using Renyi-like position-momentum inequalities in an information-theoretical framework. Although the results are expressed in terms of four moments (two in position space and two in the momentum one), especially interesting are the cases that provide expressions of uncertainty in terms of products a > 1/a b > 1/b , widely considered in the literature, including the famous Heisenberg relationship 2 > 2 >≥D 2 /4. Improved bounds for these products have recently been provided, but are always restricted to positive orders a,b>0. The interesting part of this work are the inequalities for negative orders. A study of these relationships is carried out for atomic systems in their ground state. Some results are given in terms of relevant physical quantities, including the kinetic and electron-nucleus attraction energies, the diamagnetic susceptibility, and the height of the peak of the Compton profile, among others.

  4. Correlates of facility delivery for rural HIV-positive pregnant women enrolled in the MoMent Nigeria prospective cohort study.

    Science.gov (United States)

    Sam-Agudu, Nadia A; Isah, Christopher; Fan-Osuala, Chinenye; Erekaha, Salome; Ramadhani, Habib O; Anaba, Udochisom; Adeyemi, Olusegun A; Manji-Obadiah, Grace; Lee, Daniel; Cornelius, Llewellyn J; Charurat, Manhattan

    2017-07-14

    Low rates of maternal healthcare service utilization, including facility delivery, may impede progress in the prevention of mother-to-child transmission of HIV (PMTCT) and in reducing maternal and infant mortality. The MoMent (Mother Mentor) study investigated the impact of structured peer support on early infant diagnosis presentation and postpartum maternal retention in PMTCT care in rural Nigeria. This paper describes baseline characteristics and correlates of facility delivery among MoMent study participants. HIV-positive pregnant women were recruited at 20 rural Primary Healthcare Centers matched by antenatal care clinic volume, client HIV prevalence, and PMTCT service staffing. Baseline and delivery data were collected by participant interviews and medical record abstraction. Multivariate logistic regression with generalized estimating equation analysis was used to evaluate for correlates of facility delivery including exposure to structured (closely supervised Mentor Mother, intervention) vs unstructured (routine, control) peer support. Of 497 women enrolled, 352 (71%) were between 21 and 30 years old, 319 (64%) were Christian, 245 (49%) had received secondary or higher education, 402 (81%) were multigravidae and 299 (60%) newly HIV-diagnosed. Delivery data was available for 445 (90%) participants, and 276 (62%) of these women delivered at a health facility. Facility delivery did not differ by type of peer support; however, it was positively associated with secondary or greater education (aOR 1.9, CI 1.1-3.2) and Christian affiliation (OR 1.4, CI 1.0-2.0) and negatively associated with primigravidity (OR 0.5; 0.3-0.9) and new HIV diagnosis (OR 0.6, CI 0.4-0.9). Primary-level or lesser-educated HIV-infected pregnant women and those newly-diagnosed and primigravid should be prioritized for interventions to improve facility delivery rates and ultimately, healthy outcomes. Incremental gains in facility delivery from structured peer support appear limited

  5. The magnetic moment of the Z_c(3900) as an axialvector tetraquark state with QCD sum rules

    Science.gov (United States)

    Wang, Zhi-Gang

    2018-04-01

    In this article, we assign the Z_c^± (3900) to be the diquark-antidiquark type axialvector tetraquark state, study its magnetic moment with the QCD sum rules in the external weak electromagnetic field by carrying out the operator product expansion up to the vacuum condensates of dimension 8. We pay special attention to matching the hadron side with the QCD side of the correlation function to obtain solid duality, the routine can be applied to study other electromagnetic properties of the exotic particles.

  6. Moment methods with effective nuclear Hamiltonians; calculations of radial moments

    International Nuclear Information System (INIS)

    Belehrad, R.H.

    1981-02-01

    A truncated orthogonal polynomial expansion is used to evaluate the expectation value of the radial moments of the one-body density of nuclei. The expansion contains the configuration moments, , , and 2 >, where R/sup (k)/ is the operator for the k-th power of the radial coordinate r, and H is the effective nuclear Hamiltonian which is the sum of the relative kinetic energy operator and the Bruckner G matrix. Configuration moments are calculated using trace reduction formulae where the proton and neutron orbitals are treated separately in order to find expectation values of good total isospin. The operator averages are taken over many-body shell model states in the harmonic oscillator basis where all particles are active and single-particle orbitals through six major shells are included. The radial moment expectation values are calculated for the nuclei 16 O, 40 Ca, and 58 Ni and find that is usually the largest term in the expansion giving a large model space dependence to the results. For each of the 3 nuclei, a model space is found which gives the desired rms radius and then we find that the other 5 lowest moments compare favorably with other theoretical predictions. Finally, we use a method of Gordon (5) to employ the lowest 6 radial moment expectation values in the calculation of elastic electron scattering from these nuclei. For low to moderate momentum transfer, the results compare favorably with the experimental data

  7. Moment methods for nonlinear maps

    International Nuclear Information System (INIS)

    Pusch, G.D.; Atomic Energy of Canada Ltd., Chalk River, ON

    1993-01-01

    It is shown that Differential Algebra (DA) may be used to push moments of distributions through a map, at a computational cost per moment comparable to pushing a single particle. The algorithm is independent of order, and whether or not the map is symplectic. Starting from the known result that moment-vectors transform linearly - like a tensor - even under a nonlinear map, I suggest that the form of the moment transformation rule indicates that the moment-vectors are elements of the dual to DA-vector space. I propose several methods of manipulating moments and constructing invariants using DA. I close with speculations on how DA might be used to ''close the circle'' to solve the inverse moment problem, yielding an entirely DA-and-moment-based space-charge code. (Author)

  8. Sensitivity of the moment of inertia of neutron stars to the equation of state of neutron-rich matter

    International Nuclear Information System (INIS)

    Fattoyev, F. J.; Piekarewicz, J.

    2010-01-01

    The sensitivity of the stellar moment of inertia to the neutron-star matter equation of state is examined using accurately calibrated relativistic mean-field models. We probe this sensitivity by tuning both the density dependence of the symmetry energy and the high-density component of the equation of state, properties that are at present poorly constrained by existing laboratory data. Particularly attractive is the study of the fraction of the moment of inertia contained in the solid crust. Analytic treatments of the crustal moment of inertia reveal a high sensitivity to the transition pressure at the core-crust interface. This may suggest the existence of a strong correlation between the density dependence of the symmetry energy and the crustal moment of inertia. However, no correlation was found. We conclude that constraining the density dependence of the symmetry energy - through, for example, the measurement of the neutron skin thickness in 208 Pb - will place no significant bound on either the transition pressure or the crustal moment of inertia.

  9. Fourier-Mellin moment-based intertwining map for image encryption

    Science.gov (United States)

    Kaur, Manjit; Kumar, Vijay

    2018-03-01

    In this paper, a robust image encryption technique that utilizes Fourier-Mellin moments and intertwining logistic map is proposed. Fourier-Mellin moment-based intertwining logistic map has been designed to overcome the issue of low sensitivity of an input image. Multi-objective Non-Dominated Sorting Genetic Algorithm (NSGA-II) based on Reinforcement Learning (MNSGA-RL) has been used to optimize the required parameters of intertwining logistic map. Fourier-Mellin moments are used to make the secret keys more secure. Thereafter, permutation and diffusion operations are carried out on input image using secret keys. The performance of proposed image encryption technique has been evaluated on five well-known benchmark images and also compared with seven well-known existing encryption techniques. The experimental results reveal that the proposed technique outperforms others in terms of entropy, correlation analysis, a unified average changing intensity and the number of changing pixel rate. The simulation results reveal that the proposed technique provides high level of security and robustness against various types of attacks.

  10. Trunk muscle activation. The effects of torso flexion, moment direction, and moment magnitude.

    Science.gov (United States)

    Lavender, S; Trafimow, J; Andersson, G B; Mayer, R S; Chen, I H

    1994-04-01

    This study was performed to quantify the electromyographic trunk muscle activities in response to variations in moment magnitude and direction while in forward-flexed postures. Recordings were made over eight trunk muscles in 19 subjects who maintained forward-flexed postures of 30 degrees and 60 degrees. In each of the two flexed postures, external moments of 20 Nm and 40 Nm were applied via a chest harness. The moment directions were varied in seven 30 degrees increments to a subject's right side, such that the direction of the applied load ranged from the upper body's anterior midsagittal plane (0 degree) to the posterior midsagittal plane (180 degrees). Statistical analyses yielded significant moment magnitude by moment-direction interaction effects for the EMG output from six of the eight muscles. Trunk flexion by moment-direction interactions were observed in the responses from three muscles. In general, the primary muscle supporting the torso and the applied load was the contralateral (left) erector spinae. The level of electromyographic activity in the anterior muscles was quite low, even with the posterior moment directions.

  11. Generation of the pitch moment during the controlled flight after takeoff of fruitflies.

    Directory of Open Access Journals (Sweden)

    Mao Wei Chen

    Full Text Available In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane. This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.

  12. Generation of the pitch moment during the controlled flight after takeoff of fruitflies.

    Science.gov (United States)

    Chen, Mao Wei; Wu, Jiang Hao; Sun, Mao

    2017-01-01

    In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane). This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.

  13. Parental Socio-Economic Status as Correlate of Child Labour in Ile-Ife, Nigeria

    Science.gov (United States)

    Elegbeleye, O. S.; Olasupo, M. O.

    2012-01-01

    This study investigated the relationship between parental socio-economic status and child labour practices in Ile-Ife, Nigeria. The study employed survey method to gather data from 200 parents which constituted the study population. Pearson Product Moment Correlation and t-test statistics were used for the data analyses. The outcome of the study…

  14. Computing moment to moment BOLD activation for real-time neurofeedback

    Science.gov (United States)

    Hinds, Oliver; Ghosh, Satrajit; Thompson, Todd W.; Yoo, Julie J.; Whitfield-Gabrieli, Susan; Triantafyllou, Christina; Gabrieli, John D.E.

    2013-01-01

    Estimating moment to moment changes in blood oxygenation level dependent (BOLD) activation levels from functional magnetic resonance imaging (fMRI) data has applications for learned regulation of regional activation, brain state monitoring, and brain-machine interfaces. In each of these contexts, accurate estimation of the BOLD signal in as little time as possible is desired. This is a challenging problem due to the low signal-to-noise ratio of fMRI data. Previous methods for real-time fMRI analysis have either sacrificed the ability to compute moment to moment activation changes by averaging several acquisitions into a single activation estimate or have sacrificed accuracy by failing to account for prominent sources of noise in the fMRI signal. Here we present a new method for computing the amount of activation present in a single fMRI acquisition that separates moment to moment changes in the fMRI signal intensity attributable to neural sources from those due to noise, resulting in a feedback signal more reflective of neural activation. This method computes an incremental general linear model fit to the fMRI timeseries, which is used to calculate the expected signal intensity at each new acquisition. The difference between the measured intensity and the expected intensity is scaled by the variance of the estimator in order to transform this residual difference into a statistic. Both synthetic and real data were used to validate this method and compare it to the only other published real-time fMRI method. PMID:20682350

  15. 'Deal with It. Name It': the diagnostic moment in film.

    Science.gov (United States)

    Jutel, Thierry; Jutel, Annemarie

    2017-09-01

    The moment a serious diagnosis is announced creates an important crisis for a patient, as it shifts their sense of self and of their future potential. This essay discusses the creative representation and use of this diagnostic moment in film narratives. Using Still Alice , A Late Quartet , Wit and Cléo from 5 to 7 as examples, we describe how each of these uses the diagnostic moment in relation to narrative construction and characterisation in recognisable ways. We associate the diagnostic moment with certain narrative and visual devices that are frequently implemented in films as means for character development, and for managing the audience's empathy. This is the case whether or not the diagnosis is contested or accepted, and whether the diagnostic moment is the frame for the narrative, or a closing device. By analysing its representation in film, we emphasise the cultural significance of diagnosis as a life-transforming event. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Observations on transverse moments of pions neutral and gamma rays of intermediate mass state ∼3GeW/c2 (MIRIM) in meson multiple production

    International Nuclear Information System (INIS)

    Fauth, A.C.

    1986-01-01

    The transverse moment distribution of pions neutral of 32 mirin c-jets with ΣΕγ>20 TeV by tw methods of 2γ->Π 0 coupling. This results independ of any particle production model. A simulation of pion production by Monte Carlo method is carried out and it is shown that, the two methods provide to obtain approximately 50% of correct couplings. The form of pions neutral distribution depends weakly of the percentage of correct couplings. The pions neutral transverse moment distribution of Mirins events is obtained by a third model which is completely independent from the two first, which consists in a composition between an analytical solution and the Monte Carlo method. The results of the three methods are consistents among themselves. (M.C.K.) [pt

  17. Intermittency and correlations in hadronic $Z^0$ decays

    CERN Document Server

    Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Blobel, V.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hoch, M.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1999-01-01

    A multidimensional study of local multiplicity fluctuations and multiparticle correlations of hadrons produced in Z decays is performed. The study is based on the data sample of more than 4 million events recorded with the OPAL detector at LEP. The fluctuations and correlations are analysed in terms of the normalized scaled factorial moments and cumulants up to the fifth order. The moments are observed to have intermittency-like behaviour, which is found to be more pronounced with increasing dimension. The large data sample allows for the first time a study of the factorial cumulants in e+e- annihilation. The analysis of the cumulants shows the existence of genuine multiparticle correlations with a strong intermittency rise up to higher orders. These correlations are found to be stronger in higher dimensions. The decomposition of the factorial moments into lower-order correlations that the dynamical fluctuations have important contributions from genuine many-particle correlations. The Monte Carlo models JETSE...

  18. Jointly Production and Correlated Maintenance Optimization for Parallel Leased Machines

    Directory of Open Access Journals (Sweden)

    Tarek ASKRI

    2017-04-01

    Full Text Available This paper deals with a preventive maintenance strategy optimization correlated to production for a manufacturing system made by several parallel machines under lease contract. In order to minimize the total cost of production and maintenance by reducing the production system interruptions due to maintenance activities, a correlated group preventive maintenance policy is developed using the gravity center approach (GCA. The aim of this study is to determine an economical production plan and an optimal group preventive maintenance interval Tn at which all machines are maintained simultaneously. An analytical correlation between failure rate of machines and production level is considered and the impact of the preventive maintenance policy on the production plan is studied. Finally, the proposed maintenance policy GPM is compared with an individual simple strategy approach IPM in order to illustrate its efficiency.

  19. Injection-induced moment release can also be aseismic

    Science.gov (United States)

    McGarr, Arthur; Barbour, Andrew J.

    2018-01-01

    The cumulative seismic moment is a robust measure of the earthquake response to fluid injection for injection volumes ranging from 3100 to about 12 million m3. Over this range, the moment release is limited to twice the product of the shear modulus and the volume of injected fluid. This relation also applies at the much smaller injection volumes of the field experiment in France reported by Guglielmi, et al. (2015) and laboratory experiments to simulate hydraulic fracturing described by Goodfellow, et al. (2015). In both of these studies, the relevant moment release for comparison with the fluid injection was aseismic and consistent with the scaling that applies to the much larger volumes associated with injection-induced earthquakes with magnitudes extending up to 5.8. Neither the micro-earthquakes, at the site in France, nor the acoustic emission in the laboratory samples contributed significantly to the deformation due to fluid injection.

  20. Insights gained from relating cumulative seismic moments to fluid injection activities

    Science.gov (United States)

    McGarr, A.; Barbour, A. J.

    2017-12-01

    The three earthquakes with magnitudes of 5 or greater that were induced in Oklahoma during 2016 motivated efforts to improve our understanding of how fluid injection operations are related to earthquake activity. In this study, we have addressed the question of whether the volume of fluid injected down wells within 10 km of the mainshock of an induced earthquake sequence can account for its total moment release. Specifically, is the total moment release equal to, or less than, twice the product of the shear modulus and the total volume injected (McGarr, JGR, 2014, equation 7)? In contrast to McGarr's (2014, equation 13) relationship for the maximum moment, M0(max), the relationship for the total moment release has the advantage of being independent of the magnitude distribution. We find that the three sequences in Oklahoma in 2016, M5.1 Fairview, M5.8 Pawnee, M5.0 Cushing, and the 2011 M5.7 Prague sequence all adhere to this relationship. We also found that eight additional sequences of earthquakes induced by various fluid injection activities, widely distributed worldwide, show the same relationship between total moment-release and injected volume. Thus, for injected volumes ranging from 103 up to 107 cubic m, the moment release of an induced earthquake sequence appears to be similarly limited. These results imply that M0(max) for a sequence induced by fluid injection could be as high as twice the product of the shear modulus and the injected volume if the mainshock in the sequence accounts for nearly all of the total moment, as was the case for the 2016 Pawnee M5.8 mainshock. This new upper bound for maximum moment is twice what was proposed by McGarr (2014, equation 13). Our new results also support the assumption in our analysis that the induced earthquake rupture is localized to the seismogenic region that is weakened owing to a pore pressure increase of the order of a seismic stress drop.

  1. Photon correlation: a micrometer of the nuclear reaction

    International Nuclear Information System (INIS)

    Marques, F.M.

    1997-01-01

    The technique of intensity interferometry was largely applied to pairs of bosons produced in heavy ion collisions to study the properties of their source. Recently this technique was applied also to photons which can be considered 'natural' probes in interferometry. The analysis of the results of two experiments, namely Kr + Mi at 60 MeV/N and Ta + Au at 40 MeV/N carried out with the multidetector TAPS at GANIL has shown the complexity of the space-time characteristic of the photon source. The standard hypothesis describing the production of high energy protons (E γ > 25 MeV) as starting from p-n Bremsstrahlung exclusively in the initial superposition of the two nuclei was rejected. Actually the typical form of the correlation function in which the correlation width corresponds to the inverse of the source size, is not satisfied by any of the two systems. Only, by the taking into account in the BUU calculations the photons produced later bring near the calculations and the data. This late production could originate in the recompression of the di-nuclei system. In analogy with previous application of this technique to stellar interferometry we have studied the structure of the photon source by Monte-Carlo calculations of the correlation function. For the simple case of a binary source the correlation function is dependent on the two source distributions, relative intensity and the space-time separation of the two sources. The results of this calculations evidence the sensitivity of the photon interferometry to different reaction mechanisms by the magnitude and also the shape of the correlation function. The best agreement with the data is obtained when the two nuclear fragments emit simultaneously the photons at a moment subsequent to the reaction moment

  2. Crustal seismicity and the earthquake catalog maximum moment magnitudes (Mcmax) in stable continental regions (SCRs): correlation with the seismic velocity of the lithosphere

    Science.gov (United States)

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun

    2012-01-01

    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  3. Crustal seismicity and the earthquake catalog maximum moment magnitude (Mcmax) in stable continental regions (SCRs): Correlation with the seismic velocity of the lithosphere

    Science.gov (United States)

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun

    2012-12-01

    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  4. Nuclear moments of inertia at high spins

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1984-01-01

    For nuclei in high spin states a yrast-like part of a continuum γ-ray spectrum shows naturally how angular momentum is generated as a function of frequency. In rotational nuclei, the rotational frequency is omega = dE/dI approx. E/sub γ/2, half the collective E2 transition energy. The height of the spectrum for a rotor is proportional to dN/dE/sub γ/ = dI/4d omega. dI/d omega is a dynamic (second derivative of energy with spin) moment of inertia. It contains both alignments and collective effects and is therefore an effective moment of inertia J/sub eff//sup (2)/. It shows how much angular momentum is generated at each frequency. If the collective moment of inertia J/sub band//sup (2)/(omega) is measured (from γ-γ correlation experiments) for the same system, the collective and aligned (Δi) contributions to the increase of angular momentum ΔI in a frequency interval Δ omega can be separated: Δi/ΔI = 1 - J/sub band//sup (2)//J/sub eff//sup (2)/. This is at present the only way to extract such detailed information at the highest spin states where discrete lines cannot be resolved. An example of the spectra obtained in several Er nuclei is shown. They are plotted in units of the moment of inertia J/sub eff//sup (2)/. The high-energy part of the spectra has been corrected for incomplete feeding at these frequencies

  5. Local charge nonequilibrium and anomalous energy dependence of normalized moments in narrow rapidity windows

    International Nuclear Information System (INIS)

    Wu Yuanfang; Liu Lianshou

    1990-01-01

    From the study of even and odd multiplicity distributions for hadron-hadron collision in different rapidity windows, we propose a simple picture for charge correlation with nonzero correlation length and calculate the multiplicity distributions and the normalized moments in different rapidity windows at different energies. The results explain the experimentally observed coincidence and separation of even and odd distributions and also the anomalous energy dependence of normalized moments in narrow rapidity windows. The reason for the separation of even-odd distributions, appearing first at large multiplicities, is shown to be energy conservation. The special role of no-particle events in narrow rapidity windows is pointed out

  6. Measurements of $t\\overline{t}$ Spin Correlations in CMS

    CERN Document Server

    Beernaert, Kelly Simone

    2014-01-01

    We present an overview of the measurements of $t\\bar{t}$ spin correlations in the CMS Collaboration. We present two analyses both in the dilepton channel using proton-proton collisions at $\\sqrt{s}\\, =\\, 7$ TeV based on an integrated luminosity of 5.0 fb$^{-1}$. The spin correlations and polarization are measured using angular asymmetries. The results are consistent with unpolarized top quarks and Standard Model spin correlation. The second analysis sets a limit on the real part of the top-quark chromo-magnetic dipole moment of $-0.043\\, <\\, Re({\\hat{\\mu}}_{t})\\, <\\, 0.117$ at $95\\,%$ confidence level through the measured azimuthal angle difference between the two charged leptons from $t\\bar{t}$ production.

  7. Fen (n=1–6) clusters chemisorbed on vacancy defects in graphene: Stability, spin-dipole moment, and magnetic anisotropy

    KAUST Repository

    Haldar, Soumyajyoti

    2014-05-09

    In this work, we have studied the chemical and magnetic interactions of Fen (n=1–6) clusters with vacancy defects (monovacancy to correlated vacancies with six missing C atoms) in a graphene sheet by ab initio density functional calculations combined with Hubbard U corrections for correlated Fe-d electrons. It is found that the vacancy formation energies are lowered in the presence of Fe, indicating an easier destruction of the graphene sheet. Due to strong chemical interactions between Fe clusters and vacancies, a complex distribution of magnetic moments appear on the distorted Fe clusters which results in reduced averaged magnetic moments compared to the free clusters. In addition to that, we have calculated spin-dipole moments and magnetic anisotropy energies. The calculated spin-dipole moments arising from anisotropic spin density distributions vary between positive and negative values, yielding increased or decreased effective moments. Depending on the cluster geometry, the easy axis of magnetization of the Fe clusters shows in-plane or out-of-plane behavior.

  8. Perturbation-based moment equation approach for flow in heterogeneous porous media: applicability range and analysis of high-order terms

    International Nuclear Information System (INIS)

    Li Liyong; Tchelepi, Hamdi A.; Zhang Dongxiao

    2003-01-01

    We present detailed comparisons between high-resolution Monte Carlo simulation (MCS) and low-order numerical solutions of stochastic moment equations (SMEs) for the first and second statistical moments of pressure. The objective is to quantify the difference between the predictions obtained from MCS and SME. Natural formations with high permeability variability and large spatial correlation scales are of special interest for underground resources (e.g. oil and water). Consequently, we focus on such formations. We investigated fields with variance of log-permeability, σ Y 2 , from 0.1 to 3.0 and correlation scales (normalized by domain length) of 0.05 to 0.5. In order to avoid issues related to statistical convergence and resolution level, we used 9000 highly resolved realizations of permeability for MCS. We derive exact discrete forms of the statistical moment equations. Formulations based on equations written explicitly in terms of permeability (K-based) and log-transformed permeability (Y-based) are considered. The discrete forms are applicable to systems of arbitrary variance and correlation scales. However, equations governing a particular statistical moment depend on higher moments. Thus, while the moment equations are exact, they are not closed. In particular, the discrete form of the second moment of pressure includes two triplet terms that involve log-permeability (or permeability) and pressure. We combined MCS computations with full discrete SME equations to quantify the importance of the various terms that make up the moment equations. We show that second-moment solutions obtained using a low-order Y-based SME formulation are significantly better than those from K-based formulations, especially when σ Y 2 >1. As a result, Y-based formulations are preferred. The two triplet terms are complex functions of the variance level and correlation length. The importance (contribution) of these triplet terms increases dramatically as σ Y 2 increases above one. We

  9. Closure and ratio correlation analysis of lunar chemical and grain size data

    Science.gov (United States)

    Butler, J. C.

    1976-01-01

    Major element and major element plus trace element analyses were selected from the lunar data base for Apollo 11, 12 and 15 basalt and regolith samples. Summary statistics for each of the six data sets were compiled, and the effects of closure on the Pearson product moment correlation coefficient were investigated using the Chayes and Kruskal approximation procedure. In general, there are two types of closure effects evident in these data sets: negative correlations of intermediate size which are solely the result of closure, and correlations of small absolute value which depart significantly from their expected closure correlations which are of intermediate size. It is shown that a positive closure correlation will arise only when the product of the coefficients of variation is very small (less than 0.01 for most data sets) and, in general, trace elements in the lunar data sets exhibit relatively large coefficients of variation.

  10. Quadrupole moments of Cd and Zn nuclei: When solid-state, molecular, atomic, and nuclear theory meet

    DEFF Research Database (Denmark)

    Haas, Heinz; Sauer, Stephan P. A.; Hemmingsen, Lars Bo Stegeager

    2017-01-01

    The nuclear quadrupole moment (Q) of the 5/2+ isomeric state of 111Cd, of particular importance to the interpretation of Perturbed Angular Correlation experiments in condensed matter, was determined by combining existing PAC data with high-level ab initio (CCSD(T)) calculations for Cd-dimethyl an......The nuclear quadrupole moment (Q) of the 5/2+ isomeric state of 111Cd, of particular importance to the interpretation of Perturbed Angular Correlation experiments in condensed matter, was determined by combining existing PAC data with high-level ab initio (CCSD(T)) calculations for Cd...

  11. Upside/Downside statistical mechanics of nonequilibrium Brownian motion. I. Distributions, moments, and correlation functions of a free particle

    Science.gov (United States)

    Craven, Galen T.; Nitzan, Abraham

    2018-01-01

    Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.

  12. Characterization and Simulation of Transient Vibrations Using Band Limited Temporal Moments

    Directory of Open Access Journals (Sweden)

    David O. Smallwood

    1994-01-01

    Full Text Available A method is described to characterize shocks (transient time histories in terms of the Fourier energy spectrum and the temporal moments of the shock passed through a contiguous set of band pass filters. The product model is then used to generate of a random process as simulations that in the mean will have the same energy and moments as the characterization of the transient event.

  13. Magnetic moments in calcium isotopes via a surface-interaction experiment

    International Nuclear Information System (INIS)

    Niv, Y.; Hass, M.; Zemel, A.; Goldring, G.

    1979-01-01

    A rotation of the angular correlation of de-excitation γ-rays from 40 Ca and 44 Ca was observed in a tilted foil geometry. The signs and magnitudes of the magnetic moments of the 2 1 + of 44 Ca and of the 3 1 - level of 40 Ca were determined to be g = -0.28+-0.11 and g = +0.52+-0.18, respectively. This experiment provides further information regarding the polarization of deeply bound electronic configurations produced by a surface-interaction mechanism and demonstrates the feasibility of the present technique for measuring signs and magnitudes of magnetic moments of picosecond nuclear levels. (author)

  14. Dynamic moments of inertia in Xe, Cs and Ba nuclei

    International Nuclear Information System (INIS)

    El-Samman, H.; Barci, V.; Gizon, A.

    1984-01-01

    The γ-rays following the reactions induced by 12 C ions on 115 In, 112 , 117 , 122 Sn and 123 Sb targets have been investigated using six NaI(Tl) detectors in a two-dimensional arrangement. The collective moment of inertia I( 2 ) /sub band/ of 118 , 122 Xe, 123 Cs and 128 , 130 Ba have been extracted from the energy-correlation spectra. The behaviour of these nuclei and the observed differences are interpreted in terms of high-spin collective properties. Data are also presented on the effective moment of inertia I( 2 )/sub eff/ of 118 Xe and 130 Ba measured by sum-spectrometer techniques. 13 references

  15. Prediction for CP violation via electric dipole moment of τ lepton in γγ→τ{sup +}τ{sup −} process at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Atağ, S. [Department of Physics, Faculty of Sciences, Ankara University,06100 Tandogan, Ankara (Turkey); Gürkanlı, E. [Department of Physics, Sinop University,57000 Sinop (Turkey); Department of Physics, Faculty of Sciences, Ankara University,06100 Tandogan, Ankara (Turkey)

    2016-06-21

    Pair production of tau leptons in two photon collision γγ→τ{sup +}τ{sup −} is studied at CLIC to test CP violating QED couplings of tau leptons. CP violating effects are investigated using tau pair spin correlations which are observed through the hadronic decay of each τ into πν. Competitive bounds with previous works on the electric dipole moment from CP odd terms have been obtained.

  16. Stochastic modelling of intermittent fluctuations in the scrape-off layer: Correlations, distributions, level crossings, and moment estimation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, O. E., E-mail: odd.erik.garcia@uit.no; Kube, R.; Theodorsen, A. [Department of Physics and Technology, UiT The Arctic University of Norway, N-9037 Tromsø (Norway); Pécseli, H. L. [Physics Department, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo (Norway)

    2016-05-15

    A stochastic model is presented for intermittent fluctuations in the scrape-off layer of magnetically confined plasmas. The fluctuations in the plasma density are modeled by a super-position of uncorrelated pulses with fixed shape and duration, describing radial motion of blob-like structures. In the case of an exponential pulse shape and exponentially distributed pulse amplitudes, predictions are given for the lowest order moments, probability density function, auto-correlation function, level crossings, and average times for periods spent above and below a given threshold level. Also, the mean squared errors on estimators of sample mean and variance for realizations of the process by finite time series are obtained. These results are discussed in the context of single-point measurements of fluctuations in the scrape-off layer, broad density profiles, and implications for plasma–wall interactions due to the transient transport events in fusion grade plasmas. The results may also have wide applications for modelling fluctuations in other magnetized plasmas such as basic laboratory experiments and ionospheric irregularities.

  17. Continuous time random walk: Galilei invariance and relation for the nth moment

    International Nuclear Information System (INIS)

    Fa, Kwok Sau

    2011-01-01

    We consider a decoupled continuous time random walk model with a generic waiting time probability density function (PDF). For the force-free case we derive an integro-differential diffusion equation which is related to the Galilei invariance for the probability density. We also derive a general relation which connects the nth moment in the presence of any external force to the second moment without external force, i.e. it is valid for any waiting time PDF. This general relation includes the generalized second Einstein relation, which connects the first moment in the presence of any external force to the second moment without any external force. These expressions for the first two moments are verified by using several kinds of the waiting time PDF. Moreover, we present new anomalous diffusion behaviours for a waiting time PDF given by a product of power-law and exponential function.

  18. Electric Dipole Moments in Split Supersymmetry

    CERN Document Server

    Giudice, Gian Francesco

    2006-01-01

    We perform a quantitative study of the neutron and electron electric dipole moments (EDM) in Supersymmetry, in the limit of heavy scalars. The leading contributions arise at two loops. We give the complete analytic result, including a new contribution associated with Z-Higgs exchange, which plays an important and often leading role in the neutron EDM. The predictions for the EDM are typically within the sensitivities of the next generation experiments. We also analyse the correlation between the electron and neutron EDM, which provides a robust test of Split Supersymmetry.

  19. T violation in radiative β decay and electric dipole moments

    Directory of Open Access Journals (Sweden)

    W. Dekens

    2015-12-01

    Full Text Available In radiative β decay, T violation can be studied through a spin-independent T-odd correlation. We consider contributions to this correlation by beyond the standard model (BSM sources of T-violation, arising above the electroweak scale. At the same time such sources, parametrized by dimension-6 operators, can induce electric dipole moments (EDMs. As a consequence, the manifestations of the T-odd BSM physics in radiative β decay and EDMs are not independent. Here we exploit this connection to show that current EDM bounds already strongly constrain the spin-independent T-odd correlation in radiative β decay.

  20. T violation in radiative β decay and electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Dekens, W.; Vos, K.K., E-mail: k.k.vos@rug.nl

    2015-12-17

    In radiative β decay, T violation can be studied through a spin-independent T-odd correlation. We consider contributions to this correlation by beyond the standard model (BSM) sources of T-violation, arising above the electroweak scale. At the same time such sources, parametrized by dimension-6 operators, can induce electric dipole moments (EDMs). As a consequence, the manifestations of the T-odd BSM physics in radiative β decay and EDMs are not independent. Here we exploit this connection to show that current EDM bounds already strongly constrain the spin-independent T-odd correlation in radiative β decay.

  1. Quantum Correlation in Matrix Product States of One-Dimensional Spin Chains

    International Nuclear Information System (INIS)

    Zhu Jing-Min

    2015-01-01

    For our proposed composite parity-conserved matrix product state (MPS), if only a spin block length is larger than 1, any two such spin blocks have correlation including classical correlation and quantum correlation. Both the total correlation and the classical correlation become larger than that in any subcomponent; while the quantum correlations of the two nearest-neighbor spin blocks and the two next-nearest-neighbor spin blocks become smaller and for other conditions the quantum correlation becomes larger, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation, which deserves to be investigated in the future; and the ration of the quantum correlation to the total correlation monotonically decreases to a steady value as the spacing spin length increasing. (paper)

  2. Behaviour and production traits correlation of five breeds of sheep

    Directory of Open Access Journals (Sweden)

    Eko Handiwirawan

    2012-10-01

    Full Text Available Information about correlations among behavioral traits and production traits may facilitate using easily measured traits to be used as alternative criteria for indirect selection to improve other traits in sheep. The purpose of this study was to estimate correlations among behavioral and production traits of five breeds of sheep. A total of 128 head of weaned lambs and 168 ewes with nursing lambs of five breeds were used in this study, i.e. Barbados Black Belly Cross (BC, Composite Garut (KG, Local Garut (LG, Composite Sumatra (KS and St. Croix Cross (SC. Temperament was assessed in a test arena, for subsequent association with growth rate and ewe productivity. Analysis of variance of production and behavioral traits among breeds was carried out using PROC GLM of SAS software Ver. 9.0. PROCCORR was used to estimate correlations among production and behavioral variables. Weaned lambs that were more docile towards the observer had higher daily gains. Ewes that bleated more frequently when separated from their lamb had higher lamb weaning weights and lamb survival than ewes bleating fewer times under the same conditions. In BC ewes, a positive correlation was observed between frequency of bleats and lamb survival.

  3. Effective particle magnetic moment of multi-core particles

    Energy Technology Data Exchange (ETDEWEB)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden); Wetterskog, Erik; Svedlindh, Peter [Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lak, Aidin; Ludwig, Frank [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, D‐38106 Braunschweig Germany (Germany); IJzendoorn, Leo J. van [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Westphal, Fritz; Grüttner, Cordula [Micromod Partikeltechnologie GmbH, D ‐18119 Rostock (Germany); Gehrke, Nicole [nanoPET Pharma GmbH, D ‐10115 Berlin Germany (Germany); Gustafsson, Stefan; Olsson, Eva [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Johansson, Christer, E-mail: christer.johansson@acreo.se [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)

    2015-04-15

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  4. Effective particle magnetic moment of multi-core particles

    International Nuclear Information System (INIS)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; IJzendoorn, Leo J. van; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer

    2015-01-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm

  5. Effective particle magnetic moment of multi-core particles

    Science.gov (United States)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; van IJzendoorn, Leo J.; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer

    2015-04-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems - BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm - and one single-core particle system - SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  6. Measurement of Short Living Baryon Magnetic Moment using Bent Crystals at SPS and LHC

    CERN Document Server

    Burmistrov, L; Ivanov, Yu; Massacrier, L; Robbe, P; Scandale, W; Stocchi, A

    2016-01-01

    The magnetic moments of baryons containing u,d and s quarks have been extensively studied and measured. The experimental results are all obtained by a well-assessed method that consists in measuring the polarisation vector of the incoming particles and the precession angle when the particle is travelling through an intense magnetic field. The polarization is evaluated by analysing the angular distribution of the decay products. No measurement of magnetic moments of charm or beauty baryons (and τ leptons) has been performed so far. The main reason is the lifetimes of charm/beauty baryons, too short to measure the magnetic moment by standard techniques. Historically, the prediction of baryon magnetic moments was one of the striking successes of the quark model. The importance of the measurement of heavy quark magnetic moment is to test the possibility that the charmed and/or beauty quarks has an anomalous magnetic moment, arising if those quarks are composite objects. Measurements on magnetic moments of heav...

  7. Inhomogeneous spectral moment sum rules for the retarded Green function and self-energy of strongly correlated electrons or ultracold fermionic atoms in optical lattices

    International Nuclear Information System (INIS)

    Freericks, J. K.; Turkowski, V.

    2009-01-01

    Spectral moment sum rules are presented for the inhomogeneous many-body problem described by the fermionic Falicov-Kimball or Hubbard models. These local sum rules allow for arbitrary hoppings, site energies, and interactions. They can be employed to quantify the accuracy of numerical solutions to the inhomogeneous many-body problem such as strongly correlated multilayered devices, ultracold atoms in an optical lattice with a trap potential, strongly correlated systems that are disordered, or systems with nontrivial spatial ordering such as a charge-density wave or a spin-density wave. We also show how the spectral moment sum rules determine the asymptotic behavior of the Green function, self-energy, and dynamical mean field when applied to the dynamical mean-field theory solution of the many-body problem. In particular, we illustrate in detail how one can dramatically reduce the number of Matsubara frequencies needed to solve the Falicov-Kimball model while still retaining high precision, and we sketch how one can incorporate these results into Hirsch-Fye quantum Monte Carlo solvers for the Hubbard (or more complicated) models. Since the solution of inhomogeneous problems is significantly more time consuming than periodic systems, efficient use of these sum rules can provide a dramatic speed up in the computational time required to solve the many-body problem. We also discuss how these sum rules behave in nonequilibrium situations as well, where the Hamiltonian has explicit time dependence due to a driving field or due to the time-dependent change in a parameter such as the interaction strength or the origin of the trap potential.

  8. Multi-moment maps

    DEFF Research Database (Denmark)

    Swann, Andrew Francis; Madsen, Thomas Bruun

    2012-01-01

    We introduce a notion of moment map adapted to actions of Lie groups that preserve a closed three-form. We show existence of our multi-moment maps in many circumstances, including mild topological assumptions on the underlying manifold. Such maps are also shown to exist for all groups whose second...

  9. Concordance-based Kendall's Correlation for Computationally-Light vs. Computationally-Heavy Centrality Metrics: Lower Bound for Correlation

    Directory of Open Access Journals (Sweden)

    Natarajan Meghanathan

    2017-01-01

    Full Text Available We identify three different levels of correlation (pair-wise relative ordering, network-wide ranking and linear regression that could be assessed between a computationally-light centrality metric and a computationally-heavy centrality metric for real-world networks. The Kendall's concordance-based correlation measure could be used to quantitatively assess how well we could consider the relative ordering of two vertices vi and vj with respect to a computationally-light centrality metric as the relative ordering of the same two vertices with respect to a computationally-heavy centrality metric. We hypothesize that the pair-wise relative ordering (concordance-based assessment of the correlation between centrality metrics is the most strictest of all the three levels of correlation and claim that the Kendall's concordance-based correlation coefficient will be lower than the correlation coefficient observed with the more relaxed levels of correlation measures (linear regression-based Pearson's product-moment correlation coefficient and the network wide ranking-based Spearman's correlation coefficient. We validate our hypothesis by evaluating the three correlation coefficients between two sets of centrality metrics: the computationally-light degree and local clustering coefficient complement-based degree centrality metrics and the computationally-heavy eigenvector centrality, betweenness centrality and closeness centrality metrics for a diverse collection of 50 real-world networks.

  10. Theoretical studies of MHD plasma molecules. I. Potential energy curves and dipole moments of linear KOH

    International Nuclear Information System (INIS)

    England, W.B.

    1978-01-01

    Uncorrelated and correlated potential energy curves and dipole moments are reported for linear KOH. The compound is found to be ionic, K + OH - . Minimum energy bond lengths are R/sub KO/=4.2913 au and R/sub OH/=1.7688 au, with an estimated accuracy of 2%. The corresponding dipole moment is 3.3 au (8.46 D) with a similar accuracy estimate. This is to our knowledge the first value ever reported for the KOH dipole moment, and the large value suggests that KOH will be an effective electron scatterer in MHD plasmas

  11. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    Energy Technology Data Exchange (ETDEWEB)

    Ahlfeld, R., E-mail: r.ahlfeld14@imperial.ac.uk; Belkouchi, B.; Montomoli, F.

    2016-09-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5

  12. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    International Nuclear Information System (INIS)

    Ahlfeld, R.; Belkouchi, B.; Montomoli, F.

    2016-01-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10

  13. Effects of the racket polar moment of inertia on dominant upper limb joint moments during tennis serve.

    Science.gov (United States)

    Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël

    2014-01-01

    This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.

  14. The impact of electrostatic correlations on Dielectrophoresis of Non-conducting Particles

    Science.gov (United States)

    Alidoosti, Elaheh; Zhao, Hui

    2017-11-01

    The dipole moment of a charged, dielectric, spherical particle under the influence of a uniform alternating electric field is computed theoretically and numerically by solving the modified continuum Poisson-Nernst-Planck (PNP) equations accounting for ion-ion electrostatic correlations that is important at concentrated electrolytes (Phys. Rev. Lett. 106, 2011). The dependence on the frequency, zeta potential, electrostatic correlation lengths, and double layer thickness is thoroughly investigated. In the limit of thin double layers, we carry out asymptotic analysis to develop simple models which are in good agreement with the modified PNP model. Our results suggest that the electrostatic correlations have a complicated impact on the dipole moment. As the electrostatic correlations length increases, the dipole moment decreases, initially, reach a minimum, and then increases since the surface conduction first decreases and then increases due to the ion-ion correlations. The modified PNP model can improve the theoretical predictions particularly at low frequencies where the simple model can't qualitatively predict the dipole moment. This work was supported, in part, by NIH R15GM116039.

  15. Determination of αS from scaling violations of truncated moments of structure functions

    International Nuclear Information System (INIS)

    Forte, Stefano; Latorre, J.I.; Magnea, Lorenzo; Piccione, Andrea

    2002-01-01

    We determine the strong coupling α S (M Z ) from scaling violations of truncated moments of the nonsinglet deep inelastic structure function F 2 . Truncated moments are determined from BCDMS and NMC data using a neural network parametrization which retains the full experimental information on errors and correlations. Our method minimizes all sources of theoretical uncertainty and bias which characterize extractions of α S from scaling violations. We obtain α S (M Z )=0.124 +0.004 -0.007 (exp.) +0.003 -0.004 (th.)

  16. Puzzle of magnetic moments of Ni clusters revisited using quantum Monte Carlo method.

    Science.gov (United States)

    Lee, Hung-Wen; Chang, Chun-Ming; Hsing, Cheng-Rong

    2017-02-28

    The puzzle of the magnetic moments of small nickel clusters arises from the discrepancy between values predicted using density functional theory (DFT) and experimental measurements. Traditional DFT approaches underestimate the magnetic moments of nickel clusters. Two fundamental problems are associated with this puzzle, namely, calculating the exchange-correlation interaction accurately and determining the global minimum structures of the clusters. Theoretically, the two problems can be solved using quantum Monte Carlo (QMC) calculations and the ab initio random structure searching (AIRSS) method correspondingly. Therefore, we combined the fixed-moment AIRSS and QMC methods to investigate the magnetic properties of Ni n (n = 5-9) clusters. The spin moments of the diffusion Monte Carlo (DMC) ground states are higher than those of the Perdew-Burke-Ernzerhof ground states and, in the case of Ni 8-9 , two new ground-state structures have been discovered using the DMC calculations. The predicted results are closer to the experimental findings, unlike the results predicted in previous standard DFT studies.

  17. Cross sectional moments and portfolio returns: Evidence for select emerging markets

    Directory of Open Access Journals (Sweden)

    Sanjay Sehgal

    2016-09-01

    Full Text Available Research does not indicate a consensus on the relationship between idiosyncratic volatility and asset returns. Moreover, the role of cross sectional higher order moments in predicting market returns is relatively unexplored. We show that the cross sectional volatility measure suggested by Garcia et al. is highly correlated with alternative measures of idiosyncratic volatility constructed as variance of errors from the capital asset pricing model and the Fama French model. We find that cross sectional moments help in predicting aggregate market returns in some sample countries and also provide information for portfolio formation, which is more consistent for portfolios sorted on sensitivity to cross sectional skewness.

  18. Multivariate moment closure techniques for stochastic kinetic models

    International Nuclear Information System (INIS)

    Lakatos, Eszter; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H.

    2015-01-01

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs

  19. Multivariate moment closure techniques for stochastic kinetic models

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H., E-mail: m.stumpf@imperial.ac.uk [Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ (United Kingdom)

    2015-09-07

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.

  20. Effects of the racket polar moment of inertia on dominant upper limb joint moments during tennis serve.

    Directory of Open Access Journals (Sweden)

    Isabelle Rogowski

    Full Text Available This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2. An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.

  1. The singular multiparticle correlation function and the α-model

    International Nuclear Information System (INIS)

    Bozek, P.; Ploszajczak, M.

    1991-01-01

    The comparison is made between the two descriptions of multiparticle correlations using either the α-model or the scale-invariant distribution functions. The case of the strong and weak intermittency is discussed. These two descriptions show similar results for both the scaled factorial moments and the scaled factorial correlators. It is shown that the dimensional projection does not alter this similarity and moreover, it explains an experimentally observed difference between the slopes of factorial moments and factorial correlators. (author) 8 refs.; 3 figs

  2. Moments Method for Shell-Model Level Density

    International Nuclear Information System (INIS)

    Zelevinsky, V; Horoi, M; Sen'kov, R A

    2016-01-01

    The modern form of the Moments Method applied to the calculation of the nuclear shell-model level density is explained and examples of the method at work are given. The calculated level density practically exactly coincides with the result of full diagonalization when the latter is feasible. The method provides the pure level density for given spin and parity with spurious center-of-mass excitations subtracted. The presence and interplay of all correlations leads to the results different from those obtained by the mean-field combinatorics. (paper)

  3. Weak decays and the dynamics of heavy quark production

    International Nuclear Information System (INIS)

    Milani, P.

    1980-02-01

    The parent-child relation governing the yield of particles arising from the subsequent decay of primarily-produced hadrons is investigated in the high-Psub(T) regime. An approximation scheme is developed and applied to the study of leptons and kaons coming from charged mesons produced in hadronic collisions. Correlations of the final particles are considered and a generalised Sternheimer relation, whereby given the moments of the decay distribution, the parent correlations may be simply extracted from the decay products, is developed. Finally the predictions of QCD for heavy quark production as observed through their weak decays, are investigated. (author)

  4. Women Farmers' Contributions to Maize Production in Afijio Local ...

    African Journals Online (AJOL)

    user

    counts, percentages and mean while Pearson Product Moment Correlation and ... showed that age (r = 0.950, P<0.05), farm size (r = 0.174, P<0.05), ... literacy) be intensified, young women be encouraged to be more involved in maize ... farmers, only few of the studies actually ... socio-economic characteristics of women.

  5. Projection correlation between two random vectors.

    Science.gov (United States)

    Zhu, Liping; Xu, Kai; Li, Runze; Zhong, Wei

    2017-12-01

    We propose the use of projection correlation to characterize dependence between two random vectors. Projection correlation has several appealing properties. It equals zero if and only if the two random vectors are independent, it is not sensitive to the dimensions of the two random vectors, it is invariant with respect to the group of orthogonal transformations, and its estimation is free of tuning parameters and does not require moment conditions on the random vectors. We show that the sample estimate of the projection correction is [Formula: see text]-consistent if the two random vectors are independent and root-[Formula: see text]-consistent otherwise. Monte Carlo simulation studies indicate that the projection correlation has higher power than the distance correlation and the ranks of distances in tests of independence, especially when the dimensions are relatively large or the moment conditions required by the distance correlation are violated.

  6. Rapidity correlations in inclusive two-particle production at storage ring energies

    CERN Document Server

    Dibon, Heinz; Gottfried, Christian; Nefkens, B M K; Neuhofer, G; Niebergall, F; Regler, Meinhard; Schmidt-Parzefall, W; Schubert, K R; Schumacher, P E; Winter, Klaus

    1973-01-01

    Inclusive two-particle production in the reaction pp to gamma +ch+ (anything) has been measured at the CERN ISR for four energies ( square root s=23, 30.5, 45, and 53 GeV) at two production angles of the charged particles (ch) and at eight production angles of the gamma -rays. The rapidity correlation of the two particles is weak and of short range. The peak correlation is sigma /sub inel/(d/sup 2/ sigma /sub gamma ch//d sigma /sub gamma /d sigma /sub ch/)-1=0.62+or-0.08, the correlation range (y/sub gamma /-y/sub ch/)=1.17+or-0.05, independently of s. The phi correlation extends over a wide gap in rapidity; its strength is increasing with increasing transverse momentum. (7 refs).

  7. Measurements of DSD Second Moment Based on Laser Extinction

    Science.gov (United States)

    Lane, John E.; Jones, Linwood; Kasparis, Takis C.; Metzger, Philip

    2013-01-01

    Using a technique recently developed for estimating the density of surface dust dispersed during a rocket landing, measuring the extinction of a laser passing through rain (or dust in the rocket case) yields an estimate of the 2nd moment of the particle cloud, and rainfall drop size distribution (DSD) in the terrestrial meteorological case. With the exception of disdrometers, instruments that measure rainfall make in direct measurements of the DSD. Most common of these instruments are the rainfall rate gauge measuring the 1 1/3 th moment, (when using a D(exp 2/3) dependency on terminal velocity). Instruments that scatter microwaves off of hydrometeors, such as the WSR-880, vertical wind profilers, and microwave disdrometers, measure the 6th moment of the DSD. By projecting a laser onto a target, changes in brightness of the laser spot against the target background during rain, yield a measurement of the DSD 2nd moment, using the Beer-Lambert law. In order to detect the laser attenuation within the 8-bit resolution of most camera image arrays, a minimum path length is required, depending on the intensity of the rainfall rate. For moderate to heavy rainfall, a laser path length of 100 m is sufficient to measure variations in optical extinction using a digital camera. A photo-detector could replace the camera, for automated installations. In order to spatially correlate the 2nd moment measurements to a collocated disdrometer or tipping bucket, the laser's beam path can be reflected multiple times using mirrors to restrict the spatial extent of the measurement. In cases where a disdrometer is not available, complete DSD estimates can be produced by parametric fitting of DSD model to the 2nd moment data in conjunction with tipping bucket data. In cases where a disdrometer is collocated, the laser extinction technique may yield a significant improvement to insitu disdrometer validation and calibration strategies

  8. Is there a hard gluonic contribution to the first moment of g1?

    International Nuclear Information System (INIS)

    Bodwin, G.T.; Qiu, Jianwei

    1990-01-01

    We show that the size of the hard gluonic contribution to the first moment of the proton's spin-dependent structure function g 1 is entirely a matter of the convention used in defining the quark distributions. If the UV regulator for the spin-dependent quark distributions respects the gauge invariance of Green's functions (allows shifts of loop momenta) and respects the analyticity structure of the unregulated distributions, then the hard gluonic contribution to the first moment of g 1 vanishes. This is the case, for example, in dimensional regularization. By relaxing the requirement that the regulator allow shifts of loop moments, we are able to obtain a nonvanishing hard gluonic contribution to the first moment of g 1 . However, the first moments of the resulting quark distributions correspond to matrix elements that are either gauge variant or involve nonlocal operators and, hence, have no analogue in the standard operator-product expansion. 11 refs., 2 figs

  9. An Evaluation of the Correlation between the Free Moments Applied on the Lower Extremity and the Knee Extensor Mechanism Force in Pronated Foot Subjects during the Stance Phase of Gait

    Directory of Open Access Journals (Sweden)

    Farzaneh Yazdani

    2016-12-01

    Full Text Available Background: Due to the rotatory nature of the excessive subtalar pronation and the possible impairment of the tibial rotation-knee flexion mechanism, changes of the free moment (FM and changes of the extensor mechanism force are expected in hyper-pronated foot subjects. The purpose of this study was to evaluate the correlation between the FM applied on the lower extremity and the knee extensor mechanism force in subjects with flexible pronated feet. Methods: Fifteen asymptomatic female subjects (21.32±1.66 y, 56.30±6.08 kg, 159±6.3 cm participated in the study. Excessive subtalar pronation was determined by measuring the resting calcaneal stance position (RCSP in the frontal plane during weight bearing. A neutrally aligned foot was defined as having an RCSP between 2° of inversion and 2° of eversion. On the other hand, a flat foot had an RCSP of more than or equal to 4° of eversion. Both kinetic and kinematic data were collected using a six-camera motion analysis system and a single force plate. Three successful barefoot walking trials were recorded at selfselected speeds. The extensor mechanism force and the adductory component of the free moment (ADD FM were calculated. The correlation between the ADD FM and the knee extensor mechanism force was examined using the Pearson correlation test. Results: The Pearson correlation analysis showed a high positive correlation between the ADD FM and the extensor mechanism force (r=0.917, P<0.001. Conclusion: Excessive subtalar pronation, along with a possible impairment of the tibial rotation-knee flexion mechanism, may affect the extensor mechanism force at the knee joint. From a clinical perspective, the possible biomechanical linkage between the knee and the foot complex in the physical examination and treatment of patients should be considered.

  10. Correlation Coefficients: Appropriate Use and Interpretation.

    Science.gov (United States)

    Schober, Patrick; Boer, Christa; Schwarte, Lothar A

    2018-05-01

    Correlation in the broadest sense is a measure of an association between variables. In correlated data, the change in the magnitude of 1 variable is associated with a change in the magnitude of another variable, either in the same (positive correlation) or in the opposite (negative correlation) direction. Most often, the term correlation is used in the context of a linear relationship between 2 continuous variables and expressed as Pearson product-moment correlation. The Pearson correlation coefficient is typically used for jointly normally distributed data (data that follow a bivariate normal distribution). For nonnormally distributed continuous data, for ordinal data, or for data with relevant outliers, a Spearman rank correlation can be used as a measure of a monotonic association. Both correlation coefficients are scaled such that they range from -1 to +1, where 0 indicates that there is no linear or monotonic association, and the relationship gets stronger and ultimately approaches a straight line (Pearson correlation) or a constantly increasing or decreasing curve (Spearman correlation) as the coefficient approaches an absolute value of 1. Hypothesis tests and confidence intervals can be used to address the statistical significance of the results and to estimate the strength of the relationship in the population from which the data were sampled. The aim of this tutorial is to guide researchers and clinicians in the appropriate use and interpretation of correlation coefficients.

  11. Measuring magnetic correlations in nanoparticle assemblies

    DEFF Research Database (Denmark)

    Beleggia, Marco; Frandsen, Cathrine

    2014-01-01

    We illustrate how to extract correlations between magnetic moments in assemblies of nanoparticles from, e.g., electron holography data providing the combined knowledge of particle size distribution, inter-particle distances, and magnitude and orientation of each magnetic moment within...... a nanoparticle superstructure, We show, based on simulated data, how to build a radial/angular pair distribution function f(r,θ) encoding the spatial and angular difference between every pair of magnetic moments. A scatter-plot of f(r,θ) reveals the degree of structural and magnetic order present, and hence...

  12. Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States

    Science.gov (United States)

    Zhu, Jing-Min

    2016-09-01

    We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.

  13. Moments of generalized Husimi distributions and complexity of many-body quantum states

    International Nuclear Information System (INIS)

    Sugita, Ayumu

    2003-01-01

    We consider generalized Husimi distributions for many-body systems, and show that their moments are good measures of complexity of many-body quantum states. Our construction of the Husimi distribution is based on the coherent state of the single-particle transformation group. Then the coherent states are independent-particle states, and, at the same time, the most localized states in the Husimi representation. Therefore delocalization of the Husimi distribution, which can be measured by the moments, is a sign of many-body correlation (entanglement). Since the delocalization of the Husimi distribution is also related to chaoticity of the dynamics, it suggests a relation between entanglement and chaos. Our definition of the Husimi distribution can be applied not only to systems of distinguishable particles, but also to those of identical particles, i.e., fermions and bosons. We derive an algebraic formula to evaluate the moments of the Husimi distribution

  14. W-boson electric dipole moment

    International Nuclear Information System (INIS)

    He, X.; McKellar, B.H.J.

    1990-01-01

    The W-boson electric dipole moment is calculated in the SU(3) C xSU(2) L xU(1) Y model with several Higgs-boson doublets. Using the constraint on the CP-violating parameters from the experimental upper bound of the neutron electric dipole moment, we find that the W-boson electric dipole moment is constrained to be less than 10 -4

  15. Sugarcane productivity correlated with physical-chemical attributes to create soil management zone

    Directory of Open Access Journals (Sweden)

    Flávio Carlos Dalchiavon

    2013-10-01

    Full Text Available The socioeconomic importance of sugar cane in Brazil is unquestionable because it is the raw material for the production of ethanol and sugar. The accurate spatial intervention in the management of the crop, resulting zones of soil management, increases productivity as well as its agricultural yields. The spatial and Person's correlations between sugarcane attributes and physico-chemical attributes of a Typic Tropustalf were studied in the growing season of 2009, in Suzanápolis, State of São Paulo, Brazil (20°28'10'' S lat.; 50°49'20'' W long., in order to obtain the one that best correlates with agricultural productivity. Thus, the geostatistical grid with 120 sampling points was installed to soil and data collection in a plot of 14.6 ha with second crop sugarcane. Due to their substantial and excellent linear and spatial correlations with the productivity of the sugarcane, the population of plants and the organic matter content of the soil, by evidencing substantial correlations, linear and spatial, with the productivity of sugarcane, were indicators of management zones strongly attached to such productivity.

  16. Reconstruction of convex bodies from moments

    DEFF Research Database (Denmark)

    Hörrmann, Julia; Kousholt, Astrid

    We investigate how much information about a convex body can be retrieved from a finite number of its geometric moments. We give a sufficient condition for a convex body to be uniquely determined by a finite number of its geometric moments, and we show that among all convex bodies, those which......- rithm that approximates a convex body using a finite number of its Legendre moments. The consistency of the algorithm is established using the stabil- ity result for Legendre moments. When only noisy measurements of Legendre moments are available, the consistency of the algorithm is established under...

  17. Magnetic moments revisited

    International Nuclear Information System (INIS)

    Towner, I.S.; Khanna, F.C.

    1984-01-01

    Consideration of core polarization, isobar currents and meson-exchange processes gives a satisfactory understanding of the ground-state magnetic moments in closed-shell-plus (or minus)-one nuclei, A = 3, 15, 17, 39 and 41. Ever since the earliest days of the nuclear shell model the understanding of magnetic moments of nuclear states of supposedly simple configurations, such as doubly closed LS shells +-1 nucleon, has been a challenge for theorists. The experimental moments, which in most cases are known with extraordinary precision, show a small yet significant departure from the single-particle Schmidt values. The departure, however, is difficult to evaluate precisely since, as will be seen, it results from a sensitive cancellation between several competing corrections each of which can be as large as the observed discrepancy. This, then, is the continuing fascination of magnetic moments. In this contribution, we revisit the subjet principally to identify the role played by isobar currents, which are of much concern at this conference. But in so doing we warn quite strongly of the dangers of considering just isobar currents in isolation; equal consideration must be given to competing processes which in this context are the mundane nuclear structure effects, such as core polarization, and the more popular meson-exchange currents

  18. Moment invariants for particle beams

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Overley, M.S.

    1988-01-01

    The rms emittance is a certain function of second moments in 2-D phase space. It is preserved for linear uncoupled (1-D) motion. In this paper, the authors present new functions of moments that are invariants for coupled motion. These invariants were computed symbolically using a computer algebra system. Possible applications for these invariants are discussed. Also, approximate moment invariants for nonlinear motion are presented

  19. Moment magnitude scale

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, T.C.; Kanamori, H.

    1979-05-10

    The nearly conincident forms of the relations between seismic moment M/sub o/ and the magnitudes M/sub L/, M/sub s/, and M/sub w/ imply a moment magnitude scale M=2/3 log M/sub o/-10.7 which is uniformly valid for 3< or approx. =M/sub L/< or approx. = 7, 5 < or approx. =M/sub s/< or approx. =7 1/2 and M/sub w/> or approx. = 7 1/2.

  20. Linking environment-productivity trade-offs and correlated uncertainties: Greenhouse gas emissions and crop productivity in paddy rice production systems

    International Nuclear Information System (INIS)

    Hayashi, Kiyotada; Nagumo, Yoshifumi; Domoto, Akiko

    2016-01-01

    In comparative life cycle assessments of agricultural production systems, analyses of both the trade-offs between environmental impacts and crop productivity and of the uncertainties specific to agriculture such as fluctuations in greenhouse gas (GHG) emissions and crop yields are crucial. However, these two issues are usually analyzed separately. In this paper, we present a framework to link trade-off and uncertainty analyses; correlated uncertainties are integrated into environment-productivity trade-off analyses. We compared three rice production systems in Japan: a system using a pelletized, nitrogen-concentrated organic fertilizer made from poultry manure using closed-air composting techniques (high-N system), a system using a conventional organic fertilizer made from poultry manure using open-air composting techniques (low-N system), and a system using a chemical compound fertilizer (conventional system). We focused on two important sources of uncertainties in paddy rice cultivation—methane emissions from paddy fields and crop yields. We found trade-offs between the conventional and high-N systems and the low-N system and the existence of positively correlated uncertainties in the conventional and high-N systems. We concluded that our framework is effective in recommending the high-N system compared with the low-N system, although the performance of the former is almost the same as the conventional system. - Highlights: • Correlated uncertainties were integrated into environment-productivity trade-offs. • Life cycle GHG emissions and crop yields were analyzed using field and survey data. • Three rice production systems using chemical or organic fertilizers were compared. • There were portfolio (insurance) effects in matured technologies. • Analysis of trade-offs and correlated uncertainties will be useful for decisions.

  1. Linking environment-productivity trade-offs and correlated uncertainties: Greenhouse gas emissions and crop productivity in paddy rice production systems

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kiyotada, E-mail: hayashi@affrc.go.jp [Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan); Nagumo, Yoshifumi [Crop Research Center, Niigata Agricultural Research Institute, 857 Nagakura-machi, Nagaoka, Niigata 940-0826 (Japan); Domoto, Akiko [Mie Prefecture Agricultural Research Institute, 530 Kawakita-cho, Ureshino, Matsusaka, Mie 515-2316 (Japan)

    2016-11-15

    In comparative life cycle assessments of agricultural production systems, analyses of both the trade-offs between environmental impacts and crop productivity and of the uncertainties specific to agriculture such as fluctuations in greenhouse gas (GHG) emissions and crop yields are crucial. However, these two issues are usually analyzed separately. In this paper, we present a framework to link trade-off and uncertainty analyses; correlated uncertainties are integrated into environment-productivity trade-off analyses. We compared three rice production systems in Japan: a system using a pelletized, nitrogen-concentrated organic fertilizer made from poultry manure using closed-air composting techniques (high-N system), a system using a conventional organic fertilizer made from poultry manure using open-air composting techniques (low-N system), and a system using a chemical compound fertilizer (conventional system). We focused on two important sources of uncertainties in paddy rice cultivation—methane emissions from paddy fields and crop yields. We found trade-offs between the conventional and high-N systems and the low-N system and the existence of positively correlated uncertainties in the conventional and high-N systems. We concluded that our framework is effective in recommending the high-N system compared with the low-N system, although the performance of the former is almost the same as the conventional system. - Highlights: • Correlated uncertainties were integrated into environment-productivity trade-offs. • Life cycle GHG emissions and crop yields were analyzed using field and survey data. • Three rice production systems using chemical or organic fertilizers were compared. • There were portfolio (insurance) effects in matured technologies. • Analysis of trade-offs and correlated uncertainties will be useful for decisions.

  2. Higher genus correlators from the hermitian one-matrix model

    International Nuclear Information System (INIS)

    Ambjoern, J.; Chekhov, L.; Makeenko, Yu.

    1992-01-01

    We develop an iterative algorithm for the genus expansion of the hermitian NxN one-matrix model (is the Penner model in an external field). By introducing moments of the external field, we prove that the genus g contribution to the m-loop correlator depends only on 3g-2+m lower moments (3g-2 for the partition function). We present the explicit results for the partition function and the one-loop correlator in genus one. We compare the correlators for the hermitian one-matrix model with those at zero momenta for c=1 CFT and show an agreement of the one-loop correlators for genus zero. (orig.)

  3. Magnetic Moment of $^{59}$Cu

    CERN Multimedia

    2002-01-01

    Experiment IS358 uses the intense and pure beams of copper isotopes provided by the ISOLDE RILIS (resonance ionization laser ion source). The isotopes are implanted and oriented in the low temperature nuclear orientation set-up NICOLE. Magnetic moments are measured by $\\beta$-NMR. Copper (Z=29), with a single proton above the proton-magic nickel isotopes provides an ideal testground for precise shell model calculations of magnetic moments and their experimental verification. In the course of our experiments we already determined the magnetic moments of $^{67}$Ni, $^{67}$Cu, $^{68g}$Cu, $^{69}$Cu and $^{71}$Cu which provide important information on the magicity of the N=40 subshell closure. In 2001 we plan to conclude our systematic investigations by measuring the magnetic moment of the neutron-deficient isotope $^{59}$Cu. This will pave the way for a subsequent study of the magnetic moment of $^{57}$Cu with a complementary method.

  4. Energy transfer moments in thermalization; Les moments dei transfert d'energie en thermalisation

    Energy Technology Data Exchange (ETDEWEB)

    Soule, J L; Pillard, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    For all moderators of the 'incoherent gaussian' type, it is possible to calculate, at any temperature, the energy transfer moments as a function of the incident energy without having to use the differential sections. Integral formulae are derived for the integral cross-section, the first and the second moment, which make it possible to tabulate directly these three functions in a few minutes calculation on IBM 7094, for the most part models proposed in the literature for the common moderators. (authors) [French] Pour tous les moderateurs de type 'incoherent gaussien' on peut calculer, a n'importe quelle temperature, les moments de transfert d'energie en fonction de l'energie incidente, sans passer par l'intermediaire des sections differentielles. On developpe des formules integrales pour la section efficace integrale, le premier et le second moment, qui permettent de tabuler directement ces trois fonctions en quelques minutes de calcul sur IBM 7094, pour la plupart des modeles proposes dans la litterature pour les moderateurs usuels. (auteurs)

  5. CORRELATION OF PHYSICAL ACTIVITY LEVEL WITH BONE MINERAL DENSITY, CARDIO-RESPIRATORY FITNESS AND BODY COMPOSITION IN POST-MENOPAUSAL WOMEN

    Directory of Open Access Journals (Sweden)

    Niyati N Khona

    2017-09-01

    Full Text Available Background: Due to the hormonal changes in postmenopausal women they are prone for many complications like increased CVD risk factors, osteoporosis, obesity, mood swings and urinary incontinence. Physical inactivity in postmenopausal women leads to higher risk of developing CVD and osteoporosis. The objective was to find out the correlation of physical activity level with BMD, cardio-respiratory fitness and body composition in post-menopausal women Methods: 42 postmenopausal women were included. A detailed clinical evaluation with physical activity level (IPAQ-METS-mins/week, , BMD ( T-Scores, body composition (BMI, waist circumference, BIA & Skin fold calliper for fat %, cardio-respiratory fitness was measured by Balke protocol and VO2peak (ml/kg/min is estimated. Correlation of physical activity level with BMD, cardio-respiratory fitness and body composition were analysed using “Pearson’s product moment correlation co-efficient and Spearman’s rho.” Results: Spearman’s rank correlation rho for IPAQ with VO2 peak was 0.420,BMI was -0.388 and visceral fat was -0.384 indicating moderate positive correlation between IPAQ and cardio-respiratory fitness and weak negative correlation between IPAQ and BMI and visceral fat. Pearson’s product moment correlation coefficient of IPAQ with BMD was 0.147, body fat was -0.234 and waist circumference was -0.256 indicating no correlation. P value was significant for correlation of IPAQ with CRF (0.006, BMI (0.011 and Visceral fat (0.012. Conclusion: There is moderate positive correlation between IPAQ and cardio-respiratory fitness, weak negative correlation between IPAQ and BMI and visceral fat and no correlation between IPAQ and BMD, body fat and waist circumference

  6. Study on the dipole moment of asphaltene molecules through dielectric measuring

    KAUST Repository

    Zhang, Long Li; Yang, Chao He; Wang, Ji Qian; Yang, Guo Hua; Li, Li; Li, Yan Vivian; Cathles, Lawrence

    2015-01-01

    The polarity of asphaltenes influences production, transportation, and refining of heavy oils. However, the dipole moment of asphaltene molecules is difficult to measure due to their complex composition and electromagnetic opaqueness. In this work, we present a convenient and efficient way to determine the dipole moment of asphaltene in solution by dielectric measurements alone without measurement of the refractive index. The dipole moment of n-heptane asphaltenes of Middle East atmospheric residue (MEAR) and Ta-He atmospheric residue (THAR) are measured within the temperature range of -60°C to 20°C. There is one dielectric loss peak in the measured solutions of the two types of asphaltene at the temperatures of -60°C or -40°C, indicating there is one type of dipole in the solution. Furthermore, there are two dielectric loss peaks in the measured solutions of the two kinds of asphaltene when the temperature rises above -5°C, indicating there are two types of dipoles corresponding to the two peaks. This phenomenon indicates that as the temperature increases above -5°C, the asphaltene molecules aggregate and present larger dipole moment values. The dipole moments of MEAR C7-asphaltene aggregates are up to 5 times larger than those before aggregation. On the other hand, the dipole moments of the THAR C7-asphaltene aggregates are only 3 times larger than those before aggregation. It will be demonstrated that this method is capable of simultaneously measuring multi dipoles in one solution, instead of obtaining only the mean dipole moment. In addition, this method can be used with a wide range of concentrations and temperatures.

  7. Angular Momentum Transfer and Fractional Moment of Inertia in Pulsar Glitches

    International Nuclear Information System (INIS)

    Eya, I. O.; Urama, J. O.; Chukwude, A. E.

    2017-01-01

    We use the Jodrell Bank Observatory glitch database containing 472 glitches from 165 pulsars to investigate the angular momentum transfer during rotational glitches in pulsars. Our emphasis is on pulsars with at least five glitches, of which there are 26 that exhibit 261 glitches in total. This paper identifies four pulsars in which the angular momentum transfer, after many glitches, is almost linear with time. The Lilliefore test on the cumulative distribution of glitch spin-up sizes in these glitching pulsars shows that glitch sizes in 12 pulsars are normally distributed, suggesting that their glitches originate from the same momentum reservoir. In addition, the distribution of the fractional moment of inertia (i.e., the ratio of the moment of inertia of neutron star components that are involved in the glitch process) have a single mode, unlike the distribution of fractional glitch size (Δ ν / ν ), which is usually bimodal. The mean fractional moment of inertia in the glitching pulsars we sampled has a very weak correlation with the pulsar spin properties, thereby supporting a neutron star interior mechanism for the glitch phenomenon.

  8. Angular Momentum Transfer and Fractional Moment of Inertia in Pulsar Glitches

    Energy Technology Data Exchange (ETDEWEB)

    Eya, I. O.; Urama, J. O.; Chukwude, A. E., E-mail: innocent.eya@unn.edu.ng, E-mail: innocent.eya@gmail.com [Department of Physics and Astronomy, University of Nigeria, Nsukka, Enugu State (Nigeria)

    2017-05-01

    We use the Jodrell Bank Observatory glitch database containing 472 glitches from 165 pulsars to investigate the angular momentum transfer during rotational glitches in pulsars. Our emphasis is on pulsars with at least five glitches, of which there are 26 that exhibit 261 glitches in total. This paper identifies four pulsars in which the angular momentum transfer, after many glitches, is almost linear with time. The Lilliefore test on the cumulative distribution of glitch spin-up sizes in these glitching pulsars shows that glitch sizes in 12 pulsars are normally distributed, suggesting that their glitches originate from the same momentum reservoir. In addition, the distribution of the fractional moment of inertia (i.e., the ratio of the moment of inertia of neutron star components that are involved in the glitch process) have a single mode, unlike the distribution of fractional glitch size (Δ ν / ν ), which is usually bimodal. The mean fractional moment of inertia in the glitching pulsars we sampled has a very weak correlation with the pulsar spin properties, thereby supporting a neutron star interior mechanism for the glitch phenomenon.

  9. Electric transition dipole moment in pre-Born-Oppenheimer molecular structure theory.

    Science.gov (United States)

    Simmen, Benjamin; Mátyus, Edit; Reiher, Markus

    2014-10-21

    This paper presents the calculation of the electric transition dipole moment in a pre-Born-Oppenheimer framework. Electrons and nuclei are treated equally in terms of the parametrization of the non-relativistic total wave function, which is written as a linear combination of basis functions constructed from explicitly correlated Gaussian functions and the global vector representation. The integrals of the electric transition dipole moment are derived corresponding to these basis functions in both the length and the velocity representation. The calculations are performed in laboratory-fixed Cartesian coordinates without relying on coordinates which separate the center of mass from the translationally invariant degrees of freedom. The effect of the overall motion is eliminated through translationally invariant integral expressions. The electric transition dipole moment is calculated between two rovibronic levels of the H2 molecule assignable to the lowest rovibrational states of the X (1)Σ(g)(+) and B (1)Σ(u)(+) electronic states in the clamped-nuclei framework. This is the first evaluation of this quantity in a full quantum mechanical treatment without relying on the Born-Oppenheimer approximation.

  10. Electric moments in molecule interferometry

    International Nuclear Information System (INIS)

    Eibenberger, Sandra; Gerlich, Stefan; Arndt, Markus; Tuexen, Jens; Mayor, Marcel

    2011-01-01

    We investigate the influence of different electric moments on the shift and dephasing of molecules in a matter wave interferometer. Firstly, we provide a quantitative comparison of two molecules that are non-polar yet polarizable in their thermal ground state and that differ in their stiffness and response to thermal excitations. While C 25 H 20 is rather rigid, its larger derivative C 49 H 16 F 52 is additionally equipped with floppy side chains and vibrationally activated dipole moment variations. Secondly, we elucidate the role of a permanent electric dipole momentby contrasting the quantum interference pattern of a (nearly) non-polar and a polar porphyrin derivative. We find that a high molecular polarizability and even sizeable dipole moment fluctuations are still well compatible with high-contrast quantum interference fringes. The presence of permanent electric dipole moments, however, can lead to a dephasing and rapid degradation of the quantum fringe pattern already at moderate electric fields. This finding is of high relevance for coherence experiments with large organic molecules, which are generally equipped with strong electric moments.

  11. Extension of the method of moments for population balances involving fractional moments and application to a typical agglomeration problem.

    Science.gov (United States)

    Alexiadis, Alessio; Vanni, Marco; Gardin, Pascal

    2004-08-01

    The method of moment (MOM) is a powerful tool for solving population balance. Nevertheless it cannot be used in every circumstance. Sometimes, in fact, it is not possible to write the governing equations in closed form. Higher moments, for instance, could appear in the evolution of the lower ones. This obstacle has often been resolved by prescribing some functional form for the particle size distribution. Another example is the occurrence of fractional moment, usually connected with the presence of fractal aggregates. For this case we propose a procedure that does not need any assumption on the form of the distribution but it is based on the "moments generating function" (that is the Laplace transform of the distribution). An important result of probability theory is that the kth derivative of the moments generating function represents the kth moment of the original distribution. This result concerns integer moments but, taking in account the Weyl fractional derivative, could be extended to fractional orders. Approximating fractional derivative makes it possible to express the fractional moments in terms of the integer ones and so to use regularly the method of moments.

  12. Theoretical studies of strongly correlated fermions

    Energy Technology Data Exchange (ETDEWEB)

    Logan, D [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Strongly correlated fermions are investigated. An understanding of strongly correlated fermions underpins a diverse range of phenomena such as metal-insulator transitions, high-temperature superconductivity, magnetic impurity problems and the properties of heavy-fermion systems, in all of which local moments play an important role. (author).

  13. Moments for Movement: Photostories from the 1980s Resonate Today

    Science.gov (United States)

    Barndt, Deborah; Erickson, Kris

    2017-01-01

    This chapter offers an intergenerational reflection on the production of photostories in the Toronto-based Moment Project of the 1980s, considering how its features of co-creation, creative forms, and critical social content could be reinvented with the new digital media forms integral to today's social movements.

  14. Knee joint moments during high flexion movements: Timing of peak moments and the effect of safety footwear.

    Science.gov (United States)

    Chong, Helen C; Tennant, Liana M; Kingston, David C; Acker, Stacey M

    2017-03-01

    (1) Characterize knee joint moments and peak knee flexion moment timing during kneeling transitions, with the intent of identifying high-risk postures. (2) Determine whether safety footwear worn by kneeling workers (construction workers, tile setters, masons, roofers) alters high flexion kneeling mechanics. Fifteen males performed high flexion kneeling transitions. Kinetics and kinematics were analyzed for differences in ascent and descent in the lead and trail legs. Mean±standard deviation peak external knee adduction and flexion moments during transitions ranged from 1.01±0.31 to 2.04±0.66% body weight times height (BW∗Ht) and from 3.33 to 12.6% BW∗Ht respectively. The lead leg experienced significantly higher adduction moments compared to the trail leg during descent, when work boots were worn (interaction, p=0.005). There was a main effect of leg (higher lead vs. trail) on the internal rotation moment in both descent (p=0.0119) and ascent (p=0.0129) phases. Peak external knee adduction moments during transitions did not exceed those exhibited during level walking, thus increased knee adduction moment magnitude is likely not a main factor in the development of knee OA in occupational kneelers. Additionally, work boots only significantly increased the adduction moment in the lead leg during descent. In cases where one knee is painful, diseased, or injured, the unaffected knee should be used as the lead leg during asymmetric bilateral kneeling. Peak flexion moments occurred at flexion angles above the maximum flexion angle exhibited during walking (approximately 60°), supporting the theory that the loading of atypical surfaces may aid disease development or progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Characteristics of Gyeongju earthquake, moment magnitude 5.5 and relative relocations of aftershocks

    Science.gov (United States)

    Cho, ChangSoo; Son, Minkyung

    2017-04-01

    There is low seismicity in the korea peninsula. According historical record in the historic book, There were several strong earthquake in the korea peninsula. Especially in Gyeongju of capital city of the Silla dynasty, few strong earthquakes caused the fatalities of several hundreds people 1,300 years ago and damaged the houses and make the wall of castles collapsed. Moderate strong earthquake of moment magnitude 5.5 hit the city in September 12, 2016. Over 1000 aftershocks were detected. The numbers of occurrences of aftershock over time follows omori's law well. The distribution of relative locations of 561 events using clustering aftershocks by cross-correlation between P and S waveform of the events showed the strike NNE 25 30 o and dip 68 74o of fault plane to cause the earthquake matched with the fault plane solution of moment tensor inversion well. The depth of range of the events is from 11km to 16km. The width of distribution of event locations is about 5km length. The direction of maximum horizontal stress by inversion of stress for the moment solutions of main event and large aftershocks is similar to the known maximum horizontal stress direction of the korea peninsula. The relation curves between moment magnitude and local magnitude of aftershocks shows that the moment magnitude increases slightly more for events of size less than 2.0

  16. Measurement of the electric dipole moment and magnetic moment anomaly of the muon

    NARCIS (Netherlands)

    Onderwater, CJG

    2005-01-01

    The experimental precision of the anomalous magnetic moment of the muon has been improved to 0.5 part-per-million by the Brookhaven E821 experiment, similar to the theoretical uncertainty. In the same experiment, a new limit on the electric dipole moment of 2.8 x 10(-19) e-cm (95% CL) was set. The

  17. Elementary quantum mechanics of the neutron with an electric dipole moment.

    Science.gov (United States)

    Baym, Gordon; Beck, D H

    2016-07-05

    The neutron, in addition to possibly having a permanent electric dipole moment as a consequence of violation of time-reversal invariance, develops an induced electric dipole moment in the presence of an external electric field. We present here a unified nonrelativistic description of these two phenomena, in which the dipole moment operator, [Formula: see text], is not constrained to lie along the spin operator. Although the expectation value of [Formula: see text] in the neutron is less than [Formula: see text] of the neutron radius, [Formula: see text], the expectation value of [Formula: see text] is of order [Formula: see text] We determine the spin motion in external electric and magnetic fields, as used in past and future searches for a permanent dipole moment, and show that the neutron electric polarizability, although entering the neutron energy in an external electric field, does not affect the spin motion. In a simple nonrelativistic model we show that the expectation value of the permanent dipole is, to lowest order, proportional to the product of the time-reversal-violating coupling strength and the electric polarizability of the neutron.

  18. Magnetic moment of 33Cl

    International Nuclear Information System (INIS)

    Matsuta, K.; Arimura, K.; Nagatomo, T.; Akutsu, K.; Iwakoshi, T.; Kudo, S.; Ogura, M.; Takechi, M.; Tanaka, K.; Sumikama, T.; Minamisono, K.; Miyake, T.; Minamisono, T.; Fukuda, M.; Mihara, M.; Kitagawa, A.; Sasaki, M.; Kanazawa, M.; Torikoshi, M.; Suda, M.; Hirai, M.; Momota, S.; Nojiri, Y.; Sakamoto, A.; Saihara, M.; Ohtsubo, T.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.

    2004-01-01

    The magnetic moment of 33 Cl (Iπ=3/2+, T1/2=2.51s) has been re-measured precisely by β-NMR method. The obtained magnetic moment |μ|=0.7549(3)μN is consistent with the old value 0.7523(16)μN, but is 5 times more accurate. The value is well reproduced by the shell model calculation, μSM=0.70μN. Combined with the magnetic moment of the mirror partner 33 S, the nuclear matrix elements , , , and were derived

  19. Electric dipole moments reconsidered

    International Nuclear Information System (INIS)

    Rupertsberger, H.

    1989-01-01

    The electric dipole moments of elementary particles, atoms, molecules and their connection to the electric susceptibility are discussed for stationary states. Assuming rotational invariance it is emphasized that for such states only in the case of a parity and time reversal violating interaction the considered particles can obtain a nonvanishing expectation value for the electric dipole moment. 1 fig., 13 refs. (Author)

  20. Moment-to-Moment Optimal Branding in TV Commercials: Preventing Avoidance by Pulsing

    OpenAIRE

    Thales S. Teixeira; Michel Wedel; Rik Pieters

    2010-01-01

    We develop a conceptual framework about the impact that branding activity (the audiovisual representation of brands) and consumers' focused versus dispersed attention have on consumer moment-to-moment avoidance decisions during television advertising. We formalize this framework in a dynamic probit model and estimate it with Markov chain Monte Carlo methods. Data on avoidance through zapping, along with eye tracking on 31 commercials for nearly 2,000 participants, are used to calibrate the mo...

  1. Moment Magnitude discussion in Austria

    Science.gov (United States)

    Weginger, Stefan; Jia, Yan; Hausmann, Helmut; Lenhardt, Wolfgang

    2017-04-01

    We implemented and tested the Moment Magnitude estimation „dbmw" from the University of Trieste in our Antelope near real-time System. It is used to get a fast Moment Magnitude solutions and Ground Motion Parameter (PGA, PGV, PSA 0.3, PSA 1.0 and PSA 3.0) to calculate Shake and Interactive maps. A Moment Magnitude Catalogue was generated and compared with the Austrian Earthquake Catalogue and all available Magnitude solution of the neighbouring agencies. Relations of Mw to Ml and Ground Motion to Intensity are presented.

  2. Heavy quark and magnetic moment

    International Nuclear Information System (INIS)

    Mubarak, Ahmad; Jallu, M.S.

    1979-01-01

    The magnetic moments and transition moments of heavy hadrons including the conventional particles are obtained under the SU(5) truth symmetry scheme. To this end state vectors are defined and the quark additivity principle is taken into account. (author)

  3. CELLO results on multiparticle production

    International Nuclear Information System (INIS)

    Podobrin, O.

    1991-10-01

    In this talk result from CELLO on multiparticle production in e + e - annihilation are presented. The three-dimensional distribution of charged particles, and its one- and two-dimensional projections, are extensively studied through the bin-size dependence of their factorial moments. The data are found to have an excellent description by standard Monte Carlo models. This implies an explanation of the observed intermittency behaviour in terms of known physics. The study is extended by an analysis of two-particle rapidity correlations. (orig.)

  4. Gamma-ray multiplicity moments from 86Kr reactions on 144sup(,)154Sm at 490 MeV

    International Nuclear Information System (INIS)

    Christensen, P.R.; Folkmann, F.; Hansen, O.; Nathan, O.; Trautner, N.; Videbaek, F.; Werf, S.Y. van der; Britt, H.C.; Chestnut, R.P.; Freiesleben, H.

    1980-01-01

    Gamma-ray multiplicity moments have been measured for reactions induced in the collision systems 86 Kr + 144 Sm and 86 Kr+ 154 Sm at 490 MeV lab bombarding energy. Differential cross sections for reaction products from Fe to In were also measured. Angular momentum distribution moments are derived from the multiplicity moments for deep inelastic collisions. The angular momentum transfer results are discussed in terms of the sticking picture and other models for deep inelastic collisions. It is demonstrated that the measured second moments are larger than expected from the standard sticking prescription and may provide a significant test of other models. (orig.)

  5. Quadrupole moments of hadrons

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1985-01-01

    In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model

  6. Variance in population firing rate as a measure of slow time-scale correlation

    Directory of Open Access Journals (Sweden)

    Adam C. Snyder

    2013-12-01

    Full Text Available Correlated variability in the spiking responses of pairs of neurons, also known as spike count correlation, is a key indicator of functional connectivity and a critical factor in population coding. Underscoring the importance of correlation as a measure for cognitive neuroscience research is the observation that spike count correlations are not fixed, but are rather modulated by perceptual and cognitive context. Yet while this context fluctuates from moment to moment, correlation must be calculated over multiple trials. This property undermines its utility as a dependent measure for investigations of cognitive processes which fluctuate on a trial-to-trial basis, such as selective attention. A measure of functional connectivity that can be assayed on a moment-to-moment basis is needed to investigate the single-trial dynamics of populations of spiking neurons. Here, we introduce the measure of population variance in normalized firing rate for this goal. We show using mathematical analysis, computer simulations and in vivo data how population variance in normalized firing rate is inversely related to the latent correlation in the population, and how this measure can be used to reliably classify trials from different typical correlation conditions, even when firing rate is held constant. We discuss the potential advantages for using population variance in normalized firing rate as a dependent measure for both basic and applied neuroscience research.

  7. On fractional Fourier transform moments

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.

    2000-01-01

    Based on the relation between the ambiguity function represented in a quasi-polar coordinate system and the fractional power spectra, the fractional Fourier transform moments are introduced. Important equalities for the global second-order fractional Fourier transform moments are derived and their

  8. Determination of ground and excited state dipole moments of dipolar laser dyes by solvatochromic shift method.

    Science.gov (United States)

    Patil, S K; Wari, M N; Panicker, C Yohannan; Inamdar, S R

    2014-04-05

    The absorption and fluorescence spectra of three medium sized dipolar laser dyes: coumarin 478 (C478), coumarin 519 (C519) and coumarin 523 (C523) have been recorded and studied comprehensively in various solvents at room temperature. The absorption and fluorescence spectra of C478, C519 and C523 show a bathochromic and hypsochromic shifts with increasing solvent polarity indicate that the transitions involved are π→π(∗) and n→π(∗). Onsager radii determined from ab initio calculations were used in the determination of dipole moments. The ground and excited state dipole moments were evaluated by using solvatochromic correlations. It is observed that the dipole moment values of excited states (μe) are higher than corresponding ground state values (μg) for the solvents studied. The ground and excited state dipole moments of these probes computed from ab initio calculations and those determined experimentally are compared and the results are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Moment Magnitude Determination for Marmara Region-Turkey Using Displacement Spectra

    Science.gov (United States)

    Köseoǧlu Küsmezer, Ayşegül; Meral Özel, Nurcan; Barış, Å.žErif; Üçer, S. Balamir; Ottemöller, Lars

    2010-05-01

    studied from small to moderate (2.0≤Mω≤4.7) size earthquakes occurred in Marmara Region. According to procedure, both automatic and manual solutions for Mo and fc parameters correlated with each other well. Application of the method proved that there is no lower magnitude limit to determine the seismic moment from the source spectra and it is applicable not only for small magnitude but also moderate to big earthquakes as well and can be applied to all earthquake activity for routine process. Although there is no lower magnitude limit for this method (Hanks, 1982), good Signal/Noise ratio is essential, which depends on both the earthquake size and the hypocentral distance.

  10. Two- and three-point energy correlations in hadronic e+e- annihilation

    International Nuclear Information System (INIS)

    Fox, G.C.; Wolfram, S.

    1980-01-01

    Correlations between the energies incident on two or three detectors around e + e - annihilation events are considered as a probe of the QCD structure of the events. Practical methods for deducing two-detector energy correlations (which give the mean product of energies incident on two detectors as a function of their angular separation) from measured events are devised. Analytical formulae for energy correlations from QCD perturbation theory are given, but it is found that large corrections from hadron formation obscure these asymptotic predictions at available energies. Correlations between the final state and the incoming e + - beam direction are discussed, and observables are presented which measure the angular distributions of planes of final particles with respect to the beam axis (but do not require explicit determination of the planes). Finally, three-detector energy correlations and their moments are treated, and methods for investigating planar structures in e + e - annihilation events are devised. (orig.) 891 HSI/orig. 892 MKO

  11. Algorithm Indicating Moment of P-Wave Arrival Based on Second-Moment Characteristic

    Directory of Open Access Journals (Sweden)

    Jakub Sokolowski

    2016-01-01

    Full Text Available The moment of P-wave arrival can provide us with many information about the nature of a seismic event. Without adequate knowledge regarding the onset moment, many properties of the events related to location, polarization of P-wave, and so forth are impossible to receive. In order to save time required to indicate P-wave arrival moment manually, one can benefit from automatic picking algorithms. In this paper two algorithms based on a method finding a regime switch point are applied to seismic event data in order to find P-wave arrival time. The algorithms are based on signals transformed via a basic transform rather than on raw recordings. They involve partitioning the transformed signal into two separate series and fitting logarithm function to the first subset (which corresponds to pure noise and therefore it is considered stationary, exponent or power function to the second subset (which corresponds to nonstationary seismic event, and finding the point at which these functions best fit the statistic in terms of sum of squared errors. Effectiveness of the algorithms is tested on seismic data acquired from O/ZG “Rudna” underground copper ore mine with moments of P-wave arrival initially picked by broadly known STA/LTA algorithm and then corrected by seismic station specialists. The results of proposed algorithms are compared to those obtained using STA/LTA.

  12. On the baryon magnetic moments

    International Nuclear Information System (INIS)

    Ferreira, P.L.

    1976-01-01

    In the context of quark confinement ideas, the baryon magnetic moments are calculated by assuming a SU(3) breaking due to the inequalities of the quark masses (m sub(p) different m sub(n) different m lambda ). The modified SU(6) result for the ratio of the magnetic moments of the neutron and proton is obtained. The p-quark is found heavier than the n-quark by circa 15 MeV. and alternative way of evaluating the baryon magnetic moments by means of simple physical considerations based on the properties of the SU(6) baryon S-waves functions is given

  13. Moment Restriction-based Econometric Methods: An Overview

    NARCIS (Netherlands)

    N. Kunitomo (Naoto); M.J. McAleer (Michael); Y. Nishiyama (Yoshihiko)

    2010-01-01

    textabstractMoment restriction-based econometric modelling is a broad class which includes the parametric, semiparametric and nonparametric approaches. Moments and conditional moments themselves are nonparametric quantities. If a model is specified in part up to some finite dimensional parameters,

  14. Numerical approximation of the Boltzmann equation : moment closure

    NARCIS (Netherlands)

    Abdel Malik, M.R.A.; Brummelen, van E.H.

    2012-01-01

    This work applies the moment method onto a generic form of kinetic equations to simplify kinetic models of particle systems. This leads to the moment closure problem which is addressed using entropy-based moment closure techniques utilizing entropy minimization. The resulting moment closure system

  15. Face recognition using Krawtchouk moment

    Indian Academy of Sciences (India)

    Zernike moment to enhance the discriminant nature (Pang et al 2006). ... was proposed which is partially invariant to changes in the local image samples, ... tigate the Krawtchouk discrete orthogonal moment-based feature ..... in scale have been achieved by changing the distance between the person and the video camera.

  16. The moments of inertia of a rotational band 3/2- [521] isotones odd nuclei

    International Nuclear Information System (INIS)

    Karahodjaev, A.K.; Kuyjonov, H.

    2003-01-01

    The moments of inertia are received from experimental data from the following expression for energy of a level with spin I: E I = E 0 +ℎ 2 /2j·I(I+1), K≠l/2. The characteristics of low statuses of a rotational band 3/2 - [521] and inertial parameters 1.75A 1 keV ( A-1=ℎ 2 /2j) for nuclei 155 Dy and 155 Gd are given. The values of inertial parameters 1.75A1 keV for odd nuclei with N = 89, 91, 93, 95, 97, 99, 101 and 103 are presented. At quantity of neutrons N = 89 with increase of mass number of a nucleus the moment of inertia rather quickly grows. In nuclei with quantity of neutrons equal 91 and 93, with increase of mass number the moment of inertia of nuclei slowly changes and since A=159 and A=163, accordingly, begins sharply to grow. In isotones with N = 95, 97 and 99 moments of inertia decrease with increase of quantity neutrons in a nucleus. The reason of various dependence of the moment of inertia from mass number is, the coriolis interaction of an odd particle with even-even kernel and change of parameter of pair correlation because of presence of an odd particle above a kernel

  17. Top quark soliton and its anomalous chromomagnetic moment

    International Nuclear Information System (INIS)

    Berger, J.; Blotz, A.; Kim, H.; Goeke, K.

    1996-01-01

    We show that under the assumption of dynamical symmetry breaking of electroweak interactions by a top quark condensate, motivated by the top mode standard model, the top quark in this effective theory can be considered then as a chiral color soliton. This is realized in an effective four-fermion interaction with chiral SU(3) c as well as SU(2) L circle-times U Y (1) symmetry. In the pure top quark sector the soliton consists of a top valence quark and a Dirac sea of top quarks and top antiquarks coupled to a color octet of Goldstone pions. The mass spectra, isoscalar quadratic radii, and the anomalous chromomagnetic moment because of a nontrivial color form factor are calculated with zero and finite current top quark masses and effects at the hadron colliders are discussed. The anomalous chromomagnetic moment turns out to have a value consistent with the top quark production rates of the D0 and CDF measurements. copyright 1996 The American Physical Society

  18. Immediate effect of Masai Barefoot Technology shoes on knee joint moments in women with knee osteoarthritis.

    Science.gov (United States)

    Tateuchi, Hiroshige; Taniguchi, Masashi; Takagi, Yui; Goto, Yusuke; Otsuka, Naoki; Koyama, Yumiko; Kobayashi, Masashi; Ichihashi, Noriaki

    2014-01-01

    Footwear modification can beneficially alter knee loading in patients with knee osteoarthritis. This study evaluated the effect of Masai Barefoot Technology shoes on reductions in external knee moments in patients with knee osteoarthritis. Three-dimensional motion analysis was used to examine the effect of Masai Barefoot Technology versus control shoes on the knee adduction and flexion moments in 17 women (mean age, 63.6 years) with radiographically confirmed knee osteoarthritis. The lateral and anterior trunk lean values, knee flexion and adduction angles, and ground reaction force were also evaluated. The influence of the original walking pattern on the changes in knee moments with Masai Barefoot Technology shoes was evaluated. The knee flexion moment in early stance was significantly reduced while walking with the Masai Barefoot Technology shoes (0.25±0.14Nm/kgm) as compared with walking with control shoes (0.30±0.19 Nm/kgm); whereas the knee adduction moment showed no changes. Masai Barefoot Technology shoes did not increase compensatory lateral and anterior trunk lean. The degree of knee flexion moment in the original walking pattern with control shoes was correlated directly with its reduction when wearing Masai Barefoot Technology shoes by multiple linear regression analysis (adjusted R2=0.44, Pknee flexion moment during walking without increasing the compensatory trunk lean and may therefore reduce external knee loading in women with knee osteoarthritis. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Mellin moments of the next-to-next-to leading order coefficient functions for the Drell-Yan process and hadronic Higgs-boson production

    International Nuclear Information System (INIS)

    Bluemlein, J.; Ravindran, V.

    2005-01-01

    We calculate the Mellin moments of the next-to-next-to leading order coefficient functions for the Drell-Yan and Higgs production cross sections. The results can be expressed in terms of multiple finite harmonic sums of maximal weight w=4. Using algebraic and structural relations between harmonic sums one finds that besides the single harmonic sums only five basic sums and their derivatives w.r.t. the summation index contribute. This representation reduces the large complexity being present in x-space calculations and is well suited for fast numerical implementations. (orig.)

  20. Noncommutative QED and anomalous dipole moments

    International Nuclear Information System (INIS)

    Riad, I.F.; Sheikh-Jabbari, M.M.

    2000-09-01

    We study QED on noncommutative spaces, NCQED. In particular we present the detailed calculation for the noncommutative electron-photon vertex and show that the Ward identity is satisfied. We discuss that in the noncommutative case moving electron will show electric dipole effects. In addition, we work out the electric and magnetic dipole moments up to one loop level. For the magnetic moment we show that noncommutative electron has an intrinsic (spin independent) magnetic moment. (author)

  1. Droplet-model electric dipole moments

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1991-01-01

    Denisov's recent criticism of the droplet-model formula for the dipole moment of a deformed nucleus as derived by Dorso et al., it shown to be invalid. This helps to clarify the relation of theory to the measured dipole moments, as discussed in the review article by Aberg et al. (orig.)

  2. Exact collisional moments for plasma fluid theories

    Science.gov (United States)

    Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi

    2017-10-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.

  3. Particle electric dipole moments

    CERN Document Server

    Pendlebury, J M

    2000-01-01

    Measurements of particle electric dipole moments (EDMs) continue to put powerful constraints on theories of T-symmetry and CP-symmetry violation, which form currently one of the most prominent fields in particle physics. EDM measurements have been concentrated on neutral systems such as the neutron and atoms and molecules. These measurements allow one to deduce, in turn, the electric dipole moments of the fundamental fermions, that is, the lighter leptons and quarks and also those of some heavy nuclei.

  4. An Operator Method for Field Moments from the Extended Parabolic Wave Equation and Analytical Solutions of the First and Second Moments for Atmospheric Electromagnetic Wave Propagation

    Science.gov (United States)

    Manning, Robert M.

    2004-01-01

    The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.

  5. D-dimensional moments of inertia

    International Nuclear Information System (INIS)

    Bender, C.M.; Mead, L.R.

    1995-01-01

    We calculate the moments of inertia of D-dimensional spheres and spherical shells, where D is a complex number. We also examine the moments of inertia of fractional-dimensional geometrical objects such as the Cantor set and the Sierpinski carpet and their D-dimensional analogs. copyright 1995 American Association of Physics Teachers

  6. Neutron Electric Dipole Moment Experiments

    OpenAIRE

    Peng, Jen-Chieh

    2008-01-01

    The neutron electric dipole moment (EDM) provides unique information on CP violation and physics beyond the Standard Model. We first review the history of experimental searches for neutron electric dipole moment. The status of future neutron EDM experiments, including experiments using ultra-cold neutrons produced in superfluid helium, will then be presented.

  7. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt

  8. Sudden change of quadrupole moment between the first 5/2- states of 197Hg and 199Hg

    International Nuclear Information System (INIS)

    Herzog, P.; Krien, K.; Freitag, M.; Reuschenbach, M.; Walitzki, H.

    1980-01-01

    Low-temperature time differential perturbed angular correlation experiments with the 164 KeV-134 keV cascade of sup(197m)Hg in a zinc matrix give evidence that the hitherto accepted value of the quadrupole moment of the first 5/2 - state of 197 Hg is erroneous. A new value is derived from a time differential perturbed angular correlation experiment with the 374 keV-158 keV cascade of sup(199m)Hg implanted into a Be single crystal and comparison with an analogous experiment for sup(197m)Hg. Taking Q(5/2 - , 199 Hg) = +0.95(7) b we derive Q(5/2 - , 197 Hg) = 0.081(6) b. This change of quadrupole moment is discussed in the framework of the shell model. (orig.)

  9. On the interpretation of the support moment

    NARCIS (Netherlands)

    Hof, AL

    2000-01-01

    It has been suggested by Winter (J. Biomech. 13 (1980) 923-927) that the 'support moment', the sum of the sagittal extension moments, shows less variability in walking than any of the joint moments separately. A simple model is put forward to explain this finding. It is proposed to reformulate the

  10. A jackknife approach to quantifying single-trial correlation between covariance-based metrics undefined on a single-trial basis

    NARCIS (Netherlands)

    Richter, C.G.; Thompson, W.H.; Bosman, C.A.; Fries, P.

    2015-01-01

    The quantification of covariance between neuronal activities (functional connectivity) requires the observation of correlated changes and therefore multiple observations. The strength of such neuronal correlations may itself undergo moment-by-moment fluctuations, which might e.g. lead to

  11. Hubungan Supervisi Kepala Ruangan Dengan Pelaksanaan Five Moments Hand Hygiene Perawat di RSUP Haji Adam Malik Medan

    OpenAIRE

    Simanjuntak, Heppy Delpia

    2016-01-01

    Five moments hand hygiene is an action to wash hands by nurses in five types of situation which is aimed to decrease microorganism transmission and to ward off infection. It good implementation involves ward heads as the spearheads of the goal for good nursing care in a hospital; they have to have the capacity to supervise in managing nursing care. The objective of the research was to find out the correlation of ward heads’ supervision with the implementation of nurses’ five moments hand hygi...

  12. Variational approach to magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E; Stringari, S; Traini, M [Dipartimento di Matematica e Fisica, Libera Universita di Trento, Italy

    1977-11-07

    Magnetic moments in nuclei with a spin unsaturated core plus or minus an extra nucleon have been studied using a restricted Hartree-Fock approach. The method yields simple explicit expressions for the deformed ground state and for magnetic moments. Different projection techniques of the HF scheme have been discussed and compared with perturbation theory.

  13. Sum rules and systematics for baryon magnetic moments

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1983-11-01

    The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties encountered are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks; e.g. from a pion cloud. The large magnitude of the THETA - moment may indicate that the strange quark contribution to the THETA moments is considerably larger than the value μ(Λ) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the Σ - moment include a value very close to -(1/2)μ(Σ + ) which would indicate that strange quarks do not contribute at all to the Σ moments. (author)

  14. Sum rules and systematics for baryon magnetic moments

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1984-01-01

    The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties encountered are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks, e.g. from a pion cloud. The large magnitude of the Ψ - moment may indicate that the strange quark contribution to the Ψ moments is considerably larger than the value μ(Λ) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the Σ - moment include a value very close to -1/2μ(Σ + ) which would indicate that strange quarks do not contribute at all to the Σ moments. (orig.)

  15. Implementation of $ab$ $initio$ perturbed angular correlation observables for analysis of fluctuating quadrupole interactions

    CERN Document Server

    Barbosa, Marcelo

    A review about the nuclear properties, namely the nuclear moments (magnetic dipole moment and electric quadrupole moment) and their interaction with electromagnetic fields external to the nucleus (hyperfine interactions), as well as the angular distribution of radiation produced by $\\gamma$-decay, is presented. A detailed description about the theory of Perturbed Angular Correlations was done, including the comparison between $\\gamma-\\gamma$- correlations and $e^{-}- \\gamma$ correlations. For dynamic nuclear interactions, an introduction to the theory of stochastic states in PAC was performed. We focused on ab-initio implementation of observables for analyzing fluctuating quadrupole hyperfine interactions on time dependent perturbed angular correlations experiments. The development of computacional codes solving the full problem, adapted to fit data obtained on single crystals or polycrystals for two-state transient fields with any axial symmetry and orientation was the main purpose of this work. The final pa...

  16. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt

  17. On the electric dipole moments of small sodium clusters from different theoretical approaches

    International Nuclear Information System (INIS)

    Aguado, Andrés; Largo, Antonio; Vega, Andrés; Balbás, Luis Carlos

    2012-01-01

    Graphical abstract: The dipole moments and polarizabilities of a few isomers of sodium clusters of selected sizes (n = 13, 14, 16) are calculated using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Highlights: ► Dipole moment and polarizability of sodium clusters from DFT and ab initio methods. ► New van der Waals selfconsistent implementation of non-local dispersion interactions. ► New starting isomeric geometries from extensive search of global minimum structures. ► Good agreement with recent experiments at cryogenic temperatures. - Abstract: The dipole moments of Na n clusters in the size range 10 n clusters of selected sizes (n = 13, 14, 16), obtained recently through an extensive unbiased search of the global minimum structures, and using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Both non-local pseudopotentials and all-electron implementations are employed and compared in order to assess the possible contribution of the core electrons to the electric dipole moments. Our new geometries possess significantly smaller electric dipole moments than previous density functional results, mostly when combined with the van der Waals exchange–correlation functional. However, although the agreement with experiment clearly improves upon previous calculations, the theoretical dipole moments are still about one order of magnitude larger than the experimental values, suggesting that the correct global minimum structures have not been

  18. Correlated wind-power production and electric load scenarios for investment decisions

    International Nuclear Information System (INIS)

    Baringo, L.; Conejo, A.J.

    2013-01-01

    Highlights: ► Investment models require an accurate representation of the involved uncertainty. ► Demand and wind power production are correlated and uncertain parameters. ► Two methodologies are provided to represent uncertainty and correlation. ► An accurate uncertainty representation is crucial to get optimal results. -- Abstract: Stochastic programming constitutes a useful tool to address investment problems. This technique represents uncertain input data using a set of scenarios, which should accurately describe the involved uncertainty. In this paper, we propose two alternative methodologies to efficiently generate electric load and wind-power production scenarios, which are used as input data for investment problems. The two proposed methodologies are based on the load- and wind-duration curves and on the K-means clustering technique, and allow representing the uncertainty of and the correlation between electric load and wind-power production. A case study pertaining to wind-power investment is used to show the interest of the proposed methodologies and to illustrate how the selection of scenarios has a significant impact on investment decisions.

  19. Maximal Electric Dipole Moments of Nuclei with Enhanced Schiff Moments

    CERN Document Server

    Ellis, John; Pilaftsis, Apostolos

    2011-01-01

    The electric dipole moments (EDMs) of heavy nuclei, such as 199Hg, 225Ra and 211Rn, can be enhanced by the Schiff moments induced by the presence of nearby parity-doublet states. Working within the framework of the maximally CP-violating and minimally flavour-violating (MCPMFV) version of the MSSM, we discuss the maximal values that such EDMs might attain, given the existing experimental constraints on the Thallium, neutron and Mercury EDMs. The maximal EDM values of the heavy nuclei are obtained with the help of a differential-geometrical approach proposed recently that enables the maxima of new CP-violating observables to be calculated exactly in the linear approximation. In the case of 225Ra, we find that its EDM may be as large as 6 to 50 x 10^{-27} e.cm.

  20. Magnetic moments of hyperons

    International Nuclear Information System (INIS)

    Overseth, O.E.

    1981-01-01

    The Fermilab Neutral Hyperon Beam Collaboration has measured the magnetic moments of Λ 0 , XI-neutral and XI-minus hyperons. With a recently published result for the Σ + hyperon, we now have precision measurements on the magnetic moments of six baryons. This allows a sensitive test of the quark model. The data are in qualitative agreement with the simple additive static quark model. Quantitatively however the data disagree with theoretical predictions by typically 15%. Several theoretical attempts to understand or remedy this discrepancy will be mentioned

  1. Ab initio determination of the nuclear quadrupole moments of 114In, 115In, and 117In

    International Nuclear Information System (INIS)

    Errico, Leonardo A.; Renteria, Mario

    2006-01-01

    We present here ab initio determinations of the nuclear-quadrupole moment Q of hyperfine-probe-nuclear states of three different In isotopes: the 5 + 192 keV excited state of 114 In (probe for nuclear quadrupole alignment spectroscopy), the 9/2 + ground state of 115 In (nuclear magnetic and nuclear quadrupole resonance probe), and the 3/2 + 659 keV excited state of 117 In (perturbed angular correlations probe). These nuclear-quadrupole moments were determined by comparing experimental nuclear-quadrupole frequencies to the electric field gradient tensor calculated with high accuracy at In sites in metallic indium within the density functional theory. These ab initio calculations were performed with the full-potential linearized augmented plane wave method. The results obtained for the quadrupole moments of 114 In [Q( 114 In)=-0.14(1) b] are in clear discrepancy with those reported in the literature [Q( 114 In)=+0.16(6) b and +0.739(12) b]. For 115 In and 117 In our results are in excellent agreement with the literature and in the last case Q( 117 In) is determined with more precision. In the case of Q( 117 In), its sign cannot be determined because standard γ-γ perturbed angular correlations experiments are not sensitive to the sign of the nuclear-quadrupole frequency

  2. Evolution of truncated moments of singlet parton distributions

    International Nuclear Information System (INIS)

    Forte, S.; Magnea, L.; Piccione, A.; Ridolfi, G.

    2001-01-01

    We define truncated Mellin moments of parton distributions by restricting the integration range over the Bjorken variable to the experimentally accessible subset x 0 ≤x≤1 of the allowed kinematic range 0≤x≤1. We derive the evolution equations satisfied by truncated moments in the general (singlet) case in terms of an infinite triangular matrix of anomalous dimensions which couple each truncated moment to all higher moments with orders differing by integers. We show that the evolution of any moment can be determined to arbitrarily good accuracy by truncating the system of coupled moments to a sufficiently large but finite size, and show how the equations can be solved in a way suitable for numerical applications. We discuss in detail the accuracy of the method in view of applications to precision phenomenology

  3. Fast computation of Krawtchouk moments

    Czech Academy of Sciences Publication Activity Database

    Honarvar Shakibaei Asli, B.; Flusser, Jan

    2014-01-01

    Roč. 288, č. 1 (2014), s. 73-86 ISSN 0020-0255 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Krawtchouk polynomial * Krawtchouk moment * Geometric moment * Impulse response * Fast computation * Digital filter Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/ZOI/flusser-0432452.pdf

  4. Operator product expansion in Liouville field theory and Seiberg-type transitions in log-correlated random energy models

    Science.gov (United States)

    Cao, Xiangyu; Le Doussal, Pierre; Rosso, Alberto; Santachiara, Raoul

    2018-04-01

    We study transitions in log-correlated random energy models (logREMs) that are related to the violation of a Seiberg bound in Liouville field theory (LFT): the binding transition and the termination point transition (a.k.a., pre-freezing). By means of LFT-logREM mapping, replica symmetry breaking and traveling-wave equation techniques, we unify both transitions in a two-parameter diagram, which describes the free-energy large deviations of logREMs with a deterministic background log potential, or equivalently, the joint moments of the free energy and Gibbs measure in logREMs without background potential. Under the LFT-logREM mapping, the transitions correspond to the competition of discrete and continuous terms in a four-point correlation function. Our results provide a statistical interpretation of a peculiar nonlocality of the operator product expansion in LFT. The results are rederived by a traveling-wave equation calculation, which shows that the features of LFT responsible for the transitions are reproduced in a simple model of diffusion with absorption. We examine also the problem by a replica symmetry breaking analysis. It complements the previous methods and reveals a rich large deviation structure of the free energy of logREMs with a deterministic background log potential. Many results are verified in the integrable circular logREM, by a replica-Coulomb gas integral approach. The related problem of common length (overlap) distribution is also considered. We provide a traveling-wave equation derivation of the LFT predictions announced in a precedent work.

  5. Evaluating the effect of sampling and spatial correlation on ground-water travel time uncertainty coupling geostatistical, stochastic, and first order, second moment methods

    International Nuclear Information System (INIS)

    Andrews, R.W.; LaVenue, A.M.; McNeish, J.A.

    1989-01-01

    Ground-water travel time predictions at potential high-level waste repositories are subject to a degree of uncertainty due to the scale of averaging incorporated in conceptual models of the ground-water flow regime as well as the lack of data on the spatial variability of the hydrogeologic parameters. The present study describes the effect of limited observations of a spatially correlated permeability field on the predicted ground-water travel time uncertainty. Varying permeability correlation lengths have been used to investigate the importance of this geostatistical property on the tails of the travel time distribution. This study uses both geostatistical and differential analysis techniques. Following the generation of a spatially correlated permeability field which is considered reality, semivariogram analyses are performed upon small random subsets of the generated field to determine the geostatistical properties of the field represented by the observations. Kriging is then employed to generate a kriged permeability field and the corresponding standard deviation of the estimated field conditioned by the limited observations. Using both the real and kriged fields, the ground-water flow regime is simulated and ground-water travel paths and travel times are determined for various starting points. These results are used to define the ground-water travel time uncertainty due to path variability. The variance of the ground-water travel time along particular paths due to the variance of the permeability field estimated using kriging is then calculated using the first order, second moment method. The uncertainties in predicted travel time due to path and parameter uncertainties are then combined into a single distribution

  6. Novel structures for Discrete Hartley Transform based on first-order moments

    Science.gov (United States)

    Xiong, Jun; Zheng, Wenjuan; Wang, Hao; Liu, Jianguo

    2018-03-01

    Discrete Hartley Transform (DHT) is an important tool in digital signal processing. In the present paper, the DHT is firstly transformed into the first-order moments-based form, then a new fast algorithm is proposed to calculate the first-order moments without multiplication. Based on the algorithm theory, the corresponding hardware architecture for DHT is proposed, which only contains shift operations and additions with no need for multipliers and large memory. To verify the availability and effectiveness, the proposed design is implemented with hardware description language and synthesized by Synopsys Design Compiler with 0.18-μm SMIC library. A series of experiments have proved that the proposed architecture has better performance in terms of the product of the hardware consumption and computation time.

  7. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kellö, Vladimir [Department of Physical Chemistry, Comenius University, SK-842 15 Bratislava (Slovakia)

    2015-01-22

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  8. Targeting estimation of CCC-GARCH models with infinite fourth moments

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard

    . In this paper we consider the large-sample properties of the variance targeting estimator for the multivariate extended constant conditional correlation GARCH model when the distribution of the data generating process has infinite fourth moments. Using non-standard limit theory we derive new results...... for the estimator stating that its limiting distribution is multivariate stable. The rate of consistency of the estimator is slower than √Τ (as obtained by the quasi-maximum likelihood estimator) and depends on the tails of the data generating process....

  9. How to introduce the magnetic dipole moment

    International Nuclear Information System (INIS)

    Bezerra, M; Kort-Kamp, W J M; Cougo-Pinto, M V; Farina, C

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the magnetic field at distant points, identifying the magnetic dipole moment of the distribution. We also present a simple but general demonstration of the torque exerted by a uniform magnetic field on a current loop of general form, not necessarily planar. For pedagogical reasons we start by reviewing briefly the concept of the electric dipole moment. (paper)

  10. Magnitude conversion to unified moment magnitude using orthogonal regression relation

    Science.gov (United States)

    Das, Ranjit; Wason, H. R.; Sharma, M. L.

    2012-05-01

    Homogenization of earthquake catalog being a pre-requisite for seismic hazard assessment requires region based magnitude conversion relationships. Linear Standard Regression (SR) relations fail when both the magnitudes have measurement errors. To accomplish homogenization, techniques like Orthogonal Standard Regression (OSR) are thus used. In this paper a technique is proposed for using such OSR for preparation of homogenized earthquake catalog in moment magnitude Mw. For derivation of orthogonal regression relation between mb and Mw, a data set consisting of 171 events with observed body wave magnitudes (mb,obs) and moment magnitude (Mw,obs) values has been taken from ISC and GCMT databases for Northeast India and adjoining region for the period 1978-2006. Firstly, an OSR relation given below has been developed using mb,obs and Mw,obs values corresponding to 150 events from this data set. M=1.3(±0.004)m-1.4(±0.130), where mb,proxy are body wave magnitude values of the points on the OSR line given by the orthogonality criterion, for observed (mb,obs, Mw,obs) points. A linear relation is then developed between these 150 mb,obs values and corresponding mb,proxy values given by the OSR line using orthogonality criterion. The relation obtained is m=0.878(±0.03)m+0.653(±0.15). The accuracy of the above procedure has been checked with the rest of the data i.e., 21 events values. The improvement in the correlation coefficient value between mb,obs and Mw estimated using the proposed procedure compared to the correlation coefficient value between mb,obs and Mw,obs shows the advantage of OSR relationship for homogenization. The OSR procedure developed in this study can be used to homogenize any catalog containing various magnitudes (e.g., ML, mb, MS) with measurement errors, by their conversion to unified moment magnitude Mw. The proposed procedure also remains valid in case the magnitudes have measurement errors of different orders, i.e. the error variance ratio is

  11. Universal Generating Function Based Probabilistic Production Simulation Approach Considering Wind Speed Correlation

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-11-01

    Full Text Available Due to the volatile and correlated nature of wind speed, a high share of wind power penetration poses challenges to power system production simulation. Existing power system probabilistic production simulation approaches are in short of considering the time-varying characteristics of wind power and load, as well as the correlation between wind speeds at the same time, which brings about some problems in planning and analysis for the power system with high wind power penetration. Based on universal generating function (UGF, this paper proposes a novel probabilistic production simulation approach considering wind speed correlation. UGF is utilized to develop the chronological models of wind power that characterizes wind speed correlation simultaneously, as well as the chronological models of conventional generation sources and load. The supply and demand are matched chronologically to not only obtain generation schedules, but also reliability indices both at each simulation interval and the whole period. The proposed approach has been tested on the improved IEEE-RTS 79 test system and is compared with the Monte Carlo approach and the sequence operation theory approach. The results verified the proposed approach with the merits of computation simplicity and accuracy.

  12. Exploration of Learning Strategies Associated With Aha Learning Moments.

    Science.gov (United States)

    Pilcher, Jobeth W

    2016-01-01

    Educators recognize aha moments as powerful aspects of learning. Yet limited research has been performed regarding how to promote these learning moments. This article describes an exploratory study of aha learning moments as experienced and described by participants. Findings showed use of visuals, scenarios, storytelling, Socratic questions, and expert explanation led to aha learning moments. The findings provide guidance regarding the types of learning strategies that can be used to promote aha moments.

  13. Searches for the electron electric dipole moment and nuclear anapole moments in solids

    International Nuclear Information System (INIS)

    Mukhamedjanov, T.N.; Sushkov, O.P.; Cadogan, J.M.; Dzuba, V.A.

    2004-01-01

    Full text: We consider effects caused by the electron electric dipole moment (EDM) in gadolinium garnets. Our estimates show that the experimental studies of these effects could improve the current upper limit on the electron EDM by several orders of magnitude. We suggest a consistent theoretical model and perform calculations of observable effects in gadolinium gallium garnet and gadolinium iron garnet. It is also possible to probe for nuclear anapole moments in a solid state experiment. We suggest such NMR-type experiment and perform estimates of the expected results

  14. Higgs-Mediated Electric Dipole Moments in the MSSM An Application to Baryogenesis and Higgs Searches

    CERN Document Server

    Pilaftsis, Apostolos

    2002-01-01

    We perform a comprehensive study of the dominant two- and higher-loop contributions to the Tl(205), neutron and muon electric dipole moments induced by Higgs bosons, third-generation quarks and squarks, charginos and gluinos in the Minimal Supersymmetric Standard Model (MSSM). We find that strong correlations exist among the contributing CP-violating operators, for large stop, gluino and chargino phases, and for a wide range of values of \\tan\\beta and charged Higgs-boson masses, giving rise to large suppressions of the Tl(205) and neutron electric dipole moments below their present experimental limits. Based on this observation, we discuss the constraints that the nonobservation of electric dipole moments imposes on the radiatively-generated CP-violating Higgs sector and on the mechanism of electroweak baryogenesis in the MSSM. We improve previously suggested benchmark scenarios of maximal CP violation for analyzing direct searches of CP-violating MSSM Higgs-bosons at high-energy colliders, and stress the imp...

  15. Inseparability inequalities for higher order moments for bipartite systems

    International Nuclear Information System (INIS)

    Agarwal, G S; Biswas, Asoka

    2005-01-01

    There are several examples of bipartite entangled states of continuous variables for which the existing criteria for entanglement using the inequalities involving the second-order moments are insufficient. We derive new inequalities involving higher order correlation, for testing entanglement in non-Gaussian states. In this context, we study an example of a non-Gaussian state, which is a bipartite entangled state of the form Ψ(x a , x b ) ∝ (αx a + βx b ) e -(x a 2 +x b 2 )/2 . Our results open up an avenue to search for new inequalities to test entanglement in non-Gaussian states

  16. Moment analysis of hadronic vacuum polarization

    Directory of Open Access Journals (Sweden)

    Eduardo de Rafael

    2014-09-01

    Full Text Available I suggest a new approach to the determination of the hadronic vacuum polarization (HVP contribution to the anomalous magnetic moment of the muon aμHVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how aμHVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.

  17. Moment analysis of hadronic vacuum polarization

    International Nuclear Information System (INIS)

    Rafael, Eduardo de

    2014-01-01

    I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon a μ HVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how a μ HVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data

  18. Moment analysis of hadronic vacuum polarization

    Energy Technology Data Exchange (ETDEWEB)

    Rafael, Eduardo de

    2014-09-07

    I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon a{sub μ}{sup HVP} in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how a{sub μ}{sup HVP} is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.

  19. Lower limb joint moment during walking in water.

    Science.gov (United States)

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2003-11-04

    Walking in water is a widely used rehabilitation method for patients with orthopedic disorders or arthritis, based on the belief that the reduction of weight in water makes it a safer medium and prevents secondary injuries of the lower-limb joints. To our knowledge, however, no experimental data on lower-limb joint moment during walking in water is available. The aim of this study was to quantify the joint moments of the ankle, knee, and hip during walking in water in comparison with those on land. Eight healthy volunteers walked on land and in water at a speed comfortable for them. A video-motion analysis system and waterproof force platform were used to obtain kinematic data and to calculate the joint moments. The hip joint moment was shown to be an extension moment almost throughout the stance phase during walking in water, while it changed from an extension- to flexion-direction during walking on land. The knee joint moment had two extension peaks during walking on land, whereas it had only one extension peak, a late one, during walking in water. The ankle joint moment during walking in water was considerably reduced but in the same direction, plantarflexion, as that during walking on land. The joint moments of the hip, knee, and ankle were not merely reduced during walking in water; rather, inter-joint coordination was totally changed.

  20. Closed forms and multi-moment maps

    DEFF Research Database (Denmark)

    Madsen, Thomas Bruun; Swann, Andrew Francis

    2013-01-01

    We extend the notion of multi-moment map to geometries defined by closed forms of arbitrary degree. We give fundamental existence and uniqueness results and discuss a number of essential examples, including geometries related to special holonomy. For forms of degree four, multi-moment maps are gu...

  1. Cluster concentrations in correlated and non-correlated continuum percolation problems

    International Nuclear Information System (INIS)

    Borstnik, B.; Jesudason, C.G.; Lukman, D.

    1996-01-01

    The methodologies are developed how to evaluate properties of clusters of correlated and non-correlated particles. As an example of correlated particles, the two dimensional hard core disks with attractive square well potential are taken. Narrow and deep square well potential is used in order to mimic the adhesive potential, suitable for modeling of colloidal systems. Permeable disks in two dimensions are taken as an example of non-correlated systems. In both cases the dependence of cluster concentrations upon the density of particles is studied. Percolation threshold densities and critical exponents which govern the zeroth, first and second moments of cluster distributions are evaluated. It is found that the calculation of density dependence of cluster concentrations gives enough information to evaluate the percolation threshold density, some critical exponents, as well as to reproduce the Rushbrooke scaling law

  2. Effect of foot orthoses on magnitude and timing of rearfoot and tibial motions, ground reaction force and knee moment during running.

    Science.gov (United States)

    Eslami, Mansour; Begon, Mickaël; Hinse, Sébastien; Sadeghi, Heydar; Popov, Peter; Allard, Paul

    2009-11-01

    Changes in magnitude and timing of rearfoot eversion and tibial internal rotation by foot orthoses and their contributions to vertical ground reaction force and knee joint moments are not well understood. The objectives of this study were to test if orthoses modify the magnitude and time to peak rearfoot eversion, tibial internal rotation, active ground reaction force and knee adduction moment and determine if rearfoot eversion, tibial internal rotation magnitudes are correlated to peak active ground reaction force and knee adduction moment during the first 60% stance phase of running. Eleven healthy men ran at 170 steps per minute in shod and with foot orthoses conditions. Video and force-plate data were collected simultaneously to calculate foot joint angular displacement, ground reaction forces and knee adduction moments. Results showed that wearing semi-rigid foot orthoses significantly reduced rearfoot eversion 40% (4.1 degrees ; p=0.001) and peak active ground reaction force 6% (0.96N/kg; p=0.008). No significant time differences occurred among the peak rearfoot eversion, tibial internal rotation and peak active ground reaction force in both conditions. A positive and significant correlation was observed between peak knee adduction moment and the magnitude of rearfoot eversion during shod (r=0.59; p=0.04) and shod/orthoses running (r=0.65; p=0.02). In conclusion, foot orthoses could reduce rearfoot eversion so that this can be associated with a reduction of knee adduction moment during the first 60% stance phase of running. Finding implies that modifying rearfoot and tibial motions during running could not be related to a reduction of the ground reaction force.

  3. Restrictions on the neutrino magnetic dipole moment

    International Nuclear Information System (INIS)

    Duncan, M.J.; Sankar, S.U.; Grifols, J.A.; Mendez, A.

    1987-01-01

    We examine mechanisms for producing neutrino magnetic moments from a wide class of particle theories which are extensions of the standard model. We show that it is difficult to naturally obtain a moment greater than ≅ 10 -2 electron Bohr magnetons. Thus models of phenomena requiring moments of order ≅ 10 -10 magnetons, such as those proposed as a resolution to the solar neutrino puzzle, are in conflict with current perceptions in particle physics. (orig.)

  4. Stochastic Generalized Method of Moments

    KAUST Repository

    Yin, Guosheng; Ma, Yanyuan; Liang, Faming; Yuan, Ying

    2011-01-01

    The generalized method of moments (GMM) is a very popular estimation and inference procedure based on moment conditions. When likelihood-based methods are difficult to implement, one can often derive various moment conditions and construct the GMM objective function. However, minimization of the objective function in the GMM may be challenging, especially over a large parameter space. Due to the special structure of the GMM, we propose a new sampling-based algorithm, the stochastic GMM sampler, which replaces the multivariate minimization problem by a series of conditional sampling procedures. We develop the theoretical properties of the proposed iterative Monte Carlo method, and demonstrate its superior performance over other GMM estimation procedures in simulation studies. As an illustration, we apply the stochastic GMM sampler to a Medfly life longevity study. Supplemental materials for the article are available online. © 2011 American Statistical Association.

  5. Stochastic Generalized Method of Moments

    KAUST Repository

    Yin, Guosheng

    2011-08-16

    The generalized method of moments (GMM) is a very popular estimation and inference procedure based on moment conditions. When likelihood-based methods are difficult to implement, one can often derive various moment conditions and construct the GMM objective function. However, minimization of the objective function in the GMM may be challenging, especially over a large parameter space. Due to the special structure of the GMM, we propose a new sampling-based algorithm, the stochastic GMM sampler, which replaces the multivariate minimization problem by a series of conditional sampling procedures. We develop the theoretical properties of the proposed iterative Monte Carlo method, and demonstrate its superior performance over other GMM estimation procedures in simulation studies. As an illustration, we apply the stochastic GMM sampler to a Medfly life longevity study. Supplemental materials for the article are available online. © 2011 American Statistical Association.

  6. Inventory Management Strategies For Productivity Improvement In Equipment Manufacturing Firms

    Directory of Open Access Journals (Sweden)

    T.T Amachree

    2017-08-01

    Full Text Available This study examined and developed Inventory Management Strategies IMS which could be creatively employed for Productivity Improvement in Equipment Firms PIEMF Equipment manufacturing projects suffer from declining productivity and inability to effectively satisfy customized order batch quantity within schedules budgeted cost and quality specifications due to lack of robust and well defined IMS as well as none code classification of vast number of inventory item. Survey and expost-facto research designs were adopted on the four identified IMS in three EMF. The method used for primary data collection and measurement on four IMS and inventory management parameters was questionnaire modelled into likert five point scale from the target respondents being experts in the subject matter. The secondary data was obtained from the computerised inventory status file of the three equipment manufacturing firms. The methods of primary data analysis and test of research used were Pearsons product moment correlation coefficient and oneway. Analysis of variance ANOVA computer software via Statistical Program for Social Science SPSS version 17 ABC analysis and classification of materials was used for code categorization of secondary data also with the aid of Microsoft excel. The results of the analyses highlighted and isolated A class of inventory items which are 137 out of 543 for Siemens Nig. Ltd 154 out of 551 for Dresser-Rand Nig. Ltd and 162 of 551 for Nigerian Engineering Works Ltd. The results of Pearson product moment correlation analysis and test of research hypotheses indicate that Materials Requirements Planning MRP followed by Supply Chain Management SCM are the most significant IMS as they correlate strongly with PIEMF. The study recommends IMS adoption by code classification of materials in which MRP or SCM could be deployed for management of A class of inventories while classical IMS could be used for management B and C classes of inventory items.

  7. A Comparison of Moment Rates for the Eastern Mediterranean Region from Competitive Kinematic Models

    Science.gov (United States)

    Klein, E. C.; Ozeren, M. S.; Shen-Tu, B.; Galgana, G. A.

    2017-12-01

    Relatively continuous, complex, and long-lived episodes of tectonic deformation gradually shaped the lithosphere of the eastern Mediterranean region into its present state. This large geodynamically interconnected and seismically active region absorbs, accumulates and transmits strains arising from stresses associated with: (1) steady northward convergence of the Arabian and African plates; (2) differences in lithospheric gravitational potential energy; and (3) basal tractions exerted by subduction along the Hellenic and Cyprus Arcs. Over the last twenty years, numerous kinematic models have been built using a variety of assumptions to take advantage of the extensive and dense GPS observations made across the entire region resulting in a far better characterization of the neotectonic deformation field than ever previously achieved. In this study, three separate horizontal strain rate field solutions obtained from three, region-wide, GPS only based kinematic models (i.e., a regional block model, a regional continuum model, and global continuum model) are utilized to estimate the distribution and uncertainty of geodetic moment rates within the eastern Mediterranean region. The geodetic moment rates from each model are also compared with seismic moment release rates gleaned from historic earthquake data. Moreover, kinematic styles of deformation derived from each of the modeled horizontal strain rate fields are examined for their degree of correlation with earthquake rupture styles defined by proximal centroid moment tensor solutions. This study suggests that significant differences in geodetically obtained moment rates from competitive kinematic models may introduce unforeseen bias into regularly updated, geodetically constrained, regional seismic hazard assessments.

  8. Moment Closure for the Stochastic Logistic Model

    National Research Council Canada - National Science Library

    Singh, Abhyudai; Hespanha, Joao P

    2006-01-01

    ..., which we refer to as the moment closure function. In this paper, a systematic procedure for constructing moment closure functions of arbitrary order is presented for the stochastic logistic model...

  9. Exchange currents for hypernuclear magnetic moments

    International Nuclear Information System (INIS)

    Saito, K.; Oka, M.; Suzuki, T.

    1997-01-01

    The meson (K and π) exchange currents for the hypernuclear magnetic moments are calculated using the effective Lagrangian method. The seagull diagram, the mesonic diagram and the Σ 0 -excitation diagram are considered. The Λ-N exchange magnetic moments for 5 Λ He and A=6 hypernuclei are calculated employing the harmonic oscillator shell model. It is found that the two-body correction is about -9% of the single particle value for 5 Λ He. The π exchange current, induced only in the Σ 0 -excitation diagram, is found to give dominant contribution for the isovector magnetic moments of hypernuclei with A=6. (orig.)

  10. Dipole moments of the rho meson

    International Nuclear Information System (INIS)

    Hecht, M.B.; McKellar, B.H.P.

    1997-04-01

    The electric and magnetic dipole moments (EDM) of the rho meson are calculated using the propagators and vertices derived from the quantum chromodynamics Dyson-Schwinger equations. Results obtained from using the Bethe-Salpeter amplitude studied by Chappell, Mitchell et. al., and Pichowsky and Lee, are compared. The rho meson EDM is generated through the inclusion of a quark electric dipole moment, which is left as a free variable. These results are compared to the perturbative results to obtain a measure of the effects of quark interactions and confinement. The two dipole moments are also calculated using the phenomenological MIT bag model to provide a further basis for comparison

  11. Does the small CMB quadrupole moment suggest new physics?

    CERN Document Server

    Cline, J M; Lesgourgues, Julien; Cline, James M.; Crotty, Patrick; Lesgourgues, Julien

    2003-01-01

    Motivated by WMAP's confirmation of an anomalously low value of the quadrupole moment of the CMB temperature fluctuations, we investigate the effects on the CMB of cutting off the primordial power spectrum P(k) at low wave numbers. This could arise, for example, from a break in the inflaton potential, a prior period of matter or radiation domination, or an oscillating scalar field which couples to the inflaton. We reanalyze the full WMAP parameter space supplemented by a low-k cutoff for P(k). The temperature correlations by themselves are better fit by a cutoff spectrum, but including the TE temperature-polarization spectrum reduces this preference to a 1.4 sigma effect. Inclusion of large scale structure data does not change the conclusion. If taken seriously, the low-k cutoff is correlated with optical depth so that reionization occurs even earlier than indicated by the WMAP analysis.

  12. Measurement of whole-body human centers of gravity and moments of inertia.

    Science.gov (United States)

    Albery, C B; Schultz, R B; Bjorn, V S

    1998-06-01

    With the inclusion of women in combat aircraft, the question of safe ejection seat operation has been raised. The potential expanded population of combat pilots would include both smaller and larger ejection seat occupants, which could significantly affect seat performance. The method developed to measure human whole-body CG and MOI used a scale, a knife edge balance, and an inverted torsional pendulum. Subjects' moments of inertia were measured along six different axes. The inertia tensor was calculated from these values, and principal moments of inertia were then derived. Thirty-eight antropometric measurements were also taken for each subject to provide a means for direct correlation of inertial properties to body dimensions and for modeling purposes. Data collected in this study has been used to validate whole-body mass properties predictions. In addition, data will be used to improve Air Force and Navy ejection seat trajectory models for the expanded population.

  13. Multipole electromagnetic moments of neutrino in dispersive medium

    International Nuclear Information System (INIS)

    Semikov, V.B.; Smorodinskij, Ya.A.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow

    1989-01-01

    Four multipole moments for a Dirac and Majorana neutrino in a dispersive medium are calculated viz., the electric monopole (charge), electric dipole, magnetic dipole and anapole dipole moment. For comparison the same quantities are presented in the case of vacuum. The neutrino does not possess an (induced) anapole moment in an isotropic medium; however, in a ferromagnetic such a moment exists and for the Majorana neutrino it is the only electromagnetic cjaracteristic. As an example the cross section for elastic scattering of a Majorana neutrino by nuclei in an isotropic plasma is calculated

  14. Di-jet production and angular correlations in DIS at NLO

    International Nuclear Information System (INIS)

    Jaliflian-Marian, J.

    2016-01-01

    Angular correlations are a sensitive probe of the dynamics of QCD at high energy. In particular azimuthal angular correlations between two hadrons produced in Deeply Inelastic Scattering (DIS) of a virtual photon on a hadron or nucleus offer the best environment in which to investigate high gluon density (gluon saturation) effects expected to arise at small x. Here we give a progress report on our derivation of Next to Leading Order (NLO) corrections to di-jet (di-hadron) production in DIS. (author)

  15. Simultaneous inversion of seismic velocity and moment tensor using elastic-waveform inversion of microseismic data: Application to the Aneth CO2-EOR field

    Science.gov (United States)

    Chen, Y.; Huang, L.

    2017-12-01

    Moment tensors are key parameters for characterizing CO2-injection-induced microseismic events. Elastic-waveform inversion has the potential to providing accurate results of moment tensors. Microseismic waveforms contains information of source moment tensors and the wave propagation velocity along the wavepaths. We develop an elastic-waveform inversion method to jointly invert the seismic velocity model and moment tensor. We first use our adaptive moment-tensor joint inversion method to estimate moment tensors of microseismic events. Our adaptive moment-tensor inversion method jointly inverts multiple microseismic events with similar waveforms within a cluster to reduce inversion uncertainty for microseismic data recorded using a single borehole geophone array. We use this inversion result as the initial model for our elastic-waveform inversion to minimize the cross-correlated-based data misfit between observed data and synthetic data. We verify our method using synthetic microseismic data and obtain improved results of both moment tensors and seismic velocity model. We apply our new inversion method to microseismic data acquired at a CO2-enhanced oil recovery field in Aneth, Utah, using a single borehole geophone array. The results demonstrate that our new inversion method significantly reduces the data misfit compared to the conventional ray-theory-based moment-tensor inversion.

  16. On the electric dipole moments of small sodium clusters from different theoretical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Andres, E-mail: aguado@metodos.fam.cie.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain); Largo, Antonio, E-mail: alargo@qf.uva.es [Departamento de Quimica Fisica y Quimica Inorganica, Universidad de Valladolid (Spain); Vega, Andres, E-mail: vega@fta.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain); Balbas, Luis Carlos, E-mail: balbas@fta.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain)

    2012-05-03

    contribution of the core electrons to the electric dipole moments. Our new geometries possess significantly smaller electric dipole moments than previous density functional results, mostly when combined with the van der Waals exchange-correlation functional. However, although the agreement with experiment clearly improves upon previous calculations, the theoretical dipole moments are still about one order of magnitude larger than the experimental values, suggesting that the correct global minimum structures have not been located yet.

  17. Contribution to the study of the action of electromagnetic fields on the angular correlations of nuclear radiation (1960); Contribution a l'etude de l'action des champs electromagnetiques sur les correlations angulaires des rayonnements nucleaires (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-01-15

    This work deals with the study of interaction of E.M. fields with nuclear moments of nuclei emitting gamma rays. We describe first experiments on delayed angular correlation showing the role played by statistic quadrupole interaction. We have measured the magnetic moment of the second excited state of {sup 19}F using an external magnetic field. In the case of {sup 19}O, experiments of angular distributions and angular correlations of gamma -rays taking into account the possibility of perturbations, allow us to determine the spin and parities of the three first levels. (author) [French] Le present travail concerne l'etude de l'interaction des champs electromagnetiques et des moments nucleaires de noyaux emettant des rayonnements gamma. Nous decrivons des experiences de correlation angulaire differee dont l'interpretation met en coincidence le role joue par les interactions quadrupolaires statiques. Nous avons mesure le moment magnetique de {sup 19}F dans un etat excite en utilisant un champ magnetique exterieur a la source radioactive. Enfin, dans le cas de {sup 19}O, nous montrons l'utilite d'un examen des possibilites de perturbations dans l'interpretation des resultats fournis par des correlations ou des distributions angulaires. (auteur)

  18. A Comparison of Moments-Based Logo Recognition Methods

    Directory of Open Access Journals (Sweden)

    Zili Zhang

    2014-01-01

    Full Text Available Logo recognition is an important issue in document image, advertisement, and intelligent transportation. Although there are many approaches to study logos in these fields, logo recognition is an essential subprocess. Among the methods of logo recognition, the descriptor is very vital. The results of moments as powerful descriptors were not discussed before in terms of logo recognition. So it is unclear which moments are more appropriate to recognize which kind of logos. In this paper we find out the relations between logos with different transforms and moments, which moments are fit for logos with different transforms. The open datasets are employed from the University of Maryland. The comparisons based on moments are carried out from the aspects of logos with noise, and rotation, scaling, rotation and scaling.

  19. Moment inertia pump analysis used in the Rsg-Gas primary coolant loop under lofa condition

    International Nuclear Information System (INIS)

    Sudarmono; Setiyanto; Dhandhang, P.; Dibyo, S.; Royadi

    1998-01-01

    The moment inertia of primary cooling system analysis under LOFA condition has been done. It is potentially one of limiting design constraints of the RSG-GAS safety because the coolant flow rate reduces very rapidly under LOFA condition due to the low inertia circulation pumps. If a loss of flow accident occurs, the mass flow will decrease rapidly and the heat transfer coefficient between cladding and coolant will also decreases. As a consequence the fuel and cladding temperature will increase. The whole core was represented by the 1/4 sector and divided into 19 subchannels and 40 axial nodes. In the present study, moment inertia of pump analysis for RSG-GAS reactor was performed with COBRA-IV-I subchannel code. As the DNB correlation, W-3 Correlation was selected for base case. The flow and power transients under pump trip accident were determined from experiments. The result above compared with the design data are 75 kg m 2 and 81 Kg m 2 respectively. The result shows that the RSG-GAS requires the inertia more than 75 kg m 2

  20. Moments method in the theory of accelerators

    International Nuclear Information System (INIS)

    Perel'shtejn, Eh.A.

    1984-01-01

    The moments method is widely used for solution of different physical and calculation problems in the theory of accelerators, magnetic optics and dynamics of high-current beams. Techniques using moments of the second order-mean squape characteristics of charged particle beams is shown to be most developed. The moments method is suitable and sometimes even the only technique applicable for solution of computerized problems on optimization of accelerating structures, beam transport channels, matching and other systems with accout of a beam space charge

  1. Endogenous opioids regulate moment-to-moment neuronal communication and excitability

    Science.gov (United States)

    Winters, Bryony L.; Gregoriou, Gabrielle C.; Kissiwaa, Sarah A.; Wells, Oliver A.; Medagoda, Danashi I.; Hermes, Sam M.; Burford, Neil T.; Alt, Andrew; Aicher, Sue A.; Bagley, Elena E.

    2017-01-01

    Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear. PMID:28327612

  2. Lattice QCD evaluation of baryon magnetic moment sum rules

    International Nuclear Information System (INIS)

    Leinweber, D.B.

    1991-05-01

    Magnetic moment combinations and sum rules are evaluated using recent results for the magnetic moments of octet baryons determined in a numerical simulation of quenched QCD. The model-independent and parameter-free results of the lattice calculations remove some of the confusion and contradiction surrounding past magnetic moment sum rule analyses. The lattice results reveal the underlying quark dynamics investigated by magnetic moment sum rules and indicate the origin of magnetic moment quenching for the non-strange quarks in Σ. In contrast to previous sum rule analyses, the magnetic moments of nonstrange quarks in Ξ are seen to be enhanced in the lattice results. In most cases, the spin-dependent dynamics and center-of-mass effects giving rise to baryon dependence of the quark moments are seen to be sufficient to violate the sum rules in agreement with experimental measurements. In turn, the sum rules are used to further examine the results of the lattice simulation. The Sachs sum rule suggests that quark loop contributions not included in present lattice calculations may play a key role in removing the discrepancies between lattice and experimental ratios of magnetic moments. This is supported by other sum rules sensitive to quark loop contributions. A measure of the isospin symmetry breaking in the effective quark moments due to quark loop contributions is in agreement with model expectations. (Author) 16 refs., 2 figs., 2 tabs

  3. CORRELATION BETWEEN SELF CONCEPT AND DEFENCE MECHANISM OF STUDENTS

    Directory of Open Access Journals (Sweden)

    Fadhilla Yusri

    2016-12-01

    Full Text Available Basically every individual has a concept about himself. The concept which has been ingrained in each individual, would influence the behavior of that individuals in various aspects of their life including in facing the problems. Only a little of the students are able to solve the problem well. Sometimes to keep themselves right in a problem, they “form” defense mechanism. This research was conducted to reveal the correlation between self concept and defense mechanism of guidance and counseling students of  IAIN Bukittinggi. The population was the entire of guidance and counseling students that concist of 452 students, and 102 samples. The data was collected by using questionnaire that was processed using product moment technique in SPSS 21.0 version. The result shown that there is a significant correlation between self-concept and defense mechanism in facing the problem with the r calculated was 0.433. The strength of the correlation between self-concept  and defense mechanism of BK  students of IAIN Bukittinggi are at moderate or sufficient.

  4. Transverse tails and higher order moments

    International Nuclear Information System (INIS)

    Spence, W.L.; Decker, F.J.; Woodley, M.D.

    1993-05-01

    The tails that may be engendered in a beam's transverse phase space distribution by, e.g., intrabunch wakefields and nonlinear magnetic fields, are all important diagnostic and object of tuning in linear colliders. Wire scanners or phosphorescent screen monitors yield one dimensional projected spatial profiles of such beams that are generically asymmetric around their centroids, and therefore require characterization by the third moment left-angle x 3 right-angle in addition to the conventional mean-square or second moment. A set of measurements spread over sufficient phase advance then allows the complete set left-angle x 3 right-angle, left-angle xx' 2 right-angle, left-angle x' 3 right-angle, and left-angle x 2 x'right-angle to be deduced -- the natural extension of the well-known ''emittance measurement'' treatment of second moments. The four third moments may be usefully decomposed into parts rotating in phase space at the β-tron frequency and at its third harmonic, each specified by a phase-advance-invariant amplitude and a phase. They provide a framework for the analysis and tuning of transverse wakefield tails

  5. On the Five-Moment Hamburger Maximum Entropy Reconstruction

    Science.gov (United States)

    Summy, D. P.; Pullin, D. I.

    2018-05-01

    We consider the Maximum Entropy Reconstruction (MER) as a solution to the five-moment truncated Hamburger moment problem in one dimension. In the case of five monomial moment constraints, the probability density function (PDF) of the MER takes the form of the exponential of a quartic polynomial. This implies a possible bimodal structure in regions of moment space. An analytical model is developed for the MER PDF applicable near a known singular line in a centered, two-component, third- and fourth-order moment (μ _3 , μ _4 ) space, consistent with the general problem of five moments. The model consists of the superposition of a perturbed, centered Gaussian PDF and a small-amplitude packet of PDF-density, called the outlying moment packet (OMP), sitting far from the mean. Asymptotic solutions are obtained which predict the shape of the perturbed Gaussian and both the amplitude and position on the real line of the OMP. The asymptotic solutions show that the presence of the OMP gives rise to an MER solution that is singular along a line in (μ _3 , μ _4 ) space emanating from, but not including, the point representing a standard normal distribution, or thermodynamic equilibrium. We use this analysis of the OMP to develop a numerical regularization of the MER, creating a procedure we call the Hybrid MER (HMER). Compared with the MER, the HMER is a significant improvement in terms of robustness and efficiency while preserving accuracy in its prediction of other important distribution features, such as higher order moments.

  6. Composite quarks and their magnetic moments

    International Nuclear Information System (INIS)

    Parthasarathy, R.

    1980-08-01

    A composite quark model based on the symmetry group SU(10)sub(flavour) x SU(10)sub(colour) with the assumption of mass non-degenerate sub-quarks is considered. Magnetic moments of quarks and sub-quarks are obtained from the observed nucleon magnetic moments. Using these quark and sub-quark magnetic moments, a satisfactory agreement for the radiative decays of vector mesons (rho,ω) is obtained. The ratio of the masses of the sub-quarks constituting the u,d,s quarks are found to be Msub(p)/Msub(n) = 0.3953 and Msub(p)/Msub(lambda) = 0.596, indicating a mass hierarchy Msub(p) < Msub(n) < Msub(lambda) for the sub-quarks. (author)

  7. Magnetic moment of {sup 48}Sc

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsubo, T., E-mail: tohtsubo@np.gs.niigata-u.ac.jp; Kawamura, Y.; Ohya, S. [Niigata University, Department of Physics (Japan); Izumikawa, T. [Niigata University, Radioisotope Center (Japan); Nishimura, K. [Toyama University, Faculty of Engineering (Japan); Muto, S. [Neutron Science Laboratory, KEK (Japan); Shinozuka, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan)

    2007-11-15

    Nuclear magnetic resonances were measured for {sup 48}Sc and {sup 44m}Sc oriented at 8 mK in an Fe host metal. The magnetic hyperfine splitting frequencies at an external magnetic field of 0.2 T were determined to be 63.22(11) MHz and 64.81(1) MHz for {sup 48}Sc and {sup 44m}Sc, respectively. With the known magnetic moment of {mu}({sup 44m}Sc)=+3.88 (1) {mu}{sub N}, the magnetic moment of {sup 48}Sc is deduced as {mu}({sup 44}Sc)=+3.785(12) {mu}{sub N}. The measured magnetic moment of {sup 48}Sc is discussed in terms of the shell model using the effective interactions.

  8. Baryon magnetic moments: Symmetries and relations

    Energy Technology Data Exchange (ETDEWEB)

    Parreno, Assumpta [University of Barcelona; Savage, Martin [Univ. of Washington, Seattle, WA (United States); Tiburzi, Brian [City College of New York, NY (United States); City Univ. (CUNY), NY (United States); Wilhelm, Jonas [Justus-Liebig-Universitat Giessen, Giessen, Germany; Univ. of Washington, Seattle, WA (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-04-01

    Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Σ0- Λ system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetric point. While the spinflavor symmetry in the large Nc limit of QCD is shared by the naïve constituent quark model, we find instances where quark model predictions are considerably favored over those emerging in the large Nc limit. We suggest further calculations that would shed light on the curious patterns of baryon magnetic moments.

  9. Evidence for spin correlation in ttˉ production

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Acharya, B.S.; Kupčo, Alexander; Lokajíček, Miloš

    2012-01-01

    Roč. 108, č. 3 (2012), "032004-1"-"032004-7" ISSN 0031-9007 R&D Projects: GA MŠk LA08047 Institutional research plan: CEZ:AV0Z10100502 Keywords : Batavia TEVATRON Coll * correlation dilepton * pair production * final state * D0 * anti-p p interaction Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.943, year: 2012 http://prl.aps.org/abstract/PRL/v108/i3/e032004

  10. Direct computation of harmonic moments for tomographic reconstruction

    International Nuclear Information System (INIS)

    Nara, Takaaki; Ito, Nobutaka; Takamatsu, Tomonori; Sakurai, Tetsuya

    2007-01-01

    A novel algorithm to compute harmonic moments of a density function from its projections is presented for tomographic reconstruction. For projection p(r, θ), we define harmonic moments of projection by ∫ π 0 ∫ ∞ -∞ p(r,θ)(re iθ ) n drd θ and show that it coincides with the harmonic moments of the density function except a constant. Furthermore, we show that the harmonic moment of projection of order n can be exactly computed by using n+ 1 projection directions, which leads to an efficient algorithm to reconstruct the vertices of a polygon from projections.

  11. Uncertainty analysis with statistically correlated failure data

    International Nuclear Information System (INIS)

    Modarres, M.; Dezfuli, H.; Roush, M.L.

    1987-01-01

    Likelihood of occurrence of the top event of a fault tree or sequences of an event tree is estimated from the failure probability of components that constitute the events of the fault/event tree. Component failure probabilities are subject to statistical uncertainties. In addition, there are cases where the failure data are statistically correlated. At present most fault tree calculations are based on uncorrelated component failure data. This chapter describes a methodology for assessing the probability intervals for the top event failure probability of fault trees or frequency of occurrence of event tree sequences when event failure data are statistically correlated. To estimate mean and variance of the top event, a second-order system moment method is presented through Taylor series expansion, which provides an alternative to the normally used Monte Carlo method. For cases where component failure probabilities are statistically correlated, the Taylor expansion terms are treated properly. Moment matching technique is used to obtain the probability distribution function of the top event through fitting the Johnson Ssub(B) distribution. The computer program, CORRELATE, was developed to perform the calculations necessary for the implementation of the method developed. (author)

  12. Can the magnetic moment contribution explain the Ay puzzle?

    International Nuclear Information System (INIS)

    Stoks, V.G.

    1998-01-01

    We evaluate the full one-photon-exchange Born amplitude for Nd scattering. We include the contributions due to the magnetic moment of the proton or neutron, and the magnetic moment and quadrupole moment of the deuteron. It is found that the inclusion of the magnetic-moment interaction in the theoretical description of the Nd scattering observables cannot resolve the long-standing A y puzzle. copyright 1998 The American Physical Society

  13. Finite moments approach to the time-dependent neutron transport equation

    International Nuclear Information System (INIS)

    Kim, Sang Hyun

    1994-02-01

    Currently, nodal techniques are widely used in solving the multidimensional diffusion equation because of savings in computing time and storage. Thanks to the development of computer technology, one can now solve the transport equation instead of the diffusion equation to obtain more accurate solution. The finite moments method, one of the nodal methods, attempts to represent the fluxes in the cell and on cell surfaces more rigorously by retaining additional spatial moments. Generally, there are two finite moments schemes to solve the time-dependent transport equation. In one, the time variable is treated implicitly with finite moments method in space variable (implicit finite moments method), the other method uses finite moments method in both space and time (space-time finite moments method). In this study, these two schemes are applied to two types of time-dependent neutron transport problems. One is a fixed source problem, the other a heterogeneous fast reactor problem with delayed neutrons. From the results, it is observed that the two finite moments methods give almost the same solutions in both benchmark problems. However, the space-time finite moments method requires a little longer computing time than that of the implicit finite moments method. In order to reduce the longer computing time in the space-time finite moments method, a new iteration strategy is exploited, where a few time-stepwise calculation, in which original time steps are grouped into several coarse time divisions, is performed sequentially instead of performing iterations over the entire time steps. This strategy results in significant reduction of the computing time and we observe that 2-or 3-stepwise calculation is preferable. In addition, we propose a new finite moments method which is called mixed finite moments method in this thesis. Asymptotic analysis for the finite moments method shows that accuracy of the solution in a heterogeneous problem mainly depends on the accuracy of the

  14. Spin-density correlations in the dynamic spin-fluctuation theory: Comparison with polarized neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-08-01

    To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.

  15. Correlation indices physical space of soil and productivity of fruit tomato industry

    Directory of Open Access Journals (Sweden)

    Danilo Gomes de Oliveira

    2017-12-01

    Full Text Available With mechanization at all stages of crop management, the soil began to receive a higher surface load, which causes changes in its physical properties with possible production impacts. Thus, the objective of this work was to evaluate the variability and spatial correlation of the physical attributes of a Red Latosol with the productivity of industrial tomatoes. For this, a sample mesh was assembled using a global receiver positioning system (GPS, with 84 pairs of spaced apart 80 x 80 m points. After the mesh construction, samples in the 0.00-0.20 m layer were collected in the field to measure the physical attributes of the soil and plant data. The variables measured were: soil density (Ds, soil penetration resistance (PR, soil texture and tomato productivity. The values obtained were analyzed using geostatistics, and were classified according to the degree of spatial dependence. Then, using the ordinary kriging interpolation method and ordinary cokriging, the values for nonsampled sites were estimated, allowing the mapping of isovalues and the definition of management zones in the field. The spatial correlation of the physical attributes with the production components by the ordinary Cokriging method verified spatial correlation only between attributes (soil x soil density and sand content. The use of geostatistics and the construction of the maps by means of kriging and ordinary cokrigation allowed to identify different management zones, that is, the variability of soil attributes and productivity.

  16. 3D rotation invariants of Gaussian-Hermite moments

    Czech Academy of Sciences Publication Activity Database

    Yang, Bo; Flusser, Jan; Suk, Tomáš

    2015-01-01

    Roč. 54, č. 1 (2015), s. 18-26 ISSN 0167-8655 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Rotation invariants * Orthogonal moments * Gaussian–Hermite moments * 3D moment invariants Subject RIV: IN - Informatics, Computer Science Impact factor: 1.586, year: 2015 http://library.utia.cas.cz/separaty/2014/ZOI/yang-0438325.pdf

  17. The dipole moment and magnetic hyperfine properties of the excited A 2Σ+(3sσ) Rydberg state of nitric oxide

    International Nuclear Information System (INIS)

    Glendening, E.D.; Feller, D.; Peterson, K.A.; McCullough, E.A. Jr.; Miller, R.J.

    1995-01-01

    The dipole moment and magnetic hyperfine properties of the A 2 Σ + Rydberg state of nitric oxide have been evaluated at a variety of levels of theory with extended correlation consistent basis sets. Using the finite field approach to compute the dipole moment, restricted coupled cluster RCCSD(T) and complete active space-configuration interaction CAS-CI+Q methods yield values (1.09--1.12 D) that are essentially identical to experiment. In contrast, dipole moments computed as an expectation value of the dipole moment operator typically differ from experiment by 0.1--0.6 D. The rather unfavorable comparisons with experiment reported in previous theoretical studies may stem, in part, from the method chosen to evaluate the dipole moment. Magnetic hyperfine properties were evaluated using a variety of unrestricted and restricted open-shell Hartree--Fock-based methods. We estimated the full CI limiting properties by exploiting the convergence behavior of a sequence of MRCI wave functions. The isotropic component A iso ( 14 N) of 39±1 MHz evaluated in this fashion is in excellent accord with the experimental value of 41.4±1.7 MHz. Highly correlated UHF-based methods [e.g., CCSD(T) and QCISD(T)] yield comparable values of 40--41 MHz that are in good agreement with both experiment and the apparent full CI limit. However, for A iso ( 17 O), the full CI limit (-97±2 MHz) and the UHF-based results (ca.-118 MHz) differ by roughly 20 MHz. It remains unclear how to reconcile this large discrepancy. copyright 1995 American Institute of Physics

  18. First principles density functional calculation of magnetic moment and hyperfine fields of dilute transition metal impurities in Gd host

    International Nuclear Information System (INIS)

    Mohanta, S.K.; Mishra, S.N.; Srivastava, S.K.

    2014-01-01

    We present first principles calculations of electronic structure and magnetic properties of dilute transition metal (3d, 4d and 5d) impurities in a Gd host. The calculations have been performed within the density functional theory using the full potential linearized augmented plane wave technique and the GGA+U method. The spin and orbital contributions to the magnetic moment and the hyperfine fields have been computed. We find large magnetic moments for 3d (Ti–Co), 4d (Nb–Ru) and 5d (Ta–Os) impurities with magnitudes significantly different from the values estimated from earlier mean field calculation [J. Magn. Magn. Mater. 320 (2008) e446–e449]. The exchange interaction between the impurity and host Gd moments is found to be positive for early 3d elements (Sc–V) while in all other cases an anti-ferromagnetic coupling is observed. The trends for the magnetic moment and hyperfine field of d-impurities in Gd show qualitative difference with respect to their behavior in Fe, Co and Ni. The calculated total hyperfine field, in most cases, shows excellent agreement with the experimental results. A detailed analysis of the Fermi contact hyperfine field has been made, revealing striking differences for impurities having less or more than half filled d-shell. The impurity induced perturbations in host moments and the change in the global magnetization of the unit cell have also been computed. The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. - Highlights: • Detailed study of transition metal impurities in ferromagnetic Gd has been carried out. • The trends in impurity magnetic moment are qualitatively different from Fe, Co and Ni. • The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. • Experimental trend in a hyperfine field has been reproduced successfully

  19. Nuclear anapole moment and tests of the standard model

    International Nuclear Information System (INIS)

    Flambaum, V. V.

    1999-01-01

    There are two sources of parity nonconservation (PNC) in atoms: the electron-nucleus weak interaction and the magnetic interaction of electrons with the nuclear anapole moment. A nuclear anapole moment has recently been observed. This is the first discovery of an electromagnetic moment violating fundamental symmetries--the anapole moment violates parity and charge-conjugation invariance. We describe the anapole moment and how it can be produced. The anapole moment creates a circular magnetic field inside the nucleus. The interesting point is that measurements of the anapole allow one to study parity violation inside the nucleus through atomic experiments. We use the experimental result for the nuclear anapole moment of 133 Cs to find the strengths of the parity violating proton-nucleus and meson-nucleon forces. Measurements of the weak charge characterizing the strength of the electron-nucleon weak interaction provide tests of the Standard Model and a way of searching for new physics beyond the Standard Model. Atomic experiments give limits on the extra Z-boson, leptoquarks, composite fermions, and radiative corrections produced by particles that are predicted by new theories. The weak charge and nuclear anapole moment can be measured in the same experiment. The weak charge gives the mean value of the PNC effect while the anapole gives the difference of the PNC effects for the different hyperfine components of an electromagnetic transition. The interaction between atomic electrons and the nuclear anapole moment may be called the ''PNC hyperfine interaction.''

  20. Redefining the political moment

    Directory of Open Access Journals (Sweden)

    James Arvanitakis

    2011-07-01

    Full Text Available On 16 February 2003, more than half a million people gathered in Sydney, Australia, as part of a global anti-war protest aimed at stopping the impending invasion of Iraq by the then US Administration. It is difficult to estimate how many millions marched on the coordinated protest, but it was by far the largest mobilization of a generation. Walking and chanting on the streets of Sydney that day, it seemed that a political moment was upon us. In a culture that rarely embraces large scale activism, millions around Australian demanded to be heard. The message was clear: if you do not hear us, we would be willing to bring down a government. The invasion went ahead, however, with the then Australian government, under the leadership of John Howard, being one of the loudest and staunchest supporters of the Bush Administrations drive to war. Within 18 months, anti-war activists struggled to have a few hundred participants take part in anti-Iraq war rallies, and the Howard Government was comfortably re-elected for another term. The political moment had come and gone, with both social commentators and many members of the public looking for a reason. While the conservative media was often the focus of analysis, this paper argues that in a time of late capitalism, the political moment is hollowed out by ‘Politics’ itself. That is to say, that formal political processes (or ‘Politics’ undermine the political practices that people participate in everyday (or ‘politics’. Drawing on an ongoing research project focusing on democracy and young people, I discuss how the concept of ’politics‘ has been destabilised and subsequently, the political moment has been displaced. This displacement has led to a re-definition of ‘political action’ and, I argue, the emergence of a different type of everyday politics.

  1. Distribution functions and moments in the theory of coagulation

    International Nuclear Information System (INIS)

    Pich, J.

    1990-04-01

    Different distribution functions and their moments used in the Theory of coagulation are summarized and analysed. Relations between the moments of these distribution functions are derived and the physical meaning of individual moments is briefly discussed. The time evolution of the moment of order zero (total number concentration) during the coagulation process is analysed for the general kernel of the Smoluchowski equation. On this basis the time evolution of certain physically important quantities related to this moment such as mean particle size, surface and volume as well as surface concentration is described. Equations for the half time of coagulation for the general collision frequency factor are derived. (orig.) [de

  2. Analytic posteriors for Pearson's correlation coefficient.

    Science.gov (United States)

    Ly, Alexander; Marsman, Maarten; Wagenmakers, Eric-Jan

    2018-02-01

    Pearson's correlation is one of the most common measures of linear dependence. Recently, Bernardo (11th International Workshop on Objective Bayes Methodology, 2015) introduced a flexible class of priors to study this measure in a Bayesian setting. For this large class of priors, we show that the (marginal) posterior for Pearson's correlation coefficient and all of the posterior moments are analytic. Our results are available in the open-source software package JASP.

  3. Analytic posteriors for Pearson's correlation coefficient

    OpenAIRE

    Ly, A.; Marsman, M.; Wagenmakers, E.-J.

    2018-01-01

    Pearson's correlation is one of the most common measures of linear dependence. Recently, Bernardo (11th International Workshop on Objective Bayes Methodology, 2015) introduced a flexible class of priors to study this measure in a Bayesian setting. For this large class of priors, we show that the (marginal) posterior for Pearson's correlation coefficient and all of the posterior moments are analytic. Our results are available in the open‐source software package JASP.

  4. A new online database of nuclear electromagnetic moments

    Science.gov (United States)

    Mertzimekis, Theo J.

    2017-09-01

    Nuclear electromagnetic (EM) moments, i.e., the magnetic dipole and the electric quadrupole moments, provide important information of nuclear structure. As in other types of experimental data available to the community, measurements of nuclear EM moments have been organized systematically in compilations since the dawn of nuclear science. However, the wealth of recent moments measurements with radioactive beams, as well as earlier existing measurements, lack an online, easy-to-access, systematically organized presence to disseminate information to researchers. In addition, available printed compilations suffer a rather long life cycle, being left behind experimental measurements published in journals or elsewhere. A new, online database (http://magneticmoments.info) focusing on nuclear EM moments has been recently developed to disseminate experimental data to the community. The database includes non-evaluated experimental data of nuclear EM moments, giving strong emphasis on frequent updates (life cycle is 3 months) and direct connection to the sources via DOI and NSR hyperlinks. It has been recently integrated in IAEA LiveChart [1], but can also be found as a standalone webapp [2]. A detailed review of the database features, as well as plans for further development and expansion in the near future is discussed.

  5. A jackknife approach to quantifying single-trial correlation between covariance-based metrics undefined on a single-trial basis.

    Science.gov (United States)

    Richter, Craig G; Thompson, William H; Bosman, Conrado A; Fries, Pascal

    2015-07-01

    The quantification of covariance between neuronal activities (functional connectivity) requires the observation of correlated changes and therefore multiple observations. The strength of such neuronal correlations may itself undergo moment-by-moment fluctuations, which might e.g. lead to fluctuations in single-trial metrics such as reaction time (RT), or may co-fluctuate with the correlation between activity in other brain areas. Yet, quantifying the relation between moment-by-moment co-fluctuations in neuronal correlations is precluded by the fact that neuronal correlations are not defined per single observation. The proposed solution quantifies this relation by first calculating neuronal correlations for all leave-one-out subsamples (i.e. the jackknife replications of all observations) and then correlating these values. Because the correlation is calculated between jackknife replications, we address this approach as jackknife correlation (JC). First, we demonstrate the equivalence of JC to conventional correlation for simulated paired data that are defined per observation and therefore allow the calculation of conventional correlation. While the JC recovers the conventional correlation precisely, alternative approaches, like sorting-and-binning, result in detrimental effects of the analysis parameters. We then explore the case of relating two spectral correlation metrics, like coherence, that require multiple observation epochs, where the only viable alternative analysis approaches are based on some form of epoch subdivision, which results in reduced spectral resolution and poor spectral estimators. We show that JC outperforms these approaches, particularly for short epoch lengths, without sacrificing any spectral resolution. Finally, we note that the JC can be applied to relate fluctuations in any smooth metric that is not defined on single observations. Copyright © 2015. Published by Elsevier Inc.

  6. The dipole moments of the linear polycarbon monosulfides

    International Nuclear Information System (INIS)

    Murakami, Akinori

    1989-01-01

    The dipole moments of the linear polycarbon monosulfides, CS, C 2 S and C 3 S molecule (radical)s were calculated by ab initio SCF-CI method. The equilibrium geometries of the C n S molecules were obtained by MP3 method using the 6-31G** basis set. From the split balencetype (MIDI-4) to the Huzinaga's well tempered extended type(WT) were used to evaluate dipole moments. Final results were obtained using the WT+2d basis set and CI calculation. The calculated dipole moment of the CS molecule, 1.96 debye, is in good agreement with experimental one. The dipole moment of the C 2 S radical is calculated to be 2.81 debye and 3.66 debye for C 3 S molecule. The calculated dipole moments of the C n S will be accurate with in 0.1 debye(5%)

  7. Virtual Seismometers for Induced Seismicity Monitoring and Full Moment Tensor Inversion

    Science.gov (United States)

    Morency, C.; Matzel, E.

    2016-12-01

    Induced seismicity is associated with subsurface fluid injection, and puts at risk efforts to develop geologic carbon sequestration and enhanced geothermal systems. We are developing methods to monitor the microseismically active zone so that we can ultimately identify faults at risk of slipping. The virtual seismometer method (VSM) is an interferometric technique that is very sensitive to the source parameters (location, mechanism and magnitude) and to the Earth structure in the source region. VSM works by virtually placing seismometers inside a micro events cloud, where we can focus on properties directly between induced micro events, and effectively replacing each earthquake with a virtual seismometer recording all the others. Here, we show that the cross-correlated signals from seismic wavefields triggered by two events and recorded at the surface are a combination of the strain field between these two sources times a moment tensor. Based on this relationship, we demonstrate how we can use these measured cross-correlated signals to invert for full moment tensor. The advantage of VSM is to allow to considerably reduce the modeled numerical domain to the region directly around the micro events cloud, which lowers computational cost, permits to reach higher frequency resolution, and suppresses the impact of the Earth structural model uncertainties outside the micro events cloud. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Moments of Negotiation

    NARCIS (Netherlands)

    Pieters, Jurgen

    2001-01-01

    'Moments of Negotiation' offers the first book-length and indepth analysis of the New Historicist reading method, which the American Shakespeare-scolar Stephen Greenblatt introduced at the beginning of the 1980s. Ever since, Greenblatt has been hailed as the prime representative of this movement,

  9. Measurement of nuclear moments and radii by collinear laser spectroscopy

    CERN Multimedia

    Geithner, W R; Lievens, P; Kotrotsios, G; Silverans, R; Kappertz, S

    2002-01-01

    %IS304 %title\\\\ \\\\Collinear laser spectroscopy on a fast beam has proven to be a widely applicable and very efficient tool for measurements of changes in mean square nuclear charge radii, nuclear spins, magnetic dipole and electric quadrupole moments. Recent developments of extremely sensitive non-optical detection schemes enabled for some elements the extension of the measurements towards the very short-lived isotopes in the far wings of the ISOLDE production curves. The gain in sensitivity opens up new perspectives, particularly for measurements on lighter nuclei whose ground-state properties can be interpreted by large scale microscopic calculations instead of the more phenomenologic models used for heavier nuclei.\\\\ \\\\ For the sequence of argon isotopes $^{32-40}$Ar and $^{46}$Ar isotope shifts and nuclear moments were measured by optical pumping followed by state selective collisional ionization and detection of the $\\beta$-decay. Similarly, the low-background $\\alpha$-detection was used to extend earlie...

  10. Real-Time Moment-to-Moment Emotional Responses to Narrative and Informational Breast Cancer Videos in African American Women

    Science.gov (United States)

    Bollinger, Sarah; Kreuter, Matthew W.

    2012-01-01

    In a randomized experiment using moment-to-moment audience analysis methods, we compared women's emotional responses with a narrative versus informational breast cancer video. Both videos communicated three key messages about breast cancer: (i) understand your breast cancer risk, (ii) talk openly about breast cancer and (iii) get regular…

  11. Correlations between reaction product yields as a tool for probing heavy-ion reaction scenarios

    International Nuclear Information System (INIS)

    Gawlikowicz, W.; Agnihotri, D. K.; Baldwin, S. A.; Schroeder, W. U.; Toke, J.; Charity, R. J.; Sarantites, D. G.; Sobotka, L. G.; Souza, R. T. de; Barczyk, T.; Grotowski, K.; Micek, S.; Planeta, R.; Sosin, Z.

    2010-01-01

    Experimental multidimensional joint distributions of neutrons and charged reaction products were analyzed for 136 Xe + 209 Bi reactions at E/A=28, 40, and 62 MeV and were found to exhibit several different types of prominent correlation patterns. Some of these correlations have a simple explanation in terms of the system excitation energy and pose little challenge to most statistical decay theories. However, several other types of correlation patterns are difficult to reconcile with some, but not other, possible reaction scenarios. In this respect, correlations between the average atomic numbers of intermediate-mass fragments, on the one hand, and light particle multiplicities, on the other, are notable. This kind of multiparticle correlation provides a useful tool for probing reaction scenarios, which is different from the traditional approach of interpreting inclusive yields of individual reaction products.

  12. No apparent correlation between honey bee forager gut microbiota and honey production.

    Science.gov (United States)

    Horton, Melissa A; Oliver, Randy; Newton, Irene L

    2015-01-01

    One of the best indicators of colony health for the European honey bee (Apis mellifera) is its performance in the production of honey. Recent research into the microbial communities naturally populating the bee gut raise the question as to whether there is a correlation between microbial community structure and colony productivity. In this work, we used 16S rRNA amplicon sequencing to explore the microbial composition associated with forager bees from honey bee colonies producing large amounts of surplus honey (productive) and compared them to colonies producing less (unproductive). As supported by previous work, the honey bee microbiome was found to be dominated by three major phyla: the Proteobacteria, Bacilli and Actinobacteria, within which we found a total of 23 different bacterial genera, including known "core" honey bee microbiome members. Using discriminant function analysis and correlation-based network analysis, we identified highly abundant members (such as Frischella and Gilliamella) as important in shaping the bacterial community; libraries from colonies with high quantities of these Orbaceae members were also likely to contain fewer Bifidobacteria and Lactobacillus species (such as Firm-4). However, co-culture assays, using isolates from these major clades, were unable to confirm any antagonistic interaction between Gilliamella and honey bee gut bacteria. Our results suggest that honey bee colony productivity is associated with increased bacterial diversity, although this mechanism behind this correlation has yet to be determined. Our results also suggest researchers should not base inferences of bacterial interactions solely on correlations found using sequencing. Instead, we suggest that depth of sequencing and library size can dramatically influence statistically significant results from sequence analysis of amplicons and should be cautiously interpreted.

  13. Moment methods and Lanczos methods

    International Nuclear Information System (INIS)

    Whitehead, R.R.

    1980-01-01

    In contrast to many of the speakers at this conference I am less interested in average properties of nuclei than in detailed spectroscopy. I will try to show, however, that the two are very closely connected and that shell-model calculations may be used to give a great deal of information not normally associated with the shell-model. It has been demonstrated clearly to us that the level spacing fluctuations in nuclear spectra convey very little physical information. This is true when the fluctuations are averaged over the entire spectrum but not if one's interest is in the lowest few states, whose spacings are relatively large. If one wishes to calculate a ground state (say) accurately, that is with an error much smaller than the excitation energy of the first excited state, very high moments, μ/sub n/, n approx. 200, are needed. As I shall show, we use such moments as a matter of course, albeit without actually calculating them; in fact I will try to show that, if at all possible, the actual calculations of moments is to be avoided like the plague. At the heart of the new shell-model methods embodied in the Glasgow shell-model program and one or two similar ones is the so-called Lanczos method and this, it turns out, has many deep and subtle connections with the mathematical theory of moments. It is these connections that I will explore here

  14. Expert judgement combination using moment methods

    International Nuclear Information System (INIS)

    Wisse, Bram; Bedford, Tim; Quigley, John

    2008-01-01

    Moment methods have been employed in decision analysis, partly to avoid the computational burden that decision models involving continuous probability distributions can suffer from. In the Bayes linear (BL) methodology prior judgements about uncertain quantities are specified using expectation (rather than probability) as the fundamental notion. BL provides a strong foundation for moment methods, rooted in work of De Finetti and Goldstein. The main objective of this paper is to discuss in what way expert assessments of moments can be combined, in a non-Bayesian way, to construct a prior assessment. We show that the linear pool can be justified in an analogous but technically different way to linear pools for probability assessments, and that this linear pool has a very convenient property: a linear pool of experts' assessments of moments is coherent if each of the experts has given coherent assessments. To determine the weights of the linear pool we give a method of performance based weighting analogous to Cooke's classical model and explore its properties. Finally, we compare its performance with the classical model on data gathered in applications of the classical model

  15. Jet Fragmentation Function Moments in Heavy Ion Collisions

    CERN Document Server

    Cacciari, Matteo; Salam, Gavin P; Soyez, Gregory

    2013-01-01

    The nature of a jet's fragmentation in heavy-ion collisions has the potential to cast light on the mechanism of jet quenching. However the presence of the huge underlying event complicates the reconstruction of the jet fragmentation function as a function of the momentum fraction z of hadrons in the jet. Here we propose the use of moments of the fragmentation function. These quantities appear to be as sensitive to quenching modifications as the fragmentation function directly in z. We show that they are amenable to background subtraction using the same jet-area based techniques proposed in the past for jet p_t's. Furthermore, complications due to correlations between background-fluctuation contributions to the jet's p_t and to its particle content are easily corrected for.

  16. Regularized κ-distributions with non-diverging moments

    Science.gov (United States)

    Scherer, K.; Fichtner, H.; Lazar, M.

    2017-12-01

    For various plasma applications the so-called (non-relativistic) κ-distribution is widely used to reproduce and interpret the suprathermal particle populations exhibiting a power-law distribution in velocity or energy. Despite its reputation the standard κ-distribution as a concept is still disputable, mainly due to the velocity moments M l which make a macroscopic characterization possible, but whose existence is restricted only to low orders l definition of the κ-distribution itself is conditioned by the existence of the moment of order l = 2 (i.e., kinetic temperature) satisfied only for κ > 3/2 . In order to resolve these critical limitations we introduce the regularized κ-distribution with non-diverging moments. For the evaluation of all velocity moments a general analytical expression is provided enabling a significant step towards a macroscopic (fluid-like) description of space plasmas, and, in general, any system of κ-distributed particles.

  17. Method of moments in electromagnetics

    CERN Document Server

    Gibson, Walton C

    2007-01-01

    Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level. The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and t

  18. Neutron star moments of inertia

    Science.gov (United States)

    Ravenhall, D. G.; Pethick, C. J.

    1994-01-01

    An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.

  19. The correlation between the transverse polarization and transverse momentum of lambda produced in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ye Yunxiu; Zhou Xin; Ji Gang; Su Shufang; Zhu Guohuai

    1996-01-01

    The transverse polarization of lambda produced in relativistic nucleus-nucleus collisions is determined. The effect from the interaction between spin moment and magnetic field is corrected. The near zero transverse polarization and non-correlation between transverse polarization and transverse momentum are obtained and compared to ones obtained from the nucleus-nucleus interactions at lower energies. This comparison shows that the production mechanism of lambdas in the relativistic nucleus-nucleus collisions is different from one in the nucleus-nucleus reactions at lower energies

  20. Droplet-model predictions of charge moments

    International Nuclear Information System (INIS)

    Myers, W.D.

    1982-04-01

    The Droplet Model expressions for calculating various moments of the nuclear charge distribution are given. There are contributions to the moments from the size and shape of the system, from the internal redistribution induced by the Coulomb repulsion, and from the diffuseness of the surface. A case is made for the use of diffuse charge distributions generated by convolution as an alternative to Fermi-functions

  1. Computing Moment-Based Probability Tables for Self-Shielding Calculations in Lattice Codes

    International Nuclear Information System (INIS)

    Hebert, Alain; Coste, Mireille

    2002-01-01

    As part of the self-shielding model used in the APOLLO2 lattice code, probability tables are required to compute self-shielded cross sections for coarse energy groups (typically with 99 or 172 groups). This paper describes the replacement of the multiband tables (typically with 51 subgroups) with moment-based tables in release 2.5 of APOLLO2. An improved Ribon method is proposed to compute moment-based probability tables, allowing important savings in CPU resources while maintaining the accuracy of the self-shielding algorithm. Finally, a validation is presented where the absorption rates obtained with each of these techniques are compared with exact values obtained using a fine-group elastic slowing-down calculation in the resolved energy domain. Other results, relative to the Rowland's benchmark and to three assembly production cases, are also presented

  2. Influence of magnetic moment formation on the conductance of coupled quantum wires

    International Nuclear Information System (INIS)

    Puller, V I; Mourokh, L G; Bird, J P; Ochiai, Y

    2005-01-01

    In this paper, we develop a model for the resonant interaction between a pair of coupled quantum wires, under conditions where self-consistent effects lead to the formation of a local magnetic moment in one of the wires. Our analysis is motivated by the experimental results of Morimoto et al (2003 Appl. Phys. Lett. 82 3952), who showed that the conductance of one of the quantum wires exhibits a resonant peak at low temperatures, whenever the other wire is swept into the regime where local-moment formation is expected. In order to account for these observations, we develop a theoretical model for the inter-wire interaction that calculated the transmission properties of one (the fixed) wire when the device potential is modified by the presence of an extra scattering term, arising from the presence of the local moment in the swept wire. To determine the transmission coefficients in this system, we derive equations describing the dynamics of electrons in the swept and fixed wires of the coupled-wire geometry. Our analysis clearly shows that the observation of a resonant peak in the conductance of the fixed wire is correlated to the appearance of additional structure (near 0.75 x 2e 2 /h or 0.25 x 2e 2 /h) in the conductance of the swept wire, in agreement with the experimental results of Morimoto et al

  3. Induced Magnetic Moment in Defected Single-Walled Carbon Nanotubes

    International Nuclear Information System (INIS)

    Liu Hong

    2006-01-01

    The existence of a large induced magnetic moment in defect single-walled carbon nanotube(SWNT) is predicted using the Green's function method. Specific to this magnetic moment of defect SWNT is its magnitude which is several orders of magnitude larger than that of perfect SWNT. The induced magnetic moment also shows certain remarkable features. Therefore, we suggest that two pair-defect orientations in SWNT can be distinguished in experiment through the direction of the induced magnetic moment at some Specific energy points

  4. Hot spots and hot moments in riparian zones: Potential for improved water quality management

    Science.gov (United States)

    Philippe Vidon; Craig Allan; Douglas Burns; Tim P. Duval; Noel Gurwick; Shreeram Inamdar; Richard Lowrance; Judy Okay; Durelle Scott; Stephen Sebestyen

    2010-01-01

    Biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. These heterogeneous processes have recently been conceptualized as "hot spots and moments" of retention, degradation, or production. Nevertheless, studies investigating...

  5. Polarization electric dipole moment in nonaxial nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.; Davidovskaya, O.I.

    1996-01-01

    An expression for the macroscopic polarization electric dipole moment is obtained for nonaxial nuclei whose radii of the proton and neutron surfaces are related by a linear equation. Dipole transitions associated with the polarization electric dipole moment are analyzed for static and dynamical multipole deformations

  6. Examining the Possibilities of Identifying and Modeling Correlations between Product Families and Business Processes

    DEFF Research Database (Denmark)

    Jepsen, Allan Dam; Hvam, Lars

    2010-01-01

    In order for companies to make well founded decisions on the product family makeup, an understanding of the correlation between the complexity of the product family and business processes is required, though it is often not available. This paper investigates the potential of using the Product...... Variant Master (PVM) modeling technique and Process Flow Charts in combination, to analyze the correlation between complexity in product families and business processes. The approach is based on a visual modeling of the product assortment and the business processes. It is hypothesized that the combined...... use of the modeling techniques can allow for analysis and communication of the product family and business processes; as well as the connections between the two, with the potential of creating a single combined model. A case from a Danish industrial company is used for the purpose of the investigation...

  7. A wind loading correlation for an isolated square heliostat, part 1: lift and drag forces

    CSIR Research Space (South Africa)

    Roos, TH

    2012-05-01

    Full Text Available dataset to high accuracy. Correlations for the lift and drag forces are presented. A companion paper presents correlations for the side forces and correlations for moments about the three principal axes, and discusses the behavior of the correlations....

  8. Effects of an anomalous W-boson weak electric dipole moment in fi- fj → W ± Z0 (γ)

    International Nuclear Information System (INIS)

    Queijeiro, A.; Garcia, J.

    1995-01-01

    We study the high-energy production process f i - f j → W ± Z 0 (γ) allowing for gauge boson compositeness through an anomalous W - -boson weak-electric dipole moment parameter ∼ k z . We give the angular differential and total cross-section for different values of ∼ k z , and compare with the corresponding results coming from an anomalous weak-magnetic dipole moment k z . (Author)

  9. Degree of Response to Homeopathic Potencies Correlates with Dipole Moment Size in Molecular Detectors: Implications for Understanding the Fundamental Nature of Serially Diluted and Succussed Solutions.

    Science.gov (United States)

    Cartwright, Steven J

    2018-02-01

     The use of solvatochromic dyes to investigate homeopathic potencies holds out the promise of understanding the nature of serially succussed and diluted solutions at a fundamental physicochemical level. Recent studies have shown that a range of different dyes interact with potencies and, moreover, the nature of the interaction is beginning to allow certain specific characteristics of potencies to be delineated.  The study reported in this article takes previous investigations further and aims to understand more about the nature of the interaction between potencies and solvatochromic dyes. To this end, the UV-visible spectra of a wide range of potential detectors of potencies have been examined using methodologies previously described.  Results presented demonstrate that solvatochromic dyes are a sub-group of a larger class of compounds capable of demonstrating interactions with potencies. In particular, amino acids containing an aromatic bridge also show marked optical changes in the presence of potencies. Several specific features of molecular detectors can now be shown to be necessary for significant interactions with homeopathic potencies. These include systems with a large dipole moment, electron delocalisation, polarizability and molecular rigidity.  Analysis of the optical changes occurring on interaction with potencies suggests that in all cases potencies increase the polarity of molecular detectors to a degree that correlates with the size of the compound's permanent or ground dipole moment. These results can be explained by inferring that potencies themselves have polarity. Possible candidates for the identity of potencies, based on these and previously reported results, are discussed. The Faculty of Homeopathy.

  10. Regional frequency analysis of extreme rainfalls using partial L moments method

    Science.gov (United States)

    Zakaria, Zahrahtul Amani; Shabri, Ani

    2013-07-01

    An approach based on regional frequency analysis using L moments and LH moments are revisited in this study. Subsequently, an alternative regional frequency analysis using the partial L moments (PL moments) method is employed, and a new relationship for homogeneity analysis is developed. The results were then compared with those obtained using the method of L moments and LH moments of order two. The Selangor catchment, consisting of 37 sites and located on the west coast of Peninsular Malaysia, is chosen as a case study. PL moments for the generalized extreme value (GEV), generalized logistic (GLO), and generalized Pareto distributions were derived and used to develop the regional frequency analysis procedure. PL moment ratio diagram and Z test were employed in determining the best-fit distribution. Comparison between the three approaches showed that GLO and GEV distributions were identified as the suitable distributions for representing the statistical properties of extreme rainfall in Selangor. Monte Carlo simulation used for performance evaluation shows that the method of PL moments would outperform L and LH moments methods for estimation of large return period events.

  11. Nuclear magnetic and electric dipole moments of neon-19

    International Nuclear Information System (INIS)

    MacArthur, D.W.

    1983-01-01

    This thesis presents a detailed discussion of a series of experiments designed to measure the magnetic and electric dipole moments of the β-emitting nucleus 19 Ne. The 19 Ne is generated in the reaction 19 F(p,n) 19 Ne and is polarized by a ''stern-Gerlach'' magnet in a rare gas atomic beams machine. The atoms are stored in a cell for many seconds without depolarizing. The parity violating asymmetry in the β angular distribution is used to monitor the nuclear polarization. The polarized atoms are stored in a cell in a uniform magnetic field. The β-asymmetry is monitored by a pair of β-detectors located on either side of the cell. Transitions between the M/sub J/ = +1/2 and M/sub J/ = -1/2 spin states are induced by an rf field generated by a small Helmholtz coil pair surrounding the cell. Nuclear magnetic resonance lines are observed and the magnetic moment of 19 Ne measured to be μ( 19 Ne) = -1.88542(8)μ/sub N/. A new magnet, cell and detectors were designed to give narrow resonance lines. The equipment is described in detail and several resonance line shapes are discussed. The narrowest resonance line achieved with this system was 0.043 Hz FWHM. This width is primarily due to the 19 Ne lifetime. Pulsed NMR lineshapes were also observed. The narrow NMR lines observed in the previous experiment were then used as a probe to look for an electric dipole moment (EDM) in 19 Ne. Any shift in the resonance frequency correlated with changes in an externally applied electric field would be evidence for an EDM. The EDM of the 19 Ne atom was measured to (7.2 +/- 6.2 X 10 -22 e-cm. This experiment and possible improvements are discussed in detail

  12. Magnetic moment of single layer graphene rings

    Science.gov (United States)

    Margulis, V. A.; Karpunin, V. V.; Mironova, K. I.

    2018-01-01

    Magnetic moment of single layer graphene rings is investigated. An analytical expression for the magnetic moment as a function of the magnetic field flux through the one-dimensional quantum rings is obtained. This expression has the oscillation character. The oscillation period is equal to one flux quanta.

  13. Dynamical moments of inertia for superdeformed nuclei

    International Nuclear Information System (INIS)

    Obikhod, T.V.

    1995-01-01

    The method of quantum groups has been applied for calculation the dynamical moments of inertia for the yrast superdeformed bands in 194 Hg and 192 Hg as well as to calculation of the dynamical moments of inertia of superdeformed bands in 150 Gd and 148 Gd

  14. Intergenerational fertility correlations in contemporary developing counties.

    Science.gov (United States)

    Murphy, Michael

    2012-01-01

    To estimate the magnitude of intergenerational continuities in total and effective fertility among women in a group of 46 contemporary developing countries. Information collected from 93,000 women aged 45-49 for estimation of maternal mortality in the demographic and health surveys (DHS) program is analyzed using Pearson product moment intergenerational fertility correlations. A positive but usually small intergenerational correlation is found for both completed fertility (CFS, total number of children born) and effective fertility (EFS, number of children surviving to age of reproduction). Although the developing countries are mainly located in sub-Saharan Africa, a similar pattern appears to hold for the Asian and Latin American countries included. Women in the second generation with no education have a stronger relationship with their parents' fertility than women with some education. The relationship is also stronger in rural than in urban areas and in countries with lower levels of development. Intergenerational correlations of completed fertility in both generations are marginally stronger than for effective fertility largely because the number of a woman's total sibs is more strongly related to her subsequent childbearing than her number of adult sibs. Values of intergenerational correlations for these countries are similar to published values for a number of Western pretransitional populations, but well below values in contemporary developed societies. Copyright © 2012 Wiley Periodicals, Inc.

  15. A Necessary Moment Condition for the Fractional Central Limit Theorem

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Morten

    2012-01-01

    We discuss the moment condition for the fractional functional central limit theorem (FCLT) for partial sums of x(t)=¿^{-d}u(t) , where -1/2classical condition is existence of q=2 and q>1/(d+1/2) moments...... of the innovation sequence. When d is close to -1/2 this moment condition is very strong. Our main result is to show that when -1/2conditions on u(t), the existence of q=1/(d+1/2) moments is in fact necessary for the FCLT for fractionally integrated processes and that q>1/(d+1....../2) moments are necessary for more general fractional processes. Davidson and de Jong (2000, Econometric Theory 16, 643-- 666) presented a fractional FCLT where onlyq>2 finite moments are assumed. As a corollary to our main theorem we show that their moment condition is not sufficient and hence...

  16. How decays and final-state interactions affect velocity correlations in heavy-ion collisions

    International Nuclear Information System (INIS)

    Wieand, K.L.; Pratt, S.E.; Balantekin, A.B.

    1992-01-01

    We study rapidity correlations by calculating two-particle correlation functions and fractorial moments for a simple thermal model of ultrarelativistic-heavy-ion collisions. In this model correlations arise from decays of unstable hadrons and the final-state interactions of the measured particles. These correlations are shown to be similar but smaller than correlations due to phase separation. (orig.)

  17. Theoretical status of baryon magnetic moments

    Science.gov (United States)

    Franklin, Jerrold

    1989-05-01

    This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12-17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article. (AIP)

  18. Theoretical status of baryon magnetic moments

    International Nuclear Information System (INIS)

    Franklin, J.

    1989-01-01

    This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12--17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article

  19. Moment-ration imaging of seismic regions for earthquake prediction

    Science.gov (United States)

    Lomnitz, Cinna

    1993-10-01

    An algorithm for predicting large earthquakes is proposed. The reciprocal ratio (mri) of the residual seismic moment to the total moment release in a region is used for imaging seismic moment precursors. Peaks in mri predict recent major earthquakes, including the 1985 Michoacan, 1985 central Chile, and 1992 Eureka, California earthquakes.

  20. Higher moments method for generalized Pareto distribution in flood frequency analysis

    Science.gov (United States)

    Zhou, C. R.; Chen, Y. F.; Huang, Q.; Gu, S. H.

    2017-08-01

    The generalized Pareto distribution (GPD) has proven to be the ideal distribution in fitting with the peak over threshold series in flood frequency analysis. Several moments-based estimators are applied to estimating the parameters of GPD. Higher linear moments (LH moments) and higher probability weighted moments (HPWM) are the linear combinations of Probability Weighted Moments (PWM). In this study, the relationship between them will be explored. A series of statistical experiments and a case study are used to compare their performances. The results show that if the same PWM are used in LH moments and HPWM methods, the parameter estimated by these two methods is unbiased. Particularly, when the same PWM are used, the PWM method (or the HPWM method when the order equals 0) shows identical results in parameter estimation with the linear Moments (L-Moments) method. Additionally, this phenomenon is significant when r ≥ 1 that the same order PWM are used in HPWM and LH moments method.

  1. The neutron electric dipole moment and the Weinberg's operator

    International Nuclear Information System (INIS)

    Li Chongsheng; Hu Bingquan

    1992-01-01

    After a summary of the predictions for the neutron electric dipole moment in a number of models of CP violation, the authors review mainly the recent developments associated with Weimberg's purely gluonic CP violation operator. Its implications on the neutron electric dipole moment in various models of CP violation are discussed. Inspired by Weimberg's work, several new mechanisms of generating large electric dipole moments of charged leptons and large electric and chromo-electric dipole moments of light quarks are recently proposed. Brief discussions on these new developments are also given

  2. Hadronic J/psi and charmed particle production and correlating quark rearrangement model

    International Nuclear Information System (INIS)

    Nishitani, Tadashi

    1979-01-01

    On the basis of the correlating quark rearrangement model, the exclusive and inclusive production cross sections of J/psi and charmed particles in hadron collisions are calculated. It is shown that the inclusive production cross section of charmed particles is several tens of μb at p sub( l) -- 100 GeV/c in hadron collisions. The OZI rule is discussed in connection with the production mechanism of J/psi particles. (author)

  3. Angular momentum partitioning and the subshell multipole moments in impulsively excited argon ions

    International Nuclear Information System (INIS)

    Al-Khateeb, H.M.; Birdsey, B.G.; Gay, T.J.

    2005-01-01

    We have investigated collisions between transversely polarized electrons and Ar, in which the Ar is simultaneously ionized and excited to the Ar +* [3p 4 ( 1 D)4p] states. The Stokes parameters of the fluorescence emitted in the following transitions was measured: ( 1 D)4s 2 D 5/2 -( 1 D)4p 2 F 7/2 (461.0 nm), ( 1 D)4s 2 D 5/2 -( 1 D)4p 2 F 5/2 (463.7 nm) ( 1 P)3d 2 D 5/2 -( 1 D)4p 2 D 5/2 (448.2 nm), and ( 1 D)4s 2 D 3/2 -( 1 D)4p 2 P 3/2 (423.7 nm). We develop the angular momentum algebra necessary to extract from these data, starting from the overall atomic J multipoles, the partitioning of orbital angular momentum into the 1 D core electric quadrupole and hexadecapole moments, and the outer 4p electric quadrupole moment. The magnetic dipole of the outer electron is also determined. This procedure requires the assumption of good LS coupling for these states, which is justified. We recouple these individual core- and outer-electron moments to calculate the initial electric quadrupoles, hexadecapoles, and hexacontatetrapoles of the initial excited-state manifold. The detailed time structure of the electron-atom collision is considered, as well as the time evolution of the excited ionic state. The Rubin-Bederson hypothesis is thus shown to hold for the initial ionic L and S terms. The consequences of the breakdown of LS coupling are considered. From the circular polarization data, estimates of the relative importance of direct and exchange excitation cross section are made. We discuss experimental issues related to background contributions, Hanle depolarization of the fluorescence signal, and cascade contributions. Nonlinearity of the equations relating the Stokes parameters to the subshell multipole moments complicates the data analysis. Details of the Monte Carlo terrain-search algorithm used to extract multipole data is discussed, and the implications of correlation between the various subshell multipole moments is analyzed. The physical significance of the

  4. Regional analysis of annual maximum rainfall using TL-moments method

    Science.gov (United States)

    Shabri, Ani Bin; Daud, Zalina Mohd; Ariff, Noratiqah Mohd

    2011-06-01

    Information related to distributions of rainfall amounts are of great importance for designs of water-related structures. One of the concerns of hydrologists and engineers is the probability distribution for modeling of regional data. In this study, a novel approach to regional frequency analysis using L-moments is revisited. Subsequently, an alternative regional frequency analysis using the TL-moments method is employed. The results from both methods were then compared. The analysis was based on daily annual maximum rainfall data from 40 stations in Selangor Malaysia. TL-moments for the generalized extreme value (GEV) and generalized logistic (GLO) distributions were derived and used to develop the regional frequency analysis procedure. TL-moment ratio diagram and Z-test were employed in determining the best-fit distribution. Comparison between the two approaches showed that the L-moments and TL-moments produced equivalent results. GLO and GEV distributions were identified as the most suitable distributions for representing the statistical properties of extreme rainfall in Selangor. Monte Carlo simulation was used for performance evaluation, and it showed that the method of TL-moments was more efficient for lower quantile estimation compared with the L-moments.

  5. Kπ=0+ band moment of inertia anomaly

    International Nuclear Information System (INIS)

    Zeng, J.Y.; Wu, C.S.; Cheng, L.; Lin, C.Z.; China Center of Advanced Science and Technology

    1990-01-01

    The moments of inertia of K π =0 + bands in the well-deformed nuclei are calculated by a particle-number-conserving treatment for the cranked shell model. The very accurate solutions to the low-lying K π =0 + bands are obtained by making use of an effective K truncation. Calculations show that the main contribution to the moments of inertia comes from the nucleons in the intruding high-j orbits. Considering the fact that no free parameter is involved in the calculation and no extra inert core contribution is added, the agreement between the calculated and the observed moments of inertia of 0 + bands in 168 Er is very satisfactory

  6. Model independent bounds on magnetic moments of Majorana neutrinos

    International Nuclear Information System (INIS)

    Bell, Nicole F.; Gorchtein, Mikhail; Ramsey-Musolf, Michael J.; Vogel, Petr; Wang, Peng

    2006-01-01

    We analyze the implications of neutrino masses for the magnitude of neutrino magnetic moments. By considering electroweak radiative corrections to the neutrino mass, we derive model-independent naturalness upper bounds on neutrino magnetic moments, μ ν , generated by physics above the electroweak scale. For Dirac neutrinos, the bound is several orders of magnitude more stringent than present experimental limits. However, for Majorana neutrinos the magnetic moment contribution to the mass is Yukawa suppressed. The bounds we derive for magnetic moments of Majorana neutrinos are weaker than present experimental limits if μ ν is generated by new physics at ∼1 TeV, and surpass current experimental sensitivity only for new physics scales >10-100 TeV. The discovery of a neutrino magnetic moment near present limits would thus signify that neutrinos are Majorana particles

  7. Pengenalan Pose Tangan Menggunakan HuMoment

    Directory of Open Access Journals (Sweden)

    Dina Budhi Utami

    2017-02-01

    Full Text Available Computer vision yang didasarkan pada pengenalan bentuk memiliki banyak potensi dalam interaksi manusia dan komputer. Pose tangan dapat dijadikan simbol interaksi manusia dengan komputer seperti halnya pada penggunaan berbagai pose tangan pada bahasa isyarat. Berbagai pose tangan dapat digunakan untuk menggantikan fungsi mouse, untuk mengendalikan robot, dan sebagainya. Penelitian ini difokuskan pada pembangunan sistem pengenalan pose tangan menggunakan HuMoment. Proses pengenalan pose tangan dimulai dengan melakukan segmentasi citra masukan untuk menghasilkan citra ROI (Region of Interest yaitu area telapak tangan. Selanjutnya dilakukan proses deteksi tepi. Kemudian dilakukan ekstraksi nilai HuMoment. Nilai HuMoment dikuantisasikan ke dalam bukukode yang dihasilkan dari proses pelatihan menggunakan K-Means. Proses kuantisasi dilakukan dengan menghitung nilai Euclidean Distance terkecil antara nilai HuMomment citra masukan dan bukukode. Berdasarkan hasil penelitian, nilai akurasi sistem dalam mengenali pose tangan adalah 88.57%.

  8. Current correlators in QCD: Operator product expansion versus large distance dynamics

    International Nuclear Information System (INIS)

    Shevchenko, V.I.; Simonov, Yu.A.

    2004-01-01

    We analyze the structure of current-current correlators in coordinate space in the large N c limit when the corresponding spectral density takes the form of an infinite sum over hadron poles. The latter are computed in the QCD string model with quarks at the ends, including the lowest states, for all channels. The corresponding correlators demonstrate reasonable qualitative agreement with the lattice data without any additional fits. Different issues concerning the structure of the short-distance operator product expansion are discussed

  9. Use of higher order signal moments and high speed digital sampling technique for neutron flux measurements

    Science.gov (United States)

    Baers, L. B.; Gutierrez, T. Rivero; Mendoza, R. A. Carrillo; Santana, G. Jimenez

    1993-08-01

    The second (conventional variance or Campbell signal), the third, and the modified fourth order central signal moments associated with the amplified and filtered currents from two electrodes of an ex-core neutron sensitive fission detector were measured versus the reactor power of the 1-MW TRIGA reactor in Mexico City. Two channels of a high-speed (400-MHz) multiplexing data sampler and an analog-to-digital converter with 12-b resolution and 1-Mword buffer memory were used. The data were further retrieved into a PC, and estimates for autocorrelation and cross-correlation moments up to the fifth order, coherence, skewness, excess, etc., quantities were calculated offline. Five-mode operation of the detector was achieved, including conventional counting rates and currents in agreement with theory and the authors' previous results with analog techniques. The signals are proportional to the neutron flux and reactor power in some flux ranges. The suppression of background noise is improved and the lower limit of the measurement range is extended as the order of moment is increased, in agreement with theory.

  10. Short chain molecular junctions: Charge transport versus dipole moment

    International Nuclear Information System (INIS)

    Ikram, I. Mohamed; Rabinal, M.K.

    2015-01-01

    Graphical abstract: - Highlights: • The role of dipole moment of organic molecules on molecular junctions has been studied. • Molecular junctions constituted using propargyl molecules of different dipole moments. • The electronic properties of the molecules were calculated using Gaussian software. • Junctions show varying rectification due to their varying dipole moment and orientation. - Abstract: The investigation of the influence of dipole moment of short chain organic molecules having three carbon atoms varying in end group on silicon surface was carried on. Here, we use three different molecules of propargyl series varying in dipole moment and its orientation to constitute molecular junctions. The charge transport mechanism in metal–molecules–semiconductor (MMS) junction obtained from current–voltage (I–V) characteristics shows the rectification behavior for two junctions whereas the other junction shows a weak rectification. The electronic properties of the molecules were calculated using Gaussian software package. The observed rectification behavior of these junctions is examined and found to be accounted to the orientation of dipole moment and electron cloud density distribution inside the molecules

  11. Forces and moments on a slender, cavitating body

    Energy Technology Data Exchange (ETDEWEB)

    Hailey, C.E.; Clark, E.L.; Buffington, R.J.

    1988-01-01

    Recently a numerical code has been developed at Sandia National Laboratories to predict the pitching moment, normal force, and axial force of a slender, supercavitating shape. The potential flow about the body and cavity is calculated using an axial distribution of source/sink elements. The cavity surface is assumed to be a constant pressure streamline, extending beyond the base of the model. Slender body approximation is used to model the crossflow for small angles of attack. A significant extension of previous work in cavitation flow is the inclusion of laminar and turbulent boundary layer solutions on the body. Predictions with this code, for axial force at zero angle of attack, show good agreement with experiments. There are virtually no published data availble with which to benchmark the pitching moment and normal force predictions. An experiment was designed to measure forces and moments on a supercavitation shape. The primary reason for the test was to obtain much needed data to benchmark the hydrodynamic force and moment predictions. Since the numerical prediction is for super cavitating shapes at very small cavitation numbers, the experiment was designed to be a ventilated cavity test. This paper describes the experimental procedure used to measure the pitching moment, axial and normal forces, and base pressure on a slender body with a ventilated cavity. Limited results are presented for pitching moment and normal force. 5 refs., 7 figs.

  12. The Humanist Moment

    Science.gov (United States)

    Higgins, Chris

    2014-01-01

    In "The Humanist Moment," Chris Higgins sets out to recover a tenable, living humanism, rejecting both the version vilified by the anti-humanists and the one sentimentalized by the reactionary nostalgists. Rescuing humanism from such polemics is only the first step, as we find at least nine rival, contemporary definitions of humanism.…

  13. The correlation between thermal comfort in buildings and fashion products.

    Science.gov (United States)

    Giesel, Aline; de Mello Souza, Patrícia

    2012-01-01

    This article is about thermal comfort in the wearable product. The research correlates fashion and architecture, in so far as it elects the brise soleil - an architectural element capable of regulating temperature and ventilation inside buildings - as a study referential, in trying to transpose and adapt its mechanisms to the wearable apparel.

  14. Elliptic integral evaluations of Bessel moments and applications

    International Nuclear Information System (INIS)

    Bailey, David H; Borwein, Jonathan M; Broadhurst, David; Glasser, M L

    2008-01-01

    We record and substantially extend what is known about the closed forms for various Bessel function moments arising in quantum field theory, condensed matter theory and other parts of mathematical physics. In particular, we develop formulae for integrals of products of six or fewer Bessel functions. In consequence, we are able to discover and prove closed forms for c n,k := ∫ ∞ 0 t k K n 0 (t) dt with integers n 1, 2, 3, 4 and k ≥ 0, obtaining new results for the even moments c 3,2k and c 4,2k . We also derive new closed forms for the odd moments s n,2k+1 := ∫ ∞ 0 t 2k+1 I 0 (t)K n-1 0 (t) dt with n = 3, 4 and for t n,2k+1 :∫ ∞ 0 t 2k+1 I 2 0 (t)K n-2 0 (t) dt with n = 5, relating the latter to Green functions on hexagonal, diamond and cubic lattices. We conjecture the values of s 5,2k+1 , make substantial progress on the evaluation of c 5,2k+1 , s 6,2k+1 and t 6,2k+1 and report more limited progress regarding c 5,2k , c 6,2k+1 and c 6,2k . In the process, we obtain eight conjectural evaluations, each of which has been checked to 1200 decimal places. One of these lies deep in four-dimensional quantum field theory and two are probably provable by delicate combinatorics. There remains a hard core of five conjectures whose proofs would be most instructive, to mathematicians and physicists alike

  15. Quantum tunneling of the magnetic moment in a free nanoparticle

    International Nuclear Information System (INIS)

    O'Keeffe, M.F.; Chudnovsky, E.M.; Garanin, D.A.

    2012-01-01

    We study tunneling of the magnetic moment in a particle that has full rotational freedom. Exact energy levels are obtained and the ground-state magnetic moment is computed for a symmetric rotor. The effect of mechanical freedom on spin tunneling manifests itself in a strong dependence of the magnetic moment on the moments of inertia of the rotor. The energy of the particle exhibits quantum phase transitions between states with different values of the magnetic moment. Particles of various shapes are investigated and the quantum phase diagram is obtained. - Highlights: ► We obtain an exact analytical solution of a tunneling spin in a mechanical rotator. ► The quantum phase diagram shows magnetic moment dependence on rotator shape and size. ► Our work explains magnetic properties of free atomic clusters and magnetic molecules.

  16. Study of charm production through eμ and eK correlations

    International Nuclear Information System (INIS)

    Craigie, N.S.; Jones, H.F.; Milani, P.

    1979-01-01

    On the basis of present knowledge of the weak decays of charmed mesons we build up inclusive lepton and kaon invariant decay distributions. These are used, in conjunction with the parent-child relation, to estimate the relative lepton and kaon signals arising from associated DD-bar production in hadronic collisions at large p/sub T/, assuming for the latter process an inverse power law p/sup -n//sub T/. Our results are presented as a function of n: for n = 8 we find a kaon yield some 20 times greater than that for an electron. e +- K +- coincidences are therefore suggested as a charm signal, with e +- K -+ to be used as a background subtraction. We discuss to what extent the measured correlation of the decay products eμ or eK can be used to retrieve those of the parent DD-bar. We derive a generalized Sternheimer relation for correlations and show how this can in principle be inverted by the use of the Mellin transform. In addition we propose a simple approximate inversion method which, for various typical functional forms, is shown to quantitatively reproduce the parent correlation

  17. Contribution to the study of the action of electromagnetic fields on the angular correlations of nuclear radiation (1960); Contribution a l'etude de l'action des champs electromagnetiques sur les correlations angulaires des rayonnements nucleaires (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-01-15

    This work deals with the study of interaction of E.M. fields with nuclear moments of nuclei emitting gamma rays. We describe first experiments on delayed angular correlation showing the role played by statistic quadrupole interaction. We have measured the magnetic moment of the second excited state of {sup 19}F using an external magnetic field. In the case of {sup 19}O, experiments of angular distributions and angular correlations of gamma -rays taking into account the possibility of perturbations, allow us to determine the spin and parities of the three first levels. (author) [French] Le present travail concerne l'etude de l'interaction des champs electromagnetiques et des moments nucleaires de noyaux emettant des rayonnements gamma. Nous decrivons des experiences de correlation angulaire differee dont l'interpretation met en coincidence le role joue par les interactions quadrupolaires statiques. Nous avons mesure le moment magnetique de {sup 19}F dans un etat excite en utilisant un champ magnetique exterieur a la source radioactive. Enfin, dans le cas de {sup 19}O, nous montrons l'utilite d'un examen des possibilites de perturbations dans l'interpretation des resultats fournis par des correlations ou des distributions angulaires. (auteur)

  18. Large Contrast Between the Moment Magnitude of Tremor and the Moment Magnitude of Slip in ETS Events

    Science.gov (United States)

    Kao, H.; Wang, K.; Dragert, H.; Rogers, G. C.; Kao, J. Y.

    2009-12-01

    We have developed an algorithm to estimate the moment magnitudes (Mw) of seismic tremors that are recorded during episodic tremor and slip (ETS) events beneath the northern Cascadia margin. The tremor “cloud” during an ETS episode consists of numerous individual tremor bursts. For each tremor burst, the hypocenter is first determined by the Source-Scanning Algorithm [Kao and Shan, 2004]. From the derived source location, we calculate a set of synthetic seismograms for each station based on a fixed seismic moment but different focal mechanisms. The maximum tremor amplitude observed at each station is then compared to that of the synthetics to give an estimate of the corresponding seismic moment of the tremor burst. The seismic moment averaged over all stations is used to calculate the final tremor burst Mw. We have applied this method to local earthquakes for calibration and the results are very consistent with the magnitudes listed in the catalogue. For each of the 8 northern Cascadia ETS episodes whose GPS coverage is sufficient for slip distribution inversion, the cumulative tremor Mw for the entire tremor cloud, determined from the combined moments of all individual tremor bursts in the ETS episode, is ~3 orders less than the corresponding slip Mw in the same episode (e.g., 3.7 vs. 6.7). This result suggests that aseismic slip is the predominant mode of deformation during ETS. The majority of individual tremor bursts in northern Cascadia have Mw ranging between 1.0 and 1.7 with the mean of 1.34. Only 5% of all tremors are larger than 2.0 with the largest being ~2.5.

  19. A robust two-node, 13 moment quadrature method of moments for dilute particle flows including wall bouncing

    Science.gov (United States)

    Sun, Dan; Garmory, Andrew; Page, Gary J.

    2017-02-01

    For flows where the particle number density is low and the Stokes number is relatively high, as found when sand or ice is ingested into aircraft gas turbine engines, streams of particles can cross each other's path or bounce from a solid surface without being influenced by inter-particle collisions. The aim of this work is to develop an Eulerian method to simulate these types of flow. To this end, a two-node quadrature-based moment method using 13 moments is proposed. In the proposed algorithm thirteen moments of particle velocity, including cross-moments of second order, are used to determine the weights and abscissas of the two nodes and to set up the association between the velocity components in each node. Previous Quadrature Method of Moments (QMOM) algorithms either use more than two nodes, leading to increased computational expense, or are shown here to give incorrect results under some circumstances. This method gives the computational efficiency advantages of only needing two particle phase velocity fields whilst ensuring that a correct combination of weights and abscissas is returned for any arbitrary combination of particle trajectories without the need for any further assumptions. Particle crossing and wall bouncing with arbitrary combinations of angles are demonstrated using the method in a two-dimensional scheme. The ability of the scheme to include the presence of drag from a carrier phase is also demonstrated, as is bouncing off surfaces with inelastic collisions. The method is also applied to the Taylor-Green vortex flow test case and is found to give results superior to the existing two-node QMOM method and is in good agreement with results from Lagrangian modelling of this case.

  20. Inclusive production of charged pions in 200 GeV/c π-p interactions

    International Nuclear Information System (INIS)

    Fokitis, E.D.

    1976-01-01

    π - p interactions have been studied experimentally at 200 GeV/c. Topological cross sections and multiplicity moments of this reaction have been presented. These features have been compared with data from other experiments. The dependence of inclusive π/sup +-/ production cross sections on rapidity for this reaction are presented and compared with the data on pp collisions at the same energy. Some theoretical hypotheses, valid at asymptotically high energies, have been discussed in light of these high energy data. The production of positive and negative pions in single- and two-pion inclusive reactions has been studied in terms of current models of cluster production in high energy reactions. In single π - production, a strong leading particle effect is observed, which is associated with a significant production of leading clusters in high energy reactions. Two-particle inclusive reactions have been presented in terms of inclusive differential cross sections and correlations. Correlations of dynamic origin are found, when particles are in small rapidity separation. This is demonstrated by comparing the data with the expected correlations calculated from an independent particle emission model. The presence of these correlations supports the production of clusters in this energy range. The dependence of these correlations on energy and the type of colliding particles has been discussed using data on azimuthal correlations for two particles. These data have been compared with an independent cluster production model including Bose--Einstein statistics on the final state identical particles. This model reproduces the qualitative features observed in experiments, but cannot account for all the experimental features quantitatively

  1. Social Moments: A Perspective on Interaction for Social Robotics

    Directory of Open Access Journals (Sweden)

    Gautier Durantin

    2017-06-01

    Full Text Available During a social interaction, events that happen at different timescales can indicate social meanings. In order to socially engage with humans, robots will need to be able to comprehend and manipulate the social meanings that are associated with these events. We define social moments as events that occur within a social interaction and which can signify a pragmatic or semantic meaning. A challenge for social robots is recognizing social moments that occur on short timescales, which can be on the order of 102 ms. In this perspective, we propose that understanding the range and roles of social moments in a social interaction and implementing social micro-abilities—the abilities required to engage in a timely manner through social moments—is a key challenge for the field of human robot interaction (HRI to enable effective social interactions and social robots. In particular, it is an open question how social moments can acquire their associated meanings. Practically, the implementation of these social micro-abilities presents engineering challenges for the fields of HRI and social robotics, including performing processing of sensors and using actuators to meet fast timescales. We present a key challenge of social moments as integration of social stimuli across multiple timescales and modalities. We present the neural basis for human comprehension of social moments and review current literature related to social moments and social micro-abilities. We discuss the requirements for social micro-abilities, how these abilities can enable more natural social robots, and how to address the engineering challenges associated with social moments.

  2. Teachable Moment: Google Earth Takes Us There

    Science.gov (United States)

    Williams, Ann; Davinroy, Thomas C.

    2015-01-01

    In the current educational climate, where clearly articulated learning objectives are required, it is clear that the spontaneous teachable moment still has its place. Authors Ann Williams and Thomas Davinroy think that instructors from almost any discipline can employ Google Earth as a tool to take advantage of teachable moments through the…

  3. Radiation-induced parotid gland changes in oral cancer patients. Correlation between parotid volume and saliva production

    International Nuclear Information System (INIS)

    Teshima, Keiko; Murakami, Ryuji; Tomitaka, Etsuji

    2010-01-01

    The objective of this study was to evaluate whether saliva production reflects the parotid volume during the course of radiation therapy (RT) in patients with head-and-neck cancer. Twenty patients with advanced oral squamous cell carcinomas, who were treated with preoperative chemo-RT, underwent morphological assessment with CT or MRI and functional assessment with the Saxon test. For the Saxon test, saliva production was measured by weighing a gauze pad before and 2 min after chewing without swallowing; the low-normal value is 2 g. Saliva production and parotid volumes before and 2 weeks after RT were compared with the paired t-test, the Spearman rank correlation test and the Fisher exact test. After 30 Gy irradiation, mean saliva production was decreased from 4.2 to 1.0 g (P 3 (P<0.01); the post-RT: pre-RT parotid volume ratio ranged from 54% to 85% (mean 71%). Although the initial parotid volume was correlated with initial saliva production (r=0.47, P=0.04), no significant correlation was noted after RT (r=0.08, P=0.71), and there were considerable individual variations. The parotid volume ratio was inversely correlated with the saliva-reduction amount (r=-0.79, P<0.01). There was a correlation between decreased parotid gland volume and decreased saliva production in patients with head-and-neck cancer undergoing RT. Parotid volume reduction may predict parotid gland function. (author)

  4. Multilepton production in neutrino interactions and proton-antiproton collisions

    International Nuclear Information System (INIS)

    Valenzuela, G.N.

    1985-01-01

    In part I, we consider the class of events containing 2 or 3 leptons in (anti-neutrino deep inelastic scattering and in proton-antiproton collisions. Understanding the characteristics and rate of production of this type of event has often proven to be a theoretical challenge. We show that a cluster model involving associated-charm production not only accounts for certain dimuon events, but also affords better agreement with experiment regarding trimuons produced in neutrino interactions. We also investigate correlations between D-meson and dimuon production in p anti p collisions in the context of a cluster model which includes the possibility of finding b anti b pairs in jets. Part II consists of a study of radiation zeros in the reaction p anti p → l anti nuγX. It has been proposed that the radiation zero phenomenon could be observed in processes involving the radiative decay of the W-boson. These processes might allow the measurement of the W anomalous magnetic moment. We calculate the effect on this measurement of the decay width and the non-zero transverse momentum of the W. We find that although the radiation zero is filled in to some extent, it might still be possible to estimate the magnetic moment of the W in future experiments

  5. Jet fragmentation function moments in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Cacciari, Matteo [UPMC Univ. Paris 6 et CNRS UMR 7589, LPTHE, Paris (France); Universite Paris Diderot, Paris (France); Quiroga-Arias, Paloma [UPMC Univ. Paris 6 et CNRS UMR 7589, LPTHE, Paris (France); Salam, Gavin P. [UPMC Univ. Paris 6 et CNRS UMR 7589, LPTHE, Paris (France); CERN, Department of Physics, Theory Unit, Geneva 23 (Switzerland); Princeton University, Department of Physics, Princeton, NJ (United States); Soyez, Gregory [CNRS URA 2306, Institut de Physique Theorique, CEA Saclay, Gif-sur-Yvette (France)

    2013-03-15

    The nature of a jet's fragmentation in heavy-ion collisions has the potential to cast light on the mechanism of jet quenching. However, the presence of the huge underlying event complicates the reconstruction of the jet fragmentation function as a function of the momentum fraction z of hadrons in the jet. Here we propose the use of moments of the fragmentation function. These quantities appear to be as sensitive to quenching modifications as the fragmentation function directly in z. We show that they are amenable to background subtraction using the same jet-area-based techniques proposed in the past for jet p{sub t} 's. Furthermore, complications due to correlations between background-fluctuation contributions to the jet's p{sub t} and to its particle content are easily corrected for. (orig.)

  6. Jet fragmentation function moments in heavy ion collisions

    International Nuclear Information System (INIS)

    Cacciari, Matteo; Quiroga-Arias, Paloma; Salam, Gavin P.; Soyez, Gregory

    2013-01-01

    The nature of a jet's fragmentation in heavy-ion collisions has the potential to cast light on the mechanism of jet quenching. However, the presence of the huge underlying event complicates the reconstruction of the jet fragmentation function as a function of the momentum fraction z of hadrons in the jet. Here we propose the use of moments of the fragmentation function. These quantities appear to be as sensitive to quenching modifications as the fragmentation function directly in z. We show that they are amenable to background subtraction using the same jet-area-based techniques proposed in the past for jet p t 's. Furthermore, complications due to correlations between background-fluctuation contributions to the jet's p t and to its particle content are easily corrected for. (orig.)

  7. Automatic computation of moment magnitudes for small earthquakes and the scaling of local to moment magnitude

    OpenAIRE

    Edwards, Benjamin; Allmann, Bettina; Fäh, Donat; Clinton, John

    2017-01-01

    Moment magnitudes (MW) are computed for small and moderate earthquakes using a spectral fitting method. 40 of the resulting values are compared with those from broadband moment tensor solutions and found to match with negligible offset and scatter for available MW values of between 2.8 and 5.0. Using the presented method, MW are computed for 679 earthquakes in Switzerland with a minimum ML= 1.3. A combined bootstrap and orthogonal L1 minimization is then used to produce a scaling relation bet...

  8. Effect of hammer mass on upper extremity joint moments.

    Science.gov (United States)

    Balendra, Nilanthy; Langenderfer, Joseph E

    2017-04-01

    This study used an OpenSim inverse-dynamics musculoskeletal model scaled to subject-specific anthropometrics to calculate three-dimensional intersegmental moments at the shoulder, elbow and wrist while 10 subjects used 1 and 2 lb hammers to drive nails. Motion data were collected via an optoelectronic system and the interaction of the hammer with nails was recorded with a force plate. The larger hammer caused substantial increases (50-150%) in moments, although increases differed by joint, anatomical component, and significance of the effect. Moment increases were greater in cocking and strike/follow-through phases as opposed to swinging and may indicate greater potential for injury. Compared to shoulder, absolute increases in peak moments were smaller for elbow and wrist, but there was a trend toward larger relative increases for distal joints. Shoulder rotation, elbow varus-valgus and pronation-supination, and wrist radial-ulnar deviation and rotation demonstrated large relative moment increases. Trial and phase durations were greater for the larger hammer. Changes in moments and timing indicate greater loads on musculoskeletal tissues for an extended period with the larger hammer. Additionally, greater variability in timing with the larger hammer, particularly for cocking phase, suggests differences in control of the motion. Increased relative moments for distal joints may be particularly important for understanding disorders of the elbow and wrist associated with hammer use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Slow or swift, your patients' experience won't drift: absence of correlation between physician productivity and the patient experience.

    Science.gov (United States)

    Lenz, Kasia; McRae, Andrew; Wang, Dongmei; Higgins, Benjamin; Innes, Grant; Cook, Timothy; Lang, Eddy

    2017-09-01

    Absract OBJECTIVES: To evaluate the relationship between Emergency Physician (EP) productivity and patient satisfaction with Emergency Department (ED) care. This retrospective observational study linked administrative and patient experience databases to measure correlations between the patient experience and EP productivity. The study was performed across three Calgary EDs (from June 2010 to July 2013). Patients>16 years old with completed Health Quality Council of Alberta (HQCA) ED Patient Experience Surveys were included. EP productivity was measured at the individual physician level and defined as the average number of patients seen per hour. The association between physician productivity and patient experience scores from six composite domains of the HQCA ED Patient Experience Survey were examined using Pearson correlation coefficients, linear regression modelling, and a path analysis. We correlated 3,794 patient experience surveys with productivity data for 130 EPs. Very weak non-significant negative correlations existed between productivity and survey composites: "Staff Care and Communication" (r=-0.057, p=0.521), "Discharge Communication" (r=-0.144, p=0.102), and "Respect" (r=-0.027, p=0.760). Very weak, non-significant positive correlations existed between productivity and the composite domains: "Medication Communication" (r=0.003, p=0.974) and "Pain management" (r=0.020, p=0.824). A univariate general linear model yielded no statistically significant correlations between EP productivity and patient experience, and the path analysis failed to show a relationship between the variables. We found no correlation between EP productivity and the patient experience.

  10. A Study of Moment Based Features on Handwritten Digit Recognition

    Directory of Open Access Journals (Sweden)

    Pawan Kumar Singh

    2016-01-01

    Full Text Available Handwritten digit recognition plays a significant role in many user authentication applications in the modern world. As the handwritten digits are not of the same size, thickness, style, and orientation, therefore, these challenges are to be faced to resolve this problem. A lot of work has been done for various non-Indic scripts particularly, in case of Roman, but, in case of Indic scripts, the research is limited. This paper presents a script invariant handwritten digit recognition system for identifying digits written in five popular scripts of Indian subcontinent, namely, Indo-Arabic, Bangla, Devanagari, Roman, and Telugu. A 130-element feature set which is basically a combination of six different types of moments, namely, geometric moment, moment invariant, affine moment invariant, Legendre moment, Zernike moment, and complex moment, has been estimated for each digit sample. Finally, the technique is evaluated on CMATER and MNIST databases using multiple classifiers and, after performing statistical significance tests, it is observed that Multilayer Perceptron (MLP classifier outperforms the others. Satisfactory recognition accuracies are attained for all the five mentioned scripts.

  11. Scale invariants from Gaussian-Hermite moments

    Czech Academy of Sciences Publication Activity Database

    Yang, B.; Kostková, Jitka; Flusser, Jan; Suk, Tomáš

    2017-01-01

    Roč. 132, č. 1 (2017), s. 77-84 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Scale invariants * Gaussian–Hermite moments * Variable modulation * Normalization * Zernike moments Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 3.110, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0466031.pdf

  12. Correlations in multiple production on nuclei and Glauber model of multiple scattering

    International Nuclear Information System (INIS)

    Zoller, V.R.; Nikolaev, N.N.

    1982-01-01

    Critical analysis of possibility for describing correlation phenomena during multiple production on nuclei within the framework of the Glauber multiple seattering model generalized for particle production processes with Capella, Krziwinski and Shabelsky has been performed. It was mainly concluded that the suggested generalization of the Glauber model gives dependences on Ng(Np) (where Ng-the number of ''grey'' tracess, and Np-the number of protons flying out of nucleus) and, eventually, on #betta# (where #betta#-the number of intranuclear interactions) contradicting experience. Independent of choice of relation between #betta# and Ng(Np) in the model the rapidity corrletor Rsub(eta) is overstated in the central region and understated in the region of nucleus fragmentation. In mean multiplicities these two contradictions of experience are disguised with random compensation and agreement with experience in Nsub(S) (function of Ng) cannot be an argument in favour of the model. It is concluded that eiconal model doesn't permit to quantitatively describe correlation phenomena during the multiple production on nuclei

  13. Quantum tunneling of the magnetic moment in a free nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    O' Keeffe, M.F. [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States); Chudnovsky, E.M., E-mail: eugene.chudnovsky@lehman.cuny.edu [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States); Garanin, D.A. [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States)

    2012-09-15

    We study tunneling of the magnetic moment in a particle that has full rotational freedom. Exact energy levels are obtained and the ground-state magnetic moment is computed for a symmetric rotor. The effect of mechanical freedom on spin tunneling manifests itself in a strong dependence of the magnetic moment on the moments of inertia of the rotor. The energy of the particle exhibits quantum phase transitions between states with different values of the magnetic moment. Particles of various shapes are investigated and the quantum phase diagram is obtained. - Highlights: Black-Right-Pointing-Pointer We obtain an exact analytical solution of a tunneling spin in a mechanical rotator. Black-Right-Pointing-Pointer The quantum phase diagram shows magnetic moment dependence on rotator shape and size. Black-Right-Pointing-Pointer Our work explains magnetic properties of free atomic clusters and magnetic molecules.

  14. Neutron slowing down and transport in a medium of constant cross section. I. Spatial moments

    International Nuclear Information System (INIS)

    Cacuci, D.G.; Goldstein, H.

    1977-01-01

    Some aspects of the problem of neutron slowing down and transport have been investigated in an infinite medium consisting of a single nuclide scattering elastically and isotropically without absorption and with energy-independent cross sections. The method of singular eigenfunctions has been applied to the Boltzmann equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. Formulas have been obtained for the lethargy dependent spatial moments of the scalar flux applicable in the limit of large lethargy. In deriving these formulas, use has been made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations have been greatly aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use has also been made of the methods of combinatorial analysis and of computer evaluation, via FORMAC, of complicated sequences of manipulations. It has been possible to obtain for materials of any atomic weight explicit corrections to the age theory formulas for the spatial moments M/sub 2n/(u), of the scalar flux, valid through terms of order of u -5 . Higher order correction terms could be obtained at the expense of additional computer time. The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, represent the end product of this investigation

  15. An online database of nuclear electromagnetic moments

    International Nuclear Information System (INIS)

    Mertzimekis, T.J.; Stamou, K.; Psaltis, A.

    2016-01-01

    Measurements of nuclear magnetic dipole and electric quadrupole moments are considered quite important for the understanding of nuclear structure both near and far from the valley of stability. The recent advent of radioactive beams has resulted in a plethora of new, continuously flowing, experimental data on nuclear structure – including nuclear moments – which hinders the information management. A new, dedicated, public and user friendly online database ( (http://magneticmoments.info)) has been created comprising experimental data of nuclear electromagnetic moments. The present database supersedes existing printed compilations, including also non-evaluated series of data and relevant meta-data, while putting strong emphasis on bimonthly updates. The scope, features and extensions of the database are reported.

  16. A variational approach to moment-closure approximations for the kinetics of biomolecular reaction networks

    Science.gov (United States)

    Bronstein, Leo; Koeppl, Heinz

    2018-01-01

    Approximate solutions of the chemical master equation and the chemical Fokker-Planck equation are an important tool in the analysis of biomolecular reaction networks. Previous studies have highlighted a number of problems with the moment-closure approach used to obtain such approximations, calling it an ad hoc method. In this article, we give a new variational derivation of moment-closure equations which provides us with an intuitive understanding of their properties and failure modes and allows us to correct some of these problems. We use mixtures of product-Poisson distributions to obtain a flexible parametric family which solves the commonly observed problem of divergences at low system sizes. We also extend the recently introduced entropic matching approach to arbitrary ansatz distributions and Markov processes, demonstrating that it is a special case of variational moment closure. This provides us with a particularly principled approximation method. Finally, we extend the above approaches to cover the approximation of multi-time joint distributions, resulting in a viable alternative to process-level approximations which are often intractable.

  17. Three years of lightning impulse charge moment change measurements in the United States

    Science.gov (United States)

    Cummer, Steven A.; Lyons, Walter A.; Stanley, Mark A.

    2013-06-01

    We report and analyze 3 years of lightning impulse charge moment change (iCMC) measurements obtained from an automated, real time lightning charge moment change network (CMCN). The CMCN combines U.S. National Lightning Detection Network (NLDN) lightning event geolocations with extremely low frequency (≲1 kHz) data from two stations to provide iCMC measurements across the entire United States. Almost 14 million lightning events were measured in the 3 year period. We present the statistical distributions of iCMC versus polarity and NLDN-measured peak current, including corrections for the detection efficiency of the CMCN versus peak current. We find a broad distribution of iCMC for a given peak current, implying that these parameters are at best only weakly correlated. Curiously, the mean iCMC does not monotonically increase with peak current, and in fact, drops for positive CG strokes above +150 kA. For all positive strokes, there is a boundary near 20 C km that separates seemingly distinct populations of high and low iCMC strokes. We also explore the geographic distribution of high iCMC lightning strokes. High iCMC positive strokes occur predominantly in the northern midwest portion of the U.S., with a secondary peak over the gulf stream region just off the U.S. east coast. High iCMC negative strokes are also clustered in the midwest, although somewhat south of most of the high iCMC positive strokes. This is a region far from the locations of maximum occurrence of high peak current negative strokes. Based on assumed iCMC thresholds for sprite production, we estimate that approximately 35,000 positive polarity and 350 negative polarity sprites occur per year over the U.S. land and near-coastal areas. Among other applications, this network is useful for the nowcasting of sprite-producing storms and storm regions.

  18. Projective moment invariants

    Czech Academy of Sciences Publication Activity Database

    Suk, Tomáš; Flusser, Jan

    2004-01-01

    Roč. 26, č. 10 (2004), s. 1364-1367 ISSN 0162-8828 R&D Projects: GA ČR GA201/03/0675 Institutional research plan: CEZ:AV0Z1075907 Keywords : projective transform * moment invariants * object recognition Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.352, year: 2004 http://library.utia.cas.cz/prace/20040112.pdf

  19. First study of the negative binomial distribution applied to higher moments of net-charge and net-proton multiplicity distributions

    International Nuclear Information System (INIS)

    Tarnowsky, Terence J.; Westfall, Gary D.

    2013-01-01

    A study of the first four moments (mean, variance, skewness, and kurtosis) and their products (κσ 2 and Sσ) of the net-charge and net-proton distributions in Au + Au collisions at √(s NN )=7.7–200 GeV from HIJING simulations has been carried out. The skewness and kurtosis and the collision volume independent products κσ 2 and Sσ have been proposed as sensitive probes for identifying the presence of a QCD critical point. A discrete probability distribution that effectively describes the separate positively and negatively charged particle (or proton and anti-proton) multiplicity distributions is the negative binomial (or binomial) distribution (NBD/BD). The NBD/BD has been used to characterize particle production in high-energy particle and nuclear physics. Their application to the higher moments of the net-charge and net-proton distributions is examined. Differences between κσ 2 and a statistical Poisson assumption of a factor of four (for net-charge) and 40% (for net-protons) can be accounted for by the NBD/BD. This is the first application of the properties of the NBD/BD to describe the behavior of the higher moments of net-charge and net-proton distributions in nucleus–nucleus collisions

  20. Extension of moment projection method to the fragmentation process

    International Nuclear Information System (INIS)

    Wu, Shaohua; Yapp, Edward K.Y.; Akroyd, Jethro; Mosbach, Sebastian; Xu, Rong; Yang, Wenming; Kraft, Markus

    2017-01-01

    The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn.

  1. Extension of moment projection method to the fragmentation process

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shaohua [Department of Mechanical Engineering, National University of Singapore, Engineering Block EA, Engineering Drive 1, 117576 (Singapore); Yapp, Edward K.Y.; Akroyd, Jethro; Mosbach, Sebastian [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA (United Kingdom); Xu, Rong [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore); Yang, Wenming [Department of Mechanical Engineering, National University of Singapore, Engineering Block EA, Engineering Drive 1, 117576 (Singapore); Kraft, Markus, E-mail: mk306@cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA (United Kingdom); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2017-04-15

    The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn.

  2. Dipole moments of molecules solvated in helium nanodroplets

    International Nuclear Information System (INIS)

    Stiles, Paul L.; Nauta, Klaas; Miller, Roger E.

    2003-01-01

    Stark spectra are reported for hydrogen cyanide and cyanoacetylene solvated in helium nanodroplets. The goal of this study is to understand the influence of the helium solvent on measurements of the permanent electric dipole moment of a molecule. We find that the dipole moments of the helium solvated molecules, calculated assuming the electric field is the same as in vacuum, are slightly smaller than the well-known gas-phase dipole moments of HCN and HCCCN. A simple elliptical cavity model quantitatively accounts for this difference, which arises from the dipole-induced polarization of the helium

  3. The GPD H and spin correlations in wide-angle Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, P. [Universitaet Wuppertal, Fachbereich Physik, Wuppertal (Germany)

    2017-06-15

    Wide-angle Compton scattering (WACS) is discussed within the handbag approach in which the amplitudes are given by products of hard subprocess amplitudes and form factors, specific to Compton scattering, which represent 1/x-moments of generalized parton distributions (GPDs). The quality of our present knowledge of these form factors and of the underlying GPDs is examined. As will be discussed in some detail the form factor R{sub A} and the underlying GPD H are poorly known. It is argued that future data on the spin correlations A{sub LL} and/or K{sub LL} will allow for an extraction of R{sub A} which can be used to constrain the large -t behavior of H. (orig.)

  4. Determination of the neutron magnetic moment

    International Nuclear Information System (INIS)

    Greene, G.L.; Ramsey, N.F.; Mampe, W.; Pendlebury, J.M.; Smith, K.; Dress, W.B.; Miller, P.D.; Perrin, P.

    1981-01-01

    The neutron magnetic moment has been measured with an improvement of a factor of 100 over the previous best measurement. Using a magnetic resonance spectrometer of the separated oscillatory field type capable of determining a resonance signal for both neutrons and protons (in flowing H 2 O), we find μ/sub n//μ/sub p/ = 0.68497935(17) (0.25 ppM). The neutron magnetic moment can also be expressed without loss of accuracy in a variety of other units

  5. The Method of Moments in electromagnetics

    CERN Document Server

    Gibson, Walton C

    2014-01-01

    Now Covers Dielectric Materials in Practical Electromagnetic DevicesThe Method of Moments in Electromagnetics, Second Edition explains the solution of electromagnetic integral equations via the method of moments (MOM). While the first edition exclusively focused on integral equations for conducting problems, this edition extends the integral equation framework to treat objects having conducting as well as dielectric parts.New to the Second EditionExpanded treatment of coupled surface integral equations for conducting and composite conducting/dielectric objects, including objects having multipl

  6. Mechanical equilibrium of forces and moments applied on orthodontic brackets of a dental arch: Correlation with literature data on two and three adjacent teeth.

    Science.gov (United States)

    Wagner, Delphine; Bolender, Yves; Rémond, Yves; George, Daniel

    2017-01-01

    Although orthodontics have greatly improved over the years, understanding of its associated biomechanics remains incomplete and is mainly based on two dimensional (2D) mechanical equilibrium and long-time clinical experience. Little experimental information exists in three dimensions (3D) about the forces and moments developed on orthodontic brackets over more than two or three adjacent teeth. We define here a simplified methodology to quantify 3D forces and moments applied on orthodontic brackets fixed on a dental arch and validate our methodology using existing results from the literature by means of simplified hypotheses.

  7. No correlation between the diversity and productivity of assemblages: evidence from the phytophage and predator assemblages in various cotton agroecosystems.

    Science.gov (United States)

    Gao, Feng; Men, XingYuan; Ge, Feng

    2014-09-01

    Biodiversity research has shown that primary productivity increases with plant species number, especially in many experimental grassland systems. Here, we assessed the correlation between productivity and diversity of phytophages and natural enemy assemblages associated with planting date and intercropping in four cotton agroecosystems. Twenty-one pairs of data were used to determine Pearson correlations between species richness, total number of individuals, diversity indices and productivity for each assemblage every five days from 5 June to 15 September 2012. At the same trophic level, the productivity exhibited a significant positive correlation with species richness of the phytophage or predator assemblage. A significant correlation was found between productivity and total number of individuals in most cotton fields. However, no significant correlations were observed between productivity and diversity indices (including indices of energy flow diversity and numerical diversity) in most cotton fields for either the phytophage or the predator assemblages. Species richness of phytophage assemblage and total individual numbers were significantly correlated with primary productivity. Also, species richness of natural enemy assemblage and total number of individuals correlated with phytophage assemblage productivity. A negative but not significant correlation occurred between the indices of numerical diversity and energy flow diversity and lower trophic-level productivity in the cotton-phytophage and phytophage-predator assemblages for most intercropped cotton agroecosystems. Our results clearly showed that there were no correlations between diversity indices and productivity within the same or lower trophic levels within the phytophage and predator assemblages in cotton agroecosystems, and inter-cropped cotton fields had a stronger ability to support the natural enemy assemblage and potentially to reduce phytophages.

  8. MODERN METHODOLOGIES TOWARDS A SUSTAINABLE FLEXIBLE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Babalâc Catalin Cristian

    2014-07-01

    Full Text Available The present paper brings into the light several methodologies used today inside the companies to organize their process in order to respond to continuously evolving and changing customer behavior. It follows the historical timeline from the moment when production was a simple craft to the moment where mass production has been transformed in mass customization.

  9. Dependence of nuclear moments of inertia on the triaxial parameter

    International Nuclear Information System (INIS)

    Helgesson, J.; Hamamoto, Ikuko

    1989-01-01

    The dependence of nuclear moments of inertia on the triaxial parameter (γ-variable) is investigated including both the Belyaev term and the Migdal term. The obtained dependence is compared with that of hydrodynamical moments of inertia and other moments of inertia used conventionally. (orig.)

  10. Nuclear spins, magnetic moments and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects

    CERN Document Server

    Vingerhoets, P; Avgoulea, M; Billowes, J; Bissell, M L; Blaum, K; Brown, B A; Cheal, B; De Rydt, M; Forest, D H; Geppert, Ch; Honma, M; Kowalska, M; Kramer, J; Krieger, A; Mane, E; Neugart, R; Neyens, G; Nortershauser, W; Otsuka, T; Schug, M; Stroke, H H; Tungate, G; Yordanov, D T

    2010-01-01

    Measurements of the ground-state nuclear spins, magnetic and quadrupole moments of the copper isotopes from 61Cu up to 75Cu are reported. The experiments were performed at the ISOLDE facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the N=28 and N=50 shell closures is reasonably reproduced by large-scale shell-model calculations starting from a 56Ni core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is however strongly reduced at N=40 due to the parity change between the $pf$ and $g$ orbits. No enhanced core polarization is seen beyond N=40. Deviations between measured and calculated moments are attributed to the softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.

  11. Relativistic dynamics of point magnetic moment

    Science.gov (United States)

    Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew

    2018-01-01

    The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincaré symmetry of space-time. We propose a covariant formulation of the magnetic force based on a `magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g-2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape.

  12. Measurement of the quadrupole moments of the strongly deformed nuclei 18173Ta108 and 18375Re108 by hyperfine interaction in metals

    International Nuclear Information System (INIS)

    Netz, G.

    1974-01-01

    The quadrupole moments of two single particle proton states were measured in the strongly deformed nuclei region. Both measurements are independent of model because the field gradient is known in a rhenium lattice as well as at the nucleus site of a rhenium atom and also at the nucleus site of an incorporated tantalum atom. The quadrupole moments could thus be directly extracted from the quadrupole interaction frequency, the product of quadrupole moment and field gradient. For the 482 keV state (I = 5/2 + ) in 181 73 Ta 108 one obtains a quadrupole moment of: Q (5/2) = 2.5 +- 0.2 barn. For the 496 keV state (I = 9/2 - ) in 183 75 Re 108 , a quadrupole moment of: Q (0/2) = 3.6 +- 0.4 barn is found. This value agrees well with other experimental data within the framework of the collective model. (orig./LH) [de

  13. 6-quark contribution to nuclear magnetic moments

    International Nuclear Information System (INIS)

    Ito, H.

    1985-01-01

    The magnetic moments of nuclei with LS closed shell +/-1 particle are calculated. Core polarization and meson exchange current are treated realistically in order to single out the 6-quark contribution. Overall agreement with experimental values is quite good. It is shown that the 6-quark system contributes to the respective iso-vector and iso-scalar moments with reasonable magnitudes

  14. The reorientation precession technique, REPREC, and the quadrupole moments of /sup 108/ /sup 110/Pd. [Sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Hasselgren, L; Fahlander, C; Edvardson, L O; Thun, J E; Falk, F; Ghumman, B S

    1975-04-01

    The orientation precession technique, REPREC, for measurements of quadrupole moments is described. The application of REPREC to the measurement of the static electric quadrupole moments of the first excited 2/sup +/-states in /sup 108/ /sup 110/Pd is presented. The possibility to measure the matrix product P/sub 4/ = M/sub 02/M/sub 22/,M/sub 02/M/sub 22/ is also discussed. Such measurements are presented for /sup 108/ /sup 110/Pd. The results of these measurements are P/sub 4/O for both /sup 108/Pd and /sup 110/Pd. For /sup 108/Pd the quadrupole moment of the first excited 2/sup +/-state was found to be -.66 +- .18 eb and for /sup 110/Pd -.72 +- .14 eb. Intrinsic nuclear properties for /sup 106 -110/Pd are derived using the sum rules suggested by Kumar.

  15. Neutron Electric Dipole Moment from colored scalars⋆

    Directory of Open Access Journals (Sweden)

    Fajfer Svjetlana

    2014-01-01

    Full Text Available We present new contributions to the neutron electric dipole moment induced by a color octet, weak doublet scalar, accommodated within a modified Minimal Flavor Violating framework. These flavor non-diagonal couplings of the color octet scalar might account for an assymmetry of order 3 × 10−3 for aCP(D0 → K−K+ − aCP(D0 → π+π− at tree level. The same couplings constrained by this assymmetry also induce two-loop contributions to the neutron electric dipole moment. We find that the direct CP violating asymmetry in neutral D-meson decays is more constraining on the allowed parameter space than the current experimental bound on neutron electric dipole moment.

  16. On the Impact of Electrostatic Correlations on the Double-Layer Polarization of a Spherical Particle in an Alternating Current Field.

    Science.gov (United States)

    Alidoosti, Elaheh; Zhao, Hui

    2018-05-15

    At concentrated electrolytes, the ion-ion electrostatic correlation effect is considered an important factor in electrokinetics. In this paper, we compute, in theory and simulation, the dipole moment for a spherical particle (charged, dielectric) under the action of an alternating electric field using the modified continuum Poisson-Nernst-Planck (PNP) model by Bazant et al. [ Double Layer in Ionic Liquids: Overscreening Versus Crowding . Phys. Rev. Lett. 2011 , 106 , 046102 ] We investigate the dependency of the dipole moment in terms of frequency and its variation with such quantities like ζ-potential, electrostatic correlation length, and double-layer thickness. With thin electric double layers, we develop simple models through performing an asymptotic analysis of the modified PNP model. We also present numerical results for an arbitrary Debye screening length and electrostatic correlation length. From the results, we find a complicated impact of electrostatic correlations on the dipole moment. For instance, with increasing the electrostatic correlation length, the dipole moment decreases and reaches a minimum and then it goes up. This is because of initially decreasing of surface conduction and finally increasing due to the impact of ion-ion electrostatic correlations on ion's convection and migration. Also, we show that in contrast to the standard PNP model, the modified PNP model can qualitatively explain the data from the experimental results in multivalent electrolytes.

  17. Moment Inversion of the DPRK Nuclear Tests Using Finite-Difference Three-dimensional Strain Green's Tensors

    Science.gov (United States)

    Bao, X.; Shen, Y.; Wang, N.

    2017-12-01

    Accurate estimation of the source moment is important for discriminating underground explosions from earthquakes and other seismic sources. In this study, we invert for the full moment tensors of the recent seismic events (since 2016) at the Democratic People's Republic of Korea (PRRK) Punggye-ri test site. We use waveform data from broadband seismic stations located in China, Korea, and Japan in the inversion. Using a non-staggered-grid, finite-difference algorithm, we calculate the strain Green's tensors (SGT) based on one-dimensional (1D) and three-dimensional (3D) Earth models. Taking advantage of the source-receiver reciprocity, a SGT database pre-calculated and stored for the Punggye-ri test site is used in inversion for the source mechanism of each event. With the source locations estimated from cross-correlation using regional Pn and Pn-coda waveforms, we obtain the optimal source mechanism that best fits synthetics to the observed waveforms of both body and surface waves. The moment solutions of the first three events (2016-01-06, 2016-09-09, and 2017-09-03) show dominant isotropic components, as expected from explosions, though there are also notable non-isotropic components. The last event ( 8 minutes after the mb6.3 explosion in 2017) contained mainly implosive component, suggesting a collapse following the explosion. The solutions from the 3D model can better fit observed waveforms than the corresponding solutions from the 1D model. The uncertainty in the resulting moment solution is influenced by heterogeneities not resolved by the Earth model according to the waveform misfit. Using the moment solutions, we predict the peak ground acceleration at the Punggye-ri test site and compare the prediction with corresponding InSAR and other satellite images.

  18. Correlation between natural radiation exposure and cancer mortality, (4)

    International Nuclear Information System (INIS)

    Noguchi, Kunikazu; Shimizu, Masami; Sairenji, Eiko; Anzai, Ikuro.

    1987-01-01

    In the previous studies, using Pearson's product moment correlation coefficient, we found that in most cases of cancers, statistically significant positive correlations were observed between natural background radiation exposure rate and crude cancer mortality rate over the period 1950 - 1978. Furthermore, we found that the statistical significance of correlation between natural background radiation exposure rate and the age-adjusted cancer mortality rate in the same period mostly disappeared. We studied the cause of this apparent correlation and found that the prefecture with a higher natural background radiation exposure rate had a greater component ratio of older people. In Japan, a number of prefectures with a higher natural background exposure rate are located in relatively thinly populated districts which have been experiencing an outflow of the younger generation to more highly industrialized and urbanized areas. Therefore, statistically significant positive correlations were observed for almost all cancers between natural background radiation exposure rate and crude cancer mortality rate. In the present investigation, we statistically tested the frequency distributions of natural background radiation exposure rate and age-adjusted cancer mortality rate, and calculated Spearman's rank correlation coefficient between natural background radiation exposure rate and the age-adjusted cancer mortality rate. The frequency distribution of the natural background radiation exposure rate and that of the age-adjusted mortality rate appeared normal in most cases of cancer, and the statistical significance of correlation between natural background exposure rate and the age-adjusted cancer mortality rate did not differ much on the whole, even though we used Spearman's rank correlation coefficient between them. (author)

  19. Correlation between natural radiation exposure and cancer mortality, (4)

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Kunikazu; Shimizu, Masami; Sairenji, Eiko; Anzai, Ikuro

    1987-03-01

    In the previous studies, using Pearson's product moment correlation coefficient, we found that in most cases of cancers, statistically significant positive correlations were observed between natural background radiation exposure rate and crude cancer mortality rate over the period 1950 - 1978. Furthermore, we found that the statistical significance of correlation between natural background radiation exposure rate and the age-adjusted cancer mortality rate in the same period mostly disappeared. We studied the cause of this apparent correlation and found that the prefecture with a higher natural background radiation exposure rate had a greater component ratio of older people. In Japan, a number of prefectures with a higher natural background exposure rate are located in relatively thinly populated districts which have been experiencing an outflow of the younger generation to more highly industrialized and urbanized areas. Therefore, statistically significant positive correlations were observed for almost all cancers between natural background radiation exposure rate and crude cancer mortality rate. In the present investigation, we statistically tested the frequency distributions of natural background radiation exposure rate and age-adjusted cancer mortality rate, and calculated Spearman's rank correlation coefficient between natural background radiation exposure rate and the age-adjusted cancer mortality rate. The frequency distribution of the natural background radiation exposure rate and that of the age-adjusted mortality rate appeared normal in most cases of cancer, and the statistical significance of correlation between natural background exposure rate and the age-adjusted cancer mortality rate did not differ much on the whole, even though we used Spearman's rank correlation coefficient between them.

  20. Geothermal production and reduced seismicity: Correlation and proposed mechanism

    Science.gov (United States)

    Cardiff, Michael; Lim, David D.; Patterson, Jeremy R.; Akerley, John; Spielman, Paul; Lopeman, Janice; Walsh, Patrick; Singh, Ankit; Foxall, William; Wang, Herbert F.; Lord, Neal E.; Thurber, Clifford H.; Fratta, Dante; Mellors, Robert J.; Davatzes, Nicholas C.; Feigl, Kurt L.

    2018-01-01

    At Brady Hot Springs, a geothermal field in Nevada, heated fluids have been extracted, cooled, and re-injected to produce electrical power since 1992. Analysis of daily pumping records and catalogs of microseismicity between 2010 and 2015 indicates a statistically significant correlation between days when the daily volume of production was at or above its long-term average rate and days when no seismic event was detected. Conversely, shutdowns in pumping for plant maintenance correlate with increased microseismicity. We hypothesize that the effective stress in the subsurface has adapted to the long-term normal operations (deep extraction) at the site. Under this hypothesis, extraction of fluids inhibits fault slip by increasing the effective stress on faults; in contrast, brief pumping cessations represent times when effective stress is decreased below its long-term average, increasing the likelihood of microseismicity.

  1. A note on goodness of fit test using moments

    Directory of Open Access Journals (Sweden)

    Alex Papadopoulos

    2007-10-01

    Full Text Available The purpose of this article is to introduce a general moment-based approach to derive formal goodness of fit tests of a parametric family. We show that, in general, an approximate normal test or a chi-squared test can be derived by exploring the moment structure of a parametric family, when moments up to certain order exist. The idea is simple and the resulting tests are easy to implement. To illustrate the use of this approach, we derive moment-based goodness of fit tests for some common discrete and continuous parametric families. We also compare the proposed tests with the well known Pearson-Fisher chi-square test and some distance tests in a simulation study.

  2. THE CORRELATION BETWEEN STUDENTS’ FREQUENCY OF LISTENING TO ENGLISH SONGS AND THEIR LISTENING ACHIEVEMENT

    Directory of Open Access Journals (Sweden)

    Elvira Rosyida M. R.

    2016-04-01

    Full Text Available This study is aimed at investigating whether there is a significant correlation between students’ frequency of listening to English songs and their listening achievement This study was conducted at the first year students of State Senior High School 9 Bandarlampung, Lampung. A descriptive quantitative was employed in this study which used ex-post facto design and the data were taken from questionnaire, semi-structured interview, and listening test. The data were analyzed by using Statistical Package for Social Science (SPSS version 16.0. The hypothesis was tested by using Pearson Product Moment Correlation Coefficient. The test result showed that there is a significant correlation between students’ frequency of listening to English songs and their listening achievement. From the result of interview, it showed that most of the students believe that by having high frequency of listening to English songs, it helps them in recognizing the spoken language and get high score in listening ability.Keywords: listening to English song, listening ability, frequency of listening

  3. Rapid objective measurement of gamma camera resolution using statistical moments.

    Science.gov (United States)

    Hander, T A; Lancaster, J L; Kopp, D T; Lasher, J C; Blumhardt, R; Fox, P T

    1997-02-01

    An easy and rapid method for the measurement of the intrinsic spatial resolution of a gamma camera was developed. The measurement is based on the first and second statistical moments of regions of interest (ROIs) applied to bar phantom images. This leads to an estimate of the modulation transfer function (MTF) and the full-width-at-half-maximum (FWHM) of a line spread function (LSF). Bar phantom images were acquired using four large field-of-view (LFOV) gamma cameras (Scintronix, Picker, Searle, Siemens). The following factors important for routine measurements of gamma camera resolution with this method were tested: ROI placement and shape, phantom orientation, spatial sampling, and procedural consistency. A 0.2% coefficient of variation (CV) between repeat measurements of MTF was observed for a circular ROI. The CVs of less than 2% were observed for measured MTF values for bar orientations ranging from -10 degrees to +10 degrees with respect to the x and y axes of the camera acquisition matrix. A 256 x 256 matrix (1.6 mm pixel spacing) was judged sufficient for routine measurements, giving an estimate of the FWHM to within 0.1 mm of manufacturer-specified values (3% difference). Under simulated clinical conditions, the variation in measurements attributable to procedural effects yielded a CV of less than 2% in newer generation cameras. The moments method for determining MTF correlated well with a peak-valley method, with an average difference of 0.03 across the range of spatial frequencies tested (0.11-0.17 line pairs/mm, corresponding to 4.5-3.0 mm bars). When compared with the NEMA method for measuring intrinsic spatial resolution, the moments method was found to be within 4% of the expected FWHM.

  4. Moment of inertia, quadrupole moment, Love number of neutron star and their relations with strange-matter equations of state

    Science.gov (United States)

    Bandyopadhyay, Debades; Bhat, Sajad A.; Char, Prasanta; Chatterjee, Debarati

    2018-02-01

    We investigate the impact of strange-matter equations of state involving Λ hyperons, Bose-Einstein condensate of K- mesons and first-order hadron-quark phase transition on moment of inertia, quadrupole moment and tidal deformability parameter of slowly rotating neutron stars. All these equations of state are compatible with the 2 M_{solar} constraint. The main findings of this investigation are the universality of the I- Q and I -Love number relations, which are preserved by the EoSs including Λ hyperons and antikaon condensates, but broken in the presence of a first-order hadron-quark phase transition. Furthermore, it is also noted that the quadrupole moment approaches the Kerr value of a black hole for maximum-mass neutron stars.

  5. Correlation of gene expression and protein production rate - a system wide study

    Directory of Open Access Journals (Sweden)

    Arvas Mikko

    2011-12-01

    Full Text Available Abstract Background Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on Saccharomyces cerevisiae chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus Trichoderma reesei (Hypocrea jecorina that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype. Results We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of T. reesei. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR. We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response. Conclusions Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR.

  6. Undrained Response of Bucket Foundations to Moment Loading

    DEFF Research Database (Denmark)

    Barari, Amin; Ibsen, Lars Bo

    2012-01-01

    geotechnical engineers. This paper presents the experimental and numerical results of moment loading on small scale models of bucket foundations installed on Yoldia clay. The moment loading is experienced via the horizontal forces applied to features on a tower installed on bucket foundations. Different arm...

  7. Thermodynamic Product Relations for Generalized Regular Black Hole

    International Nuclear Information System (INIS)

    Pradhan, Parthapratim

    2016-01-01

    We derive thermodynamic product relations for four-parametric regular black hole (BH) solutions of the Einstein equations coupled with a nonlinear electrodynamics source. The four parameters can be described by the mass (m), charge (q), dipole moment (α), and quadrupole moment (β), respectively. We study its complete thermodynamics. We compute different thermodynamic products, that is, area product, BH temperature product, specific heat product, and Komar energy product, respectively. Furthermore, we show some complicated function of horizon areas that is indeed mass-independent and could turn out to be universal.

  8. Inverse-moment chiral sum rules

    International Nuclear Information System (INIS)

    Golowich, E.; Kambor, J.

    1996-01-01

    A general class of inverse-moment sum rules was previously derived by the authors in a chiral perturbation theory (ChPT) study at two-loop order of the isospin and hypercharge vector-current propagators. Here, we address the evaluation of the inverse-moment sum rules in terms of existing data and theoretical constraints. Two kinds of sum rules are seen to occur: those which contain as-yet undetermined O(q 6 ) counterterms and those free of such quantities. We use the former to obtain phenomenological evaluations of two O(q 6 ) counterterms. Light is shed on the important but difficult issue regarding contributions of higher orders in the ChPT expansion. copyright 1996 The American Physical Society

  9. Spectrum and static moments of /sup 187/Re

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, R; Sharma, S D; Sahota, H S; Sehgal, V K [Punjabi Univ., Patiala (India). Dept. of Physics

    1979-01-01

    The spectrum and static moments of /sup 187/Re are calculated using extension of Davydov-Filippov model. The Hamiltonian including the coriolis coupling term is used to calculate the effective moment of inertia for various bands. The kinking effect in the excited bands is studied by mixing the pair of bands such that both bands in single pair have same k value either k = 1/2 or 3/2. The effective moment of inertia under excitation is found to change with spin. The change is found in agreement with the theoretical prediction on the basis of this model.

  10. ARE LEISURE AND WORK PRODUCTIVITY CORRELATED? A MACROECONOMIC INVESTIGATION

    Directory of Open Access Journals (Sweden)

    ANA-MARIA SAVA

    2016-06-01

    Full Text Available It is common sense to state that working without being mentally fatigued leads to increased labor productivity. Extensive overtime and putting in long hours on a regular basis without using proper de-stressing methods inhibit work productivity. Recently, several countries have manifested an interest towards reducing the daily work quantum (in 2015 Sweden started the shift to a 6 hours workday, France regulated in 2000 the 35 hours workweek with the aim of improving the quality of life as well as increasing companies’ economic performance. But does disposing of more free time automatically lead to having a better life or superior business returns? Of course not – spare time also needs to be used effectively in order to achieve these goals. Every person is unique and therefore each individual will opt for different pass time activities to attain mental tension relief. But, there is evidence which sustains that allocating more time to leisure is directly correlated with increased work productivity, as will be shown in the present paper. Moreover, the investigation shows that not all ways of spending leisure time are effective in achieving the desired objective, some displaying an inversely proportional relation with labor productivity

  11. Analysis of dynamical corrections to baryon magnetic moments

    International Nuclear Information System (INIS)

    Ha, Phuoc; Durand, Loyal

    2003-01-01

    We present and analyze QCD corrections to the baryon magnetic moments in terms of the one-, two-, and three-body operators which appear in the effective field theory developed in our recent papers. The main corrections are extended Thomas-type corrections associated with the confining interactions in the baryon. We investigate the contributions of low-lying angular excitations to the baryon magnetic moments quantitatively and show that they are completely negligible. When the QCD corrections are combined with the nonquark model contributions of the meson loops, we obtain a model which describes the baryon magnetic moments within a mean deviation of 0.04 μ N . The nontrivial interplay of the two types of corrections to the quark-model magnetic moments is analyzed in detail, and explains why the quark model is so successful. In the course of these calculations, we parametrize the general spin structure of the j=(1/2) + baryon wave functions in a form which clearly displays the symmetry properties and the internal angular momentum content of the wave functions, and allows us to use spin-trace methods to calculate the many spin matrix elements which appear in the expressions for the baryon magnetic moments. This representation may be useful elsewhere

  12. From moments to functions in quantum chromodynamics

    International Nuclear Information System (INIS)

    Bluemlein, Johannes; Klein, Sebastian; Kauers, Manuel; Schneider, Carsten

    2009-02-01

    Single-scale quantities, like the QCD anomalous dimensions andWilson coefficients, obey difference equations. Therefore their analytic form can be determined from a finite number of moments. We demonstrate this in an explicit calculation by establishing and solving large scale recursions by means of computer algebra for the anomalous dimensions and Wilson coefficients in unpolarized deeply inelastic scattering from their Mellin moments to 3-loop order. (orig.)

  13. From moments to functions in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes; Klein, Sebastian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Kauers, Manuel; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation

    2009-02-15

    Single-scale quantities, like the QCD anomalous dimensions andWilson coefficients, obey difference equations. Therefore their analytic form can be determined from a finite number of moments. We demonstrate this in an explicit calculation by establishing and solving large scale recursions by means of computer algebra for the anomalous dimensions and Wilson coefficients in unpolarized deeply inelastic scattering from their Mellin moments to 3-loop order. (orig.)

  14. Rapidity correlations in Wγ production at hadron colliders

    International Nuclear Information System (INIS)

    Baur, U.; Errede, S.; Landsberg, G.

    1994-01-01

    We study the correlation of photon and charged lepton pseudorapidities, η(γ) and η(l), l=e,μ, in pp (-) →W ± γ+X→l ± at sign;sp T γ+X. In the standard model, the Δη(γ,l)=η(γ)-η(l) differential cross section is found to exhibit a pronounced dip at Δη(γ,l)∼ minus-plus 0.3 (=0) in p bar p(pp) collisions, which originates from the radiation zero present in q bar q'→Wγ. The sensitivity of the Δη(γ,l) distribution to higher order QCD corrections, nonstandard WWγ couplings, the W+ jet ''fake'' background, and the cuts imposed is explored. At hadron supercolliders, next-to-leading order QCD corrections are found to considerably obscure the radiation zero. The advantages of the Δη(γ,l) distribution over other quantities which are sensitive to the radiation zero are discussed. We conclude that photon-lepton rapidity correlations at the Fermilab Tevatron offer a unique opportunity to search for the standard model radiation zero in hadronic Wγ production

  15. Electric dipole moments with and beyond flavor invariants

    Science.gov (United States)

    Smith, Christopher; Touati, Selim

    2017-11-01

    In this paper, the flavor structure of quark and lepton electric dipole moments in the SM and beyond is investigated using tools inspired from Minimal Flavor Violation. While Jarlskog-like flavor invariants are adequate for estimating CP-violation from closed fermion loops, non-invariant structures arise from rainbow-like processes. Our goal is to systematically construct these latter flavor structures in the quark and lepton sectors, assuming different mechanisms for generating neutrino masses. Numerically, they are found typically much larger, and not necessarily correlated with, Jarlskog-like invariants. Finally, the formalism is adapted to deal with a third class of flavor structures, sensitive to the flavored U (1) phases, and used to study the impact of the strong CP-violating interaction and the interplay between the neutrino Majorana phases and possible baryon and/or lepton number violating interactions.

  16. Electric dipole moments with and beyond flavor invariants

    Directory of Open Access Journals (Sweden)

    Christopher Smith

    2017-11-01

    Full Text Available In this paper, the flavor structure of quark and lepton electric dipole moments in the SM and beyond is investigated using tools inspired from Minimal Flavor Violation. While Jarlskog-like flavor invariants are adequate for estimating CP-violation from closed fermion loops, non-invariant structures arise from rainbow-like processes. Our goal is to systematically construct these latter flavor structures in the quark and lepton sectors, assuming different mechanisms for generating neutrino masses. Numerically, they are found typically much larger, and not necessarily correlated with, Jarlskog-like invariants. Finally, the formalism is adapted to deal with a third class of flavor structures, sensitive to the flavored U(1 phases, and used to study the impact of the strong CP-violating interaction and the interplay between the neutrino Majorana phases and possible baryon and/or lepton number violating interactions.

  17. Microbial hotspots and hot moments in soil

    Science.gov (United States)

    Kuzyakov, Yakov; Blagodatskaya, Evgenia

    2015-04-01

    Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes within nano- to macroscales. The spatial and temporal heterogeneity of input of labile organics by plants creates microbial hotspots over short periods of time - the hot moments. We define microbial hotspots as small soil volumes with much faster process rates and much more intensive interactions compared to the average soil conditions. Such hotspots are found in the rhizosphere, detritusphere, biopores (including drilosphere) and on aggregate surfaces, but hotspots are frequently of mixed origin. Hot moments are short-term events or sequences of events inducing accelerated process rates as compared to the averaged rates. Thus, hotspots and hot moments are defined by dynamic characteristics, i.e. by process rates. For this hotspot concept we extensively reviewed and examined the localization and size of hotspots, spatial distribution and visualization approaches, transport of labile C to and from hotspots, lifetime and process intensities, with a special focus on process rates and microbial activities. The fraction of active microorganisms in hotspots is 2-20 times higher than in the bulk soil, and their specific activities (i.e. respiration, microbial growth, mineralization potential, enzyme activities, RNA/DNA ratio) may also be much higher. The duration of hot moments in the rhizosphere is limited and is controlled by the length of the input of labile organics. It can last a few hours up to a few days. In the detritusphere, however, the duration of hot moments is regulated by the output - by decomposition rates of litter - and lasts for weeks and months. Hot moments induce succession in microbial communities and intense intra- and interspecific competition affecting C use efficiency, microbial growth and turnover. The faster turnover and lower C use efficiency in hotspots counterbalances the high C inputs, leading to the absence of strong

  18. Cross-correlation interference effects in multiaccess optical communications

    Science.gov (United States)

    Peterson, G. D.; Gardner, C. S.

    1981-03-01

    An analysis is presented of the cross correlation between user codes in an optical code-division multiple-access communication system. The system model is a multiaccess satellite repeater, where the uplink and downlink channels are direct-detection optical-polarization modulation links. The error probability is obtained in terms of the cross correlation between the intended and interfering user codes. It is demonstrated that the system error rate can be minimized by the use of code sequences in which the normalized second moment of the cross correlation between codes is small.

  19. Apparent scale correlations in a random multifractal process

    DEFF Research Database (Denmark)

    Cleve, Jochen; Schmiegel, Jürgen; Greiner, Martin

    2008-01-01

    We discuss various properties of a homogeneous random multifractal process, which are related to the issue of scale correlations. By design, the process has no built-in scale correlations. However, when it comes to observables like breakdown coefficients, which are based on a coarse......-graining of the multifractal field, scale correlations do appear. In the log-normal limit of the model process, the conditional distributions and moments of breakdown coefficients reproduce the observations made in fully developed small-scale turbulence. These findings help to understand several puzzling empirical details...

  20. Reliability analysis based on a novel density estimation method for structures with correlations

    Directory of Open Access Journals (Sweden)

    Baoyu LI

    2017-06-01

    Full Text Available Estimating the Probability Density Function (PDF of the performance function is a direct way for structural reliability analysis, and the failure probability can be easily obtained by integration in the failure domain. However, efficiently estimating the PDF is still an urgent problem to be solved. The existing fractional moment based maximum entropy has provided a very advanced method for the PDF estimation, whereas the main shortcoming is that it limits the application of the reliability analysis method only to structures with independent inputs. While in fact, structures with correlated inputs always exist in engineering, thus this paper improves the maximum entropy method, and applies the Unscented Transformation (UT technique to compute the fractional moments of the performance function for structures with correlations, which is a very efficient moment estimation method for models with any inputs. The proposed method can precisely estimate the probability distributions of performance functions for structures with correlations. Besides, the number of function evaluations of the proposed method in reliability analysis, which is determined by UT, is really small. Several examples are employed to illustrate the accuracy and advantages of the proposed method.

  1. Invariant moments based convolutional neural networks for image analysis

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi G.V. Mahesh

    2017-01-01

    Full Text Available The paper proposes a method using convolutional neural network to effectively evaluate the discrimination between face and non face patterns, gender classification using facial images and facial expression recognition. The novelty of the method lies in the utilization of the initial trainable convolution kernels coefficients derived from the zernike moments by varying the moment order. The performance of the proposed method was compared with the convolutional neural network architecture that used random kernels as initial training parameters. The multilevel configuration of zernike moments was significant in extracting the shape information suitable for hierarchical feature learning to carry out image analysis and classification. Furthermore the results showed an outstanding performance of zernike moment based kernels in terms of the computation time and classification accuracy.

  2. Product mix variability with correlated demand in two-stage food manufacturing with intermediate storage

    NARCIS (Netherlands)

    Akkerman, Renzo; van Donk, Dirk Pieter

    2009-01-01

    In food processing, market demands are increasingly important, resulting in regular introductions of new products, or special offers. Often, such all introduction or promotional effort affects demand of other products or packaging types. Here we study the effect of such correlated demand. More

  3. Baryon magnetic moments in the quark model and pion cloud contributions

    International Nuclear Information System (INIS)

    Sato, Toshiro; Sawada, Shoji

    1981-01-01

    Baryon magnetic moment is studied paying attention to the effects of pion cloud which is surrounding the 'bare' baryon whose magnetic moment is given by the quark model with broken SU(6) symmetry. The precisely measured nucleon magnetic moments are reproduced by the pion cloud contributions from the distance larger than 1.4 fm. The effects of pion cloud on the hyperon magnetic moments are also discussed. It is shown that the pion cloud contributions largely reduce the discrepancies between the quark model predictions and the recent accurate experimental data on the hyperon magnetic moments. (author)

  4. Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory.

    Science.gov (United States)

    Sharma, S; Gross, E K U; Sanna, A; Dewhurst, J K

    2018-03-13

    Spin-dependent exchange-correlation energy functionals in use today depend on the charge density and the magnetization density: E xc [ρ, m]. However, it is also correct to define the functional in terms of the curl of m for physical external fields: E xc [ρ,∇ × m]. The exchange-correlation magnetic field, B xc , then becomes source-free. We study this variation of the theory by uniquely removing the source term from local and generalized gradient approximations to the functional. By doing so, the total Kohn-Sham moments are improved for a wide range of materials for both functionals. Significantly, the moments for the pnictides are now in good agreement with experiment. This source-free method is simple to implement in all existing density functional theory codes.

  5. Stochastic analysis of complex reaction networks using binomial moment equations.

    Science.gov (United States)

    Barzel, Baruch; Biham, Ofer

    2012-09-01

    The stochastic analysis of complex reaction networks is a difficult problem because the number of microscopic states in such systems increases exponentially with the number of reactive species. Direct integration of the master equation is thus infeasible and is most often replaced by Monte Carlo simulations. While Monte Carlo simulations are a highly effective tool, equation-based formulations are more amenable to analytical treatment and may provide deeper insight into the dynamics of the network. Here, we present a highly efficient equation-based method for the analysis of stochastic reaction networks. The method is based on the recently introduced binomial moment equations [Barzel and Biham, Phys. Rev. Lett. 106, 150602 (2011)]. The binomial moments are linear combinations of the ordinary moments of the probability distribution function of the population sizes of the interacting species. They capture the essential combinatorics of the reaction processes reflecting their stoichiometric structure. This leads to a simple and transparent form of the equations, and allows a highly efficient and surprisingly simple truncation scheme. Unlike ordinary moment equations, in which the inclusion of high order moments is prohibitively complicated, the binomial moment equations can be easily constructed up to any desired order. The result is a set of equations that enables the stochastic analysis of complex reaction networks under a broad range of conditions. The number of equations is dramatically reduced from the exponential proliferation of the master equation to a polynomial (and often quadratic) dependence on the number of reactive species in the binomial moment equations. The aim of this paper is twofold: to present a complete derivation of the binomial moment equations; to demonstrate the applicability of the moment equations for a representative set of example networks, in which stochastic effects play an important role.

  6. Singular-perturbation--strong-coupling field theory and the moments problem

    International Nuclear Information System (INIS)

    Handy, C.R.

    1981-01-01

    Motivated by recent work of Bender, Cooper, Guralnik, Mjolsness, Rose, and Sharp, a new technique is presented for solving field equations in terms of singular-perturbation--strong-coupling expansions. Two traditional mathematical tools are combined into one effective procedure. Firstly, high-temperature lattice expansions are obtained for the corresponding power moments of the field solution. The approximate continuum-limit power moments are subsequently obtained through the application of Pade techniques. Secondly, in order to reconstruct the corresponding approximate global field solution, one must use function-moments reconstruction techniques. The latter involves reconsidering the traditional ''moments problem'' of interest to pure and applied mathematicians. The above marriage between lattice methods and moments reconstruction procedures for functions yields good results for the phi 4 field-theory kink, and the sine-Gordon kink solutions. It is argued that the power moments are the most efficient dynamical variables for the generation of strong-coupling expansions. Indeed, a momentum-space formulation is being advocated in which the long-range behavior of the space-dependent fields are determined by the small-momentum, infrared, domain

  7. The verification of the Taylor-expansion moment method in solving aerosol breakage

    Directory of Open Access Journals (Sweden)

    Yu Ming-Zhou

    2012-01-01

    Full Text Available The combination of the method of moment, characterizing the particle population balance, and the computational fluid dynamics has been an emerging research issue in the studies on the aerosol science and on the multiphase flow science. The difficulty of solving the moment equation arises mainly from the closure of some fractal moment variables which appears in the transform from the non-linear integral-differential population balance equation to the moment equations. Within the Taylor-expansion moment method, the breakage-dominated Taylor-expansion moment equation is first derived here when the symmetric fragmentation mechanism is involved. Due to the high efficiency and the high precision, this proposed moment model is expected to become an important tool for solving population balance equations.

  8. The inclusion of electron correlation in intermolecular potentials: Applications to the formamide dimer and liquid formamide

    DEFF Research Database (Denmark)

    Brdarski, S.; Åstrand, P.-O.; Karlström, G.

    2000-01-01

    dipole moment is 11% lower at the MP2 level than at the Hartree-Fock (HF) level, whereas the isotropic part of the polarizability is increased by 36% by adding electron correlation and using a considerably larger basis set. The atomic charges, dipole moments and polarizabilities obtained at the HF level...

  9. Search for electric dipole moments in storage rings

    Directory of Open Access Journals (Sweden)

    Lenisa Paolo

    2016-01-01

    Full Text Available The JEDI collaboration aims at making use of storage ring to provide the most precise measurement of the electric dipole moments of hadrons. The method makes exploits a longitudinal polarized beam. The existence an electric dipole moment would generate a torque slowly twisting the particle spin out of plan of the storage ring into the vertical direction. The observation of non zero electric dipole moment would represent a clear sign of new physics beyond the Standard Model. Feasiblity tests are presently undergoing at the COSY storage ring Forschungszentrum Jülich (Germany, to develop the novel techniques to be implemented in a future dedicated storage ring.

  10. Relativistic dynamics of point magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew [The University of Arizona, Department of Physics, Tucson, AZ (United States)

    2018-01-15

    The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincare symmetry of space-time. We propose a covariant formulation of the magnetic force based on a 'magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g - 2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape. (orig.)

  11. Moments of inertia of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Svenja Kim; Hebeler, Kai; Schwenk, Achim [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2016-07-01

    Neutron stars are unique laboratories for matter at extreme conditions. While nuclear forces provide systematic constraints on properties of neutron-rich matter up to around nuclear saturation density, the composition of matter at high densities is still unknown. Recent precise observations of 2 M {sub CircleDot} neutron stars made it possible to derive systematic constraints on the equation of state at high densities and also neutron star radii. Further improvements of these constraints require the observation of even heavier neutron stars or a simultaneous measurement of mass and radius of a single neutron star. Since the precise measurement of neutron star radii is an inherently difficult problem, the observation of moment of inertia of neutron stars provides a promising alternative, since they can be measured by pulsar timing experiments. We present a theoretical framework that allows to calculate moments of inertia microscopically, we show results based on state of the art equations of state and illustrate how future measurements of moments of inertia allow to constrain the equation of state and other properties of neutron stars.

  12. 'Equivalent' potential to SVZ moments to order 4>

    International Nuclear Information System (INIS)

    Bertlmann, R.A.

    1984-01-01

    We extend the 'equivalent' potential of Bell and Bertlmann on the basis of field theory by accounting for operators of dimension 6 and 8. There is no sign of flavour smoothening. The discrepancy between Schroedinger result and moment result improves but is still present. The moment result remains remarkably stable. (Author)

  13. Social support and moment-to-moment changes in treatment self-efficacy in men living with HIV: Psychosocial moderators and clinical outcomes

    Science.gov (United States)

    Turan, Bulent; Fazeli, Pariya; Raper, James L.; Mugavero, Michael J.; Johnson, Mallory O.

    2016-01-01

    Objective For people living with HIV, treatment adherence self-efficacy is an important predictor of treatment adherence and therefore of clinical outcomes. Using experience sampling method (ESM), this study aimed to examine: (1) the within-person association between moment-to-moment changes in social support and HIV treatment self-efficacy; (2) the moderators of this within-person association, (3) the concordance between questionnaire and ESM measurement of treatment self-efficacy; and (4) the utility of each approach (ESM and questionnaire) in predicting adherence to medication, adherence to clinic visits, CD4 counts, and viral load. Methods 109 men living with HIV responded to the same set of ESM questions 3 times a day for 7 days via a smart phone given to them for the study. They also completed cross-sectional questionnaires and their clinic data was extracted from medical records in order to examine predictors and consequences of state and trait treatment self-efficacy. Results In within-person hierarchical linear modeling (HLM) analyses, receipt of recent social support predicted higher current ESM treatment self-efficacy. This association was stronger for individuals reporting higher avoidance coping with HIV. The correlation between ESM and questionnaire measures of treatment self-efficacy was r = .37. ESM measure of average treatment self-efficacy predicted medication adherence, visit adherence, CD4 counts, and viral load, while questionnaire-based self-efficacy did not predict these outcomes. Conclusion Interventions aimed at improving treatment adherence may target social support processes, which may improve treatment self-efficacy and adherence. PMID:27089459

  14. Low Carbon-Oriented Optimal Reliability Design with Interval Product Failure Analysis and Grey Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yixiong Feng

    2017-03-01

    Full Text Available The problem of large amounts of carbon emissions causes wide concern across the world, and it has become a serious threat to the sustainable development of the manufacturing industry. The intensive research into technologies and methodologies for green product design has significant theoretical meaning and practical value in reducing the emissions of the manufacturing industry. Therefore, a low carbon-oriented product reliability optimal design model is proposed in this paper: (1 The related expert evaluation information was prepared in interval numbers; (2 An improved product failure analysis considering the uncertain carbon emissions of the subsystem was performed to obtain the subsystem weight taking the carbon emissions into consideration. The interval grey correlation analysis was conducted to obtain the subsystem weight taking the uncertain correlations inside the product into consideration. Using the above two kinds of subsystem weights and different caution indicators of the decision maker, a series of product reliability design schemes is available; (3 The interval-valued intuitionistic fuzzy sets (IVIFSs were employed to select the optimal reliability and optimal design scheme based on three attributes, namely, low carbon, correlation and functions, and economic cost. The case study of a vertical CNC lathe proves the superiority and rationality of the proposed method.

  15. Enhanced T-odd, P-odd electromagnetic moments in reflection asymmetric nuclei

    International Nuclear Information System (INIS)

    Spevak, V.; Auerbach, N.; Flambaum, V.V.

    1997-01-01

    Collective P- and T-odd moments produced by parity and time invariance violating forces in reflection asymmetric nuclei are considered. The enhanced collective Schiff, electric dipole, and octupole moments appear due to the mixing of rotational levels of opposite parity. These moments can exceed single-particle moments by more than 2 orders of magnitude. The enhancement is due to the collective nature of the intrinsic moments and the small energy separation between members of parity doublets. In turn these nuclear moments induce enhanced T- and P-odd effects in atoms and molecules. A simple estimate is given and a detailed theoretical treatment of the collective T-, P-odd electric moments in reflection asymmetric, odd-mass nuclei is presented. In the present work we improve on the simple liquid drop model by evaluating the Strutinsky shell correction and include corrections due to pairing. Calculations are performed for octupole deformed long-lived odd-mass isotopes of Rn, Fr, Ra, Ac, and Pa and the corresponding atoms. Experiments with such atoms may improve substantially the limits on time reversal violation. copyright 1997 The American Physical Society

  16. Higher-order force moments of active particles

    Science.gov (United States)

    Nasouri, Babak; Elfring, Gwynn J.

    2018-04-01

    Active particles moving through fluids generate disturbance flows due to their activity. For simplicity, the induced flow field is often modeled by the leading terms in a far-field approximation of the Stokes equations, whose coefficients are the force, torque, and stresslet (zeroth- and first-order force moments) of the active particle. This level of approximation is quite useful, but may also fail to predict more complex behaviors that are observed experimentally. In this study, to provide a better approximation, we evaluate the contribution of the second-order force moments to the flow field and, by reciprocal theorem, present explicit formulas for the stresslet dipole, rotlet dipole, and potential dipole for an arbitrarily shaped active particle. As examples of this method, we derive modified Faxén laws for active spherical particles and resolve higher-order moments for active rod-like particles.

  17. Magnetic moments of composite quarks and leptons: further difficulties

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1980-05-01

    The previously noted difficulty of obtaining Dirac magnetic moments in composite models with two basic building blocks having different charges is combined with the observation by Shaw et al., that a light bound fermion state built from heavy constituents must have the Dirac moment in a renormalizable theory. The new constraint on any model that builds leptons from two fundamental fields bound by non-electromagnetic forces is that the ratio of the magnetic moment to the total charge of the bound state is independent of the values of the charges of the constituents; e.g., such a bound state of a spin-1/2 fermion and a scalar boson will have the same magnetic moment if the fermion is neutral and the boson has charge -e or vice versa

  18. Prediction of forces and moments for flight vehicle control effectors. Part 1: Validation of methods for predicting hypersonic vehicle controls forces and moments

    Science.gov (United States)

    Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.

    1990-01-01

    Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. The ability of the aerodynamic analysis methods contained in an industry standard conceptual design system, APAS II, to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds is considered. Predicted control forces and moments generated by various control effectors are compared with previously published wind tunnel and flight test data for three configurations: the North American X-15, the Space Shuttle Orbiter, and a hypersonic research airplane concept. Qualitative summaries of the results are given for each longitudinal force and moment and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage. Results for most lateral/directional control derivatives are acceptable for conceptual design purposes; however, predictions at supersonic Mach numbers for the change in yawing moment due to aileron deflection and the change in rolling moment due to rudder deflection are found to be unacceptable. Including shielding effects in the analysis is shown to have little effect on lift and pitching moment predictions while improving drag predictions.

  19. Moment approach to tandem mirror radial transport

    International Nuclear Information System (INIS)

    Siebert, K.D.; Callen, J.D.

    1986-02-01

    A moment approach is proposed for the study of tandem mirror radial transport in the resonant plateau regime. The salient features of the method are described with reference to axisymmetric tokamak transport theory. In particular, the importance of momentum conservation to the establishment of the azimuthal variations in the electrostatic potential is demonstrated. Also, an ad hoc drift kinetic equation is solved to determine parallel viscosity coefficients which are required to close the moment system

  20. Studies of nuclear second moments for pre-equilibrium nuclear reaction theories

    International Nuclear Information System (INIS)

    Sato, K.; Yoshida, S.

    1987-01-01

    The nuclear second moments, important inputs to pre-equilibrium reaction theories, are evaluated by assuming a simple model. The positive definite nature of the second moments is examined, and the nuclear level densities are calculated using positive definite second moments. (orig.)

  1. Σ--antihyperon correlations in Z0 decay and investigation of the baryon production mechanism

    International Nuclear Information System (INIS)

    Abbiendi, G.; Braibant, S.; Capiluppi, P.; Ciocca, C.; Cuffiani, M.; Dallavalle, M.; Fabbri, F.; Giacomelli, G.; Giacomelli, P.; Ludwig, J.; Merritt, F.S.; Rembser, C.; Ainsley, C.; Batley, R.J.; Carter, J.R.; Hill, J.C.; Tarem, S.; Verzocchi, M.; Voss, H.; Aakesson, P.F.; Barberio, E.; Burckhart, H.J.; Roeck, A. de; Wolf, E.A. de; Ferrari, P.; Frey, A.; Gruwe, M.; Hauschild, M.; Hawkings, R.; Maettig, P.; Nanjo, H.; Pater, J.R.; Pinfold, J.; Pooth, O.; Przybycien, M.; Runge, K.; Sarkisyan, E.K.G.; Schaile, O.; Scharff-Hansen, P.; Schroeder, M.; Shen, B.C.; Strom, D.; Thomson, M.A.; Vannerem, P.; Vertesi, R.; Watkins, P.M.; Watson, A.T.; Alexander, G.; Bella, G.; Etzion, E.; Grunhaus, J.; Toya, D.; Anagnostou, G.; Bell, P.J.; Charlton, D.G.; Hawkes, C.M.; Jeremie, H.; Nakamura, I.; Trigger, I.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Wermes, N.; Anderson, K.J.; Gupta, A.; McPherson, R.A.; Neal, H.A.; Pahl, C.; Smith, A.M.; Stroehmer, R.; Asai, S.; Igo-Kemenes, P.; Junk, T.R.; Karlen, D.; Kawagoe, K.; Kluth, S.; Kobel, M.; Marcellini, S.; Mes, H.; Mikenberg, G.; Mori, T.; Mutter, A.; O'Neale, S.W.; Rozen, Y.; Teuscher, R.; Trocsanyi, Z.; Wilson, J.A.; Axen, D.; Lloyd, S.L.; Martin, A.J.; Bailey, I.; Kanzaki, J.; Kawamoto, T.; Mashimo, T.; Rabbertz, K.; Sherwood, P.; Barillari, T.; Bethke, S.; Kennedy, B.W.; Oh, A.; Plane, D.E.; Schaile, A.D.; Barlow, R.J.; Duerdoth, I.P.; Ford, M.; Kupper, M.; Lillich, J.; Orito, S.; Skuja, A.; Wengler, T.; Wilson, G.W.; Bechtle, P.; Behnke, T.; Desch, K.; Hamann, M.; Heuer, R.D.; Komamiya, S.; Krogh, J. von; McKenna, J.; Menges, W.; Bell, K.W.; Brown, R.M.; Kellogg, R.G.; Bellerive, A.; Carnegie, R.K.; Jovanovic, P.; Krasznahorkay, A.; Meijers, F.; Rossi, A.M.; Benelli, G.; Campana, S.; Gary, J.W.; Giunta, M.; Hanson, G.G.; Oreglia, M.J.; Schumacher, M.; Wolf, G.; Biebel, O.; Boutemeur, M.; Dubbert, J.; Duckeck, G.; Fiedler, F.; Sachs, K.; Saeki, T.; Spano, F.; Turner-Watson, M.F.; Boeriu, O.; Fleck, I.; Herten, G.; Letts, J.; Lu, J.; Mihara, S.; Miller, D.J.; Roney, J.M.; Ueda, I.; Bock, P.; Krieger, P.; Wells, P.S.; Carter, A.A.; Levinson, L.; Mader, W.; Mohr, W.; Chang, C.Y.; Keeler, R.K.; Shears, T.G.; Vollmer, C.F.; Csilling, A.; Hajdu, C.; Horvath, D.; Dado, S.; Goldberg, J.; Harel, A.; Lafferty, G.D.; Renkel, P.; Stahl, A.; Wyatt, T.R.; Dienes, B.; Kraemer, T.; Torrence, E.; Tsur, E.; Ujvari, B.; Duchovni, E.; Gross, E.; Kuhl, T.; Lanske, D.; Lellouch, D.; Meyer, N.; Quadt, A.; Wetterling, D.; Gagnon, P.; Geich-Gimbel, C.; Kobayashi, T.; Loebinger, F.K.; Ludwig, A.; Schieck, J.; Watson, N.K.; Ishii, K.; Landsman, H.; Pilcher, J.E.; Schoerner-Sadenius, T.; Sobie, R.; Michelini, A.; Seuster, R.; Nagai, K.; Pasztor, G.; Soeldner-Rembold, S.; Tasevsky, M.

    2009-01-01

    Data collected around √(s)=91 GeV by the OPAL experiment at the LEP e + e - collider are used to study the mechanism of baryon formation. As the signature, the fraction of Σ - hyperons whose baryon number is compensated by the production of a anti Σ - , anti Λ or anti Ξ - antihyperon is determined. The method relies entirely on quantum number correlations of the baryons, and not rapidity correlations, making it more model independent than previous studies. Within the context of the JETSET implementation of the string hadronization model, the diquark baryon production model without the popcorn mechanism is strongly disfavored with a significance of 3.8 standard deviations including systematic uncertainties. It is shown that previous studies of the popcorn mechanism with Λanti Λ and p anti p correlations are not conclusive, if parameter uncertainties are considered. (orig.)

  2. Effects of particle-number-projection on nuclear moment of intertia

    International Nuclear Information System (INIS)

    Rozmej, P.

    1976-01-01

    The formalism of the moment of inertia in cranking model and BCS theory has been extended for the partially particle-number-projected BCS wave functions. The ground state moments of inertia obtained by this method are a little greater than those calculated by BCS method. A smooth growth of the moments of inertia for diminishing pairing strength constant has been obtained. (author)

  3. Electron contribution to the muon anomalous magnetic moment at four loops

    International Nuclear Information System (INIS)

    Kurz, Alexander; Liu, Tao; Smirnov, Alexander V.; Smirnov, Vladimir A.; Humboldt-Universitaet, Berlin; Humboldt-Universitaet, Berlin; Steinhauser, Matthias

    2016-02-01

    We present results for the QED contributions to the anomalous magnetic moment of the muon containing closed electron loops. The main focus is on perturbative corrections at four-loop order where the external photon couples to the external muon. Furthermore, all four-loop contributions involving simultaneously a closed electron and tau loop are computed. In combination with our recent results on the light-by-light-type corrections the complete four-loop electron-loop contribution to the anomalous magnetic moment of the muon has been obtained with an independent calculation. Our calculation is based on an asymptotic expansion in the ratio of the electron and the muon mass and shows the importance of higher order terms in this ratio. We perform a detailed comparison with results available in the literature and find good numerical agreement. As a by-product we present analytic results for the on-shell muon mass and wave function renormalization constants at three-loop order including massive closed electron and tau loops, which we also calculated using the method of asymptotic expansion.

  4. Correlations of Mean Process Parameters for Agricultural Products Drying in Thin Bed in Solar Direct Dryers

    Directory of Open Access Journals (Sweden)

    MSc. Ciro César Bergues-Ricardo

    2015-11-01

    Full Text Available A group of correlations is given between mean parameters of drying process drying velocity, energy losses, useful energy, and thermal efficiency. Those are suitable for conditions of thin bed drying, in direct solar dryers, and may help for developing of an integral approach of solar drying in those conditions. Correlations are reliable for drying processes of diverse crop products specified, suchas roots, seeds, vegetables, fruits, wood, etc, with natural or forced convection. Correlations were validated in Cuba for usual ranges of efficiency and products in solar dryers of cover, cabinet and house types, in tropical conditions. These correlations are useful for design and exploitation ofdryers and for theoretical and practical comprehension of solar drying like a system.

  5. The effect of moment redistribution on the stability of reinforced concrete moment resisting frame buildings under the ground motion

    Directory of Open Access Journals (Sweden)

    Mahdi Golpayegani

    2017-08-01

    Full Text Available In recent years some studies have been done on the moment rredistribution in buildings and new methods offered for calculating of redistribution. Observations demonstrated that the combination of moment and shear force is important in analysis of reinforced concrete structures. But little research is done about the effect of redistribution by using moding in software. In order to study the effect of moment redistribution on the stability of RC moment resisting frame structures, four buildings with 4, 7, 10 and 13 story have been considered. In these models, the nonlinear behavior of elements (beam and column is considered by the use of interaction PMM hinges. The average plastic rotation was calculated by performing pushover analysis and storing stiffness matrix for 5 points and then the buckling coefficients were obtained by conducting buckling analysis. By the use of modal analysis natural frequency was calculated and it was attempted to be related the average plastic rotation with the buckling coefficients and the natural frequency.   It could be concluded that increase in the plastic rotation reduce the buckling coefficients to about 96% which this amount of reduction is related to the average plastic rotation. Moreover, the buildings experience instability state when the average plastic rotation reached to 0.006 radian.

  6. Correlation between production performance and feeding behavior of steers on pasture during the rainy-dry transition period.

    Science.gov (United States)

    Brandão, Rita K C; de Carvalho, Gleidson G P; Silva, Robério R; Dias, Daniel L S; Mendes, Fabrício B L; Lins, Túlio O J D'A; Pereira, Maria M S; Guimarães, Joanderson O; Tosto, Manuela S L; Rufino, Luana M de A; de Araujo, Maria L G M L

    2018-01-01

    The aim of this study was to evaluate the correlation between production performance and feeding behavior of steers reared on pasture during the rainy-dry transition period. Twenty-two ½ Holstein-Zebu crossbred steers at an average age of 10 months and with an average initial body weight of 234.5 ± 16.0 kg were distributed in a completely randomized design with two types of supplementation and eleven replications. Pearson's linear correlation analysis was performed between behavioral variables and weight gain and feed conversion. Correlation coefficients were tested by the t test. The time expended feeding at the trough was positively correlated (P correlated (P correlated (P correlation (P < 0.05) between feed efficiency in dry matter and neutral detergent fiber and ADG. Feeding behavior characteristics have little association with the production performance of cattle on pasture receiving mineral or energy-protein supplementation.

  7. The influence of final state interaction on two-particle correlations in multiple production of particles and resonances

    International Nuclear Information System (INIS)

    Lednicky, R.; Lyuboshitz, V.L.

    1996-01-01

    The structure of pair correlations of interacting particles moving with nearby velocities is analysed. A general formalism of the two-particle space-time density matrix, taking into account the space-time coherence of the production process, is developed. The influence of strong final state interaction on two-particle correlations in the case of the production of a system resonance + particle is investigated in detail. It is shown that in the limit of small distances between the resonance and particle production points the effect of final state interaction is enhanced due to logarithmic singularity of the triangle diagram. Numerical estimates indicate that, in this limit, the effect of strong final state interaction becomes important even for two-pion correlations. (author)

  8. Experimental search for the electron electric dipole moment with laser cooled francium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, T., E-mail: inoue-t@cyric.tohoku.ac.jp [Tohoku University, Frontier Research Institute of Interdisciplinary Sciences (Japan); Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kawamura, H.; Uchiyama, A. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Aoki, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Hatanaka, K. [Osaka University, Research Center for Nuclear Physics (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency (Japan); Murakami, T. [Kyoto University, Department of Physics (Japan); Nataraj, H. S. [Indian Institute of Technology Roorkee (India); and others

    2015-04-15

    A laser cooled heavy atom is one of the candidates to search for the permanent electric dipole moment (EDM) of the electron due to the enhancement mechanism and its long coherence time. The laser cooled francium (Fr) factory has been constructed to perform the electron EDM search at the Cyclotron and Radioisotope Center, Tohoku University. The present status of Fr production and the EDM measurement system is presented.

  9. Anomalous moments of quarks and leptons from nonstandard WWγ couplings

    International Nuclear Information System (INIS)

    Boudjema, F.; Hagiwara, K.; Hamzaoui, C.; Numata, K.

    1991-01-01

    Contributions of nonstandard WWγ couplings to the four electromagnetic form factors of light quarks and leptons, magnetic and electric dipole moments, anapole moments, and charge radii, have been reevaluated, with a special emphasis on the effects of the locally SU(2) weak -invariant nonrenormalizable couplings λ and λ. Previous results for the contribution of the dimension-four anomalous couplings Δκ and κ are reproduced. The λ contribution to the charge radius and the anapole moments are found to be logarithmically sensitive to the cutoff scale (Λ), but the contribution of the λ coupling to the anomalous magnetic moments as well as that of the λ coupling to the electric dipole moments are found to be finite. These finite values are, however, found to be regularization-scheme dependent. The origin of the ambiguities is discussed and we argue that the numerical coefficients depend on the details of the underlying physics that gives rise to these nonstandard couplings. Banning an accidental cancellation, we can place an order-of-magnitude upper bound |λ|approx-lt 10 -4 from the experimental limit on the electric dipole moment of the neutron. Some definite predictions for the off-shell form factors are also presented

  10. Theory and applications of moment methods in many-fermion systems

    International Nuclear Information System (INIS)

    Dalton, B.J.; Grimes, S.M.; Vary, J.P.; Williams, S.A.

    1980-01-01

    This book contains the proceedings of a conference on the application of the moment problem which was held at Ames, Iowa, September 10-13, 1979. It is, generally speaking, a well-printed book consisting of photo-offset reproductions of typed contributions. First of all, there are articles on the general method of moments such as the ones by French. Secondly, there are articles on how to actually calculate these moments. Current progress in recent years has been made on this computational endeavor, which is what makes the moment method particularly useful and interesting now. The articles by Ginnochio, Bloom and Hausman, and Vary are representative of these techniques. Thirdly, there are articles on what to do with the moments once you obtain them. Articles by Langhoff, Whitehead, and Bessis are representative here. Of particular interest to this reviewer is the fact that all of these methods seem to be mathematically quite closely related to various Pade approximant techniques. Finally, there are articles on the problems from which these moment problems arise. Mainly in this book nuclear physics examples are described, although some mention is made of other topics. De Facio et al. discuss application to the Ising model

  11. Effects of moment of inertia on restricted motion swing speed.

    Science.gov (United States)

    Schorah, David; Choppin, Simon; James, David

    2015-06-01

    In many sports, the maximum swing speed of a racket, club, or bat is a key performance parameter. Previous research in multiple sports supports the hypothesis of an inverse association between the swing speed and moment of inertia of an implement. The aim of this study was to rigorously test and quantify this relationship using a restricted swinging motion. Eight visually identical rods with a common mass but variable moment of inertia were manufactured. Motion capture technology was used to record eight participants' maximal effort swings with the rods. Strict exclusion criteria were applied to data that did not adhere to the prescribed movement pattern. The study found that for all participants, swing speed decreased with respect to moment of inertia according to a power relationship. However, in contrast to previous studies, the rate of decrease varied from participant to participant. With further analysis it was found that participants performed more consistently at the higher end of the moment of inertia range tested. The results support the inverse association between swing speed and moment of inertia but only for higher moment of inertia implements.

  12. Bolted flanged connections subjected to longitudinal bending moments

    International Nuclear Information System (INIS)

    Blach, A.E.

    1992-01-01

    Flanges in piping systems and also pressure vessel flanges on tall columns are often subjected to longitudinal bending moments of considerable magnitude, be it from thermal expansion stresses in piping systems or from wind or seismic loadings on tall vertical pressure vessels. Except for the ASME Code, Section III, Subsections NB, NC, and ND, other pressure vessel and piping codes do not contain design ASME Nuclear Power Plant Code (Section III), an empirical formula is given, expressing a longitudinal bending moment in bolted flanged connections in terms of an equivalent internal pressure to be added to the design pressure of the flange. In this paper, an attempt is made to analyse the stresses on flanges and bolting due to external bending moments and to compare flange thicknesses thus obtained with thicknesses required using the equivalent design pressure specified in Subsections NB, NC, and ND. A design method is proposed, based on analysis and experimental work, which may be suitable for flange bending moment analysis when the rules of the Nuclear Power Plant Code are not mandatory. (orig.)

  13. Bounds on the moment of inertia of nonrotating neutron stars

    International Nuclear Information System (INIS)

    Sabbadini, A.G.; Hartle, J.B.

    1977-01-01

    Upper and lower bounds are placed on the moments of inertia of relativistic, spherical, perfect fluid neutron stars assuming that the pressure p and density p are positive and that (dp/drho) is positive. Bounds are obtained (a) for the moment of inertia of a star with given mass and radius, (b) for the moment of inertia of neutron stars for which the equation of state is known below a given density rho/sub omicron/and (c) for the mass-moment of inertia relation for stars whose equation of state is known below a given density rho/sub omicron/The bounds are optimum ones in the sense that there always exists a configuration consistent with the assumptions having a moment of inertia equal to that of the bound. The implications of the results for the maximum mass of slowly rotating neutron stars are discussed

  14. Measurement of Spin Correlation in Top Quark Pair Production at ATLAS

    CERN Document Server

    McLaughlan, Thomas

    2014-01-01

    This thesis presents a study of spin correlation in tt ̄ production in the ATLAS detector, in proton-proton collisions, corresponding to an integrated luminosity of 4.7 fb$^{−1}$, with a centre of mass energy of $\\sqrt{s}$ = 7 TeV. Both the dilepton and single lepton channels are considered, the latter providing a greater challenge due to the neccessity to reconstruct the down-type quark resulting from the W boson decay. A simple technique is employed to reconstruct single lepton $t\\bar{t}$ events, with the transverse angle between the charged lepton and down-type quark used as a probe of the spin correlation. In the dilepton channel, the transverse angle between both charged leptons is used. The extracted value of spin correlation in each channel is consistent with Standard Model predictions, with the result in the eμ channel alone sufficient to exclude a model without spin correlation at 7.8$\\sigma$. Also described is the author’s contribution to the maintenance and development of the Atlantis Event D...

  15. Nuclear moment of inertia and spin distribution of nuclear levels

    International Nuclear Information System (INIS)

    Alhassid, Y.; Fang, L.; Liu, S.; Bertsch, G.F.

    2005-01-01

    We introduce a simple model to calculate the nuclear moment of inertia at finite temperature. This moment of inertia describes the spin distribution of nuclear levels in the framework of the spin-cutoff model. Our model is based on a deformed single-particle Hamiltonian with pairing interaction and takes into account fluctuations in the pairing gap. We derive a formula for the moment of inertia at finite temperature that generalizes the Belyaev formula for zero temperature. We show that a number-parity projection explains the strong odd-even effects observed in shell model Monte Carlo studies of the nuclear moment of inertia in the iron region

  16. Invariant hip moment pattern while walking with a robotic hip exoskeleton.

    Science.gov (United States)

    Lewis, Cara L; Ferris, Daniel P

    2011-03-15

    Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. A general approach to double-moment normalization of drop size distributions

    Science.gov (United States)

    Lee, G. W.; Sempere-Torres, D.; Uijlenhoet, R.; Zawadzki, I.

    2003-04-01

    Normalization of drop size distributions (DSDs) is re-examined here. First, we present an extension of scaling normalization using one moment of the DSD as a parameter (as introduced by Sempere-Torres et al, 1994) to a scaling normalization using two moments as parameters of the normalization. It is shown that the normalization of Testud et al. (2001) is a particular case of the two-moment scaling normalization. Thus, a unified vision of the question of DSDs normalization and a good model representation of DSDs is given. Data analysis shows that from the point of view of moment estimation least square regression is slightly more effective than moment estimation from the normalized average DSD.

  18. Moment Conditions Selection Based on Adaptive Penalized Empirical Likelihood

    Directory of Open Access Journals (Sweden)

    Yunquan Song

    2014-01-01

    Full Text Available Empirical likelihood is a very popular method and has been widely used in the fields of artificial intelligence (AI and data mining as tablets and mobile application and social media dominate the technology landscape. This paper proposes an empirical likelihood shrinkage method to efficiently estimate unknown parameters and select correct moment conditions simultaneously, when the model is defined by moment restrictions in which some are possibly misspecified. We show that our method enjoys oracle-like properties; that is, it consistently selects the correct moment conditions and at the same time its estimator is as efficient as the empirical likelihood estimator obtained by all correct moment conditions. Moreover, unlike the GMM, our proposed method allows us to carry out confidence regions for the parameters included in the model without estimating the covariances of the estimators. For empirical implementation, we provide some data-driven procedures for selecting the tuning parameter of the penalty function. The simulation results show that the method works remarkably well in terms of correct moment selection and the finite sample properties of the estimators. Also, a real-life example is carried out to illustrate the new methodology.

  19. Ultra-high sensitivity moment magnetometry of geological samples using magnetic microscopy

    Science.gov (United States)

    Lima, Eduardo A.; Weiss, Benjamin P.

    2016-09-01

    Useful paleomagnetic information is expected to be recorded by samples with moments up to three orders of magnitude below the detection limit of standard superconducting rock magnetometers. Such samples are now detectable using recently developed magnetic microscopes, which map the magnetic fields above room-temperature samples with unprecedented spatial resolutions and field sensitivities. However, realizing this potential requires the development of techniques for retrieving sample moments from magnetic microscopy data. With this goal, we developed a technique for uniquely obtaining the net magnetic moment of geological samples from magnetic microscopy maps of unresolved or nearly unresolved magnetization. This technique is particularly powerful for analyzing small, weakly magnetized samples such as meteoritic chondrules and terrestrial silicate crystals like zircons. We validated this technique by applying it to field maps generated from synthetic sources and also to field maps measured using a superconducting quantum interference device (SQUID) microscope above geological samples with moments down to 10-15 Am2. For the most magnetic rock samples, the net moments estimated from the SQUID microscope data are within error of independent moment measurements acquired using lower sensitivity standard rock magnetometers. In addition to its superior moment sensitivity, SQUID microscope net moment magnetometry also enables the identification and isolation of magnetic contamination and background sources, which is critical for improving accuracy in paleomagnetic studies of weakly magnetic samples.

  20. Parsing a perceptual decision into a sequence of moments of thought

    Directory of Open Access Journals (Sweden)

    Martin eGraziano

    2011-09-01

    Full Text Available Theoretical, computational and experimental studies have converged to a model of decision-making in which sensory evidence is stochastically integrated to a threshold, implementing a shift from an analog to a discrete form of computation. Understanding how this process can be chained and sequenced - as virtually all real-life tasks involve a sequence of decisions - remains an open question in neuroscience. We reasoned that incorporating a virtual continuum of possible behavioral outcomes in a simple decision task- a fundamental ingredient of real-life decision making – should result in a progressive sequential approximation to the correct response. We used real-time tracking of motor action in a decision task, as a measure of cognitive states reflecting an internal decision process. We found that response trajectories were spontaneously segmented into a discrete sequence of explorations separated by brief stops (about 200 ms – which remained unconscious to the participants. The characteristics of these stops were indicative of a decision process - a moment of thought: their duration correlated with the difficulty of the decision and with the efficiency of the subsequent exploration. Our findings suggest that simple navigation in an abstract space involves a discrete sequence of explorations and stops and, moreover, that these stops reveal a fingerprint of moments of thought.

  1. Moment measurements in dynamic and quasi-static spine segment testing using eccentric compression are susceptible to artifacts based on loading configuration.

    Science.gov (United States)

    Van Toen, Carolyn; Carter, Jarrod W; Oxland, Thomas R; Cripton, Peter A

    2014-12-01

    configurations, respectively. The unexpected moments were due to the inertia of the superior mounting structures. This study has shown that eccentric axial compression produces unexpected moments due to translation constraints at all loading rates and due to the inertia of the superior mounting structures in dynamic experiments. It may be incorrect to assume that bending moments are equal to the product of compression force and eccentricity, particularly where the test configuration involves translational constraints and where the experiments are dynamic. In order to reduce inertial moment artifacts, the mass, and moment of inertia of any loading jig structures that rotate with the specimen should be minimized. Also, the distance between these structures and the load cell should be reduced.

  2. Moments expansion densities for quantifying financial risk

    OpenAIRE

    Ñíguez, T.M.; Perote, J.

    2017-01-01

    We propose a novel semi-nonparametric distribution that is feasibly parameterized to represent the non-Gaussianities of the asset return distributions. Our Moments Expansion (ME) density presents gains in simplicity attributable to its innovative polynomials, which are defined by the difference between the nth power of the random variable and the nth moment of the density used as the basis. We show that the Gram-Charlier distribution is a particular case of the ME-type of densities. The latte...

  3. Moments of the very high multiplicity distributions

    International Nuclear Information System (INIS)

    Nechitailo, V.A.

    2004-01-01

    In experiment, the multiplicity distributions of inelastic processes are truncated due to finite energy, insufficient statistics, or special choice of events. It is shown that the moments of such truncated multiplicity distributions possess some typical features. In particular, the oscillations of cumulant moments at high ranks and their negative values at the second rank can be considered as ones most indicative of the specifics of these distributions. They allow one to distinguish between distributions of different type

  4. Estimation of Uncertainties of Full Moment Tensors

    Science.gov (United States)

    2017-10-06

    For our moment tensor inversions, we use the ‘cut-and-paste’ ( CAP ) code of Zhu and Helmberger (1996) and Zhu and Ben-Zion (2013), with some...modifications. For the misfit function we use an L1 norm Silwal and Tape (2016), and we incorporate the number of misfitting polarities into the waveform... norm of the eigenvalue triple provides the magnitude of the moment tensor, leaving two free parameters to define the source type. In the same year

  5. Discrete Hermite moments and their application in chemometrics

    Czech Academy of Sciences Publication Activity Database

    Honarvar Shakibaei Asli, Barmak; Flusser, Jan

    2018-01-01

    Roč. 177, č. 1 (2018), s. 83-88 ISSN 0169-7439 Institutional support: RVO:67985556 Keywords : Orthogonal polynomials * Discrete polynomials * Tchebichef moment * Hermite moment * Gauss–Hermite quadrature Subject RIV: IN - Informatics, Computer Science OBOR OECD: Electrical and electronic engineering Impact factor: 2.303, year: 2016 http://library.utia.cas.cz/separaty/2018/ZOI/honarvar-0489186.pdf

  6. Shell model estimate of electric dipole moments in medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Teruya Eri

    2015-01-01

    Full Text Available Existence of the electric dipole moment (EDM is deeply related with time-reversal invariance. The EDMof a diamagnetic atom is mainly induced by the nuclear Schiff moment. After carrying out the shell model calculations to obtain wavefunctions for Xe isotopes, we evaluate nuclear Schiff moments for Xe isotopes to estimate their atomic EDMs. We estimate the contribution from each single particle orbital for the Schiff moment. It is found that the contribution on the Schiff moment is very different from orbital to orbital.

  7. Resonance contributions to Hanbury-Brown endash Twiss correlation radii

    International Nuclear Information System (INIS)

    Wiedemann, U.A.; Heinz, U.

    1997-01-01

    We study the effect of resonance decays on intensity interferometry for heavy ion collisions. Collective expansion of the source leads to a dependence of the two-particle correlation function on the pair momentum K. This opens the possibility to reconstruct the dynamics of the source from the K dependence of the measured Hanburg-Brown endash Twiss (HBT) radii. Here we address the question to what extent resonance decays can fake such a flow signal. Within a simple parametrization for the emission function we present a comprehensive analysis of the interplay of flow and resonance decays on the one- and two-particle spectra. We discuss in detail the non-Gaussian features of the correlation function introduced by long-lived resonances and the resulting problems in extracting meaningful HBT radii. We propose to define them in terms of the second-order q moments of the correlator C(q,K). We show that this yields a more reliable characterisation of the correlator in terms of its width and the correlation strength λ than other commonly used fit procedures. The normalized fourth-order q moments (kurtosis) provide a quantitative measure for the non-Gaussian features of the correlator. At least for the class of models studied here, the kurtosis helps separating effects from expansion flow and resonance decays, and provides the cleanest signal to distinguish between scenarios with and without transverse flow. copyright 1997 The American Physical Society

  8. Measurement of seismic moments at the RSTN station RSSD for NTS explosions

    International Nuclear Information System (INIS)

    Taylor, S.R.; Patton, H.J.

    1983-01-01

    We have estimated the seismic moment for two Nevada Test Site (NTS) explosions (Nebbiolo, 6/24/82; Atrisco, 8/5/82) at the Regional Seismic Test Network (RSTN) station in South Dakota (RSSD; distance from NTS approx. 1280 km). The moments are calculated from the vertical component mid-period channel for the Rayleigh waves and the merged mid- and short-period band for the P waves. The moment estimates from surface waves give values of 1.0 x 10 23 and 2.0 x 10 23 dyn-cm for Nebbiolo and Atrisco, respectively. The body-wave moments obtained at 0.5 Hz are approximately five times greater than those from surface waves and give values of 4.8 x 10 23 and 1.0 x 10 24 dyn-cm for Nebbiolo and Atrisco, respectively. The apparent discrepancy between the body and surface-wave moments can be resolved if there is overshoot (of 5:1) in the explosion source spectrum. As a check on the absolute value of the surface-wave moments, we compared them to moment values predicted from empirical moment-yield relationships for different emplacement media at NTS (Patton, 1983). We found that the agreement between observed and predicted values is satisfactory, within the measurement error on the moments at the one sigma level

  9. The Critical Moment of Transition

    DEFF Research Database (Denmark)

    Svalgaard, Lotte

    2018-01-01

    By providing a holding environment to acknowledge sensitivities and address emotions, leadership programs prove to be powerful spaces for increasing self- and social awareness. However, the challenge is for one to maintain the newly gained self- and social awareness after leaving the holding...... environment and entering a context characterized by activity and performance. This is a frequently debated challenge for both academics and providers of management learning. Yet, critical moments in this transition remain under-exposed and under-researched. The contribution of this article is a research study......—within the context of an international MBA program—of MBA students applying their knowledge from a Leadership Stream in an international consultancy project. This article contributes to the theory and practice of management learning by providing a lens through which subjective experience of critical moments...

  10. Moment of truth for CMS

    CERN Multimedia

    2006-01-01

    One of the first events reconstructed in the Muon Drift Tubes, the Hadron Calorimeter and elements of the Silicon Tracker (TK) at 3 Tesla. The atmosphere in the CMS control rooms was electric. Everbody was at the helm for the first full-scale testing of the experiment. This was a crunch moment for the entire collaboration. On Tuesday, 22 August the magnet attained almost its nominal power of 4 Tesla! At the same moment, in a tiny improvised control room, the physicists were keyed up to test the entire detector system for the first time. The first cosmic ray tracks appeared on their screens in the week of 15 August. The tests are set to continue for several weeks more until the first CMS components are lowered into their final positions in the cavern.

  11. Meson-exchange-current corrections to magnetic moments in quantum hadrodynamics

    International Nuclear Information System (INIS)

    Morse, T.M.

    1990-01-01

    Corrections to the magnetic moments of the non-relativistic shell model (Schmidt lines) have a long history. In the early fifties calculations of pion exchange and core polarization contributions to nuclear magnetic moments were initiated. These calculations matured by the early eighties to include other mesons and the delta isobar. Relativistic nuclear shell model calculations are relatively recent. Meson exchange and the delta isobar current contributions to the magnetic moments of the relativistic shell model have remained largely unexplored. The disagreement between the valence values of spherical relativistic mean-field models and experiment was a major problem with early (1975-1985) quantum hydrodynamics (QHD) calculations of magnetic moments. Core polarization calculations (1986-1988) have been found to resolve the large discrepancy, predicting isoscalar magnetic moments to within typically five percent of experiment. The isovector magnetic moments, however, are about twice as far from experiment with an average discrepancy of about ten percent. The pion, being the lightest of the mesons, has historically been expected to dominate isovector corrections. Because this has been found to be true in non-relativistic calculations, the author calculated the pion corrections in the framework of QHD. The seagull and in-flight pion exchange current diagram corrections to the magnetic moments of eight finite nuclei (plus or minus one valence nucleon from the magic A = 16 and A = 40 doubly closed shell systems) are calculated in the framework of QHD, and compared with earlier non-relativistic calculations and experiment

  12. Three-moment representation of rain in a cloud microphysics model

    Science.gov (United States)

    Paukert, M.; Fan, J.; Rasch, P. J.; Morrison, H.; Milbrandt, J.; Khain, A.; Shpund, J.

    2017-12-01

    Two-moment microphysics schemes have been commonly used for cloud simulation in models across different scales - from large-eddy simulations to global climate models. These schemes have yielded valuable insights into cloud and precipitation processes, however the size distributions are limited to two degrees of freedom, and thus the shape parameter is typically fixed or diagnosed. We have developed a three-moment approach for the rain category in order to provide an additional degree of freedom to the size distribution and thereby improve the cloud microphysics representations for more accurate weather and climate simulations. The approach is applied to the Predicted Particle Properties (P3) scheme. In addition to the rain number and mass mixing ratios predicted in the two-moment P3, we now include prognostic equations for the sixth moment of the size distribution (radar reflectivity), thus allowing the shape parameter to evolve freely. We employ the spectral bin microphysics (SBM) model to formulate the three-moment process rates in P3 for drop collisions and breakup. We first test the three-moment scheme with a maritime stratocumulus case from the VOCALS field campaign, and compare the model results with respect to cloud and precipitation properties from the new P3 scheme, original two-moment P3 scheme, SBM, and in-situ aircraft measurements. The improved simulation results by the new P3 scheme will be discussed and physically explained.

  13. Finite-correlation-time effects in the kinematic dynamo problem

    International Nuclear Information System (INIS)

    Schekochihin, Alexander A.; Kulsrud, Russell M.

    2001-01-01

    Most of the theoretical results on the kinematic amplification of small-scale magnetic fluctuations by turbulence have been confined to the model of white-noise-like (δ-correlated in time) advecting turbulent velocity field. In this work, the statistics of the passive magnetic field in the diffusion-free regime are considered for the case when the advecting flow is finite-time correlated. A new method is developed that allows one to systematically construct the correlation-time expansion for statistical characteristics of the field such as its probability density function or the complete set of its moments. The expansion is valid provided the velocity correlation time is smaller than the characteristic growth time of the magnetic fluctuations. This expansion is carried out up to first order in the general case of a d-dimensional arbitrarily compressible advecting flow. The growth rates for all moments of the magnetic-field strength are derived. The effect of the first-order corrections due to the finite correlation time is to reduce these growth rates. It is shown that introducing a finite correlation time leads to the loss of the small-scale statistical universality, which was present in the limit of the δ-correlated velocity field. Namely, the shape of the velocity time-correlation profile and the large-scale spatial structure of the flow become important. The latter is a new effect, that implies, in particular, that the approximation of a locally-linear shear flow does not fully capture the effect of nonvanishing correlation time. Physical applications of this theory include the small-scale kinematic dynamo in the interstellar medium and protogalactic plasmas

  14. Faculty research productivity and organizational structure in schools of nursing.

    Science.gov (United States)

    Kohlenberg, E M

    1992-01-01

    The purpose of this study was to identify the relationship between faculty research productivity and organizational structure in schools of nursing. The need for nursing research has been widely recognized by members of the nursing profession, yet comparatively few engage in conducting research. Although contextual variables have been investigated that facilitate or inhibit nursing research, the relationship between organizational structure and nursing research productivity has not been examined. This problem was examined within the context of the Entrepreneurial Theory of Formal Organizations. A survey methodology was used for data collection. Data on individual faculty research productivity and organizational structure in the school of nursing were obtained through the use of a questionnaire. A random sample of 300 faculty teaching in 60 master's and doctoral nursing schools in the United States was used. The instruments for data collection were Wakefield-Fisher's Adapted Scholarly Productivity Index and Hall's Organizational Inventory. The data were analyzed using Pearson Product-Moment Correlation Coefficients and multiple correlation/regression techniques. The overall relationship between faculty research productivity and organizational structure in schools of nursing was not significant at the .002 level of confidence. Although statistically significant relationships were not identified, scholarly research productivity and its subscale prepublication and research activities tended to vary positively with procedural specifications in a highly bureaucratic organizational structure. Further research may focus on identification of structural variables that support highly productive nurse researchers.

  15. A necessary moment condition for the fractional functional central limit theorem

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Morten Ørregaard

    We discuss the moment condition for the fractional functional central limit theorem (FCLT) for partial sums of x_{t}=Delta^{-d}u_{t}, where d in (-1/2,1/2) is the fractional integration parameter and u_{t} is weakly dependent. The classical condition is existence of q>max(2,(d+1/2)^{-1}) moments...... of the innovation sequence. When d is close to -1/2 this moment condition is very strong. Our main result is to show that under some relatively weak conditions on u_{t}, the existence of q≥max(2,(d+1/2)^{-1}) is in fact necessary for the FCLT for fractionally integrated processes and that q>max(2,(d+1....../2)^{-1}) moments are necessary and sufficient for more general fractional processes. Davidson and de Jong (2000) presented a fractional FCLT where only q>2 finite moments are assumed, which is remarkable because it is the only FCLT where the moment condition has been weakened relative to the earlier condition...

  16. Dynamics of Moment Neuronal Networks with Intra- and Inter-Interactions

    Directory of Open Access Journals (Sweden)

    Xuyan Xiang

    2015-01-01

    Full Text Available A framework of moment neuronal networks with intra- and inter-interactions is presented. It is to show how the spontaneous activity is propagated across the homogeneous and heterogeneous network. The input-output firing relationship and the stability are first explored for a homogeneous network. For heterogeneous network without the constraint of the correlation coefficients between neurons, a more sophisticated dynamics is then explored. With random interactions, the network gets easily synchronized. However, desynchronization is produced by a lateral interaction such as Mexico hat function. It is the external intralayer input unit that offers a more sophisticated and unexpected dynamics over the predecessors. Hence, the work further opens up the possibility of carrying out a stochastic computation in neuronal networks.

  17. Manifestation of the cyclo-toroid nuclear moment in anomalous conversion and Lamb shift

    OpenAIRE

    Tkalya, E. V.

    2005-01-01

    We offer the hypothesis that atomic nuclei, nucleons, and atoms possess a new type of electromagnetic moment, that we call a ``cyclo-toroid moment''. In nuclei, this moment arises when the toroid dipole (anapole) moments are arrayed in the form of a ring, or, equivalently, when the magnetic moments of the nucleons are arranged in the form of rings which, in turn, constitute the surface of a torus. We establish theoretically that the cyclo-toroid moment plays a role in the processes of the ato...

  18. Causes and implications of the correlation between forest productivity and tree mortality rates

    Science.gov (United States)

    Stephenson, Nathan L.; van Mantgem, Philip J.; Bunn, Andrew G.; Bruner, Howard; Harmon, Mark E.; O'Connell, Kari B.; Urban, Dean L.; Franklin, Jerry F.

    2011-01-01

    At global and regional scales, tree mortality rates are positively correlated with forest net primary productivity (NPP). Yet causes of the correlation are unknown, in spite of potentially profound implications for our understanding of environmental controls of forest structure and dynamics and, more generally, our understanding of broad-scale environmental controls of population dynamics and ecosystem processes. Here we seek to shed light on the causes of geographic patterns in tree mortality rates, and we consider some implications of the positive correlation between mortality rates and NPP. To reach these ends, we present seven hypotheses potentially explaining the correlation, develop an approach to help distinguish among the hypotheses, and apply the approach in a case study comparing a tropical and temperate forest.

  19. Moment-to-moment dynamics of ADHD behaviour

    Directory of Open Access Journals (Sweden)

    Aase Heidi

    2005-08-01

    learning long behavioural sequences may ultimately lead to deficient development of verbally governed behaviour and self control. The study represents a new approach to analyzing the moment-to-moment dynamics of behaviour, and provides support for the theory that reinforcement processes are altered in ADHD.

  20. Quantum correlation properties in Matrix Product States of finite-number spin rings

    Science.gov (United States)

    Zhu, Jing-Min; He, Qi-Kai

    2018-02-01

    The organization and structure of quantum correlation (QC) of quantum spin-chains are very rich and complex. Hence the depiction and measures about the QC of finite-number spin rings deserved to be investigated intensively by using Matrix Product States(MPSs) in addition to the case with infinite-number. Here the dependencies of the geometric quantum discord(GQD) of two spin blocks on the total spin number, the spacing spin number and the environment parameter are presented in detail. We also compare the GQD with the total correlation(TC) and the classical correlation(CC) and illustrate its characteristics. Predictably, our findings may provide the potential of designing the optimal QC experimental detection proposals and pave the way for the designation of optimal quantum information processing schemes.

  1. Monte Carlo Volcano Seismic Moment Tensors

    Science.gov (United States)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  2. Polarized electric dipole moment of well-deformed reflection asymmetric nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.

    2012-01-01

    The expression for polarized electric dipole moment of well-deformed reflection asymmetric nuclei is obtained in the framework of liquid-drop model in the case of geometrically similar proton and neutron surfaces. The expression for polarized electric dipole moment consists of the first and second orders terms. It is shown that the second-order correction terms of the polarized electric dipole moment are important for well-deformed nuclei

  3. Renormalization group summation, spectrality constraints, and coupling constant analyticity for phenomenological applications of two-point correlators in QCD

    International Nuclear Information System (INIS)

    Pivovarov, A.A.

    2003-01-01

    The analytic structure in the strong coupling constant that emerges for some observables in QCD after duality averaging of renormalization-group-improved amplitudes is discussed, and the validity of the infrared renormalon hypothesis for the determination of this structure is critically reexamined. A consistent description of peculiar features of perturbation theory series related to hypothetical infrared renormalons and corresponding power corrections is considered. It is shown that perturbation theory series for the spectral moments of two-point correlators of hadronic currents in QCD can explicitly be summed in all orders using the definition of the moments that avoids integration through the infrared region in momentum space. Such a definition of the moments relies on the analytic properties of two-point correlators in the momentum variable that allows for shifting the integration contour into the complex plane of the momentum. For definiteness, an explicit case of gluonic current correlators is discussed in detail

  4. Electric dipole moment of 3He

    International Nuclear Information System (INIS)

    Avishai, Y.; Fabre de la Ripelle, M.

    1987-01-01

    The contribution of CP violating nucleon-nucleon interaction to the electric dipole moment of 3 He is evaluated following a recent proposal for its experimental detection. Two models of CP violating interactions are used, namely, the Kobayashi-Maskawa mechanism and the occurrence of the Θ term in the QCD lagrangian. These CP violating interactions are combined with realistic strong nucleon-nucleon interactions to induce a CP forbidden component of the 3 He wave function. The matrix element of the electric dipole operator is then evaluated between CP allowed and CP forbidden components yielding the observable electric dipole moment. Using the parameters emerging from the penguin terms in the Kobaysashi-Maskawa model we obtain a result much larger than the electric dipole moment of the neutron in the same model. On the other hand, no enhancement is found for the Θ-term mechanism. A possible explanation for this difference is discussed. Numerical estimates can be given only in the Kobayashi-Maskawa model, giving d( 3 He) ≅ 10 30 e . cm. In the second mechanism, the estimate give d ( 3 He) ≅ 10 16 anti Θ. (orig.)

  5. The Scaled SLW model of gas radiation in non-uniform media based on Planck-weighted moments of gas absorption cross-section

    Science.gov (United States)

    Solovjov, Vladimir P.; Andre, Frederic; Lemonnier, Denis; Webb, Brent W.

    2018-02-01

    The Scaled SLW model for prediction of radiation transfer in non-uniform gaseous media is presented. The paper considers a new approach for construction of a Scaled SLW model. In order to maintain the SLW method as a simple and computationally efficient engineering method special attention is paid to explicit non-iterative methods of calculation of the scaling coefficient. The moments of gas absorption cross-section weighted by the Planck blackbody emissive power (in particular, the first moment - Planck mean, and first inverse moment - Rosseland mean) are used as the total characteristics of the absorption spectrum to be preserved by scaling. Generalized SLW modelling using these moments including both discrete gray gases and the continuous formulation is presented. Application of line-by-line look-up table for corresponding ALBDF and inverse ALBDF distribution functions (such that no solution of implicit equations is needed) ensures that the method is flexible and efficient. Predictions for radiative transfer using the Scaled SLW model are compared to line-by-line benchmark solutions, and predictions using the Rank Correlated SLW model and SLW Reference Approach. Conclusions and recommendations regarding application of the Scaled SLW model are made.

  6. Rotation invariants of vector fields from orthogonal moments

    Czech Academy of Sciences Publication Activity Database

    Yang, B.; Kostková, Jitka; Flusser, Jan; Suk, Tomáš; Bujack, R.

    2018-01-01

    Roč. 74, č. 1 (2018), s. 110-121 ISSN 0031-3203 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Vector field * Total rotation * Invariants * Gaussian–Hermite moments * Zernike moments * Numerical stability Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.582, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/flusser-0478329.pdf

  7. Real time monitoring of moment magnitude by waveform inversion

    Science.gov (United States)

    Lee, J.; Friederich, W.; Meier, T.

    2012-01-01

    An instantaneous measure of the moment magnitude (Mw) of an ongoing earthquake is estimated from the moment rate function (MRF) determined in real-time from available seismic data using waveform inversion. Integration of the MRF gives the moment function from which an instantaneous Mw is derived. By repeating the inversion procedure at regular intervals while seismic data are coming in we can monitor the evolution of seismic moment and Mw with time. The final size and duration of a strong earthquake can be obtained within 12 to 15 minutes after the origin time. We show examples of Mw monitoring for three large earthquakes at regional distances. The estimated Mw is only weakly sensitive to changes in the assumed source parameters. Depending on the availability of seismic stations close to the epicenter, a rapid estimation of the Mw as a prerequisite for the assessment of earthquake damage potential appears to be feasible.

  8. Solution of the Stieltjes truncated matrix moment problem

    Directory of Open Access Journals (Sweden)

    Vadim M. Adamyan

    2005-01-01

    Full Text Available The truncated Stieltjes matrix moment problem consisting in the description of all matrix distributions \\(\\boldsymbol{\\sigma}(t\\ on \\([0,\\infty\\ with given first \\(2n+1\\ power moments \\((\\mathbf{C}_j_{n=0}^j\\ is solved using known results on the corresponding Hamburger problem for which \\(\\boldsymbol{\\sigma}(t\\ are defined on \\((-\\infty,\\infty\\. The criterion of solvability of the Stieltjes problem is given and all its solutions in the non-degenerate case are described by selection of the appropriate solutions among those of the Hamburger problem for the same set of moments. The results on extensions of non-negative operators are used and a purely algebraic algorithm for the solution of both Hamburger and Stieltjes problems is proposed.

  9. Spins, moments and charge radii beyond $^{48}$Ca

    CERN Multimedia

    Neyens, G; Rajabali, M M; Hammen, M; Blaum, K; Froemmgen, N E; Garcia ruiz, R F; Kreim, K D; Budincevic, I

    Laser spectroscopy of $^{49-54}$Ca is proposed as a continuation of the experimental theme initiated with IS484 “Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy” and expanded in INTC-I-117 “Moments, Spins and Charge Radii Beyond $^{48}$Ca.” It is anticipated that the charge radii of these isotopes can show strong evidence for the existence of a sub-shell closure at N=32 and could provide a first tentative investigation into the existence of a shell effect at N=34. Furthermore the proposed experiments will simultaneously provide model-independent measurements of the spins, magnetic moments and quadrupole moments of $^{51,53}$Ca permitting existing and future excitation spectra to be pinned to firm unambiguous ground states.

  10. Electron electric dipole moment in Inverse Seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Abada, Asmaa; Toma, Takashi [Laboratoire de Physique Théorique, CNRS, University Paris-Sud, Université Paris-Saclay,91405 Orsay (France)

    2016-08-11

    We consider the contribution of sterile neutrinos to the electric dipole moment of charged leptons in the most minimal realisation of the Inverse Seesaw mechanism, in which the Standard Model is extended by two right-handed neutrinos and two sterile fermion states. Our study shows that the two pairs of (heavy) pseudo-Dirac mass eigenstates can give significant contributions to the electron electric dipole moment, lying close to future experimental sensitivity if their masses are above the electroweak scale. The major contribution comes from two-loop diagrams with pseudo-Dirac neutrino states running in the loops. In our analysis we further discuss the possibility of having a successful leptogenesis in this framework, compatible with a large electron electric dipole moment.

  11. Electron electric dipole moment in Inverse Seesaw models

    International Nuclear Information System (INIS)

    Abada, Asmaa; Toma, Takashi

    2016-01-01

    We consider the contribution of sterile neutrinos to the electric dipole moment of charged leptons in the most minimal realisation of the Inverse Seesaw mechanism, in which the Standard Model is extended by two right-handed neutrinos and two sterile fermion states. Our study shows that the two pairs of (heavy) pseudo-Dirac mass eigenstates can give significant contributions to the electron electric dipole moment, lying close to future experimental sensitivity if their masses are above the electroweak scale. The major contribution comes from two-loop diagrams with pseudo-Dirac neutrino states running in the loops. In our analysis we further discuss the possibility of having a successful leptogenesis in this framework, compatible with a large electron electric dipole moment.

  12. QCD description of high order factorial moments and Hq moments in quark and gluon jets and in e+e- annihilation

    International Nuclear Information System (INIS)

    Lupia, S.

    1999-01-01

    The complete QCD evolution equation for factorial moments in quark and gluon jets is numerically solved with absolute normalization at threshold. Within the picture of Local Parton Hadron Duality, perturbative QCD predictions are compared with existing experimental data for the factorial cumulants, the factorial moments and their ratio both in quark and gluon jets and in e + e - annihilation. The main differences with previous approximate calculations are also pointed out. (author)

  13. Beyond Ehrenfest: correlated non-adiabatic molecular dynamics

    International Nuclear Information System (INIS)

    Horsfield, Andrew P; Bowler, D R; Fisher, A J; Todorov, Tchavdar N; Sanchez, Cristian G

    2004-01-01

    A method for introducing correlations between electrons and ions that is computationally affordable is described. The central assumption is that the ionic wavefunctions are narrow, which makes possible a moment expansion for the full density matrix. To make the problem tractable we reduce the remaining many-electron problem to a single-electron problem by performing a trace over all electronic degrees of freedom except one. This introduces both one- and two-electron quantities into the equations of motion. Quantities depending on more than one electron are removed by making a Hartree-Fock approximation. Using the first-moment approximation, we perform a number of tight binding simulations of the effect of an electric current on a mobile atom. The classical contribution to the ionic kinetic energy exhibits cooling and is independent of the bias. The quantum contribution exhibits strong heating, with the heating rate proportional to the bias. However, increased scattering of electrons with increasing ionic kinetic energy is not observed. This effect requires the introduction of the second moment

  14. Insight into particle production mechanisms from angular correlations of identified particles in pp collisions measured by ALICE

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Two-particle angular correlations are a robust tool which provide access to the underlying physics phenomena of particle production in collisions of both protons and heavy ions by studying distributions of particles in pseudorapidity and azimuthal angle difference. The correlation measurement is sensitive to several phenomena, including mini-jets, elliptic flow, Bose-Einstein correlations, resonance decays, conservation laws, which can be separated by selections of momentum, particle type and by analysing the shapes of the correlation structures. In this talk, we report measurements of the correlations of identified particles and their antiparticles (for pions, kaons, protons, and lambdas) at low transverse momenta in pp collisions at sqrt(s) = 7 TeV, recently submitted for publication by the ALICE Collaboration [arXiv:1612.08975]. The analysis reveals differences in particle production between baryons and mesons. The correlation functions for mesons exhibit the expected peak dominated by effects of mini-jet...

  15. The anomalous magnetic moment of the muon

    CERN Document Server

    Jegerlehner, Friedrich

    2017-01-01

    This research monograph covers extensively the theory of the muon anomalous magnetic moment and provides estimates of the theoretical uncertainties. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. In addition, quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. Perspectives fo...

  16. A corrector for spacecraft calculated electron moments

    Directory of Open Access Journals (Sweden)

    J. Geach

    2005-03-01

    Full Text Available We present the application of a numerical method to correct electron moments calculated on-board spacecraft from the effects of potential broadening and energy range truncation. Assuming a shape for the natural distribution of the ambient plasma and employing the scalar approximation, the on-board moments can be represented as non-linear integral functions of the underlying distribution. We have implemented an algorithm which inverts this system successfully over a wide range of parameters for an assumed underlying drifting Maxwellian distribution. The outputs of the solver are the corrected electron plasma temperature Te, density Ne and velocity vector Ve. We also make an estimation of the temperature anisotropy A of the distribution. We present corrected moment data from Cluster's PEACE experiment for a range of plasma environments and make comparisons with electron and ion data from other Cluster instruments, as well as the equivalent ground-based calculations using full 3-D distribution PEACE telemetry.

  17. The Anomalous Magnetic Moment of the Muon

    CERN Document Server

    Jegerlehner, Friedrich

    2008-01-01

    This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment amy is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. A major part of the book is devoted to the theory of the anomalous magnetic moment and to estimates of the theoretical uncertainties. Quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. After the overview of theory, the exper...

  18. The Koszul complex of a moment map

    DEFF Research Database (Denmark)

    Herbig, Hans-Christian; Schwarz, Gerald W.

    2013-01-01

    Let $K\\to\\U(V)$ be a unitary representation of the compact Lie group $K$. Then there is a canonical moment mapping $\\rho\\colon V\\to\\liek^*$. We have the Koszul complex ${\\mathcal K}(\\rho,\\mathcal C^\\infty(V))$ of the component functions $\\rho_1,\\dots,\\rho_k$ of $\\rho$. Let $G=K_\\C$, the complexif......Let $K\\to\\U(V)$ be a unitary representation of the compact Lie group $K$. Then there is a canonical moment mapping $\\rho\\colon V\\to\\liek^*$. We have the Koszul complex ${\\mathcal K}(\\rho,\\mathcal C^\\infty(V))$ of the component functions $\\rho_1,\\dots,\\rho_k$ of $\\rho$. Let $G......$ be a moment mapping and consider the Koszul complex given by the component functions of $\\rho$. We show that the Koszul complex is a resolution of the smooth functions on $Z=\\rho\\inv(0)$ if and only if the complexification of each symplectic slice representation at a point of $Z$ is $1$-large....

  19. Extented second moment algebra as an efficient tool in structural reliability

    International Nuclear Information System (INIS)

    Ditlevsen, O.

    1982-01-01

    During the seventies, second moment structural reliability analysis was extensively discussed with respect to philosophy and method. One recent clarification into a consistent formalism is represented by the extended second moment reliability theory with the generalized reliability index as its measure of safety. Its methods of formal failure probability calculations are useful independent of the opinion that one may adopt about the philosophy of the second moment reliability formalism. After an introduction of the historical development of the philosphy the paper gives a short introductory review of the extended second moment structural reliability theory. (orig.)

  20. Anomalous magnetic nucleon moments in a Bethe-Salpeter model

    International Nuclear Information System (INIS)

    Chak Wing Chan.

    1978-01-01

    We investigate the anomalous magnetic moment of the nucleon in a field theoretic many-channel model for the electromagnetic form factors of the N anti N, the ππ, the K anti K, the πω and the πrho systems. Propagator self-energy corrections from the Ward idendity and phenomenological strong vertex corrections are both included. The photon is coupled minimally to pions, kaons and nucleons with power multiplicative renormalization. With solutions in the framework of the Bethe-Salpeter equation we obtain a value 1.84 for the isovector moment and a value -0.02 for the isoscalar moment. (orig.)