WorldWideScience

Sample records for producing uranium hexafluoride

  1. Process for producing uranium oxide rich compositions from uranium hexafluoride

    International Nuclear Information System (INIS)

    DeHollander, W.R.; Fenimore, C.P.

    1978-01-01

    Conversion of gaseous uranium hexafluoride to a uranium dioxide rich composition in the presence of an active flame in a reactor defining a reaction zone is achieved by separately introducing a first gaseous reactant comprising a mixture of uranium hexafluoride and a reducing carrier gas, and a second gaseous reactant comprising an oxygen-containing gas. The reactants are separated by a shielding gas as they are introduced to the reaction zone. The shielding gas temporarily separates the gaseous reactants and temporarily prevents substantial mixing and reacting of the gaseous reactants. The flame occurring in the reaction zone is maintained away from contact with the inlet introducing the mixture to the reaction zone. After suitable treatment, the uranium dioxide rich composition is capable of being fabricated into bodies of desired configuration for loading into nuclear fuel rods. Alternatively, an oxygen-containing gas as a third gaseous reactant is introduced when the uranium hexafluoride conversion to the uranium dioxide rich composition is substantially complete. This results in oxidizing the uranium dioxide rich composition to a higher oxide of uranium with conversion of any residual reducing gas to its oxidized form

  2. Uranium hexafluoride purification

    International Nuclear Information System (INIS)

    Araujo, Eneas F. de

    1986-01-01

    Uranium hexafluoride might contain a large amount of impurities after manufacturing or handling. Three usual methods of purification of uranium hexafluoride were presented: selective sorption, sublimation, and distillation. Since uranium hexafluoride usually is contaminated with hydrogen fluoride, a theoretical study of the phase equilibrium properties was performed for the binary system UF 6 -HF. A large deviation from the ideal solution behaviour was observed. A purification unity based on a constant reflux batch distillation process was developed. A procedure was established in order to design the re boiler, condenser and packed columns for the UF 6 -HF mixture separation. A bench scale facility for fractional distillation of uranium hexafluoride was described. Basic operations for that facility and results extracted from several batches were discussed. (author)

  3. Reduction of uranium hexafluoride to uranium tetrafluoride

    International Nuclear Information System (INIS)

    Chang, I.S.; Do, J.B.; Choi, Y.D.; Park, M.H.; Yun, H.H.; Kim, E.H.; Kim, Y.W.

    1982-01-01

    The single step continuous reduction of uranium hexafluoride (UF 6 ) to uranium tetrafluoride (UF 4 ) has been investigated. Heat required to initiate and maintain the reaction in the reactor is supplied by the highly exothermic reaction of hydrogen with a small amount of elemental fluorine which is added to the uranium hexafluoride stream. When gases uranium hexafluoride and hydrogen react in a vertical monel pipe reactor, the green product, UF 4 has 2.5g/cc in bulk density and is partly contaminated by incomplete reduction products (UF 5 ,U 2 F 9 ) and the corrosion product, presumably, of monel pipe of the reactor itself, but its assay (93% of UF 4 ) is acceptable for the preparation of uranium metal with magnesium metal. Remaining problems are the handling of uranium hexafluoride, which is easily clogging the flowmeter and gas feeding lines because of extreme sensitivity toward moisture, and a development of gas nozzel for free flow of uranium hexafluoride gas. (Author)

  4. Sequoyah Uranium Hexafluoride Plant (Docket No. 40-8027): Final environmental statement

    International Nuclear Information System (INIS)

    1975-02-01

    The proposed action is the continuation of Source Material License SUB-1010 issued to Kerr-McGee Nuclear Corporation authorizing the operation of a uranium hexafluoride manufacturing facility located in Sequoyah County, Oklahoma, close to the confluence of the Illinois and Arkansas Rivers. The plant produces high purity uranium hexafluoride using uranium concentrates (yellowcake) as the starting material. It is currently designed to produce 5000 tons of uranium per year as uranium hexafluoride and has been in operation since February 1970 without significant environmental incident or discernible offsite effect. The manufacturing process being used includes wet chemical purification to convert yellowcake to pure uranium trioxide followed by dry chemical reduction, hydrofluorination, and fluorination technique to produce uranium hexafluoride. 8 figs, 12 tabs

  5. Uranium hexafluoride handling

    International Nuclear Information System (INIS)

    1991-01-01

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF 6 from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride

  6. Collect method of uranium hexafluoride

    International Nuclear Information System (INIS)

    Moura, S.C.; Bustillos, O.W.V.

    1991-01-01

    A collect method of uranium hexafluoride was designed, constructed and assembled in Analytical Laboratory from Instituto de Energia Atomica, Sao Paulo, Brazil. This method of collect is main for quality control of uranium hexafluoride. (author)

  7. Uranium hexafluoride handling. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  8. Decommissioning of an uranium hexafluoride pilot plant

    International Nuclear Information System (INIS)

    Santos, Ivan; Abrao, Alcidio; Carvalho, Fatima M.S.; Ayoub, Jamil M.S.

    2009-01-01

    The Institute of Nuclear and Energetic Researches has completed fifty years of operation, belongs to the National Commission for Nuclear Energy, it is situated inside the city of Sao Paulo. The IPEN-CNEN/SP is a Brazilian reference in the nuclear fuel cycle, researches in this field began in 1970, having dominance in the cycle steps from Yellow Cake to Uranium Hexafluoride technology. The plant of Uranium Hexafluoride produced 35 metric tonnes of this gas by year, had been closed in 1992, due to domain and total transference of know-how for industrial scale, demand of new facilities for the improvement of recent researches projects. The Institute initiates decommissioning in 2002. Then, the Uranium Hexafluoride pilot plant, no doubt the most important unit of the fuel cycle installed at IPEN-CNEN/SP, beginning decommissioning and dismantlement (D and D) in 2005. Such D and D strategies, planning, assessment and execution are described, presented and evaluated in this paper. (author)

  9. Uranium hexafluoride purification; Purificacao de hexafluoreto de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Eneas F. de

    1986-07-01

    Uranium hexafluoride might contain a large amount of impurities after manufacturing or handling. Three usual methods of purification of uranium hexafluoride were presented: selective sorption, sublimation, and distillation. Since uranium hexafluoride usually is contaminated with hydrogen fluoride, a theoretical study of the phase equilibrium properties was performed for the binary system UF{sub 6}-HF. A large deviation from the ideal solution behaviour was observed. A purification unity based on a constant reflux batch distillation process was developed. A procedure was established in order to design the re boiler, condenser and packed columns for the UF{sub 6}-HF mixture separation. A bench scale facility for fractional distillation of uranium hexafluoride was described. Basic operations for that facility and results extracted from several batches were discussed. (author)

  10. Some parameters of uranium hexafluoride plasma produced by products of nuclear reaction

    International Nuclear Information System (INIS)

    Batyrbekov, G.A.; Belyakova, Eh.A.

    1996-01-01

    The probe experimental results of investigation of uranium hexafluoride plasma produced in the centre of nuclear reactor core were demonstrated. Study of uranium hexafluoride plasma is continued by the following reasons: a possibility of U F 6 utilization as nuclear fuel, the utilization of U F 6 as volume source o ionization, search of active laser media compatible with U F 6 that is complicated by lack of constant rates data for most of plasma-chemical reactions with U F 6 and his dissociation products. Cylindrical probe volt-ampere characteristics (VAC) measured in U F 6 plasma at pressure 20 Torr and different thermal neutron fluxes and have following features: -firstly, it is possible to choose a linear part in the field of small positive potentials of probe (0-1) V; - secondary, ion branches of VAC have typical break which current of satiation corresponds to; -thirdly, probe VAC measured at small values of thermal neutron flux density are symmetrical. Diagnostics approaches were used for interpretation VAC of probe. The values of satiation current and linear part of electron branch were calculated, and such plasma parameters as conductivity, diffusion coefficient values of positive and negative ions were determined. The resonance recharge cross section was estimated on diffusion coefficient value

  11. Model of the coercion uranium hexafluoride on a human body

    International Nuclear Information System (INIS)

    Babenko, S.P.

    2007-01-01

    A method for calculating certain quantities characterizing the effect of uranium hexafluoride (UF 6 ) on the human body under industrial conditions in uranium enrichment plants is described. It is assumed that the effect is determined by uranium and fluorine inhaled together with the products of hydrolysis of uranium hexafluoride. The proposed complex model consists of three models, the first of which describes the contamination of the industrial environment and the second and third describe inhalation and percutaneous intake. A relation is obtained between uranium and fluorine intake and the uranium hexafluoride concentration in air at the moment the compound is discharged [ru

  12. Obtention of uranium tetrafluoride from effluents generated in the hexafluoride conversion process

    International Nuclear Information System (INIS)

    Silva Neto, J.B.; Urano de Carvalho, E.F.; Durazzo, M.; Riella, H.G.

    2009-01-01

    Full text: The uranium silicide (U3Si2) fuel is produced from uranium hexafluoride (UF6) as the primary raw material. The uranium tetrafluoride (UF4) and metallic uranium are the two subsequent steps. There are two conventional routes for UF4 production: the first one reduces the uranium from the UF6 hydrolysis solution by adding stannous chloride (SnCl2). The second one is based on the hydrofluorination of solid uranium dioxide (UO2) produced from the ammonium uranyl carbonate (AUC). This work introduces a third route, a dry way route which utilizes the recovering of uranium from liquid effluents generated in the uranium hexafluoride reconversion process adopted at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recovery of ammonium fluoride by NH4HF2 precipitation. The crystallized bifluoride is added to the solid UO2 to get UF4, which returns to the metallic uranium production process and, finally, to the U3Si2 powder production. The UF4 produced by this new route was chemically and physically characterized and will be able to be used as raw material for metallic uranium production by magnesiothermic reduction. (author)

  13. 49 CFR 173.420 - Uranium hexafluoride (fissile, fissile excepted and non-fissile).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Uranium hexafluoride (fissile, fissile excepted....420 Uranium hexafluoride (fissile, fissile excepted and non-fissile). (a) In addition to any other... non-fissile uranium hexafluoride must be offered for transportation as follows: (1) Before initial...

  14. Uranium hexafluoride. Bromine spectrophotometric determination

    International Nuclear Information System (INIS)

    Anon.

    Bromine determination in hydrolized uranium hexafluoride by reduction of bromates by ferrous sulfate, oxidation of bromides by potassium permanganate to give bromine which is extracted into carbon tetrachloride and transformed in eosine for spectrophotometry at 510 nm. The method is suitable for determining 5 to 150 ppm with respect to uranium [fr

  15. Purification process of uranium hexafluoride containing traces of plutonium fluoride and/or neptunium fluoride

    International Nuclear Information System (INIS)

    Aubert, J.; Bethuel, L.; Carles, M.

    1983-01-01

    In this process impure uranium hexafluoride is contacted with a metallic fluoride chosen in the group containing lead fluoride PbF 2 , uranium fluorides UFsub(4+x) (0 3 at a temperature such as plutonium and/or neptunium are reduced and pure uranium hexafluoride is recovered. Application is made to uranium hexafluoride purification in spent fuel reprocessing [fr

  16. Analytical standards for accountability of uranium hexafluoride - 1972

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    An analytical standard for the accountability of uranium hexafluoride is presented that includes procedures for subsampling, determination of uranium, determination of metallic impurities and isotopic analysis by gas and thermal ionization mass spectrometry

  17. Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 2

    International Nuclear Information System (INIS)

    Zoller, J.N.; Rosen, R.S.; Holliday, M.A.

    1995-01-01

    With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation

  18. Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Zoller, J.N.; Rosen, R.S.; Holliday, M.A. [and others

    1995-06-30

    With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation.

  19. CFD-simulation of uranium hexafluoride during phase change

    International Nuclear Information System (INIS)

    Pakarinen, Tomi

    2014-01-01

    A model for simulating the behavior of uranium hexafluoride during melting and solidification cycles has been developed. First goal was to create a user-defined material of uranium hexafluoride for commercial computational fluid dynamics software (FLUENT). The results of the thermo physical properties are presented in this paper. The material properties were used to create a model that is able to simulate melting, solidification, evaporation and condensation. The model was used to obtain knowledge of UF 6 s behaviour when melting and solidifying the matter in a two-dimensional cylinder. The results were compared to the results of an analytical solution. The calculation results are consistent with the simulation. (authors)

  20. Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Zoller, J.N.; Rosen, R.S.; Holliday, M.A. [and others

    1995-06-30

    With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation. These Appendices contain the Federal Register Notice, comments on evaluation factors, independent technical reviewers resumes, independent technical reviewers manual, and technology information packages.

  1. Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 1

    International Nuclear Information System (INIS)

    Zoller, J.N.; Rosen, R.S.; Holliday, M.A.

    1995-01-01

    With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation. These Appendices contain the Federal Register Notice, comments on evaluation factors, independent technical reviewers resumes, independent technical reviewers manual, and technology information packages

  2. Study of reactions for the production of uranium titrafluoride and uranium hexafluoride

    International Nuclear Information System (INIS)

    Guzella, M.F.R.

    1985-01-01

    The main production processes of uranium hexafluoride in pilot plants and industrial facilities are described. The known reactions confirmed in laboratory experiments that lead to Uf 6 or other intermediate fluorides are discussed. For the purpose of determining a thermodinamically feasible reaction involving the sulfur hexafluoride as fluorinating agent, a mock-up facility was designed and constructed as a part of the R and D work planned at the CDTN (Nuclebras Center for Nuclear Technology Development). IN the uranium tatrafluoride synthesis employing U 3 O 8 and SF 6 several experimental parameters are studied. The reaction time, gasflow, temperature and stoechiometic relations among reagents are described in detail. (Author) [pt

  3. Depleted uranium hexafluoride: Waste or resource?

    International Nuclear Information System (INIS)

    Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S.; Bradley, C.; Murray, A.

    1995-07-01

    The US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF 6 ). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO 2 for use as mixed oxide duel, (2) conversion to UO 2 to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U 3 O 8 as an option for long-term storage is discussed

  4. Reaction between uranium hexafluoride and trimethylsilylhalides

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D; Berry, J A [UKAEA Atomic Energy Research Establishment, Harwell. Chemistry Div.; Holloway, J H; Staunton, G M [Leicester Univ. (UK). Dept. of Chemistry

    1938-07-01

    Reactions involving 1.1:1 molar ratios of uranium hexafluoride to either trimethylsilylchloride or trimethylsilylbromide in halocarbon solutions yield ..beta..-UF/sub 5/ at room temperature. With 2 mol equivalents of trimethylsilylchloride the product is UF/sub 4/. The reactions appear to proceed via the intermediate formation of unstable brown uranium(VI) chloride and bromide fluorides. Calculations show that UClF/sub 5/ and UCl/sub 2/F/sub 4/ are thermodynamically unstable with respect to the loss of chlorine at room temperature.

  5. Uranium hexafluoride and uranyl nitrate. Ionometric determination of bromine

    International Nuclear Information System (INIS)

    Anon.

    Bromine was determined in uranium hexafluoride. The method is suitable for determining 2 to 20 ppm with respect to uranium. Bromides are oxidized by potassium permanganate to give bromine which is extracted into carbon tetrachloride, reduced by ascorbic acid and determined by ionometry [fr

  6. Depleted uranium hexafluoride: Waste or resource?

    Energy Technology Data Exchange (ETDEWEB)

    Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S. [Lawrence Livermore National Lab., CA (United States); Bradley, C. [USDOE Office of Nuclear Energy, Science, Technology, Washington, DC (United States); Murray, A. [SAIC (United States)

    1995-07-01

    the US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF{sub 6}). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO{sub 2} for use as mixed oxide duel, (2) conversion to UO{sub 2} to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U{sub 3}O{sub 8} as an option for long-term storage is discussed.

  7. Reuse of ammonium fluoride generated in the uranium hexafluoride conversion

    International Nuclear Information System (INIS)

    Silva Neto, J.B.; Carvalho, E.F. Urano de; Durazzo, M.; Riella, H.G

    2010-01-01

    The Nuclear Fuel Centre of IPEN / CNEN - SP develops and manufactures dispersion fuel with high uranium concentration to meet the demand of the IEA-R1 reactor and future research reactors planned to be constructed in Brazil. The fuel uses uranium silicide (U 3 Si 2 ) dispersed in aluminum. For producing the fuel, the processes for uranium hexafluoride (UF 6 ) conversion consist in obtaining U 3 Si 2 and / or U 3 O 8 through the preparation of intermediate compounds, among them ammonium uranyl carbonate - AUC, ammonium diuranate - DUA and uranium tetrafluoride - UF 4 . This work describes a procedure for preparing uranium tetrafluoride by a dry route using as raw material the filtrate generated when producing routinely ammonium uranyl carbonate. The filtrate consists primarily of a solution containing high concentrations of ammonium (NH 4 + ), fluoride (F - ), carbonate (CO 3 -- ) and low concentrations of uranium. The procedure is basically the recovery of NH 4 F and uranium, as UF 4 , through the crystallization of ammonium bifluoride (NH 4 HF 2 ) and, in a later step, the addition of UO 2 , occurring fluoridation and decomposition. The UF 4 obtained is further diluted in the UF 4 produced routinely at IPEN / CNEN-SP by a wet route process. (author)

  8. Corrosion of Al-7075 by uranium hexafluoride

    International Nuclear Information System (INIS)

    1989-01-01

    The results of the Al-7075 corrosion by uranium hexafluoride are presented in this work. The kinetic study shows that corrosion process occurs by two temperature dependent mechanism and that the alloy can be safely used up to 140 0 C. The corrosion film is formed by uranium oxifluoride with variable composition in depth. Two alternative corrosion models are proposed in order to explain the experimental results, as well as the tests taht will be carried out to confirm one of them [pt

  9. Preparation of sodium fluoride agglomerates for selective adsorption of uranium hexafluoride (U F6)

    International Nuclear Information System (INIS)

    Castro, A.R.; Maximiano, C.; Shimba, R.; Silva, E.R.F.

    1995-01-01

    Uranium hexafluoride (U F 6 ) and Sodium Fluoride (NaF) reacts reversibly to form a solid complex. Such reversibility accounts for the great interest in using Sodium Fluoride (NaF) to separate Uranium Hexafluoride (U F 6 ) from other gases. Therefore a chemical trap offers an alternative to the cryogenic trapping device. (author). 3 refs, 1 fig, 4 tabs

  10. Depleted uranium hexafluoride management program : data compilation for the Paducah site

    International Nuclear Information System (INIS)

    Hartmann, H.

    2001-01-01

    This report is a compilation of data and analyses for the Paducah site, near Paducah, Kentucky. The data were collected and the analyses were done in support of the U.S. Department of Energy (DOE) 1999 Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (DOE/EIS-0269). The report describes the affected environment at the Paducah site and summarizes potential environmental impacts that could result from conducting the following depleted uranium hexafluoride (UF 6 ) activities at the site: continued cylinder storage, preparation of cylinders for shipment, conversion, and long-term storage. DOE's preferred alternative is to begin converting the depleted UF 6 inventory as soon as possible to either uranium oxide, uranium metal, or a combination of both, while allowing for use of as much of this inventory as possible

  11. Depleted uranium hexafluoride management program : data compilation for the Portsmouth site

    International Nuclear Information System (INIS)

    Hartmann, H. M.

    2001-01-01

    This report is a compilation of data and analyses for the Portsmouth site, near Portsmouth, Ohio. The data were collected and the analyses were done in support of the U.S. Department of Energy (DOE) 1999 Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (DOE/EIS-0269). The report describes the affected environment at the Portsmouth site and summarizes potential environmental impacts that could result from conducting the following depleted uranium hexafluoride (UF 6 ) management activities at the site: continued cylinder storage, preparation of cylinders for shipment, conversion, and long-term storage. DOE's preferred alternative is to begin converting the depleted UF 6 inventory as soon as possible to either uranium oxide, uranium metal, or a combination of both, while allowing for use of as much of this inventory as possible

  12. Cost-effectiveness of safety measures applying to uranium hexafluoride transportation in France

    International Nuclear Information System (INIS)

    Hubert, P.; Pages, P.; Auguin, B.

    1983-01-01

    This paper addresses the problem of uranium hexafluoride transportation by truck and train. It consists of a probabilistic risk assessment of the potential hazards to the public that can arise from the traffice that will take place in France in 1990. The specificity of UF 6 is that it presents both chemical and radiological hazards. But, whatever the transported material, road traffic entails a risk of its own. Thus three kinds of risk are assessed for natural, depleted and enriched uranium hexafluoride. These assessments are the basis of a cost-effectiveness analysis which deals with such safety measures as using a protective overpack, avoiding populated area and escorting the trucks. The results presented here are based upon research supported by the C.E.A. (Commissariat a l'Energie Atomique). It is linked to a more general program of experiments and theoretical analyses on package safety and accidental releases for uranium hexafluoride. 7 references, 2 figures, 4 tables

  13. Synthesis of graphite intercalation compound of group VI metals and uranium hexafluorides

    International Nuclear Information System (INIS)

    Fukui, Toshihiro; Hagiwara, Rika; Ema, Keiko; Ito, Yasuhiko

    1993-01-01

    Systematic investigations were made on the synthesis of graphite intercalation compounds of group VI transition metals (W and Mo) and uranium hexafluorides. The reactions were performed by interacting liquid or gaseous metal hexafluorides with or without elemental fluorine at ambient temperature. The degree of intercalation of these metal fluorides depends on the formation enthalpy of fluorometallate anion from the original metal hexafluoride, as has been found for other intercalation reactions of metal fluorides. (author)

  14. Uranium hexafluoride liquid thermal expansion, elusive eutectic with hydrogen fluoride, and very first production using chlorine trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, G.P. [Central Environmental, Inc., Anchorage, AK (United States)

    1991-12-31

    Three unusual incidents and case histories involving uranium hexafluoride in the enrichment facilities of the USA in the late 1940`s and early 1950`s are presented. The history of the measurements of the thermal expansion of liquids containing fluorine atoms within the molecule is reviewed with special emphasis upon uranium hexafluoride. A comparison is made between fluorinated esters, fluorocarbons, and uranium hexafluoride. The quantitative relationship between the thermal expansion coefficient, a, of liquids and the critical temperature, T{sub c} is presented. Uranium hexafluoride has an a that is very high in a temperature range that is used by laboratory and production workers - much higher than any other liquid measured. This physical property of UF{sub 6} has resulted in accidents involving filling the UF{sub 6} containers too full and then heating with a resulting rupture of the container. Such an incident at a uranium gaseous diffusion plant is presented. Production workers seldom {open_quotes}see{close_quotes} uranium hexafluoride. The movement of UF{sub 6} from one container to another is usually trailed by weight, not sight. Even laboratory scientists seldom {open_quotes}see{close_quotes} solid or liquid UF{sub 6} and this can be a problem at times. This inability to {open_quotes}see{close_quotes} the UF{sub 6}-HF mixtures in the 61.2{degrees}C to 101{degrees}C temperature range caused a delay in the understanding of the phase diagram of UF{sub 6}-HF which has a liquid - liquid immiscible region that made the eutectic composition somewhat elusive. Transparent fluorothene tubes solved the problem both for the UF{sub 6}-HF phase diagram as well as the UF{sub 6}-HF-CIF{sub 3} phase diagram with a miscibility gap starting at 53{degrees}C. The historical background leading to the first use of CIF{sub 3} to produce UF{sub 6} in both the laboratory and plant at K-25 is presented.

  15. Investigation of transformation of uranium hexafluoride into dioxide

    International Nuclear Information System (INIS)

    Galkin, N.P.; Veryatin, U.D.; Yakhonin, I.F.; Logunov, A.F.; Dymkov, Yu.M.

    1982-01-01

    The process of transformation of uranium hexafluoride into dioxide using the method of pyrohydrolysis by steam-hydrogen mixture in a boiling layer using uranium dioxide granules applicable for production of fuel elements is considered. Technological parameters and equipment of the process are described, intermediate stages and process products are considered. Physicochemical and physicomechanical properties of the obtained uranium dioxide granules are given. The results of metallographical investigations into solid products of pyrohydrolysis in phase transformations at certain stages of the process as well as test on vibration packing of the obtained granules in fuel cans are presented

  16. Test emission of uranium hexafluoride in atmosphere. Results interpretation

    International Nuclear Information System (INIS)

    Crabol, B.; Deville-Cavelin, G.

    1989-01-01

    To permit the modelization of gaseous uranium hexafluoride behaviour in atmosphere, a validation test has been executed the 10 April 1987. The experimental conditions, the main results and a comparison with a diffusion model are given in this report [fr

  17. Minimizing the risk and impact of uranium hexafluoride production

    International Nuclear Information System (INIS)

    Clark, D.R.; Kennedy, T.W.

    2010-01-01

    Cameco Corporation's Port Hope conversion facility, situated on the shore of Lake Ontario in the Municipality of Port Hope, Ontario, Canada, converts natural uranium trioxide (UO_3) into uranium dioxide (UO_2) or natural uranium hexafluoride (UF_6). Conversion of UO_3 to UF_6 has been undertaken at the Port Hope conversion facility since 1970 and is currently carried out in a second-generation plant licensed to annually produce 12,500 tonnes U as UF_6. Consistent with Cameco's vision, values and measures of success, Cameco recognizes safety and health of its workers and the public, protection of the environment, and the quality of our processes as the highest corporate priorities. Production of UF_6 in a brownfield urban setting requires a commitment to design, build and maintain multiple layers of containment (defence-in-depth) and to continually improve in all operational aspects to achieve this corporate commitment. This paper will describe the conversion processes utilized with a focus on the cultural, management and physical systems employed to minimize the risk and impact of the operation. (author)

  18. Management of wastes from the refining and conversion of uranium ore concentrate to uranium hexafluoride

    International Nuclear Information System (INIS)

    1981-01-01

    This report is the outcome of an IAEA Advisory Group Meeting on ''Waste Management Aspects in Relation to the Refining of Uranium Ore Concentrates and their Conversion to Uranium Hexafluoride'', which was held in Vienna from 17 to 21 December 1979. The report summarizes the main topics discussed at the meeting and gives an overview of uranium refining processes, being used in nuclear industry. The meeting was organized by the International Atomic Energy Agency, Radioactive Waste Management Section

  19. Summary of the engineering analysis report for the long-term management of depleted uranium hexafluoride

    International Nuclear Information System (INIS)

    Dubrin, J.W.; Rahm-Crites, L.

    1997-09-01

    The Department of Energy (DOE) is reviewing ideas for the long-term management and use of its depleted uranium hexafluoride. DOE owns about 560,000 metric tons (over a billion pounds) of depleted uranium hexafluoride. This material is contained in steel cylinders located in storage yards near Paducah, Kentucky; Portsmouth, Ohio; and at the East Tennessee Technology Park (formerly the K-25 Site) in Oak Ridge, Tennessee. On November 10, 1994, DOE announced its new Depleted Uranium Hexafluoride Management Program by issuing a Request for Recommendations and an Advance Notice of Intent in the Federal Register (59 FR 56324 and 56325). The first part of this program consists of engineering, costs and environmental impact studies. Part one will conclude with the selection of a long-term management plan or strategy. Part two will carry out the selected strategy

  20. Summary of the engineering analysis report for the long-term management of depleted uranium hexafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Dubrin, J.W., Rahm-Crites, L.

    1997-09-01

    The Department of Energy (DOE) is reviewing ideas for the long-term management and use of its depleted uranium hexafluoride. DOE owns about 560,000 metric tons (over a billion pounds) of depleted uranium hexafluoride. This material is contained in steel cylinders located in storage yards near Paducah, Kentucky; Portsmouth, Ohio; and at the East Tennessee Technology Park (formerly the K-25 Site) in Oak Ridge, Tennessee. On November 10, 1994, DOE announced its new Depleted Uranium Hexafluoride Management Program by issuing a Request for Recommendations and an Advance Notice of Intent in the Federal Register (59 FR 56324 and 56325). The first part of this program consists of engineering, costs and environmental impact studies. Part one will conclude with the selection of a long-term management plan or strategy. Part two will carry out the selected strategy.

  1. World War II uranium hexafluoride inhalation event with pulmonary implications for today

    International Nuclear Information System (INIS)

    Moore, R.H.; Kathren, R.L.

    1985-01-01

    Two individuals were exposed to massive quantities of airborne uranium hexafluoride (UF6) and its hydrolysis products following a World War II equipment rupture. An excretion pattern for uranium exhibited by these patients is, in light of current knowledge, anomalous. The possible role of pulmonary edema is discussed. Examination of these individuals 38 years later showed no physical changes believed to be related to their uranium exposure and no deposition of uranium could be detected

  2. Standard specification for uranium hexafluoride enriched to less than 5 % 235U

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification covers nuclear grade uranium hexafluoride (UF6) that either has been processed through an enrichment plant, or has been produced by the blending of Highly Enriched Uranium with other uranium to obtain uranium of any 235U concentration below 5 % and that is intended for fuel fabrication. The objectives of this specification are twofold: (1) To define the impurity and uranium isotope limits for Enriched Commercial Grade UF6 so that, with respect to fuel design and manufacture, it is essentially equivalent to enriched uranium made from natural UF6; and (2) To define limits for Enriched Reprocessed UF6 to be expected if Reprocessed UF6 is to be enriched without dilution with Commercial Natural UF6. For such UF6, special provisions, not defined herein, may be needed to ensure fuel performance and to protect the work force, process equipment, and the environment. 1.2 This specification is intended to provide the nuclear industry with a standard for enriched UF6 that is to be used in the pro...

  3. Research of heat releasing element of an active zone of gaseous nuclear reactor with pumped through nuclear fuel - uranium hexafluoride (UF6)

    International Nuclear Information System (INIS)

    Batyrbekov, G.; Batyrbekov, E.; Belyakova, E.; Kunakov, S.; Koltyshev, S.

    1996-01-01

    The purpose of the offered project is learning physics and substantiation of possibility of creation gaseous nuclear reactor with pumped through nuclear fuel-hexafluoride of uranium (Uf6).Main problems of this work are'. Determination of physic-chemical, spectral and optical properties of non-equilibrium nuclear - excited plasma of hexafluoride of uranium and its mixtures with other gases. Research of gas dynamics of laminar, non-mixing two-layer current of gases of hexafluoride of uranium and helium at availability and absence of internal energy release in hexafluoride of uranium with the purpose to determinate a possibility of isolation of hexafluoride of uranium from walls by inert helium. Creation and research of gaseous heat releasing element with pumped through fuel Uf6 in an active zone of research nuclear WWR-K reactor. Objects of a research: Non-equilibrium nuclear - excited plasma of hexafluoride of uranium and its mixtures with other gases. With use of specially created ampoules will come true in-reactor probe and spectral diagnostics of plasma. Calculations of kinetics with the account of main elementary processes proceeding in it, will be carried out. Two-layer non-mixed streams of hexafluoride of uranium and helium at availability and absence of internal energy release. Conditions of obtaining and characteristics of such streams will be investigated. Gaseous heat releasing element with pumped through fuel - Uf6 in an active zone of nuclear WWR-K reactor

  4. Depleted uranium hexafluoride management program : data compilation for the K-25 site

    International Nuclear Information System (INIS)

    Hartmann, H. M.

    2001-01-01

    This report is a compilation of data and analyses for the K-25 site on the Oak Ridge Reservation, Oak Ridge, Tennessee. The data were collected and the analyses were done in support of the U.S. Department of Energy (DOE) 1999 Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (DOE/EIS-0269). The report describes the affected environment at the K-25 site and summarizes the potential environmental impacts that could result from continued cylinder storage and preparation of cylinders for shipment at the site. It is probable that the cylinders at the K-25 site will be shipped to another site for conversion. Because conversion and long-term storage of the entire inventory at the K-25 site are highly unlikely, these data are not presented in this report. DOE's preferred alternative is to begin converting the depleted uranium hexafluoride inventory as soon as possible to either uranium oxide, uranium metal, or a combination of both, while allowing for use of as much of this inventory as possible

  5. Dry uranium tetrafluoride process preparation using the uranium hexafluoride reconversion process effluents

    International Nuclear Information System (INIS)

    Silva Neto, Joao Batista da

    2008-01-01

    It is a well known fact that the use of uranium tetrafluoride allows flexibility in the production of uranium suicide and uranium oxide fuel. To its obtention there are two conventional routes, the one which reduces uranium from the UF 6 hydrolysis solution with stannous chloride, and the hydro fluorination of a solid uranium dioxide. In this work we are introducing a third and a dry way route, mainly utilized to the recovery of uranium from the liquid effluents generated in the uranium hexafluoride reconversion process, at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recuperation of ammonium fluoride by NH 4 HF 2 precipitation. Working with the solid residues, the crystallized bifluoride is added to the solid UO 2 , which comes from the U mini plates recovery, also to its conversion in a solid state reaction, to obtain UF 4 . That returns to the process of metallic uranium production unity to the U 3 Si 2 obtention. This fuel is considered in IPEN CNEN/SP as the high density fuel phase for IEA-R1m reactor, which will replace the former low density U 3 Si 2 -Al fuel. (author)

  6. Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids - Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method

    International Nuclear Information System (INIS)

    2004-01-01

    This first edition of ISO 7097-1 together with ISO 7097-2:2004 cancels and replaces ISO 7097:1983, which has been technically revised, and ISO 9989:1996. ISO 7097 consists of the following parts, under the general title Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids: Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method; Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. This part 2. of ISO 7097 describes procedures for determination of uranium in solutions, uranium hexafluoride and solids. The procedures described in the two independent parts of this International Standard are similar: this part uses a titration with cerium(IV) and ISO 7097-1 uses a titration with potassium dichromate

  7. Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids - Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method

    International Nuclear Information System (INIS)

    2004-01-01

    This first edition of ISO 7097-1 together with ISO 7097-2:2004 cancels and replaces ISO 7097:1983, which has been technically revised, and ISO 9989:1996. ISO 7097 consists of the following parts, under the general title Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids: Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method; Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. This part 1. of ISO 7097 describes procedures for the determination of uranium in solutions, uranium hexafluoride and solids. The procedures described in the two independent parts of this International Standard are similar: this part uses a titration with potassium dichromate and ISO 7097-2 uses a titration with cerium(IV)

  8. Selection of a management strategy for depleted uranium hexafluoride

    International Nuclear Information System (INIS)

    Patton, S.E.; Hanrahan, E.J.; Bradley, C.E.

    1995-01-01

    A consequence of the uranium enrichment process used in the United States (US) is the accumulation of a significant amount of depleted uranium hexafluoride (UF 6 ). Currently, approximately 560,000 metric tons of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a program to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF 6 . The program involves a technology and engineering assessment of proposed management options (use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. The selection and implementation of a management strategy will involve consideration of a number of important issues such as environmental, health, and safety effects; the balancing of risks versus costs in a context of reduced government spending; socioeconomic implications, including effects on the domestic and international uranium industry; the technical status of proposed uses or technologies; and public involvement in the decision making process. Because of its provisions for considering a wide range of relevant issues and involving the public, this program has become a model for future DOE materials disposition programs. This paper presents an overview of the Depleted Uranium Hexafluoride Management Program. Technical findings of the program to date are presented, and major issues involved in selecting and implementing a management strategy are discussed

  9. A review of laser isotope separation of uranium hexafluoride

    International Nuclear Information System (INIS)

    Kelly, J.W.

    1983-04-01

    There is continuing world-wide interest in the possibility of enriching uranium by a laser process which uses uranium hexafluoride. Since no actual commercial plant exists at present, this review examines the key areas of related research. It concludes that such a process is feasible, that it must employ an adiabatic cooling system, with UF 6 the minor constituent in a predominantly monatomic or diatomic carrier gas, that the necessary infrared and/or ultraviolet-visible lasers are in a state of development bordering on the minimum required, and that the economics of such a process appear highly promising

  10. Processing device for gaseous waste containing uranium hexafluoride

    International Nuclear Information System (INIS)

    Hirosawa, Jun-ichi.

    1985-01-01

    Purpose: To enable to detect the inactivation of chemical traps thereby reduce the amount of adsorbents. Constitution: Two chemical traps are disposed in series and γ-detector for detecting γ-rays generated from U-235 in hexafluoride is disposed to the outer surface of a pipeway connecting these two chemical traps. Further, chemical traps are adapted to be swtichable between the first stage and the second stage thereof by the ON-OFF operation of a valve. Then, by determining γ-rays from U-235 at the pipeway downstream from the gas exit of the chemical traps, the counted value for the γ-rays is substantially at the background level so long as the chemical trap has an adsorbing performance for uranium hexafluoride. Then, since the γ-ray counted value is increased at the step upon inactivation of the chemical trap, the inactivation of the trap can be detected. (Yoshino, Y.)

  11. Method for separation of uranium hexafluoride by specially activated carbons

    International Nuclear Information System (INIS)

    Bannasch, W.

    1976-01-01

    The present invention deals with the separation of urainium hexafluoride from gas streams on special activated carbon which can be released during an accident in nuclear plants. Those plants are concerned here in which as a rule uranium hexafluoride is handled in liquid aggregate state. The patent claims deal with the adsorption of UF 6 from gas mixtures in the temperature region of 70-200 0 C and the application of UF 6 adsorbing activated carbon of a certain grain based on petroleum and/or weight % and with a asch content of 4 to 6 weigt % and with a benzol yield of 50-60g benzene /100g activated carbon. (GG) [de

  12. Criticality concerns in cleaning large uranium hexafluoride cylinders

    International Nuclear Information System (INIS)

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01

    Cleaning large cylinders used to transport low-enriched uranium hexafluoride (UF 6 ) presents several challenges to nuclear criticality safety. This paper presents a brief overview of the cleaning process, the criticality controls typically employed and their bases. Potential shortfalls in implementing these controls are highlighted, and a simple example to illustrate the difficulties in complying with the Double Contingency Principle is discussed. Finally, a summary of recommended criticality controls for large cylinder cleaning operations is presented

  13. Chemical toxicity of uranium hexafluoride compared to acute effects of radiation

    International Nuclear Information System (INIS)

    McGuire, S.A.

    1991-02-01

    The chemical effects from acute exposures to uranium hexafluoride are compared to the nonstochastic effects from acute radiation doses of 25 rems to the whole body and 300 rems to the thyroid. The analysis concludes that an intake of about 10 mg of uranium in soluble form is roughly comparable, in terms of early effects, to an acute whole body dose of 25 rems because both are just below the threshold for significant nonstochastic effects. Similarly, an exposure to hydrogen fluoride at a concentration of 25 mg/m 3 for 30 minutes is roughly comparable because there would be no significant nonstochastic effects. For times t other than 30 minutes, the concentration C of hydrogen fluoride considered to have the same effect can be calculated using a quadratic equation: C = 25 mg/m 3 (30 min/t). The purpose of these analyses is to provide information for developing design and siting guideline based on chemical toxicity for enrichment plants using uranium hexafluoride. These guidelines are to be similar, in terms of stochastic health effects, to criteria in NRC regulations of nuclear power plants, which are based on radiation doses. 26 refs., 1 fig., 5 tabs

  14. Chemical toxicity of uranium hexafluoride compared to acute effects of radiation

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, S.A.

    1991-02-01

    The chemical effects from acute exposures to uranium hexafluoride are compared to the nonstochastic effects from acute radiation doses of 25 rems to the whole body and 300 rems to the thyroid. The analysis concludes that an intake of about 10 mg of uranium in soluble form is roughly comparable, in terms of early effects, to an acute whole body dose of 25 rems because both are just below the threshold for significant nonstochastic effects. Similarly, an exposure to hydrogen fluoride at a concentration of 25 mg/m{sup 3} for 30 minutes is roughly comparable because there would be no significant nonstochastic effects. For times t other than 30 minutes, the concentration C of hydrogen fluoride considered to have the same effect can be calculated using a quadratic equation: C = 25 mg/m{sup 3} (30 min/t). The purpose of these analyses is to provide information for developing design and siting guideline based on chemical toxicity for enrichment plants using uranium hexafluoride. These guidelines are to be similar, in terms of stochastic health effects, to criteria in NRC regulations of nuclear power plants, which are based on radiation doses. 26 refs., 1 fig., 5 tabs.

  15. Acute toxicity of uranium hexafluoride, uranyl fluoride and hydrogen fluoride

    International Nuclear Information System (INIS)

    Just, R.A.

    1988-01-01

    Uranium hexafluoride (UF 6 ) released into the atmosphere will react rapidly with moisture in the air to form the hydrolysis products uranyl fluoride (UO 2 F 2 ) and hydrogen fluoride (HF). Uranium compounds such as UF 6 and UO 2 F 2 exhibit both chemical toxicity and radiological effects, while HF exhibits only chemical toxicity. This paper describes the development of a methodology for assessing the human health consequences of a known acute exposure to a mixture of UF 6 , UO 2 F 2 , and HF. 4 refs., 2 figs., 5 tabs

  16. Depleted uranium hexafluoride: The source material for advanced shielding systems

    Energy Technology Data Exchange (ETDEWEB)

    Quapp, W.J.; Lessing, P.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Cooley, C.R. [Department of Technology, Germantown, MD (United States)

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  17. Uranium hexafluoride: handling procedures and container criteria

    International Nuclear Information System (INIS)

    1977-04-01

    The U.S. Energy Research and Development Administration's (ERDA) procedures for packaging, measuring, and transferring uranium hexafluoride (UF 6 ) have been undergoing continual review and revision for several years to keep them in phase with developing agreements for the supply of enriched uranium. This report, first issued in 1966, was reissued in 1967 to make editorial changes and to provide for minor revisions in procedural information. In 1968 and 1972, Revisions 2 and 3, respectively, were issued as part of the continuing effort to present updated information. This document, Revision 4, includes primarily revisions to UF 6 cylinders, valves, and methods of use. This revision supersedes all previous issues of this report. The procedures will normally apply in all transactions involving receipt or shipment of UF 6 by ERDA, unless stipulated otherwise by contracts or agreements with ERDA or by notices published in the Federal Register

  18. Study of the molecular structure of uranium hexafluoride

    International Nuclear Information System (INIS)

    Bougon, R.

    1967-06-01

    The vibrational spectrum of uranium hexafluoride has been studied in both the gaseous and solid states. The study of gaseous UF 6 confirms the regular octahedral structure of the fluorine atoms around the central U atom and makes it possible to evaluate some of the vibrational frequencies. From these, some new force constants have been determined. A tetragonal distortion is observed on solid UF 6 ; this distortion has only observed up till now by means of X-ray diffraction and nuclear magnetic resonance techniques. (author) [fr

  19. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 These test methods cover procedures for subsampling and for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride UF6. Most of these test methods are in routine use to determine conformance to UF6 specifications in the Enrichment and Conversion Facilities. 1.2 The analytical procedures in this document appear in the following order: Note 1—Subcommittee C26.05 will confer with C26.02 concerning the renumbered section in Test Methods C761 to determine how concerns with renumbering these sections, as analytical methods are replaced with stand-alone analytical methods, are best addressed in subsequent publications. Sections Subsampling of Uranium Hexafluoride 7 - 10 Gravimetric Determination of Uranium 11 - 19 Titrimetric Determination of Uranium 20 Preparation of High-Purity U3O 8 21 Isotopic Analysis 22 Isotopic Analysis by Double-Standard Mass-Spectrometer Method 23 - 29 Determination of Hydrocarbons, Chlorocarbons, and Partially Substitut...

  20. Hazard analysis in uranium hexafluoride production facility

    International Nuclear Information System (INIS)

    Marin, Maristhela Passoni de Araujo

    1999-01-01

    The present work provides a method for preliminary hazard analysis of nuclear fuel cycle facilities. The proposed method identify both chemical and radiological hazards, as well as the consequences associated with accident scenarios. To illustrate the application of the method, a uranium hexafluoride production facility was selected. The main hazards are identified and the potential consequences are quantified. It was found that, although the facility handles radioactive material, the main hazards as associated with releases of toxic chemical substances such as hydrogen fluoride, anhydrous ammonia and nitric acid. It was shown that a contention bung can effectively reduce the consequences of atmospheric release of toxic materials. (author)

  1. Standard model for safety analysis report of hexafluoride power plants from natural uranium

    International Nuclear Information System (INIS)

    1983-01-01

    The standard model for safety analysis report for hexafluoride production power plants from natural uranium is presented, showing the presentation form, the nature and the degree of detail, of the minimal information required by the Brazilian Nuclear Energy Commission - CNEN. (E.G.) [pt

  2. Kinetics of gaseous uranium hexafluoride reaction with hydrogen chloride

    International Nuclear Information System (INIS)

    Ezubchenko, A.N.; Ilyukhin, A.I.; Merzlyakov, A.V.

    1993-01-01

    Kinetics of decrease of concentration of gaseous uranium hexafluoride in reaction with hydrogen chloride at temperatures close to room ones, was investigated by the method of IR spectroscopy. It was established that the process represented the first order reaction by both UF 6 and HCl. Activation energy of the reaction was determined: 7.6 ± 0.7 kcal/mol. Specific feature of reaction kinetics was noted: inversely proportional dependence of effective constant on UF 6 initial pressure. 5 refs., 3 figs

  3. Uranium fluoride chemistry. Part 1. The gas phase reaction of uranium hexafluoride with alcohols

    International Nuclear Information System (INIS)

    Schnautz, N.G.; Venter, P.J.

    1992-01-01

    The reaction between uranium hexafluoride (UF 6 ) and simple alcohols in the gas phase was observed to proceed by way of three possible reaction pathways involving dehydration, deoxygenative fluorination, and ether formation. These reactions can best be explained by assuming that alcohols first react with UF 6 to afford the alkoxy uranium pentafluoride intermediate ROUF 5 , which reacts further to give the dehydration, deoxygenative fluorination, and ether products. In each of the above three reaction pathways, UF 6 is transformed to UOF 4 , which being as reactive toward alcohols as UF 6 , reacts further with the alcohol in question to finally afford the unreactive uranyl fluoride (UO 2 F 2 ). 6 refs., 2 tabs

  4. Cost update technology, safety, and costs of decommissioning a reference uranium hexafluoride conversion plant

    International Nuclear Information System (INIS)

    Miles, T.L.; Liu, Y.

    1995-08-01

    The purpose of this study is to update the cost estimates developed in a previous report, NUREG/CR-1757 (Elder 1980) for decommissioning a reference uranium hexafluoride conversion plant from the original mid-1981 dollars to values representative of January 1993. The cost updates were performed by using escalation factors derived from cost index trends over the past 11.5 years. Contemporary price quotes wee used for costs that have increased drastically or for which is is difficult to find a cost trend. No changes were made in the decommissioning procedures or cost element requirements assumed in NUREG/CR-1757. This report includes only information that was changed from NUREG/CR-1757. Thus, for those interested in detailed descriptions and associated information for the reference uranium hexafluoride conversion plant, a copy of NUREG/CR-1757 will be needed

  5. A system for the synthesis of uranium hexafluoride by high pressure fluorination of uranium oxides

    International Nuclear Information System (INIS)

    Elizalde T, J.; Saniger B, J.M.; Nava S, R.

    1986-01-01

    An equipment for the synthesis of uranium hexafluoride by a direct fluorination method is reported. The equipment is composed by a gaseous fluorine supply, a gas burette, a reactor tube inside a protective shield, a soda-lime chemical trap and a vacuum system. The fluorination is accomplished at a pressure of about 70 kg/cm 2 (1000 lb in 2 ), using gaseous fluorine. (Author). 5 refs, 4 figs, 2 tabs

  6. Study of reactions for the obtention of uranium tetrafluoride and hexafluoride

    International Nuclear Information System (INIS)

    Guzella, M.F.R.

    1984-01-01

    Based on an exhaustive bibliographical review, the main production processes of uranium hexafluoride in pilot plants and industrial facilities are described. The known reactions, confirmed in laboratory experiments, that lead to UF 6 or other intermediate fluorides, are presented and discussed. In order to determine a new thermodinamically feasible reaction involving the sulfur hexafluoride as fluorinating agent, a mock-up facility was designed and constructed as part of the R and D work planned at CDTN (NUCLEBRAS Center for Nuclear Technology Development, MG - Brazil). For the UF 4 synthesis employing U 3 O 8 and SF 6 , several experimental parameters were studied. The reaction time, gas flow, temperature and stoichiometric relations among reagents are described in detail. Suggestions for further investigations regarding this new reagent are made. (Author) [pt

  7. Emission characteristics of uranium hexafluoride at high temperatures

    International Nuclear Information System (INIS)

    Krascella, N.L.

    1976-01-01

    An experimental study was conducted to ascertain the spectral characteristics of uranium hexafluoride (UF 6 ) and possible UF 6 thermal decomposition products as a function of temperature and pressure. Relative emission measurements were made for UF 6 /Argon mixtures heated in a plasma torch over a range of temperatures from 800 to about 3600 0 K over a wavelength range from 80 to 600 nm. Total pressures were varied from 1 to approximately 1.7 atm. Similarly absorption measurements were carried out in the visible region from 420 to 580 nm over a temperature range from about 1000 to 1800 0 K. Total pressure for these measurements was 1.0 atm

  8. Standard test method for the analysis of refrigerant 114, plus other carbon-containing and fluorine-containing compounds in uranium hexafluoride via fourier-transform infrared (FTIR) spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method covers determining the concentrations of refrigerant-114, other carbon-containing and fluorine-containing compounds, hydrocarbons, and partially or completely substituted halohydrocarbons that may be impurities in uranium hexafluoride. The two options are outlined for this test method. They are designated as Part A and Part B. 1.1.1 To provide instructions for performing Fourier-Transform Infrared (FTIR) spectroscopic analysis for the possible presence of Refrigerant-114 impurity in a gaseous sample of uranium hexafluoride, collected in a "2S" container or equivalent at room temperature. The all gas procedure applies to the analysis of possible Refrigerant-114 impurity in uranium hexafluoride, and to the gas manifold system used for FTIR applications. The pressure and temperatures must be controlled to maintain a gaseous sample. The concentration units are in mole percent. This is Part A. 1.2 Part B involves a high pressure liquid sample of uranium hexafluoride. This method can be appli...

  9. Some Investigations of the Reaction of Activated Charcoal with Fluorine and Uranium Hexafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Del Cul, G.D.; Fiedor, J.N.; Simmons, D.W.; Toth, L.M.; Trowbridge, L.D.; Williams

    1998-09-01

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since 1969, when the fuel salt was drained from the core into two Hastelloy N drain tanks at the reactor site. Over time, fluorine (F{sub 2}) and uranium hexafluoride (UF{sub 6}) moved from the salt through the gas piping to a charcoal bed, where they reacted with the activated charcoal. Some of the immediate concerns related to the migration of F{sub 2} and UF{sub 6} to the charcoal bed were the possibility of explosive reactions between the charcoal and F{sub 2}, the existence of conditions that could induce a criticality accident, and the removal and recovery of the fissile uranium from the charcoal. This report addresses the reactions and reactivity of species produced by the reaction of fluorine and activated charcoal and between charcoal and F{sub 2}-UF{sub 6} gas mixtures in order to support remediation of the MSRE auxiliary charcoal bed (ACB) and the recovery of the fissile uranium. The chemical identity, stoichiometry, thermochemistry, and potential for explosive decomposition of the primary reaction product, fluorinated charcoal, was determined.

  10. Some Investigations of the Reaction of Activated Charcoal with Fluorine and Uranium Hexafluoride

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Fiedor, J.N.; Simmons, D.W.; Toth, L.M.; Trowbridge, L.D.; Williams

    1998-01-01

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since 1969, when the fuel salt was drained from the core into two Hastelloy N drain tanks at the reactor site. Over time, fluorine (F 2 ) and uranium hexafluoride (UF 6 ) moved from the salt through the gas piping to a charcoal bed, where they reacted with the activated charcoal. Some of the immediate concerns related to the migration of F 2 and UF 6 to the charcoal bed were the possibility of explosive reactions between the charcoal and F 2 , the existence of conditions that could induce a criticality accident, and the removal and recovery of the fissile uranium from the charcoal. This report addresses the reactions and reactivity of species produced by the reaction of fluorine and activated charcoal and between charcoal and F 2 -UF 6 gas mixtures in order to support remediation of the MSRE auxiliary charcoal bed (ACB) and the recovery of the fissile uranium. The chemical identity, stoichiometry, thermochemistry, and potential for explosive decomposition of the primary reaction product, fluorinated charcoal, was determined

  11. Previsional evaluation of risks associated with ground transportation of uranium hexafluoride

    International Nuclear Information System (INIS)

    Pages, P.; Tomachevsky, E.

    1987-11-01

    This communication is a concrete example of application of the evaluation method for risks associated with road transportation of uranium hexafluoride by 48Y shipping container. The statistical bases for UF6 transportation are given by analysis of the list of accidents for dangerous road transportation. This study examines all parameters (cost-safety-meteorology-radiation doses) to take in account in the safety analysis of the UF6 transportation between Pierrelatte and Le Havre [fr

  12. Moderation control in low enriched 235U uranium hexafluoride packaging operations and transportation

    International Nuclear Information System (INIS)

    Dyer, R.H.; Kovac, F.M.; Pryor, W.A.

    1993-01-01

    Moderation control is the basic parameter for ensuring nuclear criticality safety during the packaging and transport of low 235 U enriched uranium hexafluoride before its conversion to nuclear power reactor fuel. Moderation control has permitted the shipment of bulk quantities in large cylinders instead of in many smaller cylinders and, therefore, has resulted in economies without compromising safety. Overall safety and uranium accountability have been enhanced through the use of the moderation control. This paper discusses moderation control and the operating procedures to ensure that moderation control is maintained during packaging operations and transportation

  13. Dynamic tests for qualifying of national uranium hexafluoride

    International Nuclear Information System (INIS)

    Araujo Figueiredo, C. de; Abreu Mendonca Schvartzman, M.M. de; Vasconcelos, M.C.R.L.

    1990-01-01

    The dynamic behaviour of the Brazilian uranium hexafluoride is analyzed in this paper, with regard to its radiolytic decomposition and to the action of catalysts on the reaction between UF 6 and H 2 . The process gas (UF 6 /H 2 ) was submitted in the laboratory of dynamic tests (DV-II) to similar conditions as those used in the enrichment plant presently being erected in Resende - RJ, 'First Cascade - FC'. The tests carried out have shown that the Brazilian UF 6 has the same dynamic behaviour of the German UF 6 . It does not contain either any catalyst of the reaction between UF 6 and H 2 which could render it inappropriate for use in commercial plants. (author) [pt

  14. Assessment of the risk of transporting uranium hexafluoride by truck and train

    International Nuclear Information System (INIS)

    Geffen, C.A.; Johnson, J.F.; Davis, D.K.; Friley, J.R.; Ross, B.A.

    1978-08-01

    This report is the fifth in a series of studies of the risk of transporting potentially hazardous energy materials. The report presents an assessment of the risk of shipping uranium hexafluoride (UF 6 ) by truck and rail. The general risk assessment methodology, summarized in Section 3, used in this study is that developed for the first study in this series. The assessment includes the risks from release of uranium hexafluoride during truck or rail transport due to transportation accidents. The contribution to the risk of deteriorated or faulty packaging during normal transport was also considered. The report is sectioned to correspond to the specific analysis steps of the risk assessment model. The transportation system and accident environment are described in Sections 4 and 5. Calculation of the response of the shipping system to forces produced in transportation accidents are presented in Section 6 and the results of a survey to determine the condition of the package during transport are presented in Section 7. Sequences of events that could lead to a release of radioactive material from the shipping cask during transportation are postulated in Section 8 using fault tree analysis. These release sequences are evaluated in Sections 9 through 11, to determine both the likelihood and the possible consequences of each release. Supportive data and analyses are given in the appendices. The results of the risk assessment have been related to the year 1985, when it is projected that 100 GW of electric power will be generated annually by nuclear power plants. It was estimated that approximately 46,000 metric tons (MT) of natural UF 6 and 14,600 MT of enriched UF 6 would be shipped in the reference year

  15. Standard test methods for arsenic in uranium hexafluoride

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 These test methods are applicable to the determination of total arsenic in uranium hexafluoride (UF6) by atomic absorption spectrometry. Two test methods are given: Test Method A—Arsine Generation-Atomic Absorption (Sections 5-10), and Test Method B—Graphite Furnace Atomic Absorption (Appendix X1). 1.2 The test methods are equivalent. The limit of detection for each test method is 0.1 μg As/g U when using a sample containing 0.5 to 1.0 g U. Test Method B does not have the complete collection details for precision and bias data thus the method appears as an appendix. 1.3 Test Method A covers the measurement of arsenic in uranyl fluoride (UO2F2) solutions by converting arsenic to arsine and measuring the arsine vapor by flame atomic absorption spectrometry. 1.4 Test Method B utilizes a solvent extraction to remove the uranium from the UO2F2 solution prior to measurement of the arsenic by graphite furnace atomic absorption spectrometry. 1.5 Both insoluble and soluble arsenic are measured when UF6 is...

  16. Uranium hexafluoride: Handling procedures and container descriptions

    International Nuclear Information System (INIS)

    1987-09-01

    The US Department of Energy (DOE) guidelines for packaging, measuring, and transferring uranium hexafluoride (UF 6 ) have been undergoing continual review and revision for several years to keep them in phase with developing agreements for the supply of enriched uranium. Initially, K-1323 ''A Brief Guide to UF 6 Handling,'' was issued in 1957. This was superceded by ORO-651, first issued in 1966, and reissued in 1967 to make editorial changes and to provide minor revisions in procedural information. In 1968 and 1972, Revisions 2 and 3, respectively, were issued as part of the continuing effort to present updated information. Revision 4 issued in 1977 included revisions to UF 6 cylinders, valves, and methods to use. Revision 5 adds information dealing with pigtails, overfilled cylinders, definitions and handling precautions, and cylinder heel reduction procedures. Weighing standards previously presented in ORO-671, Vol. 1 (Procedures for Handling and Analysis of UF 6 ) have also been included. This revision, therefore, supercedes ORO-671-1 as well as all prior issues of this report. These guidelines will normally apply in all transactions involving receipt or shipment of UF 6 by DOE, unless stipulated otherwise by contracts or agreements with DOE or by notices published in the Federal Register. Any questions or requests for additional information on the subject matter covered herein should be directed to the United States Department of Energy, P.O. Box E, Oak Ridge, Tennessee 37831, Attention: Director, Uranium Enrichment Operations Division. 33 figs., 12 tabs

  17. Uranium hexafluoride: Safe handling, processing, and transporting: Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Strunk, W.D.; Thornton, S.G. (eds.)

    1988-01-01

    This conference seeks to provide a forum for the exchange of information and ideas of the safety aspects and technical issue related to the handling of uranium hexafluoride. By allowing operators, engineers, scientists, managers, educators, and others to meet and share experiences of mutual concern, the conference is also intended to provide the participants with a more complete knowledge of technical and operational issues. The topics for the papers in the proceedings are widely varied and include the results of chemical, metallurgical, mechanical, thermal, and analytical investigations, as well as the developed philosophies of operational, managerial, and regulatory guidelines. Papers have been entered individually into EDB and ERA. (LTN)

  18. Uranium hexafluoride: Safe handling, processing, and transporting: Conference proceedings

    International Nuclear Information System (INIS)

    Strunk, W.D.; Thornton, S.G.

    1988-01-01

    This conference seeks to provide a forum for the exchange of information and ideas of the safety aspects and technical issue related to the handling of uranium hexafluoride. By allowing operators, engineers, scientists, managers, educators, and others to meet and share experiences of mutual concern, the conference is also intended to provide the participants with a more complete knowledge of technical and operational issues. The topics for the papers in the proceedings are widely varied and include the results of chemical, metallurgical, mechanical, thermal, and analytical investigations, as well as the developed philosophies of operational, managerial, and regulatory guidelines. Papers have been entered individually into EDB and ERA

  19. Parametric analyses of planned flowing uranium hexafluoride critical experiments

    Science.gov (United States)

    Rodgers, R. J.; Latham, T. S.

    1976-01-01

    Analytical investigations were conducted to determine preliminary design and operating characteristics of flowing uranium hexafluoride (UF6) gaseous nuclear reactor experiments in which a hybrid core configuration comprised of UF6 gas and a region of solid fuel will be employed. The investigations are part of a planned program to perform a series of experiments of increasing performance, culminating in an approximately 5 MW fissioning uranium plasma experiment. A preliminary design is described for an argon buffer gas confined, UF6 flow loop system for future use in flowing critical experiments. Initial calculations to estimate the operating characteristics of the gaseous fissioning UF6 in a confined flow test at a pressure of 4 atm, indicate temperature increases of approximately 100 and 1000 K in the UF6 may be obtained for total test power levels of 100 kW and 1 MW for test times of 320 and 32 sec, respectively.

  20. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    Becker, D.L.; Green, D.J.; Lindquist, M.R.

    1993-07-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF 6 ). Uranium hexafluoride enriched uranium than 1.0 wt percent 235 U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF 6 cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF 6 packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4

  1. Compilation of Requirements for Safe Handling of Fluorine and Fluorine-Containing Products of Uranium Hexafluoride Conversion

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Hightower, J.R.; Begovich, J.M.

    2000-01-01

    Public Law (PL) 105--204 requires the U.S. Department of Energy to develop a plan for inclusion in the fiscal year 2000 budget for conversion of the Department's stockpile of depleted uranium hexafluoride (DUF6) to a more stable form over an extended period. The conversion process into a more stable form will produce fluorine compounds (e.g., elemental fluorine or hydrofluoric acid) that need to be handled safely. This document compiles the requirements necessary to handle these materials within health and safety standards, which may apply in order to ensure protection of the environment and the safety and health of workers and the public

  2. Infrared analysis of hydrogen fluoride in uranium hexafluoride

    International Nuclear Information System (INIS)

    Ohwada, Ken; Soga, Takeshi; Iwasaki, Matae; Tsujimura, Shigeo

    1975-01-01

    Quantitative analysis by infrared technique was made on hydrogen fluoride (HF) contained in uranium hexafluoride (UF 6 ). It was found that, among the vibration-rotation bands, the R(1)-, R(2)-, P(2)- and P(3)-branches having relatively large absorbances are convenient for the analysis of HF. Upon comparing the calibration curves of pure HF with the HF absorbances observed in the presence of UF 6 (approx. 70--100 Torr), N 2 (approx. 100 Torr) and Ar(approx. 100 Torr) gases, it was observed that the first-mentioned calibration curve could be applied to the analysis of HF when mixed with other substances, as in the latter cases. The detectable limits of HF pressure, using a infrared cell of 10cm path length, were 0.5--1 Torr at room temperature. (auth.)

  3. Formation of actinide hexafluorides at ambient temperatures with krypton difluoride

    International Nuclear Information System (INIS)

    Asprey, L.B.; Eller, P.G.; Kinkead, S.A.

    1986-01-01

    A second low-temperature agent, krypton difluoride, for generating volatile plutonium hexafluoride is reported (dioxygen difluoride is the only other reported agent). Plutonium hexafluoride is formed at ambient or lower temperature by the treatment of various solid substrates with krypton difluoride. Volatilization of uranium and neptunium from solid substrates using gaseous krypton difluoride is also reported for the first time. The formation of actinide hexafluorides has been confirmed for the reaction of krypton difluoride in anhydrous HF with UO 2 and with uranium and neptunium fluorides at ambient temperatures. Treatment of americium dioxide with krypton difluoride did not yield americium hexafluoride under the conditions studied. 15 references, 2 figures

  4. Status of overpacks for uranium hexafluoride transport

    International Nuclear Information System (INIS)

    Arendt, J.W.; Pryor, W.A.

    1985-01-01

    The original overpacks for uranium hexafluoride (UF 6 ) transport, which utilized phenolic foam insulation, were developed in the 1960's and ultimately became international standards. A second generation of overpacks for 10-ton-capacity UF 6 cylinders used polyurethane foam and was developed in the early 1970's. In the mid 1970's, a third generation was designed, but no attempt to develop it occurred until the early 1980's, when full-scale testing of an overpack for 14-ton capacity UF 6 cylinders was initiated and resulted in designs for a new family of UF 6 overpacks. In the meantime, two additional developments affected overpack use for UF 6 cylinder transport: (1) the discovery that phenolic-foam-insulated overpacks have water absorption and outleakage problems inaugurated a program for their improvement and (2) new polyurethane-insulated overpacks were manufactured. The current status of all these overpacks, including their designs, testing, and approval for transport is presented

  5. Reuse of ammonium fluoride generated in the uranium hexafluoride conversion; Reutilizacao do fluoreto de amonio gerado na reconversao do hexafluoreto de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, J.B.; Carvalho, E.F. Urano de; Durazzo, M., E-mail: jbsneto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Riella, H.G [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2010-07-01

    The Nuclear Fuel Centre of IPEN / CNEN - SP develops and manufactures dispersion fuel with high uranium concentration to meet the demand of the IEA-R1 reactor and future research reactors planned to be constructed in Brazil. The fuel uses uranium silicide (U{sub 3}Si{sub 2}) dispersed in aluminum. For producing the fuel, the processes for uranium hexafluoride (UF{sub 6}) conversion consist in obtaining U{sub 3}Si{sub 2} and / or U{sub 3}O{sub 8} through the preparation of intermediate compounds, among them ammonium uranyl carbonate - AUC, ammonium diuranate - DUA and uranium tetrafluoride - UF{sub 4}. This work describes a procedure for preparing uranium tetrafluoride by a dry route using as raw material the filtrate generated when producing routinely ammonium uranyl carbonate. The filtrate consists primarily of a solution containing high concentrations of ammonium (NH{sub 4}{sup +}), fluoride (F{sup -}), carbonate (CO{sub 3}{sup --}) and low concentrations of uranium. The procedure is basically the recovery of NH{sub 4}F and uranium, as UF{sub 4}, through the crystallization of ammonium bifluoride (NH{sub 4}HF{sub 2}) and, in a later step, the addition of UO{sub 2}, occurring fluoridation and decomposition. The UF{sub 4} obtained is further diluted in the UF{sub 4} produced routinely at IPEN / CNEN-SP by a wet route process. (author)

  6. Estimates of health risks associated with uranium hexafluoride transport by air

    International Nuclear Information System (INIS)

    Elert, M.; Skagius, K.

    1990-01-01

    In Sweden air transport is considered as an alternative for the shipment of uranium hexafluoride (UF 6 ). The radiological consequences of an aeroplane accident involving UF 6 transport have been estimated and are presented as the dose from acute exposure and the dose from long-term exposure caused by ground contamination. Chemical effects of a UF 6 release are also discussed. A number of limiting scenarios have been defined, resulting in different mechanical and thermal impacts on the transport packages. The expected accident environment and the physical and chemical behaviour of the material have been used to derive a source term for the release to the air. A Gaussian dispersion model has been used to calculate the expected air concentration downwind from the accident site. The radiation dose from short-term exposure was found to be higher than the long-term exposure from uranium deposited on the ground. (author)

  7. Estimating the threshold levels of uranium and fluorine for the development of pulmonitis and toxic lung edema resultant from accidents involving uranium hexafluoride release

    International Nuclear Information System (INIS)

    Gasteva, G.N.; Antipin, E.B.; Bad'in, V.I.; Molokanov, A.A.; Mordasheva, V.V.; Mirkhajdarov, A.Kh.; Sorokin, A.V.; Savinova, I.A.

    1999-01-01

    Threshold doses of uranium and fluorine for the development of pulmonitis and toxic edema of the lung with lethal outcome are estimated. The levels of UF 6 entry under emergency conditions are evaluated and bronchopulmonary disease is described in subjects involved in three accidents with UF 6 release which occurred in the seventies and eighties, as shown by records. The results deny the previous assumption on the leading role of uranium in a single exposure to uranium hexafluoride. Fluorine ion triggering the mechanism of reactions in systems which determine the disease outcome is vitally important [ru

  8. Uranium refining in South Africa. The production of uranium trioxide, considering raw material properties and nuclear purity requirements

    International Nuclear Information System (INIS)

    Colborn, R.P.; Bayne, D.L.G.; Slabber, M.N.

    1980-01-01

    Conventional practice results in raw materials being delivered to the uranium refineries in a form more suitable for transportation than for processing, and therefore the refineries are required to treat these raw materials to produce an acceptable intermediate feed stock. During this treatment, it is advantageous to include a purification step to ensure that the feed stock is of the required purity for nuclear grade uranium hexafluoride production, and this usually results in ammonium diuranate slurries of the required quality being produced as the intermediate feed stock. All subsequent processing steps can therefore be standardized and are effectively independent of the origin of the raw materials. It is established practice in South Africa to transport uranium as an ammonium diuranate slurry from the various mines to the Nufcor central processing plant for UOC production, and therefore the process for the production of uranium hexafluoride in South Africa was designed to take cognizance of existing transport techniques and to accept ammonium diuranate slurries as the raw material. The South African refinery will be able to process these slurries directly to uranium trioxide. This paper discusses the conditions under which the various ammonium diuranate raw materials, exhibiting a wide range of properties, can be effectively processed to produce a uranium trioxide of acceptably consistent properties. Mention is also made of the uranium hexafluoride distillation process adopted

  9. Including environmental concerns in management strategies for depleted uranium hexafluoride

    International Nuclear Information System (INIS)

    Goldberg, M.; Avci, H.I.; Bradley, C.E.

    1995-01-01

    One of the major programs within the Office of Nuclear Energy, Science, and Technology of the US Department of Energy (DOE) is the depleted uranium hexafluoride (DUF 6 ) management program. The program is intended to find a long-term management strategy for the DUF 6 that is currently stored in approximately 46,400 cylinders at Paducah, KY; Portsmouth, OH; and Oak Ridge, TN, USA. The program has four major components: technology assessment, engineering analysis, cost analysis, and the environmental impact statement (EIS). From the beginning of the program, the DOE has incorporated the environmental considerations into the process of strategy selection. Currently, the DOE has no preferred alternative. The results of the environmental impacts assessment from the EIS, as well as the results from the other components of the program, will be factored into the strategy selection process. In addition to the DOE's current management plan, other alternatives continued storage, reuse, or disposal of depleted uranium, will be considered in the EIS. The EIS is expected to be completed and issued in its final form in the fall of 1997

  10. Depleted uranium processing and fluorine extraction

    International Nuclear Information System (INIS)

    Laflin, S.T.

    2010-01-01

    Since the beginning of the nuclear era, there has never been a commercial solution for the large quantities of depleted uranium hexafluoride generated from uranium enrichment. In the United States alone, there is already in excess of 1.6 billion pounds (730 million kilograms) of DUF_6 currently stored. INIS is constructing a commercial uranium processing and fluorine extraction facility. The INIS facility will convert depleted uranium hexafluoride and use it as feed material for the patented Fluorine Extraction Process to produce high purity fluoride gases and anhydrous hydrofluoric acid. The project will provide an environmentally friendly and commercially viable solution for DUF_6 tails management. (author)

  11. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  12. The physical and chemical properties of uranium hexafluoride

    International Nuclear Information System (INIS)

    Barber, E.J.

    1988-01-01

    This paper describes what uranium hexafluoride (UF 6 ) is, gives some of its pertinent physical properties, illustrates significant reactions between UF 6 and other substances, touches on its toxic properties, and states some of the ''do's'' and ''don't's'' of UF 6 handling. The properties of UF 6 determine how it must be handled and make direct observation impossible. To determine that the material in a container is UF 6 , one must use other instruments in addition to a scale. Because of the very large volume expanision of UF 6 upon melting, diligence must be exercised in filling cylinders in which the UF 6 is partially solidified. A cylinder of liquified UF 6 with no ullage is potentially the equivalent of a superheated hot water heater, not just a hydraulically overpressurized cylinder. Finally, UF 6 can be handled safely by careful attention to the suggested precautions. 9 refs., 2 tabs., 3 figs

  13. Evaluation of health effects in Sequoyah Fuels Corporation workers from accidental exposure to uranium hexafluoride

    International Nuclear Information System (INIS)

    Fisher, D.R.; Swint, M.J.; Kathren, R.L.

    1990-05-01

    Urine bioassay measurements for uranium and medical laboratory results were studied to determine whether there were any health effects from uranium intake among a group of 31 workers exposed to uranium hexafluoride (UF 6 ) and hydrolysis products following the accidental rupture of a 14-ton shipping cylinder in early 1986 at the Sequoyah Fuels Corporation uranium conversion facility in Gore, Oklahoma. Physiological indicators studied to detect kidney tissue damage included tests for urinary protein, casts and cells, blood, specific gravity, and urine pH, blood urea nitrogen, and blood creatinine. We concluded after reviewing two years of follow-up medical data that none of the 31 workers sustained any observable health effects from exposure to uranium. The early excretion of uranium in urine showed more rapid systemic uptake of uranium from the lung than is assumed using the International Commission on Radiological Protection (ICRP) Publication 30 and Publication 54 models. The urinary excretion data from these workers were used to develop an improved systemic recycling model for inhaled soluble uranium. We estimated initial intakes, clearance rates, kidney burdens, and resulting radiation doses to lungs, kidneys, and bone surfaces. 38 refs., 10 figs., 7 tabs

  14. Evaluation of health effects in Sequoyah Fuels Corporation workers from accidental exposure to uranium hexafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R. (Pacific Northwest Lab., Richland, WA (USA)); Swint, M.J.; Kathren, R.L. (Hanford Environmental Health Foundation, Richland, WA (USA))

    1990-05-01

    Urine bioassay measurements for uranium and medical laboratory results were studied to determine whether there were any health effects from uranium intake among a group of 31 workers exposed to uranium hexafluoride (UF{sub 6}) and hydrolysis products following the accidental rupture of a 14-ton shipping cylinder in early 1986 at the Sequoyah Fuels Corporation uranium conversion facility in Gore, Oklahoma. Physiological indicators studied to detect kidney tissue damage included tests for urinary protein, casts and cells, blood, specific gravity, and urine pH, blood urea nitrogen, and blood creatinine. We concluded after reviewing two years of follow-up medical data that none of the 31 workers sustained any observable health effects from exposure to uranium. The early excretion of uranium in urine showed more rapid systemic uptake of uranium from the lung than is assumed using the International Commission on Radiological Protection (ICRP) Publication 30 and Publication 54 models. The urinary excretion data from these workers were used to develop an improved systemic recycling model for inhaled soluble uranium. We estimated initial intakes, clearance rates, kidney burdens, and resulting radiation doses to lungs, kidneys, and bone surfaces. 38 refs., 10 figs., 7 tabs.

  15. Metabolic fate and evaluation of injury in rats and dogs following exposure to the hydrolysis products of uranium hexafluoride: implications for a bioassay program related to potential releases of uranium hexafluoride, July 1979-October 1981

    International Nuclear Information System (INIS)

    Morrow, P.E.; Leach, L.J.; Smith, F.A.

    1982-12-01

    This final report summarizes the experimental studies undertaken in rats and dogs in order to help provide adequate biological bases for quantifying and evaluating uranium hexafluoride (UF 6 ) exposures. Animals were administered the hydrolysis products of UF 6 by inhalation exposures, intratracheal instillations and intravenous injections. Attention was given to dose-effect relationships appropriate to the kidney, the unique site of subacute toxicity; to the rates of uranium excretion; and to uranium retention in renal tissue. These criteria were examined in both naive and multiply-exposed animals. The findings of these studies partly substantiate the ICRP excretion model for hexavalent uranium; generally provide a lower renal injury threshold concentration than implicit in the MPC for natural uranium; indicate distinctions in response (for example, uranium excretion) are based on exposure history; compare and evaluate various biochemical indices of renal injury; raise uncertainties about prevailing views of reversible renal injury, renal tolerance and possible hydrogen fluoride synergism with uranium effects; and reveal species differences in several areas, for example, renal retention of uranium. While these studies present some complicating features to extant bioassay practice, they nevertheless supply data supportive of the bioassay concept

  16. Uranium hexafluoride production plant decommissioning

    International Nuclear Information System (INIS)

    Santos, Ivan

    2008-01-01

    The Institute of Energetic and Nuclear Research - IPEN is a research and development institution, located in a densely populated area, in the city of Sao Paulo. The nuclear fuel cycle was developed from the Yellow Cake to the enrichment and reconversion at IPEN. After this phase, all the technology was transferred to private enterprises and to the Brazilian Navy (CTM/SP). Some plants of the fuel cycle were at semi-industrial level, with a production over 20 kg/h. As a research institute, IPEN accomplished its function of the fuel cycle, developing and transferring technology. With the necessity of space for the implementation of new projects, the uranium hexafluoride (UF 6 ) production plant was chosen, since it had been idle for many years and presented potential leaking risks, which could cause environmental aggression and serious accidents. This plant decommission required accurate planning, as this work had not been carried out in Brazil before, for this type of facility, and there were major risks involving gaseous hydrogen fluoride aqueous solution of hydrofluoric acid (HF) both highly corrosive. Evaluations were performed and special equipment was developed, aiming to prevent leaking and avoid accidents. During the decommissioning work, the CNEN safety standards were obeyed for the whole operation. The environmental impact was calculated, showing to be not relevant.The radiation doses, after the work, were within the limits for the public and the area was released for new projects. (author)

  17. Hydraulic breakage of tanks for the transport of uranium hexafluoride (UF6)

    International Nuclear Information System (INIS)

    Biaggio, A.L.; Lee Gonzales, H.M.; Lopez Vietri, J.R.; Novo, R.G.

    1987-01-01

    To begin with, the tank models that are proposed by the international norms for the transport and storage of hexafluoride of uranium (UF 6 ) are briefly described. The operations related to the transport in its different forms are also described, particularly those that can produce the hydraulic breakage of tanks during its course or in later stages, when incorrectly performed. With reference to those operations, the most important physicochemical properties of UF 6 as for safety are analyzed. A quantitative evaluation of the deviations of parameters that are controlled during the heating of tanks, comparing them with the normative nominal values, is performed. Adopting some simplifying hypothesis, a general study, applicable to all tank models proposed by norms, is carried out to determine the temperature at which the hydraulic breakage takes place when they are heated in closed-valve conditions. A curve is obtained by plotting the hydraulic breakage temperature against the filling degree. To conclude, the values obtained are compared with the results of other theoretical studies on this subject. (Author)

  18. Final programmatic environmental impact statement for alternative strategies for the long-term management and use of depleted uranium hexafluoride. Summary

    International Nuclear Information System (INIS)

    1999-04-01

    This PEIS assesses the potential impacts of alternative management strategies for depleted uranium hexafluoride (UF 6 ) currently stored at three DOE sites: Paducah site near Paducah, Kentucky, Portsmouth site near Portsmouth, Ohio; and K-25 site on the Oak Ridge Reservation, Oak Ridge, Tennessee. The alternatives analyzed in the PEIS include no action, long-term storage as UF 6 , long-term storage as uranium oxide, use as uranium oxide, use as uranium metal, and disposal. DOE's preferred alternative is to begin conversion of the depleted UF 6 inventory as soon as possible, either to uranium oxide, uranium metal, or a combination of both, while allowing for use of as much of this inventory as possible

  19. Production of sized particles of uranium oxides and uranium oxyfluorides

    International Nuclear Information System (INIS)

    Knudsen, I.E.; Randall, C.C.

    1976-01-01

    A process is claimed for converting uranium hexafluoride (UF 6 ) to uranium dioxide (UO 2 ) of a relatively large particle size in a fluidized bed reactor by mixing uranium hexafluoride with a mixture of steam and hydrogen and by preliminary reacting in an ejector gaseous uranium hexafluoride with steam and hydrogen to form a mixture of uranium and oxide and uranium oxyfluoride seed particles of varying sizes, separating the larger particles from the smaller particles in a cyclone separator, recycling the smaller seed particles through the ejector to increase their size, and introducing the larger seed particles from the cyclone separator into a fluidized bed reactor where the seed particles serve as nuclei on which coarser particles of uranium dioxide are formed. 9 claims, 2 drawing figures

  20. Production of uranium hexafluoride by fluorination tetra-fluoride with elemental fluorine under pressure; Proizvodnja uraovega heksafluorida s tlacnim fluoriranjem uranovega tetrafluorida z elementarnim fluorom

    Energy Technology Data Exchange (ETDEWEB)

    Lutar, K; Smalc, A; Zemljic, A [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1984-07-01

    In the introduction a brief description of some activities of fluorine chemistry department at the J. Stefan Institute is given - from production of elemental fluorine to the investigations in the field of uranium technology. Furthermore, a new method for the production of uranium hexafluoride is described more in detail. The method is based on the fluorination of uranium tetrafluoride with elemental fluorine. (author)

  1. Uranium hexafluoride - chemistry and technology of a raw material of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Bacher, W.; Jacob, E.

    1986-01-01

    Uranium hexafluoride exhibits an unusual combination of properties: UF 6 is both a large-scale industrial product, and also one of the most reactive compounds known. Its industrial application arises from the need to use enriched uranium with up to 4% 235 U as fuel in light water reactors. Enrichment is performed in isotope separation plants with UF 6 as the working gas. Its volatility and thermal stability make UF 6 suitable for this application. UF 6 handling is difficult because of its high reactivity and its radioactivity, and special experience and equipment are required which are not commonly available in laboratories or industrial facilities. The chemical reactions of UF 6 are characterized by its marked fluorination efficiency which is similar to that of F 2 . Of special importance in connection with the handling of UF 6 is its extreme sensitivity to hydrolysis. Because they all use UF 6 , the isotope separation processes currently in use (gas diffusion, gas centrifuge, separation nozzle process) have a number of common features. For instance, they are all beset by the problem of formation of solid UF 6 decomposition products, e.g. by radiolysis of UF 6 molecules induced by its own radiation. Reconversion of UF 6 into UO 2 is achieved by three well-known methods (ADU, AUC, IDP-process). To produce uranium metal, UF 6 is first reduced to UF 4 , which is subsequently reduced by Ca 6 or Mg metal. 158 refs

  2. Depleted uranium hexafluoride (DUF6) management system--a decision tool

    International Nuclear Information System (INIS)

    Gasper, J.R.; Sutter, R.J.; Avci, H.I.

    1995-01-01

    The Depleted Uranium Hexafluoride (DUF 6 ) Management System (DMS) is being developed as a decision tool to provide cost and risk data for evaluation of short-and long-term management strategies for depleted uranium. It can be used to assist decision makers on a programmatic or site-specific level. Currently, the DMS allows evaluation of near-term cylinder management strategies such as storage yard improvements, cylinder restocking, and reconditioning. The DMS has been designed to provide the user with maximum flexibility for modifying data and impact factors (e.g., unit costs and risk factors). Sensitivity analysis can be performed on all key parameters such as cylinder corrosion rate, inspection frequency, and impact factors. Analysis may be conducted on a system-wide, site, or yard basis. The costs and risks from different scenarios may be compared in graphic or tabular format. Ongoing development of the DMS will allow similar evaluation of long-term management strategies such as conversion to other chemical forms. The DMS is a Microsoft Windows 3.1 based, stand-alone computer application. It can be operated on a 486 or faster computer with VGA, 4 MB of RAM, and 10 MB of disk space

  3. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  4. Fire testing of bare uranium hexafluoride cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A. [PAI Corp., Oak Rige, TN (United States)

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover the valves failed and UF{sub 6} was released. The remaining cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  5. Fire testing of bare uranium hexafluoride cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} x 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover, the valves failed and UF{sub 6} was released. The remaining 6 cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  6. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    Becker, D.L.; Lindquist, M.R.

    1993-01-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of enriched uranium hexafluoride (UF 6 ). Uranium hexafluoride enriched greater than 1.0 wt percent 235 U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 and 178, or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF 6 cylinders/overpacks. International shipments typically are not made using dedicated trailers, and numerous trailers have been received at PORTS with improperly and potentially dangerously secured overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF 6 packaging tiedown and shipping practices used by PORTS; and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations

  7. Standard practice for bulk sampling of liquid uranium hexafluoride

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice covers methods for withdrawing representative samples of liquid uranium hexafluoride (UF6) from bulk quantities of the material. Such samples are used for determining compliance with the applicable commercial specification, for example Specification C787 and Specification C996. 1.2 It is assumed that the bulk liquid UF6 being sampled comprises a single quality and quantity of material. This practice does not address any special additional arrangements that might be required for taking proportional or composite samples, or when the sampled bulk material is being added to UF6 residues already in a container (“heels recycle”). 1.3 The number of samples to be taken, their nominal sample weight, and their disposition shall be agreed upon between the parties. 1.4 The scope of this practice does not include provisions for preventing criticality incidents. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of th...

  8. Market for natural uranium conversion. Commercial aspect

    International Nuclear Information System (INIS)

    Durret, L.F.

    1986-01-01

    The main activity of COMURHEX is the conversion into uranium hexafluoride of uranium concentrates from mines and owned by electricity producers. Capacities of the 5 uranium converters in the Western World are compared. About 50% of COMUREX turnover is exported. Evolution of the market and of stockpile are reviewed [fr

  9. Isotopic analysis of uranium hexafluoride highly enriched in U-235

    International Nuclear Information System (INIS)

    Chaussy, L.; Boyer, R.

    1968-01-01

    Isotopic analysis of uranium in the form of the hexafluoride by mass-spectrometry gives gross results which are not very accurate. Using a linear interpolation method applied to two standards it is possible to correct for this inaccuracy as long as the isotopic concentrations are less than about 10 per cent in U-235. Above this level, the interpolations formula overestimates the results, especially if the enrichment of the analyzed samples is higher than 1.3 with respect to the standards. A formula is proposed for correcting the interpolation equation and for the extending its field of application to high values of the enrichment (≅2) and of the concentration. It is shown that by using this correction the results obtained have an accuracy which depends practically only on that of the standards, taking into account the dispersion in the measurements. (authors) [fr

  10. TRIMOLECULAR REACTIONS OF URANIUM HEXAFLUORIDE WITH WATER

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, M.; Becnel, J.; Garrison, S.

    2010-02-25

    The hydrolysis reaction of uranium hexafluoride (UF{sub 6}) is a key step in the synthesis of uranium dioxide (UO{sub 2}) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF{sub 6} molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizeable barrier of 78.2 kJ {center_dot} mol{sup -1}, indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO{sub 2} product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF{sub 6} molecules and one water molecule, and (2) the reaction of two water molecules with a single UF{sub 6} molecule. The predicted reaction of two UF{sub 6} molecules with one water molecule displays an interesting 'fluorine-shuttle' mechanism, a significant energy barrier of 69.0 kJ {center_dot} mol{sup -1} to the formation of UF{sub 5}OH, and an enthalpy of reaction ({Delta}H{sub 298}) of +17.9 kJ {center_dot} mol{sup -1}. The reaction of a single UF{sub 6} molecule with two water molecules displays a 'proton-shuttle' mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ {center_dot} mol{sup -1} and an exothermic enthalpy of reaction ({Delta}H{sub 298}) of -13.9 kJ {center_dot} mol{sup -1}. The exothermic nature of the overall UF{sub 6} + 2 {center_dot} H{sub 2}O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging; however, the sizable energy barrier indicates further study of the UF{sub 6} hydrolysis reaction

  11. Process for decontamination of surfaces in an facility of natural uranium hexafluoride production (UF6)

    International Nuclear Information System (INIS)

    Almeida, Claudio C. de; Silva, Teresinha M.; Rodrigues, Demerval L.; Carneiro, Janete C.G.G.

    2017-01-01

    The experience acquired in the actions taken during the decontamination process of an IPEN-CNEN / SP Nuclear and Energy Research Institute facility, for the purpose of making the site unrestricted, is reported. The steps of this operation involved: planning, training of facility operators, workplace analysis and radiometric measurements. The facility had several types of equipment from the natural uranium hexafluoride (UF 6 ) production tower and other facility materials. Rules for the transportation of radioactive materials were established, both inside and outside the facility and release of materials and installation

  12. Final programmatic environmental impact statement for alternative strategies for the long-term management and use of depleted uranium hexafluoride. Volume 2: Appendices

    International Nuclear Information System (INIS)

    1999-04-01

    This PEIS assesses the potential impacts of alternative management strategies for depleted uranium hexafluoride (UF 6 ) currently stored at three DOE sites: Paducah site near Paducah, Kentucky, Portsmouth site near Portsmouth, Ohio; and K-25 site on the Oak Ridge Reservation, Oak Ridge, Tennessee. The alternatives analyzed in the PEIS include no action, long-term storage as UF 6 , long-term storage as uranium oxide, use as uranium oxide, use as uranium metal, and disposal. DOE's preferred alternative is to begin conversion of the depleted UF 6 inventory as soon as possible, either to uranium oxide, uranium metal, or a combination of both, while allowing for use of as much of this inventory as possible. This volume contains Appendices A--O

  13. Draft Programmatic Environmental Impact Statement for alternative strategies for the long-term management and use of depleted uranium hexafluoride. Volume 1: Main text

    International Nuclear Information System (INIS)

    1997-12-01

    This PEIS assesses the potential impacts of alternative management of alternative management strategies for depleted uranium hexafluoride (UF 6 ) currently stored at three DOE sites: Paducah site near Paducah, Kentucky; Portsmouth site near Portsmouth, Ohio; and K-25 site on the Oak Ridge Reservation, Oak Ridge, Tennessee. The alternatives analyzed in the PEIS include no action, long-term storage as UF 6 , long-term storage as uranium oxide, use as uranium oxide, use as uranium metal, and disposal. The preferred alternative for the long-term management of depleted UF 6 is to use the entire inventory of material

  14. Final programmatic environmental impact statement for alternative strategies for the long-term management and use of depleted uranium hexafluoride. Volume 1: Main text

    International Nuclear Information System (INIS)

    1999-04-01

    This PEIS assesses the potential impacts of alternative management strategies for depleted uranium hexafluoride (UF 6 ) currently stored at three DOE sites: Paducah site near Paducah, Kentucky, Portsmouth site near Portsmouth, Ohio; and K-25 site on the Oak Ridge Reservation, Oak Ridge, Tennessee. The alternatives analyzed in the PEIS include no action, long-term storage as UF 6 , long-term storage as uranium oxide, use as uranium oxide, use as uranium metal, and disposal. DOE's preferred alternative is to begin conversion of the depleted UF 6 inventory as soon as possible, either to uranium oxide, uranium metal, or a combination of both, while allowing for use of as much of this inventory as possible

  15. Draft Programmatic Environmental Impact Statement for alternative strategies for the long-term management and use of depleted uranium hexafluoride. Volume 2: Appendices

    International Nuclear Information System (INIS)

    1997-12-01

    This PEIS assesses the potential impacts of alternative management of alternative management strategies for depleted uranium hexafluoride (UF 6 ) currently stored at three DOE sites: Paducah site near Paducah, Kentucky; Portsmouth site near Portsmouth, Ohio; and K-25 site on the Oak Ridge Reservation, Oak Ridge, Tennessee. The alternatives analyzed in the PEIS include no action, long-term storage as UF 6 , long-term storage as uranium oxide, use as uranium oxide, use as uranium metal, and disposal. The preferred alternative for the long-term management of depleted UF 6 is to use the entire inventory of material. This volume contains the appendices to volume I

  16. Chemisorption of uranium hexa-fluoride on sodium fluoride pellets

    Energy Technology Data Exchange (ETDEWEB)

    Kalburgi, A K; Sanyal, A; Puranik, V D; Bhattacharjee, B [Chemical Technology Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    This paper comprises kinetics of chemical reaction or rather chemisorption of uranium hexafluoride gas on sodium fluoride pellets. The chemisorption is essentially irreversible at room temperature, while the process reverses at high temperature above 280 deg C. This chemisorption process was experimentally conducted in static condition at room temperature and its kinetics was studied. In the experiments, practically pure UF{sub 6} was used and the effects of gas pressure and weight of NaF pellets, were studied. In this heterogenous reaction, in which diffusion through ash layer is followed by chemical reaction, the reaction part is instantaneous and is first order with respect to gas concentration. Since the process of chemisorption is not only pure chemical reaction but also gas diffusion through ash layer, the rate constant depreciates with the percentage loading of UF{sub 6} on NaF pellets. The kinetic equation for the above process has been established for a particular size of NaF pellets and pellet porosity. (author). 5 refs., 3 figs., 3 tabs.

  17. Preparation of small uranium hexafluoride samples in view of mass spectrometry analysis; Preparation de petits echantillons d'hexafluorure d'uranium en vue d'analyse spectrometrique de masse

    Energy Technology Data Exchange (ETDEWEB)

    Severin, Michel

    1958-07-01

    We have studied the preparation of uranium hexafluoride for the determination of the isotopic ratio {sup 235}U/{sup 238}U by means of a mass spectrometer. UF{sub 6} should be produced from an amount of raw material (metallic uranium or oxide) that should not exceed 0,1 g. Our method has a good yield (we have studied the rate of transformation) and gives samples which present a content of impurities (HF and SiF{sub 4}) low enough to enable correct isotopic measurements. The method which seemed the best uses the cobalt trifluoride as a fluorining agent. It is now in current use in the laboratories of mass spectrometry. (author) [French] Nous avons etudie la preparation de l'hexafluorure d'uranium en vue de la determination au spectrometre de masse du rapport isotopique {sup 235}U/{sup 238}U. L'hexafluorure d'uranium devait etre produit a partir d'une quantite de matiere premiere (uranium metallique ou oxyde) ne devant pas exceder 0,1 g. Nous avons mis au point une methode de preparation presentant un rendement eleve (etude du taux de transformation) et donnant des echantillons dont le taux d'impuretes (HF et SiF{sub 4}) est suffisamment faible pour permettre des mesures isotopiques correctes. La methode ayant donne le plus de satisfaction utilise le trifluorure de cobalt comme agent fluorant. Ce procede est maintenant couramment employe dans les laboratoires de spectrometrie de masse. (auteur)

  18. Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, Bruce K.; O’Hara, Matthew J.; Casella, Andrew M.; Carter, Jennifer C.; Addleman, R. Shane; MacFarlan, Paul J.

    2016-07-01

    Abstract: We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other uranium compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within the chamber to a highly predictable degree. We demonstrate the preparation of uranium deposits that range between ~0.01 and 470±34 ng∙cm-2. The data suggest the method can be extended to creating depositions at the sub-picogram∙cm-2 level. Additionally, the isotopic composition of the deposits can be customized by selection of the uranium source materials. We demonstrate a layering technique whereby two uranium solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit of UF6 that bears an isotopic signature that is a composite of the two uranium sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics.

  19. Stabilization of uranium hexafluoride by hydrolysis method for decommissioning of safeguard laboratory facility

    Energy Technology Data Exchange (ETDEWEB)

    Inagawa, Jun; Hotoku, Shinobu; Oda, Tetsuzo; Aoyagi, Noboru; Magara, Masaaki [Japan Atomic Energy Agency, Nuclear Science and Engineering Directorate, Tokai, Ibaraki (Japan)

    2014-03-15

    In safeguard laboratory (SGL) facility of Nuclear Science Research Institute of JAEA , uranium hexafluoride (UF{sub 6}) of enriched uranium of various enrichment was used for research and development of a spectrometric method for the determination of the enrichment of uranium in April 1983 through March 1993. After completion of this R and D, the UF{sub 6} has been stored in SGL facility. It was decided that the UF{sub 6} is carried to out of the facility, because the SGL facility will be decommissioning until March 2015. To transport and store in safety after transportation, it is necessary that the UF{sub 6} should be converted to stable chemical form. Hydrolysis of UF{sub 6} to uranyl fluoride (UO{sub 2}F{sub 2}) and evaporation to solid state were selected for the stabilization method. The equipment for hydrolysis and evaporation was installed in the SGL facility. Stabilization was operated in this equipment, and all of the UF{sub 6} in the SGL facility was converted to UO{sub 2}F{sub 2} solid state in October 2012 through August 2013. In this report, results of examination and operation for stabilization of UF{sub 6} were reported. (author)

  20. Preconceptual design studies and cost data of depleted uranium hexafluoride conversion plants

    International Nuclear Information System (INIS)

    Jones, E

    1999-01-01

    One of the more important legacies left with the Department of Energy (DOE) after the privatization of the United States Enrichment Corporation is the large inventory of depleted uranium hexafluoride (DUF6). The DOE Office of Nuclear Energy, Science and Technology (NE) is responsible for the long-term management of some 700,000 metric tons of DUF6 stored at the sites of the two gaseous diffusion plants located at Paducah, Kentucky and Portsmouth, Ohio, and at the East Tennessee Technology Park in Oak Ridge, Tennessee. The DUF6 management program resides in NE's Office of Depleted Uranium Hexafluoride Management. The current DUF6 program has largely focused on the ongoing maintenance of the cylinders containing DUF6. However, the long-term management and eventual disposition of DUF6 is the subject of a Programmatic Environmental Impact Statement (PEIS) and Public Law 105-204. The first step for future use or disposition is to convert the material, which requires construction and long-term operation of one or more conversion plants. To help inform the DUF6 program's planning activities, it was necessary to perform design and cost studies of likely DUF6 conversion plants at the preconceptual level, beyond the PEIS considerations but not as detailed as required for conceptual designs of actual plants. This report contains the final results from such a preconceptual design study project. In this fast track, three month effort, Lawrence Livermore National Laboratory and Bechtel National Incorporated developed and evaluated seven different preconceptual design cases for a single plant. The preconceptual design, schedules, costs, and issues associated with specific DUF6 conversion approaches, operating periods, and ownership options were evaluated based on criteria established by DOE. The single-plant conversion options studied were similar to the dry-conversion process alternatives from the PEIS. For each of the seven cases considered, this report contains information on

  1. Study of the molecular structure of uranium hexafluoride; Contribution a l'etude de la structure moleculaire de l'hexafluorure d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Bougon, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-06-01

    The vibrational spectrum of uranium hexafluoride has been studied in both the gaseous and solid states. The study of gaseous UF{sub 6} confirms the regular octahedral structure of the fluorine atoms around the central U atom and makes it possible to evaluate some of the vibrational frequencies. From these, some new force constants have been determined. A tetragonal distortion is observed on solid UF{sub 6}; this distortion has only observed up till now by means of X-ray diffraction and nuclear magnetic resonance techniques. (author) [French] Le spectre de vibration de l'hexafluorure d'uranium UF{sub 6} est etudie sous les formes gazeuse et solide. L'etude de l'UF{sub 6} gaz confirme la structure d'octaedre regulier d'atomes de fluor autour de l'atome central d'uranium et apporte une precision sur certaines frequences de vibration. A partir de ces valeurs, de nouvelles determinations de constantes de force ont ete realisees. L'observation de UF{sub 6} solide confirme la deformation tetragonale de l'octaedre, deformation observee jusqu'a present par les seules methodes de resonance magnetique nucleaire et diffraction des rayons X. (auteur)

  2. Uranium hexafluoride: A manual of good handling practices. Revision 7

    International Nuclear Information System (INIS)

    1995-01-01

    The United States Enrichment Corporation (USEC) is continuing the policy of the US Department of Energy (DOE) and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UF 6 ) shipping containers and handling procedures. The USEC has reviewed Revision 6 or ORO-651 and is issuing this new edition to assure that the document includes the most recent information on UF 6 handling procedures and reflects the policies of the USEC. This manual updates the material contained in earlier issues. It covers the essential aspects of UF 6 handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF 6 are also described. The procedures and systems described for safe handling of UF 6 presented in this document have been developed and evaluated during more than 40 years of handling vast quantities of UF 6 . With proper consideration for its nuclear properties, UF 6 may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical

  3. Uranium hexafluoride: A manual of good handling practices. Revision 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    The United States Enrichment Corporation (USEC) is continuing the policy of the US Department of Energy (DOE) and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UF{sub 6}) shipping containers and handling procedures. The USEC has reviewed Revision 6 or ORO-651 and is issuing this new edition to assure that the document includes the most recent information on UF{sub 6} handling procedures and reflects the policies of the USEC. This manual updates the material contained in earlier issues. It covers the essential aspects of UF{sub 6} handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF{sub 6} are also described. The procedures and systems described for safe handling of UF{sub 6} presented in this document have been developed and evaluated during more than 40 years of handling vast quantities of UF{sub 6}. With proper consideration for its nuclear properties, UF{sub 6} may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical.

  4. Uranium price reporting systems

    International Nuclear Information System (INIS)

    1987-09-01

    This report describes the systems for uranium price reporting currently available to the uranium industry. The report restricts itself to prices for U 3 O 8 natural uranium concentrates. Most purchases of natural uranium by utilities, and sales by producers, are conducted in this form. The bulk of uranium in electricity generation is enriched before use, and is converted to uranium hexafluoride, UF 6 , prior to enrichment. Some uranium is traded as UF 6 or as enriched uranium, particularly in the 'secondary' market. Prices for UF 6 and enriched uranium are not considered directly in this report. However, where transactions in UF 6 influence the reported price of U 3 O 8 this influence is taken into account. Unless otherwise indicated, the terms uranium and natural uranium used here refer exclusively to U 3 O 8 . (author)

  5. Standard test method for gamma energy emission from fission products in uranium hexafluoride and uranyl nitrate solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the measurement of gamma energy emitted from fission products in uranium hexafluoride (UF6) and uranyl nitrate solution. It is intended to provide a method for demonstrating compliance with UF6 specifications C 787 and C 996 and uranyl nitrate specification C 788. 1.2 The lower limit of detection is 5000 MeV Bq/kg (MeV/kg per second) of uranium and is the square root of the sum of the squares of the individual reporting limits of the nuclides to be measured. The limit of detection was determined on a pure, aged natural uranium (ANU) solution. The value is dependent upon detector efficiency and background. 1.3 The nuclides to be measured are106Ru/ 106Rh, 103Ru,137Cs, 144Ce, 144Pr, 141Ce, 95Zr, 95Nb, and 125Sb. Other gamma energy-emitting fission nuclides present in the spectrum at detectable levels should be identified and quantified as required by the data quality objectives. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its us...

  6. Morse-Morse-Spline-Van der Waals intermolecular potential suitable for hexafluoride gases

    International Nuclear Information System (INIS)

    Coroiu, Ilioara

    2004-01-01

    Several effective isotopic pair potential functions have been proposed to characterize the bulk properties of quasispherical molecules, in particular the hexafluorides, but none got a success. Unfortunately, these potentials have repulsive walls steeper than those which describe the hexafluorides. That these intermolecular potentials are not quite adequate is shown by the lack of complete agreement between theory and experiment even for the rare gases. Not long ago, R. A. Aziz et al. have constructed a Morse-Morse-Spline-Van der Waals (MMSV) potential. The MMSV potential incorporates the determination of C 6 dispersion coefficient and it reasonably correlates second virial coefficients and viscosity data of sulphur hexafluoride at the same time. None of the potential functions previously proposed in literature could predict these properties simultaneously. We calculated the second virial coefficients and a large number of Chapman-Cowling collision integrals for this improved intermolecular potential, the MMSV potential. The results were tabulated for a large reduced temperature range, kT/ε from 0.1 to 100. The treatment was entirely classical and no corrections for quantum effects were made. The higher approximations to the transport coefficients and the isotopic thermal diffusion factor were also calculated and tabulated for the same range. In this paper we present the evaluation of the uranium hexafluoride potential parameters for the MMSV intermolecular potential. To find a single set of potential parameters which could predict all the transport properties (viscosity, thermal conductivity, self diffusion, etc.), as well as the second virial coefficients, simultaneously, the method suggested by Morizot and a large assortment of literature data were used. Our results emphasized that the Morse-Morse-Spline-Van der Waals potential have the best overall predictive ability for gaseous hexafluoride data, certain for uranium hexafluoride. (author)

  7. Safety analysis report on the ''Paducah Tiger'' overpack for 10-ton cylinder of uranium hexafluoride

    International Nuclear Information System (INIS)

    Stitt, D.H.

    1978-01-01

    A summary of analysis performed to assess the puncture resistance of the Paducah Tiger under a particularly severe (worst case) orientation of the external puncture pin is presented. The six-inch diameter cylindrical puncture pin has been oriented to place its impact location immediately opposite the valve body mounted to the dished head of the uranium hexafluoride cylinder. The valve body is assumed to have a one-inch clearance relative to the inner wall of the overpack. Analysis indicates that significant residual kinetic energy remains in the system at the instant of overpack inner wall contact with the valve body. Thus, there is strong evidence suggesting that the valve body can be damaged, or sheared from the dished head of the UF 6 , under the assumed worst case impact orientation

  8. Evaluation of a redesigned 3/4-inch uranium hexafluoride cylinder valve stem

    International Nuclear Information System (INIS)

    Zonner, L.A.; Wamsley, S.D.

    1978-01-01

    The performance of a redesigned 3/4-in. uranium hexafluoride cylinder valve stem has been evaluated at the Portsmouth Gaseous Diffusion Plant. Prototypes, machined from Monel bar stock and having a 45 0 tip angle instead of the 15 0 tip angle of the standard valve stem, were fabricated. Tests included: cyclic leak evaluation; flow restriction determination; wear testing with uranyl fluoride deposits in the valve seat; stress corrosion testing; field testing (in previously rejected valve bodies); and production leak testing. Because their overall test performance was excellent, actual production usage of the redesigned stems was initiated. The in-service performance of valves fitted with redesigned stems has been significantly superior to that of valves having the standard stems: rejection rates have been 0.7 and 16.6 percent, respectively. Recommendations are made to replace all 15 0 angle tip stems presently in service with new stems having a 45 0 angle tip and to specify the new stem tip design for future 3/4-in. valve purchases

  9. A concept of a nonfissile uranium hexafluoride overpack for storage, transport, and processing of corroded cylinders

    International Nuclear Information System (INIS)

    Pope, R.B.; Cash, J.M.; Singletary, B.H.

    1996-01-01

    There is a need to develop a means of safely transporting breached 48-in. cylinders containing depleted uranium hexafluoride (UF 6 ) from current storage locations to locations where the contents can be safely removed. There is also a need to provide a method of safely and easily transporting degraded cylinders that no longer meet the US Department of Transportation (DOT) and American National Standards Institute, Inc., (ANSI) requirements for shipments of depleted UF 6 . A study has shown that an overpack can be designed and fabricated to satisfy these needs. The envisioned overpack will handle cylinder models 48G, 48X, and 48Y and will also comply with the ANSI N14.1 and the American Society of Mechanical Engineers (ASME) Sect. 8 requirements

  10. Options for disposal and reapplication of depleted uranium hexafluoride

    International Nuclear Information System (INIS)

    Fitch, St.H.

    2009-01-01

    The nuclear renaissance has spurred the need to enrich uranium to fuel power reactors to meet the nation's energy requirements. However, enriching uranium produces the volatile byproduct of DUF 6 tails. In an ambient environment, DUF 6 decomposes into uranium oxides and hydrogen fluoride (HF). This HF component makes DUF 6 unsuitable for disposal as low-level waste. To make DUF 6 suitable for disposal, it must be stabilized in a controlled process by converting it into uranium oxides and fluorine compounds by the processes of de-conversion and fluorine extraction. Once stabilized, the DU and fluorine have reapplication potential that would delay or divert the need for disposal. Certain challenges confound this process, notably the chemical toxicity from elemental fluorine and DU, radiation hazards, limited low-level waste disposal capacity, and potential political and public opposition. (authors)

  11. Development of on-line uranium enrichment monitor of gaseous UF6 for uranium enrichment plant

    International Nuclear Information System (INIS)

    Lu Xuesheng; Liu Guorong; Jin Huimin; Zhao Yonggang; Li Jinghuai; Hao Xueyuan; Ying Bin; Yu Zhaofei

    2013-01-01

    An on-line enrichment monitor was developed to measure the enrichment of UF 6 , flowing through the processing pipes in uranium enrichment plant. A Nal (Tl) detector was used to measure the count rates of the 185.7 keV γ-ray emitted from 235 U, and the total quantity of uranium was determined from thermodynamic characteristics of gaseous uranium hexafluoride. The results show that the maximum relative standard deviation is less than 1% when the measurement time is 120 s or more and the pressure is more than 2 kPa in the measurement chamber. Uranium enrichment of gaseous uranium hexafluoride in the output end of cascade can be monitored continuously by using the device. It should be effective for nuclear materials accountability verifications and materials balance verification at uranium enrichment plant. (authors)

  12. Interim guidance on the safe transport of uranium hexafluoride

    International Nuclear Information System (INIS)

    1991-06-01

    Uranium hexafluoride (UF 6 ) is a radioactive material that has significant non-radiological hazardous properties. In conformity with international regulatory practice for dangerous goods transport, these properties are classed as ''subsidiary risks'', although they predominate in the cases of depleted and natural UF 6 . UF 6 is transported as a solid material below atmospheric pressure. The IAEA Regulations for the Safe Transport of Radioactive Material, 1985 Edition, Safety Series No. 6, make recommendations that aimed to provide an adequate level of safety against radiological and criticality hazards. The basis for these is that the stringency of package performance requirements, operational procedures and approval and administrative procedures is graded relative to the severity of the hazard. The cylinders used for transporting UF 6 are also used in the production, storage and use of the material and that the fraction of their life cycle in which transport is involved is small. Consideration must also be given to the large number of existing cylinders (estimated to be between 60,000 and 70,000). Specific recommendations provided for UF 6 transport, listed in Section II, are additional to the requirements of the Regulations. The intent of these additional recommendations is to restrict contamination and to provide protection to workers and to the general public against the chemical hazard possibly resulting from a severe accident involving the transport of UF 6 , and in addition against the consequences of explosive rupture of small bare cylinders of UF 6 . 20 refs, figs and tabs

  13. Dry uranium tetrafluoride process preparation using the uranium hexafluoride reconversion process effluents; Processo alternativo para obtencao de tetrafluoreto de uranio a partir de efluentes fluoretados da etapa de reconversao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, Joao Batista da

    2008-07-01

    It is a well known fact that the use of uranium tetrafluoride allows flexibility in the production of uranium suicide and uranium oxide fuel. To its obtention there are two conventional routes, the one which reduces uranium from the UF{sub 6} hydrolysis solution with stannous chloride, and the hydro fluorination of a solid uranium dioxide. In this work we are introducing a third and a dry way route, mainly utilized to the recovery of uranium from the liquid effluents generated in the uranium hexafluoride reconversion process, at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recuperation of ammonium fluoride by NH{sub 4}HF{sub 2} precipitation. Working with the solid residues, the crystallized bifluoride is added to the solid UO{sub 2}, which comes from the U mini plates recovery, also to its conversion in a solid state reaction, to obtain UF{sub 4}. That returns to the process of metallic uranium production unity to the U{sub 3}Si{sub 2} obtention. This fuel is considered in IPEN CNEN/SP as the high density fuel phase for IEA-R1m reactor, which will replace the former low density U{sub 3}Si{sub 2}-Al fuel. (author)

  14. 49 CFR 173.477 - Approval of packagings containing greater than 0.1 kg of non-fissile or fissile-excepted uranium...

    Science.gov (United States)

    2010-10-01

    ... kg of non-fissile or fissile-excepted uranium hexafluoride. 173.477 Section 173.477 Transportation... non-fissile or fissile-excepted uranium hexafluoride. (a) Each offeror of a package containing more than 0.1 kg of uranium hexafluoride must maintain on file for at least one year after the latest...

  15. Uranium hexafluoride: A manual of good handling practices

    International Nuclear Information System (INIS)

    1991-10-01

    For many years, the US Department of Energy (DOE) and its predecessor agencies have shared with the nuclear industry their experience in the area of uranium hexafluoride (UF 6 ) shipping containers and handling procedures. The information contained in this manual updates information contained in earlier issues. It covers the essential aspects of UF 6 handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF 6 are also described and tabulated. The nuclear industry is responsible for furnishing its own shipping cylinders and suitable protective overpacks. A substantial effort has been made by the industry to standardize UF 6 cylinders, samples, and overpacks. The quality of feed materials is important to the safe and efficient operation of the enriching facilities, and the UF 6 product purity from the enriching facilities is equally important to the fuel fabricator, the utilities, the operators of research reactors, and other users. The requirements have been the impetus for an aggressive effort by DOE and its contractors to develop accurate techniques for sampling and for chemical and isotopic analysis. A quality control program is maintained within the DOE enriching facilities to ensure that the proper degree of accuracy and precision are obtained for all the required measurements. The procedures and systems described for safe handling of UF 6 presented in this document have been developed and evaluated in DOE facilities during more than 40 years of handling vast quantities of UF 6 . With proper consideration for its nuclear properties, UF 6 may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical

  16. Chemical treatment of ammonium fluoride solution in uranium reconversion plant

    International Nuclear Information System (INIS)

    Carvalho Frajndlich, E.U. de.

    1992-01-01

    A chemical procedure is described for the treatment of the filtrate, produced from the transformation of uranium hexafluoride (U F 6 ) into ammonium uranyl carbonate (AUC). This filtrate is an intermediate product in the U F 6 to uranium dioxide (U O 2 ) reconversion process. The described procedure recovers uranium as ammonium peroxide fluoro uranate (APOFU) by precipitation with hydrogen peroxide (H 2 O 2 ), and as later step, its calcium fluoride (CaF 2 ) co-precipitation. The recovered uranium is recycled to the AUC production plant. (author)

  17. Technology development for producing nickel metallic filters

    International Nuclear Information System (INIS)

    Hubler, C.H.

    1990-01-01

    A technology to produce metallic filters by Instituto de Engenharia Nuclear (IEN-Brazilian CNEN) providing the Instituto de Pesquisas Energeticas e Nucleares (IPEN-Brazilian CNEN) in obtaining nickel alloy filters used for filtration process of uranium hexafluoride, was developed. The experiences carried out for producing nickel conical trunk filters from powder metallurgy are related. (M.C.K.)

  18. Transformations of highly enriched uranium into metal or oxide

    International Nuclear Information System (INIS)

    Nollet, P.; Sarrat, P.

    1964-01-01

    The enriched uranium workshops in Cadarache have a double purpose on the one hand to convert uranium hexafluoride into metal or oxide, and on the other hand to recover the uranium contained in scrap materials produced in the different metallurgical transformations. The principles that have been adopted for the design and safety of these workshops are reported. The nuclear safety is based on the geometrical limitations of the processing vessels. To establish the processes and the technology of these workshops, many studies have been made since 1960, some of which have led to original achievements. The uranium hexafluoride of high isotopic enrichment is converted either by injection of the gas into ammonia or by an original process of direct hydrogen reduction to uranium tetrafluoride. The uranium contained m uranium-zirconium metal scrap can be recovered by combustion with hydrogen chloride followed treatment of the uranium chloride by fluorine in order to obtain the uranium in the hexafluoride state. Recovery of the uranium contained m various scrap materials is obtained by a conventional refining process combustion of metallic scrap, nitric acid dissolution of the oxide, solvent purification by tributyl phosphate, ammonium diuranate precipitation, calcining, reduction and hydro fluorination into uranium tetrafluoride, bomb reduction by calcium and slag treatment. Two separate workshops operate along these lines one takes care of the uranium with an isotopic enrichment of up to 3 p. 100, the other handles the high enrichments. The handling of each step of this process, bearing in mind the necessity for nuclear safety, has raised some special technological problems and has led to the conception of new apparatus, in particular the roasting furnace for metal turnings, the nitric acid dissolution unit, the continuous precipitator and ever safe filter and dryer for ammonium diuranate, the reduction and hydro fluorination furnace and the slag recovery apparatus These are

  19. Study of the dry processing of uranium ores

    International Nuclear Information System (INIS)

    Guillet, H.

    1959-02-01

    A description is given of direct fluorination of pre-concentrated uranium ores in order to obtain the hexafluoride. After normal sulfuric acid treatment of the ore to eliminate silica, the uranium is precipitated by a load of lime to obtain: either impure calcium uranate of medium grade, or containing around 10% of uranium. This concentrate is dried in an inert atmosphere and then treated with a current of elementary fluorine. The uranium hexafluoride formed is condensed at the outlet of the reaction vessel and may be used either for reduction to tetrafluoride and the subsequent manufacture of uranium metal or as the initial product in a diffusion plant. (author) [fr

  20. Design and construction of a Type B overpack container for the safe transportation of enriched uranium hexafluoride

    International Nuclear Information System (INIS)

    Gablin, K.A.

    1976-01-01

    The Paducah Tiger is an overpack designed for the international shipment of ten-ton cylinders of uranium hexafluoride in enriched form above the level of low specific acitivity. This container is designed as a Type B Package and has undergone all the tests and analyses required for a U.S. Department of Transportation Permit No. 6553. The Paducah Tiger is currently being used to ship fuel material in the USA on both truck and rail modes of transportation. In many ways, the design resembles the Super Tigersup(R), but incorporates features such as ISO corners, quick opening fasteners, and interior shock isolators that provide a system approach to the high volume of fuel shipment required in the last half of the 20th century. (author)

  1. Refurbishment of uranium hexafluoride cylinder storage yards C-745-K, L, M, N, and P and construction of a new uranium hexafluoride cylinder storage yard (C-745-T) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    1996-07-01

    The Paducah Gaseous Diffusion Plant (PGDP) is a uranium enrichment facility owned by the US Department of Energy (DOE). A residual of the uranium enrichment process is depleted uranium hexafluoride (UF6). Depleted UF6, a solid at ambient temperature, is stored in 32,200 steel cylinders that hold a maximum of 14 tons each. Storage conditions are suboptimal and have resulted in accelerated corrosion of cylinders, increasing the potential for a release of hazardous substances. Consequently, the DOE is proposing refurbishment of certain existing yards and construction of a new storage yard. This environmental assessment (EA) evaluates the impacts of the proposed action and no action and considers alternate sites for the proposed new storage yard. The proposed action includes (1) renovating five existing cylinder yards; (2) constructing a new UF6 storage yard; handling and onsite transport of cylinders among existing yards to accommodate construction; and (4) after refurbishment and construction, restacking of cylinders to meet spacing and inspection requirements. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969. Therefore, DOE is issuing a Finding of No Significant Impact. Additionally, it is reported in this EA that the loss of less than one acre of wetlands at the proposed project site would not be a significant adverse impact

  2. Refurbishment of uranium hexafluoride cylinder storage yards C-745-K, L, M, N, and P and construction of a new uranium hexafluoride cylinder storage yard (C-745-T) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The Paducah Gaseous Diffusion Plant (PGDP) is a uranium enrichment facility owned by the US Department of Energy (DOE). A residual of the uranium enrichment process is depleted uranium hexafluoride (UF6). Depleted UF6, a solid at ambient temperature, is stored in 32,200 steel cylinders that hold a maximum of 14 tons each. Storage conditions are suboptimal and have resulted in accelerated corrosion of cylinders, increasing the potential for a release of hazardous substances. Consequently, the DOE is proposing refurbishment of certain existing yards and construction of a new storage yard. This environmental assessment (EA) evaluates the impacts of the proposed action and no action and considers alternate sites for the proposed new storage yard. The proposed action includes (1) renovating five existing cylinder yards; (2) constructing a new UF6 storage yard; handling and onsite transport of cylinders among existing yards to accommodate construction; and (4) after refurbishment and construction, restacking of cylinders to meet spacing and inspection requirements. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969. Therefore, DOE is issuing a Finding of No Significant Impact. Additionally, it is reported in this EA that the loss of less than one acre of wetlands at the proposed project site would not be a significant adverse impact.

  3. New approach for safeguarding enriched uranium hexafluoride bulk transfers

    International Nuclear Information System (INIS)

    Doeher, L.W.; Pontius, P.E.; Whetstone, J.R.

    1978-01-01

    The unique concepts of American National Standard ANSI N15.18-1975 ''Mass Calibration Techniques for Nuclear Material Control'' are discussed in regard to the establishment and maintenance of control of mass measurement of Uranium Hexafluoride (UF 6 ) both within and between facilities. Emphasis is placed on the role of control of the measurements between facilities, and thus establish decision points for detection of measurement problems and making safeguards judgments. The unique concepts include the use of artifacts of UF 6 packaging cylinders, calibrated by a central authority, to introduce the mass unit into all of the industries' weighing processes. These are called Replicate Mass Standards (RMS). This feat is accomplished by comparing the RMS to each facility's In-House Standards (IHS), also artifacts, and thence the usage of these IHS to quantify the systematic and random errors of each UF 6 mass measurement process. A recent demonstration, which exchanged UF 6 cylinders between two facilities, who used ANSI N15.18-1975 concepts and procedures is discussed. The discussion includes methodology and treatment of data for use in detection of measurement and safeguards problems. The discussion incorporates the methodology for data treatment and judgments concerning (1) the common base, (2) measurement process off-sets, (3) measurement process precision, and (4) shipper-receiver bulk measurement differences. From the evidence gained in the demonstration, conclusions are reached as to the usefulness of the realistic criteria for detection of mass measurement problems upon acceptance of the concepts of ANSI N15.18-1975

  4. Standard test method for isotopic analysis of uranium hexafluoride by double standard single-collector gas mass spectrometer method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This is a quantitative test method applicable to determining the mass percent of uranium isotopes in uranium hexafluoride (UF6) samples with 235U concentrations between 0.1 and 5.0 mass %. 1.2 This test method may be applicable for the entire range of 235U concentrations for which adequate standards are available. 1.3 This test method is for analysis by a gas magnetic sector mass spectrometer with a single collector using interpolation to determine the isotopic concentration of an unknown sample between two characterized UF6 standards. 1.4 This test method is to replace the existing test method currently published in Test Methods C761 and is used in the nuclear fuel cycle for UF6 isotopic analyses. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appro...

  5. Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.

    Energy Technology Data Exchange (ETDEWEB)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

  6. Airborne uranium, its concentration and toxicity in uranium enrichment facilities

    International Nuclear Information System (INIS)

    Thomas, J.; Mauro, J.; Ryniker, J.; Fellman, R.

    1979-02-01

    The release of uranium hexafluoride and its hydrolysis products into the work environment of a plant for enriching uranium by means of gas centrifuges is discussed. The maximum permissible mass and curie concentration of airborne uranium (U) is identified as a function of the enrichment level (i.e., U-235/total U), and chemical and physical form. A discussion of the chemical and radiological toxicity of uranium as a function of enrichment and chemical form is included. The toxicity of products of UF 6 hydrolysis in the atmosphere, namely, UO 2 F 2 and HF, the particle size of toxic particulate material produced from this hydrolysis, and the toxic effects of HF and other potential fluoride compounds are also discussed. Results of an investigation of known effects of humidity and temperature on particle size of UO 2 F 2 produced by the reaction of UF 6 with water vapor in the air are reported. The relationship of the solubility of uranium compounds to their toxic effects was studied. Identification and discussion of the standards potentially applicable to airborne uranium compounds in the working environment are presented. The effectiveness of High Efficiency Particulate (HEPA) filters subjected to the corrosive environment imposed by the presence of hydrogen fluoride is discussed

  7. Acute toxicity of the hydrolysis products of uranium hexafluoride (UF6) when inhaled by the rat and guinea pig. Final report

    International Nuclear Information System (INIS)

    Leach, L.J.; Gelein, R.M.; Panner, B.J.; Yulie, C.L.; Cox, C.C.; Balys, M.M.; Rolchigo, P.M.

    1984-04-01

    This report presents the experimental animal data base from which human health consequences may be predicted from exposures mimicing accidental discharges of uranium hexafluoride (UF 6 ) in the uranium industry. Rats or guinea pigs were exposed for two, five, or ten minutes duration to air having 0.44 g U/m 3 + 0.16 g HF/m 3 to 276.67 g U/m 3 + 94.07 g HF/m 3 . Survivors of each exposure were observed for 14 days for signs of U or HF intoxication. Selected animals were necropsied and samples of major organs were studied histopathologically. When enriched UF 6 (94 percent 235 U) was used, the urine and feces from each animal were measured daily for U content. Selected samples of urine were bioassayed in order to trace the course of renal injury during the two week postexposure period. 28 references, 51 figures, 23 tables

  8. Derived enriched uranium market

    International Nuclear Information System (INIS)

    Rutkowski, E.

    1996-01-01

    The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market

  9. Final programmatic environmental impact statement for alternative strategies for the long-term management and use of depleted uranium hexafluoride. Volume 3: Responses to public comments

    International Nuclear Information System (INIS)

    1999-04-01

    This PEIS assesses the potential impacts of alternative management strategies for depleted uranium hexafluoride (UF 6 ) currently stored at three DOE sites: Paducah site near Paducah, Kentucky, Portsmouth site near Portsmouth, Ohio; and K-25 site on the Oak Ridge Reservation, Oak Ridge, Tennessee. The alternatives analyzed in the PEIS include no action, long-term storage as UF 6 , long-term storage as uranium oxide, use as uranium oxide, use as uranium metal, and disposal. DOE's preferred alternative is to begin conversion of the depleted UF 6 inventory as soon as possible, either to uranium oxide, uranium metal, or a combination of both, while allowing for use of as much of this inventory as possible. This volume of the Final PEIS contains the comments and DOE's responses to comments received during the comment period. Chapter 2 contains photocopies of written submissions received by DOE on the Draft PEIS; DOE's responses to those comments are listed in Chapter 3. Chapter 4 provides the oral comments received at the public hearings and DOE's responses. Chapter 5 provides indices to comments and responses arranged by commentor name and by comment number

  10. Standard test method for isotopic analysis of hydrolyzed uranium hexafluoride and uranyl nitrate solutions by thermal ionization mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This method applies to the determination of isotopic composition in hydrolyzed nuclear grade uranium hexafluoride. It covers isotopic abundance of 235U between 0.1 and 5.0 % mass fraction, abundance of 234U between 0.0055 and 0.05 % mass fraction, and abundance of 236U between 0.0003 and 0.5 % mass fraction. This test method may be applicable to other isotopic abundance providing that corresponding standards are available. 1.2 This test method can apply to uranyl nitrate solutions. This can be achieved either by transforming the uranyl nitrate solution to a uranyl fluoride solution prior to the deposition on the filaments or directly by depositing the uranyl nitrate solution on the filaments. In the latter case, a calibration with uranyl nitrate standards must be performed. 1.3 This test method can also apply to other nuclear grade matrices (for example, uranium oxides) by providing a chemical transformation to uranyl fluoride or uranyl nitrate solution. 1.4 This standard does not purport to address al...

  11. Estimation of risks associated to land transport of uranium hexafluoride

    International Nuclear Information System (INIS)

    Pages, P.; Tomachevsky, E.

    1987-01-01

    The system analysed concerns the packaging 48Y containing about 12 tons of hexafluoride, 1000 tons/year are forecasted for 1990 on the 900 km road Pierrelatte-Le Havre (France). Probabilities are given by the accident file, container failure by impact or fire and sanitary consequences are analysed. Risk is evaluated and discussed [fr

  12. Manhattan Project Technical Series: The Chemistry of Uranium (I)

    International Nuclear Information System (INIS)

    Rabinowitch, E. I.; Katz, J. J.

    1947-01-01

    This constitutes Chapters 11 through 16, inclusive, of the Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Uranium Oxides, Sulfides, Selenides, and Tellurides; The Non-Volatile Fluorides of Uranium; Uranium Hexafluoride; Uranium-Chlorine Compounds; Bromides, Iodides, and Pseudo-Halides of Uranium; and Oxyhalides of Uranium.

  13. Manhattan Project Technical Series: The Chemistry of Uranium (I)

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitch, E. I. [Argonne National Lab. (ANL), Argonne, IL (United States); Katz, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    1947-03-10

    This constitutes Chapters 11 through 16, inclusive, of the Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Uranium Oxides, Sulfides, Selenides, and Tellurides; The Non-Volatile Fluorides of Uranium; Uranium Hexafluoride; Uranium-Chlorine Compounds; Bromides, Iodides, and Pseudo-Halides of Uranium; and Oxyhalides of Uranium.

  14. Safety criteria of uranium enrichment plants

    International Nuclear Information System (INIS)

    Nardocci, A.C.; Oliveira Neto, J.M. de

    1994-01-01

    The applicability of nuclear reactor safety criteria applied to uranium enrichment plants is discussed, and a new criterion based on the soluble uranium compounds and hexafluoride chemical toxicities is presented. (L.C.J.A.). 21 refs, 4 tabs

  15. Gas-phase thermal dissociation of uranium hexafluoride: Investigation by the technique of laser-powered homogeneous pyrolysis

    International Nuclear Information System (INIS)

    Bostick, W.D.; McCulla, W.H.; Trowbridge, L.D.

    1987-04-01

    In the gas-phase, uranium hexafluoride decomposes thermally in a quasi-unimolecular reaction to yield uranium pentafluoride and atomic fluorine. We have investigated this reaction using the relatively new technique of laser-powered homogeneous pyrolysis, in which a megawatt infrared laser is used to generate short pulses of high gas temperatures under strictly homogeneous conditions. In our investigation, SiF 4 is used as the sensitizer to absorb energy from a pulsed CO 2 laser and to transfer this energy by collisions with the reactant gas. Ethyl chloride is used as an external standard ''thermometer'' gas to permit estimation of the unimolecular reaction rate constants by a relative rate approach. When UF 6 is the reactant, CF 3 Cl is used as reagent to trap atomic fluorine reaction product, forming CF 4 as a stable indicator which is easily detected by infrared spectroscopy. Using these techniques, we estimate the UF 6 unimolecular reaction rate constant near the high-pressure limit. In the Appendix, we describe a computer program, written for the IBM PC, which predicts unimolecular rate constants based on the Rice-Ramsperger-Kassel theory. Parameterization of the theoretical model is discussed, and recommendations are made for ''appropriate'' input parameters for use in predicting the gas-phase unimolecular reaction rate for UF 6 as a function of temperature and gas composition and total pressure. 85 refs., 17 figs., 14 tabs

  16. Containment and storage of uranium hexafluoride at US Department of Energy uranium enrichment plants

    International Nuclear Information System (INIS)

    Barlow, C.R.; Alderson, J.H.; Blue, S.C.; Boelens, R.A.; Conkel, M.E.; Dorning, R.E.; Ecklund, C.D.; Halicks, W.G.; Henson, H.M.; Newman, V.S.; Philpot, H.E.; Taylor, M.S.; Vournazos, J.P.; Pryor, W.A.; Ziehlke, K.T.

    1992-07-01

    Isotopically depleted UF 6 (uranium hexafluoride) accumulates at a rate five to ten times greater than the enriched product and is stored in steel vessels at the enrichment plant sites. There are approximately 55,000 large cylinders now in storage at Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee. Most of them contain a nominal 14 tons of depleted UF 6 . Some of these cylinders have been in the unprotected outdoor storage environment for periods approaching 40 years. Storage experience, supplemented by limited corrosion data, suggests a service life of about 70 years under optimum conditions for the 48-in. diameter, 5/16-in.-wall pressure vessels (100 psi working pressure), using a conservative industry-established 1/4-in.-wall thickness as the service limit. In the past few years, however, factors other than atmospheric corrosion have become apparent that adversely affect the serviceability of small numbers of the storage containers and that indicate the need for a managed program to ensure maintenance ofcontainment integrity for all the cylinders in storage. The program includes periodic visual inspections of cylinders and storage yards with documentation for comparison with other inspections, a group of corrosion test programs to permit cylinder life forecasts, and identification of (and scheduling for remedial action) situations in which defects, due to handling damage or accelerated corrosion, can seriously shorten the storage life or compromise the containment integrity of individual cylinders. The program also includes rupture testing to assess the effects of certain classes of damage on overall cylinder strength, aswell as ongoing reviews of specifications, procedures, practices, and inspection results to effect improvements in handling safety, containment integrity, and storage life

  17. Uranium producers foresee new boom

    International Nuclear Information System (INIS)

    McIntyre, H.

    1979-01-01

    The status of uranium production in Canada is reviewed. Uranium resources in Saskatchewan and Ontario are described and the role of the Cluff Lake inquiry in securing a government decision in favour of further uranium development is mentioned. There have been other uranium strikes near Kelowna, British Columbia and in the Northwest Territories. Increasing uranium demand and favourable prices are making the development of northern resources economically attractive. In fact, all uranium currently produced has been committed to domestic and export contracts so that there is considerable room for expanding the production of uranium in Canada. (T.I.)

  18. The uranium fuel cycle at IPEN - Energy and Nuclear Research Institute, SP, Brazil

    International Nuclear Information System (INIS)

    Abrao, Alcidio

    1994-09-01

    This paper summarizes the progress of research concerning the uranium fuel cycle set up at the IPEN, Sao Paulo, from the raw yellow-cake to the uranium hexafluoride. It covers the reconversion of the hexafluoride to ammonium uranyl tricarbonate and the manufacturing of the fuel elements for the swimming pool IEA-R1 reactor. This review extends the coverage of two pilot plants for uranium purification based upon ion exchange, one demonstration unity for the purification of uranyl nitrate by solvent extraction in pulsed columns, the unity of uranium tetrafluoride into moving bed reactors and a second one based upon the wet chemistry via uranium dioxide and aqueous hydrogen fluoride. The paper mentions the pilot plant for the preparation of uranium trioxide by the thermal decomposition of ammonium diuranate and a second unity by the thermal denitration of uranyl nitrate. The paper outlines the fluorine plant and the unity for the hexafluoride preparation, the unity for the conversion of the hexa to the ammonium uranyl tricarbonate and the fabrication of fuel elements for the IEA-R1 reactor. (author)

  19. Method for producing uranium atomic beam source

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1976-01-01

    A method is described for producing a beam of neutral uranium atoms by vaporizing uranium from a compound UM/sub x/ heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared with that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe 2 . An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced

  20. Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method.

    Science.gov (United States)

    McNamara, Bruce K; O'Hara, Matthew J; Casella, Andrew M; Carter, Jennifer C; Addleman, R Shane; MacFarlan, Paul J

    2016-07-01

    We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other U compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within a fixed reactor geometry to a highly predictable degree. We demonstrate the preparation of U deposits that range between approximately 0.01 and 500ngcm(-2). The data suggest the method can be extended to creating depositions at the sub-picogramcm(-2) level. The isotopic composition of the deposits can be customized by selection of the U source materials and we demonstrate a layering technique whereby two U solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit that bears an isotopic signature that is a composite of the two U sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics. Further, the method allows access to very low atomic or molecular coverages of surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The multiphoton ionization of uranium hexafluoride

    International Nuclear Information System (INIS)

    Armstrong, D.P.

    1992-05-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF 6 have been conducted using focused light from the Nd:YAG laser fundamental (λ=1064 nm) and its harmonics (λ=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF x + fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U n+ ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U 2+ ) intensity is much greater than that of the singly-charged uranium ion (U + ). For the case of the tunable dye laser experiments, the U n+ (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U 2+ ion and the absence or very small intensities of UF x + fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule

  2. Removal of hydrogen fluoride from uranium plant emissions

    International Nuclear Information System (INIS)

    Ramani, M.P.S.

    1997-01-01

    Uranium production technology involves the use of hydrogen fluoride at various stages. It is used in the production of uranium tetrafluoride as well as for the production of fluorine for the conversion of tetrafluoride to hexafluoride in isotopic enrichment plants. The sources of HF pollution in the industry, besides accidental spillages and leakages, are the final off-gases from the UF 4 production process or from the hydrogen reduction of hexafluoride (where such process is adopted), venting of tanks and reactors containing HF, safety pressure rupture discs as well as dust collection and ventilation systems

  3. Uranium fluorides analysis. Titanium spectrophotometric determination

    International Nuclear Information System (INIS)

    Anon.

    Titanium determination in uranium hexafluoride in the range 0.7 to 100 microgrammes after transformation of uranium fluoride in sulfate. Titanium is separated by extraction with N-benzoylphenylhydroxylamine, reextracted by hydrochloric-hydrofluoric acid. The complex titanium-N-benzoylphenylhydroxylamine is extracted by chloroform. Spectrophotometric determination at 400 nm [fr

  4. F19 relaxation in non-magnetic hexafluorides

    International Nuclear Information System (INIS)

    Rigny, P.

    1969-01-01

    The interesting properties of the fluorine magnetic resonance in the hexafluorides of molybdenum, tungsten and uranium, are very much due to large anisotropies of the chemical shift tensors. In the solid phases these anisotropies, the values of which are deduced from line shape studies, allow one to show that the molecules undergo hindered rotations about the metal atom. The temperature and frequency dependence of the fluorine longitudinal relaxation times shows that the relaxation is due to the molecular motion. The dynamical parameters of this motion are then deduced from the complete study of the fluorine relaxation in the rotating frame. In the liquid phases, the existence of anisotropies allows an estimation of the different contributions to the relaxation. In particular, the frequency and temperature dependence of the relaxation shows it to be dominated by the spin-rotation interaction. We have shown that the strength of this interaction can be deduced from the chemical shifts, and the angle through which the molecule rotates quasi-freely can be determined. In the hexafluorides, this angle is roughly one radian at 70 C, and with the help of this value, the friction coefficients which describe the intermolecular interactions are discussed. (author) [fr

  5. The structure of Canada's uranium industry and its future market prospects

    International Nuclear Information System (INIS)

    1981-01-01

    Production of uranium in Canada began in the 1940s to supply the needs of US weapons development. After 1966 a growing demand for uranium for nuclear power production stimulated exploration, and since then the health of the Canadian uranium industry has been tied to the state of the nuclear power industry. Uranium exploration in Canada is carried out mainly by private enterprise, although the federal and two provincial governments compete through crown corporations. Seven companies produce ore, and six have processing plants. Expansion is underway at several existing operations, and some new projects are underway. The industry is strongly dependent on export markets; only about 15 percent of Canadian production is used in the country. There is one uranium refinery which produces UO 2 powder for CANDU reactor fuel and UF 6 for export. The uranium hexafluoride facility is being expanded. Federal government policy affects the uranium industry in the fields of regulation, ownership, safeguards, protection of the domestic industry, and international marketing. The short-term outlook for the industry is deteriorating, with declining uranium prices, but prospects seem considerably brighter in the longer term. Canada has about 12 percent of the world's uranium reserves, and is the second-largest producer. Discovery potential is believed to be excellent

  6. Study of the dry processing of uranium ores; Etude des traitements de minerais d'uranium par voie seche

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, H

    1959-02-01

    A description is given of direct fluorination of pre-concentrated uranium ores in order to obtain the hexafluoride. After normal sulfuric acid treatment of the ore to eliminate silica, the uranium is precipitated by a load of lime to obtain: either impure calcium uranate of medium grade, or containing around 10% of uranium. This concentrate is dried in an inert atmosphere and then treated with a current of elementary fluorine. The uranium hexafluoride formed is condensed at the outlet of the reaction vessel and may be used either for reduction to tetrafluoride and the subsequent manufacture of uranium metal or as the initial product in a diffusion plant. (author) [French] Il s'agit d'une description de fluoration directe de preconcentres de minerais d'uranium en vue d'obtention d'hexafluorure. Apres attaque sulfurique normale du minerai, afin d' eliminer la silice, l' uranium est precipite par un toit de chaux pour obtenir: ou uranate de chaux impur de titre moyen, ou uranium de la dizaine du pourcentage. Ce concentre seche en atmosphere inerte est soumis a un courant de fluor elementaire. L'hexafluorure d'uranium forme est condense a la sortie du reacteur et peut etre utilise soit apres reduction en tetrafluorure par l'elaboration d'uranium metal, soit comme produit de base dans le cadre d'une usine de diffusion. (auteur)

  7. The IAEA recommendations for providing protection during the transport of uranium hexafluoride

    International Nuclear Information System (INIS)

    Levin, I.; Wieser, K.

    1988-01-01

    The Regulations for the safe transport of radioactive materials, are the basis of national and international regulations concerning this subject throughout the world. These regulations require that subsidiary hazards associated with radioactive materials should also be considered. Other national and international regulations concerning the transport of dangerous materials consider that a radioactive material having other dangerous properties should be classified as class 7. Following this line and acting upon the recommendations of SAGSTRAM (Standing Advisory Committee on the Safe Transport of Radioactive Materials) that the Agency should take the lead in providing guidance to Member States with respect to UF 6 packaging and transport, the Agency convened two expert meetings during 1986 and 1987 in order to look into the special problems associated with the transport of uranium hexafluoride. The experts identified several areas in which additional safety measures should be considered if the transport of UF 6 is to have a non-radiological safety level consistent with that of its radiological risks. In this presentation the new recommendations are described. The main safety issues to be discussed are fire resistance, valve protection and compatibility with service and structural equipment. Another aspect of importance is the interface between the process and the transport phases, bearing in mind that the same containers are used in both. This paper also reveals how far the new recommendations concerning UF 6 have already been endorsed in the forthcoming European Transport Regulations (ADR/RID) together with the 1985 revised Edition of IAEA Safety Series No. 6

  8. South Australia, uranium enrichment

    International Nuclear Information System (INIS)

    1976-02-01

    The Report sets out the salient data relating to the establishment of a uranium processing centre at Redcliff in South Australia. It is conceived as a major development project for the Commonwealth, the South Australian Government and Australian Industry comprising the refining and enrichment of uranium produced from Australian mines. Using the data currently available in respect of markets, demand, technology and possible financial return from overseas sales, the project could be initiated immediately with hexafluoride production, followed rapidly in stages by enrichment production using the centrifuge process. A conceptual development plan is presented, involving a growth pattern that would be closely synchronised with the mining and production of yellowcake. The proposed development is presented in the form of an eight-and-half-year programme. Costs in this Report are based on 1975 values, unless otherwise stated. (Author)

  9. Studies on the fluorination of tri uranium octa oxide to Uranium tetrafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Rofail, N H; Elfekey, S A [Nuclear chemistry department, hot laboratories centre, atomic energy authority, Cairo, (Egypt)

    1995-10-01

    Uranium tetrafluoride suitable for both uranium metal and hexafluoride preparations, was prepared by fluorination of U{sub 3} O{sub 8} with C F{sub 2} Cl{sub 2}. It was found that the oct oxide must have certain physical and chemical specifications to satisfy the specifications needed for subsequent operations. X-ray diffraction analysis, infra red investigations and chemical analysis confirm that the obtained uranium tetrafluoride contains more than 97% of U F{sub 4} with tap density equals to 3.5 g/cc. 3 FIGS., 2 TABS.

  10. Isotopic analysis of uranium hexafluoride highly enriched in U-235; Analyse isotopique de l'hexafluorure d'uranium fortement enrichi en U 235

    Energy Technology Data Exchange (ETDEWEB)

    Chaussy, L; Boyer, R [Commissariat a l' Energie Atomique, Pierrelatte (France). Centre d' Etudes Nucleaires

    1968-07-01

    Isotopic analysis of uranium in the form of the hexafluoride by mass-spectrometry gives gross results which are not very accurate. Using a linear interpolation method applied to two standards it is possible to correct for this inaccuracy as long as the isotopic concentrations are less than about 10 per cent in U-235. Above this level, the interpolations formula overestimates the results, especially if the enrichment of the analyzed samples is higher than 1.3 with respect to the standards. A formula is proposed for correcting the interpolation equation and for the extending its field of application to high values of the enrichment ({approx_equal}2) and of the concentration. It is shown that by using this correction the results obtained have an accuracy which depends practically only on that of the standards, taking into account the dispersion in the measurements. (authors) [French] L'analyse isotopique de l'uranium sous forme d'hexafluorure, par spectrometrie de masse, fournit des resultats bruts entaches d'inexactitude. Une methode d'interpolation lineaire entre deux etalons permet de corriger cette inexactitude, tant que les concentrations isotopiques sont inferieures a 10 pour cent en U-235 environ. Au-dessus de cette valeur, la formule d'interpolation surestime les resultats, notamment si l'enrichissement des echantillons analyses par rapport aux etalons est superieur a 1,3. On propose une formule de correction de l'equation d'interpolation qui etend son domaine d'application jusqu'a des valeurs elevees d'enrichissement ({approx_equal}2) et de concentration. On montre experimentalement que par cette correction, les resultats atteignent, a la precision des mesures, une exactitude qui ne depend pratiquement plus que de celles des etalons. (auteurs)

  11. HGSYSTEMUF6, Simulating Dispersion Due to Atmospheric Release of Uranium Hexafluoride (UF6)

    International Nuclear Information System (INIS)

    Hanna, G; Chang, J.C.; Zhang, J.X.; Bloom, S.G.; Goode, W.D. Jr; Lombardi, D.A.; Yambert, M.W.

    2001-01-01

    1 - Description of program or function: HGSYSTEMUF6 is a suite of models designed for use in estimating consequences associated with accidental, atmospheric release of Uranium Hexafluoride (UF 6 ) and its reaction products, namely Hydrogen Fluoride (HF), and other non-reactive contaminants which are either negatively, neutrally, or positively buoyant. It is based on HGSYSTEM Version 3.0 of Shell Research LTD., and contains specific algorithms for the treatment of UF 6 chemistry and thermodynamics. HGSYSTEMUF6 contains algorithms for the treatment of dense gases, dry and wet deposition, effects due to the presence of buildings (canyon and wake), plume lift-off, and the effects of complex terrain. The models components of the suite include (1) AEROPLUME/RK, used to model near-field dispersion from pressurized two-phase jet releases of UF6 and its reaction products, (2) HEGADAS/UF6 for simulating dense, ground based release of UF 6 , (3) PGPLUME for simulation of passive, neutrally buoyant plumes (4) UF6Mixer for modeling warm, potentially reactive, ground-level releases of UF 6 from buildings, and (5) WAKE, used to model elevated and ground-level releases into building wake cavities of non-reactive plumes that are either neutrally or positively buoyant. 2 - Methods: The atmospheric release and transport of UF 6 is a complicated process involving the interaction between dispersion, chemical and thermodynamic processes. This process is characterized by four separate stages (flash, sublimation, chemical reaction entrainment and passive dispersion) in which one or more of these processes dominate. The various models contained in the suite are applicable to one or more of these stages. For example, for modeling reactive, multiphase releases of UF 6 , the AEROPLUME/RK component employs a process-splitting scheme which numerically integrates the differential equations governing dispersion, UF 6 chemistry, and thermodynamics. This algorithm is based on the assumption that

  12. Study of the dry processing of uranium ores; Etude des traitements de minerais d'uranium par voie seche

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, H

    1959-02-01

    A description is given of direct fluorination of pre-concentrated uranium ores in order to obtain the hexafluoride. After normal sulfuric acid treatment of the ore to eliminate silica, the uranium is precipitated by a load of lime to obtain: either impure calcium uranate of medium grade, or containing around 10% of uranium. This concentrate is dried in an inert atmosphere and then treated with a current of elementary fluorine. The uranium hexafluoride formed is condensed at the outlet of the reaction vessel and may be used either for reduction to tetrafluoride and the subsequent manufacture of uranium metal or as the initial product in a diffusion plant. (author) [French] Il s'agit d'une description de fluoration directe de preconcentres de minerais d'uranium en vue d'obtention d'hexafluorure. Apres attaque sulfurique normale du minerai, afin d' eliminer la silice, l' uranium est precipite par un toit de chaux pour obtenir: ou uranate de chaux impur de titre moyen, ou uranium de la dizaine du pourcentage. Ce concentre seche en atmosphere inerte est soumis a un courant de fluor elementaire. L'hexafluorure d'uranium forme est condense a la sortie du reacteur et peut etre utilise soit apres reduction en tetrafluorure par l'elaboration d'uranium metal, soit comme produit de base dans le cadre d'une usine de diffusion. (auteur)

  13. Technology for down-blending weapons grade uranium into commercial reactor-usable uranium

    International Nuclear Information System (INIS)

    Arbital, J.G.; Snider, J.D.

    1996-01-01

    The US Department of Energy (DOE) is evaluating options for rendering surplus inventories of highly enriched uranium (HEU) incapable of being used in nuclear weapons. Weapons-capable HEU was earlier produced by enriching the uranium isotope 235 U from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by permanently diluting the concentration of the 235 U isotope, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope re-enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended, low-enriched uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel. The DOE has evaluated three candidate processes for down blending surplus HEU. These candidate processes are: (1) uranium hexafluoride blending; (2) molten uranium metal blending; and (3) uranyl nitrate solution blending. This paper describes each of these candidate processes. It also compares the relative advantages and disadvantages of each process with respect to: (1) the various forms and compounds of HEU comprising the surplus inventory, (2) the use of down-blended product as commercial reactor fuel, or (3) its disposal as waste

  14. A validation study of the intertran model for assessing risks of transportation accidents: Road transport of uranium hexafluoride

    International Nuclear Information System (INIS)

    Tomachevsky, E.G.; Ringot, C.; Pages, P.; Hubert, P.

    1985-06-01

    The INTERTRAN code was developed by the IAEA in order to provide member states with a simple and rapide method of assessing the risk involved in the transportation of radioactive materials and one which was applicable on a worldwide scale. Before being used, this code must be validated and the CEA thus compared the results obtained with the conventional risk assessment methods used by the CEPN with those derived from INTERTRAN. This paper gives the results of the studies made on the subject of road transportation of uranium hexafluoride in France. The conventional accident risk assessment method gave a figure of 8.84 x 10 -4 deaths/year, whereas INTERTRAN announces 1.78 x 10 -2 . To these figures should be added 3.38 x 10 -2 deaths/year, which is the intrinsic road risk, whatever the goods carried. In relation to conventional estimates, the INTERTRAN forecasts are five times lower for the U risk and twenty times higher for the HF risk. The chemical risk is indeed the most prevalent one in this case. Other comparisons are needed to validate this code

  15. Market outlook for Australian uranium producers

    International Nuclear Information System (INIS)

    Lindsay, M.

    2001-01-01

    Recent improvements in the uranium market and political changes in Australia presented the uranium producers with their best opportunity in over 15 years. The removal of the well known 'three mines policy' by the current government has encouraged Australian producers to develop new development plans. With the expansion of the existing operations at Ranger and Olympic Dam, and the potential operations of Jabiluka, Kintyre, Koongara, Honeymoon and Beverley, Australia expects to increase annual production to 11630 t U 3 O 8 by the end of the decade. It will then join Canada as a major supplier of uranium to the world's nuclear power utilities in the 21st century. Uranium exploration, which has been virtually nonexistent over the past 15 years, has once again been reactivated. This occurred because of the change in the Government, but also because the Aboriginal groups are once more allowing exploration on their land. (author)

  16. Compilation of Requirements for Safe Handling of Fluorine and Fluorine-Containing Products of Uranium Hexafluoride Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ferrada, J.J.

    2000-04-03

    Public Law (PL) 105-204 requires the U.S. Department of Energy to develop a plan for inclusion in the fiscal year 2000 budget for conversion of the Department's stockpile of depleted uranium hexafluoride (DUF{sub 6}) to a more stable form over an extended period. The conversion process into a more stable form will produce fluorine compounds (e.g., elemental fluorine or hydrofluoric acid) that need to be handled safely. This document compiles the requirements necessary to handle these materials within health and safety standards, which may apply in order to ensure protection of the environment and the safety and health of workers and the public. Fluorine is a pale-yellow gas with a pungent, irritating odor. It is the most reactive nonmetal and will react vigorously with most oxidizable substances at room temperature, frequently with ignition. Fluorine is a severe irritant of the eyes, mucous membranes, skin, and lungs. In humans, the inhalation of high concentrations causes laryngeal spasm and broncospasms, followed by the delayed onset of pulmonary edema. At sublethal levels, severe local irritation and laryngeal spasm will preclude voluntary exposure to high concentrations, unless the individual is trapped or incapacitated. A blast of fluorine gas on the shaved skin of a rabbit causes a second degree burn. Lower concentrations cause severe burns of insidious onset, resulting in ulceration, similar to the effects produced by hydrogen fluoride. Hydrofluoric acid is a colorless, fuming liquid or gas with a pungent odor. It is soluble in water with release of heat. Ingestion of an estimated 1.5 grams produced sudden death without gross pathological damage. Repeated ingestion of small amounts resulted in moderately advanced hardening of the bones. Contact of skin with anhydrous liquid produces severe burns. Inhalation of AHA or aqueous hydrofluoric acid mist or vapors can cause severe respiratory tract irritation that may be fatal. Based on the extreme chemical

  17. Similarity of dependences of thermal conductivity and density of uranium and tungsten hexafluorides on desublimation conditions

    International Nuclear Information System (INIS)

    Barkov, V.A.

    1989-01-01

    Consideration is given to results of investigations of the dependence of thermal conductivity and density of UF 6 and WF 6 desublimates on volume content of hexafluoride in initial gaseous mixture. Similarity of these dependences, as well as the dependences of thermal conductivity of desublimates on their density was revealed. Generalized expressions, relating thermal conductivity and density of desublimates among each ofter and with volume content of hexafluoride in gaseous mixture were derived. Possibility of applying the generalized relations for calculation of thermal conductivity and density of other compounds of MeF 6 type under prescribed desublimation conclitions is shown. 15 refs.; 6 figs

  18. Method for monitoring stack gases for uranium activity

    International Nuclear Information System (INIS)

    Beverly, C.R.; Ernstberger, H.G.

    1988-01-01

    A method for sampling stack gases emanating from the purge cascade of a gaseous diffusion cascade system utilized to enrich uranium for determining the presence and extent of uranium in the stack gases in the form of gaseous uranium hexafluoride, is described comprising the steps of removing a side stream of gases from the stack gases, contacting the side stream of the stack gases with a stream of air sufficiently saturated with moisture for reacting with and converting any gaseous uranium hexafluroide contracted thereby in the side stream of stack gases to particulate uranyl fluoride. Thereafter contacting the side stream of stack gases containing the particulate uranyl fluoride with moving filter means for continuously intercepting and conveying the intercepted particulate uranyl fluoride away from the side stream of stack gases, and continually scanning the moving filter means with radiation monitoring means for sensing the presence and extent of particulate uranyl fluoride on the moving filter means which is indicative of the extent of particulate uranyl fluoride in the side stream of stack gases which in turn is indicative of the presence and extent of uranium hexafluoride in the stack gases

  19. Some economic aspects of the low enriched uranium production

    International Nuclear Information System (INIS)

    1990-05-01

    At the Technical Committee Meeting on Economics of Low Enriched Uranium 14 papers were presented. A separate abstract was prepared for each of these papers. The five technical sessions covered several economic aspects of uranium concentrates production, conversion into uranium hexafluoride and uranium enrichment and the recycling of U and Pu in LWR. Four Panel discussions were held to discuss the uranium market trends, the situation of conversion industry, the reprocessing and the uranium market, the future trends of enrichment and the economics of LWRs compared with other reactors. Refs, figs and tabs

  20. Production of uranium dioxide

    International Nuclear Information System (INIS)

    Hart, J.E.; Shuck, D.L.; Lyon, W.L.

    1977-01-01

    A continuous, four stage fluidized bed process for converting uranium hexafluoride (UF 6 ) to ceramic-grade uranium dioxide (UO 2 ) powder suitable for use in the manufacture of fuel pellets for nuclear reactors is disclosed. The process comprises the steps of first reacting UF 6 with steam in a first fluidized bed, preferably at about 550 0 C, to form solid intermediate reaction products UO 2 F 2 , U 3 O 8 and an off-gas including hydrogen fluoride (HF). The solid intermediate reaction products are conveyed to a second fluidized bed reactor at which the mol fraction of HF is controlled at low levels in order to prevent the formation of uranium tetrafluoride (UF 4 ). The first intermediate reaction products are reacted in the second fluidized bed with steam and hydrogen at a temperature of about 630 0 C. The second intermediate reaction product including uranium dioxide (UO 2 ) is conveyed to a third fluidized bed reactor and reacted with additional steam and hydrogen at a temperature of about 650 0 C producing a reaction product consisting essentially of uranium dioxide having an oxygen-uranium ratio of about 2 and a low residual fluoride content. This product is then conveyed to a fourth fluidized bed wherein a mixture of air and preheated nitrogen is introduced in order to further reduce the fluoride content of the UO 2 and increase the oxygen-uranium ratio to about 2.25

  1. Method of producing thermally stable uranium carbonitrides

    International Nuclear Information System (INIS)

    Ugajin, M.; Takahashi, I.

    1975-01-01

    A thermally stable uranium carbonitride can be produced by adding tungsten and/or molybdenum in the amount of 0.2 wt percent or more, preferably 0.5 wt percent or more, to a pure uranium carbonitride. (U.S.)

  2. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  3. Depleted uranium management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  4. Depleted uranium management alternatives

    International Nuclear Information System (INIS)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process

  5. Development of uranium milling and conversion

    International Nuclear Information System (INIS)

    Takada, Shingo; Hirono, Shuichiro.

    1983-11-01

    The development and improvement of uranium milling and refining producing uranium tetrafluoride from ores by the wet process, without producing yellowcake as an intermediate product, have been carried out for over ten years with a small pilot plant (50 t-ore/day). In the past several years, a process for converting uranium tetrafluoride into hexafluoride has been developed successfully. To develop the process further, the construction of an integrated milling and conversion pilot plant (200 t-U/year) started in 1979 and was completed in 1981. This new plant has two systems of solvent extraction using tri-noctylamine: one of the systems treats the pregnant solution (uranyl sulphate) by heap-leaching followed by ion exchange, and the other treats the uranyl sulphate solution by dissolving imported yellowcake. The uranium loading solvents from the two systems are stripped with hydrochloric acid solution to obtain the concentrated uranium solution containing 100 g-U/1. Uranyl sulphate solution from the stripping circuit is reduced to a uranous sulphate solution by the electrolytic method. In a reduction cell, uranyl sulphate solution and dilute sulphuric acid are used respectively as catholyte and anolyte, and a cation exchange membrane is used to prevent re-oxidation of the uranous sulphate. In the following hydrofluorination step, uranium tetrafluoride, UF 4 .1-1.2H 2 O (particle size: 50-100μ), is produced continuously as the precipitate in an improved reaction vessel, and this makes it possible to simplify the procedures of liquid-solid separation, drying and granulation. The uranium tetrafluoride is dehydrated by heating to 350 0 C in an inert gas flow. The complete conversion from UF 4 into UF 6 is achieved by a fluidized-bed reactor and a high value of utilization efficiency of fluorine, over 99.9 percent, is attained at about 400 0 C. (author)

  6. No fluorinated compounds in the uranium conversion process: risk analysis and proposition of pictograms

    International Nuclear Information System (INIS)

    Jeronimo, Adroaldo Clovis; Oliveira, Wagner dos Santos

    2012-01-01

    The plants comprising the chemical conversion of uranium, which are part of the nuclear fuel cycle, present some risks, among others, because are associated with the non-fluorinated compounds handled in these processes. This study is the analysis of the risks associated with these compounds, i e, the non-fluorinated reactants and products, handled in different chemical processing plants, which include the production of uranium hexafluoride, while emphasizing the responsibilities and actions that fit to the chemical engineer with regard to minimizing risks during the various stages. The work is based on the experience gained during the development and mastery of the technology of production of uranium hexafluoride, the IPEN/ CNEN-SP, during the '80s, with the support of COPESP -Navy of Brazil. (author)

  7. Development of an On-Line Uranium Enrichment Monitor

    International Nuclear Information System (INIS)

    Xuesheng, L.; Guorong, L.; Yonggang, Z.; Xueyuan, H. X.-Y.

    2015-01-01

    An on-line enrichment monitor was developed to measure the enrichment of UF6 flowing through the processing pipes in centrifuge uranium enrichment plant. A NaI(Tl) detector was used to measure the count rates of the 186 keV gamma ray emitted from 235U, and the total quantity of uranium was determined from thermodynamic characteristics of gaseous uranium hexafluoride. The results show that the maximum relative standard deviation is less than 1% when the measurement time is 120 s or more and the pressure is more than 2 kPa in the measurement chamber. There are two working models for the monitor. The monitor works normally in the continuous model, When the gas's pressure in the pipe fluctuates greatly, it can work in the intermittent model, and the measurement result is very well. The background of the monitor can be measured automatically periodically. It can control automatically electromagnetic valves open and close, so as to change the gas's quantity in the chamber. It is a kind of unattended and remote monitor, all of data can be transfer to central control room. It should be effective for nuclear materials accountability verifications and materials balance verification at uranium enrichment plant by using the monitor to monitor Uranium enrichment of gaseous uranium hexafluoride in the output end of cascade continuously. (author)

  8. LEU fuel element produced by the Egyptian fuel manufacturing pilot plant

    International Nuclear Information System (INIS)

    Zidan, W.I.

    2000-01-01

    The Egyptian Fuel Manufacturing Pilot Plant, FMPP, is a Material Testing Reactor type (MTR) fuel element facility, for producing the specified fuel elements required for the Egyptian Second Research Reactor, ETRR-2. The plant uses uranium hexafluoride (UF 6 , 19.75% U 235 by wt) as a raw material which is processed through a series of the manufacturing, inspection and test plan to produce the final specified fuel elements. Radiological safety aspects during design, construction, operation, and all reasonably accepted steps should be taken to prevent or reduce the chance of accidents occurrence. (author)

  9. Joint ANSI-INMM 8.1: Nuclear Regulatory Commission study of uranium hexafluoride cylinder material accountability bulk measurements

    International Nuclear Information System (INIS)

    Pontius, P.E.; Doher, L.W.

    1977-01-01

    This paper reports the progress to date in a demonstration of the procedures in ANSI N15.18-1975, ''Mass Calibration Techniques for Nuclear Material Control,'' sponsored and funded by the Nuclear Regulatory Commission (NRC). The philosophy of mass measurement as a production process, as promulgated in ANSI N15.18-1975, is reviewed. Special emphasis is placed on the use of artifact Reference Mass Standards (RMS) as references for uranium hexafluoride (UF 6 ) calibration and bulk measurement processes. The history of the creation of the artifact concept and its adoption by ANSI N15.18-1975 and the Nuclear Regulatory Commission is narrated. The program now under way is specifically described; including descriptions of the RMS, their calibration, and the assignment of uncertainties to them by the National Bureau of Standards (NBS). Instrument tests, in-house standards (IHS), and assignment of values relative to the RMS-NBS values at nuclear facilities which measure UF 6 cylinders are described. Comparisons and the data base are detailed to provide realistic measurement process parameters associated with accountable transfer of UF 6 . The as yet uncompleted part of the demonstration is described, that is, to further close the measurement loop by verification both between and within facilities

  10. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF 6 and a (2) blend the pure HEU UF 6 with diluent UF 6 to produce LWR grade LEU-UF 6 . The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry

  11. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  12. Criticality safety concerns of uranium deposits in cascade equipment

    International Nuclear Information System (INIS)

    Plaster, M.J.

    1996-01-01

    The Paducah and Portsmouth Gaseous Diffusion Plants enrich uranium in the 235 U isotope by diffusing gaseous uranium hexafluoride (UF 6 ) through a porous barrier. The UF 6 gaseous diffusion cascade utilized several thousand open-quotes stagesclose quotes of barrier to produce highly enriched uranium (HEU). Historically, Portsmouth has enriched the Paducah Gaseous Diffusion Plant's product (typically 1.8 wt% 235 U) as well as natural enrichment feed stock up to 97 wt%. Due to the chemical reactivity of UF 6 , particularly with water, the formation of solid uranium deposits occur at a gaseous diffusion plant. Much of the equipment operates below atmospheric pressure, and deposits are formed when atmospheric air enters the cascade. Deposits may also be formed from UF 6 reactions with oil, UF 6 reactions with the metallic surfaces of equipment, and desublimation of UF 6 . The major deposits form as a result of moist air in leakage due to failure of compressor casing flanges, blow-off plates, seals, expansion joint convolutions, and instrument lines. This report describes criticality concerns and deposit disposition

  13. FIREPLUME model for plume dispersion from fires: Application to uranium hexafluoride cylinder fires

    International Nuclear Information System (INIS)

    Brown, D.F.; Dunn, W.E.

    1997-06-01

    This report provides basic documentation of the FIREPLUME model and discusses its application to the prediction of health impacts resulting from releases of uranium hexafluoride (UF 6 ) in fires. The model application outlined in this report was conducted for the Draft Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted UF 6 . The FIREPLUME model is an advanced stochastic model for atmospheric plume dispersion that predicts the downwind consequences of a release of toxic materials from an explosion or a fire. The model is based on the nonbuoyant atmospheric dispersion model MCLDM (Monte Carlo Lagrangian Dispersion Model), which has been shown to be consistent with available laboratory and field data. The inclusion of buoyancy and the addition of a postprocessor to evaluate time-varying concentrations lead to the current model. The FIREPLUME model, as applied to fire-related UF 6 cylinder releases, accounts for three phases of release and dispersion. The first phase of release involves the hydraulic rupture of the cylinder due to heating of the UF 6 in the fire. The second phase involves the emission of material into the burning fire, and the third phase involves the emission of material after the fire has died during the cool-down period. The model predicts the downwind concentration of the material as a function of time at any point downwind at or above the ground. All together, five fire-related release scenarios are examined in this report. For each scenario, downwind concentrations of the UF 6 reaction products, uranyl fluoride and hydrogen fluoride, are provided for two meteorological conditions: (1) D stability with a 4-m/s wind speed, and (2) F stability with a 1-m/s wind speed

  14. Uranium recovering from slags generated in the metallic uranium by magnesiothermic reduction

    International Nuclear Information System (INIS)

    Fornarolo, F.; Carvalho, E.F. Urano de; Durazzo, M.; Riella, H.G.

    2008-01-01

    The Nuclear Fuel Center of IPEN/CNEN-SP has recent/y concluded a program for developing the fabrication technology of the nuclear fuel based on the U 3 Si 2 -Al dispersion, which is being used in the IEA-R1 research reactor. The uranium silicide (U 3 Si 2 ) fuel production starts with the uranium hexafluoride (UF 6 ) processing and uranium tetrafluoride (UF 4 ) precipitation. Then, the UF 4 is converted to metallic uranium by magnesiothermic reduction. The UF 4 reduction by magnesium generates MgF 2 slag containing considerable concentrations of uranium, which could reach 20 wt%. The uranium contained in that slag should be recovered and this work presents the results obtained in recovering the uranium from that slag. The uranium recovery is accomplished by acidic leaching of the calcined slag. The calcination transforms the metallic uranium in U 3 O 8 , promoting the pulverization of the pieces of metallic uranium and facilitating the leaching operation. As process variables, have been considered the nitric molar concentration, the acid excess regarding the stoichiometry and the leaching temperature. As result, the uranium recovery reached a 96% yield. (author)

  15. Minimum critical masses for uranium at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Tayloe, R.W. Jr.; Davis, T.C.

    1994-06-01

    This report presents a tabulation of safe masses and minimum critical masses for uranium (U). These minimum critical mass and safe mass tables were obtained by interpolating between the values reported in the literature to obtain values as a function of enrichment within the 1.5 percent to 100 percent range. Equivalent mass values for uranium-235 (U 235 ), uranium hexafluoride (UF 6 ), and uranyl fluoride (UO 2 F 2 ) have been generated from the safe mass and minimum critical masses for uranium

  16. Uranium - the element: its occurrence and uses

    International Nuclear Information System (INIS)

    Awan, I. Z.

    2015-01-01

    Uranium metal and its compounds have been of great interest to physicists and chemists due to its use for both civil and military applications, e.g. production of electricity, use in the medical field and for making nuclear weapons. This review paper describes the occurrence, chemistry and metallurgy of the element 'uranium', its conversion to stable compounds such as yellow cake, uranium tetrafluoride and uranium hexafluoride and the enrichment technologies and uses for both civil and military purposes. The paper is meant for ready reference for students and teachers in connection with the recent spate of interest shown in nuclear power generation in Pakistan and abroad. (author)

  17. Adsorption of uranium on adsorbents produced from used tires

    International Nuclear Information System (INIS)

    Mahramanlioglu, M.

    2003-01-01

    Potential use of adsorbents produced from used tires for the removal of uranium from aqueous solutions is investigated. Two different adsorbents were used including char and activated carbon produced from used tires. The surface area was larger on activated carbon. Adsorption experiments were carried out as a function of time, adsorbent concentration, pH and initial concentration of uranium. The adsorption kinetics was found to follow the Lagergren equation. The rate constants of intraparticle diffusion and mass transfer coefficients were calculated. It was shown that the equilibrium data could be fitted by the Langmuir and Freundlich equations. The adsorption of uranium in the presence of different cations were also studied and the results were correlated with the ionic potential of the cations. It was demonstrated that the activated carbon produced from used tires can be considered as an adsorbent that has a commercial potential for uranium removal. (author)

  18. Rupture of Model 48Y UF6 cylinder and release of uranium hexafluoride, Sequoyah Fuels Facility, Gore, Oklahoma, January 4, 1986. Volume 1

    International Nuclear Information System (INIS)

    1986-02-01

    At 11:30 a.m. on January 4, 1986, a Model 48Y UF 6 cylinder filled with uranium hexafluoride (UF 6 ) ruptured while it was being heated in a steam chest at the Sequoyah Fuels Conversion Facility near Gore, Oklahoma. One worker died because he inhaled hydrogen fluoride fumes, a reaction product of UF 6 and airborne moisture. Several other workers were injured by the fumes, but none seriously. Much of the facility complex and some offsite areas to the south were contaminated with hydrogen fluoride and a second reaction product, uranyl fluoride. The interval of release was approximately 40 minutes. The cylinder, which had been overfilled, ruptured while it was being heated because of the expansion of UF 6 as it changed from the solid to the liquid phase. The maximum safe capacity for the cylinder is 27,560 pounds of product. Evidence indicates that it was filled with an amount exceeding this limit. 18 figs

  19. The uncertainty evaluation of measurement for uranium in UF_6 hydrolysate by potentiometric titration

    International Nuclear Information System (INIS)

    Jiang Haiying; Cheng Ruoyu; Meng Xiujun

    2014-01-01

    Based on the building of mathematical model, this paper analyzed the origin of component of indeterminacy of which the measurement result for uranium in uranium hexafluoride hydrolysate by potentiometric titration, also each uncertainty was calculated and the expanded uncertainty was given. By evaluation the result of the uranium concentration is that: (158.88 + 1.22) mgU/mL, K = 2, P = 95%. (authors)

  20. Selection of a management strategy for depleted uranium

    International Nuclear Information System (INIS)

    Patton, S.; Hanrahan, E.; Bradley, C. Jnr.

    1995-01-01

    A consequence of the uranium enrichment process is the accumulation of a significant amount of depleted uranium hexafluoride (UF 6 ). Currently, in the United States approximately 560 000 tonnes of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a programme to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF 6 . The programme involves a technology and engineering assessment of proposed management options (which are: use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. Because of its provisions for considering a wide range of relevant issues and involving the public, this programme has become a model for future DOE materials disposition programmes. This paper presents an overview of the Depleted Uranium Hexafluoride Management Programme. Technical findings of the programme to date are presented, and major issues involved in selecting and implementing a management strategy are discussed. (author)

  1. Distribution of uranium supply and enrichment

    International Nuclear Information System (INIS)

    Bamford, F.W.

    1982-01-01

    Uranium supply and demand is examined from the perspective of companies in the uranium hexafluoride (UF6) conversion business whose main interest is their sources of uranium supply and UF6 destinations because of transportation costs. Because of the variations in yellowcake transport, charges for conversion, and UF6 transport costs, most converters don't have standard prices. Companies try to look ahead to determine patterns of supplies and delivery points when they analyze the market and estimate future prices. Market analyses must take into account the purchasing policies of utilities around the world. The presentation shows North America supplying about 40% of world uranium, with about 13% of the enrichment done elsewhere. It also shows North American converters getting 53% of the business, but that will require importing uranium from outside North America. 6 tables

  2. Transformations of highly enriched uranium into metal or oxide; Etudes des procedes de transformation des composes d'uranium a fort enrichissement isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Nollet, P; Sarrat, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The enriched uranium workshops in Cadarache have a double purpose on the one hand to convert uranium hexafluoride into metal or oxide, and on the other hand to recover the uranium contained in scrap materials produced in the different metallurgical transformations. The principles that have been adopted for the design and safety of these workshops are reported. The nuclear safety is based on the geometrical limitations of the processing vessels. To establish the processes and the technology of these workshops, many studies have been made since 1960, some of which have led to original achievements. The uranium hexafluoride of high isotopic enrichment is converted either by injection of the gas into ammonia or by an original process of direct hydrogen reduction to uranium tetrafluoride. The uranium contained m uranium-zirconium metal scrap can be recovered by combustion with hydrogen chloride followed treatment of the uranium chloride by fluorine in order to obtain the uranium in the hexafluoride state. Recovery of the uranium contained m various scrap materials is obtained by a conventional refining process combustion of metallic scrap, nitric acid dissolution of the oxide, solvent purification by tributyl phosphate, ammonium diuranate precipitation, calcining, reduction and hydro fluorination into uranium tetrafluoride, bomb reduction by calcium and slag treatment. Two separate workshops operate along these lines one takes care of the uranium with an isotopic enrichment of up to 3 p. 100, the other handles the high enrichments. The handling of each step of this process, bearing in mind the necessity for nuclear safety, has raised some special technological problems and has led to the conception of new apparatus, in particular the roasting furnace for metal turnings, the nitric acid dissolution unit, the continuous precipitator and ever safe filter and dryer for ammonium diuranate, the reduction and hydro fluorination furnace and the slag recovery apparatus These are

  3. Description of an engineering-scale facility for uranium fluorination studies

    International Nuclear Information System (INIS)

    Yagi, Eiji; Saito, Shinichi; Horiuchi, Masato

    1976-03-01

    In the research program of power reactor fuel reprocessing by fluoride volatility process, the engineering facility was constructed to establish the techniques of handling kilogram quantities of fluorine and uranium hexafluoride and to obtain engineering data on the uranium fluidized-bed oxidation and fluorination. This facility is designed for a capacity of 5 kg per batch. Descriptions on the facility and equipment are given, including design philosophy, safety and its analysis. (auth.)

  4. Surface decontamination in the old storage shed number 99 of the General Plan of IPEN/CNEN-SP, containing production equipment of natural uranium hexafluoride (UF6), aiming at its decommissioning

    International Nuclear Information System (INIS)

    Almeida, Claudio C. de; Cambises, Paulo B.S.; Paiva, Julio E. de; Paiva, Julio E. de; Silva, Teresina M.; Rodrigues, Demerval L.

    2013-01-01

    This paper presents the steps adopted in the operation planned for the decontamination of surfaces in the old storage shed number 99 the general layout of the Energy Research and Nuclear IPEN-CNEN/SP, Brazil, and contained various types of equipment originating from production hexafluoride natural uranium (UF6). This operation involved the planning, training of operators of the facility, analysis of workplaces and radiometric surveys for monitoring of external radiation and surface contamination. The training involved the procedures for decontamination of surfaces, segregation of materials and practical procedures for individual monitoring of contamination outside of the body. Were also established rules for the transport of radioactive materials in the internal and external facility and release of material and sites already decontaminated

  5. Main results obtained in France in the development of the gaseous diffusion process for uranium isotope separation

    International Nuclear Information System (INIS)

    Frejacques, C.; Bilous, O.; Dixmier, J.; Massignon, D.; Plurien, P.

    1958-01-01

    The main problems which occur in the study of uranium isotope separation by the gaseous diffusion process, concern the development of the porous barrier, the corrosive nature of uranium hexafluoride and also the chemical engineering problems related to process design and the choice of best plant and stage characteristics. Porous barriers may be obtained by chemical attack of non porous media or by agglomeration of very fine powders. Examples of these two types of barriers are given. A whole set of measurement techniques were developed for barrier structure studies, to provide control and guidance of barrier production methods. Uranium hexafluoride reactivity and corrosive properties are the source of many difficult technological problems. A high degree of plant leak tightness must be achieved. This necessity creates a special problem in compressor bearing design. Barrier lifetime is affected by the corrosive properties of the gas, which may lead to a change of barrier structure with time. Barrier hexafluoride permeability measurements have helped to make a systematic study of this point. Finally an example of a plant flowsheet, showing stage types and arrangements and based on a minimisation of enriched product costs is also given as an illustration of some of the chemical engineering problems present. (author) [fr

  6. Results of the remote sensing feasibility study for the uranium hexafluoride storage cylinder yard program

    International Nuclear Information System (INIS)

    Balick, L.K.; Bowman, D.R.

    1997-02-01

    The US DOE manages the safe storage of approximately 650,000 tons of depleted uranium hexafluoride remaining from the Cold War. This slightly radioactive, but chemically active, material is contained in more than 46,000 steel storage cylinders that are located at Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. Some of the cylinders are more than 40 years old, and approximately 17,500 are considered problem cylinders because their physical integrity is questionable. These cylinders require an annual visual inspection. The remainder of the 46,000-plus cylinders must be visually inspected every four years. Currently, the cylinder inspection program is extremely labor intensive. Because these inspections are accomplished visually, they may not be effective in the early detection of leaking cylinders. The inspection program requires approximately 12--14 full-time-equivalent (FTE) employees. At the cost of approximately $125K per FTE, this translates to $1,500K per annum just for cylinder inspection. As part of the technology-development portion of the DOE Cylinder Management Program, the DOE Office of Facility Management requested the Remote Sensing Laboratory (RSL) to evaluate remote sensing techniques that have potential to increase the effectiveness of the inspection program and, at the same time, reduce inspection costs and personnel radiation exposure. During two site visits (March and May 1996) to the K-25 Site at Oak Ridge, TN, RSL personnel tested and characterized seven different operating systems believed to detect leakage, surface contamination, thickness and corrosion of cylinder walls, and general area contamination resulting from breached cylinders. The following techniques were used and their performances are discussed: Laser-induced fluorescent imaging; Long-range alpha detection; Neutron activation analysis; Differential gamma-ray attenuation; Compton scatterometry; Active infrared inspection; and Passive thermal infrared imaging

  7. On the technical development to minimize the quantity of solid wastes in a uranium conversion

    International Nuclear Information System (INIS)

    Otomura, Keiichiro; Ogura, Yoshikazu; Fujisaki, Sakae

    1987-01-01

    We have developed the new process of treating the waste liquor from a uranium conversion at Ningyo Toge Works PNC, Japan. This process consists of neutralizing precipitation, solid liquid separation, distillation and adsorption. At a neutralizing precipitation step a magnesium oxide is added in the waste liquor containing uranium and fluorine. Most of the uranium and fluorine in the waste liquor precipitate as magnesium compounds. A sulfuric acid is added to the precipitate separated by a filter to dissolve. The resulting solution is then distilled to recover a hydrofluoric acid as a distillate. Uranium is recovered from a residue by an anion exchange method. The recoverd fluorine and uranium are recycled to the main process of conversion. The filtrate separated at the precipitation step is then passed through adsorbing columns. The residual fluorine and uranium in the filtrate were adsorbed and removed by the chelating resine which selectively adsorb the uranium and fluorine. After that the treated waste liquor is discharged out of the plant. This process has merits of being able to minimize the quantity of solid waste in comparison with the conventional process and to recover uranium and fluorine. This process can also be applied to uranium reconversion process from uranium hexafluoride to uranium oxide and to uranium metal production process, which produce the same kind of waste liquor. (author)

  8. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1979-01-01

    Vibrational excitation of molecules having components of a selected isotope type is used to produce a conversion from vibrational to translational excitation of the molecules by collision with the molecules of a heavy carrier gas. The resulting difference in translaton between the molecules of the selected isotope type and all other molecules of the same compound permits their separate collection. When applied to uranium enrichment, a subsonic cryogenic flow of molecules of uranium hexafluoride in combination with an argon carrier gas is directed through a cooled chamber that is illuminated by laser radiaton tuned to vibrationally excite the uranium hexafluoride molecules of a specific uranium isotope. The excited molecules collide with carrier gas molecules, causing a conversion of the excitation energy into a translation of the excited molecule, which results in a higher thermal energy or diffusivity than that of the other uranium hexafluoride molecules. The flowing molecules including the excited molecules directly enter a set of cryogenically cooled channels. The higher thermal velocity of the excited molecules increases the probability of their striking a collector surface. The molecules which strike this surface immediately condense. After a predetermined thickness of molecules is collected on the surface, the flow of uranium hexafluoride is interrupted and the chamber heated to the point of vaporization of the collected hexafluoride, permitting its removal. (LL)

  9. Rupture of Model 48Y UF6 cylinder and release of uranium hexafluoride. Cylinder overfill, March 12-13, 1986. Investigation of a failed UF6 shipping container. Volume 2

    International Nuclear Information System (INIS)

    1986-06-01

    NUREG-1179, Volume 1, reported on the rupture of a Model 48Y uranium hexafluoride (UF 6 ) cylinder and the subsequent release of UF 6 . At the time of publication, a detailed metallurgical examination of the damaged cylinder was under way and results were not available. Subsequent to the publication of Volume 1, a second incident occurred at the Sequoyah Fuels Corporation facility. On March 13, 1986, a Model 48X cylinder was overfilled during a special one-time draining procedure; however, no release of UF 6 occurred. An Augmented Investigation Team investigated this second incident. This report, NUREG-1179, Volume 2, presents the findings made by the Augmented Investigation Team of the March 13 incident and the report of the detailed metallurgical examination conducted by Battelle Columbus Division of the cylinder damaged on January 4, 1986

  10. The preparation of uranium tetrafluoride from dioxide by aqueous way

    International Nuclear Information System (INIS)

    Aquino, A.R. de; Abrao, A.

    1990-01-01

    This paper describes the study for the wet way obtention of uranium tetrafluoride by the reaction of hydrofluoric acid and powder uranium dioxide. With the results obtained at laboratory scale a pilot plant was planned and erected. It is presently in operation for experimental data aquisition. Time of reaction, temperature, excess of reagents and the hydrofluoric acid / uranium dioxide ratio were the main parameters studied to obtain a product with the following characteristics: - density greater than 1 g/cm 3 , - conversion rate greater than 96%, -water content equal to 0,2%, that allows its application to hexafluoride convertion or to magnesiothermic process. (authOr) [pt

  11. Ningyo Toge uranium enrichment pilot plant comes into full

    International Nuclear Information System (INIS)

    1982-01-01

    The uranium enrichment pilot plant of the Power Reactor and Nuclear Fuel Development Corporation at Ningyo Toge went into full operation on March 26, 1982. This signifies that the front end of the nuclear fuel cycle in Japan, from uranium ore to enrichment, is only a step away from commercialization. On the same day, the pilot plant of uranium processing and conversion to UF 6 , the direct purification of uranium ore into uranium hexafluoride, began batch operation at the same works. The construction of the uranium enrichment pilot plant has been advanced in three stages: i.e. OP-1A with 1000 centrifuges, OP-1B with 3000 centrifuges and OP-2 with 3000 centrifuges. With a total of 7000 centrifuges, the pilot plant, the first enrichment plant in Japan, has now a capacity of supplying enriched uranium for six months operation of a 1,000 MW nuclear power plant. (J.P.N.)

  12. The physics of uranium isotope separation by laser

    International Nuclear Information System (INIS)

    Clerc, M.; Rigny, P.

    1985-01-01

    SILMO is the isotopic separation process using a laser and the uranium hexafluoride molecule. SILVA is the laser process whereby the enriched medium is formed by the atomic vapour from uranium. The scientific bases of the two processes are described using very simple parameters such as photoionisation selectivity and useful availability of photons and atoms. It is shown that SILVA can have a specific energy consumption lower than 100 KWh/UTS. A separator module could be made up, for instance, of a dihedron of uranium vapour several metres long in which the laser beams would have to be bent within a multi-duct cell to cover about 180 to 200 meters. This separator module would use overall laser light power of some 10 KW and could supply 3.5% enriched uranium in a single phase from natural uranium by rejecting 0.20% impoverished U. 27 refs [fr

  13. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Elder, H. K.

    1981-10-01

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0

  14. The uranium producing industry - its capital structure

    International Nuclear Information System (INIS)

    Duncan, I.J.

    1989-01-01

    The uranium mining industry has undergone a substantial change over the past decade. A few rather informal statistics relevant to this change have been gathered together, with particular emphasis on the corporate and capital structures which existed in the industry in the 1970s and 1980s. These data offer interesting insights on the availability of capital for new uranium mining ventures, and lead to a sketch of the finances of a hypothetical new venture. The results of this work suggest that there may be few producers likely to start work on a greenfield site in the next few years, even if the market recovers from its present doldrums. (author)

  15. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

    International Nuclear Information System (INIS)

    2003-01-01

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF 6 stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF 6 conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF 6 conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (DandD) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products

  16. Bibliographical study on photochemical separation of uranium isotopes

    International Nuclear Information System (INIS)

    Bougon, Roland

    1975-01-01

    The objective of this report is to propose an overview of knowledge and current works on isotopic separation of uranium by means of selective excitation where this excitation is obtained by a light source with a wave length corresponding to a selective or preferential absorption by a molecule or by the atom itself of one of the isotopes. After a brief overview of principles and requirements of isotopic separation by selective excitation, the author reviews compounds which can be used for this process. These compounds are mainly considered in terms of spectroscopy, and the study focuses on the most volatile among them, the uranium hexafluoride, its spectra, and possible processes for extraction. Some much less volatile uranium compounds are also mentioned with, when available, their spectroscopic properties. The uranium vapour excitation process is described, and some orientations for further researches are proposed [fr

  17. Review of experience gained in fabricating nuclear grade uranium and thorium compounds and their analytical quality control at the Instituto de Energia Atomica, Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Abrao, A.; Franca Junior, J.M.; Ikuta, A.

    1977-01-01

    The main activities developed at 'Instituto de Energia Atomica' Sao Paulo, Brazil, on the recovery of uranium from ores, the purification of uranium and thorium raw concentrates and their transformation in nuclear grade compounds, are reviewed. The design and assemble of pilot facilities for ammonium diuranate (ADV) uranium tetrafluoride, uranium trioxide, uranium oxide microspheres, uranyl nitrate denitration, uranim hexafluoride and thorium compounds are discussed. The establishment of analytical procedures are emphasized [pt

  18. No fluorinated compounds in the uranium conversion process: risk analysis and proposition of pictograms; Os compostos nao fluorados nos processos da conversao do uranio: analise de riscos e proposicao de pictogramas

    Energy Technology Data Exchange (ETDEWEB)

    Jeronimo, Adroaldo Clovis; Oliveira, Wagner dos Santos, E-mail: acejota18@yahoo.com.br, E-mail: oliveira@feq.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Quimica; Aquino, Afonso Rodrigues de, E-mail: araquino@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-03-15

    The plants comprising the chemical conversion of uranium, which are part of the nuclear fuel cycle, present some risks, among others, because are associated with the non-fluorinated compounds handled in these processes. This study is the analysis of the risks associated with these compounds, i e, the non-fluorinated reactants and products, handled in different chemical processing plants, which include the production of uranium hexafluoride, while emphasizing the responsibilities and actions that fit to the chemical engineer with regard to minimizing risks during the various stages. The work is based on the experience gained during the development and mastery of the technology of production of uranium hexafluoride, the IPEN/ CNEN-SP, during the '80s, with the support of COPESP -Navy of Brazil. (author)

  19. Study of neptunium hexafluoride formation and its adsorption on metallic fluorides

    International Nuclear Information System (INIS)

    Matcheret, Georges

    1970-01-01

    This report involves two parts. The first part deals with the action of elementary fluorine on neptunium compounds by a thermogravimetric method. The mechanism and the kinetics of this reaction vary according to the nature of the compound. 1 - With neptunium tetrafluoride the reaction, proceeds in a single step. The kinetics corresponds to a uniform attack of the entire surface of the sample and follows the kinetics law: (1-α) 1/3 1-k rel t . 2 - The reaction with neptunium dioxyde involves two steps, neptunium tetrafluoride being the intermediate compound. The kinetics of the first step corresponds to a diffusion process and follows the kinetic law: log (1-α) = kt 1/2 . The kinetics of the second step corresponds to an uniform attack of the entire sur face of the sample. The object of the second part is a study of the adsorption of uranium hexafluoride and neptunium hexafluoride on sodium, magnesium and barium fluorides by a volumetric method. The adsorption of UF 6 on MgF 2 has been investigated at 20 deg. C. The isothermal curve obtained is characteristic of a physical one layer monomolecular adsorption. In a way similar to the behaviour of UF 6 the adsorption of NpF 6 involves in addition a chemical reduction with formation of NpF 5 and release of fluorine. The reaction of NpF 6 with BaF 2 permitted to confirm the influence of the polarizing power of the Ba ++ ion on formation and stability of the product of addition. (author) [fr

  20. Producer-consumer collaboration only way to stable future uranium market

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, P

    1976-07-01

    Points from speakers at the Uranium Institute's Symposium on supply and demand in London are presented. The main theme of the conference was that of international co-operation particularly between producers and consumers. Several delegates commented on possible constraints on production by growing governmental regulations. Among the many other topics referred to was the reliability of forecasts of uranium resources.

  1. Overview of toxicity data and risk assessment methods for evaluating the chemical effects of depleted uranium compounds

    International Nuclear Information System (INIS)

    Hartmann, H.M.; Monette, F.A.; Avci, H.I.

    2000-01-01

    In the United States, depleted uranium is handled or used in several chemical forms by both governmental agencies and private industry (primarily companies producing and machining depleted uranium metal for military applications). Human exposure can occur as a result of handling these compounds, routine low-level effluent releases to the environment from processing facilities, or materials being accidentally released from storage locations or during processing or transportation. Exposure to uranium can result in both chemical and radiological toxicity, but in most instances chemical toxicity is of greater concern. This article discusses the chemical toxic effects from human exposure to depleted uranium compounds that are likely to be handled during the long-term management and use of depleted uranium hexafluoride (UF 6 ) inventories in the United States. It also reviews representative publications in the toxicological literature to establish appropriate reference values for risk assessments. Methods are described for evaluating chemical toxicity caused by chronic low-level exposure and acute exposure. Example risk evaluations are provided for illustration. Preliminary results indicate that chemical effects of chronic exposure to uranium compounds under normal operating conditions would be negligibly small. Results also show that acute exposures under certain accident conditions could cause adverse chemical effects among the populations exposed.

  2. Gasket for uranium enrichment plant

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, S; Aiyoshi, H

    1977-02-08

    A gasket to be inserted between flange joints in the equipments and pipe lines of an uranium enrichment plant having neither permeability nor adsorptivity to water while maintaining mechanical, physical and chemical properties of an elastomer gasket is described. A gasket made of an elastomeric material such as a polymer is integratedly formed at its surface with anti-slip projections. The gasket is further surrounded at its upper and lower peripheral sides, as well as outer circumferential portion with a U-sectioned cover (enclosure) made of fluoro-plastics. In this arrangement, the gasket main body shows a gas-tightness for uranium hexafluoride gas and the cover exhibits a gas-tightness for other component gases such as moisture to thereby prevent degradation of the gasket due to absorption and permeation of the moisture.

  3. Radiation protection training at uranium hexafluoride and fuel fabrication plants

    International Nuclear Information System (INIS)

    Brodsky, A.; Soong, A.L.; Bell, J.

    1985-05-01

    This report provides general information and references useful for establishing or operating radiation safety training programs in plants that manufacture nuclear fuels, or process uranium compounds that are used in the manufacture of nuclear fuels. In addition to a brief summary of the principles of effective management of radiation safety training, the report also contains an appendix that provides a comprehensive checklist of scientific, safety, and management topics, from which appropriate topics may be selected in preparing training outlines for various job categories or tasks pertaining to the uranium nuclear fuels industry. The report is designed for use by radiation safety training professionals who have the experience to utilize the report to not only select the appropriate topics, but also to tailor the specific details and depth of coverage of each training session to match both employee and management needs of a particular industrial operation. 26 refs., 3 tabs

  4. Process for decontamination of surfaces in an facility of natural uranium hexafluoride production (UF{sub 6}); Processo de descontaminação de superfícies em uma instalação de produção de hexafluoreto de urânio natural (UF{sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Claudio C. de; Silva, Teresinha M.; Rodrigues, Demerval L.; Carneiro, Janete C.G.G., E-mail: calmeida@ipen.br [Instituto de Pesquisas Energéticas e Nucleares(IPEN/CNEN-SP), São Paulo, SP (Brazil). Gerência de Radioproteção

    2017-07-01

    The experience acquired in the actions taken during the decontamination process of an IPEN-CNEN / SP Nuclear and Energy Research Institute facility, for the purpose of making the site unrestricted, is reported. The steps of this operation involved: planning, training of facility operators, workplace analysis and radiometric measurements. The facility had several types of equipment from the natural uranium hexafluoride (UF{sub 6}) production tower and other facility materials. Rules for the transportation of radioactive materials were established, both inside and outside the facility and release of materials and installation.

  5. New method for conversion of uranium hexafluoride to uranium dioxide

    International Nuclear Information System (INIS)

    Nakabayashi, S.; Suzuki, M.; Tanaka, H.

    1987-01-01

    Five different methods for conversion of UF 6 to ceramic-grade UO 2 powder have been developed to industrial scale. Two of them, the ammonium diuranate (ADU) and AUC processes, are based on precipitation of uranium compounds from aqueous solutions. The other three follow a dry route in which UF 6 is hydrolyzed and reduced by steam and hydrogen using fluidized bed techniques, rotating kilns, or flame chemistry methods. The ADU process has the advantage of flexible product powder characteristics, while disadvantages include a large quantity of waste, low powder fluidity, and a complicated process. On the other hand, the dry process using fluidized-bed techniques has the advantages of hydrofluoric acid recovery, a free-flowing powder, and process simplicity, but the disadvantages of poorer ceramic properties for the product. The new method developed at Mitsubishi Metal Corp. is a semidry process, which has well-balanced merits over the ADU process and the dry process using fluidized-bed techniques. This process is very attractive from powder characteristics, process simplicity, and waste reduction

  6. Uranium enrichment in South Africa: from the world-unique Z-plant to the use of high-technology lasers

    International Nuclear Information System (INIS)

    McDowell, M.W.

    1995-01-01

    A historical discussion of the technology used in South Africa for the enrichment of uranium, as well as other technological spin-offs for the country that followed from the construction of the Z-plant. The national energy strategy and objectives of the government during the Apartheid years resulted in the development of several large-scale energy projects. The pressure of sanctions forced the Z-plant to be rushed into operation at an uneconomical capacity of 250 000 SWU per annum. In 1994 this implied that enriched uranium was produced at a cost of $200 per SWU while the world market price was below $90. While the production of enriched uranium at the Z-plant ceased early in 1995, the expertise gained will not be lost entirely. As a result of the high energy and financial capital intensive current methods of producing enriched uranium, research started in the early 1970's into alternative production processes making use of lasers. South Africa has opted for the MLIS (molecular laser isotope separation) process, as a result of its vast experience gained from the Z-plant in the handling of the molecular input gas UF6 (uranium hexafluoride), and this has been under development since the early 1980's. During 1994 significant progress was made with MLIS, in particular with single-step enrichment from natural uranium to better than 4% uranium 235 on a macro scale. The Atomic Energy Corporation of South Africa's strategy is to licence the process internationally. 3 tabs., 3 figs

  7. The Determination of Uranium and Trace Metal Impurities in Yellow Cake Sample by Chemical Method

    International Nuclear Information System (INIS)

    Busamongkol, Arporn; Rodthongkom, Chouvana

    1999-01-01

    The purity of uranium cake is very critical in nuclear-grade uranium (UO 2 ) and uranium hexafluoride (UF 6 ) production. The major element in yellow cake is uranium and trace metal impurities. The objective of this study is to determine uranium and 25 trace metal impurities; Aluminum, Barium, Bismuth, Calcium, Cadmium, Cobalt, Chromium, Copper, Iron, Potassium, Iithium, Magnesium, Manganese, Molybdenum, Sodium, Niobium, Nickel, Lead, Antimony, Tin, Strontium, Titanium, Vanadium, Zinc and Zirconium, Uranium is determined by Potassium dichromate titration, after solvent extraction with Cupferon in Chloroform, Trace metal impurities are determined by solvent extraction with Tributyl Phosphate in Carbon-tetrachloride ( for first 23 elements) and N-Benzoyl-N-Phenylhydroxylamine in Chloroform ( for last 2 elements), then analyzed by Atomic Absorption Spectrophotometer (AAS) compared with Inductively Couple Plasma Spectrophotometers (ICP). The accuracy and precision are studied with standard uranium octaoxide

  8. Laboratory-scale catalysis studies of uranium and plutonium fluorination reactions by solid metal-fluorides

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1984-03-01

    Various catalysts were evaluated for their effect on the rate of fluorination of the tetrafluorides of uranium and plutonium to produce the hexafluorides. Results of this work show that CoF 3 and AgF 2 are more effective than NiF 2 for UF 4 fluorination, producing rate increases in the range of 150 to 300 compared to UF 4 and fluorine alone. The use of these three catalysts was also found effective in the fluorinations of PuO 2 /PuF 4 and pure PuF 4 . However, enhancements were less. NiF 2 produced the best increases which were 8.1 for PuO 2 /PuF 4 and 3.6 for PuF 4 . Experiments were conducted in a simple flow-loop. Even larger enhancements might be obtained with fluidized beds. Details of the apparatus, experiments, methods, and a discussion of results are presented

  9. Recovery of valuable products from the raffinate of uranium and thorium pilot-plant

    International Nuclear Information System (INIS)

    Martins, E.A.J.

    1990-01-01

    IPEN-CNEN/SP has being very active in refining yellow cake to pure ammonium diuranate which is converted to uranium trioxide, uranium dioxide, uranium tetra-and hexa-fluoride in sequential way. The technology of the thorium purification and its conversion to nuclear grade products has been a practice since several years as well. For both elements the major waste to be worked is the raffinate from purification via TBP-varsol in pulsed columns. In this paper the actual processing technology is reviewed with special emphasis on the recovery of valuable products, mainly nitric acid, ammonium nitrate, uranium, thorium and rare earth elements. Ammonium nitrate from the precipitation of uranium diuranate is of good quality, being radioactivity and uranium-free, and recommended to be applied as fertilizer. In conclusion the main effort is to maximize the recycle and reuse of the above mentioned chemicals. (author)

  10. Uranium leaching using mixed organic acids produced by Aspergillus niger

    International Nuclear Information System (INIS)

    Yong-dong Wang; Guang-yue Li; De-xin Ding; Zhi-xiang Zhou; Qin-wen Deng; Nan Hu; Yan Tan

    2013-01-01

    Both of culture temperature and pH value had impacts on the degree of uranium extraction through changing types and concentrations of mixed organic acids produced by Aspergillus niger, and significant interactions existed between them though pH value played a leading role. And with the change of pH value of mixed organic acids, the types and contents of mixed organic acids changed and impacted on the degree of uranium extraction, especially oxalic acid, citric acid and malic acid. The mean degree of uranium extraction rose to peak when the culture temperature was 25 deg C (76.14 %) and pH value of mixed organic acids was 2.3 (82.40 %) respectively. And the highest one was 83.09 %. The optimal culture temperature (25 deg C) of A. niger for uranium leaching was different from the most appropriate growing temperature (37 deg C). (author)

  11. Use of Savannah River Site facilities for blend down of highly enriched uranium

    International Nuclear Information System (INIS)

    Bickford, W.E.; McKibben, J.M.

    1994-02-01

    Westinghouse Savannah River Company was asked to assess the use of existing Savannah River Site (SRS) facilities for the conversion of highly enriched uranium (HEU) to low enriched uranium (LEU). The purpose was to eliminate the weapons potential for such material. Blending HEU with existing supplies of depleted uranium (DU) would produce material with less than 5% U-235 content for use in commercial nuclear reactors. The request indicated that as much as 500 to 1,000 MT of HEU would be available for conversion over a 20-year period. Existing facilities at the SRS are capable of producing LEU in the form of uranium trioxide (UO 3 ) powder, uranyl nitrate [UO 2 (NO 3 ) 2 ] solution, or metal. Additional processing, and additional facilities, would be required to convert the LEU to uranium dioxide (UO 2 ) or uranium hexafluoride (UF 3 ), the normal inputs for commercial fuel fabrication. This study's scope does not include the cost for new conversion facilities. However, the low estimated cost per kilogram of blending HEU to LEU in SRS facilities indicates that even with fees for any additional conversion to UO 2 or UF 6 , blend-down would still provide a product significantly below the spot market price for LEU from traditional enrichment services. The body of the report develops a number of possible facility/process combinations for SRS. The primary conclusion of this study is that SRS has facilities available that are capable of satisfying the goals of a national program to blend HEU to below 5% U-235. This preliminary assessment concludes that several facility/process options appear cost-effective. Finally, SRS is a secure DOE site with all requisite security and safeguard programs, personnel skills, nuclear criticality safety controls, accountability programs, and supporting infrastructure to handle large quantities of special nuclear materials (SNM)

  12. Wetland assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Portsmouth, Ohio, site

    International Nuclear Information System (INIS)

    Van Lonkhuyzen, R.

    2005-01-01

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF 6 ) Management Program evaluated alternatives for managing its inventory of DUF 6 and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF 6 PEIS) in April 1999 (DOE 1999). The DUF 6 inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF 6 PEIS, DOE stated its decision to promptly convert the DUF 6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF 6 conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF 6 cylinders stored at ETTP to the Portsmouth site for conversion. This wetland assessment has been prepared by DOE, pursuant to Executive Order 11990 (''Protection of Wetlands'') and DOE regulations for implementing this Executive Order as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [Compliance with Floodplain and Wetland Environmental Review Requirements]), to evaluate potential impacts to wetlands from the construction and operation of a conversion facility at the DOE Portsmouth site. Approximately 0.02 acre (0.009 ha) of a 0.08-acre (0.03-ha) palustrine emergent wetland would likely be eliminated by direct placement of fill material during facility construction at Location A. Portions of this wetland that are not filled may be indirectly affected by an altered hydrologic regime because of the

  13. Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site

    International Nuclear Information System (INIS)

    Van Lonkhuyzen, R.

    2005-01-01

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF 6 ) Management Program evaluated alternatives for managing its inventory of DUF 6 and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF 6 PEIS) in April 1999 (DOE 1999). The DUF 6 inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF 6 PEIS, DOE stated its decision to promptly convert the DUF 6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF 6 conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF 6 cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was identified outside the developed area bounded by Perimeter Road, within the corridors

  14. Hydrofluoric Acid Corrosion Testing on Unplated and Electroless Gold-Plated Samples

    International Nuclear Information System (INIS)

    Osborne, P.E.; Icenhour, A.S.; Del Cul, G.D.

    2000-01-01

    The Molten Salt Reactor Experiment (MSRE) remediation requires that almost 40 kg of uranium hexafluoride (UF6) be converted to uranium oxide (UO). In the process of this conversion, six moles of hydrofluoric acid (HP) are produced for each mole of UF6 converted

  15. Measurement system analysis (MSA) of the isotopic ratio for uranium isotope enrichment process control

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josue C. de; Barbosa, Rodrigo A.; Carnaval, Joao Paulo R., E-mail: josue@inb.gov.br, E-mail: rodrigobarbosa@inb.gov.br, E-mail: joaocarnaval@inb.gov.br [Industrias Nucleares do Brasil (INB), Rezende, RJ (Brazil)

    2013-07-01

    Currently, one of the stages in nuclear fuel cycle development is the process of uranium isotope enrichment, which will provide the amount of low enriched uranium for the nuclear fuel production to supply 100% Angra 1 and 20% Angra 2 demands. Determination of isotopic ration n({sup 235}U)/n({sup 238}U) in uranium hexafluoride (UF{sub 6} - used as process gas) is essential in order to control of enrichment process of isotopic separation by gaseous centrifugation cascades. The uranium hexafluoride process is performed by gas continuous feeding in separation unit which uses the centrifuge force principle, establishing a density gradient in a gas containing components of different molecular weights. The elemental separation effect occurs in a single ultracentrifuge that results in a partial separation of the feed in two fractions: an enriched on (product) and another depleted (waste) in the desired isotope ({sup 235}UF{sub 6}). Industrias Nucleares do Brasil (INB) has used quadrupole mass spectrometry (QMS) by electron impact (EI) to perform isotopic ratio n({sup 235}U)/n({sup 238}U) analysis in the process. The decision of adjustments and change te input variables are based on the results presented in these analysis. A study of stability, bias and linearity determination has been performed in order to evaluate the applied method, variations and systematic errors in the measurement system. The software used to analyze the techniques above was the Minitab 15. (author)

  16. Thermodynamic properties of UF sub 6 measured with a ballistic piston compressor

    Science.gov (United States)

    Sterritt, D. E.; Lalos, G. T.; Schneider, R. T.

    1973-01-01

    From experiments performed with a ballistic piston compressor, certain thermodynamic properties of uranium hexafluoride were investigated. Difficulties presented by the nonideal processes encountered in ballistic compressors are discussed and a computer code BCCC (Ballistic Compressor Computer Code) is developed to analyze the experimental data. The BCCC unfolds the thermodynamic properties of uranium hexafluoride from the helium-uranium hexafluoride mixture used as the test gas in the ballistic compressor. The thermodynamic properties deduced include the specific heat at constant volume, the ratio of specific heats for UF6, and the viscous coupling constant of helium-uranium hexafluoride mixtures.

  17. Development of ammonium uranyl carbonate reduction to uranium dioxide using fluidized bed

    International Nuclear Information System (INIS)

    Gomes, R.P.; Riella, H.G.

    1988-01-01

    Laboratory development of Ammonium Uranyl Carbonate (AUC) reduction to uranium dioxide (UO 2 ) using fluidized bed furnace technique is described. The reaction is carried out at 500-550 0 C using hydrogen, liberated from cracking of ammonia, as a reducing agent. As the AUC used is obtained from uranium hexafluoride (UF 6 ) it contains considerable amounts of fluoride ( - 500μgF - /gTCAU) as contaminant. The presence of fluoride leads to high corrosion rates and hence the fluoride concentrations is reduced by pyrohydrolisis of UO 2 . Physical and Chemical proterties of the final product (UO 2 ) obtained were characterized. (author) [pt

  18. Seismic design of a uranium conversion plant building

    International Nuclear Information System (INIS)

    Peixoto, O.J.M.; Botelho, C.L.A.; Braganca, A. Jr.; C. Santos, S.H. de.

    1992-01-01

    The design of facilities with small radioactive inventory has been traditionally performed following the usual criteria for industrial buildings. In the last few years, more stringent criteria have been adopted in new nuclear facilities in order to achieve higher standards for environmental protection. In uranium conversion plants, the UF 6 (uranium hexafluoride) production step is the part of the process with the highest potential for radioactivity release to the environment because of the operations performed in the UF 6 desublimers and cylinder filling areas as well as UF 6 distillation facilities, when they are also required in the process. This paper presents the design guidelines and some details of the seismic resistance design of a UF 6 production building to be constructed in Brazil

  19. Uranium hexaflouride freezer/sublimer process simulator/trainer

    International Nuclear Information System (INIS)

    Carnal, C.L.; Belcher, J.D.; Tapp, P.A.; Ruppel, F.R.; Wells, J.C.

    1991-01-01

    This paper describes a software and hardware simulation of a freezer/sublimer unit used in gaseous diffusion processing of uranium hexafluoride (UF 6 ). The objective of the project was to build a plant simulator that reads control signals and produces plant signals to mimic the behavior of an actual plant. The model is based on physical principles and process data. Advanced Continuous Simulation Language (ACSL) was used to develop the model. Once the simulation was validated with actual plant process data, the ACSL model was translated into Advanced Communication and Control Oriented Language (ACCOL). A Bristol Babcock Distributed Process Controller (DPC) Model 3330 was the hardware platform used to host the ACCOL model and process the real world signals. The DPC will be used as a surrogate plant to debug control system hardware/software and to train operators to use the new distributed control system without disturbing the process. 2 refs., 4 figs

  20. Recovery of valuable products in liquid effluents from uranium and thorium pilot units

    International Nuclear Information System (INIS)

    Jardim, E.A.; Abrao, A.

    1988-01-01

    IPEN-CNEN/SP has being very active in refining yellowcake to pure ammonium diuranate which is converted to uranium trioxide, uranium dioxide, uranium tetra- and hexafluoride in a sequential way. The technology of the thorium purification and its conversion to nuclear grade products has been a practice since several years as well. For both elements the major waste to be worked is the refinate from the solvent extraction column where uranium and thorium are purified via TBP-varsol in pulsed columns. In this paper the actual processing technology is reviewed with special emphasis on the recovery of valuable products, mainly nitric acid and ammonium nitrate. Distilled nitric acid and the final sulfuric acid as residue are recycle. Ammonium nitrate from the precipitation of uranium diuranate is of good quality, being radioactivity and uranium-free, and recommended to be applied as fertilizer. In conclusion the main effort is to maximise the recycle and reuse of the abovementioned chemicals. (author) [pt

  1. The present state of laser isotope separation of uranium

    International Nuclear Information System (INIS)

    Tashiro, Hideo; Nemoto, Koshichi.

    1994-01-01

    As the methods of uranium enrichment, gas diffusion method and centrifugal separation method in which power consumption is less and the cost is low have been carried out. On the other hand, as the future technology, the research and development of laser isotope separation technology have been carried out. There are the atomic laser separation process in which the laser beam of visible light is irradiated to atomic state uranium and the molecular laser separation process in which far infrared laser beam is irradiated to uranium hexafluoride molecules. The atomic process is divided into three steps, that is, the processes of uranium evaporation, the reaction of uranium with laser beam and the recovery of enriched uranium. The principle of the laser separation is explained. The state of development of laser equipment and separation equipment is reported. The principle and the present state of development of the molecular separation process which consists of the cooling of UF 6 gas, the generation of high power 16 μm laser pulses and the collection of the reaction product are explained. The present state of both processes in foreign countries is reported. (K.I.)

  2. A study of UF4 preparations

    International Nuclear Information System (INIS)

    Chang, I.S.; Doh, J.B.; Choi, Y.D.

    1985-05-01

    Uranium tetrafluoride (UF 4 ), green salt, is very important intermediate in the production of metallic uranium and uranium hexafluoride (UF 6 ) for enrichment. The hydrofluorination of uranium dioxide (UO 2 ) with anhydrous hydrogen fluoride (HF), produced from ADU (ammonium diuranate) process or AUC (ammonium uranyl carbonate) process, are commercially used for the production of uranium tetrafluoride. At present, a new approach such as direct UF 4 preparation at the mine-site without further precipitation, filteration and drying of yellow cake from leaching solution has been studied. The single step continous reduction of uranium hexafluoride to uranium tetrafluoride is one of the most interesting process being applied for the commercial use of a large amount of depleted UF 6 which is produced in tail after enrichment. The direct conversion of UF 6 and UF 4 with hydrogen and fluorine gases using cold wall reactor has a certain advantage over various wet process such as AUD and AUC processes in which hydrolysis of UF 6 and various kind of chemicals are required, including liquid waste treatment. This report reviews and analyzes the theory and processes being used commercially or under study. (Author)

  3. Kinetics study of the fluorination of uranium tetrafluoride in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Khani, M.H.; Pahlavanzadeh, H.; Ghannadi, M.

    2008-01-01

    The kinetics of reaction of the uranium tetrafluoride conversion to the uranium hexafluoride with fluorine gas taking place in a fluidized bed reactor operating in industrial conditions have been studied. The external and internal diffusion effects are investigated by Mears and Weisz-Prater criterions. The kinetic equation for the fluorination of uranium tetrafluoride is developed in the absence of diffusional limitation using an integral method by assuming that the gas flow is of plug or perfectly mixed type. A good agreement is observed between the experimental data and a first-order model with respect to fluorine in the CSTR system. The activation energy of the reaction and the pre-exponential factor are obtained using analytical results from a better model

  4. Process for uranium separation and preparation of UO4.2NH3.2HF

    International Nuclear Information System (INIS)

    Dokuzoguz, H.Z.

    1976-01-01

    A process for treating the aqueous effluents that are produced in converting gaseous UF 6 (uranium hexafluoride) into solid UO 2 (uranium dioxide) by way of an intermediate (NH 4 ) 4 UO 2 (CO 3 ) 3 (''AUC'' Compound) is disclosed. These effluents, which contain large amounts of NH 4 + , CO 3 2- , F - , and a small amount of U are mixed with H 2 SO 4 (sulfuric acid) in order to expel CO 2 (carbon dioxide) and thereby reduce the carbonate concentration. The uranium is precipitated through treatment with H 2 O 2 (hydrogen peroxide) and the fluoride is easily recovered in the form of CaF 2 (calcium fluoride) by contacting the process liquid with CaO (calcium oxide). The presence of SO 4 2- (sulfate) in the process liquid during CaO contacting seems to prevent the development of a difficult-to-filter colloid. The process also provides for NH 3 recovery and recycling. Liquids discharged from the process, moreover, are essentially free of environmental pollutants. The waste treatment products, i.e., CO 2 , NH 3 , and U are economically recovered and recycled back into the UF 6 → UO 2 conversion process. The process, moreover, recovers the uranium as a precipitate in the second stage. This precipitate is a new inorganic chemical compound UO 4 .2NH 3 .2HF [uranyl peroxide-2-ammonia-2-(hydrogen fluoride)

  5. Present state and problems of uranium fuel fabrication businesses

    International Nuclear Information System (INIS)

    Yuki, Akio

    1981-01-01

    The businesses of uranium fuel fabrication converting uranium hexafluoride to uranium dioxide powder and forming fuel assemblies are the field of most advanced industrialization among nuclear fuel cycle industries in Japan. At present, five plants of four companies engage in this business, and their yearly sales exceeded 20 billion yen. All companies are planning the augmentation of installation capacity to meet the growth of nuclear power generation. The companies of uranium fuel fabrication make the nuclear fuel of the specifications specified by reactor manufacturers as the subcontractors. In addition to initially loaded fuel, the fuel for replacement is required, therefore the demand of uranium fuel is relatively stable. As for the safety of enriched uranium flowing through the farbicating processes, the prevention of inhaling uranium powder by workers and the precaution against criticality are necessary. Also the safeguard measures are imposed so as not to convert enriched uranium to other purposes than peacefull ones. The strict quality control and many times of inspections are carried out to insure the soundness of nuclear fuel. The growth of the business of uranium fuel fabrication and the regulation of the businesses by laws are described. As the problems for the future, the reduction of fabrication cost, the promotion of research and development and others are pointed out. (Kako, I.)

  6. Main results obtained in France in the development of the gaseous diffusion process for uranium isotope separation; Principaux resultats obtenus en France dans les etudes sur la separation des isotopes de l'uranium par diffusion gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Frejacques, C; Bilous, O; Dixmier, J; Massignon, D; Plurien, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The main problems which occur in the study of uranium isotope separation by the gaseous diffusion process, concern the development of the porous barrier, the corrosive nature of uranium hexafluoride and also the chemical engineering problems related to process design and the choice of best plant and stage characteristics. Porous barriers may be obtained by chemical attack of non porous media or by agglomeration of very fine powders. Examples of these two types of barriers are given. A whole set of measurement techniques were developed for barrier structure studies, to provide control and guidance of barrier production methods. Uranium hexafluoride reactivity and corrosive properties are the source of many difficult technological problems. A high degree of plant leak tightness must be achieved. This necessity creates a special problem in compressor bearing design. Barrier lifetime is affected by the corrosive properties of the gas, which may lead to a change of barrier structure with time. Barrier hexafluoride permeability measurements have helped to make a systematic study of this point. Finally an example of a plant flowsheet, showing stage types and arrangements and based on a minimisation of enriched product costs is also given as an illustration of some of the chemical engineering problems present. (author) [French] Les principaux problemes qui se sont poses dans l'etude de la separation des isotopes de l'uranium par diffusion gazeuse, sont ceux relatifs a l'obtention de barrieres poreuses, ceux lies a l'utilisation de l'hexafluorure d'uranium, enfin les problemes de genie chimique relatifs au procede et a l'agencement optimum des etages et des cascades entre elles. On peut obtenir des barrieres poreuses soit par attaque de membranes pleines, soit par agglomeration de poudres de petites dimensions. Des exemples de ces deux types de barrieres seront donnes. L'etude des proprietes de texture des barrieres obtenues, necessaire pour orienter les recherches de

  7. Process and system for isotope separation using the selective vibrational excitation of molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1976-01-01

    This invention concerns the separation of isotopes by using the isotopically selective vibrational excitation and the vibration-translation reactions of the excited particles. UF 6 molecular mixed with a carrier gas, such as argon, are directed through a refrigerated chamber lighted by a laser radiation tuned to excite vibrationally the uranium hexafluoride molecules of a particular uranium isotope. The density of the carrier gas is preferably maintained above the density of the uranium hexafluoride to allow a greater collision probability of the vibrationally excited molecules with a carried molecule. In such a case, the vibrationally excited uranium hexafluoride will collide with a carrier gas molecule provoking the conversion of the excitation energy into a translation of the excited molecule, resulting in thermal energy or greater diffusibility than that of the other uranium hexafluoride molecules [fr

  8. Department of Energy depleted uranium recycle

    International Nuclear Information System (INIS)

    Kosinski, F.E.; Butturini, W.G.; Kurtz, J.J.

    1994-01-01

    With its strategic supply of depleted uranium, the Department of Energy is studying reuse of the material in nuclear radiation shields, military hardware, and commercial applications. the study is expected to warrant a more detailed uranium recycle plan which would include consideration of a demonstration program and a program implementation decision. Such a program, if implemented, would become the largest nuclear material recycle program in the history of the Department of Energy. The bulk of the current inventory of depleted uranium is stored in 14-ton cylinders in the form of solid uranium hexafluoride (UF 6 ). The radioactive 235 U content has been reduced to a concentration of 0.2% to 0.4%. Present estimates indicate there are about 55,000 UF 6 -filled cylinders in inventory and planned operations will provide another 2,500 cylinders of depleted uranium each year. The United States government, under the auspices of the Department of Energy, considers the depleted uranium a highly-refined strategic resource of significant value. A possible utilization of a large portion of the depleted uranium inventory is as radiation shielding for spent reactor fuels and high-level radioactive waste. To this end, the Department of Energy study to-date has included a preliminary technical review to ascertain DOE chemical forms useful for commercial products. The presentation summarized the information including preliminary cost estimates. The status of commercial uranium processing is discussed. With a shrinking market, the number of chemical conversion and fabrication plants is reduced; however, the commercial capability does exist for chemical conversion of the UF 6 to the metal form and for the fabrication of uranium radiation shields and other uranium products. Department of Energy facilities no longer possess a capability for depleted uranium chemical conversion

  9. Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process

    Energy Technology Data Exchange (ETDEWEB)

    Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

    1983-03-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  10. Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process

    International Nuclear Information System (INIS)

    Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

    1983-03-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF 6 ) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992

  11. Depleted uranium: A DOE management guide

    International Nuclear Information System (INIS)

    1995-10-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF 6 ) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF 6 problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF 6 to an oxide aggregate that is used in concrete to make dry storage casks

  12. Characteristics of plasma in uranium atomic beam produced by electron-beam heating

    International Nuclear Information System (INIS)

    Ohba, Hironori; Shibata, Takemasa

    2000-08-01

    The electron temperature of plasma and the ion flux ratio in the uranium atomic beam produced by electron-beam heating were characterized with Langmuir probes. The electron temperature was 0.13 eV, which was lower than the evaporation surface temperature. The ion flux ratio to atomic beam flux was more than 3% at higher evaporation rates. The ion flux ratio has increased with decreasing acceleration energy of the electron-beam under constant electron-beam power. This is because of an increase of electron-beam current and a large ionization cross-section of uranium by electron-impact. It was confined that the plasma is produced by electron-impact ionization of the evaporated atoms at the evaporation source. (author)

  13. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    Energy Technology Data Exchange (ETDEWEB)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year

  14. Exopolysaccharide produced by Enterobacter sp. YG4 reduces uranium induced nephrotoxicity.

    Science.gov (United States)

    K, Nagaraj; Devasya, Rekha Punchapady; Bhagwath, Arun Ananthapadmanabha

    2016-01-01

    Uranium nephrotoxicity is a health concern with very few treatment options. Bacterial exopolysaccharides (EPS) possess multiple biological activities and appear as prospective candidates for treating uranium nephrotoxicity. This study focuses on the ability of an EPS produced by a bacterial strain Enterobacter sp. YG4 to reduce uranium nephrotoxicity in vivo. This bacterium was isolated from the gut contents of a slug Laevicaulis alte (Férussac). Based on the aniline blue staining reaction and infrared spectral analysis, the EPS was identified as β-glucan and its molecular weight was 11.99×10(6)Da. The EPS showed hydroxyl radical scavenging ability and total antioxidant capacity in vitro. To assess the protection provided by the EPS against uranium nephrotoxicity, a single dose of 2mg/kg uranyl nitrate was injected intraperitoneally to albino Wistar rats. As intervention, the EPS was administered orally (100mg/kg/day) for 4 consecutive days. The rats were sacrificed on the fifth day and analyses were conducted. Increased serum creatinine and urea nitrogen levels and histopathological alterations in kidneys were observed in uranyl nitrate treated animals. All these alterations were reduced with the administration of Enterobacter sp. YG4 EPS, emphasizing a novel approach in treating uranium nephrotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Development of a reduction process of ammonium uranyl carbonate to uranium dioxide in a fluidized bed

    International Nuclear Information System (INIS)

    Gomes, R.P.; Riella, H.G.

    1990-07-01

    Laboratory development of ammonium uranyl carbonate (AUC) reduction to uranium dioxide (UO 2 ) using fluidized bed furnace technique is described. The reaction is carried out at 500-550 0 C using hydrogen, liberated from cracking of ammonia, as a reducing agent. As the AUC used is obtained from uranium hexafluoride (UF 6 ) it contains considerable amount of fluoride (approx. 500μg/g) as contaminant. The presence of fluoride leads to high corrosion rates and hence the fluoride concentration is reduced by pyrohydrolisis of UO 2 . Physical and Chemical properties of the final product (UO 2 ) obtained were characterized. (author) [pt

  16. Emergency exposure levels for natural uranium

    International Nuclear Information System (INIS)

    Spoor, N.L.; Harrison, N.T.

    1980-12-01

    An attempt is made to identify the inhalation hazards associated with the over-exposure of workers and of the general public, following an accidental release of uranium hexafluoride. Maximum emergency concentrations are recommended for periods of 10, 30, and 60 minutes. The quantitative aspect of the assessment is considered in the context of the development of exposure standards for chemical substances and this facilitates the derivation of levels which are compatible with occupational and public health experience and attainable by management, and to which most workers and members of the general public may be exposed without adverse effect. The radiological implications are also considered. (author)

  17. In-SEM Raman microspectroscopy coupled with EDX - a case study of uranium reference particles

    International Nuclear Information System (INIS)

    Stefaniak, Elzbieta A.; Pointurier, Fabien; Marie, Olivier; Truyens, Jan; Aregbe, Yetunde

    2014-01-01

    Information about the molecular composition of airborne uranium-bearing particles may be useful as an additional tool for nuclear safeguards. In order to combine the detection of micrometer-sized particles with the analysis of their molecular forms, we used a hybrid system enabling Raman microanalysis in high vacuum inside a SEM chamber (SEM-SCA system). The first step involved an automatic scan of a sample to detect and save coordinates of uranium particles, along with X-ray microanalysis. In the second phase, the detected particles were relocated in a white light image and subjected to Raman microanalysis. The consecutive measurements by the two beams showed exceptional fragility of uranium particles, leading to their ultimate damage and change of uranium oxidation state. We used uranium reference particles prepared by hydrolysis of uranium hexafluoride to test the reliability of the Raman measurements inside the high vacuum. The results achieved by the hybrid system were verified by using a standalone Raman micro spectrometer. When deposited on exceptionally smooth substrates, uranyl fluoride particles smaller than 1000 nm could successfully be analyzed with the SEM-SCA system. (authors)

  18. Industrias Nucleares do Brasil in the context of the Brazilian nuclear program

    International Nuclear Information System (INIS)

    1996-10-01

    The activities carried out by Industrias Nucleares Brasileiras (INB) related to the nuclear fuel cycle are described. These activities comprise presently uranium prospecting and processing and fuel elements assembly.Starting in 1997,INB will also perform the reconversion of enriched uranium hexafluoride and the fabrication of fuel pellets.Furthermore, INB produces as well rare earth oxides

  19. Study of uranium matrix interference on ten analytes using inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, A.A.; Qamar, S.; Atta, M.A. (A.Q. Khan Research Labs., Rawalpindi (Pakistan))

    1993-08-01

    Maximum allowable concentrations of 12 elements in uranium hexafluoride feed for enrichment to reactor grade material (about 3%), vary from 1 to 100 ppm ([mu]g/g). Using an inductively coupled plasma atomic emission spectrometer, 51 lines of tine of these elements (B, Cr, Mo, P, Sb, Si, Ta, Ti, V and W) has been studied with a uranium matrix to investigate the matrix interference on the basis of signal to background (SBR), and background to background ratios (BBR). Detection limits and limits of quantitative determination (LQDs) were calculated for these elements in a uranium matrix using SBR and relative standard deviation of the background signal (RSD[sub B]) approach. In almost all cases, the uranium matrix interference reduces the SBRs to the extent that direct trace analysis is impossible. A uranium sample having known concentrations of impurities (around LQDs) was directly analysed with results that showed reasonable accuracy and precision. (Author).

  20. Recovery of uranium from an irradiated solid target after removal of molybdenum-99 produced from the irradiated target

    Science.gov (United States)

    Reilly, Sean Douglas; May, Iain; Copping, Roy; Dale, Gregory Edward

    2017-10-17

    A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted to concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.

  1. Degradation and dielectric properties of sulfur hexafluoride

    International Nuclear Information System (INIS)

    Fluck, Eric

    1985-01-01

    Sparking potential of sulfur hexafluoride is studied as a function of its decomposition by electrical discharges. The analysis of the gas is performed by mass spectrometry. The quantity of products resulting from spark discharges as a function of charge transported is plotted for SO_2F_2, SiF_4, SOF_4; it shows a linear increase with charge transported. Production rates of fluoride gases strongly increase with quantity of water vapor present at the beginning of the spark discharges. Decomposition of the gas, even at high levels (20%) does not exhibit measurable variations of sparking potential (at constant pressure). Production of SiF_4 by degradation of glass walls by hydrofluoric acid produced by discharges shows the important role played by this acid in the decomposition of the gas. It is necessary to use a gas containing water impurities at a level as small as possible. (author)

  2. Uranium producer region of Lagoa Real, Brazil. Guarantee of supply of uranium concentrated (DUA) for the brazilian needs

    International Nuclear Information System (INIS)

    Matos, Evandro Carele de; Franco, Jamyle Praxedes

    2008-01-01

    This work focus at the Uranium Province of Lagoa Real, notably considering the geological reserves of uranium already defined (100,000 tones of U 3 O 8 ) and the respective autonomy in providing raw material needed for making fuel elements. The province, based on geo economical parameters, supported by three main vectors (geological model/grade, mining/process route, investment/finance) has been elected to supply the required brazilian demand. Supplying of uranium for the brazilian power plants is in charge of Industrias Nucleares do Brasil - INB and is based on national production. Thus the Industrial Complex of Caetite has been implemented in the state of Bahia, aiming primarily to supply the needs of Angra 1 and Angra 2 power plants. This new production center has the capacity of producing up to 400 tones/yr. of U 3 O 8 . (author)

  3. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Cornelia P.

    2013-04-01

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  4. Nuclear material control and accounting system evaluation in uranium conversion operations

    International Nuclear Information System (INIS)

    Moreira, Jose Pontes

    1994-01-01

    The Nuclear Material Control and Accounting Systems in uranium conversion operations are described. The conversion plant, uses ammonium diuranate (ADU), as starting material for the production of uranium hexafluoride. A combination of accountability and verification measurement is used to verify physical inventory quantities. Two types of inspection are used to minimize the measurements uncertainty of the Material Unaccounted For (MUF) : Attribute inspection and Variation inspection. The mass balance equation is the base of an evaluation of a Material Balance Area (MBA). Statistical inference is employed to facilitate rapid inventory taking and enhance material control of Safeguards. The calculation of one sampling plan for a MBA and the methodology of inspection evaluation are also described. We have two kinds of errors : no detection and false delation. (author)

  5. Strike-slip pull-apart process and emplacement of Xiangshan uranium-producing volcanic basin

    International Nuclear Information System (INIS)

    Qiu Aijin; Guo Lingzhi; Shu Liangshu

    2001-01-01

    Xiangshan volcanic basin is one of the famous uranium-producing volcanic basins in China. Emplacement mechanism of Xiangshan uranium-producing volcanic basin is discussed on the basis of the latest research achievements of deep geology in Xiangshan area and the theory of continental dynamics. The study shows that volcanic activity in Xiangshan volcanic basin may be divided into two cycles, and its emplacement is controlled by strike-ship pull-apart process originated from the deep regional faults. Volcanic apparatus in the first cycle was emplaced in EW-trending structure activated by clockwise strike-slipping of NE-trending deep fault, forming the EW-trending fissure-type volcanic effusion belt. Volcanic apparatus in the second cycle was emplaced at junction points of SN-trending pull-apart structure activated by sinistral strike-slipping of NE-trending deep faults and EW-trending basement faults causing the center-type volcanic magma effusion and extrusion. Moreover, the formation mechanism of large-rich uranium deposits is discussed as well

  6. Canada: The largest uranium producer

    International Nuclear Information System (INIS)

    Lowell, A.F.

    1985-01-01

    Despite all the current difficulties, previous erroneous forecasts and other mistakes, the longer term future looks good for uranium mining and for Canada's industry in particular. Saskatchewan continues to offer the most exciting new prospects, the huge and fabulously high grade Cigar Lake deposits being the most spectacular of the recent discoveries. Notwithstanding continuous mining for 30 years from Elliot Lake there still remain there significant uncommitted reserves which can be developed when the market for uranium is in better balance

  7. 49 CFR 173.417 - Authorized fissile materials packages.

    Science.gov (United States)

    2010-10-01

    ... for export and import shipments. (2) A residual “heel” of enriched solid uranium hexafluoride may be... made in accordance with Table 2, as follows: Table 2—Allowable Content of Uranium Hexafluoride (UF6... Liters Cubic feet Maximum Uranium 235-enrichment (weight)percent Maximum “Heel” weight per cylinder UF6...

  8. Recovery of valuable products in the raffinate of the uranium and thorium pilot-plant

    International Nuclear Information System (INIS)

    Jardim, E.A.; Abrao, A.

    1988-11-01

    IPEN-CNEN/SP has being very active in refining yellowcake to pure ammonium diuranate which is converted to uranium trioxide, uranium dioxide, tetra - and hexafluoride in a sequential way. The technology of the thorium purification and its conversion to nuclear grade products has been a practice since several years as well. For both elements the major to be worked is the raffinate from the solvent extraction colum where and thorium are purified via TBP-varsol in pulsed columns. In this paper the actual processing technology is reviewed with special emphasis on the recovery of valuable products, mainly nitric acid and ammonium nitrate. Distilled nitric acid and the final sulfuric acid as residue are recycle. Ammonium nitrate from the precipitation of uranium diuranate is of good quality, being radioactivity and uranium - free, and recommended to be applied as fertilizer. In conclusion the main effort is to maximize the recycle and reuse of the above mentioned chemicals. (author) [pt

  9. Separation of uranium isotopes by gas centrifugation

    International Nuclear Information System (INIS)

    Jordan, I.

    1980-05-01

    The uranium isotope enrichment is studied by means of the countercurrent gas centrifuge driven by thermal convection. A description is given of (a) the transfer and purification of the uranium hexafluoride used as process gas in the present investigation; (b) the countercurrent centrifuge ZG3; (c) the system designed for the introduction and extraction of the process gas from the centrifuge; (d) the measurement of the process gas flow rate through the centrifuge; (e) the determination of the uranium isotopic abundance by mass spectrometry; (f) the operation and mechanical behavior of the centrifuge and (g) the isotope separation experiments, performed, respectively, at total reflux and with production of enriched material. The results from the separation experiments at total reflux are discussed in terms of the enrichment factor variation with the magnitude and flow profile of the countercurrent given by the temperature difference between the rotor covers. As far as the separation experiments with production are concerned, the discussion of their results is presented through the variation of the enrichment factor as a function of the flow rate, the observed asymmetry of the process and the calculated separative power of the centrifuge. (Author) [pt

  10. Industrias Nucleares do Brasil in the context of the Brazilian nuclear program; A INB no contexto do programa nuclear brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The activities carried out by Industrias Nucleares Brasileiras (INB) related to the nuclear fuel cycle are described. These activities comprise presently uranium prospecting and processing and fuel elements assembly.Starting in 1997,INB will also perform the reconversion of enriched uranium hexafluoride and the fabrication of fuel pellets.Furthermore, INB produces as well rare earth oxides 2 figs., 1 tab.

  11. Development and technical implementation of the separation nozzle process for enrichment of uranium 235

    International Nuclear Information System (INIS)

    Syllus Martins Pinto, C.; Voelcker, H.; Becker, E.W.

    1977-12-01

    The separation nozzle process for the enrichment of uranium-235 has been developed at the Karlsruhe Nuclear Research Center as an alternative to the gaseous diffusion and centrifuge process. The separation of uranium isotopes is achieved by the deflection of a jet of uranium hexafluoride mixed with hydrogen. Since 1970, the German company of STEAG, has been involved in the technological development and commercial implementation of the nozzle process. In 1975, the Brazilian company of NUCLEBRAS, and the German company of Interatom, joined the effort. The primary objective of the common activity is the construction of a separation nozzle demonstration plant with an annual capacity of about 200 000 SWU and the development of components of a commercial plant. The paper covers the most important steps in the development and the technical implementation of the process. (orig.) [de

  12. Helium and Sulfur Hexafluoride in Musical Instruments

    Science.gov (United States)

    Forinash, Kyle; Dixon, Cory L.

    2014-01-01

    The effects of inhaled helium on the human voice were investigated in a recent article in "The Physics Teacher." As mentioned in that article, demonstrations of the effect are a popular classroom activity. If the number of YouTube videos is any indication, the effects of sulfur hexafluoride on the human voice are equally popular.…

  13. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part I. The fluorination-fractionation process

    Energy Technology Data Exchange (ETDEWEB)

    Sears, M.B.; Blanco, R.E.; Finney, B.C.; Hill, G.S.; Moore, R.E.; Witherspoon, J.P.

    1977-07-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the fluorination-fractionation (dry hydrofluor) process, and to evaluate the radiological impact (dose commitment) of the released materials on the environment. This study is designed to assist in defining the term as low as is reasonably achievable (ALARA) in relation to limiting the release of radioactive materials from nuclear facilities. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose commitment are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  14. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part I. The fluorination-fractionation process

    International Nuclear Information System (INIS)

    Sears, M.B.; Blanco, R.E.; Finney, B.C.; Hill, G.S.; Moore, R.E.; Witherspoon, J.P.

    1977-07-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF 6 ) production plant using the fluorination-fractionation (dry hydrofluor) process, and to evaluate the radiological impact (dose commitment) of the released materials on the environment. This study is designed to assist in defining the term as low as is reasonably achievable (ALARA) in relation to limiting the release of radioactive materials from nuclear facilities. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose commitment are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992

  15. Lessons learned from recent safety related incidents at A Canadian uranium conversion facility

    International Nuclear Information System (INIS)

    Jaferi, Jafir

    2013-01-01

    This paper presents the Canadian Nuclear Safety Commission's (CNSC) regulatory requirements for nuclear fuel facility licensees to report any situation or incident that results or is likely to result in a hazard to the health or safety of any person or the environment and to submit its incident investigation report with cause(s) of the incident and corrective actions taken or planned. In addition, the paper presents two recent safety-related incidents that occurred at a uranium conversion facility in Canada along with their consequences, causes, corrective actions and any lessons learned. The first incident resulted in a release of uranium hexafluoride (UF6) inside the UF6 cylinder filling station and the second one resulted in a spill of uranium tetrafluoride (UF 4 ) slurry inside the UF6 plant. Both incidents had no impact on the workers or the environment. (authors)

  16. Depleted uranium storage and disposal trade study: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, J.R.; Trabalka, J.R.

    2000-02-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

  17. Depleted uranium storage and disposal trade study: Summary report

    International Nuclear Information System (INIS)

    Hightower, J.R.; Trabalka, J.R.

    2000-01-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options)

  18. METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS

    Science.gov (United States)

    Piper, R.D.

    1962-09-01

    A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

  19. Fluorinated compounds in the uranium conversion process: risk analysis and proposition of pictograms

    International Nuclear Information System (INIS)

    Jeronimo, Adroaldo Clovis; Oliveira, Wagner dos Santos

    2012-01-01

    In the process of uranium hexafluoride production there are risks that must be taken into account since the time of completing the project chemist, in its conceptual stage, until to the stage of detailed design and are associated with the handling of chemicals, especially fluoride hydrogen and fluorine. This paper aims to address issues related to the prevention of risks related to industrial safety and health and the environment, considering the different stages of the uranium conversion. Take into account the safety warnings of the plant and, accordingly, make the proposition of pictograms adequate to alert operators of care to be taken during the proposition of pictograms adequate to alert operators of care to be taken during the conduct of these chemical processes. (author)

  20. Study contribution to the new international philosophy of the radiological safety system on chemical processing of the natural uranium

    International Nuclear Information System (INIS)

    Silva, T.M. da.

    1988-01-01

    The objective of the work is to adapt the radiological Safety System in the facilities concerned to the chemical treatment of the uranium concentrated (yellow-cake) until conversion in uranium hexafluoride in the pilot plant of IPEN-CNEN/SP, to the new international philosophy adopted by the International Commission Radiological on Protection ICPR publication 22(1973), 26(1977), 30(1978) and the International Atomic Energy Agency IAEA publication 9(1982). The new philosophy changes fully the Radiological Protection concepts of preceding philosophy, changes, also, the concept of the work place and individual monitoring as well as the classification of the working areas. These new concepts are applied in each phase of the natural uranium treatment chemical process in conversion facility. (author)

  1. The regulation of uranium refineries and conversion facilities in Canada

    International Nuclear Information System (INIS)

    Didyk, J.P.

    1986-04-01

    The nuclear regulatory process as it applies to uranium refineries and conversion facilities in Canada is reviewed. In the early 1980s, Eldorado Resources Limited proposed to construct and operate new facilities for refining yellowcake and for the production of uranium hexafluoride (UF 6 ). These projects were subject to regulation by the Atomic Energy Control Board (AECB). A description of the AECB's comprehensive licensing process covering all stages of siting, construction, operation and eventual decommissioning of nuclear facilities is traced as it was applied to the Eldorado projects. The AECB's concern with occupational health and safety, with public health and safety and with the protection of the environment in so far as it affects public health and safety is emphasized. Some regulatory difficulties encountered during the project's development which led to opening up the licensing process to public input and closer coordination of regulatory activities with other provincial and federal regulatory agencies are described. The Board's regulatory operational compliance program for uranium refineries and conversion facilities is summarized

  2. Mortality of workers in a factory of uranium conversion in France: situation of the follow up from 1968 to 2005

    International Nuclear Information System (INIS)

    Guseva Canu, I.; Metz, C.; Tirmarche, M.; Caer, S.; Auriol, B.

    2008-01-01

    A cohort of workers of Areva NC of Pierrelatte was constituted to study the effects of the internal irradiation after the incorporation of uranium. Between 1960 and 1996, this establishment provided the uranium hexafluoride enrichment and since 1982, the chemical conversion of the different compounds of yellow cake. The cohort descriptive and the results of mortality are reported. The cohort presents a a good follow up (zero lost sight people) of workers potentially exposed to uranium. Its mortality is similar to this one of other workers (at Areva NC). The effect of the sane worker is important, due essentially to the selection of workers at hiring. The employments-exposures matrix at Pierrelatte will allow to study the effects of exposure on the mortality by cancer. (N.C.)

  3. Reaction between molybdenum hexafluoride and carboxylic acids

    International Nuclear Information System (INIS)

    Shustov, L.D.; Nikolenko, L.N.; Senchenkova, T.M.

    1983-01-01

    Trifluoromethyl derivatives of pyridine, imidazole and difluoromethane are synthesized during interaction of MoF 6 surplUs (190-210 deg) with nicotine-isomicotine-, 2,6-pyridinedicarboxylic-, 4,5-imidazoledicarboxyclic- and diffluoroacetic acids. The yield of trifluoromethyl derivatives attains 84%. Molybdenum hexafluoride offers some advantages in comparisoo with toxic SF 4 . MoF 6 toxicity is low; leakage of MoF 6 vapors is easily detected

  4. The development of the uranium and nuclear industry in South Africa, 1945 - 1970 : a historical study

    International Nuclear Information System (INIS)

    Janson, E.J.G.

    1995-12-01

    This thesis traces the historical development of nuclear research in South Africa between 1945 and 1970, starting with the efforts of metallurgists of South Africa and the Allied Nations to extract uranium from the gold ores of the Witwatersrand. During the 1950's seventeen uranium extraction plants formed a very important part of the country's industrial activity. The prospect of using South African uranium for nuclear power production (in the Western Cape area), led to the Atomic Energy Research and Development Programme investigation into nuclear energy production in South Africa. The programme provided for the refining of uranium for nuclear fuel, the establishment of a nuclear research centre at Pelindaba, the acquisition of a research reactor, and facilities for nuclear reactor research and uranium enrichment experiments. The two major projects that were initiated in the 1960's were the Pelinduna nuclear reactor project and experimentation on the vortex tube method for uranium enrichment (the Gas Cooling Project). An Investigation Committee was appointed by the Government to assess the viability of a pilot uranium enrichment plant. In 1970 it was announced that a process had been developed that was a combination of the separating element using uranium hexafluoride in hydrogen as the process fluid and a new cascade technique. 331 refs., 19 figs

  5. Prospects brighten for world uranium producers

    International Nuclear Information System (INIS)

    Steyn, J.

    1996-01-01

    Since the beginning of 1995, uranium spot market prices have risen by more than 67%. This has been due to supply related factors and might have been greater if world nuclear power projections had not shown virtually zero growth over the next few decades except in the Far East. Perceptions of a looming supply shortfall have been created by rapidly declining inventories, western mine production being able to meet only half of plant requirements, constraints on access to CIS supplies in the future and considerably less than anticipated uranium-equivalent supply from nuclear weapons material. Data on projected world supply and demand balances are presented. On the supply side this includes all primary production and inventories of all forms. A supply deficit of 5 million 1b, U 3 O 8 by 2010 is shown. Trade constraints, weapons stockpiles and laser enrichment, which are the most important factors affecting both the near- and longer-term uranium markets, are discussed. (UK)

  6. Environmental monitoring program design for uranium refining and conversion operations

    International Nuclear Information System (INIS)

    1984-08-01

    The objective of this study was to develop recommendations for the design of environmental monitoring programs at Canadian uranium refining and conversion operations. In order to develop monitoring priorities, chemical and radioactive releases to the air and water were developed for reference uranium refining and conversion facilities. The relative significance of the radioactive releases was evaluated through a pathways analysis which estimated dose to individual members of the critical receptor group. The effects of chemical releases to the environment were assessed by comparing predicted air and water contaminant levels to appropriate standards or guidelines. For the reference facilities studied, the analysis suggested that environmental effects are likely to be dominated by airborne release of both radioactive and nonradioactive contaminants. Uranium was found to be the most important radioactive species released to the air and can serve as an overall indicator of radiological impacts for any of the plants considered. The most important nonradioactive air emission was found to be fluoride (as hydrogen fluoride) from the uranium hexafluoride plant. For the uranium trioxide and uranium dioxide plants, air emissions of oxides of nitrogen were considered to be most important. The study recommendations for the design of an environmental monitoring program are based on consideration of those factors most likely to affect local air and water quality, and human radiation exposure. Site- and facility-specific factors will affect monitoring program design and the selection of components such as sampling media, locations and frequency, and analytical methods

  7. Uranium

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  8. Experimental study for the use of sulfur hexafluoride as dielectric gas in particle accelerators

    International Nuclear Information System (INIS)

    Candanedo y Bernabe, C.

    1993-01-01

    The sulfur hexafluoride is the better dielectric gas in the world. It is used in particle accelerator, power stations and high voltage transformators. This is a high stable gas, but when is used as dielectric is degraded in toxic and corrosive fluorides this degradation of sulfur hexafluoride is a function of the voltaic arc, crown effect, pressure, temperature and radiation. The purification of the sulfur fluoride permitted to work in safe form and without the risks as contaminant. The objective of the work is the development of a process for the separation of the wastes from the fabrication of sulphur fluoride and the products of degradation. This process used adsorbents when this gas is used as dielectric. The methodology employed was bibliography research, experimental design of the equipment, construction of the experimental equipment, selection and use of adsorbents, installation of the adsorption columns for the experimentation, flow of the sulfur hexafluoride through the adsorbents, searching of the fluoride hexafluoride before and after of the step through the adsorption columns and writing of the results. In base to the results we conclude that the process is good. The work could be advantage using chromatographic techniques with adequate standards. Is possible to extend the study using an additional number of adsorbents. (Author). 34 refs, 7 graphs, 3 tabs

  9. Discussion on the genesis of uranium-producing pegmatite in Shangdan area

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng [Beijing Research Inst. of Uranium Geology (China)

    1996-01-01

    This paper describes the characteristics of uranium-producing pematite, gneissic granodiorite metamorphic rocks of the Qinling Group in such aspects as petrochemical compositions, contents of trace elements (Rb and Sr etc.), initial ratio of strontium isotopes and assemblage types of accessory minerals. Through the comparison between U-barren pegmatite within the massif and U-producing pegmatite outside the massif, and the study on Sm and Nd isotope tracers, a viewpoint is presented that the U-producing pegmatite veins resulted from slow crystallization of granitic magma under relatively confined condition produced from the selective melting of the Qinling Group metamorphic rocks rather than residual magmatic crystallization from the late-stage magmatic differentiation of gneissic granodiorite (T{sub DM} is about 10 Ma).

  10. Assay of uranium in crude diuranate cakes and MgF2 slag produced at the natural uranium conversion plants by γ-ray spectrometry

    International Nuclear Information System (INIS)

    Kalsi, P.C.; Iyer, R.H.

    1993-01-01

    A transmission-corrected γ-ray counting method has been employed for the assay of uranium in crude Na 2 U 2 O 7 cakes produced at the Uranium Conversion Facilities. A 3''*3'' NaI(Tl) detector was used in conjunction with a 400-channel analyzer. The observed count rate of the 1 MeV γ-ray emitted by the 238 U in the sample was corrected for sample self-attenuation, measured with a 65 Zn (γ-energy ≅ 1115 keV) transmission source. A calibration factor determined by measuring a standard of known amount of radioactive material in the same form and geometry as the unknown sample was used to convert the transmission corrected count rate to the amount of uranium in the weighed sample. Another γ-spectrometric method is described for the assay of the U-content in the MgF 2 slag produced during the magnesiothermic reduction of UF 4 to U-metal ingots at the natural U-conversion plant. (author) 8 refs.; 3 figs.; 1 tab

  11. Standard test method for determination of impurities in nuclear grade uranium compounds by inductively coupled plasma mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of 67 elements in uranium dioxide samples and nuclear grade uranium compounds and solutions without matrix separation by inductively coupled plasma mass spectrometry (ICP-MS). The elements are listed in Table 1. These elements can also be determined in uranyl nitrate hexahydrate (UNH), uranium hexafluoride (UF6), triuranium octoxide (U3O8) and uranium trioxide (UO3) if these compounds are treated and converted to the same uranium concentration solution. 1.2 The elements boron, sodium, silicon, phosphorus, potassium, calcium and iron can be determined using different techniques. The analyst's instrumentation will determine which procedure is chosen for the analysis. 1.3 The test method for technetium-99 is given in Annex A1. 1.4 The values stated in SI units are to be regarded as standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish ...

  12. Aerosols produced by evaporation of a uranium wire

    International Nuclear Information System (INIS)

    Morel, C.

    1968-03-01

    This work is devoted to the study of the aerosols formed when an uranium wire is evaporated in a normal or rarefied atmosphere, either with or without a drying agent. The heating of the wire can be either fast or slow. The first part is a study of aerosol production apparatus and of methods of measuring the aerosol. The second part presents the results obtained with various aerosols: the particles produced by the wire are less than one micron; during rapid heating, the granulometric distribution of the aerosol obeys a log-normal law; during slow heating, the distribution has two modes: one near 0.05 micron, the other close to 0.01 micron. (author) [fr

  13. WISMUT AG: Past, present and future of the largest uranium producer in Europe

    International Nuclear Information System (INIS)

    Madel, J.

    1990-01-01

    The author gives a brief summary of WISMUT AG the largest uranium producer operating in Europe. The jointly owned German-Soviet company operates its production facilities in the southern part of the former German Democratic Republic. Given the new political and economic frame in Germany and the Soviet Union WISMUT AG will receive due recognition. Uranium exploration, mining, and milling activities are summarized from 1946-1989, and a summary of present activities and projections of future activities in the area of decontamination, restoration, and recultivation of present and abandoned mining and milling sites are noted. A statement of WISMUT AG's projected role in the international nuclear fuels market is made

  14. Method for converting uranium oxides to uranium metal

    International Nuclear Information System (INIS)

    Duerksen, W.K.

    1988-01-01

    A method for converting uranium oxide to uranium metal is described comprising the steps of heating uranium oxide in the presence of a reducing agent to a temperature sufficient to reduce the uranium oxide to uranium metal and form a heterogeneous mixture of a uranium metal product and oxide by-products, heating the mixture in a hydrogen atmosphere at a temperature sufficient to convert uranium metal in the mixture to uranium hydride, cooling the resulting uranium hydride-containing mixture to a temperature sufficient to produce a ferromagnetic transition in the uranium hydride, magnetically separating the cooled uranium hydride from the mixture, and thereafter heating the separated uranium hydride in an inert atmosphere to a temperature sufficient to convert the uranium hydride to uranium metal

  15. Contribution to the study of the new international philosophy of the radiological safety in the natural uranium chemical treatment

    International Nuclear Information System (INIS)

    Moraes da Silva, T. de

    1990-01-01

    The objective of this work is to adapt the Radiological Safety System in the facilities concerned to the chemical treatment of the uranium concentrated (yellow-cake) until conversion in uranium hexafluoride in the pilot plant of IPEN-CNEN/SP, to the new international philosophy adopted by ICRP and IAEA. The new philosophy changes fully the Radiological Protection concepts of preceding philosophy, changes, also, the concept of the workplace and individual monitoring as well as the classification of the working areas. In this paper we show the monitoring program, in each phase of the natural uranium treatment chemical process in conversion facility for external irradiation, surface contamination and air contamination. The results were analysed according with the new philosophy and used to reclassify the workplace. It was introduced the condition work concept taking account the time spent by the worker in that workplace. (author)

  16. Processing of stored uranium tetrafluoride for productive use

    International Nuclear Information System (INIS)

    Whinnery, W.N. III

    1987-01-01

    Waste uranium tetrafluoride (UF4) was created from converting uranium hexafluoride (UF6) to UF4 for generation of hydrogen fluoride. This resulted in more tails cylinders being made available in the early days of the Paducah Gaseous Diffusion Plant. A need arose for the UF4; however, a large portion of the material was stored outside in 55-gallon drums where the material became caked and very hard. Chemical operations crushed, ground, and screened a large portion of the waste UF4 from 1981-1987. Over 111,935,000 pounds of the material has been processed and put into productive use at Westinghouse Materials Company of Ohio or at Department of Defense facilities. This long-term effort saved the disposal cost of the material which is estimated at $9,327,900. In addition, the work was for an outside contract which lowered the operating cost of the Chemical Operations Department by $4,477,400. Disposal options for the material still present in the current inventory are outlined

  17. Method of preparation of uranium nitride

    Science.gov (United States)

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  18. Determination of the isotopic ratio 235U/238U in UF6 using quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Kusahara, Helena Sueco

    1979-01-01

    In this work measurements of isotope ratios 235 U / 23 '8U in uranium hexafluoride are carried out using a quadrupole mass spectrometer. The operational parameters, which affect the final precision of the results, are standardized. Optimized procedures for the preparation of uranium hexafluoride samples by fluorination of uranium oxides using cobalt trifluoride method are established. Careful attention is given to the process of purification of uranium hexafluoride samples by fractional distillation. Adequate statistical methods for analysing the results obtained for single ratio measurements as well as the ratio ' of isotopic ratios of sample and standard ar.e developed. A precision of about 10 -4 for single ratio measurements and accuracy of about 0,3% for the ratio of sample and standard ratios are obtained. These results agree with the values which have been obtained using magnetic mass spectrometers. The procedures and methods established in this work can be employed in the systematic uranium isotope analysis in UF 6 form. (author)

  19. Uranium enrichment

    International Nuclear Information System (INIS)

    1989-01-01

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  20. Evaluation of the uranium market and its consequences in the strategy of a nuclear fuel supplier that is also a uranium producer

    International Nuclear Information System (INIS)

    Esteves, R.G.

    2005-01-01

    On January 2005, the uranium spot market price reached the value of $21.00/lbU3O8. One month before, at the end of December, the average price was $20.70/lbU3O8 and in November the spot price registered $20.50. When we review this abstract, on July 2005, the price has reached $30.00/lbU3O8. In 1984, the uranium spot price dropped below the twenties and remained so reaching meanwhile even one-digit values, even considering that the uranium offer in this period was always below the demand. The main reason for that distortion in the market was and still is, the interference of the developing countries governments after the end of the cold war The Industrias Nucleares do Brasil - INB is in an odd situation in the market of fuel suppliers due to being also a uranium producer and in short future will also be an enrichment services supplier. This peculiar position brings additional advantages due to the flexibility to play with the uranium costs versus tail assay to optimize its nuclear fuel costs. That odd position, equivalent only in the market to AREVA, allows INB to exchange uranium by SWU and vice versa according to its uranium cost (not market sell price) and in the future to the SWU's costs obtaining a better margin that can not be reached by other fuel suppliers. In the first part of this paper it is evaluated, based on the recent market information, the consequences in the 2004 uranium spot price, expected to be more emphasized during 2005. This paper also evaluate the market mechanisms for expecting the price to cross the $40/lbU3O8 in short time The market supply mechanisms used up to now to fulfil the market deficit may be interrupted in case the developing countries governments stop the availability of the non civil uranium reserves from its stockpile. Different hypotheses for supplying the primary uranium deficit in this last case are analyzed in this work and evaluated its consequences. The solution of reducing the actual tails assay used aiming at

  1. The significance of zircon characteristic and its uranium concentration in evaluation of uranium metallogenetic prospect

    International Nuclear Information System (INIS)

    Li Yaosong; Zhu Jiechen; Xia Yuliang

    1992-02-01

    Zircon characteristic and its relation to uranium metallogenetic process have been studied on the basis of physics properties and chemical compositions. It is indicated that the colour of zircon crystal is related to uranium concentration; on the basis of method of zircon population type of Pupin J.P., the sectional plan of zircon population type has been designed, from which result that zircon population type of uranium-producing rock body is distributed mainly in second section, secondly in fourth section; U in zircon presents synchronous increase trend with Th, Hf and Ta; the uranium concentration in zircon from uranium-producing geologic body increases obviously and its rate of increase is more than that of the uranium concentration in rock; the period, in which uranium concentration in zircon is increased, is often related to better uranium-producing condition in that period of this area. 1785 data of the average uranium concentration in zircon have been counted and clear regularity has been obtained, namely the average uranium concentrations in zircon in rich uranium-producing area, rock, geologic body and metallogenetic zone are all higher than that in poor or no uranium-producing area, rock, geologic body and metallogenetic zone. This shows that the average uranium concentration in zircon within the region in fact reflects the primary uranium-bearing background in region and restricts directly follow-up possibility of uranium mineralization. On the basis of this, the uranium source conditions of known uranium metallogenetic zones and prospective provinces have been discussed, and the average uranium concentrations in zircon from magmatic rocks for 81 districts have been contrasted and graded, and some districts in which exploration will be worth doing further are put forward

  2. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1977-01-01

    A system for isotope separation or enrichment wherein molecules of a selected isotope type in a flow of molecules of plural isotope types are vibrationally excited and collided with a background gas to provide enhanced diffusivity for the molecules of the selected isotope type permitting their separate collection. The system typically is for the enrichment of uranium using a uranium hexafluoride gas in combination with a noble gas such as argon. The uranium hexafluoride molecules having a specific isotope of uranium are vibrationally excited by laser radiation. The vibrational energy is converted to a translation energy upon collision with a particle of the background gas and the added translation energy enhances the diffusivity of the selected hexafluoride molecules facilitating its condensation on collection surfaces provided for that purpose. This process is periodically interrupted and the cryogenic flow halted to permit evaporation of the collected molecules to provide a distinct, enriched flow

  3. Alpha spectrometry enriched uranium urinalysis results from IPEN

    International Nuclear Information System (INIS)

    Lima, Marina Ferreira

    2008-01-01

    Full text: IPEN (Instituto de Pesquisas Energeticas e Nucleares) manufactures the nuclear fuel to its research reactor, the IEA-R1. The CCN (Centro do Ciclo do Combustivel) facility produces the fuel cermets from UF 6 (uranium hexafluoride) enriched to 19.75% in 235 U. The production involves the transformation of the gaseous form in oxides and silicates by ceramic and metallurgical processing. The workers act in more than one step that involves exposition to types F, S and M compounds of uranium. Until 2003, only fluorimetric analysis was carried out by the LRT (Laboratorio de Radiotoxicologia - IPEN) in order to evaluate the intake of uranium, in spite of the sub estimation of the 234 U contribution to the internal doses. Isotopic uranium determination in urine by alpha spectrometry is the current method to monitoring the contribution of 234 U, 235 U and 238 U. Alpha spectrometry data of 164 samples from 84 individuals separate in three categories of workers: routinely work group; special operation group and control group - were analyzed how the isotopic composition excreted by urinary tract corresponds with the level of enrichment and isotopic composition of the plant products. Results show that is hard to estimate these intakes of 234 U and 235 U since these isotopes alpha activities are below the limit of detection or minimum detectable activity (MAD) of this method in the most part of the samples. Only in 22 samples it was possibly to measure the three radionuclides. Not expected high contribution of 234 U activity was found in samples of the control group. No one result over the 234 U and 235 U MAD was found in the samples from the special operation group. Only in 5 samples from the routinely group the levels of 235 U was higher than the levels of others groups. In a complementary study, 3 solid samples of UF 6 , U 2 O 8 and U 3 Si 2 from CCN plant were analyzed to determinate the isotopic uranium composition in these salts, since this composition varies

  4. Uranium exploration

    International Nuclear Information System (INIS)

    De Voto, R.H.

    1984-01-01

    This paper is a review of the methodology and technology that are currently being used in varying degrees in uranium exploration activities worldwide. Since uranium is ubiquitous and occurs in trace amounts (0.2 to 5 ppm) in virtually all rocks of the crust of the earth, exploration for uranium is essentially the search of geologic environments in which geologic processes have produced unusual concentrations of uranium. Since the level of concentration of uranium of economic interest is dependent on the present and future price of uranium, it is appropriate here to review briefly the economic realities of uranium-fueled power generation. (author)

  5. Worldwide developments in uranium

    International Nuclear Information System (INIS)

    Hoellen, E.E.

    1987-01-01

    World uranium production will continue to change in most major producing nations. Canadian production will increase and will be increasingly dominated by western producers as eastern Canadian high-cost production declines. Australian production will increase as major projects come into operation before 2000. US production will stabilize through the end of the century. South African production will be dependent upon the worldwide support for economic sanctions. China's entry into the world market injects yet another variable into the already cloudy supply picture. Many risks and uncertainties will face uranium producers through the 1980s. Recognizing that the uranium industry is not a fast-growing market, many existing and potential producers are seeking alternate investment courses, causing a restructuring of the world uranium production industry in ways not anticipated even a few years ago. During the restructuring process, world uranium production will most likely continue to exceed uranium consumption, resulting in a further buildup of world uranium inventories. Inventory sales will continue to redistribute this material. As inventory selling runs its course, users will turn to normal sources of supply, stimulating additional production to meet needs. Stimulation in the form of higher prices will be determined by how fast producers are willing and able to return to the market. Production costs are expected to have an increasing impact as it has become apparent that uranium resources are large in comparison to projected consumption. Conversely, security-of-supply issues have seemed to be of decreasing magnitude as Canada, Australia, and other non-US producers continue to meet delivery commitments

  6. Toxicity evaluation of the effluent of the ammonium diuranate process proceeding from the Uranium Reconversion Cycle (IPEN/CNEN-SP)

    International Nuclear Information System (INIS)

    Osti, Silvio Cesar de

    2001-01-01

    This project was developed with the objective to evaluate the acute and chronic toxicity of the ammonium diuranate proceeding from the process used to obtain uranium hexafluoride (UF 6 ), substance which is necessary to produce fuel used by the IEA-R1-IPEN reactor. Five acute toxicity tests were done with Daphnia similis in which concentration values of EC(I)50;48h, between 0,39% and 0,57% of the effluent were determined, and other five with Danio rerio in which concentration values of EC(I)50;48h, between 0,06% and 0,07% of the effluent were determined. Three chronic toxicity tests with Selenastrum capricornutum were done, having found NOEC values for concentrations below 0,12% of the effluents. To determine the ion fluoride toxicity in the Daphnia similis, five acute toxicity tests were done in which values of EC(I)50;48h, between 263.90 mgL -1 and 292.82 mgL -1 were found. The acute toxicity tests done with D. similis demonstrated that the effluent toxicity persisted during its storage period. The acute toxicity test with D.rerio and chronic ones with S. capricornutum using the effluents after the ionic-replace treatment, which objective is to recover uranium for reuse, demonstrated the effluent toxicity persistency. (author)

  7. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Moussalli, G.; Naegele, G.

    1995-01-01

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. Then a statistical inference can be made from verification results for items verified during SNRIs to the entire populations, i.e. the entire strata, even if inspectors were not present when many items were received or produced. A six-month field test of the feasibility of such SNRIs took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division during 1993. Westinghouse personnel made daily declarations about both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ''mailbox''. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. They arrived unannounced at the plant, in most cases immediately after travel from Canada, where the IAEA maintains a regional office. Items from both strata were verified during the SNRIs by meant of nondestructive assay equipment

  8. Uranium in Canada: Billion-dollar industry

    International Nuclear Information System (INIS)

    Whillans, R.T.

    1989-01-01

    In 1988, Canada maintained its position as the world's leading producer and exporter of uranium; five primary uranium producers reported concentrate output containing 12,400 MT of uranium, or about one-third of Western production. Uranium shipments made by these producers in 1988 exceeded 13,200 MT, worth Canadian $1.1 billion. Because domestic requirements represent only 15% of current Canadian output, most of Canada's uranium production is available for export. Despite continued market uncertainty in 1988, Canada's uranium producers signed new sales contracts for some 14,000 MT, twice the 1987 level. About 90% of this new volume is with the US, now Canada's major uranium customer. The recent implementation of the Canada/US Free Trade agreement brings benefits to both countries; the uranium industries in each can now develop in an orderly, free market. Canada's uranium industry was restructured and consolidated in 1988 through merger and acquisition; three new uranium projects advanced significantly. Canada's new policy on nonresident ownership in the uranium mining sector, designed to encourage both Canadian and foreign investment, should greatly improve efforts to finance the development of recent Canadian uranium discoveries

  9. Annex 4 - Task 08/13 final report, Producing the binary uranium alloys with alloying components Al, Mo, Zr, Nb, and B

    International Nuclear Information System (INIS)

    Lazarevic, Dj.

    1961-01-01

    Due to reactivity of uranium in contact with the gasses O 2 , N 2 , H 2 , especially under higher temperatures uranium processing is always done in vacuum or inert gas. Melting, alloying and casting is done in high vacuum stoves. This report reviews the type of furnaces and includes detailed description of the electric furnace for producing uranium alloys which is available in the Institute

  10. Liver metastases: Sulphur hexafluoride-enhanced ultrasonography for lesion detection: a systematic review

    NARCIS (Netherlands)

    Cabassa, Paolo; Bipat, Shandra; Longaretti, Laura; Morone, Mario; Maroldi, Roberto

    2010-01-01

    This is a systematic review to evaluate the accuracy of contrast-enhanced ultrasonography (CEUS) performed with "SonoVue" (sulphur hexafluoride) in the detection of hepatic metastases. The MEDLINE, EMBASE and COCHRANE Databases were searched, regardless of language, for relevant articles published

  11. Development of solid materials for UF6 sampling: FY16 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Savina, Joseph [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hebden, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-10-31

    A handheld implementation of the ABACC-developed Cristallini method, which captures uranium hexafluoride samples as an inert salt, was organized in FY17 and succeeded in demonstrating the handheld sampler concept with reactive hexafluoride gases. The Cristallini method relies on the use of a hydrated substrate to react the incoming hexafluoride resulting in the formation of a stable uranyl fluoride salt. The Cristallini method has been demonstrated as a facility modification installed near the sampling tap of a gas centrifuge enrichment plant. While very successful in reducing the hazards of uranium hexafluoride sample, the method still takes a considerable amount of time and can only be used in facilities where the apparatus has been installed; this arrangement generally prohibits the sampling of filled cylinders that have already exited the facility and have been deposited in the on-site tank storage yard. The handheld unit under development will allow the use of the Cristallini method at facilities that have not been converted as well as tanks in the storage yard. The handheld system utilizes an active vacuum system, rather than a passive vacuum system in the facility setup, to drive the uranium hexafluoride onto the adsorbing media. The handheld unit will be battery operated for fully autonomous operation and will include onboard pressure sensing and flushing capability. To date, the system concept of operations was demonstrated with tungsten hexafluoride that showed the active vacuum pump with multiple cartridges of adsorbing media was viable. Concurrently, the hardened prototype system was developed and tested; removable sample cartridges were developed (the only non-COTS component to date); and preparations were made for uranium tests and a domestic field test.

  12. Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R M

    1976-01-01

    Evidence of expanding markets, improved prices and the short supply of uranium became abundantly clear in 1975, providing the much needed impetus for widespread activity in all phases of uranium operations. Exploration activity that had been at low levels in recent years in Canada was evident in most provinces as well as the Northwest Territories. All producers were in the process of expanding their uranium-producing facilities. Canada's Atomic Energy Control Board (AECB) by year-end had authorized the export of over 73,000 tons of U/sub 3/0/sub 8/ all since September 1974, when the federal government announced its new uranium export guidelines. World production, which had been in the order of 25,000 tons of U/sub 3/0/sub 8/ annually, was expected to reach about 28,000 tons in 1975, principally from increased output in the United States.

  13. Direct isotope ratio measurement of uranium metal by emission spectrometry on a laser-produced plasma

    International Nuclear Information System (INIS)

    Pietsch, W.; Petit, A.; Briand, A.

    1995-01-01

    The method of Optical Emission Spectrometry on a Laser-Produced Plasma (OES/LPP) at reduced pressure has been studied for the determination of the uranium isotope ratio ( 235 U/ 238 U). Spectral profiles of the investigated transition U-II 424.437 nm show the possibility to obtain an isotopic spectral resolution in a laser-produced plasma under exactly defined experimental conditions. Spectroscopic data and results are presented. (author)

  14. Kinetics of low pressure chemical vapor deposition of tungsten silicide from dichlorocilane reduction of tungsten hexafluoride

    International Nuclear Information System (INIS)

    Srinivas, D.; Raupp, G.B.; Hillman, J.

    1990-01-01

    The authors report on experiments to determine the intrinsic surface reaction rate dependences and film properties' dependence on local reactant partial pressures and wafer temperature in low pressure chemical vapor deposition (LPCVD) of tungsten silicide from dichlorosilane reduction of tungsten hexafluoride. Films were deposited in a commercial-scale Spectrum CVD cold wall single wafer reactor under near differential, gradientless conditions. Over the range of process conditions investigated, deposition rate was found to be first order in dichlorosillane and negative second order in tungsten hexafluoride partial pressure. The apparent activation energy in the surface reaction limited regime was found to be 70-120 kcal/mol. The silicon to tungsten ratio of as deposited silicide films ranged from 1.1 to 2.4, and increased with increasing temperature and dichlorosillane partial pressure, and decreased with increasing tungsten hexafluoride pressure. These results suggest that the apparent silicide deposition rate and composition are controlled by the relative rates of at least two competing reactions which deposit stoichiometric tungsten silicides and/or silicon

  15. Nuclear Science and Technology Branch report 1977

    International Nuclear Information System (INIS)

    Hardy, C.J.

    1977-12-01

    A report of research programs continuing in the following areas is presented: mining and treatment of uranium ores, manufacture of uranium hexafluoride, uranium enrichment, waste treatment, reprocessing and the uranium fuel cycle. Staff responsible for each project are indicated

  16. Surface decontamination in the old storage shed number 99 of the General Plan of IPEN/CNEN-SP, containing production equipment of natural uranium hexafluoride (UF{sub 6}), aiming at its decommissioning; Descontaminacao de superficies no antigo galpao de estocagem numero 99 da planta geral do IPEN/CNEN-SP, contendo equipamentos da producao de hexafluoreto de uranio natural, (UF{sub 6}), visando seu descomissionamento

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Claudio C. de; Cambises, Paulo B.S.; Paiva, Julio E. de; Paiva, Julio E. de; Silva, Teresina M.; Rodrigues, Demerval L., E-mail: calmeida@ipen.br, E-mail: cambises@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2013-11-01

    This paper presents the steps adopted in the operation planned for the decontamination of surfaces in the old storage shed number 99 the general layout of the Energy Research and Nuclear IPEN-CNEN/SP, Brazil, and contained various types of equipment originating from production hexafluoride natural uranium (UF6). This operation involved the planning, training of operators of the facility, analysis of workplaces and radiometric surveys for monitoring of external radiation and surface contamination. The training involved the procedures for decontamination of surfaces, segregation of materials and practical procedures for individual monitoring of contamination outside of the body. Were also established rules for the transport of radioactive materials in the internal and external facility and release of material and sites already decontaminated.

  17. PROCESS OF RECOVERING URANIUM

    Science.gov (United States)

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  18. Uranium resources in New Mexico

    International Nuclear Information System (INIS)

    McLemore, V.T.; Chenoweth, W.L.

    1989-01-01

    For nearly three decades (1951-1980), the Grants uranium district in northwestern New Mexico produced more uranium than any other district in the world. The most important host rocks containing economic uranium deposits in New Mexico are sandstones within the Jurassic Morrison Formation. Approximately 334,506,000 lb of U 3 O 8 were produced from this unit from 1948 through 1987, accounting for 38% of the total uranium production from the US. All of the economic reserves and most of the resources in New Mexico occur in the Morrison Formation. Uranium deposits also occur in sandstones of Paleozoic, Triassic, Cretaceous, Tertiary, and Quaternary formations; however, only 468,680 lb of U 3 O 8 or 0.14% of the total production from New Mexico have been produced from these deposits. Some of these deposits may have a high resource potential. In contrast, almost 6.7 million lb of U 3 O 8 have been produced from uranium deposits in the Todilto Limestone of the Wanakah Formation (Jurassic), but potential for finding additional economic uranium deposits in the near future is low. Other uranium deposits in New Mexico include those in other sedimentary rocks, vein-type uranium deposits, and disseminated magmatic, pegmatitic, and contact metasomatic uranium deposits in igneous and metamorphic rocks. Production from these deposits have been insignificant (less than 0.08% of the total production from New Mexico), but there could be potential for medium to high-grade, medium-sized uranium deposits in some areas. Total uranium production from New Mexico from 1948 to 1987 amounts to approximately 341,808,000 lb of U 3 O 8 . New Mexico has significant uranium reserves and resources. Future development of these deposits will depend upon an increase in price for uranium and lowering of production costs, perhaps by in-situ leaching techniques

  19. Contribution to the Chemical and Technological Study of Ammonium Diuranate Precipitation

    International Nuclear Information System (INIS)

    Vuillemey, R.

    1962-01-01

    The present work is designed to study the relationship between the conditions for precipitation by ammonia and the properties of ammonium diuranate obtained either from uranyl nitrate solution or from gaseous uranium hexafluoride. In each case the optimum processes are defined leading on the one hand to uranate which can afterwards be treated in a reduction- fluorination oven to give uranium tetrafluoride, and on the other hand to a uranate suitable for the production of a sinterable uranium oxide. In particular it is shown that the treatment of uranyl nitrate solutions by stoichiometric quantities of ammonia leads to the complete precipitation of the uranium leaving less than 1 mg/litre of uranium in the solution, whereas the treatment of uranium hexafluoride necessitates the use of at least 8 times the stoichiometric quantity. (author) [fr

  20. Developments in uranium in 1986

    International Nuclear Information System (INIS)

    Chenoweth, W.L.

    1987-01-01

    Imported uranium and low prices continued to plague the domestic uranium industry and, as a result, the Secretary of Energy declared the domestic industry to be nonviable for the second straight year. Uranium exploration expenditures in the US declined for the eighth consecutive year. In 1986, an estimated $19 million was spent on uranium exploration, including 1.9 million ft of surface drilling. This drilling was done mainly in producing areas and in areas of recent discoveries. Production of uranium concentrate increased in 1986, when 13.8 million lb of uranium oxide (U 3 O 8 ) were produced, a 22% increase over 1985. Uranium produced as the result of solution mining and as the by-product of phosphoric acid production accounted for about 37% of the total production in the US. At the end of 1986, only 6 uranium mills were operating in the US. Canada continued to dominate the world market. The development under way at the huge Olympic Dam deposit in Australia will increase that country's production. US uranium production is expected to show a small decrease in 1987. 3 figures, 2 tables

  1. The Toxicity of Depleted Uranium

    OpenAIRE

    Briner, Wayne

    2010-01-01

    Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a c...

  2. Uranium in Canada

    International Nuclear Information System (INIS)

    1985-09-01

    In 1974 the Minister of Energy, Mines and Resources (EMR) established a Uranium Resource Appraisal Group (URAG) within EMR to audit annually Canada's uranium resources for the purpose of implementing the federal government's uranium export policy. A major objective of this policy was to ensure that Canadian uranium supplies would be sufficient to meet the needs of Canada's nuclear power program. As projections of installed nuclear power growth in Canada over the long term have been successively revised downwards (the concern about domestic security of supply is less relevant now than it was 10 years ago) and as Canadian uranium supply capabilities have expanded significantly. Canada has maintained its status as the western world's leading exporter of uranium and has become the world's leading producer. Domestic uranium resource estimates have increased to 551 000 tonnes U recoverable from mineable ore since URAG completed its last formal assessment (1982). In 1984, Canada's five primary uranium producers employed some 5800 people at their mining and milling operations, and produced concentrates containing some 11 170 tU. It is evident from URAG's 1984 assessment that Canada's known uranium resources, recoverable at uranium prices of $150/kg U or less, are more than sufficient to meet the 30-year fuelling requirements of those reactors that are either in opertaion now or committed or expected to be in-service by 1995. A substantial portion of Canada's identified uranium resources, recoverable within the same price range, is thus surplus to Canadian needs and available for export. Sales worth close to $1 billion annually are assured. Uranium exploration expenditures in Canada in 1983 and 1984 were an estimated $41 million and $35 million, respectively, down markedly from the $128 million reported for 1980. Exploration drilling and surface development drilling in 1983 and 1984 were reported to be 153 000 m and 197 000 m, respectively, some 85% of which was in

  3. Vaal Reefs South uranium plant

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The Vaal Reefs mining complex, part of the Anglo American Corporation, is the largest gold and uranium producing complex in the world, being South Africa's principal producer, accounting for about a quarter of the country's uranium production. Vaal Reefs South uranium plant in the Orkney district was recently officially opened by Dr AJA Roux, the retiring president of the Atomic Energy Board and chairman of the Uranium Enrichment Corporation and will increase the country's uranium production. In the field of technology, and particularly processing technology, South Africa has shown the world unprecedented technology achievement in the field of uranium extraction from low grade ores and the development of the unique uranium enrichment process. New technical innovations that have been incorporated in this new plant are discussed

  4. Method to separate various isotopes in compounds by means of laser radiation

    International Nuclear Information System (INIS)

    Meyer-Kretschmer, G.; Jetter, H.; Toennies, P.

    1980-01-01

    The uranium hexafluoride together with an inert addition gas is cooled down below 50 K by adiabatic expansion, then the state of oscillation of the molecules is changed specifically for each isotope using laser light, and subsequently positive ions are produced by means of an electron beam. The ions are removed from the gas by means of an electric field. (DG) [de

  5. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    Science.gov (United States)

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  6. Demand forecast for rail shipment of radioactive material in the United States

    International Nuclear Information System (INIS)

    Allen, G.C.; Cashwell, J.W.

    1981-01-01

    A summary of the market potential for radioactive material (in millions of ton-miles) is presented in tabular form. These include the following: milled uranium ore; mill tailings; natural uranium hexafluoride; enriched uranium hexafluoride; fresh fuel, spent fuel; low-level waste; transuranic waste; and high-level waste. The maximum realistic market share for rail carriers is always less than these values because of the lack of rail access to some shipping and receiving facilities, small material quantities which could most easily move by other modes, short shipping distances for certain transport segments and greater operational convenience of other modes for some material categories. While market share and revenues for radioactive material are presently small, rail carriers appear to have a market advantage for milled uranium ore, transuranic waste and high-level waste. The potential for a significantly increased market share exists for spent fuel and uranium hexafluoride. While more fresh fuel and low-level waste can be transported by rail, it is unlikely that rail market share for radioactive materials (RAM) in general will rise to the potential maximum because many of these materials have historically been moved by truck and transported in frequent, small shipments

  7. Chemistry of the 5g Elements: Relativistic Calculations on Hexafluorides.

    Science.gov (United States)

    Dognon, Jean-Pierre; Pyykkö, Pekka

    2017-08-14

    A Periodic System was proposed for the elements 1-172 by Pyykkö on the basis of atomic and ionic calculations. In it, the elements 121-138 were nominally assigned to a 5g row. We now perform molecular, relativistic four-component DFT calculations and find that the hexafluorides of the elements 125-129 indeed enjoy occupied 5g states. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chemistry of the 5g elements. Relativistic calculations on hexafluorides

    International Nuclear Information System (INIS)

    Dognon, Jean-Pierre; Pyykkoe, Pekka

    2017-01-01

    A Periodic System was proposed for the elements 1-172 by Pyykkoe on the basis of atomic and ionic calculations. In it, the elements 121-138 were nominally assigned to a 5g row. We now perform molecular, relativistic four-component DFT calculations and find that the hexafluorides of the elements 125-129 indeed enjoy occupied 5g states. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Chemistry of the 5g elements. Relativistic calculations on hexafluorides

    Energy Technology Data Exchange (ETDEWEB)

    Dognon, Jean-Pierre [NIMBE, CEA, CNRS, Universite Paris-Saclay, CEA Saclay, Gif-sur-Yvette (France); Pyykkoe, Pekka [Department of Chemistry, University of Helsinki (Finland)

    2017-08-14

    A Periodic System was proposed for the elements 1-172 by Pyykkoe on the basis of atomic and ionic calculations. In it, the elements 121-138 were nominally assigned to a 5g row. We now perform molecular, relativistic four-component DFT calculations and find that the hexafluorides of the elements 125-129 indeed enjoy occupied 5g states. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. The handling of plutonium hexafluoride (1962); Manipulation de l'hexafluorure de plutonium (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Berard, Ph [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1961-11-15

    The major problem posed in this work is the instability of plutonium hexafluoride. The influence of various factors on the decomposition of the fluoride has been studied: physical aspect of the walls, nature of the metal and its pretreatment, influence of the temperature. A means of detecting plutonium-239 in a metallic apparatus by {gamma}-ray counting has been developed; the sensitivity is of the order of half a milligram, but the precision is very low (about 50 per cent). Yields of over 95 per cent have been obtained for the transfer of plutonium during the preparation and sublimation of the hexafluoride. This study confirms the possibility of using plutonium hexafluoride for the extraction of plutonium from irradiated fuel elements by a dry method. (author) [French] Le probleme majeur de cette etude a ete l'instabilite de l'hexafluorure de plutonium. Nous avons etudie l'influence de divers facteurs sur la decomposition de l'hexafluorure: aspect physique des parois, nature du metal et de son pretraitement, influence de la temperature. Nous avons mis au point un mode de detection du plutonium-239 dans un appareillage metallique par comptage du rayonnement {gamma}; la sensibilite est de l'ordre du demi-milligramme, mais la precision est tres faible (50 pour cent environ). Nous avons obtenu des rendements depassant 95 pour cent dans le transfert du plutonium au cours de la fabrication et de la sublimation de l'hexafluorure. Cette etude confirme la possibilite d'utiliser l'hexafluorure de plutonium dans l'extraction du plutonium des combustibles irradies par voie seche. (auteur)

  11. Preparation of uranium-230 as a new uranium tracer

    International Nuclear Information System (INIS)

    Hashimoto, T.; Kido, K.; Sotobayashi, T.

    1977-01-01

    A uranium isotope, 230 U(T=20.8 d), was produced from the 231 Pa(γ,n) 230 Pa→viaβ - decay 230 U process with a bremsstrahlung irradiation on a protactinium target. After standing for about one month to obtain a maximal growth of 230 U, the uranium was chemically purified, applying an ion-exchange method. The purity of the 230 U obtained was examined with alpha spectrometry and an intrinsic alpha peak due to 230 U as a new uranium tracer in an alpha spectrometric analysis of uranium isotopes is described. (author)

  12. Research and economic evaluation on uranium enrichment by gaseous diffusion process in Japan

    International Nuclear Information System (INIS)

    Aochi, T.; Takahashi, S.

    1977-01-01

    Research and development works on uranium enrichment by gaseous diffusion process were carried out by JAERI, IPCR and industries since 1965. There are two important keys to reduce the uranium separation cost. One is the characteristics of the barrier and the other is financing and/or political planning. The technics to prepare the barrier with pore diameter of 40A have been developed with polytetrafluoroethylene, alumina and nickel. The experiment on corrosion behavior of PTFE barriers has shown better characteristics than the others. In the field of engineering research, the adiabatic efficiency of axial compressor for UF 6 was resulted to as high as 90% by long term operation tests. Based on these experimental data, techno-economic evaluation on a uranium enrichment plant was carried out with regard to the optimization of separation efficiency, numbers of step and operating conditions of the plant. Sensitivity in the separation cost were calculated as a function of pore diameter, uranium hexafluoride cost, plant capacity, electric power cost, and the plant annual expenditure. A financing plan must be such as to achieve 1. maximization of debt in a percentage of total capitalization 2. off-take contracts to utilities as security for financing 3. minimization of risks to equity and achievable cost of capital. Therefore the cash flow analysis and the schedule for construction and operation are very important for a economical feasibility of a uranium enrichment plant. To minimize the risk, not only economical but also political environment are important. The governmental supports and international agreements will be necessary

  13. Uranium complex recycling method of purifying uranium liquors

    International Nuclear Information System (INIS)

    Elikan, L.; Lyon, W.L.; Sundar, P.S.

    1976-01-01

    Uranium is separated from contaminating cations in an aqueous liquor containing uranyl ions. The liquor is mixed with sufficient recycled uranium complex to raise the weight ratio of uranium to said cations preferably to at least about three. The liquor is then extracted with at least enough non-interfering, water-immiscible, organic solvent to theoretically extract about all of the uranium in the liquor. The organic solvent contains a reagent which reacts with the uranyl ions to form a complex soluble in the solvent. If the aqueous liquor is acidic, the organic solvent is then scrubbed with water. The organic solvent is stripped with a solution containing at least enough ammonium carbonate to precipitate the uranium complex. A portion of the uranium complex is recycled and the remainder can be collected and calcined to produce U 3 O 8 or UO 2

  14. A review of the environmental impact of mining and milling of radioactive ores, upgrading processes, and fabrication of nuclear fuels

    International Nuclear Information System (INIS)

    Costello, J.M.; Davy, D.R.; Cattell, F.C.R.; Cook, J.E.

    1980-01-01

    The subject is discussed under the headings: uranium mining; milling of uranium ores; manufacture of uranium hexafluoride; uranium enrichment; fuel manufacture and fabrication; environmental impact (use of natural resources; effluents from fuel cycle operations; occupational health; public health); alternative fuel cycles; additional waste treatment. (U.K.)

  15. World uranium production in 1995

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    For the first time since the political and economic opening of the former Soviet Union and Eastern Europe, world uranium production actually increased in 1995. Preliminary estimates for 1996 continue this trend, indicating additional (if slight) production increases over 1995 levels. Natural uranium production increased by about 5% in 1995 to 34,218 tons uranium or 89 Mlbs U3O8. This is an increase of approximately 1700 tons of uranium or 4.3 Mlbs of U3O8 over the updated 1994 quantities. Data is presented for each of the major uranium producing countries, for each of the world's largest uranium mines, for each of the world's largest corporate producers, and for major regions of the world

  16. Uranium industry annual 1993

    International Nuclear Information System (INIS)

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U 3 O 8 (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U 3 O 8 (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world's largest producer in 1993 with an output of 23.9 million pounds U 3 O 8 (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market

  17. Uranium industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  18. Evaluation of sulfur hexafluoride and helium for steam generator leak location: Final report

    International Nuclear Information System (INIS)

    Kassen, W.R.

    1987-01-01

    Since the use of sulfur hexafluoride as a tracer for identifying sources of primary to secondary leakage in PWR steam generators appeared to offer significant sensitivity advantages, the thermal stability of sulfur hexafluoride in water was evaluated at steam generator operating temperature. Significant decomposition was observed after 2 to 4 hours at temperature. Key decomposition products were fluoride and sulfide ions. Based on this observation and these limited test results, the use of SF 6 for PWR steam generator leak location can not be recommended at this time. A survey of 15 utilities was conducted in regard to their application experience with the helium tracer-mass spectroscopy technique for steam generator leak location. Although several successful steam generator integrity programs do not include use of this technique, it has proven to be a useful addition to the inspection program at some plants. No corrosion concerns appear to be associated with this technique

  19. Method and device to produce pourable, directly pressable uranium dioxide powder. Verfahren und Vorrichtung zur Herstellung von rieselfaehigem, direkt verpressbarem Urandioxid-Pulver

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, P.; Isensee, H.J.; Vietzke, H.

    1978-08-17

    The uranium dioxide powder is produced from uranium peroxide which is obtained by continuous precipitation of uranyl nitrate solutions. By varying the precipitation conditions, one can exactly adjust the desired properties of the UO/sub 2/ powder, there is no 'post sintering'. The individual process steps are shown in detail.

  20. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    1979-01-01

    This invention relates to isotope separation employing isotopically selective vibrational excitation and vibration-translation reactions of the excited particles. Uranium enrichment, using uranium hexafluoride, is a particular embodiment. (U.K.)

  1. Cristallini Material Review and Selection

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Savina, Joseph [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hebden, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-09-30

    The creation of a handheld unit to utilize the Cristallini method of uranium hexafluoride sampling requires the identification and qualification of suitable substrate materials. These materials will need to quickly and completely react with the process gas, resist vapor locking under vacuum, while being relatively inexpensive and homogeneous. Two forms of powdered alumina have been chosen for a head-to-head comparison during upcoming uranium hexafluoride tests. Both materials have shown ideal uptake characteristics during tungsten hexafluoride tests with a high loading capacity and no measureable breakthrough. They have also been shown to work well at vacuums below 10 Torr, are commercially available and inexpensive. In addition, two possible hydrogen fluoride trapping materials, sodium fluoride and saturated calcium carbonate, have been identified for further testing.

  2. Precise coulometric titration of uranium in a high-purity uranium metal and in uranium compounds

    International Nuclear Information System (INIS)

    Tanaka, Tatsuhiko; Yoshimori, Takayoshi

    1975-01-01

    Uranium in uranyl nitrate, uranium trioxide and a high-purity uranium metal was assayed by the coulometric titration with biamperometric end-point detection. Uranium (VI) was reduced to uranium (IV) by solid bismuth amalgam in 5M sulfuric acid solution. The reduced uranium was reoxidized to uranium (VI) with a large excess of ferric ion at a room temperature, and the ferrous ion produced was titrated with the electrogenerated manganese(III) fluoride. In the analyses of uranium nitrate and uranium trioxide, the results were precise enough when the error from uncertainty in water content in the samples was considered. The standard sample of pure uranium metal (JAERI-U4) was assayed by the proposed method. The sample was cut into small chips of about 0.2g. Oxides on the metal surface were removed by the procedure shown by National Bureau of Standards just before weighing. The mean assay value of eleven determinations corrected for 3ppm of iron was (99.998+-0.012) % (the 95% confidence interval for the mean), with a standard deviation of 0.018%. The proposed coulometric method is simple and permits accurate and precise determination of uranium which is matrix constituent in a sample. (auth.)

  3. Uranium purchasers reassert their influence

    International Nuclear Information System (INIS)

    Braatz, U.

    1976-01-01

    The growing uranium requirement in the Western world in the long run can be met only by a participation of the electricity generating industry and the governments of the participating countries in the development costs of new deposits, according to statements by leading representatives of the uranium producers and consumers at a symposium organized by the Uranium Institute in the summer of 1976. On the other hand, the uranium market is likely to get under more and more pressure because of the delays in nuclear power programs worldwide. It is probable that the price of uranium will soon have reached its peak for a long time to come. Uranium producers also will have to bear in mind that a price policy which makes the use of uranium unattractive compared with other sources of energy could well result in a situation in which the largest uranium consumers would build more conventional thermal power stations to bridge the time to commercial introduction of fast breeder reactors. (orig.) [de

  4. Nuclear science and technology branch report 1975

    International Nuclear Information System (INIS)

    Hardy, C.J.

    1975-10-01

    Research programs are reported into topics such as the mining and treatment of uranium ore, the manufacture of uranium hexafluoride, enrichment of uranium, fuel manufacture, waste treatment, reprocessing, heavy water production and the uranium fuel cycle. The names of staff responsible for each project are indicated. (R.L.)

  5. Safety aspects of gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely

  6. Preparation of plutonium hexafluoride. Recovery of plutonium from waste dross (1962)

    International Nuclear Information System (INIS)

    Gendre, R.

    1962-01-01

    The object of this work is to study the influence of various physical factors on the rate of fluorination of solid plutonium tetrafluoride by fluorine. In a horizontal oven with a circulation for pure fluorine at atmospheric pressure and 520 deg. C, at a fluorine rate of 9 litres/hour, it is possible to transform 3 g of tetrafluoride to hexafluoride with about 100 per cent transformation and a recovery yield of over 90 per cent, in 4 to 5 hours. The fluorination rate is a function of the temperature, of the fluorine flow-rate, of the crucible surface, of the depth of the tetrafluoride layer and of the reaction time. It does not depend on the diffusion of the fluorine into the solid but is determined by the reaction at the gas-solid interface and obeys the kinetic law (1 - T T ) 1/3 = kt + 1. The existence of intermediate fluorides, in particular Pu 4 F 17 , is confirmed by a break in the Arrhenius plot at about 370 deg. C, by differences in the fluorination rates inside the tetrafluoride layer, and by reversible colour changes. The transformation to hexafluoride occurs with a purification with respect of the foreign elements present in the initial plutonium. Recovery of plutonium from waste dross: The study is based on the transformation of occluded plutonium particles to gaseous hexafluoride which is then decomposed thermally to the tetrafluoride which can be reintroduced directly in the production circuit. Under the conditions considered this process is not applicable industrially. After milling, it is possible to separate the dross into enriched (75 per cent Pu in 2.6 per cent by weight of dross) and depleted portions. By prolonged fluorination (16 hours) of the various fractions it is possible to recover about 80 per cent of the plutonium. A treatment plant using fluidization, as described at the end of this study, should make it possible to substantially improve the yield. (author) [fr

  7. The Toxicity of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Wayne Briner

    2010-01-01

    Full Text Available Depleted uranium (DU is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed.

  8. 50 years of uranium metal production in Uranium Metal Plant, BARC, Trombay

    International Nuclear Information System (INIS)

    2009-01-01

    The Atomic Energy Programme in India, from the very beginning, has laid emphasis on indigenous capabilities in all aspects of nuclear technology. This meant keeping pace with developments abroad and recognizing the potentials of indigenous technologies. With the development of nuclear programme in India, the importance of uranium was growing at a rapid pace. The production of reactor grade uranium in India started in January 1959 when the first ingot of nuclear pure uranium was discharged using CTR process at Trombay. The decision to set up a uranium refinery to purify the crude uranium fluoride, obtained as a by-product of the DAE's Thorium Plant at Trombay, and to produce nuclear grade pure uranium metal was taken at the end of 1956. The task was assigned to the 'Project Fire Wood Group'. The main objective of the plant was to produce pure uranium metal for use in the Canada India Reactor and Zerlina. Besides this, it was to function as a pilot plant to collect operational data and to train personnel for larger plants to be set up in future. The plant designing and erection work was entrusted to Messrs. Indian Rare Earths Ltd.

  9. The nuclear fuel cycle: (2) fuel element manufacture

    International Nuclear Information System (INIS)

    Doran, J.

    1976-01-01

    Large-scale production of nuclear fuel in the United Kingdom is carried out at Springfields Works of British Nuclear Fuels Ltd., a company formed from the United Kingdom Atomic Energy Authority in 1971. The paper describes in some detail the Springfields Works processes for the conversion of uranium ore concentrate to uranium tetrafluoride, then conversion of the tetrafluoride to either uranium metal for cladding in Magnox to form fuel for the British Mk I gas-cooled reactors, or to uranium hexafluoride for enrichment of the fissile 235 U isotope content at the Capenhurst Works of BNFL. Details are given of the reconversion at Springfields Works of this enriched uranium hexafluoride to uranium dioxide, which is pelleted and then clad in either stainless steel or zircaloy containers to form the fuel assemblies for the British Mk II AGR or advanced gas-cooled reactors or for the water reactor fuels. (author)

  10. Soil degradation by sulfuric acid disposition on uranium producing sites in south Bulgaria

    International Nuclear Information System (INIS)

    Atanasov, I.; Gribachev, P.

    1997-01-01

    This study assesses the damage of soils caused by spills of sulfuric acid solutions used for in situ leaching of uranium at eight uranium producing (by open-cast method) sites (total area of approximately 220 ha) in the region of Momino-Rakovski (South Bulgaria). The upper soil layer is cinnamonic pseudopodzolic ( or Eutric Planosols by FAO Legend, 1974). The results of the investigation show that the sulfuric acid spills caused strong acidification of upper (0-20 cm) and subsurface (20-60 cm) soil horizons which is expressed as decreasing of pH (H 2 O) to 2.9-3.5 and increasing of exchangeable H + and Al 3+ to 18 and 32% from CEC. Acid degradation of soils is combined with reducing of organic matter content. The average concentration of the total heavy metal content in the upper soil horizon (in ppm) is: Cd=1.5; Cu=30; Pb=25; Zn=40 and U=8. No significant differences were detected between the upper and subsurface soil layers . The heavy metal concentration did not exceed the Bulgarian standards for heavy metals and uranium content of soils. But the coarse texture of the top soil layers, the lack of carbonates, The low CEC and strong acidity determine a low buffering capacity of the investigated soils and this can be considered as hazardous for plants. This indicates that a future soil monitoring should be carried out in the region together with measures for neutralizing of soil acidity

  11. Observation of inner surface of flame-tower type reactor for uranium conversion

    International Nuclear Information System (INIS)

    Amamoto, Ippei; Terai, Takayuki; Umetsu, Hiroshi

    2003-01-01

    A fluorination reactor, which has been used to convert uranium tetrafluoride (UF 4 ) into uranium hexafluoride (UF 6 ), was completed after approximately 6000 hours operation at the uranium conversion facility in Japan. The observation of its inner surface was carried out to understand its corrosive condition and mechanism. The main wall of the reactor is made of Monel Alloy and its operational temperature is approximately 450degC at external surface under gaseous fluorine atmosphere. A sampling was undertaken from the most corrosive part of the reactor wall, and its analysis was carried out to obtain the data for the condition of appearance, thickness, macro and micro structure, etc. The results of observation are as follows: (1) The thickness decreased evenly (average 3.9 mm/year); (2) The chemical composition of corrosive products as coating was mainly nickel fluoride (NiF 2 ), which suggested that the corrosion mechanism could have been caused by the high temperature gas corrosion; (3) The total amount of coating was lower than that of a loss in thickness. For some reason, some of coating would seem to become extinct on the surface of the wall. The deterioration of coating, which formed a protector on the wall due to excess heating of the wall, the sand erosion effect by UF 4 , etc. have contributed to this state of condition. (author)

  12. Strong demand for natural uranium

    International Nuclear Information System (INIS)

    Kalinowski, P.

    1975-01-01

    The Deutsches Atomforum and the task group 'fuel elements' of the Kerntechnische Gesellschaft had organized an international two-day symposium in Mainz on natural uranium supply which was attended by 250 experts from 20 countries. The four main themes were: Demand for natural uranium, uranium deposits and uranium production, attitude of the uranium producing countries, and energy policy of the industrial nations. (orig./AK) [de

  13. Irans Nuclear Program: Tehrans Compliance with International Obligations

    Science.gov (United States)

    2016-04-07

    reactors. Iran also has a uranium conversion facility, which converts uranium oxide into several compounds, including uranium hexafluoride. Tehran claims... uranium .  The importation of natural uranium metal and its subsequent transfer for use in laser enrichment experiments, including the production of...investigation of its nuclear activities, suspend its uranium enrichment program, suspend its construction of a heavy-water reactor and related

  14. PROCESS FOR PREPARING URANIUM METAL

    Science.gov (United States)

    Prescott, C.H. Jr.; Reynolds, F.L.

    1959-01-13

    A process is presented for producing oxygen-free uranium metal comprising contacting iodine vapor with crude uranium in a reaction zone maintained at 400 to 800 C to produce a vaporous mixture of UI/sub 4/ and iodine. Also disposed within the maction zone is a tungsten filament which is heated to about 1600 C. The UI/sub 4/, upon contacting the hot filament, is decomposed to molten uranium substantially free of oxygen.

  15. 1996 year-end market review

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    A summary of financial data for uranium markets in 1996 is provided. Spot market activity and buyers and sellers of spot uranium are outlined for the restricted and unrestricted market. Data on the concentrates, uranium hexafluoride, enriched uranium product, and term uranium markets are also presented. Market data is also provided for conversion and enrichment services

  16. Uranium: one utility's outlook

    International Nuclear Information System (INIS)

    Gass, C.B.

    1983-01-01

    The perspective of the Arizona Public Service Company (APS) on the uncertainty of uranium as a fuel supply is discussed. After summarizing the history of nuclear power and the uranium industries, a projection is made for the future uranium market. An uncrtain uranium market is attributed to various determining factors that include international politics, production costs, non-commercial government regulation, production-company stability, and questionable levels of uranium sales. APS offers its solutions regarding type of contract, choice of uranium producers, pricing mechanisms, and aids to the industry as a whole. 5 references, 10 figures, 1 table

  17. Uranium: Memories of the Little Big Horn

    International Nuclear Information System (INIS)

    White, G. Jr.

    1985-01-01

    In this work the author discusses the future of the uranium industry. The author believes that uranium prices are unlikely to rise to a level that predicates the rebirth of the uranium industry, and doubts that U.S. production of uranium will exceed 30 to 35 percent of U.S. requirements. The author doubts that the U.S. government will take any action toward protecting the U.S. uranium production industry, but he does believe that a U.S. uranium production industry will survive and include in-situ and by product producers and producers with higher grades and rigorous cost control

  18. Developments in uranium in 1982

    International Nuclear Information System (INIS)

    Chenoweth, W.L.

    1983-01-01

    Slippage in demand, increasing costs, and low spot market prices continued to influence the uranium industry during 1982. The supply of uranium exceeds the current demand and, as a result, exploration for uranium declined in the United States for the fourth straight year. During 1982, 92 companies spent $73.86 million on uranium exploration, including 6.1 million ft of surface drilling. This drilling was done mainly in the producing areas and in the areas of recent discoveries. During the year, a significant discovery was announced in south-central Virginia, the first major discovery in the eastern United States. Production of uranium concentrate declined in 1982, when 1,343 short tons of uranium oxide were produced. Numerous mines and 4 mills were closed during the year. Domestic uranium reserves, as calculated by the Department of Energy, decreased during 1982, mainly because of increasing production costs and the lack of exploration to find new reserves. Exploration for uranium in foreign countries also declined during 1982. Canada and Australia continue to dominate the long-term supply

  19. Aerosols produced by evaporation of a uranium wire; Aerosols produits par evaporation d'un fil d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Morel, C [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-03-01

    This work is devoted to the study of the aerosols formed when an uranium wire is evaporated in a normal or rarefied atmosphere, either with or without a drying agent. The heating of the wire can be either fast or slow. The first part is a study of aerosol production apparatus and of methods of measuring the aerosol. The second part presents the results obtained with various aerosols: the particles produced by the wire are less than one micron; during rapid heating, the granulometric distribution of the aerosol obeys a log-normal law; during slow heating, the distribution has two modes: one near 0.05 micron, the other close to 0.01 micron. (author) [French] Ce travail est consacre a l'etude des aerosols formes lors de l'evaporation d un fil d'uranium en atmosphere normale ou rarefiee en presence ou non de dessechant. Le chauffage du fil peut etre rapide ou lent. La premiere partie est une etude des appareils de production et des methodes de mesures de l'aerosol. La seconde partie consigne les resultats obtenus sur les differents aerosols: les particules emises par le fil sont inferieures au micron; lors d'un chauffage rapide, la repartition granulometrique de l'aerosol suit une loi log-normale; lors d un chauffage lent, la repartition presente deux modes: l'un voisin de 0.05 micron, l'autre voisin de 0.01 micron. (auteur)

  20. Contribution to the study of interactions between uranium hexafluoride and alkali fluorides

    International Nuclear Information System (INIS)

    Paillet, Alain

    1972-01-01

    The author describes the complexation of UF 6 with alkaline fluorides by various ways: a preliminary chemical study of the synthesis, a spectrographic study (diffraction of X-rays, Raman-laser spectroscopy, I.R. spectroscopy), a calorimetric study, at last a study of kinetics by thermogravimetry. The complexes present the formula MF, UF 6 or 2MF, UF 6 whatever is M (including Rb and Cs). The X ray diffraction study, made for analytical purposes, enabled to describe the spectra of NaUF 7 , Na 2 UF 8 , KUF 7 , RbUF 7 , CsUF 7 . For KUF 7 , RbUF 7 , CsUF 7 the tri-periodic array of the uranium atoms is cubic. The thermodynamical study shows that the initial stage of germination evolves, at room temperature, 40 or CO Kcal/mole for a reaction rate, lower than 5%, for all the complexes; then, approximately 16 Kcal/mole. For the ulterior stages, the activation energy for the inter-crystalline diffusion is about 6 Kcal/mole. Various types of original apparatus, working in fluorinating atmosphere, are described: particularly a miniaturized microcalorimeter, especially designed to gain a great sensitivity. (author) [fr

  1. Uranium. Resources, production and demand

    International Nuclear Information System (INIS)

    1997-01-01

    The events characterising the world uranium market in the last several years illustrate the persistent uncertainly faced by uranium producers and consumers worldwide. With world nuclear capacity expanding and uranium production satisfying only about 60 per cent of demand, uranium stockpiles continue to be depleted at a high rate. The uncertainty related to the remaining levels of world uranium stockpiles and to the amount of surplus defence material that will be entering the market makes it difficult to determine when a closer balance between uranium supply and demand will be reached. Information in this report provides insights into changes expected in uranium supply and demand until well into the next century. The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is the foremost reference on uranium. This world report is based on official information from 59 countries and includes compilations of statistics on resources, exploration, production and demand as of 1 January 1997. It provides substantial new information from all of the major uranium producing centres in Africa, Australia, Eastern Europe, North America and the New Independent States, including the first-ever official reports on uranium production in Estonia, Mongolia, the Russian Federation and Uzbekistan. It also contains an international expert analysis of industry statistics and worldwide projections of nuclear energy growth, uranium requirements and uranium supply

  2. Research on and economic evaluation of uranium enrichment by gaseous diffusion in Japan

    International Nuclear Information System (INIS)

    Aochi, T.; Takahashi, S.

    1977-01-01

    Research and development on uranium enrichment by the gaseous diffusion process have been carried out by the Japan Atomic Energy Research Institute, the Institute of Physical and Chemical Research, and industries since 1965. The paper describes the two important keys to reducing the cost of uranium separation. One is the characteristics of barriers and the other is financing and/or political planning. The techniques of preparing a barrier with pore diameter 40A have been developed with polytetrafluoroethylene (PTFE), alumina and nickel. Experiments on corrosion behaviour have indicated that PTFE barriers are the most favourable. In the field of engineering research, the adiabatic efficiency of the axial compressor for UF 6 was raised to as high as 90% by long-term operation tests. Based on these experimental data, technico-economic evaluation of a uranium enrichment plant was carried out for optimization of separation efficiency, number of steps and plant operating conditions. Sensitivity in the separation cost was calculated as a function of pore diameter, cost of uranium hexafluoride, plant capacity, cost of electric power, and annual expenditure of the plant. A finance plan must be such as to achieve: (a) maximization of debt in a percentage of total capital; (b) off-take contracts to utilities as security for financing; (c) minimization of risks to equity and achievable cost of capital. Therefore, the cash flow analysis and the schedule for construction and operation are very important for the economic feasibility of a uranium enrichment plant. To minimize the risk, the economic as well as the political environment is important. Government support and international agreements are necessary. (author)

  3. The U.S. uranium industry

    International Nuclear Information System (INIS)

    Glasier, G.E.

    1987-01-01

    This presentation concentrates on the future of the U.S. uranium industry in light of potential embargo legislation and the uranium producers' lawsuit. The author discusses several possible resolutions which would lead to a more certain and possibly stable uranium market. The probability of one or more Six possible actions which would effect the uranium industry are addressed

  4. Uranium mining in Australia

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    Western world requirements for uranium based on increasing energy consumption and a changing energy mix, will warrant the development of Australia's resources. By 1985 Australian mines could be producing 9500 tonnes of uranium oxide yearly and by 1995 the export value from uranium could reach that from wool. In terms of benefit to the community the economic rewards are considerable but, in terms of providing energy to the world, Australias uranium is vital

  5. Civilian inventories of plutonium and highly enriched uranium

    International Nuclear Information System (INIS)

    Albright, D.

    1987-01-01

    In the future, commercial laser isotope enrichment technologies, currently under development, could make it easier for national to produce highly enriched uranium secretly. The head of a US firm that is developing a laser enrichment process predicts that in twenty years, major utilities and small countries will have relatively small, on-site, laser-based uranium enrichment facilities. Although these plants will be designed for the production of low enriched uranium, they could be modified to produce highly enriched uranium, an option that raises the possibility of countries producing highly enriched uranium in small, easily hidden facilities. Against this background, most of this report describes the current and future quantities of plutonium and highly enriched uranium in the world, their forms, the facilities in which they are produced, stored, and used, and the extent to which they are transported. 5 figures, 10 tables

  6. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

  7. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    International Nuclear Information System (INIS)

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers

  8. Measurement of the enrichment of uranium-hexafluoride gas in product pipes in the centrifuge enrichment plant at Almelo

    International Nuclear Information System (INIS)

    Packer, T.W.; Lees, E.W.; Aaldijk, J.K.; Harry, R.J.S.

    1987-09-01

    One of the objectives of safeguarding centrifuge enrichment plants is to apply non-destructive measurements inside the cascade area to confirm that the enrichment level is in the low enriched uranium range. Research in the UK and USA has developed a NDA instrument which can confirm the presence of low enriched uranium on a rapid go/no go basis in cascade header pipework of their centrifuge enrichment plants. The instrument is based on a gamma spectroscopic measurement coupled with an X-ray fluorescence analysis. This report gives the results of measurements carried out at Almelo by the UKAEA Harwell, ECN Petten and KFA Juelich to determine if these techniques could be employed at Almelo and Gronau. The energy dispersive X-ray fluorescence analysis has been applied to determine the total mass of uranium in the gas phase, and the deposit correction technique and the two geometry technique have been applied at Almelo to correct the measured gamma intensities for those emitted by the deposit. After an executive summary the report discusses the principles of the two correction methods. A short description of the equipment precedes the presentation of the results of the measurements and the discussion. After the conclusions the report contains two appendices which contain the derivation of the formulae for the deposit correction technique and a discussion of the systematic errors of this technique. 8 figs.; 11 refs.; 6 tables

  9. Acidic aqueous uranium electrodeposition for target fabrication

    International Nuclear Information System (INIS)

    Saliba-Silva, A.M.; Oliveira, E.T.; Garcia, R.H.L.; Durazzo, M.

    2013-01-01

    Direct irradiation of targets inside nuclear research or multiple purpose reactors is a common route to produce 99 Mo- 99m Tc radioisotopes. The electroplating of low enriched uranium over nickel substrate might be a potential alternative to produce targets of 235 U. The electrochemistry of uranium at low temperature might be beneficial for an alternative route to produce 99 Mo irradiation LEU targets. Electrodeposition of uranium can be made using ionic and aqueous solutions producing uranium oxide deposits. The performance of uranium electrodeposition is relatively low because a big competition with H 2 evolution happens inside the window of electrochemical reduction potential. This work explores possibilities of electroplating uranium as UO 2 2+ (Uranium-VI) in order to achieve electroplating uranium in a sufficient amount to be commercially irradiated in the future Brazilian RMB reactor. Electroplated nickel substrate was followed by cathodic current electrodeposition from aqueous UO 2 (NO 3 ) 2 solution. EIS tests and modeling showed that a film formed differently in the three tested cathodic potentials. At the lower level, (-1.8V) there was an indication of a double film formation, one overlaying the other with ionic mass diffusion impaired at the interface with nickel substrate as showed by the relatively lower admittance of Warburg component. (author)

  10. Overview of Canada's uranium industry

    International Nuclear Information System (INIS)

    Lowell, A.F.

    1982-06-01

    This paper places Canada's uranium industry in its international context. Most uranium, except that produced in the United States, is traded internationally. A brief history of the industry worldwide is given to show how the principal producing areas have fared to date. The industry is young, highly cyclical, and still far from achieving stability. Uranium is a single end-use commodity, entirely dependent on the generation of electricity in nuclear stations, and is without price elasticity: lowering the price does not increase demand. The typical nuclear fuel processing chain has not encouraged or led to much vertical integration. Uranium is subject to more governmental control than any other commodity. The principal market is located in the industrial countries of western Europe, the United States, Canada, and the far east. The uranium supply-demand situation is reviewed, including the current and near-term oversupply and the longer term outlook to 1995. The major negative impact of reactor cancellations and deferments in the United States is discussed. Because of the difficulty in getting reactors on line, it has become easier to forecast the demand for uranium over the next 10 years. It is more difficult to predict how that demand will be met from the more than ample competing sources. Canada's potential for supplying a significant portion of this demand is considered in relation to producers and potential new producers in other countries

  11. Yellowcake processing in uranium recovery

    International Nuclear Information System (INIS)

    Paul, J.M.

    1981-01-01

    This information relates to the recovery of uranium from uranium peroxide yellowcake produced by precipitation with hydrogen peroxide. The yellowcake is calcined at an elevated temperature to effect decomposition of the yellowcake to uranium oxide with the attendant evolution of free oxygen. The calcination step is carried out in the presence of a reducing agent which reacts with the free oxygen, thus retarding the evolution of chlorine gas from sodium chloride in the yellowcake. Suitable reducing agents include ammonia producing compounds such as ammonium carbonate and ammonium bicarbonate. Ammonium carbonate and/or ammonium bicarbonate may be provided in the eluant used to desorb the uranium from an ion exchange column

  12. Yellowcake processing in uranium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J.M.

    1981-10-06

    This information relates to the recovery of uranium from uranium peroxide yellowcake produced by precipitation with hydrogen peroxide. The yellowcake is calcined at an elevated temperature to effect decomposition of the yellowcake to uranium oxide with the attendant evolution of free oxygen. The calcination step is carried out in the presence of a reducing agent which reacts with the free oxygen, thus retarding the evolution of chlorine gas from sodium chloride in the yellowcake. Suitable reducing agents include ammonia producing compounds such as ammonium carbonate and ammonium bicarbonate. Ammonium carbonate and/or ammonium bicarbonate may be provided in the eluant used to desorb the uranium from an ion exchange column.

  13. Fluorinated compounds in the uranium conversion process: risk analysis and proposition of pictograms; Os compostos fluorados nos processos da conversao do uranio: analise de riscos e proposicao de pictogramas

    Energy Technology Data Exchange (ETDEWEB)

    Jeronimo, Adroaldo Clovis; Oliveira, Wagner dos Santos, E-mail: acejota18@yahoo.com.br, E-mail: oliveira@feq.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Quimica; Aquino, Afonso Rodrigues de, E-mail: araquino@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-03-15

    In the process of uranium hexafluoride production there are risks that must be taken into account since the time of completing the project chemist, in its conceptual stage, until to the stage of detailed design and are associated with the handling of chemicals, especially fluoride hydrogen and fluorine. This paper aims to address issues related to the prevention of risks related to industrial safety and health and the environment, considering the different stages of the uranium conversion. Take into account the safety warnings of the plant and, accordingly, make the proposition of pictograms adequate to alert operators of care to be taken during the proposition of pictograms adequate to alert operators of care to be taken during the conduct of these chemical processes. (author)

  14. On the applicability of the critical safety function concept to a uranium hexafluoride conversion unit

    International Nuclear Information System (INIS)

    Santos, F.C.; Goncalves, J.S.; Melo, P.F. Frutuoso e; Medeiros, J.A.C.C.

    2013-01-01

    This paper presents a discussion on the applicability on the critical safety function (CSF) concept as a design criterion for the new UF 6 conversion plant of Industrias Nucleares do Brazil (INB). This discussion is in the context of accident management, under the safety function oriented management. Safety functions may be understood as those whose loss may lead to releases of radioactive material or highly toxic chemicals, having possible radiological and/or occupational consequences for workers, the public or the environment. They should be designed to prevent criticality and to ensure adequate process confinement, thus preventing radioactive material releases that might lead to internal or external exposure and highly toxic chemical releases and exposure. The main hazards is the potential release of chemicals, especially HF and UF 6 . A criticality hazard exists only if the conversion facility processes uranium with a 235 U concentration greater than 1% Industrial activities for UF 6 production include handling and processing explosive, toxic and lethal chemicals, such as HF, H 2 and elemental F 2 , besides intermediate compounds containing uranium. State trees and definition of logical arrangements to construct an annunciation system are the next development stages, resulting form the establishment of applicable CSFs as representative of the next development stages, resulting from the establishment of applicable CSFs as representative of the various systems that make up the conversion plant. Discussed also in the biggest challenge of the development of this innovation, that is, the uncertainties related to the impact of human factors (not subject to monitoring by sensors or process conventional instrumentation). (author)

  15. Contribution to the study of the intermediate fluorides of uranium; Contribution a l'etude des fluorures intermediaires d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Hoang, Nghi [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-10-15

    The reaction of gaseous uranium hexafluoride with solid uranium tetrafluoride has been studied between 20 and 300 deg. C. The intermediate fluorides resulting from this reaction were prepared and then identified by chemical analysis and Debye-Scherrer diagrams. Their magnetic susceptibility and action on various common solvents were determined. The kinetic study was carried out up to 45 deg. C at a constant gas pressure equal to 17,7 mm of mercury. The experimental results indicate that the reaction, limited by the diffusion process of ionic reactants, obeys the kinetic law: L (1 - C) = k{radical}t. The observed rate constant K and the diffusion coefficient D vary with the temperature according to the expressions: K min{sup -1/2} = - (1,88 {+-} 0,22) 10{sup 8} exp[-(14100 {+-} 1400 cal/mole)/(RT)]; D cm{sup 2} sec{sup -1} = (1,15 {+-} 0,51) 10{sup 6} exp[-(30200 {+-} 5700 cal/mole)/(RT)]. (author) [French] La reaction de l'hexafluorure d'uranium gazeux sur le tetrafluorure d'uranium solide a ete etudiee entre 20 et 300 deg. C. Les fluorures intermediaires resultant de cette reaction ont ete prepares, puis identifies par analyses chimiques et par diagrammes Debye-Scherrer. Leur susceptibilite magnetique et leur action sur divers solvants usuels ont ete determinees. L'etude cinetique a ete entreprise jusqu'a 45 deg. C, sous une pression de gaz constante et egale a 17,7 mm de mercure. Les resultats experimentaux obtenus indiquent que la reaction, limitee par le processus de diffusion de reactifs ioniques, suit la loi cinetique: L (1 - C) = k{radical}t. La constante de vitesse observee K et le coefficient de diffusion D varient avec la temperature selon les expressions: K min{sup -1/2} = - (1,88 {+-} 0,22) 10{sup 8} exp[-(14100 {+-} 1400 cal/mole)/(RT)]; D cm{sup 2} sec{sup -1} = (1,15 {+-} 0,51) 10{sup 6} exp[-(30200 {+-} 5700 cal/mole)/(RT)]. (auteur)

  16. Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization

    International Nuclear Information System (INIS)

    Zhi-bin Zhang; East China Institute of Technology, Fuzhou; China University of Geosciences, Wuhan; China University of Geosciences, Wuhan; Xiao-hong Cao; Yun-hai Liu; East China Institute of Technology, Fuzhou; Ping Liang; East China Institute of Technology, Fuzhou; China University of Geosciences, Wuhan

    2013-01-01

    The ability of biochar produced by hydrothermal carbonization (HTC) has been explored for the removal and recovery of uranium from aqueous solutions. The micro-morphology and structure of HTC were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The HTC showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 50 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir isotherm. The thermodynamic parameters, ΔGdeg(298 K), ΔHdeg and ΔSdeg were determined to be -14.4, 36.1 kJ mol -1 and 169.7 J mol -1 K -1 , respectively, which demonstrated the sorption process of HTC towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed HTC could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 2.0 g HTC. (author)

  17. Uranium ... long-term confidence

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Half way through 1983 the outlook for the world's uranium producers was far from bright if one takes a short term view. The readily accessible facts present a gloomy picture. The spot prices of uranium over the past few years decreased from a high of $42-$43/lb to a low of $17 in 1982. It now hovers between $23 and $24. the contract prices negotiated between producers and consumers are not so accessible but they do not reflect the spot price. The reasons why contractual uranium prices do not follow the usual dictates of supply and demand are related to the position in which uranium and associated power industries find themselves. There is public reaction with strong emotional overtones as well as much reduced expectations about the electric power needs of the world. Furthermore the supply of uranium is not guaranteed despite present over production. However the people in the industry, taking the medium- and long-term view, are not despondent

  18. Mine design for producing 100,000 tons per day of uranium-bearing Chattanooga Shale

    International Nuclear Information System (INIS)

    Hoe, H.L.

    1979-01-01

    Chattanooga Shale, underlying some 40,000 square miles in the southeastern United States, is considered to be a potentially large, low-grade source of uranium. The area in and near Dekalb County, Tennessee, appears to be the most likely site for commercial development. This paper deals with the mine design, mining procedures, equipment requirements, and operating maintenance costs for an underground mining complex capable of producing 100,000 tons of Chattanooga Shale per day for delivery to a beneficiation process

  19. Restrictions on the transnational movement of uranium

    International Nuclear Information System (INIS)

    Rowden, M.A.; Kraemer, J.R.

    1988-01-01

    This paper analyses the United States policy on uranium imports. Recently, the US has moved closer to placing legislative restrictions on enrichment by DOE of foreign-origin uranium and has imposed a ban on the import of South African uranium ore and uranium oxide. American uranium producers have also sought relief in the courts against competition from abroad. The impetus for these events comes from a glut of uranium on world markets coupled with the existence of uranium mines outside the US with significant cost advantages over US producers. The remedies sought by the latter, if adopted, hold the potential for broad disruption of significant commercial interests in international trade in nuclear materials and could adversely affect US nonproliferation objectives (NEA) [fr

  20. The study of the possibilities for the processing and exploatation of nuclear raw materials

    International Nuclear Information System (INIS)

    Smalc, A.

    1977-01-01

    Laboratory scale fluorinations of uranium tetrafluoride with elemental fluorine under pressure and the reactions of uranium hexafluoride with boron trioxide and sulphur are described. A review of the reactions with UF 6 and the processes for the conversion of UF 6 into non-volatile uranium compounds is given

  1. An isotope-enrichment unit and a process for isotope separation

    International Nuclear Information System (INIS)

    1981-01-01

    A process and equipment for isotope enrichment using gas-centrifuge cascades are described. The method is described as applied to the separation of uranium isotopes, using natural-abundance uranium hexafluoride as the gaseous-mixture feedstock. (U.K.)

  2. On the applicability of the critical safety function concept to a uranium hexafluoride conversion unit

    Energy Technology Data Exchange (ETDEWEB)

    Santos, F.C.; Goncalves, J.S.; Melo, P.F. Frutuoso e; Medeiros, J.A.C.C., E-mail: fcruz@nuclear.ufrj.br, E-mail: jsgoncalves@inb.gov.br, E-mail: frutuoso@nuclear.ufrj.br, E-mail: canedo@imp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This paper presents a discussion on the applicability on the critical safety function (CSF) concept as a design criterion for the new UF{sub 6} conversion plant of Industrias Nucleares do Brazil (INB). This discussion is in the context of accident management, under the safety function oriented management. Safety functions may be understood as those whose loss may lead to releases of radioactive material or highly toxic chemicals, having possible radiological and/or occupational consequences for workers, the public or the environment. They should be designed to prevent criticality and to ensure adequate process confinement, thus preventing radioactive material releases that might lead to internal or external exposure and highly toxic chemical releases and exposure. The main hazards is the potential release of chemicals, especially HF and UF{sub 6}. A criticality hazard exists only if the conversion facility processes uranium with a {sup 235}U concentration greater than 1% Industrial activities for UF{sub 6} production include handling and processing explosive, toxic and lethal chemicals, such as HF, H{sub 2} and elemental F{sub 2}, besides intermediate compounds containing uranium. State trees and definition of logical arrangements to construct an annunciation system are the next development stages, resulting form the establishment of applicable CSFs as representative of the next development stages, resulting from the establishment of applicable CSFs as representative of the various systems that make up the conversion plant. Discussed also in the biggest challenge of the development of this innovation, that is, the uncertainties related to the impact of human factors (not subject to monitoring by sensors or process conventional instrumentation). (author)

  3. Uranium mining: Environmental and health impacts

    International Nuclear Information System (INIS)

    Vance, Robert

    2014-01-01

    Producing uranium in a safe and environmentally responsible manner is important not only to the producers and consumers of the product, but also to society at large. Given expectations of growth in nuclear generating capacity in the coming decades - particularly in the developing world - enhancing awareness of leading practice in uranium mining is important. This was the objective of a recent NEA report entitled Managing Environmental and Health Impacts of Uranium Mining, providing a non-technical overview of the significant evolution of uranium mining practices from the time that it was first mined for military purposes until today. (author)

  4. F{sup 19} relaxation in non-magnetic hexafluorides; Contribution a l'etude de la relaxation des fluors dans les hexafluorures non magnetiques

    Energy Technology Data Exchange (ETDEWEB)

    Rigny, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-12-01

    The interesting properties of the fluorine magnetic resonance in the hexafluorides of molybdenum, tungsten and uranium, are very much due to large anisotropies of the chemical shift tensors. In the solid phases these anisotropies, the values of which are deduced from line shape studies, allow one to show that the molecules undergo hindered rotations about the metal atom. The temperature and frequency dependence of the fluorine longitudinal relaxation times shows that the relaxation is due to the molecular motion. The dynamical parameters of this motion are then deduced from the complete study of the fluorine relaxation in the rotating frame. In the liquid phases, the existence of anisotropies allows an estimation of the different contributions to the relaxation. In particular, the frequency and temperature dependence of the relaxation shows it to be dominated by the spin-rotation interaction. We have shown that the strength of this interaction can be deduced from the chemical shifts, and the angle through which the molecule rotates quasi-freely can be determined. In the hexafluorides, this angle is roughly one radian at 70 C, and with the help of this value, the friction coefficients which describe the intermolecular interactions are discussed. (author) [French] Les proprietes de la resonance magnetique des fluors dans les hexafluorures de molybdene, tungstene et uranium sont influencees par l'existence de deplacements chimiques tres anisotropes. Dans les phases solides, la valeur de cette anisotropie peut etre determinee par l'analyse des formes de raies et son existence permet de montrer que les molecules sont en rotation empechee autour de leur atome central. L'etude du temps de relaxation longitudinal en fonction de la temperature et de la frequence montre que la relaxation est due aux mouvements moleculaires, aux plus hautes temperatures. Les proprietes dynamiques du mouvement sont obtenues par l'etude complete de la relaxation spin-reseau dans le referentiel

  5. The market share of non-US uranium producers under different US embargo scenarios

    International Nuclear Information System (INIS)

    Franks, W.A.

    1988-01-01

    The imposition of US restrictions on the use of foreign uranium has a potentially far reaching impact. This analysis examines various US import restriction scenarios and their impact on the market both inside and outside the USA. Specifically, the market share that the non-US producers would lose is estimated for a 50% embargo, a 62.5% embargo, and a 100% embargo, with and without the grandfathering of US utilities' foreign contracts. These results are then compared to what the market share would have been in a free market. The increase in the US market share is also briefly discussed. (author)

  6. Chemical aspects of nuclear fuel fabrication processes

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, A; Ellis, J F; Watson, R H

    1986-04-01

    Processes used by British Nuclear Fuels plc for the conversion of uranium ore concentrates to uranium metal and uranium hexafluoride, are reviewed. Means of converting the latter compound, after enrichment, to sintered UO/sub 2/ fuel bodies are also described. An overview is given of the associated chemical engineering technology.

  7. Pyrophoricity of uranium in long-term storage environments

    International Nuclear Information System (INIS)

    Solbrig, C.W.; Krsul, J.R.; Olsen, D.N.

    1994-01-01

    A corrosion cycle for uranium is postulated which can be used to assess whether a given storage situation might produce fire hazards and/or continual uranium corrosion. A significant reaction rate of uranium and moisture occurs at room temperature which produces uranium oxide and hydrogen. If the hydrogen cannot escape, it will react slowly with uranium to form uranium hydride. The hydride is pyrophoric at room temperature when exposed to air. Either the hydrogen or the hydride can produce a dangerous situation as demonstrated by two different incidents described here. Long-term corrosion will occur even if the normal precautions are taken as is demonstrated by the long-term storage of stainless steel clad uranium fuel plates. The major initiator of these problems is attributed to any moisture condensed on the metal or any brought in by the cover gas. The postulated corrosion cycle is used to suggest ways to circumvent these problems

  8. The action of uranium hexafluoride on some metallic fluorides (1962); Action de l'hexafluorure d'uranium sur quelques fluorures metalliques (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Michallet, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-12-15

    A metallic difluoride is inert to UF{sub 6} unless the metal can exist in a higher valency state. In this case, UF{sub 6} acts as an oxidising agent and is transformed into UF{sub 4}. The fluorides of tri- and tetra-valent metals give rise to new compounds when they are maintained at a high temperature (500 deg. C) in the presence of uranium hexachloride vapour. The products obtained are characterized by their X-ray diffraction diagrams. The distributions of the lines of the powder diagrams are very similar to that of U{sub 4}F{sub 17}. Assuming that this resemblance is due to a stacking of identical fluorine atoms, it can be calculated that the corresponding structure is given by the theoretical formulae: MeF{sub 3}, 0,562 UF{sub 6}; MeF{sub 4}, 0,396 UF{sub 6} which are in good agreement with chemical measurements. (author) [French] Un di-fluorure metallique est inerte vis-a-vis de UF{sub 6}, sauf si le metal est susceptible d'exister a une valence plus elevee. Dans ce cas, UF{sub 6} joue le role d'un oxydant et se transforme en UF{sub 4}. Les fluorures de metaux tri et tetravalents donnent naissance a des composes nouveaux quand ils sont maintenus a haute temperature (500 deg. C) en presence de vapeur d'hexafluorure d'uranium. Les produits obtenus sont caracterises par leurs diagrammes de diffraction X. Les distributions de raies des diagrammes de poudre sont tres voisines de celles de U{sub 4}F{sub 17}. En supposant que cette analogie resulte d'un empilement d'ions fluor identique, le calcul conduit aux formules theoriques suivantes: MeF{sub 3}, 0,562 UF{sub 6}; MeF{sub 4}, 0,396 UF{sub 6} en bon accord avec les resultats des dosages chimiques. (auteur)

  9. Automatic liquid nitrogen feeding device

    International Nuclear Information System (INIS)

    Gillardeau, J.; Bona, F.; Dejachy, G.

    1963-01-01

    An automatic liquid nitrogen feeding device has been developed (and used) in the framework of corrosion tests realized with constantly renewed uranium hexafluoride. The issue was to feed liquid nitrogen to a large capacity metallic trap in order to condensate uranium hexafluoride at the exit of the corrosion chambers. After having studied various available devices, a feeding device has been specifically designed to be robust, secure and autonomous, as well as ensuring a high liquid nitrogen flowrate and a highly elevated feeding frequency. The device, made of standard material, has been used during 4000 hours without any problem [fr

  10. Jabiluka uranium project

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Jabiluka uranium and gold deposit located in the Northern Territory of Australia is the world's largest known primary uranium deposits and as such has the potential to become one of the most important uranium projects in the world. Despite the financial and structural challenges facing the major owner Pancontinental Mining Limited and the changing political policies in Australia, Jabiluka is well situated for development during the 1990's. With the availability of numerous financial and development alternatives, Jabiluka could, by the turn of the century, take its rightful place among the first rank of world uranium producers. The paper discusses ownership, location, property rights, licensing, environmental concerns, marketing and development, capital costs, royalties, uranium policy considerations, geologic exploration history, regional and site geology, and mining and milling operations

  11. Present status of refining and conversion facility dismantling. Progress in 2008 first half of the fiscal year

    International Nuclear Information System (INIS)

    Kado, Kazumi; Sugitsue, Noritake; Morimoto, Yasuyuki; Ikegami, Sohei; Takahashi, Nobuo; Tokuyasu, Takashi

    2009-06-01

    The Refining and Conversion Facility located in the Ningyo-toge Environmental Engineering Center. Process of natural uranium conversion facility (PNC Process) and reprocessed uranium conversion facility (two-stage dry fluorination system) is in a Refining and Conversion Facility. This building started construction in 1979 and was completed in October 1981. The PNC process operated from March 1982 to March 1991. As a result, uranium hexafluoride of about 385 tonU was manufactured. Also, the reprocessed uranium conversion process operated from December 1982 to July 1999. As a result, uranium hexafluoride of about 338 tonU was manufactured. The demonstration of the demolition method was done using the PNC process after the end of operation. The schedule which will finish dismantling of all equipment in a radiation controlled area is by the 2011 fiscal year. This report summarized the present situation by the first half of the 2008 fiscal year of a Refining and Conversion Facility decommissioning. (author)

  12. Thermal plasma reduction of UF6

    International Nuclear Information System (INIS)

    Fincke, J.R.; Swank, W.D.; Haggard, D.C.

    1995-01-01

    This paper describes the experimental demonstration of a process for the direct plasma reduction of depleted uranium hexafluoride to uranium metal. The process exploits the large departures from equilibrium that can be achieved in the rapid supersonic expansion of a totally dissociated and partially ionized mixture of UF 6 , Ar, He, and H 2 . The process is based on the rapid condensation of subcooled uranium vapor and the relatively slow rate of back reaction between metallic uranium and HF to F 2 to reform stable fluorides. The high translational velocities and rapid cooling result in an overpopulation of atomic hydrogen which persists throughout the expansion process. Atomic hydrogen shifts the equilibrium composition by inhibiting the reformation of uranium-fluorine compounds. This process has the potential to reduce the cost of reducing UF 6 to uranium metal with the added benefit of being a virtually waste free process. The dry HF produced is a commodity which has industrial value

  13. Uranium logging in earth formations

    International Nuclear Information System (INIS)

    Givens, W.W.

    1979-01-01

    A technique is provided for assaying the formations surrounding a borehole for uranium. A borehole logging tool cyclically irradiates the formations with neutrons and responds to neutron fluxes produced during the period of time that prompt neutrons are being produced by the neutron fission of uranium in the formations. A borehole calibration tool employs a steady-state (continuous output) neutron source, firstly, to produce a response to neutron fluxes in models having known concentrations of uranium and, secondly, to to produce a response to neutron fluxes in the formations surrounding the borehole. The neutron flux responses of the borehole calibration tool in both the model and the formations surrounding the borehole are utilized to correct the neutron flux response of the borehole logging tool for the effects of epithermal/thermal neutron moderation, scattering, and absorption within the borehole itself

  14. Radiation protection program applied to occupationally exposed individuals at the IPEN/CNEN-SP pilot plant in the 1980s for natural uranium compounds

    International Nuclear Information System (INIS)

    Silva, Teresinha de Moraes da; Sordi, Gian Maria A.A.; Vasques, Francisco Mário Feijó

    2017-01-01

    The work evidences the chemical processing of natural uranium from the yellowcake phase to the production of UF 6 natural uranium hexafluoride, a process carried out at the IPEN/CNEN-SP pilot plant. Radiation protection management was intended to monitor occupationally exposed individuals - IOEs, the workplace and the environment. An individual monitoring program for IOEs was developed for both external irradiation and incorporation of radioactive material. The IOEs were monitored externally with film-type dosimeters and the in vitro method was applied internally for urine analysis. For the workplace the monitoring program for equipment and floors was developed, determining the exposure rate from the process equipment, surface contamination expressed in Bq.cm -2 in equipment and floors, complemented by the air monitoring program both for the worker as well as for the workplace. Cellulose filters with aerodynamic diameter of 0.3 micron to 8.0 micron were used

  15. International uranium market

    International Nuclear Information System (INIS)

    Neff, T.L.; Jacoby, H.D.

    1980-12-01

    Discussed in this report are 1) how one might think about uranium demand, resources and supply, 2) how producers and consumers see the market and are likely to behave, including specifics about export and import commitments, and 3) how these actors are brought together in the international market. The general conclusion is that much of current anxiety about future uranium supply results primarily from a brief but difficult period in the mid- to late-1970's; and that current conditions and trends are favorable (at least to consumers) that there is now little basis for concern. Inventories contractual positions and producer commitments--when compared with realistic (or even unrealistic) demand estimates--imply a buyer's market for at least the next decade. The result will be considerable increases in market flexibility and resilience to shock, and real prices that are low relative to those of the past few years. There is a need to reconsider assumptions about desired directions of technological development, for many current programs were planned in an era of pessimism about uranium supply and process. Similar questions must be raided about nonproliferation policies that depend on some level of control of fuel supplies by the industrial nations. With a soft and more diversified uranium market, leverage that may have existed in the past is rapidly being eroded. Finally, as world prices turn soft, there may be significant problems created for U.S. uranium producers, who have relatively high costs in relation to several large-scale foreign suppliers

  16. Uranium production, the United States perspective

    International Nuclear Information System (INIS)

    Glasier, G.E.

    1984-06-01

    U.S. uranium production appears to be headed for a level of approximately one quarter of the peak production of the early 1980's. In a free world market the majority of the U.S. production capability is noncompetitive and unnecessary to supply the free world's demand. Those world producers which can produce into the competitive uranium market of the present and the foreseeable future will be sufficient to supply the uranium needs of the world for the next ten to fifteen years. Thus, the U.S. production industry once the leading producer in the world will not regain nor approach that status in the foreseeable future

  17. Uranium 2016: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2016-01-01

    Uranium is the raw material used to produce fuel for long-lived nuclear power facilities, necessary for the generation of significant amounts of base-load low-carbon electricity for decades to come. Although a valuable commodity, declining market prices for uranium in recent years, driven by uncertainties concerning evolutions in the use of nuclear power, have led to the postponement of mine development plans in a number of countries and to some questions being raised about future uranium supply. This 26. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA), provides analyses and information from 49 producing and consuming countries in order to address these and other questions. The present edition provides the most recent review of world uranium market fundamentals and presents data on global uranium exploration, resources, production and reactor-related requirements. It offers updated information on established uranium production centres and mine development plans, as well as projections of nuclear generating capacity and reactor-related requirements through 2035, in order to address long-term uranium supply and demand issues. (authors)

  18. Recovery of uranium in mine waters

    International Nuclear Information System (INIS)

    Sugier, P.

    1967-01-01

    In a brief introductory survey the author indicates the date on which leaching was first observed in the CEA mines and lists the main factors necessary for, or favourable to, the solubilization of uranium in mines. Information is given on the various sources of this type at present identified in France and the methods used to recover uranium in mines situated near ore-concentration plants. An explanation is given for the use of the calcium precipitation technique in connection with waters produced in mines not situated near ore-concentration plants. Data are given on the results of laboratory tests carried out on waters containing uranium, together with a description of an industrial-scale facility built in consequence of these tests. Details are given of the statistical results obtained. The author concludes by outlining the programme which will be implemented in the near future with a view to increasing the tonnage of uranium produced by in situ leaching and indicates that the CEA engineers are very optimistic about the prospects of this new low-cost method of producing uranium. (author) [fr

  19. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    This Technical Report is designed mainly to introduce the methods and techniques of uranium geochemical exploration to exploration geologists who may not have had experience with geochemical exploration methods in their uranium programmes. The methods presented have been widely used in the uranium exploration industry for more than two decades. The intention has not been to produce an exhaustive, detailed manual, although detailed instructions are given for a field and laboratory data recording scheme and a satisfactory analytical method for the geochemical determination of uranium. Rather, the intention has been to introduce the concepts and methods of uranium exploration geochemistry in sufficient detail to guide the user in their effective use. Readers are advised to consult general references on geochemical exploration to increase their understanding of geochemical techniques for uranium

  20. Uranium recovery from AVLIS slag

    International Nuclear Information System (INIS)

    D'Agostino, A.E.; Mycroft, J.R.; Oliver, A.J.; Schneider, P.G.; Richardson, K.L.

    2000-01-01

    Uranium metal for the Atomic Vapor Laser Isotope Separation (AVLIS) project was to have been produced by the magnesiothermic reduction of uranium tetrafluoride. The other product from this reaction is a magnesium fluoride slag, which contains fine and entrained natural uranium as metal and oxide. Recovery of the uranium through conventional mill leaching would not give a magnesium residue free of uranium but to achieve more complete uranium recovery requires the destruction of the magnesium fluoride matrix and liberation of the entrapped uranium. Alternate methods of carrying out such treatments and the potential for recovery of other valuable byproducts were examined. Based on the process flowsheets, a number of economic assessments were performed, conclusions were drawn and the preferred processing alternatives were identified. (author)

  1. 75 FR 12738 - Proposed Subsequent Arrangement

    Science.gov (United States)

    2010-03-17

    ... the retransfer of 302,188 kg of U.S.-origin natural uranium trioxide (UO3) (82.73% U), 250,000 kg of which is uranium, from Cameco in Saskatoon, Saskatchewan, Canada to Springfields Fuels Ltd. in... transferred to Springfields Fuels Ltd. for conversion to uranium hexafluoride (UF6) for ultimate end use in a...

  2. Uranium and thorium mining and milling: material security and risk assessment

    International Nuclear Information System (INIS)

    Steinhaeusler, F.; Zaitseva, L.

    2005-01-01

    Full text: At present physical protection for the front end of the nuclear fuel cycle is typically at a significantly lower level than at any other part of the nuclear fuel cycle. In view of past experiences (Israel, South Africa, Pakistan, India) it is feasible to take into consideration some generic threat scenarios, potentially resulting in loss of control over uranium or thorium, respectively their concentrates, such as: illegal mining of an officially closed uranium- or thorium mine; covert diversion of uranium- or thorium ore whilst officially mining another ore; covert transport of radioactive ore or product, using means of public rail, road, ship, or air transport; covert en route diversion of an authorized uranium- or thorium transport; covert removal of uranium-or thorium ore or concentrate from an abandoned facility. The Stanford-Salzburg database on nuclear smuggling, theft, and orphan radiation sources (DSTO) contains information on trafficking incidents involving mostly uranium, but also some thorium, from 30 countries in five continents with altogether 113 incidents in the period 1991 to 2004. These activities range from uranium transported in backpacks by couriers in Afghanistan, to a terrorist organization purchasing land in order to mine covertly for uranium in Australia, and the clandestine shipment of almost two tons of uranium hexafluoride from Asia to Africa, using the services of a national airline. Potential participants in such illegal operations range from entrepreneurs to members of organized crime, depending on the level of sophistication of the operation. End-users and 'customers' of such illegal operations are suspected to be non-state actors, organizations or governments involved in a covert operation with the ultimate aim to acquire a sufficient amount of nuclear material for a nuclear device. The actual risk for these activities to succeed in the acquisition of an adequate amount of suitable radioactive material depends on one or

  3. Criticality Calculations for a Typical Nuclear Fuel Fabrication Plant with Low Enriched Uranium

    International Nuclear Information System (INIS)

    Elsayed, Hade; Nagy, Mohamed; Agamy, Said; Shaat, Mohmaed

    2013-01-01

    The operations with the fissile materials such as U 235 introduce the risk of a criticality accident that may be lethal to nearby personnel and can lead the facility to shutdown. Therefore, the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The objectives of criticality safety are to prevent a self-sustained nuclear chain reaction and to minimize the consequences. Sixty criticality accidents were occurred in the world. These are accidents divided into two categories, 22 accidents occurred in process facilities and 38 accidents occurred during critical experiments or operations with research reactor. About 21 criticality accidents including Japan Nuclear Fuel Conversion Co. (JCO) accident took place with fuel solution or slurry and only one accident occurred with metal fuel. In this study the nuclear criticality calculations have been performed for a typical nuclear fuel fabrication plant producing nuclear fuel elements for nuclear research reactors with low enriched uranium up to 20%. The calculations were performed for both normal and abnormal operation conditions. The effective multiplication factor (k eff ) during the nuclear fuel fabrication process (Uranium hexafluoride - Ammonium Diuranate conversion process) was determined. Several accident scenarios were postulated and the criticalities of these accidents were evaluated. The computer code MCNP-4B which based on Monte Carlo method was used to calculate neutron multiplication factor. The criticality calculations Monte Carlo method was used to calculate neutron multiplication factor. The criticality calculations were performed for the cases of, change of moderator to fuel ratio, solution density and concentration of the solute in order to prevent or mitigate criticality accidents during the nuclear fuel fabrication process. The calculation results are analyzed and discussed

  4. Production of nuclear ceramic fuel for nuclear power plants at 'Ulba metallurgical plant' OSC

    International Nuclear Information System (INIS)

    Khadeev, V.G.

    2000-01-01

    The paper describes the flow-sheet of production of uranium dioxide powders and nuclear ceramic fuel pellets of them existing at the facility. 'UMP' OSC applies ADU extraction process of UO2 powders production. An indisputable success of the process is the possibility of use of the wide range of raw materials. Uranium hexafluoride, uranium oxides, uranium metal, uranium tetrafluoride, uranyl salts, uranium ore concentrates, all possible types of uranium-containing materials the processing of which by routine methods is difficult (ashes, scraps, etc.) are used as the raw materials. In addition, a reprocessed nuclear fuel can be used for fuel production. The quality of uranium dioxide powder produced does not depend on the type of uranium raw material used. High selectivity of extraction refining makes possible to obtain material with rather low impurities content that meets practically all specifications for uranium dioxide known to us. Ceramic and process features of uranium dioxide powders, namely, specific surface, bulk density, grain size and sinterability make possible to produce nuclear ceramic fuel with specified features. Quality of uranium dioxide powders produced by 'UMP' OSC was highly rated by General Electric company that is one of the leading companies from fuel manufactures in the USA market . It has certified 'UMP' OSC as its supplier. Currently, our company makes great efforts on establishing production of uranium dioxide powders with natural isotopes content for production of fuel for CANDU reactors. Trial lots of such powders are under tests at some companies manufacturing fuel for this type reactors in Canada, USA and Corea

  5. Optimization of uranium leach mining

    International Nuclear Information System (INIS)

    Schecter, R.S.; Bommer, P.M.

    1982-01-01

    The effects of well pattern and well spacing on uranium recovery and oxidant utilization are considered. As expected, formation permeability heterogeneities and anisotropies are found to be important issues requiring careful consideration; however, it also is shown that the oxidant efficiency and the produced uranium solution concentrations are sensitive to the presence of other minerals competing with uranium for oxidant. If the Damkohler number for competing minerals, which measures the speed of the reaction, exceeds that for uranium, the competing mineral will have to be oxidized completely to recover a large proportion of the uranium. If the Damkohler number is smaller, it may be possible to achieve considerable selectivity for uranium by adjusting the well spacing. 9 refs

  6. Simple method for identifying doubly ionized uranium (U III) produced in a hollow-cathode discharge

    International Nuclear Information System (INIS)

    Piyakis, K.N.; Gagne, J.M.

    1988-01-01

    We have studied by emission spectroscopy the spectral properties of doubly ionized uranium, produced in a vapor generator of hollow-cathode design, as a function of the nature of a pure fill gas (helium, neon, argon, krypton, xenon) and its pressure. The spectral intensity is found to increase with increasing ionization potential of the discharge buffer gas, except in the case of helium. Based on our preliminary results, a simple and practical method for the positive identification of the complex U III spectrum is suggested

  7. In the beginning was uranium

    International Nuclear Information System (INIS)

    Charles, D.

    1992-01-01

    This article traces the nuclear proliferation which followed Gernot Zippe's invention during the Second World War, of a gas centrifuge to extract Uranium 235 from Uranium. This rare isotope is at the core of nuclear reactors and of the atomic bomb. Despite attempts by the world's nuclear powers to prevent widespread availability of the centrifuge, it is today in use by emergent Third World countries to produce enriched uranium for weapons programmes. The gas centrifuge was developed in a Soviet camp by captured German scientists. Zippe later reconstructed his work from memory in the United States (U.S.) where it was published at the University of Virginia just before the U.S. government could impose a secrecy order. He adapted his work for the West German government to produce enriched uranium fuel for civilian power stations. This technology became the basis for the Urenco industrial consortium. The article concludes with speculation about the nuclear weapons programme in Iraq following the Gulf War, where their impressive arsenal of weapons equipment came from and how close Iraq is to producing its own bomb. (UK)

  8. Characterization of low concentration uranium glass working materials

    Energy Technology Data Exchange (ETDEWEB)

    Eppich, G. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wimpenny, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Leever, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hutcheon, I. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ryerson, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-22

    A series of uranium-doped silicate glasses were created at (Lawrence Livermore National Laboratory) LLNL, to be used as working reference material analogs for low uranium concentration research. Specifically, the aim of this effort was the generation of well-characterized glasses spanning a range of concentrations and compositions, and of sufficient homogeneity in uranium concentration and isotopic composition, for instrumentation research and development purposes. While the glasses produced here are not intended to replace or become standard materials for uranium concentration or uranium isotopic composition, it is hoped that they will help fill a current gap, providing low-level uranium glasses sufficient for methods development and method comparisons within the limitations of the produced glass suite. Glasses are available for research use by request.

  9. The Namibian uranium mining model

    International Nuclear Information System (INIS)

    Swiegers, Wotan; Tibinyane, Axel

    2014-01-01

    Conclusions: • Namibia wishes to be a world class producer of Uranium and a prosperous country to achieve the Nation’s 2030 Vision. • The Government and the Uranium Industry formed a Smart Partnership to protect our ‘Brand’. • The Government and the Uranium Industry are committed to implement ‘world best practices’. • Namibia will be guided by the IAEA and the WNA.

  10. Process development study on production of uranium metal from monazite sourced crude uranium tetra-fluoride

    International Nuclear Information System (INIS)

    Chowdhury, S; Satpati, S.K.; Hareendran, K.N.; Roy, S.B.

    2014-01-01

    Development of an economic process for recovery, process flow sheet development, purification and further conversion to nuclear grade uranium metal from the crude UF 4 has been a technological challenge and the present paper, discusses the same.The developed flow-sheet is a combination of hydrometallurgical and pyrometallurgical processes. Crude UF 4 is converted to uranium di-oxide (UO 2 ) by chemical conversion route and UO 2 produced is made fluoride-free by repeated repulping, followed by solid liquid separation. Uranium di-oxide is then purified by two stages of dissolution and suitable solvent extraction methods to get uranium nitrate pure solution (UNPS). UNPS is then precipitated with air diluted ammonia in a leak tight stirred vessel under controlled operational conditions to obtain ammonium di-uranate (ADU). The ADU is then calcined and reduced to produce metal grade UO 2 followed by hydro-fluorination using anhydrous hydrofluoric acid to obtain metal grade UF 4 with ammonium oxalate insoluble (AOI) content of 4 is essential for critical upstream conversion process. Nuclear grade uranium metal ingot is finally produced by metallothermic reduction process at 650℃ in a closed vessel, called bomb reactor. In the process, metal-slag separation plays an important role for attaining metal purity as well as process yield. Technological as well economic feasibility of indigenously developed process for large scale production of uranium metal from the crude UF 4 has been established in Bhabha Atomic Research Centre (BARC), India

  11. Uranium 2014: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2014-01-01

    Uranium is the raw material used to fuel over 400 operational nuclear reactors around the world that produce large amounts of electricity and benefit from life cycle carbon emissions as low as renewable energy sources. Although a valuable commodity, declining market prices for uranium since the Fukushima Daiichi nuclear power plant accident in 2011, driven by uncertainties concerning the future of nuclear power, have led to the postponement of mine development plans in a number of countries and raised questions about continued uranium supply. This 25. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 45 producing and consuming countries in order to address these and other questions. It includes data on global uranium exploration, resources, production and reactor-related requirements. It offers updated information on established uranium production centres and mine development plans, as well as projections of nuclear generating capacity and reactor-related requirements through 2035, incorporating policy changes following the Fukushima accident, in order to address long-term uranium supply and demand issues. (authors)

  12. Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union

    International Nuclear Information System (INIS)

    1994-01-01

    The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF 6 ) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF 6 ) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ''transparency),'' and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed

  13. Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF{sub 6}) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF{sub 6}) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ``transparency),`` and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed.

  14. Laser excitation spectroscopy of uranium

    International Nuclear Information System (INIS)

    Solarz, R.W.

    1976-01-01

    Laser excitation spectroscopy, recently applied to uranium enrichment research at LLL, has produced a wealth of new and vitally needed information about the uranium atom and its excited states. Among the data amassed were a large number of cross sections, almost a hundred radiative lifetimes, and many level assignments. Rydberg states, never before observed in uranium or any of the actinides, have been measured and cataloged. This work puts a firm experimental base under laser isotope separation, and permits a choice of the laser frequencies most appropriate for practical uranium enrichment

  15. The US uranium industry: Regulatory and policy impediments

    Energy Technology Data Exchange (ETDEWEB)

    Drennen, T.E.; Glicken, J.

    1995-06-01

    The Energy Policy Act of 1992 required the DOE to develop recommendations and implement government programs to assist the domestic uranium industry in increasing export opportunities. In 1993, as part of that effort, the Office of Nuclear Energy identified several key factors that could (or have) significantly impact(ed) export opportunities for domestic uranium. This report addresses one of these factors: regulatory and policy impediments to the flow of uranium products between the US and other countries. It speaks primarily to the uranium market for civil nuclear power. Changes in the world political and economic order have changed US national security requirements, and the US uranium industry has found itself without the protected market it once enjoyed. An unlevel playing field for US uranium producers has resulted from a combination of geology, history, and a general US political philosophy of nonintervention that precludes the type of industrial policy practiced in other uranium-exporting countries. The US has also been hampered in its efforts to support the domestic uranium-producing industry by its own commitment to free and open global markets and by international agreements such as GATT and NAFTA. Several US policies, including the imposition of NRC fees and licensing costs and Harbor Maintenance fees, directly harm the competitiveness of the domestic uranium industry. Finally, requirements under US law, such as those in the 1979 Nuclear Nonproliferation Act, place very strict limits on the use of US-origin uranium, limitations not imposed by other uranium-producing countries. Export promotion and coordination are two areas in which the US can help the domestic uranium industry without violating existing trade agreements or other legal or policy constraints.

  16. The US uranium industry: Regulatory and policy impediments

    International Nuclear Information System (INIS)

    Drennen, T.E.; Glicken, J.

    1995-06-01

    The Energy Policy Act of 1992 required the DOE to develop recommendations and implement government programs to assist the domestic uranium industry in increasing export opportunities. In 1993, as part of that effort, the Office of Nuclear Energy identified several key factors that could (or have) significantly impact(ed) export opportunities for domestic uranium. This report addresses one of these factors: regulatory and policy impediments to the flow of uranium products between the US and other countries. It speaks primarily to the uranium market for civil nuclear power. Changes in the world political and economic order have changed US national security requirements, and the US uranium industry has found itself without the protected market it once enjoyed. An unlevel playing field for US uranium producers has resulted from a combination of geology, history, and a general US political philosophy of nonintervention that precludes the type of industrial policy practiced in other uranium-exporting countries. The US has also been hampered in its efforts to support the domestic uranium-producing industry by its own commitment to free and open global markets and by international agreements such as GATT and NAFTA. Several US policies, including the imposition of NRC fees and licensing costs and Harbor Maintenance fees, directly harm the competitiveness of the domestic uranium industry. Finally, requirements under US law, such as those in the 1979 Nuclear Nonproliferation Act, place very strict limits on the use of US-origin uranium, limitations not imposed by other uranium-producing countries. Export promotion and coordination are two areas in which the US can help the domestic uranium industry without violating existing trade agreements or other legal or policy constraints

  17. Investigations into the operating behavior of separation nozzle cascades for uranium-235 enrichment in a 10-stage pilot plant

    International Nuclear Information System (INIS)

    Bley, P.; Hein, H.; Linder, G.

    1984-03-01

    The separation nozzle method developed by the Karlsruhe Nuclear Research Center is based on the centrifugal force in a curved jet consisting of uranium hexafluoride and a light auxiliary gas. To determine in experiments the operating and controlling behavior of separation nozzle cascades a 10-stage pilot plant was erected some year ago. This plant was transferred to the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) in Belo Horizonte as a donation made within the framework of the German-Brazilian Agreement on scientific cooperation in the field of uranium enrichment. The plant previously equipped with single deflection systems was modified to operate with the double deflection system envisaged for commercial plants. A controlling concept meanwhile developed and improved for separation nozzle cascades equipped with single and double deflection systems was verified experimentally and optimized at the pilot plant of the CDTN. A comparison of the experimental operating behavior with the operating behavior calculated by simulation programs has confirmed the faithfulness of simulation of the computer codes developed to apply to cascades with double deflection systems as well. (orig.) [de

  18. Recycling of nuclear matters. Myths and realities. Calculation of recycling rate of the plutonium and uranium produced by the French channel of spent fuel reprocessing

    International Nuclear Information System (INIS)

    Coeytaux, X.; Schneider, M.

    2000-05-01

    The recycling rate of plutonium and uranium are: from the whole of the plutonium separated from the spent fuel ( inferior to 1% of the nuclear matter content) attributed to France is under 50% (under 42 tons on 84 tons); from the whole of plutonium produced in the French reactors is less than 20% (42 tons on 224 tons); from the whole of the uranium separated from spent fuels attributed to France is about 10 % (1600 tons on 16000 tons); from the whole of the uranium contained in the spent fuel is slightly over 5%. (N.C.)

  19. Australian uranium resources and production in a world context

    International Nuclear Information System (INIS)

    Cleary, B.

    2003-01-01

    The aim of the paper is to discuss Australian uranium resources and production from the perspective of ERA, the world's third-largest uranium producer, and one of only three producing uranium mining companies in Australia. ERA is a long-term supplier of uranium concentrates for the nuclear power generation industry overseas, a key part of clean global energy supply. ERA's Ranger plant was designed to produce 3,000t U 3 Og/yr, with expansion of the plant hi the early 90s to a 5,700t U 3 O 8 /yr capacity. Australia continues to have the worlds' largest reserves of uranium recoverable at costs of US$40 kg or less, but lags behind Canada in primary production of uranium. This paper discusses some of the reasons for the gap between resources and production, with examples from the company's own experience. Political, social and environmental factors have played a big role in the development of the uranium industry - ERA has been in the forefront of these issues as it pursues sustainable development practices

  20. Method of purifying uranium tetrafluoride hydrate and preparing uranium (VI) peroxide hydrate using a fluoride complexing agent

    International Nuclear Information System (INIS)

    Barreiro, A.J.; Lowe, C.M.T.; Lefever, J.A.; Pyman, R.L.

    1983-01-01

    The annual production of phosphate rock, on the order of about 30-40 million tons yearly, represents several million pounds of uranium. The present invention provides a process of purifying uranium tetrafluoride hydrate to produce a uranium (VI) peroxide product meeting 'yellow cake' standards using a double precipitation procedure. A fluoride complexing agent is used in the precipitation

  1. Managing environmental and health impacts of uranium mining

    International Nuclear Information System (INIS)

    Cameron, Ron; Vance, Robert

    2014-01-01

    Producing uranium in a safe and environmentally responsible manner is not only important to the producers and consumers of the product, but to society at large. Given the projected growth in nuclear generating capacity expected in the coming decades, particularly in the developing world, awareness of leading practice uranium mining needs to be increased globally. This report provides a non-technical overview of the driving forces behind and the outcomes of the significant evolution of uranium mining practices from the time that uranium was first mined for military purposes during the Cold War until today. (authors)

  2. US uranium market developments

    International Nuclear Information System (INIS)

    Krusiewski, S.V.; Thomas, D.C.

    1981-01-01

    Domestic uranium delivery commitments for the 1981 to 1990 period reached a peak in the July 1980 survey and then declined in the January 1981 survey and again in the July 1981 survey. However, there are sizable sales contracts through the mid-1980s. In the latter part of this decade, unfilled requirements increase which can provide a needed market for domestic producers. Older contracts are helping to keep the average contract prices, including market price settlements, rather stable. However, average market price settlements decreased from data reported in January 1981, but some of these deliveries represent settlement of litigation. Foreign uranium procurement is scheduled to exceed deliveries of US uranium to foreign buyers in the 1981 to 1990 period. However, the actual use of foreign uranium has been quite low as US enrichment services customers have preferred to buy US uranium. Based on over four and one-half years of data, only about 7% foreign uranium has been brought to the Department of Energy for enrichment. Inventories of natural and enriched uranium in buyers' hands continue to increase. This is a concern to the uranium-producing industry. However, the industry should not be concerned about DOE-owned inventories, which are needed to supply Government requirements. There is absolutely no plan to dispose of DOE inventories on the commercial market. Capital expenditures reached a peak of $800 million in 1979. This decreased to $780 million in 1980, although higher expenditures were planned for the year. A very sharp reduction in plans for 1981, from $830 to $450 million, has been reported. A further reduction to $350 million is planned for 1982. However, it is interesting to note that the planned expenditures for 1982 are above the expenditures for 1975, a period of industury expansion

  3. Generic report on health effects for the US Gaseous Diffusion Plants. Sect. 8, Pt. 1

    International Nuclear Information System (INIS)

    Just, R.A.; Emler, V.S.

    1984-06-01

    Toxic substances present in uranium enrichment plants include uranium hexafluoride (UF 6 ), hydrogen fluoride (HF), uranyl fluoride (UO 2 F 2 ), chlorine (Cl 2 ), chlorine trifluoride (ClF 3 ), fluorine (F 2 ), uranium tetrafluoride (UF 4 ), and technetium (Tc). The current knowledge of the expected health effects of acute exposures to these substances is described. 10 references, 2 figures, 6 tables

  4. Uncontrolled transport of nuclear materials

    International Nuclear Information System (INIS)

    Wassermann, U.

    1985-01-01

    An account is given of international transport of plutonium, uranium oxides, uranium hexafluoride, enriched uranium and irradiated fuel for reprocessing. Referring to the sinking of the 'Mont Louis', it is stated that the International Maritime Organization has been asked by the National Union of Seamen and 'Greenpeace' to bar shipment of radioactive material until stricter international safety regulations are introduced. (U.K.)

  5. The uranium market 1980 - 1990

    International Nuclear Information System (INIS)

    Darmayan, Philippe

    1980-01-01

    The Supply and Demand Committee of the Uranium Institute was established to monitor continuously information and developments bearing on the uranium market and to publish from time to time reports giving its views on the supply and demand outlook. The last Uranium institute supply and demand report was published in July 1979 and a summary was given by Mr. Erkes at the last Uranium Institute symposium. Its main conclusions were that from 1979 to 1990 the flexibilities of the market were such as to offer adequate scope to producers and consumers of uranium to ensure a balance between supply and demand. Is that conclusion still valid one and a half years later [fr

  6. Recovery of uranium in mine waters; Recuperation de l'uranium dans les eaux des mines

    Energy Technology Data Exchange (ETDEWEB)

    Sugier, P [Direction des Productions, CEA, Chatillon-Sur-Bagneux (France)

    1967-06-15

    In a brief introductory survey the author indicates the date on which leaching was first observed in the CEA mines and lists the main factors necessary for, or favourable to, the solubilization of uranium in mines. Information is given on the various sources of this type at present identified in France and the methods used to recover uranium in mines situated near ore-concentration plants. An explanation is given for the use of the calcium precipitation technique in connection with waters produced in mines not situated near ore-concentration plants. Data are given on the results of laboratory tests carried out on waters containing uranium, together with a description of an industrial-scale facility built in consequence of these tests. Details are given of the statistical results obtained. The author concludes by outlining the programme which will be implemented in the near future with a view to increasing the tonnage of uranium produced by in situ leaching and indicates that the CEA engineers are very optimistic about the prospects of this new low-cost method of producing uranium. (author) [French] Apres un bref rappel historique precisant la date de constatation du phenomene de lixiviation dans les mines d'uranium du Commissariat et un rapide inventaire des principales conditions necessaires ou favorisant la solubilisation de l'uranium dans les mines, auteur indique les differentes sources actuellement reconnues en France et les methodes utilisees pour recuperer l'uranium dans les mines situees pres d'une usine de concentration des minerais. Il donne ensuite les raisons motivant le choix du procede de precipitation calcique pour les eaux produites dans des mines eloignees des usines de concentration des minerais. Les resultats d'essais de laboratoire effectues sur des eaux chargees en uranium sont donnes et l'installation industrielle realisee a la suite de ces essais est decrite; les resultats statistiques obtenus sont detailles. En conclusion de son expose, l

  7. Canadian uranium policy and resource appraisal

    International Nuclear Information System (INIS)

    Merlin, H.B.

    1976-01-01

    This paper reviews the history of uranium production in Canada, leading up to the turn-around from a buyer's to a seller's market in early 1974. The specific objectives of Canada's new uranium policy, announced in that year, are then spelled out and explained. The paper also describes the producing uranium deposits in Canada, the definition of uranium resources and projected production capacity. Finally, there is a section on the proposed laws governing non-resident ownership provisions in the industry. (author)

  8. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  9. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal

  10. Uranium leaching by fungal metabolite

    International Nuclear Information System (INIS)

    Wang Yongdong; Li Guangyue; Ding Dexin; Hu Nan

    2012-01-01

    To explore new means of bioleaching, one strain of high-yielding fungi-Aspergillus niger which could produce organic acids was separated and purified from soil samples of uranium mine. The influence of cultural temperature, initial pH value, inoculum sizes on its growth characteristics were carried out. And the tests of uranium leaching of metabolin of Aspergillus niger were operated. On these tests, the effects of metabolin of Aspergillus niger with different pH value produced in the diverse culture temperature on uranium leaching were investigated. The results show that this strain of Aspergillus niger can grow best under the following conditions: the temperature is 37℃, the initial pH value is 7.0, the inoculum sizes is 2% (the OD value of the spores solution is 0.06). The uranium extraction effects relative to the final pH value of the cultures. and the maximum leaching rates is 83.05% when the pH value is 2.3. (authors)

  11. The uranium market and its characteristics

    International Nuclear Information System (INIS)

    Langlois, J.-P.

    1978-01-01

    The subject is covered in sections, entitled as shown. Numerical data are indicated in parenthesis. General characteristics of the uranium market, (enrichment plant variables, fuel requirements of a 1000 MWe power plant); demand pattern (enrichment cost relationships), supply pattern; uranium price analysis, production cost (relationship between future uranium requirements and discovery rates necessary), market break-even cost (break-even uranium cost as a function of fossil fuel prices), market value (theoretical and actual supply - demand balance in uranium market, relationship between U 3 O 8 price and world production); geographic and economic distribution of producers and consumers (world resources of uranium, relationship between U 3 0 8 world production capacity and annual requirements in 1990). (U.K.)

  12. Relationship of pressure to temperature rise in overfilled cylinders

    International Nuclear Information System (INIS)

    Barber, E.J.

    1979-01-01

    Mild steel pressure vessels containing uranium hexafluoride are heated in 96-inch diameter autoclaves to allow the feed material to enter the gaseous diffusion process equipment for enrichment in the uranium 235 isotope. For purposes of safety analysis it is necessary to establish the ability of the instrumentation to shut off the steam supply to the autoclave prior to cylinder rupture if the cylinder has been overfilled. To make this determination requires estimates of the rate of change of pressure with respect to change of temperature at constant volume as a function of the temperature at which the ullage disappears. The paper presents the calculations for the estimation of this rate of change for liquid uranium hexafluoride using the ratio of the coefficients of expansion and compressibility using empirical liquid density data and the Eyring equation of state for liquids. 5 figs. (MB)

  13. Development of empirical relation for isotope of uranium in enriched uranium matrix

    International Nuclear Information System (INIS)

    Srivastava, S.K.; Vidyasagar, D.; Jha, S.K.; Tripathi, R.M.

    2018-01-01

    Uranium enriched in 235 U is required in commercial light water reactors to produce a controlled nuclear reaction. Enrichment allows the 235 U isotopes to be increased from 0.71% to a range between 2% to 5% depending upon requirement. The enriched uranium in the form of sintered UO 2 pellet is used for any commercially operating boiling light water reactors. The enriched uranium fuel bundle surface swipes sample is being analysed to assess the tramp uranium as a quality control parameter. It is known that the 234 U isotope also enriched along with 235 U isotope in conventional gaseous diffusion enrichment process. The information about enrichment percentage of 234 U helps to characterize isotopic properties of enriched uranium. A few reports provide the empirical equation and graphs for finding out the specific activity, activity percentage, activity ratio of 234 U isotopes for enriched uranium. Most of them have not provided the reference for the data used and their source. An attempt has been made to model the relationship between 234 U and 235 U as a function of uranium enrichment at low level

  14. Uranium market cools: how to make a profit on uranium without mining it

    International Nuclear Information System (INIS)

    Hallam, John.

    1989-01-01

    An overview of the uranium world market is given. It is shown that the uranium spot price is now around $9.80/lb., while the Australian 'floor price' is almost three times that on the world markets. This situation has forced the Australian Government to move to individually negotiated floor prices, decided on a contract-by-contract basis. Anti-nuclear groups are opposing to dropping the floor price and suggest that Australian producers will find it more profitable to shut down their operations and act purely as a uranium trading company rather than continuing mining

  15. Canadian resources of uranium and thorium

    International Nuclear Information System (INIS)

    Griffith, J.W.; Roscoe, S.M.

    1964-01-01

    Canada has been one of the world's leading producers of uranium since the metal became important as a raw material in the development and production of atomic energy. One of the largest known deposits in the world is in Canada where present reserves represent about 37 per cent of the total among those countries that have published reserve statistics. The production of uranium has been characterized by features which are unique in Canadian mining, because the industry was created by the government at a time of emergency and, unlike other minerals, the sale of its product is controlled by the state. The rapid growth of the uranium-mining industry since World War II has been a remarkable achievement. In 1958, Canada was the world's leading producer of uranium and the value of U 3 O 8 produced in both 1958 and 1959 exceeded the value of any other Canadian-produced metal. As an export commodity, uranium ranked fourth in value in 1959 following newsprint, wheat, and lumber. Production from 25 mines in that year was 14 462 tonnes of U 3 O 8 valued at $345 million (all monetary values are in U.S. dollars). Since 1959, however, the decline in production, resulting from declining export markets, has been almost as rapid as the spectacular rise from 1953 to 1959. At the end of 1963 only seven mines were in production and by the end of 1965 only two mines are expected to remain in operation. (author)

  16. Uranium

    International Nuclear Information System (INIS)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-01-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U 3 O 8 ; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables

  17. Review of international classification systems for uranium resources

    International Nuclear Information System (INIS)

    Wang Wenyou

    2007-01-01

    The two primary classification systems for uranium resources in common use in the whole world are described. These uranium resource classification systems were developed under two distinct philosophies, it implies two very different processes, criteria, terms and definitions from which the systems evolved and were implemented. However, the two primary systems are all based on two considerations: the degree of geological confidence and the degree of economic attractiveness based on cost of producing the resource. The uranium resource classification methods currently used in most major uranium producing countries have all a bearing on the two aforesaid classification systems. The disparity exists only in the way or practice of classifying and estimating the uranium resources for reasons of different political and economical systems in various countries. The harmonization of these resource classification systems for uranium can be realized with the economic integration on a global scale. (authors)

  18. Critical review of uranium resources and production capability to 2020

    International Nuclear Information System (INIS)

    1998-08-01

    This report was prepared to assess the changing uranium supply and demand situation as well as the adequacy of uranium resources and the production capability to supply uranium concentrate to meet reactor demand through 2020. Uranium production has been meeting only 50 to 60 percent of the world requirements with the balance met from sale of excess inventory offered on the market at low prices. It is generally agreed by most specialists that the end of the excess inventory is approaching. With inventory no longer able to meet the production shortfall it is necessary to significantly expand uranium production to fill an increasing share of demand. Non-production supplies of uranium, such as the blending of highly enriched uranium (HEU) warheads to produce low enriched reactor fuel and reprocessing of spent fuel, are also expected to grow in importance as a fuel source. This analysis addresses three major concerns as follows: adequacy of resources to meet projected demand; adequacy of production capability to produce the uranium; and market prices to sustain production to fill demand. This analysis indicates uranium mine production to be the primary supply providing about 76 to 78 percent of cumulative needs through 2020. Alternative sources supplying the balance, in order of relative importance are: (1) low enriched uranium (LEU) blended from 500 tonnes of highly enriched uranium (HEU) Russian weapons, plus initial US Department of Energy (US DOE) stockpile sales (11 to 13%); (2) reprocessing of spent nuclear fuel (6%) and; (3) utility and Russian stockpiles. Further this report gives uranium production profiles by countries: CIS producers (Kazakhstan, Russian Federation, Ukraine, Uzbekistan) and other producers (Australia, Canada, China, Gabon, Mongolia, Namibia, Niger, South Africa, United States of America)

  19. Investigation of applications for high-power, self-critical fissioning uranium plasma reactors. Final technical report

    International Nuclear Information System (INIS)

    Rodgers, R.J.; Latham, T.S.; Krascella, N.L.

    1976-09-01

    Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction. (Author)

  20. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  1. The nuclear fuel cycle; Le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  2. The life of some metallic uranium based fuel elements; Duree de vie de quelques combustibles a base d'uranium metal

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J A; Englander, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Description of some theoretical and experimental data concerning the design and most economic preparation of metallic uranium based fuel elements, which are intended to produce an energy of 3 kW days/g of uranium in a thermal reactor, at a sufficiently high mean temperature. Experimental results obtained by testing by analogy or by actually trying out fuel elements obtained by alloying uranium with other metals in proportions such that the resistance to deformation of the alloy produced is much higher than that of pure metallic uranium and that the thermal utilisation factor is only slightly different from that of the uranium. (author) [French] Description de quelques donnees theoriques et experimentales concernant la conception et la preparation la plus economique d'elements combustibles a base d'uranium metallique naturel, destines a degager dans un reacteur thermique une energie de l'ordre de 3 kWj/g d'uranium a une temperature moyenne suffisamment elevee. Resultats experimentaux acquis par tests analogiques ou reels sur combustibles obtenus par alliage de l'uranium avec des elements metalliques en proportions telles que la resistance a la deformation soit bien superieure a celle de l'uranium metal pur et que le facteur propre d'utilisation thermique n ne soit que peu affecte. (auteur)

  3. Eldorado Port Hope refinery - uranium production (1933-1951)

    International Nuclear Information System (INIS)

    Arsenault, J.E.

    2008-01-01

    Since the discovery of pitchblende in 1930 by Gilbert LaBine at Great Bear Lake (GBL), North West Territories, uranium has played a central role in the growth of the Canadian mining sector and it in turn has propelled the country into it's present position as the world's top uranium producer. The rich ore mined there was used originally by Eldorado Gold Mines Limited to build a business based on the extraction of radium, which was selling at $70,000 a gram at the time, and silver which was present in the ore in commercial amounts. The mine site on GBL became known as Port Radium. In 1933 Eldorado brought a refinery on-line at Port Hope, Ontario nearly 4,000 miles away from the mine, and began to produce radium, silver and uranium products. Initially uranium played a minor role in the business and the products were sold into the ceramics industry to manufacture a variety of crockery with long-lasting colours. In addition, there were sales and loans of uranium products to research laboratories that were exploring nuclear energy for possible use in weapons and power generation, as the potential for this was clearly understood from 1939 onwards. These laboratories included the National Research Council (George Laurence), Columbia University (Enrico Fermi) and International Chemical Industries (J.P. Baxter). With the beginning of World War II the radium business suffered from poor sales and by 1940 the mine was closed but the refinery continued operation, using accumulated stockpiles. By 1942 uranium had become a strategic material, the mine was reopened, and the refinery began to produce large quantities of uranium oxide destined for The Manhattan Project. As events unfolded Eldorado was unable to produce sufficient ore from GBL so that a large quantity of ore from the Belgian Congo was also processed at Port Hope. Ultimately, as a result of the efforts of this enterprise, World War II was finally ended by use of atomic weapons. After World War II the refinery

  4. Eldorado Port Hope refinery - uranium production (1933-1951)

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, J.E

    2008-03-15

    Since the discovery of pitchblende in 1930 by Gilbert LaBine at Great Bear Lake (GBL), North West Territories, uranium has played a central role in the growth of the Canadian mining sector and it in turn has propelled the country into it's present position as the world's top uranium producer. The rich ore mined there was used originally by Eldorado Gold Mines Limited to build a business based on the extraction of radium, which was selling at $70,000 a gram at the time, and silver which was present in the ore in commercial amounts. The mine site on GBL became known as Port Radium. In 1933 Eldorado brought a refinery on-line at Port Hope, Ontario nearly 4,000 miles away from the mine, and began to produce radium, silver and uranium products. Initially uranium played a minor role in the business and the products were sold into the ceramics industry to manufacture a variety of crockery with long-lasting colours. In addition, there were sales and loans of uranium products to research laboratories that were exploring nuclear energy for possible use in weapons and power generation, as the potential for this was clearly understood from 1939 onwards. These laboratories included the National Research Council (George Laurence), Columbia University (Enrico Fermi) and International Chemical Industries (J.P. Baxter). With the beginning of World War II the radium business suffered from poor sales and by 1940 the mine was closed but the refinery continued operation, using accumulated stockpiles. By 1942 uranium had become a strategic material, the mine was reopened, and the refinery began to produce large quantities of uranium oxide destined for The Manhattan Project. As events unfolded Eldorado was unable to produce sufficient ore from GBL so that a large quantity of ore from the Belgian Congo was also processed at Port Hope. Ultimately, as a result of the efforts of this enterprise, World War II was finally ended by use of atomic weapons. After World War II the

  5. Development of uranium industry in Romania

    International Nuclear Information System (INIS)

    Iuhas, Tiberiu

    2000-01-01

    The management of the uranium resources is performed in Romania by the National Uranium Company. The tasks to be done are: 1. management and protection of rare and radioactive metal ores in the exploitation areas; 2. mining, preparation, refining and trading the radioactive ores, as well as reprocessing the uranium stock from the uranium concentrate in the national reserve; 3. performing geologic and technologic studies in the exploitation areas; 4. performing studies and projects concerning the maintenance of the present facilities and unearthing new ores; 5. building industrial facilities; 6. carrying out technological transport; 7. importation-exportation operations; 8. performing micro-production activity in experimental research units; 9. personnel training; 10. medical assistance for the personnel; 11. environment protection. The company is organized as follows: 1.three branches for uranium ore mining, located at Suceava, Bihor and Banat; 2. one branch for geologic survey, located at Magurele; 3. one branch for uranium ore preparation and concentration and for refining uranium concentrates, located at Feldioara; 4. One group for mine conservation, closure and ecology, located at Bucuresti. The final product, sintered powder of UO 2 produced at Feldioara plant, was tested in 1994 by the Canadian partner and met successfully the required standards. The Feldioara plant was certified as supplier of raw material for CANDU nuclear fuel production and as such, Romania is the only authorized producer of CANDU nuclear fuel in Europe and the second in the world, after Canada. Maintaining the uranium production in Romania is justified by the existence of uranium ore resources, the declining of natural gas resources, lower costs per kWh for electric nuclear power as compared to fossil-fuel power production, the possibility for Romania to become an important supplier of CANDU nuclear fuel, the low environmental impact and high costs for total shutdown of activity, high

  6. Uranium exploration, mining and ore enrichment techniques

    International Nuclear Information System (INIS)

    Fuchs, H.D.; Wentzlau, D.

    1985-01-01

    The paper describes the different types of uranium deposits and their importance. It is shown that during the present depressed uranium market situation, mainly high grade deposits such as unconformity-related deposits can be mined economically. The different successive exploration steps are outlined including methods used for uranium. Uranium mining does not greatly differ from normal mining, but the uranium metallurgy needs its own specialized but already classic technology. Only a relative small amount of uranium can be expected from projects where uranium is produced by in situ leach methods or by extraction from phosphoric acid. A short summary of investment costs and operating costs is given for an average uranium mine. The last chapter deals with the definition of different reserve categories and outlines the uranium reserves of the western world including the uranium production (1983) and the expected uranium production capacity for 1985 and 1990. (orig.) [de

  7. Uranium in Canada

    International Nuclear Information System (INIS)

    1987-09-01

    Canadian uranium exploration and development efforts in 1985 and 1986 resulted in a significant increase in estimates of measured uranium resources. New discoveries have more than made up for production during 1985 and 1986, and for the elimination of some resources from the overall estimates, due to the sustained upward pressure on production costs and the stagnation of uranium prices in real terms. Canada possesses a large portion of the world's uranium resources that are of current economic interest and remains the major focus of inter-national uranium exploration activity. Expenditures for uranium exploration in Canada in 1985 and 1986 were $32 million and $33 million, respectively. Although much lower than the $130 million total reported for 1979, expenditures for 1987 are forecast to increase. Exploration and surface development drilling in 1985 and 1986 were reported to be 183 000 m and 165σ2 000 m, respectively, 85 per cent of which was in Saskatchewan. Canada has maintained its position as the world's leading producer and exporter of uranium. By the year 2000, Canada's annual uranium requirements will be about 2 100 tU. Canada's known uranium resources are more than sufficient to meet the 30-year fuel requirements of those reactors in Canada that are either in operation now or expected to be in service by the late 1990s. A substantial portion of Canada's identified uranium resources is thus surplus to Canadian needs and available for export. Annual sales currently approach $1 billion, of which exports account for 85 per cent. Forward domestic and export contract commitments totalled 73 000 tU and 62 000 tU, respectively, as of early 1987

  8. Uranium in South Africa

    International Nuclear Information System (INIS)

    Ford, M.A.

    1993-01-01

    The history, sources, mineralogy, extraction metallurgy, conversion, and enrichment of uranium in South Africa is reviewed. Over the past 40 years extraction plants were built at 27 sites, and over 140 kt of uranium have been produced. Older plants have had to adapt to changing market conditions, no single technology has had the opportunity to become entrenched, and the costs have been reduced to a third of those of the original flowsheet. The research efforts aimed at developing the country's nuclear raw materials have been particularly rewarding, as they have enabled South Africa to become a world leader in the extraction of uranium from low-grade ores and to develop methods for uranium enrichment and the production of nuclear fuels. 43 refs., 7 figs., 4 tabs

  9. Unconventional uranium resources in China

    International Nuclear Information System (INIS)

    Qi Fucheng; Zhang Zilong; Li Zhixing; Wang Zhiming; He Zhongbo; Wang Wenquan

    2011-01-01

    Unconventional uranium resources in China mainly include black-rock series, peat, salt lake and evaporitic rocks. Among them, uraniferous black-rock series, uraniferous phosphorite and uranium-polymetallic phosphorite connected with black-rock series are important types for the sustainable support of uranium resources in China. Down-faulting and epocontinental rift in continental margin are the most important and beneficial ore-forming environment for unconventional uranium resources of black-rock series in China and produced a series of geochemistry combinations, such as, U-Cd, U-V-Mo, U-V-Re, U-V-Ni-Mo and U-V-Ni-Mo-Re-Tl. Unconventional uranium resources of black-rock series in China is related to uranium-rich marine black-rock series which are made up of hydrothermal sedimentary siliceous rocks, siliceous phospheorite and carbonaceous-siliceous-pelitic rock and settled in the continental margin down-faulting and epicontinental rift accompanied by submarine backwash and marine volcano eruption. Hydrothermal sedimentation or exhalation sedimentary is the mechanism to form unconventional uranium resources in black-rock series or large scale uranium-polymetallic mineralization in China. (authors)

  10. Uranium in Canada: 1982 assessment of supply and requirements

    International Nuclear Information System (INIS)

    1983-09-01

    Estimates of Canada's uranium resources for 1982 remained essentially unchanged from those of 1980. However, the economic conditions facing the industry have changed greatly during the past few years as production costs continued to rise without corresponding increases in uranium prices. As a result, a smaller portion of Canada's uranium resources is of current economic interest. Total resources amount to 573 000 tonnes of uranium. Just over 10% of this uranium will be required domestically during the next 30 years to fuel the more than 15 000 megawatts of nuclear power capacity now operating or committed for operation in Canada by 1993. In 1982 seven uranium producers in Canada, directly employing 4800 people, produced concentrates containing 8075 tonnes of uranium. Based on currently committed expansion plans, Canada's projected annual production capability could grow to some 12 000 tonnes of uranium by 1986. Canadian producers shipped 7643 tonnes of uranium valued at some $838 millon in 1982. As of January 1, 1983, outstanding uranium export commitments amounted to 60 000 tonnes or roughly 10% of the total Canadian uranium resources mentioned above. Japan has been Canada's most important single customer in the past decade, receiving about 34% of Canada's total exports since 1972. Most of the remaining exports have gone to the European Economic Community (33%), other countries in Western Europe (18%), and the United States (15%). Substantial efforts in uranium exploration that have been continued, especially in northern Saskatchewan, where two-thirds of the $71 million total exploration expenditures of 1982 were incurred. This continued effort has led to the discovery of a number of important deposits over the past few years which could be developed if market conditions improve. It is estimated that total Canadian production capability could reach 15 000 tonnes of uranium annually by the mid-1990s

  11. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant: Preliminary summary

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Moussalli, G.; Naegele, G.; Ikonomou, P.; Hosoya, M.; Scott, P.; Fager, J.; Sanders, C.; Colwell, D.; Joyner, C.J.

    1994-01-01

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. This report details a six-month field test of the feasibility of such SNRIs which took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division. Westinghouse personnel made daily declarations about both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ''mailbox''. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. Items from both strata were verified during the SNRIs by means of nondestructive assay equipment. The field test demonstrated the feasibility and practicality of key elements of the SNRI approach for a large LEU fuel fabrication plant

  12. Cost-effectiveness of safety measures to reduce public risk associated with the transportation of UF{sub 6} by truck and trains

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Philippe; Pages, Pierre

    1989-08-01

    The present case study deals with the problem of uranium hexafluoride transportation by truck and train. It consists of a probabilistic risk assessment of the potential hazards to the public that can arise from the traffic that will take place in France in 1990. The specificity of UF{sub 6} is that it presents both chemical and radiological hazards. But, whatever the transported material, road traffic entails a risk of its own. Thus three kinds of risks are assessed for natural, depleted and enriched uranium hexafluoride. These assessments are the basis of a cost-effectiveness analysis which deals with such safety measures as using a protective overpack, avoiding populated areas and escorting the trucks.

  13. Cost-effectiveness of safety measures to reduce public risk associated with the transportation of UF6 by truck and trains

    International Nuclear Information System (INIS)

    Hubert, Philippe; Pages, Pierre

    1989-01-01

    The present case study deals with the problem of uranium hexafluoride transportation by truck and train. It consists of a probabilistic risk assessment of the potential hazards to the public that can arise from the traffic that will take place in France in 1990. The specificity of UF 6 is that it presents both chemical and radiological hazards. But, whatever the transported material, road traffic entails a risk of its own. Thus three kinds of risks are assessed for natural, depleted and enriched uranium hexafluoride. These assessments are the basis of a cost-effectiveness analysis which deals with such safety measures as using a protective overpack, avoiding populated areas and escorting the trucks

  14. Process control of a gaseous diffusion cascade for isotopic separation of uranium

    International Nuclear Information System (INIS)

    Bilous, Olegh; Doneddu, F.

    1986-01-01

    Various aspects of dynamics and process control of a gaseous diffusion cascade are described. The cascade enriches uranium hexafluoride gas (HEX) in the light isotope of uranium in a countercurrent flow. The linearized equations describing the equipment models are derived. One can then write the mass balances on the high and low pressure sides of a stage and the overall heat balance of a stage. These heat and mass balances are linear difference equations on the stage number with time derivatives which are then replaced by jω factors to examine the effects of cyclic perturbations. The mass balances are first treated for a cascade section of 12 stages with temperatures assumed constant. The effect of a perturbation of pressure on one of the stages is described first for ω=0 (that is for steady state). Then Nyquist diagrams are obtained. The effect of transport change is also studied. Then temperature is introduced, assuming pressures to be constant. The cases of a section of 12 stages and a cascade of 120 stages are examined. Again Nyquist diagrams of temperature frequency response to a perturbation on one stage are calculated. Process control of the heat exchangers is introduced. The method used to solve the difference equations may be applied to other types of perturbations and to the complete scheme of process control. (author)

  15. Report from the Uranium Supply Committee

    International Nuclear Information System (INIS)

    1980-12-01

    Based on studies of world uranium supply made by NEA, IAEA and other national and international bodies the Danish Uranium Supply Committee has examined the uranium supply situation. The Committee concludes that there will be no lack of natural uranium in a period until year 2025 provided that more advanced and uranium economic reactors will be effiective from the beginning of the 21th century. However it will be necessary to discover new resources and to use low-grade uranium resources. Through long term contracts with the users the uranium producers should be urged to continue their production. The Committee recommends that uranium prospecting in Greenland continues in order to get a through knowledge of Greenlandic resources. The establishment of further reprocessing capacity should be speeded up, whereas the Committee do not foresee any shortages with regard to enrichment, conversion, and fuel element production. (BP)

  16. Bibliography on Saskatchewan uranium inquiries and the northern and global impact of the uranium industry

    International Nuclear Information System (INIS)

    Harding, J.; Forgay, B.; Gianoli, M.

    1988-01-01

    In recent years Saskatchewan, Canada has become the major site for the expansion of the world-wide uranium industry. Largely due to the higher concentration of ore in the province and reduced exploitation elsewhere, by 1984 Canada had become the world's leading non-communist producer of uranium. This expansion has remained one of the most controversial political and ecological issues in Saskatchewan for nearly a decade. What follows is a comprehensive bibliography on the Saskatchewan uranium mining inquiries that paralleled the growth of this industry in the province and on the northern and global impact of the uranium industry. It is the culmination of more than three years of research including in-depth content analysis of transcripts of uranium mining inquiries held in Saskatchewan between 1977-1980

  17. Chapter 3. Classical method of uranium leaching from ores and reasons for incomplete recovery at dumps of State Enterprise 'VOSTOKREDMET'. 3.3. Basic regularities of uranium ores leaching

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2012-01-01

    Present article is devoted to basic regularities of uranium ores leaching. It was found that the basic method of uranium ores enrichment and producing of reasonably rich and pure uranium concentrates (usually technical uranium oxide) is a chemical concentration concluded in selective uranium leaching from ore raw materials with further, uranium compounds - so called uranium chemical concentrates. Such reprocessing of uranium ores with the purpose of uranium chemical concentrates production, currently, are produced everywhere by hydrometallurgical methods. This method in comparison with enrichment and thermal reprocessing is a universal one. Hydrometallurgy - the part of chemical technology covering so called moist methods of metals and their compounds (in the current case, uranium) extraction from raw materials, where they are contained. It can be ores or ore concentrates produced by radiometric, gravitational, floatation enrichment, sometimes passed through high-temperature reprocessing or even industry wastes. The basic operation in hydrometallurgy is its important industrial element - metal or metals leaching as one or another compound. Leaching is conversion of one or several components to solution under impact of relevant technical solvents: water, water solutions, acids, alkali or base, solution of some salts and etc. The basic purpose of leaching in uranium technology is to obtain the most full and selective solution of uranium.

  18. Argentinian uranium production

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A profit-making process for the exploitation of low grade uranium is presented. The process of lixiviation will be used, which will make it possible to obtain a final product whose humidity level will not exceed 10% and whose uranium oxide content will be no less than 68%. The operations of the plant are described. The plant can produce between 100 and 150 t of U 3 O 8 /yr in the form of yellow cake

  19. Ailing uranium millworkers seek recognition, aid

    International Nuclear Information System (INIS)

    Ambler, M.

    1980-01-01

    Uranium millworkers who helped produce uranium for the U.S. nuclear defense program in the 1950's and 1960's are suing the federal government and uranium companies for compensation for illnesses that they believe are job-related. Symptoms of these illnesses include frequent blackouts, chronic bronchitis, asthma, constant fatigue, and susceptibility to colds. Research is being conducted to determine whether the millworkers' symptoms are due to excessive radiation exposure. Studies to date indicated that during the 1950's and early 1960's, radiation protection procedures at uranium milling facilities were extremely deficient

  20. International uranium supply to the US market

    International Nuclear Information System (INIS)

    Bonny, J.

    1987-01-01

    The 1980s have seen a major redistribution of global uranium production. Since 1984, the first full year of production from the Key Lake Mine, Canada has displaced the US as the world's largest uranium producer. Uranium production in the US has stabilized in the range of 10 to 15 million lb U 3 O 8 per year, having declined from a peak of over 43 million lb in 1980. Production from Africa and Europe has declined slightly, and Australia, with the startup of Ranger Mine, has emerged as a significant producer. The main factors that have affected the distribution of production aside from price and demand are ore grades and production costs, currency exchange rates, long-term contracts, and tied supply. It is interesting to examine uranium supply and demand for the North American continent. In 1980 and 1981, North American production was more than twice reactor requirements. By 1985, however, requirements were only slightly lower than production, a situation that has persisted into 1987. Indeed, given the export commitments by Canadian and US producers to Europe and Asia, it is apparent that the US must import uranium from other countries. The relative balance in North American supply and demand suggests that free trade between Canada and the US for both uranium and conversion services would be beneficial to both countries

  1. US uranium market developments

    International Nuclear Information System (INIS)

    Krusiewski, S.V.; Patterson, J.A.

    1980-01-01

    Domestic uranium delivery commitments have risen significantly since January 1979, with the bulk of deliveries scheduled after 1990. Much of the long-term procurement will be obtained from captive production. However, buyers have adjusted their delivery schedules in the near term, deferring some procurement to later years, including a portion of planned captive production. Under current commitments, US imports of foreign uranium in the 1981 to 1985 period will be greater than our exports of domestic uranium. The anticipated supply of domestic uranium through 1985 is clearly more than adequate to fill the probable US demand in the meantime, uranium producers are continuing their efforts to increase future domestic supply by their considerable investments in new or expanded mine and mill facilities. Since January 1980, average contract prices including market-price settlements, for 1980 uranium deliveries have increased slightly, but average market-price settlements made this year have decreased by several dollars. While the general trend of US uranium prices has been upward since we began reporting price data in 1973, some reductions in average prices for future deliveries appeared in 1980. The softening of prices for new procurement can be expected to be increasingly apparent in future surveys

  2. The US uranium mining industry: 1980 and today

    International Nuclear Information System (INIS)

    Stover, D.E.

    1991-01-01

    In 1980, 16 800 tonnes of uranium were produced in the United States, making it the largest producing nation with about 40% of Western World (WOCA) production. By 1990, US production had fallen to approximately 3500 tonnes U, representing only about 10% of WOCA production. Clearly the US uranium mining industry was strongly altered by the events of the intervening years. Widespread focus on declining prices overshadowed a second important set of events. Namely, the rapidly changing regulatory and environmental atmosphere in the United States which continues adversely to affect conventional uranium mining. As a result of these events, the size and structure of the US uranium mining industry was irrevocably changed. Within this altered industry is a rapidly maturing technology that provides a more efficient and lower-cost means of uranium production, in-situ leaching (ISL). By exploiting the advantages of relatively low capital investments, shorter development times, reduced labour costs, and increased production flexibility of ISL mining, the US uranium mining industry will be a competitive component of the world's uranium supply for the 1990s. (author)

  3. Physico-chemical and radiological characterization of uranium tailings from Tummalapalle uranium mining site

    International Nuclear Information System (INIS)

    Patra, A.C.; Sahoo, S.K.; Lenka, P.; Gupta, Anil; Jha, S.K.; Tripathi, R.M.; Molla, S.; Rana, B.K.

    2018-01-01

    Mining of uranium bearing minerals is essential for the extraction of uranium to meet the power requirements of India. Mining and milling activities produce large quantities of low active tailings, as wastes, which are contained in Tailings Ponds. The nature of tailings depends on the mineralogy of ore and host rock and their quantity depends on the configuration of the ore body and mining methods. The mobility of an element from these tailings depends on elemental concentration, pH, particle size, cation exchange capacity, bulk density and porosity of the tailings etc. This necessitates complete characterisation of the tailings. In this paper we aim to characterize the uranium mill tailings generated from Tummalapalle uranium mining facility in Kadappa district, Andhra Pradesh, India

  4. Waste disposal from the light water reactor fuel cycle

    International Nuclear Information System (INIS)

    Costello, J.M.; Hardy, C.J.

    1981-05-01

    Alternative nuclear fuel cycles for support of light water reactors are described and wastes containing naturally occurring or artificially produced radioactivity reviewed. General principles and objectives in radioactive waste management are outlined, and methods for their practical application to fuel cycle wastes discussed. The paper concentrates upon management of wastes from upgrading processes of uranium hexafluoride manufacture and uranium enrichment, and, to a lesser extent, nuclear power reactor wastes. Some estimates of radiological dose commitments and health effects from nuclear power and fuel cycle wastes have been made for US conditions. These indicate that the major part of the radiological dose arises from uranium mining and milling, operation of nuclear reactors, and spent fuel reprocessing. However, the total dose from the fuel cycle is estimated to be only a small fraction of that from natural background radiation

  5. Uranium extraction from phosphoric acid

    International Nuclear Information System (INIS)

    Lounis, A.

    1983-05-01

    A study has been carried out for the extraction of uranium from phosphoric acid produced in Algeria. First of all, the Algerian phosphoric acid produced in Algeria by SONATRACH has been characterised. This study helped us to synthesize a phosphoric acid that enabled us to pass from laboratory tests to pilot scale tests. We have then examined extraction and stripping parameters: diluent, DZEPHA/TOPO ratio and oxidising agent. The laboratory experiments enabled us to set the optimum condition for the choice of diluent, extractant concentration, ratio of the synergic mixture, oxidant concentration, redox potential. The equilibrium isotherms lead to the determination of the number of theoretical stages for the uranium extraction and stripping of uranium, then the extraction from phosphoric acid has been verified on a pilot scale (using a mixer-settler)

  6. Uranyl Nitrate Flow Loop

    International Nuclear Information System (INIS)

    Ladd-Lively, Jennifer L

    2008-01-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO 2 ), uranium tetrafluoride (UF 4 ), and uranium hexafluoride (UF 6 )] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF 6 product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by

  7. Uranium fluoride and metallic uranium as target materials for heavy-element experiments at SHIP

    Energy Technology Data Exchange (ETDEWEB)

    Kindler, Birgit [Gesellschaft fuer Schwerionenforschung (GSI), Planckstrasse 1, D-64291 Darmstadt (Germany)], E-mail: b.kindler@gsi.de; Ackermann, Dieter; Hartmann, Willi; Hessberger, Fritz Peter; Hofmann, Sigurd; Huebner, Annett; Lommel, Bettina; Mann, Rido; Steiner, Jutta [Gesellschaft fuer Schwerionenforschung (GSI), Planckstrasse 1, D-64291 Darmstadt (Germany)

    2008-06-01

    In this contribution we describe the production and application of uranium targets for synthesis of heavy elements. The targets are prepared from uranium fluoride (UF{sub 4}) and from metallic uranium with thin carbon foils as backing. Targets of UF{sub 4} were produced by thermal evaporation in a similar way as the frequently applied targets out of Bi, Bi{sub 2}O{sub 3}, Pb, PbS, SmF{sub 3}, and NdF{sub 3,} prepared mostly from isotopically enriched material [Birgit Kindler, et al., Nucl. Instr. and Meth. A 561 (2006) 107; Bettina Lommel, et al., Nucl. Instr. and Meth. A 561 (2006) 100]. In order to use more intensive beams and to avoid scattering of the reaction products in the target, metallic uranium is favorable. However, evaporation of metallic uranium is not feasible at a sustainable yield. Therefore, we established magnetron sputtering of metallic uranium. We describe production and properties of these targets. First irradiation tests show promising results.

  8. Uranium - the nuclear fuel

    International Nuclear Information System (INIS)

    Smith, E.E.N.

    1976-01-01

    A brief history is presented of Canadian uranium exploration, production, and sales. Statistics show that Canada is a good customer for its own uranium due to a rapidly expanding nuclear power program. Due to an average 10 year lag between commencement of exploration and production, and with current producers sold out through 1985, it is imperative that exploration efforts be increased. (E.C.B.)

  9. Prospects for the Canadian uranium industry

    International Nuclear Information System (INIS)

    Runnalls, O.J.C.

    1988-01-01

    Canada became the world's largest uranium producer in 1984. That leadership position is likely to be maintained for many years into the future because of a firm production base, many undeveloped known deposits with commercial promise, and a large geological potential for new discoveries. There are some uncertainties on the horizon, principally because of restrictive actions in process within the USA, which are aimed at preserving a deteriorating domestic uranium industry. Should such actions result in import restriction, for example, there would be a negative effect on foreign producers at least in the short term. Canada may avoid such difficulties under a tentative U.S.-Canada free-trade agreement where restrictions on the import of Canadian uranium into the United States would be eliminated. Over the longer term, demand for Canada's uranium resources will grow because of the foreseen growth in the world's installed nuclear power capacity

  10. Uranium metal production by molten salt electrolysis

    International Nuclear Information System (INIS)

    Takasawa, Yutaka

    1999-01-01

    Atomic vapor laser isotope separation (AVLIS) is a promising uranium enrichment technology in the next generation. Electrolytic reduction of uranium oxides into uranium metal is proposed for the preparation of uranium metal as a feed material for AVLIS plant. Considering economical performance, continuos process concept and minimizing the amount of radioactive waste, an electrolytic process for producing uranium metal directly from uranium oxides will offer potential advantages over the existing commercial process. Studies of uranium metal by electrolysis in fluoride salts (BaF 2 -LiF-UF 4 (74-11-15 w/o) at 1150-1200degC, using both a laboratory scale apparatus and an engineering scale one, and continuous casting of uranium metal were carried out in order to decide the optimum operating conditions and the design of the industrial electrolytic cells. (author)

  11. Canadian resources of uranium and thorium

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, J W; Roscoe, S M [Dept. of Mines and Technical Surveys, Ottawa, Ontario (Canada)

    1964-07-01

    Canada has been one of the world's leading producers of uranium since the metal became important as a raw material in the development and production of atomic energy. One of the largest known deposits in the world is in Canada where present reserves represent about 37 per cent of the total among those countries that have published reserve statistics. The production of uranium has been characterized by features which are unique in Canadian mining, because the industry was created by the government at a time of emergency and, unlike other minerals, the sale of its product is controlled by the state. The rapid growth of the uranium-mining industry since World War II has been a remarkable achievement. In 1958, Canada was the world's leading producer of uranium and the value of U{sub 3}O{sub 8} produced in both 1958 and 1959 exceeded the value of any other Canadian-produced metal. As an export commodity, uranium ranked fourth in value in 1959 following newsprint, wheat, and lumber. Production from 25 mines in that year was 14 462 tonnes of U{sub 3}O{sub 8} valued at $345 million (all monetary values are in U.S. dollars). Since 1959, however, the decline in production, resulting from declining export markets, has been almost as rapid as the spectacular rise from 1953 to 1959. At the end of 1963 only seven mines were in production and by the end of 1965 only two mines are expected to remain in operation. (author)

  12. Uranium in South Africa: 1983 assessment of resources and production

    International Nuclear Information System (INIS)

    1984-06-01

    NUCOR assesses South Africa's uranium resource and production capabilities on an ongoing basis. Assessments are carried out in close co-operation with the mining companies and the Government Mining Engineer. In carrying out this evaluation, the classification recommended by the NEA/IAEA Working Party on Uranium Resources is followed. In order to preserve company confidentiality, the details of the findings are released in summary form only. Within South Africa, uranium occurrences are found in Precambrian quartz-pebble conglomerates, Precambrian alkaline complexes, Cambrian to Precambrian granite gneisses, Permo-Triassic sandstones and coal, and Recent to Tertiary surficial formations. South Africa's uranium resources were reassessed during 1983 and the total recoverable resources in the Reasonably Assured and Estimated Additional Resource categories recoverable at less than $130/kg U were estimated to be 460 000 t U. This represents a decrease of 13,4% when compared with the 1981 assessment. South Africa's uranium production for 1983 amounted to 6 060 t U, a 4,21 % increase over the 1982 production of 5 816 t U. Ninety-seven percent of the production is derived from the Witwatersrand quartz-pebble conglomerates, the rest being produced as a by-product of copper mining at Palabora. South Africa maintained its position as a major low-cost uranium producer, holding 14% of the WOCA uranium resources, and during 1982 it produced 14% of WOCA's uranium. In making future production capability projections it may be safely concluded that South Africa would be able to produce uranium at substantial levels well into the next century

  13. Canadian experience with uranium tailings disposal

    International Nuclear Information System (INIS)

    Culver, K.B.

    1982-06-01

    During the first years of uranium production in Canada uranium tailings were discharged directly into valleys or lakes near the mill. Treatment with barium chloride to precipitate radium began in 1965 at the Nordic Mine at Elliot Lake, Ontario. In the mid-60s and early 70s water quality studies indicated that discharges from uranium tailings areas were causing degradation to the upper part of the Serpent River water system. Studies into acid generation, revegetation, and leaching of radium were initiated by the mining companies and resulted in the construction of treatment plants at a number of sites. Abandoned tailings sites were revegetated. At hearings into the expansion of the Elliot Lake operations the issue of tailings management was a major item for discussion. As a result federal and provincial agencies developed guidelines for the siting and development of urnaium tailings areas prior to issuing operating licences. Western Canadian uranium producers do not have the acid generation problem of the Elliot Lake operations. The Rabbit Lake mill uses settling ponds followed by filtration. High-grade tailings from Cluff Lake are sealed in concrete and buried. Uranium producers feel that the interim criteria developed by the Atomic Energy Control Board, if adopted, would have a harmful effect on the viability of the Canadian uranium industry

  14. Feasibility studies to establish at the Kazakhstan Ulba metallurgical plant the manufacturing capability to produce low-enriched uranium certified reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminski, Jozef [Los Alamos National Laboratory; Nesuhoff, J [NBL; Cratto, P [NBL; Pfennigwerth, G [Y12 NATIONAL SEC. COMPLEX; Mikhailenko, A [ULBA METALLURGICAL PLANT; Maliutina, I [ULBA METALLURGICAL PLANT; Nations, J [GREGG PROTECTION SERVICES

    2009-01-01

    One of the salient features of the transition plan that the United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) is presently implementing in the Former Soviet Union countries is the availability of uranium certified reference materials for calibration of nondestructive assay (NDA) measurement equipment. To address this challenge, DOE/NNSA and U.S. national laboratories have focused their cooperative efforts on establishing a reliable source for manufacturing, certifying, and supplying of such standards. The Ulba Metallurgical Plant (UMP), Kazakhstan, which processes large quantities of low-enriched uranium to produce ceramic fuel pellets for nuclear-powered reactors, is well situated to become a key supplier of low-enriched uranium certified reference materials for the country and Central Asia region. We have recently completed Phase I of a feasibility study to establish at UMP capabilities of manufacturing these standards. In this paper we will discuss details of a proposed methodology for uranium down-blending, material selection and characterization, and a proposed methodology of measurement by destructive (DA) and non-destructive (NDA) analysis to form a database for material certification by the competent State authorities in the Republic of Kazakhstan. In addition, we will discuss the prospect for manufacturing of such standards at UMP.

  15. In situ leaching process for recording uranium values

    International Nuclear Information System (INIS)

    McKnight, W.M.; Timmins, T.H.; Sherry, H.S.

    1977-01-01

    A method of recovering uranium values from a subterranean deposit comprising: injecting an alkaline carbonate lixiviant into said deposit; flowing said alkaline carbonate lixiviant through said deposit to dissolve said uranium values into said lixiviant; producing said lixiviant and said dissolved uranium values from said deposit; flowing said lixiviant and said dissolved uranium values through an adsorption material to adsorp said uranium values from said lixiviant; eluting said adsorption material with an eluant of ammonium carbonate to desorb said uranium values from said adsorption material into said eluate in a concentration greater than in said lixiviant; heating said eluate and said desorbed uranium values to vaporize off ammonia and carbon dioxide therefrom, thereby causing uranium values to crystallize from the eluate; and recovering said solid uranium values

  16. Foreign uranium supply. Final report

    International Nuclear Information System (INIS)

    McLeod, N.B.; Steyn, J.J.

    1978-04-01

    This report presents an assessment of the extent to which foreign uranium may be available to United States utilities in the short term (through 1980), the intermediate term (1981--1985), and the long term (1986--95). All free world foreign uranium producers and prospects are included, with particular emphasis on Australia, Canada, southern Africa, France, and French-speaking Africa. The assessment includes reserves, resources, exploration and prospects; firm and potential production capacity and prospects; national policies and relevant political and economic conditions; foreign uranium demand; etc. Conclusions are: Foreign supply capability is greater than foreign demand in the near term. The current availability of uncommitted future Australian production presents an unusual opportunity for establishing commercial relations with very substantial producers. Foreign uranium contracts represent an increase in diversity of supply and access to resources but have less assurance of supply than do domestic contracts. However, uncertainties can frequently be accommodated within an overall procurement program, thereby retaining the diversity and price advantages of foreign procurement. The practice of market pricing of contracts reduces the incentives for foreign contracting

  17. The uranium market prospects

    International Nuclear Information System (INIS)

    Lloyd, R.

    1981-01-01

    A historical analysis of the uranium market points out the cyclical nature of the market and suggests that the spot price, exploration levels, and mill capacity utilization rate are dependent on economic factors. An examination of the current uranium market suggests that the effects of the forecasted surplus supply, the diminishing returns in exploration and the long lead times and high costs of development may mean that future production levels are uncertain. The general prospects for the uranium industry are also uncertain because of barriers to trade, environmental regulations and public opinion. The paper concludes that by the use of long term contracts, appropriate inventory policy and greater discussion between producers and consumers the prospects for the uranium market can be made more certain and further imbalances in demand and supply can be avoided. (author)

  18. 1982 survey of United States uranium marketing activity

    International Nuclear Information System (INIS)

    1983-09-01

    This report is based on survey data from all utilities, reactor manufacturers, and uranium producers who market uranium. The survey forms are mailed in January of each year with updates in July of each year. This year 59 utilities, 5 reactor manufacturers and agents, and 57 uranium producers were surveyed. Completed survey forms were checked for errors, corrected as necessary, and processed. These data formed the basis for the development of the report. This report is intended for Congress, federal and state agencies, the nuclear industry, and the general public

  19. Guidelines for evaluation of the environmental expense

    International Nuclear Information System (INIS)

    Komatsu, Cintia Nagako; Aquino, Afonso Rodrigues de

    2009-01-01

    The main objective of this research is to establish guidelines to fit the Environment Account in the Nuclear Fuel Cycle, using as study of case the Uranium Hexafluoride Production Unit of Centro Tecnologico da Marinha in Sao Paulo. The environment accounting, branch of the accounting science, supply a source of tools capable to measure the protection efforts, the nature preservation, the environment monitoring and the recovering during all the Conversion phase (since the Uranium concentrated, the yellow cake, up to the Uranium hexafluoride production). It was performed several researches, visits to the Centre, databank creation, interviews and extensive consulting to the preliminary safety report, in order to obtain the percentage of the total expenses related to environment protection in regarding to the total amount invested in the unit. It was also evaluated the total preserved green area making possible a preliminary environment accounting balance. (author)

  20. Guidelines for evaluation of the environmental expense in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Komatsu, Cintia Nagako

    2008-01-01

    The main objective of this research is to establish guidelines to fit the environment account in the nuclear fuel cycle, using as study of case the uranium hexafluoride production unit of Centro Tecnologico da Marinha in Sao Paulo. The environment accounting, branch of the accounting science, supply a source of tools capable to measure the protection efforts, the nature preservation, the environment monitoring and the recovering during all the conversion phase (since the uranium concentrated, the yellow cake, up to the Uranium hexafluoride production). It was performed several researches, visits to the Centre, databank creation, interviews and extensive consulting to the preliminary safety report, in order to obtain the percentage of the total expenses related to environment protection in regarding to the total amount invested in the unit. It was also evaluated the total preserved green area making possible a preliminary environment accounting balance. (author)

  1. Production from new uranium mines a Cogema resources Saskatchewan perspective

    International Nuclear Information System (INIS)

    Pollock, B.

    2001-01-01

    The province of Saskatchewan is best known for the large flat tracts of land in the south that are primarily used for agricultural purposes. Less well known is the fact that the northern part of the province hosts the richest uranium mines in the world. In fact, to use a petroleum analogy, Saskatchewan has been referred to as the 'Saudi Arabia' of the uranium producing countries. The mining industry in Saskatchewan is a flourishing, high technology industry and supplies approximately one-third of the annual world primary production of uranium. The purpose of this paper is to examine the uranium mining industry in Saskatchewan and why this province stands alone as the dominant uranium producer in the world and will maintain that position into the foreseeable future. As well, an overview of the significant role played by COGEMA Resources in developing the Saskatchewan uranium industry will be undertaken. This company whose roots date back almost 40 years in the province, now holds significant interests in all four of the mines currently producing uranium. With investments of over one billion dollars (U.S.) in this province, COGEMA has established itself as a long-term player in the Saskatchewan Uranium Industry. (author)

  2. Classification of uranium reserves/resources

    International Nuclear Information System (INIS)

    1998-08-01

    Projections of future availability of uranium to meet present and future nuclear power requirements depend on the reliability of uranium resource estimates. Lack of harmony of the definition of the different classes of uranium reserves and resources between countries makes the compilation and analysis of such information difficult. The problem was accentuated in the early 1990s with the entry of uranium producing countries from the former Soviet Union, eastern Europe and China into the world uranium supply market. The need for an internationally acceptable reserve/resource classification system and terminology using market based criteria is therefore obvious. This publication was compiled from participant's contributions and findings of the Consultants Meetings on Harmonization of Uranium Resource Assessment Concepts held in Vienna from 22 to 25 June 1992, and two Consultants Meetings on the Development of a More Meaningful Classification of Uranium Resources held in Kiev, Ukraine on 24-26 April 1995 and 20-23 August 1996. This document includes 11 contributions, summary, list of participants of the Consultants Meetings. Each contribution has been indexed and provided with an abstract

  3. Uranium supply/demand projections to 2030 in the OECD/NEA-IAEA ''Red Book''. Nuclear growth projections, global uranium exploration, uranium resources, uranium production and production capacity

    International Nuclear Information System (INIS)

    Vance, Robert

    2009-01-01

    World demand for electricity is expected to continue to grow rapidly over the next several decades to meet the needs of an increasing population and economic growth. The recognition by many governments that nuclear power can produce competitively priced, base load electricity that is essentially free of greenhouse gas emissions, combined with the role that nuclear can play in enhancing security of energy supplies, has increased the prospects for growth in nuclear generating capacity. Since the mid-1960s, with the co-operation of their member countries and states, the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) have jointly prepared periodic updates (currently every 2 years) on world uranium resources, production and demand. These updates have been published by the OECD/NEA in what is commonly known as the ''Red Book''. The 2007 edition replaces the 2005 edition and reflects information current as of 1 st January 2007. Uranium 2007: Resources, Production and Demand presents, in addition to updated resource figures, the results of a recent review of world uranium market fundamentals and provides a statistical profile of the world uranium industry. It contains official data provided by 40 countries (and one Country Report prepared by the IAEA Secretariat) on uranium exploration, resources, production and reactor-related requirements. Projections of nuclear generating capacity and reactor-related uranium requirements to 2030 as well as a discussion of long-term uranium supply and demand issues are also presented. (orig.)

  4. Uranium production from phosphates

    International Nuclear Information System (INIS)

    Ketzinel, Z.; Folkman, Y.

    1979-05-01

    According to estimates of the world's uranium consumption, exploitation of most rich sources is expected by the 1980's. Forecasts show that the rate of uranium consumption will increase towards the end of the century. It is therefore desirable to exploit poor sources not yet in use. In the near future, the most reasonable source for developing uranium is phosphate rock. Uranium reserves in phosphates are estimated at a few million tons. Production of uranium from phosphates is as a by-product of phosphate rock processing and phosphoric acid production; it will then be possible to save the costs incurred in crushing and dissolving the rock when calculating uranium production costs. Estimates show that the U.S. wastes about 3,000 tons of uranium per annum in phosphoric acid based fertilisers. Studies have also been carried out in France, Yugoslavia and India. In Israel, during the 1950's, a small plant was operated in Haifa by 'Chemical and Phosphates'. Uranium processes have also been developed by linking with the extraction processes at Arad. Currently there is almost no activity on this subject because there are no large phosphoric acid plants which would enable production to take place on a reasonable scale. Discussions are taking place about the installation of a plant for phosphoric acid production utilising the 'wet process', producing 200 to 250,000 tons P 2 O 5 per annum. It is necessary to combine these facilities with uranium production plant. (author)

  5. Old dumps of uranium mining

    International Nuclear Information System (INIS)

    Gatzweiler, R.; Mager, D.

    1993-01-01

    The production of natural uranium through mining and milling results in large volumes of low-level radioactive waste, mainly in mine dumps and mill tailings. Hazards which relate to abandoned uranium production sites and environmental remediation approaches are described in reference to the Wismut case. During the period 1947 to 1990 the former Soviet-German Wismut Corporation produced about 200 000 t of uranium from several deposits in Thuringia and Saxonia within a relatively small and densely populated area. These activities resulted in major land disturbance and other environmental damage. Restoration problems are highlighted. (orig.)

  6. The red atom. The help of german scientists to USSR between 1945-1961

    International Nuclear Information System (INIS)

    Andurand, R.

    2009-01-01

    In this issue is tackled the cooperation between German and Russian scientists in nuclear energy from 1945 to 1961 and especially about the uranium enrichment by gaseous diffusion of uranium hexafluoride in cascade. The problems they encountered and their solutions are related until the explosion of the first Russian atomic bomb even if it was not a bomb with enriched uranium but with plutonium got in a nuclear reactor. (N.C.)

  7. Uranium isotopic composition and uranium concentration in special reference material SRM A (uranium in KCl/LiCl salt matrix)

    International Nuclear Information System (INIS)

    Graczyk, D.G.; Essling, A.M.; Sabau, C.S.; Smith, F.P.; Bowers, D.L.; Ackerman, J.P.

    1997-07-01

    To help assure that analysis data of known quality will be produced in support of demonstration programs at the Fuel Conditioning Facility at Argonne National Laboratory-West (Idaho Falls, ID), a special reference material has been prepared and characterized. Designated SRM A, the material consists of individual units of LiCl/KCl eutectic salt containing a nominal concentration of 2.5 wt. % enriched uranium. Analyses were performed at Argonne National Laboratory-East (Argonne, IL) to determine the uniformity of the material and to establish reference values for the uranium concentration and uranium isotopic composition. Ten units from a batch of approximately 190 units were analyzed by the mass spectrometric isotope dilution technique to determine their uranium concentration. These measurements provided a mean value of 2.5058 ± 0.0052 wt. % U, where the uncertainty includes estimated limits to both random and systematic errors that might have affected the measurements. Evidence was found of a small, apparently random, non-uniformity in uranium content of the individual SRM A units, which exhibits a standard deviation of 0.078% of the mean uranium concentration. Isotopic analysis of the uranium from three units, by means of thermal ionization mass spectrometry with a special, internal-standard procedure, indicated that the uranium isotopy is uniform among the pellets with a composition corresponding to 0.1115 ± 0.0006 wt. % 234 U, 19.8336 ± 0.0059 wt. % 235 U, 0.1337 ± 0.0006 wt. % 236 U, and 79.9171 ± 0.0057 wt. % 238 U

  8. Uranium procurement in the United States of America

    International Nuclear Information System (INIS)

    Thomas, D.C.; Krusiewski, S.V.

    1983-01-01

    The United States Department of Energy conducts surveys of US uranium marketing activity. The results of this year's survey compared with last year's survey indicate that delivery commitments of US uranium producers to US uranium users have decreased in the early part of this decade, but have increased in the latter part of the decade. Unfilled uranium requirements are nearly the same through 1986 in both surveys, but in the 1987-1990 period this years's unfilled requirements are lower than those reported last year. Non-US purchase commitments by US utilities are somewhat greater than those reported last year. Non-US purchase commitments by US reactor manufacturers and producers have increased significantly over the past year; about two-thirds of these purchase commitments resulted from the settlement of litigation with non-US suppliers. The attitude of US utilities as to their use of non-US uranium has remained the same over the past year. Although some of the utilities were uncertain about future non-US uranium purchases, many of them indicated that they would possibly purchase non-US uranium. Natural uranium inventories of US reactor manufacturers and utilities have increased over the past year, and now amount to about 3 years of forward coverage. The enriched uranium inventories held by these users have decreased over the past year, and now amount to less than 1 year's forward coverage. (author)

  9. Uranium extraction in phosphoric acid

    International Nuclear Information System (INIS)

    Araujo Figueiredo, C. de

    1984-01-01

    Uranium is recovered from the phosphoric liquor produced from the concentrate obtained from phosphorus-uraniferous mineral from Itataia mines (CE, Brazil). The proposed process consists of two extraction cycles. In the first one, uranium is reduced to its tetravalent state and then extracted by dioctylpyrophosphoric acid, diluted in Kerosene. Re-extraction is carried out with concentrated phosphoric acid containing an oxidising agent to convert uranium to its hexavalent state. This extract (from the first cycle) is submitted to the second cycle where uranium is extracted with DEPA-TOPO (di-2-hexylphosphoric acid/tri-n-octyl phosphine oxide) in Kerosene. The extract is then washed and uranium is backextracted and precipitated as commercial concentrate. The organic phase is recovered. Results from discontinuous tests were satisfactory, enabling to establish operational conditions for the performance of a continuous test in a micro-pilot plant. (Author) [pt

  10. Inhalation hazards to uranium miners

    International Nuclear Information System (INIS)

    Cross, F.T.

    1986-01-01

    This project is investigating levels of uranium mine air contaminants, using both large and small experimental animals to model human respiratory system diseases. Lung cancer and deaths by degenerative lung disease have reached epidemic proportions among uranium miners, but the cause-effect relationships for these diseases are based on inadequate epidemiological data. This project identifies uranium mine air agents or combinations of agents (both chemical and radiological), and their exposure levels, that produce respiratory tract lesions, including respiratory epithelial carcinoma, pneumoconiosis, and emphysema. Histopathologic data from serially sacrificed rats are reported for approximately 20- to 640- working-level-month (WLM) radon-daughter exposures delivered at one-tenth the rate of previous exposures. Exposure of male rats to radon daughters and uranium ore dust continues, along with exposure of male and female beagle dogs to uranium ore dust alone

  11. Canada's uranium supply: a look to the future

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1987-01-01

    The future growth of nuclear power is not likely to be constrained by the supply of uranium. There are enough known uranium resources in Canada and other producing countries to supply anticipated programmes well into the next century, at prices that should not affect the competitive position of nuclear power. There is also considerable potential for further discoveries. Supply and demand should be entering a period of greater stability. Market incentives will be required to ensure that new production is available on a timely basis. Canada, the world's leading producer and exporter of uranium, has the resources, the technical skills, the geological potential and the political will to continue as a reliable supplier of uranium for the foreseeable future. (author)

  12. Uranium 2014: Resources, Production and Demand - Executive Summary

    International Nuclear Information System (INIS)

    2014-01-01

    Uranium is the raw material used to fuel over 400 operational nuclear reactors around the world that produce large amounts of electricity and benefit from life cycle carbon emissions as low as renewable energy sources. Although a valuable commodity, declining market prices for uranium since the Fukushima Daiichi nuclear power plant accident in 2011, driven by uncertainties concerning the future of nuclear power, have led to the postponement of mine development plans in a number of countries and raised questions about continued uranium supply. This 25. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 45 producing and consuming countries in order to address these and other questions. It includes data on global uranium exploration, resources, production and reactor-related requirements. It offers updated information on established uranium production centres and mine development plans, as well as projections of nuclear generating capacity and reactor-related requirements through 2035, incorporating policy changes following the Fukushima accident, in order to address long-term uranium supply and demand issues. (authors)

  13. Uranium enrichment

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.

    1988-06-01

    Canada is the world's largest producer and exporter of uranium, most of which is enriched elsewhere for use as fuel in LWRs. The feasibility of a Canadian uranium-enrichment enterprise is therefore a perennial question. Recent developments in uranium-enrichment technology, and their likely impacts on separative work supply and demand, suggest an opportunity window for Canadian entry into this international market. The Canadian opportunity results from three particular impacts of the new technologies: 1) the bulk of the world's uranium-enrichment capacity is in gaseous diffusion plants which, because of their large requirements for electricity (more than 2000 kW·h per SWU), are vulnerable to competition from the new processes; 2) the decline in enrichment costs increases the economic incentive for the use of slightly-enriched uranium (SEU) fuel in CANDU reactors, thus creating a potential Canadian market; and 3) the new processes allow economic operation on a much smaller scale, which drastically reduces the investment required for market entry and is comparable with the potential Canadian SEU requirement. The opportunity is not open-ended. By the end of the century the enrichment supply industry will have adapted to the new processes and long-term customer/supplier relationships will have been established. In order to seize the opportunity, Canada must become a credible supplier during this century

  14. Preliminary Hazard Analysis applied to Uranium Hexafluoride - UF6 production plant

    International Nuclear Information System (INIS)

    Tomzhinsky, David; Bichmacher, Ricardo; Braganca Junior, Alvaro; Peixoto, Orpet Jose

    1996-01-01

    The purpose of this paper is to present the results of the Preliminary hazard Analysis applied to the UF 6 Production Process, which is part of the UF 6 Conversion Plant. The Conversion Plant has designed to produce a high purified UF 6 in accordance with the nuclear grade standards. This Preliminary Hazard Analysis is the first step in the Risk Management Studies, which are under current development. The analysis evaluated the impact originated from the production process in the plant operators, members of public, equipment, systems and installations as well as the environment. (author)

  15. Decommissioning of U.S. uranium production facilities

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

  16. Decommissioning of U.S. uranium production facilities

    International Nuclear Information System (INIS)

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U 3 O 8 to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington

  17. Uranium 2011 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2012-01-01

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24th edition of the “Red Book”, a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countri...

  18. Uranium: the nuclear fuel. [Canada

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E E.N. [Eldorado Nuclear Ltd., Ottawa, Ontario (Canada)

    1976-05-01

    A brief history is presented of Canadian uranium exploration, production, and sales. Statistics show that Canada is a good customer for its own uranium due to a rapidly expanding nuclear power program. Due to an average 10 year lag between commencement of exploration and production, and with current producers sold out through 1985, it is imperative that exploration efforts be increased.

  19. NF ISO 7097-1. Nuclear fuel technology - Uranium dosimetry in solutions, in uranium hexafluoride and in solids - Part 1: reduction with iron (II) / oxidation with potassium bi-chromate / titration method

    International Nuclear Information System (INIS)

    2002-04-01

    This standard document describes the mode of operation of three different methods for the quantitative dosimetry of uranium in solutions, in UF 6 and in solids: reduction by iron (II), oxidation by potassium bi-chromate and titration. (J.S.)

  20. Development of uranium metal targets for 99Mo production

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Hofman, G.L.

    1993-10-01

    A substantial amount of high enriched uranium (HEU) is used for the production of medical-grade 99 Mo. Promising methods of producing irradiation targets are being developed and may lead to the reduction or elimination of this HEU use. To substitute low enriched uranium (LEU) for HEU in the production of 99 Mo, the target material may be changed to uranium metal foil. Methods of fabrication are being developed to simplify assembly and disassembly of the targets. Removal of the uranium foil after irradiation without dissolution of the cladding is a primary goal in order to reduce the amount of liquid radioactive waste material produced in the process. Proof-of-concept targets have been fabricated. Destructive testing indicates that acceptable contact between the uranium foil and the cladding can be achieved. Thermal annealing tests, which simulate the cladding/uranium diffusion conditions during irradiation, are underway. Plans are being made to irradiate test targets