WorldWideScience

Sample records for producing misguided energy

  1. Academic Misguidance in Colleges and Universities.

    Science.gov (United States)

    Zirkel, Perry A.; Hugel, Paul S.

    1989-01-01

    Examines the various legal remedies that students, believing that they have been victims of misguidance, have pursued against institutions of higher education. The legal theories available primarily fit in four categories: (1) estoppel; (2) fraud; (3) breach of contract; and (4) due process. (MLF)

  2. Structural safety of trams in case of misguidance in a switch

    Science.gov (United States)

    Schindler, Christian; Schwickert, Martin; Simonis, Andreas

    2010-08-01

    Tram vehicles mainly operate on street tracks where sometimes misguidance in switches occurs due to unfavourable conditions. Generally, in this situation, the first running gear of the vehicle follows the bend track while the next running gears continue straight ahead. This leads to a constraint that can only be solved if the vehicle's articulation is damaged or the wheel derails. The last-mentioned situation is less critical in terms of safety and costs. Five different tram types, one of them high floor, the rest low floor, were examined analytically. Numerical simulation was used to determine which wheel would be the first to derail and what level of force is needed in the articulation area between two carbodies to make a tram derail. It was shown that with pure analytical simulation, only an idea of which tram type behaves better or worse in such a situation can be gained, while a three-dimensional computational simulation gives more realistic values for the forces that arise. Three of the four low-floor tram types need much higher articulation forces to make a wheel derail in a switch misguidance situation. One particular three-car type with two single-axle running gears underneath the centre car must be designed to withstand nearly three times higher articulation forces than a conventional high-floor articulated tram. Tram designers must be aware of that and should design the carbody accordingly.

  3. Myth of energy competitiveness in energy producing countries

    International Nuclear Information System (INIS)

    Watanabe, Chihiro; Widayanti, Tjahya

    1992-01-01

    This paper examines the relative comparative advantage, focusing on energy prices, of an energy producing developing country (Indonesia) and a non-energy producing developed country (Japan). For energy producing developing countries, it is strategically important to increase the competitiveness of energy dependent industries, and encourage the development of value-added industries. Much work has been done on relative advantage analysis, but the effects of the energy price formation mechanisms on price competitiveness have not been analysed. In this paper a comprehensive approach, using production and cost functions and synchronized price formation by means of principal component analysis, is introduced. (Author)

  4. Gains Based Remedies: the misguided search for a doctrine

    Directory of Open Access Journals (Sweden)

    Tom Stafford

    2016-12-01

    Full Text Available ADVANCE ACCESSIn this article Tom Stafford (Paralegal at Clyde & Co LLP examines the phenomenon of “Gains Based Remedies”. These are awards that, unlike classical damage awards which are calculated by reference to the loss suffered by the claimant, correlate to the gain made by the defendant. A couple of common examples include an account of profits for breach of trust claims, or the “disgorgement” damages that were awarded in AG v Blake. These awards are however available for a spectrum of varied wrongs. Their seeming lack of unity has often baffled commentators who have tried to search for an underpinning doctrine. One particularly renowned commentary is that of Professor Edelman’s, who suggests that these wrongs can be understood by being broken down into one of two categories: awards which seek to deter wrongdoing, and awards which reverse a wrongful transfer of value. The purpose of this article is to discuss the flaws of this view of the law, and to suggest that in fact, any search for a doctrinal underpinning to Gains Based Remedies is misguided. The cases in which these awards are granted have only one feature common to all: the claimant’s loss is, for whatever reason, difficult or impossible to assess. For that reason, the courts use the only other measure of the wrong available: the defendant’s gain.

  5. The economics of producing energy crops

    International Nuclear Information System (INIS)

    Shapouri, H.; Duffield, J.

    1993-01-01

    The US agricultural sector has an immense supply of natural resources which can be used to product energy. Production of energy from these resources could stimulate economic growth, improve environmental quality, and enhance energy security. However, producing feedstocks and converting biomass to energy require large amounts of capital, equipment, labor, and processing facilities. This paper looks at the costs and benefits of producing energy crops for fuel conversion. A review of studies and crop data show that the cost of growing and converting various feedstocks with current technology is greater than the cost of producing conventional fuels. Conventional motor fuels have a price advantage over biofuels, but market prices don't always reflect the cost of negative externalities imposed on society. Government decisions to invest in alternative energy sources should be based on research that includes the environmental costs and benefits of energy production. The future of biofuels will depend on the continuation of government research and incentive programs. As new technologies advance, the costs of processing energy crops and residues will fall, making biofuels more competitive in energy markets

  6. Distributed asynchronous supply coordination for energy producers embedded in the energy grids

    NARCIS (Netherlands)

    Alkano, Desti; Scherpen, Jacquelien M.A.; Cao, Ming

    2015-01-01

    This paper studies the congestion control and energy flow allocation of renewable energy producers equipped with local energy storage devices and energy converters. The producers are embedded in the existing energy grids. Based on the producers’ own measurements and some coordination with the grid

  7. Energy Efficiency of Biogas Produced from Different Biomass Sources

    International Nuclear Information System (INIS)

    Begum, Shahida; Nazri, A H

    2013-01-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  8. Energy transport in laser produced plasmas

    International Nuclear Information System (INIS)

    Key, M.H.

    1989-06-01

    The study of energy transport in laser produced plasmas is of great interest both because it tests and develops understanding of several aspects of basic plasma physics and also because it is of central importance in major applications of laser produced plasmas including laser fusion, the production of intense X-ray sources, and X-ray lasers. The three sections cover thermal electrons (energy transport in one dimension, plane targets and lateral transport from a focal spot, thermal smoothing, thermal instabilities), hot electrons (preheating in one dimension, lateral transport from a focal spot) and radiation (preheating in one dimension, lateral transport and smoothing, instabilities). (author)

  9. Sounds energetic: the radio producer's energy minibook

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Minibook will be expanded into the final Radio Producer's Energy Sourcebook. Radio producers and broadcasters are asked to contribute ideas for presenting energy knowledge to the public and to be included in the Sourcebook. Chapter One presents a case study suggesting programming and promotion ideas and sample scripts for a radio campaign that revolves around no-cost or low-cost steps listeners can take to increase their home energy efficiency and save money. A variety of other energy topics and suggestions on ways to approach them are addressed in Chapter Two. Chapter Three contains energy directories for Baltimore, Philadelphia, Pittsburg, and Washington, DC. The directories will be expanded in the Sourcebook and will consist of a selection of local public and private sector energy-related organizations and list local experts and organizations and the best Federal, state, and local government programs that can provide consumers and citizens groups with information, technical assistance, and financial support. (MCW)

  10. Recycling of aluminum to produce green energy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Lopez Benites, Wendy; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos C.P. 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico)

    2005-07-15

    High-purity hydrogen gas was generated from the chemical reaction of aluminum with sodium hydroxide. Several molar relations of sodium hydroxide/aluminum were investigated in this study. The experimental results showed that hydrogen yields are acceptable and its purity was good enough to be used in a proton exchange membrane (PEM) fuel cell to produce electricity. An estimation of the amount of energy produced from the reaction of 100 aluminum cans with caustic soda showed that the hydrogen production is feasible to be scaled up to reach up to 5kWh in a few hours. This study is environmentally friendly and also shows that green energy can be produced from aluminum waste at a low cost.

  11. Energy deposition at the bone-tissue interface from nuclear fragments produced by high-energy nucleons

    Science.gov (United States)

    Cucinotta, Francis A.; Hajnal, Ferenc; Wilson, John W.

    1990-01-01

    The transport of nuclear fragmentation recoils produced by high-energy nucleons in the region of the bone-tissue interface is considered. Results for the different flux and absorbed dose for recoils produced by 1 GeV protons are presented in a bidirectional transport model. The energy deposition in marrow cavities is seen to be enhanced by recoils produced in bone. Approximate analytic formulae for absorbed dose near the interface region are also presented for a simplified range-energy model.

  12. Performance profiles of major energy producers 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Performance Profiles of Major Energy Producers 1994 is the eighteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 24 major U.S. energy companies required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the United States and abroad.

  13. Performance profiles of major energy producers, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Performance Profiles of Major Energy Producers 1991 is the fifteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 23 major energy companies (the FRS companies) required to report annually on Form EIA-28. It also traces key developments affecting the financial performance of major energy companies in 1991, as well as reviews important trends. Financial information is reported by major lines of business including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report

  14. Performance profiles of major energy producers 1989

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-23

    Performance Profiles of Major Energy Producers 1989 is the thirteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 23 major energy companies (the FRS companies'') required to report annually on Form EIA-28. Financial information is reported by major lines of business including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. It also traces key developments affecting the financial performance of major energy companies in 1989, as well as review of important trends.

  15. Storing the Electric Energy Produced by an AC Generator

    Science.gov (United States)

    Carvalho, P. Simeao; Lima, Ana Paula; Carvalho, Pedro Simeao

    2010-01-01

    Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy, and when we think about electric energy generators, one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a…

  16. Performance profiles of major energy producers 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-13

    Performance Profiles of Major Energy Producers 1992 is the sixteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 25 major energy companies (the FRS companies) required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. The data are presented in the context of key energy market developments with a view toward identifying changing strategies of corporate development and measuring the apparent success of current ongoing operations.

  17. Performance profiles of major energy producers 1992

    International Nuclear Information System (INIS)

    1994-01-01

    Performance Profiles of Major Energy Producers 1992 is the sixteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 25 major energy companies (the FRS companies) required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. The data are presented in the context of key energy market developments with a view toward identifying changing strategies of corporate development and measuring the apparent success of current ongoing operations

  18. Role of nuclear produced hydrogen for global environment and energy

    International Nuclear Information System (INIS)

    Tashimo, M.; Kurosawa, A.; Ikeda, K.

    2004-01-01

    Sustainability on economical growth, energy supply and environment are major issues for the 21. century. Within this context, one of the promising concepts is the possibility of nuclear-produced hydrogen. In this study, the effect of nuclear-produced hydrogen on the environment is discussed, based on the output of the computer code 'Grape', which simulates the effects of the energy, environment and economy in 21. century. Five cases are assumed in this study. The first case is 'Business as usual by Internal Combustion Engine (ICE)', the second 'CO 2 limited to 550 ppm by ICE', the third 'CO 2 limited to 550 ppm by Hybrid Car', the fourth 'CO 2 limited to 550 ppm by Fuel Cell Vehicle (FCV) with Hydrogen produced by conventional Steam Methane Reforming (SMR)' and the fifth 'CO 2 limited to 550 ppm by FCV with Nuclear Produced-Hydrogen'. The energy used for transportation is at present about 25% of the total energy consumption in the world and is expected to be the same in the future, if there is no improvement of energy efficiency for transportation. On this point, the hybrid car shows the much better efficiency, about 2 times better than traditional internal combustion engines. Fuel Cell powered Vehicles are expected to be a key to resolving the combined issue of the environment and energy in this century. The nuclear-produced hydrogen is a better solution than conventional hydrogen production method using steam methane reforming. (author)

  19. Performance profiles of major energy producers 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This publication examines developments in the operations of the major US e energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area. In 1996, 24 companies filed Form EIA-28. The analysis and data presented in this report represents the operations of the Financial Reporting System companies in the context of their worldwide operations and in the context of the major energy markets which they serve. Both energy and nonenergy developments of these companies are analyzed. Although the focus is on developments in 1996, important trends prior to that time are also featured. Sections address energy markets in 1996; key financial developments; oil and gas exploration, development, and production; downstream petroleum in 1996; coal and alternative energy; and foreign direct investment in US energy. 30 figs., 104 tabs.

  20. Performance profiles of major energy producers 1996

    International Nuclear Information System (INIS)

    1998-01-01

    This publication examines developments in the operations of the major US e energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area. In 1996, 24 companies filed Form EIA-28. The analysis and data presented in this report represents the operations of the Financial Reporting System companies in the context of their worldwide operations and in the context of the major energy markets which they serve. Both energy and nonenergy developments of these companies are analyzed. Although the focus is on developments in 1996, important trends prior to that time are also featured. Sections address energy markets in 1996; key financial developments; oil and gas exploration, development, and production; downstream petroleum in 1996; coal and alternative energy; and foreign direct investment in US energy. 30 figs., 104 tabs

  1. On the average luminosity of electron positron collider and positron-producing energy

    International Nuclear Information System (INIS)

    Xie Jialin

    1985-01-01

    In this paper, the average luminosity of linac injected electron positron collider is investigated from the positron-producing energy point of view. When the energy of the linac injector is fixed to be less than the operating energy of the storage ring, it has been found that there exists a positron-producing energy to give optimum average luminosity. Two cases have been studied, one for an ideal storage ring with no single-beam instability and the other for practical storage ring with fast head-tail instability. The result indicates that there is a positron-producing energy corresponding to the minimum injection time, but this does not correspond to the optimum average luminosity for the practical storage rings. For Beijing Electron Positron Collider (BEPC), the positron-producing energy corresponding to the optimum average luminosity is about one tenth of the total injector energy

  2. Performance profiles of major energy producers 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    Performance Profiles of Major Energy Producers 1993 is the seventeenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 25 major US energy companies required to report annually on Form EIA-28. Financial information is reported by major liens of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the US and abroad. This year`s report analyzes financial and operating developments for 1993 (Part 1: Developments in 1993) and also reviews key developments during the 20 years following the Arab Oil Embargo of 1973--1974 (Part 2: Major Energy Company Strategies Since the Arab Oil Embargo). 49 figs., 104 tabs.

  3. Pulp mill as an energy producer

    International Nuclear Information System (INIS)

    Kaulamo, O.

    1998-01-01

    The recovery boilers of pulp mills are today the most significant producers of wood energy. The power-to-heat ratio of the power plant process, i.e., power yield, is poor in existing applications. In the study, an alternative of improving the power yield of conventional pulp mills significantly was studied by applying solutions used in power plants to a pulp mill. Extensive conversion of wood energy into electricity is possible only in the recovery boiler of the pulp mill and in a large combustion boiler of bark, wood waste and wood chips integrated to this boiler. Hence, the harvest and transports of wood raw materials, i.e. pulp wood and energy wood, are integrated, and the fraction going to cook and the energy wood fraction are separated at the pulp mill. The method guarantees competitive supply of energy wood. As a result a SELLUPOWER mill was designed, where the recovery boiler combusting black liquor and the large power plant boiler combusting energy wood are integrated to one unit and constructed to a power plant process with a high power-to-heat ratio. Necessary technical solutions, project costs and economical feasibility compared to a conventional pulp mill were determined, and the effect of different production-economical parameters was also studied. (orig.)

  4. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Bradley Bolt [Univ. of California, San Diego, CA (United States)

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  5. Secrecy and misguided policy

    Energy Technology Data Exchange (ETDEWEB)

    Rossin, A D [Center for International Security and Cooperation, Stanford, California (United States)

    2001-07-01

    The atomic bomb was born in secrecy. After the war, scientists and statesmen committed themselves to develop the promise of nuclear energy without the proliferation of nuclear weapons. The most obvious tool available to them was secrecy. But secrecy was not the sword that could easily be beaten into the plowshare. It proved to be a double-edged sword. It could not stop the spread of basic scientific information, and it turned out to be a weapon for marketing information to promote political aims. It served that purpose in promoting President Carter policy to stop reprocessing of spent fuel. (author)

  6. Secrecy and misguided policy

    International Nuclear Information System (INIS)

    Rossin, A.D.

    2001-01-01

    The atomic bomb was born in secrecy. After the war, scientists and statesmen committed themselves to develop the promise of nuclear energy without the proliferation of nuclear weapons. The most obvious tool available to them was secrecy. But secrecy was not the sword that could easily be beaten into the plowshare. It proved to be a double-edged sword. It could not stop the spread of basic scientific information, and it turned out to be a weapon for marketing information to promote political aims. It served that purpose in promoting President Carter policy to stop reprocessing of spent fuel. (author)

  7. Performance profiles of major energy producers, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    The energy industry generally and petroleum and natural gas operations in particular are frequently reacting to a variety of unsettling forces. Falling oil prices, economic upswings, currency devaluations, increasingly rigorous environmental quality standards, deregulation of electricity markets, and continued advances in exploration and production technology were among the challenges and opportunities to the industry in 1997. To analyze the extent to which these and other developments have affected energy industry financial and operating performance, strategies, and industry structure, the Energy Information Administration (EIA) maintains the Financial Reporting Systems (FRS). Through Form EIA-28, major US energy companies annually report to the FRS. Financial and operating information is reported by major lines of business, including oil and gas production (upstream), petroleum refining and marketing (downstream), other energy operations, and nonenergy business. Performance Profiles of Major Producers 1997 examines the interplays of energy markets, companies` strategies, and government policies (in 1997 and in historical context) that gave rise to the results given here. The report also analyzes other key aspects of energy company financial performance as seen through the multifaceted lens provided by the FRS data and complementary data for industry overall. 41 figs., 77 tabs.

  8. Promotion of electricity produced from renewable energy sources - Strategic objective of the Romania energy policy

    International Nuclear Information System (INIS)

    Sandulescu, Alexandru; Stanciulescu, Georgeta; Jisa, Mihaela; Stanciu, Nadina

    2006-01-01

    The paper presents different types of support schemes for promoting electricity produced from renewable energy sources in some countries from European Union and details concerning the primary and secondary legislation developed in Romania in the field of promotion of electricity produced from renewable energy sources, making a rehearse of the acts issued. Romania has a clear regulatory framework in the field of promoting E-RES, the green certificates market becoming operational from November 2005, when the first green certificates transaction session organised by SC OPCOM SA took place. With hydro energy being exception from the rule, the Romanian RES potential is almost unused, existing the possibility for promotion some efficient investments in units which produce E-RES, turning to good account to the best emplacements. Although the achievements in using RES are still modest, taking into consideration the attention of numerous investors and the way that the support scheme worked until now, with advantages for the existing E-RES producers, it is expected an acceleration of the rhythm of appearance of new investments. In order to actuate the investors attention, a stronger involvement of the local authorities is necessary, for identifying and promoting the most efficient RES using projects

  9. Producing titanium-niobium alloy by high energy beam

    Energy Technology Data Exchange (ETDEWEB)

    Sharkeev, Yu. P., E-mail: sharkeev@ispms.tsc.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Golkovski, M. G., E-mail: golkoski@mail.ru [Budker Institute of Nuclear Physics, 11 Akademika Lavrentiev Prosp., Novosibirsk, 630090 (Russian Federation); Glukhov, I. A., E-mail: gia@ispms.tsc.ru; Eroshenko, A. Yu., E-mail: eroshenko@ispms.tsc.ru; Fortuna, S. V., E-mail: s-fortuna@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); Bataev, V. A., E-mail: bataev@vadm.ustu.ru [Novosibirsk State Technical University, 20 K. Marx Prosp., Novosibirsk, 630073 (Russian Federation)

    2016-01-15

    The research is involved in producing a Ti-Nb alloy surface layer on titanium substrate by high energy beam method, as well as in examining their structures and mechanical properties. Applying electron-beam cladding it was possible to produce a Ti-Nb alloy surface layer of several millimeters, where the niobium concentration was up to 40% at. and the structure itself could be related to martensite quenching structure. At the same time, a significant microhardness increase of 3200-3400 MPa was observed, which, in its turn, is connected with the formation of martensite structure. Cladding material of Ti-Nb composition could be the source in producing alloys of homogeneous microhardness and desired concentration of alloying niobium element.

  10. Income tax credits and incentives available for producing energy from biomass

    International Nuclear Information System (INIS)

    Sanderson, G.A.

    1993-01-01

    In the 1970's the US became interested in the development of energy from biomass and other alternative sources. While this interest was stimulated primarily by the oil embargoes of the 1970's, the need for environmentally friendly alternative fuels was also enhanced by the Clean Water Act and the Clean Air Act, two prominent pieces of environmental legislation. As a result, Congress created several tax benefits and subsidies for the production of energy for biomass. Congress enacted biomass energy incentives in 1978 with the creation of excise tax exemptions for alcohol fuels, in 1980 with the enactment of the IRC section 29 nonconventional fuel credit provisions and the IRC section 40 alcohol fuel credits, and recently with the addition of favorable biomass energy provisions as part of the Comprehensive National energy Policy Act of 1992. This article focuses on the following specific tax credits, tax benefits and subsidies for biomass energy: (1) IRC section 29 credit for producing gas from biomass, (2) IRC section 45 credit for producing electricity from biomass, (3) Incentive payments for electricity produced from biomass, (4) Excise tax exemptions for alcohol fuels, (5) IRC section 40 alcohol fuels credits, and (6) IRC section 179A special deduction for alcohol fuels property

  11. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO(2).

    Science.gov (United States)

    van der Giesen, Coen; Kleijn, René; Kramer, Gert Jan

    2014-06-17

    Within the context of carbon dioxide (CO2) utilization there is an increasing interest in using CO2 as a resource to produce sustainable liquid hydrocarbon fuels. When these fuels are produced by solely using solar energy they are labeled as solar fuels. In the recent discourse on solar fuels intuitive arguments are used to support the prospects of these fuels. This paper takes a quantitative approach to investigate some of the claims made in this discussion. We analyze the life cycle performance of various classes of solar fuel processes using different primary energy and CO2 sources. We compare their efficacy with respect to carbon mitigation with ubiquitous fossil-based fuels and conclude that producing liquid hydrocarbon fuels starting from CO2 by using existing technologies requires much more energy than existing fuels. An improvement in life cycle CO2 emissions is only found when solar energy and atmospheric CO2 are used. Producing fuels from CO2 is a very long-term niche at best, not the panacea suggested in the recent public discourse.

  12. Potential of photosynthetically produced organic matter as an energy feedstock. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spedding, C.R.W.; Walsingham, J.M.; McDougall, V.D.; Shiels, L.A.; Carruthers, S.P.

    1982-01-01

    The following aspects of biomass as an energy source are discussed: fuel supplies, land resources, sources of biomass for fuel, utilization processes, energy cost of producing energy, and potential energy savings. Included in an appendix are fossil fuel energy budgets for crops grown in the United Kingdom.

  13. Toward semantic interoperability of energy using and producing appliances in residential environments

    NARCIS (Netherlands)

    Hartog, F.T.H. den; Daniele, L.M.; Roes, J.B.M.

    2015-01-01

    About two thirds of the energy consumed in buildings originates household appliances. Nowadays, appliances are often intelligent and networked devices that form complete energy consuming, producing, and managing systems. Reducing energy is therefore a matter of managing and optimizing the energy

  14. Performance profiles of major energy producers 1995, January 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This publication examines developments in the operations of the major U.S. energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area.

  15. Performance profiles of major energy producers 1995, January 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This publication examines developments in the operations of the major U.S. energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area

  16. Neutrino fluxes produced by high energy solar flare particles

    International Nuclear Information System (INIS)

    Kolomeets, E.V.; Shmonin, V.L.

    1975-01-01

    In this work the calculated differential energy spectra of neutrinos poduced by high energy protons accelerated during 'small' solar flares are presented. The muon flux produced by neutrino interactions with the matter at large depths under the ground is calculated. The obtained flux of muons for the total number of solar flare accelerated protons of 10 28 - 10 32 is within 10 9 - 10 13 particles/cm 2 X s x ster. (orig.) [de

  17. Energy-producing electro-flocculation for harvest of Dunaliella salina.

    Science.gov (United States)

    Liu, Qing; Zhang, Meng; Lv, Tao; Chen, Hongjun; Chika, Anthony Okonkwo; Xiang, Changli; Guo, Minxue; Wu, Minghui; Li, Jianjun; Jia, Lishan

    2017-10-01

    In this study, an efficient electro-flocculation process for Dunaliella salina with energy production by aluminum-air battery has been successfully applied. The formed aluminum hydroxide hydrates during discharging of battery were positively charged, which have a great potential for microalgae flocculation. The precipitation of aluminum hydroxide hydrates by algae also could improve the performance of aluminum-air battery. The harvesting efficiency could reach 97% in 20mins with energy production of 0.11kWh/kg. This discharging electro-flocculation (DEF) technology provides a new energy producing process to effectively harvest microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ionising energy treatment for fresh horticultural produce -mandarins and other produce, Trials 1 and 2, May-July 1987

    International Nuclear Information System (INIS)

    McLauchlan, R.L.; Brown, B.I.; Mitchell, G.E.; Aston, J.W.; Wood, A.F.; Isaacs, A.R.; Williams, S.M.; Nottingham, S.M.; Wilson, P.R.; Juffs, H.S.; Johnson, G.I.; Heather, N.W.; Giles, J.E.; Wills, P.A.

    1988-01-01

    Two trials are described on the effect of ionising energy treatment, or irradiation, on the quality, shelf-life and composition of fresh produce, mainly at doses consistent with disinfestation treatment for quarantine purposes. Trial 1, carried out in May 1987, deals with replicated treatments of Imperial mandarins and preliminary observation treatments on a range of other produce. Trial 2 deals with replicated treatments of Ellendale mandarins and preliminary observation treatments on other produce

  19. One-dimensional modeling of thermal energy produced in a seismic fault

    Science.gov (United States)

    Konga, Guy Pascal; Koumetio, Fidèle; Yemele, David; Olivier Djiogang, Francis

    2017-12-01

    Generally, one observes an anomaly of temperature before a big earthquake. In this paper, we established the expression of thermal energy produced by friction forces between the walls of a seismic fault while considering the dynamic of a one-dimensional spring-block model. It is noted that, before the rupture of a seismic fault, displacements are caused by microseisms. The curves of variation of this thermal energy with time show that, for oscillatory and aperiodic displacement, the thermal energy is accumulated in the same way. The study reveals that thermal energy as well as temperature increases abruptly after a certain amount of time. We suggest that the corresponding time is the start of the anomaly of temperature observed which can be considered as precursory effect of a big seism. We suggest that the thermal energy can heat gases and dilate rocks until they crack. The warm gases can then pass through the cracks towards the surface. The cracks created by thermal energy can also contribute to the rupture of the seismic fault. We also suggest that the theoretical model of thermal energy, produced in seismic fault, associated with a large quantity of experimental data may help in the prediction of earthquakes.

  20. Marine current turbine design for zero emission renewable energy producing a sailing boat

    OpenAIRE

    EKİNCİ, Serkan; ALVAR, Mustafa

    2016-01-01

    In the recent years, rapid increase in theoretical studies and applications on electrical power generation from renewable sources, such as wind, sun, marine or tidal currents, can be encountered in the literature. Among these, marine current turbines, produce energy by taking the advantage of alternating motion of water, and have the ability to produce energy even at low flow rates, and are operated in oceans and seas as a renewable energy source. In this study, design of marine current turbi...

  1. Excitation energy of the fragments produced in central collisions of Xe + Sn at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Hudan, S.; Chbihi, A.; Frankland, J.D. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)] [and others

    2000-07-01

    Characteristics of the primary fragments produced in central collisions of Xe + Sn system from 32 to 50 AMeV have been deduced. By using the relative velocity correlation technique between the light charged particles (LCP) and detected fragments, we were able to extract the multiplicities and average kinetic energy of the secondary evaporated LCP. We then reconstructed the size and excitation energy of the primary fragments. For each bombarding energy a constant value of the excitation energy per nucleon, over the whole range of fragment charge has been found, suggesting that on the average thermodynamical equilibrium has been achieved at the freeze-out. This value increases slightly from 2.8 to 3.8 AMeV with a large increase of bombarding energy, 32 to 50 AMeV. (authors)

  2. Excitation energy of the fragments produced in central collisions of Xe + Sn at intermediate energies

    International Nuclear Information System (INIS)

    Hudan, S.; Chbihi, A.; Frankland, J.D.

    2000-01-01

    Characteristics of the primary fragments produced in central collisions of Xe + Sn system from 32 to 50 AMeV have been deduced. By using the relative velocity correlation technique between the light charged particles (LCP) and detected fragments, we were able to extract the multiplicities and average kinetic energy of the secondary evaporated LCP. We then reconstructed the size and excitation energy of the primary fragments. For each bombarding energy a constant value of the excitation energy per nucleon, over the whole range of fragment charge has been found, suggesting that on the average thermodynamical equilibrium has been achieved at the freeze-out. This value increases slightly from 2.8 to 3.8 AMeV with a large increase of bombarding energy, 32 to 50 AMeV. (authors)

  3. Mapping the energy footprint of produced water management in New Mexico

    Science.gov (United States)

    Zemlick, Katie; Kalhor, Elmira; Thomson, Bruce M.; Chermak, Janie M.; Sullivan Graham, Enid J.; Tidwell, Vincent C.

    2018-02-01

    Hydraulic fracturing (HF) and horizontal drilling have revolutionized the fossil fuel industry by enabling production from unconventional oil and gas (UOG) reserves. However, UOG development requires large volumes of water, and subsequent oil and gas production from both conventional and unconventional wells generate large volumes of produced water (PW). While PW is usually considered a waste product, its reuse may lessen demand for freshwater supplies, reduce costs for transportation and disposal, and reduce the risks for injection-induced seismicity. Whether this water is disposed of or treated and reused, both methods require significant amounts of energy. The objective of this study was to identify the primary energy demands of alternative water management strategies, and to characterize and quantify their geographic variability in four oil and gas producing basins in New Mexico using a single year of production. Results illustrate the importance of each component of each produced water management strategy in determining its total energy footprint. Based on 2015 production and water use data, the energy to extract fresh groundwater for hydraulic fracturing (34 GWh-th yr-1.) exceeds the energy that would be required if the same volume of PW were treated chemically (19 GWh-th yr-1.). In addition, the energy required to transport fresh water and dispose of PW (167 GWh-th yr-1.) is far greater than that required to move treated PW (8 GWh-th yr-1.) to a point of reuse. Furthermore, transportation distances, which contribute significantly to the total energy footprint of a given management strategy, are underestimated by nearly 50% state-wide. This indicates that reuse may be an even more energy efficient way to manage PW, even with energy-intensive treatment strategies like electrocoagulation. Reuse of PW for HF is not only more energy efficient than conventional management techniques, it also reduces both demand for scarce fresh water resources and

  4. Detection systems for high energy particle producing gaseous ionization

    International Nuclear Information System (INIS)

    Duran, I.; Martinez, L.

    1985-01-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Mueller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures are discussed, most relevant devices are reported. (author)

  5. Time-resolved energy spectrum of a pseudospark-produced high-brightness electron beam

    International Nuclear Information System (INIS)

    Myers, T.J.; Ding, B.N.; Rhee, M.J.

    1992-01-01

    The pseudospark, a fast low-pressure gas discharge between a hollow cathode and a planar anode, is found to be an interesting high-brightness electron beam source. Typically, all electron beam produced in the pseudospark has the peak current of ∼1 kA, pulse duration of ∼50 ns, and effective emittance of ∼100 mm-mrad. The energy information of this electron beam, however, is least understood due to the difficulty of measuring a high-current-density beam that is partially space-charge neutralized by the background ions produced in the gas. In this paper, an experimental study of the time-resolved energy spectrum is presented. The pseudospark produced electron beam is injected into a vacuum through a small pinhole so that the electrons without background ions follow single particle motion; the beam is sent through a negative biased electrode and the only portion of beam whose energy is greater than the bias voltage can pass through the electrode and the current is measured by a Faraday cup. The Faraday cup signals with various bias voltage are recorded in a digital oscilloscope. The recorded waveforms are then numerically analyzed to construct a time-resolved energy spectrum. Preliminary results are presented

  6. The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This report is one in a series of reports that Idaho National Laboratory and the Joint Institute for Strategic Energy Analysis are publishing that address the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). This report discusses an analysis of the economic potential of a tightly coupled N-R HES that produces electricity and hydrogen. Both low and high temperature electrolysis options are considered in the analysis. Low-temperature electrolysis requires only electricity to convert water to hydrogen. High temperature electrolysis requires less electricity because it uses both electricity and heat to provide the energy necessary to electrolyze water. The study finds that, to be profitable, the examined high-temperature electrosis and low-temperature electrosis N-R HES configurations that produce hydrogen require higher electricity prices, more electricity price volatility, higher natural gas prices, or higher capacity payments than the reference case values of these parameters considered in this analysis.

  7. A heuristic-based approach for reliability importance assessment of energy producers

    International Nuclear Information System (INIS)

    Akhavein, A.; Fotuhi Firuzabad, M.

    2011-01-01

    Reliability of energy supply is one of the most important issues of service quality. On one hand, customers usually have different expectations for service reliability and price. On the other hand, providing different level of reliability at load points is a challenge for system operators. In order to take reasonable decisions and obviate reliability implementation difficulties, market players need to know impacts of their assets on system and load-point reliabilities. One tool to specify reliability impacts of assets is the criticality or reliability importance measure by which system components can be ranked based on their effect on reliability. Conventional methods for determination of reliability importance are essentially on the basis of risk sensitivity analysis and hence, impose prohibitive calculation burden in large power systems. An approach is proposed in this paper to determine reliability importance of energy producers from perspective of consumers or distribution companies in a composite generation and transmission system. In the presented method, while avoiding immense computational burden, the energy producers are ranked based on their rating, unavailability and impact on power flows in the lines connecting to the considered load points. Study results on the IEEE reliability test system show successful application of the proposed method. - Research highlights: → Required reliability level at load points is a concern in modern power systems. → It is important to assess reliability importance of energy producers or generators. → Generators can be ranked based on their impacts on power flow to a selected area. → Ranking of generators is an efficient tool to assess their reliability importance.

  8. Detection systems for high energy particle producing gaseous ionization

    International Nuclear Information System (INIS)

    Martinez, L.; Duran, I.

    1985-01-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Muller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures, are discussed, most relevant devices are reported along 90 pages with 98 references. (Author) 98 refs

  9. Vacancy supersaturations produced by high-energy ion implantation

    International Nuclear Information System (INIS)

    Venezia, V.C.; Eaglesham, D.J.; Jacobson, D.C.; Gossmann, H.J.

    1998-01-01

    A new technique for detecting the vacancy clusters produced by high-energy ion implantation into silicon is proposed and tested. This technique takes advantage of the fact that metal impurities, such as Au, are gettered near one-half of the projected range (1/2 R p ) of MeV implants. The vacancy clustered region produced by a 2 MeV Si + implant into silicon has been labeled with Au diffused in from the front surface. The trapped Au was detected by Rutherford backscattering spectrometry (RBS) to profile the vacancy clusters. Cross section transmission electron microscopy (XTEM) analysis shows that the Au in the region of vacancy clusters is in the form of precipitates. By annealing MeV implanted samples prior to introduction of the Au, changes in the defect concentration within the vacancy clustered region were monitored as a function of annealing conditions

  10. Formula for average energy required to produce a secondary electron in an insulator

    International Nuclear Information System (INIS)

    Xie Ai-Gen; Zhan Yu; Gao Zhi-Yong; Wu Hong-Yan

    2013-01-01

    Based on a simple classical model specifying that the primary electrons interact with the electrons of a lattice through the Coulomb force and a conclusion that the lattice scattering can be ignored, the formula for the average energy required to produce a secondary electron (in) is obtained. On the basis of the energy band of an insulator and the formula for in, the formula for the average energy required to produce a secondary electron in an insulator (in i ) is deduced as a function of the width of the forbidden band (E g ) and electron affinity χ. Experimental values and the in i values calculated with the formula are compared, and the results validate the theory that explains the relationships among E g , χ, and in i and suggest that the formula for in i is universal on the condition that the primary electrons at any energy hit the insulator. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Energy evaluation at a winery: a case study at a Portuguese producer

    Directory of Open Access Journals (Sweden)

    Correia João

    2017-01-01

    Full Text Available The introduction of cooling systems in the wine industry to control the fermentation has allowed the oenologist to produce more and more excellent wines. In this regard, the alcoholic fermentation is a target for various studies that aims at explaining the chemical reactions involved in the release of energy. The aim of this paper is to evaluate the energy consumption of a winery and to discuss and understand the main parameters involved in the process of fermentation. The weather profile during fermentation and the schedule of charging the tanks with freshly affect strongly the needs of cooling power, and the energy use. The study conducted at the Adega da Ervideira in the South of Portugal allowed to define a model for the computation of the cooling power and the electricity consumption. The heat gains from outdoor in convection mode and the heat released during maturation and fermentation phases are the main contributors for the cooling requirements at a winery. As a result of the real fact study, it will allow an oenologist to estimate the cooling power and energy for a winery as well as to produce other types of wines.

  12. Biologically Produced Methane as a Renewable Energy Source.

    Science.gov (United States)

    Holmes, D E; Smith, J A

    2016-01-01

    Methanogens are a unique group of strictly anaerobic archaea that are more metabolically diverse than previously thought. Traditionally, it was thought that methanogens could only generate methane by coupling the oxidation of products formed by fermentative bacteria with the reduction of CO 2 . However, it has recently been observed that many methanogens can also use electrons extruded from metal-respiring bacteria, biocathodes, or insoluble electron shuttles as energy sources. Methanogens are found in both human-made and natural environments and are responsible for the production of ∼71% of the global atmospheric methane. Their habitats range from the human digestive tract to hydrothermal vents. Although biologically produced methane can negatively impact the environment if released into the atmosphere, when captured, it can serve as a potent fuel source. The anaerobic digestion of wastes such as animal manure, human sewage, or food waste produces biogas which is composed of ∼60% methane. Methane from biogas can be cleaned to yield purified methane (biomethane) that can be readily incorporated into natural gas pipelines making it a promising renewable energy source. Conventional anaerobic digestion is limited by long retention times, low organics removal efficiencies, and low biogas production rates. Therefore, many studies are being conducted to improve the anaerobic digestion process. Researchers have found that addition of conductive materials and/or electrically active cathodes to anaerobic digesters can stimulate the digestion process and increase methane content of biogas. It is hoped that optimization of anaerobic digesters will make biogas more readily accessible to the average person. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Non-Renewable Energy and Macroeconomic Efficiency of Seven Major Oil Producing Economies in Africa

    Directory of Open Access Journals (Sweden)

    Awodumi Olabanji Benjamin

    2016-05-01

    Full Text Available This study adopted two-stage DEA to estimate the technical efficiency scores and assess the impact of the two most important components of fossil fuel associated with oil production on macroeconomic efficiency of Seven oil producing African countries during 2005-2012. Our results showed that increasing the consumption of natural gas would improve technical efficiency. Furthermore, increasing the share of fossil fuel in total energy consumption has negative effect on the efficiency of the economies of the top African oil producers. Also, we found that increasing the consumption of primary energy improves efficiency in these economies. We therefore, recommend that governments and other stakeholders in the energy industry should adopt inclusive strategies that will promote the use of natural gas in the short term. However, in the long-run, efforts should be geared towards increasing the use of primary energy, thereby reducing the percentage share of fossil fuel in total energy consumption.

  14. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1987-08-01

    This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)

  15. Influence of the characteristic and installation site of wind generator on quantity of produced energy

    International Nuclear Information System (INIS)

    Palge, V.; Lepa, J.; Tamm, T.

    2002-01-01

    In Estonia, especially in inland the wind speed is rather low. According to the Master thesis of Tonis Tamm the opportunities of use of several types of wind generators are analysed. It is found out, that the wind generator, beginning to produce energy at wind speed 2 m/s can in such conditions produce about four times more electricity energy than such having 'cut-in' wind speed 4 m/s. (author)

  16. Some interesting features of charged particles produced in high-energy hadron-emulsion collisions

    International Nuclear Information System (INIS)

    Khushnood, H.; Ansari, A.R.

    1990-01-01

    The emission characteristics of secondary charged particles produced in 400 GeV proton-emulsion interactions were compared with those obtained at other energies. The results revealed that the angular distribution of grey particles does not depend on the nature and energy of the projectile. The dependence of the average multiplicity of the grey, black, shower, and heavily ionizing tracks on the mass of the target nucleus (A) and the nature and energy of the projectiles are also examined. The ratio of the valance quarks in pions (π - ) and protons (p) was found to be almost equal to the ratio of the grey particles produced in π - -A and p-A collisions at the same energy. The values of the normalized moments of the multiplicity distributions of charged shower particles in different N h intervals were found to nearly the same. However, this value increased with increasing values of the moment index, K. Finally, the values of the normalized and central moments were almost equal for both p-p and p-A interactions

  17. Sn ion energy distributions of ns- and ps-laser produced plasmas

    Science.gov (United States)

    Bayerle, A.; Deuzeman, M. J.; van der Heijden, S.; Kurilovich, D.; de Faria Pinto, T.; Stodolna, A.; Witte, S.; Eikema, K. S. E.; Ubachs, W.; Hoekstra, R.; Versolato, O. O.

    2018-04-01

    Ion energy distributions arising from laser-produced plasmas of Sn are measured over a wide laser parameter space. Planar-solid and liquid-droplet targets are exposed to infrared laser pulses with energy densities between 1 J cm‑2 and 4 kJ cm‑2 and durations spanning 0.5 ps to 6 ns. The measured ion energy distributions are compared to two self-similar solutions of a hydrodynamic approach assuming isothermal expansion of the plasma plume into vacuum. For planar and droplet targets exposed to ps-long pulses, we find good agreement between the experimental results and the self-similar solution of a semi-infinite simple planar plasma configuration with an exponential density profile. The ion energy distributions resulting from solid Sn exposed to ns-pulses agrees with solutions of a limited-mass model that assumes a Gaussian-shaped initial density profile.

  18. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  19. Economic and energy analysis about disposal interventions of waste tires produced in Calabria

    International Nuclear Information System (INIS)

    Florio, Gaetano; Cersosimo, Attilio.

    1997-01-01

    The present paper refers to an analysis aimed at researching disposal strategies, for waste tires produced in Calabria, which ensure correct disposal with regard to environmental compatibility and their evaluation in terms of material recovery and energy. The starting point has been an estimate of the quantities of potentially usable waste tires and disposal methods currently employed. It has therefore been possible to identify two specific disposal proposals for which an economic and energy evaluation has been conducted. The last part of the paper has faced the problem of plant location under consideration, with the aim of determining, for both proposal, the cost that each producer must bear to have his waste tires eliminated

  20. The value of producing food, energy, and ecosystem services within an agro-ecosystem

    DEFF Research Database (Denmark)

    Porter, John Roy; Constanza, Robert; Sandhu, Harpinder

    2009-01-01

    Ecosystem Services within an Agro- Ecosystem Agricultural ecosystems produce food, fiber, and nonmarketed ecosystem services (ES). Agriculture also typically involves high negative external costs associated with, for example, fossil fuel use. We estimated, via fieldscale ecological monitoring...... and economic value-transfer methods, the market and nonmarket ES value of a combined food and energy (CFE) agro-ecosystem that simultaneously produces food, fodder, and bioenergy. Such novel CFE agro-ecosystems can provide a significantly increased net crop, energy, and nonmarketed ES compared...... with conventional agriculture, and require markedly less fossil-based inputs. Extrapolated to the European scale, the value of nonmarket ES from the CFE system exceeds current European farm subsidy payments. Such integrated food and bioenergy systems can thus provide environmental value for money for European Union...

  1. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    Science.gov (United States)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain; Jung, Hun Bok; Carroll, Kenneth C.

    2018-01-23

    An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.

  2. Domestic wastewater treatment as a net energy producer--can this be achieved?

    Science.gov (United States)

    McCarty, Perry L; Bae, Jaeho; Kim, Jeonghwan

    2011-09-01

    In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers. Microbial fuel cells offer potential for direct biological conversion of wastewater's organic materials into electricity, although significant improvements are needed for this process to be competitive with anaerobic biological conversion of wastewater organics into biogas, a renewable fuel used in electricity generation. Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today.

  3. Multi-unit Inertial Fusion Energy (IFE) plants producing hydrogen fuel

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-12-01

    A quantitative energy pathway comparison is made between a modern oil refinery and genetic fusion hydrogen plant supporting hybrid-electric cars powered by gasoline and hydrogen-optimized internal combustion engines, respectively, both meeting President Clinton's goal for advanced car goal of 80 mpg gasoline equivalent. The comparison shows that a fusion electric plant producing hydrogen by water electrolysis at 80% efficiency must have an electric capacity of 10 GWe to support as many hydrogen-powered hybrid cars as one modern 200,000 bbl/day-capacity oil refinery could support in gasoline-powered hybrid cars. A 10 GWe fusion electric plant capital cost is limited to 12.5 B$ to produce electricity at 2.3 cents/kWehr, and hydrogen production by electrolysis at 8 $/GJ, for equal consumer fuel cost per passenger mile as in the oil-gasoline-hybrid pathway

  4. Deformation and energy absorption properties of powder-metallurgy produced Al foams

    International Nuclear Information System (INIS)

    Michailidis, N.; Stergioudi, F.; Tsouknidas, A.

    2011-01-01

    Highlights: → Porous Al fabricated via a dissolution and sintering method using raw cane sugar. → Different deformation mode depending on the relative density of the foams. → Enhanced energy absorption by reducing pore size and relative density of the foam. → Pore size uniformity and sintering temperature affect energy absorption. - Abstract: Al-foams with relative densities ranging from 0.30 to 0.60 and mean pore sizes of 0.35, 0.70 and 1.35 mm were manufactured by a powder metallurgy technology, based on raw cane sugar as a space-holder material. Compressive tests were carried out to investigate the deformation and energy absorbing characteristics and mechanisms of the produced Al-foams. The deformation mode of low density Al-foams is dominated by the bending and buckling of cell walls and the formation of macroscopic deformation bands whereas that of high density Al-foams is predominantly attributed to plastic yielding. The energy absorbing capacity of Al-foams rises for increased relative density and compressive strength. The sintering temperature of Al-foams having similar relative densities has a marked influence on both, energy absorbing efficiency and capacity. Pore size has a marginal effect on energy efficiency aside from Al-foams with mean pore size of 0.35 which exhibit enhanced energy absorption as a result of increased friction during deformation at lower strain levels.

  5. An innovative and very promising use of tidal turbines. Tidal turbines can produce twenty per cent of the French electricity. An economic solution can produce 500 GW of tide energy. An innovative use of tidal turbines can produce 10 per cent of the World energy

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2013-01-01

    A set of articles outlines and describes the opportunities of energy production associated with the use of tidal turbines. Such a technological principle is very efficient in terms of costs but very few natural sea or river sites present favourable conditions, notably in terms of current speed. A first article addresses the peculiarities of sea tide energy, presents the different concepts and components of a sea tide power plant (tanks or basins, plants), describes the present use of tidal turbines, proposes a new solution (the 'Marelienne'), describes and assesses the integration into the grid and the energy storage, evokes the production gain obtained by pumping and the association with wind turbines, describes the construction mode, discusses the various impacts (visual impact, impacts on the environment, direct and indirect socio-economic impacts), discusses issues related to navigation, presents an example of production, costs and impacts (case of the Bay of Somme), evokes other potential areas in France (about the Chausey island and about the Re island), discusses the world potential, evokes other examples in Europe, in Asia, in America, Africa and Australia), indicates the global cost for the main sites, outlines technical and economic uncertainties. The same aspects and issues can be found in the other articles which outline that tidal turbines can produce twenty per cent of the French electricity, that an economic solution can produce 500 GW of tide energy, and that an innovative use of tidal turbines can produce 10 per cent of the World energy

  6. Energy shortage - a produced crisis

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Five articles of the central organ of the KPD/ML, the 'Roter Morgen', and a declaration of the central committee of th KPD/ML are published here. The articles deal with: raw materials-utilization and deposits; the oil-multis - the world's greatest financial power; the energy industry of the FRG; nuclear power - the new trick of the old bosses; resisting the bulling of oil prices, securing energy supply on the basis of coal. The articles are clearly combative and against capitalism, energy concerns and oil-multis. The energy crisis is declared to be a problem of capitalism which can only be solved by abolishing the capitalist system and its laws of profit. (HSCH) [de

  7. Use of various types of carbon-containing raw materials to produce thermal energy

    Directory of Open Access Journals (Sweden)

    В. Б. Кусков

    2016-08-01

    Full Text Available Many types of carbon-containing organic compounds and all possible carbon-containing products or wastes in low demand can be used to produce thermal energy. A technology has been developed for producing highly flammable briquettes on the basis of bituminous coal. These briquettes have a special incendiary layer. It is easily ignites from low energy heat sources (e.g. matches, and then flame spreads to the rest of briquette. Use of coal slacks and paper wastes as carbon-containing components playing the role of binders provides an opportunity to get a fuel briquette easy in terms of production and plain in composition while at the same time dispose of coal and paper wastes. Such briquettes may also have a special incendiary layer. Technology for fuel briquettes production from wood and slate wastes employed no binding agents, as wood products acted as binders. Thus technologies have been developed to produce fuel briquettes from various carbon-containing materials in low demand. The briquettes are intended for household boilers, fireplaces, different ovens in order to cook food, heat residential and utility premises, cabins, etc.

  8. An estimation of the capacity to produce hydrogen by wasted hydroelectric energy for the three largest Brazilian hydroelectric

    Energy Technology Data Exchange (ETDEWEB)

    Padilha, Janine C.; Trindade, Leticia G. da; Souza, Roberto F. de [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. of Chemistry], Email: janine@iq.ufrgs.br; Miguel, Marcelo [Itaipu Binacional, Foz do Iguacu, PR (Brazil)

    2010-07-01

    The use of water wasted in hydroelectric plants as normalization dam excess, which constitute a hydrodynamic potential useful to generate electric energy which can be subsequently used to produce hydrogen and its subsequent consumption in fuel cells has been considered as an alternative for hydraulic energy-rich countries like Brazil. The case is examined in which all the water wasted in the hydroelectric plants, spilled by dam gates to maintain acceptable water levels, from the 3 largest Brazilian hydroelectric plants was used to produce hydrogen. During the year of 2008, the electric energy produced from this utilization would have been equivalent to 52.8 TWh, an amount that corresponds to an increase of ca. 15% of the total electric energy produced in the country. Furthermore, if this amount of hydrogen was used in the replacement of internal combustion vehicles by fuel cells, this would have prevented the production of 2.26 x 10{sup 7} ton of Co{sub 2} per year. This plan would also significantly decrease production and release of greenhouse gases. (author)

  9. Neutron energy spectra produced by α-bombardment of light elements in thick targets

    International Nuclear Information System (INIS)

    Jacobs, G.J.H.

    1982-01-01

    The aim of the work, presented in this thesis, is to determine energy spectra of neutrons produced by α-particle bombardment of thick targets containing light elements. These spectra are required for nuclear waste management. The set-up of the neutron spectrometer is described, and its calibration discussed. Absolute efficiencies were determined at various neutron energies, using monoenergetic neutrons produced with the Van de Graaff accelerator in pulsed mode. The additional calibration of the neutron spectrometer as proton-recoil spectrometer was carried out primarily for future applications in measurements where no pulsed neutron source is available or the neutron flux density is too low. The basis for an accurate uncertainty analysis is made by the determination of the covariance matrix for the uncertainties in the efficiencies. The determination of the neutron energy spectra from time-of-flight and from proton-recoil measurements is described. A comparison of the results obtained from the two different types of measurements is made. The experimentally determined spectra were compared with spectra calculated from stopping powers and theoretically determined cross sections. These cross sections were calculated from optical model parameters and level parameters using the Hauser-Feshbach formalism. Measurements were carried out on thick targets of silicon, aluminium, magnesium, carbon, boron nitride, calcium fluoride, aluminium oxide, silicon oxide and uranium oxide at four different α-particle energies. (Auth.)

  10. Comparison of the energy efficiency to produce agroethanol between various industries and processes: Synthesis

    International Nuclear Information System (INIS)

    Chavanne, Xavier; Frangi, Jean-Pierre

    2011-01-01

    The article assesses the energy R required by a system to transform a cereal or sugar plant into ethanol. From the specific consumption r j of each process j and its weight w j in the system, process consumption share R j is deduced and hence R, sum of R j . Depending on w j definition, R j and R are relative to either 100 J of ethanol produced or 100 J of plant harvested. Depending on the nature of r j , R j and R represent either only primary external energies, or all fuel and electricity consumed directly, or external and internal energies. From one definition to another R for average sugar cane based industries is the best or the worst relative to other plants. This results also from the use of cane residues as fuels while operating outdated processes. Through r j the process based analysis allows to examine for each system the impact of modern processes or different use of residues. All systems benefit except sugar beet based industry close to its best efficiency. This flexibility permits even to build a self-sufficient system where existing processes produce from system resources substitutes to external energies. R becomes an unambiguous definition of a system efficiency. It shows that all agroethanol systems are more consuming than petroleum industry. The system can be expanded to the vehicle stage to compare with alternatives to ethanol such as electricity and biogas. Wheat straw burnt to produce electricity used in an electrical vehicle will present R close to that of petroleum industry. -- Highlights: → Study of the energy consumptions of agroethanol industries with a process based analysis. → Different definitions of energy efficiency with potential opposite conclusions. → Previous highlight is overcome using self sufficient systems with existing processes. → Consumptions of average and improved agroethanol industries larger than for petroleum industries. → Electricity from wheat straw combustion can compete with gasoline from crude oil.

  11. 40-Hz square-wave stimulation requires less energy to produce muscle contraction: compared with the TASER® X26 conducted energy weapon.

    Science.gov (United States)

    Comeaux, James A; Jauchem, James R; Cox, D Duane; Crane, Carrie C; D'Andrea, John A

    2013-07-01

    Conducted energy weapons (CEWs) (including the Advanced TASER(®) X26 model produced by TASER International, Inc.) incapacitate individuals by causing muscle contractions. In this study using anesthetized swine, the potential incapacitating effect of primarily monophasic, 19-Hz voltage imposed by the commercial CEW was compared with the effect of voltages imposed by a laboratory device that created 40-Hz square waves. Forces of muscle contraction were measured with the use of strain gauges. Stimulation with 40-Hz square waves required less pulse energy than stimulation with the commercial CEW to produce similar muscle contraction. The square-pulse stimulation, at the higher repetition rate, caused a more complete tetanus at a lower energy. Use of such a simple shape of waveform may be used to make future nonlethal weapon devices more efficient. © 2013 American Academy of Forensic Sciences Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  12. Monte-Carlo study on primary knock-on atom energy spectrum produced by neutron radiation

    International Nuclear Information System (INIS)

    Zhou Wei; Liu Yongkang; Deng Yongjun; Ma Jimin

    2012-01-01

    Computational method on energy distribution of primary knock-on atom (PKA) produced by neutron radiation was built in the paper. Based on the DBCN card in MCNP, reaction position, reaction type and energy transfer between neutrons and atoms were recorded. According to statistic of these data, energy and space distributions of PKAs were obtained. The method resolves preferably randomicity of random number and efficiency of random sampling computation. The results show small statistical fluctuation and well statistical. Three-dimensional figure of energy and space distribution of PKAs were obtained, which would be important to evaluate radiation capability of materials and study radiation damage by neutrons. (authors)

  13. Energy Saving in an ETC Solar System to Produce High Temperature Water

    Directory of Open Access Journals (Sweden)

    Carlos J. Porras-Prieto

    2018-04-01

    Full Text Available The use of solar water heating systems (SWHS based on evacuated tube collectors (ETC has experienced rapid growth in the residential sector. In contrast, the implementation of these systems in the industrial sector is very limited, due in part to the demand of a higher temperature in water. Taking into account that the final energy of the industrial sector is similar to the residential sector, to increase the generation of renewable energy and energy saving in cities, efforts in this sector should be redoubled. Therefore, the present work characterises the behaviour of a SWHS-ETC with active circulation to produce hot water at 90 °C, determining its performance, energy saving and profitability in different scenarios in Europe. The annual energy savings generated by the SWHS Range between 741 and 435 kWh m−2 (reduction of emissions between 215 and 88 kg CO2 m−2. The results of the analysis of profitability, studying the variation of the conventional energy price, the cost of the investment, the useful life and the energy supplied, in thousands of scenarios, are a valuable tool for correct decision making, as they can be of great utility to increase the implementation of these systems in the industrial sector.

  14. Stochastic multiobjective self-scheduling of a power producer in joint energy and reserves markets

    International Nuclear Information System (INIS)

    Vahidinasab, V.; Jadid, S.

    2010-01-01

    This paper presents a stochastic multiobjective model for self-scheduling of a power producer which participates in the day-ahead joint energy and reserves markets. The objective of a power producer is to compromise the conflicting objectives of payoff maximization and gaseous emissions minimization when committing its generation of thermal units. The proposed schedule will be used by the power producers to decide on emission quota arbitrage opportunities and for strategic bidding to the energy and reserves market. The paper analyzes a scenario-based multiobjective model in which random distributions, such as price forecasting inaccuracies as well as forced outage of generating units are modeled as scenarios tree using a combined fuzzy c-mean/Monte-Carlo simulation (FCM/MCS) method. With the above procedure the stochastic multiobjective self-scheduling problem is converted into corresponding deterministic problems. Then a multiobjective mathematical programming (MMP) approach based on ε-constraint method is implemented for each deterministic scenario. Piecewise linearized fuel and emission cost functions are applied for computational efficiency and the model is formulated as a mixed-integer programming (MIP) problem. Numerical simulations for a power producer with 21 thermal units are discussed to demonstrate the performance of the proposed approach in increasing expected payoffs by adjusting the emission quota arbitrage opportunities. (author)

  15. Fossil energy consumption and greenhouse gas emissions, including soil carbon effects, of producing agriculture and forestry feedstocks

    Science.gov (United States)

    Christina E. Canter; Zhangcai Qin; Hao Cai; Jennifer B. Dunn; Michael Wang; D. Andrew Scott

    2017-01-01

    The GHG emissions and fossil energy consumption associated with producing potential biomass sup­ply in the select BT16 scenarios include emissions and energy consumption from biomass production, harvest/collection, transport, and pre-processing activities to the reactor throat. Emissions associated with energy, fertilizers, and...

  16. Program evaluation and incentives for administrators of energy-efficiency programs: Can evaluation solve the principal/agent problem?

    Energy Technology Data Exchange (ETDEWEB)

    Blumstein, Carl, E-mail: blumstei@berkeley.ed [University of California Energy Institute, 2547 Channing Way, Berkeley, CA 94720 (United States)

    2010-10-15

    This paper addresses the nexus between evaluation of energy-efficiency programs and incentive payments based on performance for program administrators in California. The paper describes the problems that arise when evaluators are asked to measure program performance by answering the counterfactual question-what would have happened in the absence of the program? Then the paper examines some ways of addressing these problems. Key conclusions are (1) program evaluation cannot precisely and accurately determine the counterfactual, there will always be substantial uncertainty, (2) given the current state of knowledge, the decision to tie all incentives to program outcomes is misguided, and (3) incentive programs should be regularly reviewed and revised so that they can be adapted to new conditions.

  17. Program evaluation and incentives for administrators of energy-efficiency programs. Can evaluation solve the principal/agent problem?

    Energy Technology Data Exchange (ETDEWEB)

    Blumstein, Carl [University of California Energy Institute, 2547 Channing Way, Berkeley, CA 94720 (United States)

    2010-10-15

    This paper addresses the nexus between evaluation of energy-efficiency programs and incentive payments based on performance for program administrators in California. The paper describes the problems that arise when evaluators are asked to measure program performance by answering the counterfactual question - what would have happened in the absence of the program? Then the paper examines some ways of addressing these problems. Key conclusions are (1) program evaluation cannot precisely and accurately determine the counterfactual, there will always be substantial uncertainty, (2) given the current state of knowledge, the decision to tie all incentives to program outcomes is misguided, and (3) incentive programs should be regularly reviewed and revised so that they can be adapted to new conditions. (author)

  18. Program evaluation and incentives for administrators of energy-efficiency programs: Can evaluation solve the principal/agent problem?

    International Nuclear Information System (INIS)

    Blumstein, Carl

    2010-01-01

    This paper addresses the nexus between evaluation of energy-efficiency programs and incentive payments based on performance for program administrators in California. The paper describes the problems that arise when evaluators are asked to measure program performance by answering the counterfactual question-what would have happened in the absence of the program? Then the paper examines some ways of addressing these problems. Key conclusions are (1) program evaluation cannot precisely and accurately determine the counterfactual, there will always be substantial uncertainty, (2) given the current state of knowledge, the decision to tie all incentives to program outcomes is misguided, and (3) incentive programs should be regularly reviewed and revised so that they can be adapted to new conditions.

  19. Optimization of palm kernel shell torrefaction to produce energy densified bio-coal

    International Nuclear Information System (INIS)

    Asadullah, Mohammad; Adi, Ag Mohammad; Suhada, Nurul; Malek, Nur Hanina; Saringat, Muhammad Ilmam; Azdarpour, Amin

    2014-01-01

    Highlights: • Around 70% of bio-coal yield was achieved from PKS torrefaction at 300 °C. • The higher heating value of optimized bio-coal was 24.5 MJ/kg. • Around 94% of thermal yield was achieved with 70% mass yield. • The grindability of optimized bio-coal was comparable with coal. - Abstract: Biomass torrefaction is a thermal process, which is similar to a mild form of pyrolysis at temperatures ranging from 200 to 320 °C to produce energy densified solid fuel. The torrefied biomass is almost equivalent to coal and is termed as bio-coal. During torrefaction, highly volatile fraction of biomass including moisture and hemicellulose are released as vapors, providing energy enriched solid fuel, which is hydrophobic and brittle. In this study, bio-coal is produced from palm kernel shell (PKS) in a batch feeding reactor. The operating variables such as temperature, residence time and swiping gas flow rate are optimized. Around 73% yield of bio-coal with calorific value of 24.5 MJ/kg was achieved at optimum temperature 300 °C with residence time of 20 min and nitrogen gas flow rate of 300 mL/min. The thermal yield was calculated to be maximum of 94% for the bio-coal produced at 300 °C. The temperature and residence time of torrefaction are found to be the most sensitive parameters in terms of product yield, calorific value and thermal yield of bio-coal

  20. Change in energy metabolism of in vitro produced embryos: an alternative to make them more cryoresistant?

    Directory of Open Access Journals (Sweden)

    Luzia Renata Oliveira Dias

    2017-08-01

    Full Text Available For the development of in vitro produced (IVP as well as in vivo produced bovine embryos, it is extremely important that their energy metabolism works properly because the embryo must be able to metabolize energy substrates that are necessary for producing energy. Lipids play an important role in early embryonic development, acting as source of energy for oocytes and embryos. However, it is known that oocytes and embryos, mainly IVP, accumulate large amounts of lipids in the cytoplasm. Although they are extremely important in embryonic development, lipids have been associated with the reduced survival of bovine embryos following cryopreservation. There is evidence that at least four different categories of lipids affect embryo survival after cryopreservation, including triglycerides (TAG, free fatty acids, cholesterol and phospholipids. Thus, many studies are being conducted to improve the resistance of IVP embryos to the cryopreservation process by reducing the concentration or removing the source of serum from the medium or by reducing oocyte/embryo lipids using mechanical or chemical means. Regarding the use of delipidating agents that reduce the uptake and synthesis of fatty acids (FA by cells, substances such as phenazine ethosulfate (PES, forskolin, L-carnitine and isomers of conjugated linoleic acid (CLA have been utilized. This review aims to address important issues related to embryonic energy metabolism, the importance of lipid metabolism and its relation to the cryopreservation of IVP bovine embryos by summarizing the latest research in this field.

  1. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    International Nuclear Information System (INIS)

    Zhou Xinping; Yang Jiakuan; Wang Jinbo; Xiao Bo

    2009-01-01

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries

  2. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xinping [School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China)], E-mail: zhxpmark@hotmail.com; Yang Jiakuan; Wang Jinbo; Xiao Bo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road Wuhan, Hubei 430074 (China)

    2009-03-15

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries.

  3. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinping [School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China); Yang, Jiakuan; Wang, Jinbo; Xiao, Bo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road Wuhan, Hubei 430074 (China)

    2009-03-15

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries. (author)

  4. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    International Nuclear Information System (INIS)

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin

    2013-01-01

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10 14 to 1.8 × 10 15 W/cm 2 . Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data

  5. Marine Structures: consuming and producing energy

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Jensen, Jørgen Juncher

    2009-01-01

    and hydrocarbons. • The oceans receive 70 % of our primary sustainable energy source, i.e. the radiation from the sun; this thermal energy can be harvested in the form of thermal, wind, current or wave energy, salt gradients etc. To exploit these possibilities marine structures are required....

  6. Dose equivalent near the bone-soft tissue interface from nuclear fragments produced by high-energy protons

    Science.gov (United States)

    Shavers, M. R.; Poston, J. W.; Cucinotta, F. A.; Wilson, J. W.

    1996-01-01

    During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed.

  7. Structural bursts produced by high energy muons in the rock

    International Nuclear Information System (INIS)

    Honda, K.; Takahashi, T.; Teramoto, Y.; Higashi, S.; Ozaki, S.

    1975-01-01

    Lateral structures of bursts produced by high energy muons in the rock have been observed at a depth 30 mw. e. underground by use of two layers of proportional counters. The running times were 7940 hr. The number of structural bursts observed, which have two cores in the both layers ( 1 >= 200, N 2 >= 20 particles) is 110, 1.6% of total events. These structural bursts have two types; 1) incident directions of two cores are parallel, 2) two cores intersect in the rock within 2 m above the roof of the tunnel. The events of this 2) type have large transverse momentum. (orig.) [de

  8. Energy-producing system of the membrane potential generation in γ-irradiated Streptococcus faecalis

    International Nuclear Information System (INIS)

    Fomenko, B.S.

    1976-01-01

    γ-irradiated (20-100 krads) Str. faecalis cells exhibited increased glycolytic and ATPase activity whereas the ATP level remained unaffected by radiation. It is concluded that the radiation-induced reduction of the membrane potential in Str. faecalis, that has been earlier described, is not connected with the impairment of the energy-producing system of the potential generation

  9. Producing energy from cardboard factory waste, Finding sustainable solutions for handling non-recyclable waste

    NARCIS (Netherlands)

    Dijkstra, Thijs

    2008-01-01

    Eska Graphic Board is a cardboard factory which requires large amounts of energy in the form of heat for the production of graphical cardboard. Currently, Eska has on-site gas powered boilers to produce heat and a combined-heat-and-power (CHP) system to p

  10. HIGH ENERGY, HIGH BRIGHTNESS X-RAYS PRODUCED BY COMPTON BACKSCATTERING AT THE LIVERMORE PLEIADES FACILITY

    International Nuclear Information System (INIS)

    Tremaine, A M; Anderson, S G; Betts, S; Crane, J; Gibson, D J; Hartemann, F V; Jacob, J S; Frigola, P; Lim, J; Rosenzweig, J; Travish, G

    2005-01-01

    PLEIADES (Picosecond Laser Electron Interaction for the Dynamic Evaluation of Structures) produces tunable 30-140 keV x-rays with 0.3-5 ps pulse lengths and up to 10 7 photons/pulse by colliding a high brightness electron beam with a high power laser. The electron beam is created by an rf photo-injector system, accelerated by a 120 MeV linac, and focused to 20 (micro)m with novel permanent magnet quadrupoles. To produce Compton back scattered x-rays, the electron bunch is overlapped with a Ti:Sapphire laser that delivers 500 mJ, 100 fs, pulses to the interaction point. K-edge radiography at 115 keV on Uranium has verified the angle correlated energy spectrum inherent in Compton scattering and high-energy tunability of the Livermore source. Current upgrades to the facility will allow laser pumping of targets synchronized to the x-ray source enabling dynamic diffraction and time-resolved studies of high Z materials. Near future plans include extending the radiation energies to >400 keV, allowing for nuclear fluorescence studies of materials

  11. Program evaluation and incentives for administrators of energy efficiency programs: can evaluation solve the principal/agent problem?

    Energy Technology Data Exchange (ETDEWEB)

    Blumstein, Carl (Univ. of California, Energy Institute (United States))

    2009-07-01

    This paper addresses the nexus between the evaluation of energy-efficiency programs and incentive payments based on performance for program administrators in California. The paper describes problems that arise when evaluators are asked to measure program performance by answering the counterfactual question, what would have happened in the absence of the program? Then some ways of addressing these problems are examined. Key conclusions are that 1) program evaluation cannot precisely and accurately determine the counterfactual, there will always be substantial uncertainty, 2) given the current state of knowledge, the decision to tie all of the incentive to program outcomes is misguided, and 3) incentive programs should be regularly reviewed and revised so that they can be adapted to new conditions.

  12. Energy dependence of the stopping power of MeV 16O ions in a laser-produced plasma

    International Nuclear Information System (INIS)

    Sakumi, A.; Shibata, K.; Sato, R.; Tsubuku, K.; Nishimoto, T.; Hasegawa, J.; Ogawa, M.; Oguri, Y.; Katayama, T.

    2001-01-01

    The energy dependence of the stopping power of 16 O ions in a laser-produced plasma target was experimentally investigated in the projectile energy range of 150-350 keV/u. In order to produce the target plasma a Q-Switched Nd-glass laser was focused onto a small lithium hydride (LiH) pellet. The plasma electron temperature and the electron line density were 15 eV and 2x10 17 cm -2 , respectively. The energy loss of 16 O ions in the plasma was measured by a time-of-flight (TOF) method. We found that the stopping power in the plasma agreed with the theoretical estimation based on a modified Bohr equation with correction at low velocities. In this evaluation, the effective charge of the projectile was calculated by means of rate equations on the loss and capture of electrons. It has been also found that in this projectile energy range the stopping power of the 16 O ions in the plasma still increases with decreasing projectile energy, while it decreases in cold equivalent

  13. Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, Amitava [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2017-04-06

    This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study these processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.

  14. Peak creation in the energy spectrum of laser-produced protons by phase rotation

    International Nuclear Information System (INIS)

    Noda, Akira; Nakamura, Shu; Iwashita, Yoshihisa; Shirai, Toshiyuki; Tongu, Hiromu; Ito, Hiroyuki; Souda, Hikaru; Yamazaki, Atsushi; Tanabe, Mikio; Daido, Hiroyuki; Mori, Michiaki; Kado, Masataka; Sagisaka, Akito; Ogura, Koichi; Nishiuchi, Mamiko; Orimo, Satoshi; Hayashi, Yukio; Yogo, Akifumi; Bulanov, Sergei; Esirkepov, Timur; Nagashima, Akira; Kimura, Toyoaki; Tajima, Toshiki; Fukumi, Atsushi; Li, Zhong

    2007-01-01

    In collaboration between JAEA, Kansai Photon Science Institute and Institute for Chemical Research, Kyoto University, proton generation from a thin foil target (Ti 3 or 5 μm in thickness) with use of 10 TW laser (JLITEX) has been performed. Proton production is optimized by real time proton energy measurement with use of TOF method. Phase rotation with use of an RF electric field phase-synchronized to the pulse laser enabled the creation of peaks with the spread of ∼7% in the energy spectrum of the produced protons, which resulted in the increase of the intensity ∼4 times at peak position. (author)

  15. Can pions created in high-energy heavy-ion collisions produce a Centauro-type effect?

    International Nuclear Information System (INIS)

    Martinis, M.; Mikuta-Martinis, V.; Crnugelj, J.

    1995-01-01

    We study a Centauro-type phenomenon in high-energy heavy-ion collisions by assuming that pions are produced semiclassically both directly and in pairs through the isovector channel. The leading-particle effect and the factorization property of the scattering amplitude in the impact-parameter space are used to define the classical pion field. We show that the Centauro-type effect is strongly suppressed if a large number of pions are produced in isovector pairs. Our conclusion is supported through the calculation of two pion correlation parameters, f 2 0- and f 2 00 , as well as f 2, n - 0 and the average number of neutral pions (left-angle n 0 right-angle n- ) a a function of negative pions (n - ) produced

  16. Forest management strategies for producing wood for energy from conventional forestry systems

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.; Puttock, G.D. (Silv-Econ Ltd., Newmarket, ON (CA)); Richardson, J. (Forestry Canada, Science and Sustainable Development, Ottowa, ON (CA))

    1992-01-01

    The report reviews the current developments in forest management planning and practices to integrate the production of biomass for energy along with more conventional forest management goals. Efforts are under way to adapt management practices and silvicultural treatments to biomass production. These begin at the planning stage with the development of management tools and more accurate forest inventory data. They include silvicultural treatments such as shelterwood thinning in mixed wood stands and the interplanting of various tree species with the dual purpose of producing energy wood and conventional forest products. Three systems are available for recovering residues at time of final harvesting. The postharvest recovery of residues area is commonly used in Europe but is generally uneconomic in North America where the harvesting of small stems and integrated harvesting are favoured. (author).

  17. Catalyst in alternate energy resources for producing environment friendly clean energy

    International Nuclear Information System (INIS)

    Hussain, S.T.; Atta, M.A.

    1998-01-01

    Carbon monoxide, a by-product of the Chemical Process Industries, is a deadly poisonous gas; if released into the atmosphere causes irreparable damage to the environment. A bimetallic catalyst system Ru: Mn doped with different concentrations of 'K' (Potassium) and supported on high surface area alumina support was prepared by co impregnation method, dispersed and reduced at 450 deg. C under hydrogen flow using a closed reactor system at atmospheric pressure for the utilization of poisonous CO gas to produce environmental friendly clean energy. Fischer Tropsch catalyst, when subjected to CO/hydrogenation, gives methane and other hydrocarbon products. The main purpose of this research work was two fold: 1. The powder catalyst when dispersed/reduced on a high surface area oxide support spreads on the surface of the system in a different orientations and shapes. The particle size of the prepared catalysts ranges from 5.0-25.0 nm. The whole system forms a complicated mixture of numerous particles and hence becomes very complicated to study. The characterisation of these randomly oriented particles having different sizes and shapes is a difficult job. This required sensitive UHV spectroscopic techniques like SSIMS, XPS, EEls, XRD and TEM. Their operations needs strong skills. Hence the first aim was to utilize these techniques for the characterization of the prepared catalysts and to establish the usefulness of these techniques in studying such complicated systems. 2. Since Ru is a very good Fischer Tropsch catalyst for the production of aliphatic hydrocarbons product. Our other aim was to find out whether if by surface modification through additives or by surface reconstructing through chemical treatment, we could alter the path of this CO/hydrogenation reaction to produce potentially important unsaturated/aromatic hydrocarbon products. This would serve our dual purpose in which we could use poisonous CO for useful purpose. Hence 'K' potassium as surface modifier is

  18. On some methods to produce high-energy polarized electron beams by means of proton synchrotrons

    International Nuclear Information System (INIS)

    Bessonov, E.G.; Vazdik, Ya.A.

    1980-01-01

    Some methods of production of high-energy polarized electron beams by means of proton synchrotrons are considered. These methods are based on transfer by protons of a part of their energy to the polarized electrons of a thin target placed inside the working volume of the synchrotron. It is suggested to use as a polarized electron target a magnetized crystalline iron in which proton channeling is realized, polarized atomic beams and the polarized plasma. It is shown that by this method one can produce polarized electron beams with energy approximately 100 GeV, energy spread +- 5 % and intensity approximately 10 7 electron/c, polarization approximately 30% and with intensity approximately 10 4 -10 5 electron/c, polarization approximately 100% [ru

  19. Economics of producing hydrogen as transportation fuel using offshore wind energy systems

    International Nuclear Information System (INIS)

    Mathur, Jyotirmay; Agarwal, Nalin; Swaroop, Rakesh; Shah, Nikhar

    2008-01-01

    Over the past few years, hydrogen has been recognized as a suitable substitute for present vehicular fuels. This paper covers the economic analysis of one of the most promising hydrogen production methods-using wind energy for producing hydrogen through electrolysis of seawater-with a concentration on the Indian transport sector. The analysis provides insights about several questions such as the advantages of offshore plants over coastal installations, economics of large wind-machine clusters, and comparison of cost of producing hydrogen with competing gasoline. Robustness of results has been checked by developing several scenarios such as fast/slow learning rates for wind systems for determining future trends. Results of this analysis show that use of hydrogen for transportation is not likely to be attractive before 2012, and that too with considerable learning in wind, electrolyzer and hydrogen storage technology

  20. Re-energizing energy supply: Electrolytically-produced hydrogen as a flexible energy storage medium and fuel for road transport

    Science.gov (United States)

    Emonts, Bernd; Schiebahn, Sebastian; Görner, Klaus; Lindenberger, Dietmar; Markewitz, Peter; Merten, Frank; Stolten, Detlef

    2017-02-01

    "Energiewende", which roughly translates as the transformation of the German energy sector in accordance with the imperatives of climate change, may soon become a byword for the corresponding processes most other developed countries are at various stages of undergoing. Germany's notable progress in this area offers valuable insights that other states can draw on in implementing their own transitions. The German state of North Rhine-Westphalia (NRW) is making its own contribution to achieving the Energiewende's ambitious objectives: in addition to funding an array of 'clean and green' projects, the Virtual Institute Power to Gas and Heat was established as a consortium of seven scientific and technical organizations whose aim is to inscribe a future, renewable-based German energy system with adequate flexibility. Thus, it is tasked with conceiving of and evaluating suitable energy path options. This paper outlines one of the most promising of these pathways, which is predicated on the use of electrolytically-produced hydrogen as an energy storage medium, as well as the replacement of hydrocarbon-based fuel for most road vehicles. We describe and evaluate this path and place it in a systemic context, outlining a case study from which other countries and federated jurisdictions therein may draw inspiration.

  1. Scenarios for multi-unit inertial fusion energy plants producing hydrogen fuel

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-12-01

    This work describes: (a) the motivation for considering fusion in general, and Inertial Fusion Energy (IFE) in particular, to produce hydrogen fuel powering low-emission vehicles; (b) the general requirements for any fusion electric plant to produce hydrogen by water electrolysis at costs competitive with present consumer gasoline fuel costs per passenger mile, for advanced car architectures meeting President Clinton's 80 mpg advanced car goal, and (c) a comparative economic analysis for the potential cost of electricity (CoE) and corresponding cost of hydrogen (CoH) from a variety of multi-unit IFE plants with one to eight target chambers sharing a common driver and target fab facility. Cases with either heavy-ion or diode-pumped, solid-state laser drivers are considered, with ''conventional'' indirect drive target gains versus ''advanced, e.g. Fast Ignitor'' direct drive gain assumptions, and with conventional steam balance-of-plant (BoP) versus advanced MHD plus steam combined cycle BoP, to contrast the potential economics under ''conventional'' and ''advanced'' IFE assumptions, respectively

  2. Comparative energy analysis of agricultural crops used for producing ethanol and CO2 emissions

    International Nuclear Information System (INIS)

    Santos, M.A. dos

    1997-01-01

    A variety of biomass sources can be used for producing ethanol. Among these are sugar cane (Brazil), corn (USA), sweet sorghum (USA and Europe), sugar beets (Europe) and wheat (USA and Europe). The production of fuel alcohol worldwide has been analyzed from various perspectives: productivity, the competition between food and energy crops, the social and economic aspects and, more recently, the environmental dimension. Another relevant study is aimed at calculating the energy costs of the production and use of alcohol from sugar cane as compared to other primary sources for this fuel. The present analysis employs the methodology of energy balance, highlighting local conditions that influence how biomass is transformed into ethanol: technology, agricultural productivity, environmental conditions and an estimate of the carbon dioxide emissions from these different processes. (author)

  3. Analysis of unstable secondary particles produced in jet of 30 TeV energy sum

    International Nuclear Information System (INIS)

    Ogata, Takeshi

    1978-01-01

    High energy jet shower with energy sum of about 30 TeV has been obtained in the airplane-bone emulsion chamber. The size of the emulsion chamber was 20 cm x 25 cm x 12 cm. The airplane altitude was 260 g/cm 2 , and the exposure time was 600 hours. In this experiment, two jet events were found, and one of two events, KG-7, was the largest obtained so far. Three secondary charged particles produced by high energy interaction were analysed in detail. The analysis indicated that three charged particles seemed to be created by the decay of an unstable secondary particle. The lifetime of the unstable particle was estimated to be 10 -3 - 10 -14 sec, and this particle seems to be a charm particle. (Yoshimori, M.)

  4. A New Battery Energy Storage Charging/Discharging Scheme for Wind Power Producers in Real-Time Markets

    Directory of Open Access Journals (Sweden)

    Minh Y Nguyen

    2012-12-01

    Full Text Available Under a deregulated environment, wind power producers are subject to many regulation costs due to the intermittence of natural resources and the accuracy limits of existing prediction tools. This paper addresses the operation (charging/discharging problem of battery energy storage installed in a wind generation system in order to improve the value of wind power in the real-time market. Depending on the prediction of market prices and the probabilistic information of wind generation, wind power producers can schedule the battery energy storage for the next day in order to maximize the profit. In addition, by taking into account the expenses of using batteries, the proposed charging/discharging scheme is able to avoid the detrimental operation of battery energy storage which can lead to a significant reduction of battery lifetime, i.e., uneconomical operation. The problem is formulated in a dynamic programming framework and solved by a dynamic programming backward algorithm. The proposed scheme is then applied to the study cases, and the results of simulation show its effectiveness.

  5. Status and perspectives for wind energy within the programme for the development of renewable energy. Background report for the document entitled 'Handlingsplan for Vedvarende Energi 1995-97' produced by the Committee for Renewable Energy

    International Nuclear Information System (INIS)

    1995-08-01

    The report, which is intended to comprise the basis for the document 'Plan of Management for Renewable Energy 1995-97' produced by the (Danish) Committee for Renewable Energy, updates information on wind technology and its implementation and describes the status of wind energy as found in the relevant section contained in the Danish development programme for renewable energy. An evaluation is presented of the future perspectives for wind energy with regard to technological developments, market potential and overall costs. A detailed list is given of approved, rejected and concluded Danish projects relevant to wind energy under the Programme for the Development of Wind Energy during the period 1991-1994 and a global status for wind power status and estimates in MW ranging under the headings: New capacity in 1994, Estimated capacity in 1994 and Estimated capacity in 2000. (AB)

  6. Experimental Investigations of the Energy and Environmental Indices of Operation of a Low-Capacity Combined Gas Producer and Hot-Water Boiler

    Science.gov (United States)

    Bodnar, L. A.; Stepanov, D. V.; Dovgal‧, A. N.

    2015-07-01

    It has been shown that the introduction of combined gas producers and boilers on renewable energy sources is a pressing issue. A structural diagram of a low-capacity combined gas producer and boiler on renewable energy sources has been given; a bench and procedures for investigation and processing of results have been developed. Experimental investigations of the energy and environmental indices of a 40-kW combined gas producer and hotwater boiler burning wood have been carried out. Results of the experimental investigations have been analyzed. Distinctive features have been established and a procedure of thermal calculation of the double furnace of a lowcapacity combined gas producer and boiler burning solid fuel has been proposed. The calculated coefficients of heat transfer from the gases in the convection bank have been compared with the obtained experimental results. A calculation dependence for the heat transfer from the gases in convection banks of low-capacity hot-water boilers has been proposed. The quantities of harmful emissions from the combined gas producer and boiler on renewable energy sources have been compared with the existing Ukrainian and foreign standards. It has been established that the environmental efficiency of the boiler under study complies with most of the standard requirements of European countries.

  7. Partial inelasticity coefficients of negative pions produced in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    OLIMOV, K.; LUTPULLAEV, S.L.; PETROV, V.I.; OLIMOV, A.K.

    2015-01-01

    New experimental data on the partial inelasticity coefficients of negative pions produced in "1"6Op-collisions at 3.25 A GeV/s, pC-interactions at 4.2 and 9.9 GeV/s, and d,α,C(C)-collisions at 4.2 A GeV/s are presented. It is established that the behavior of partial inelasticity coefficients of pions at intermediate energies (<10 GeV) in hadron-nucleus collisions has a transitional character, reaching the limiting value at ultrahigh energies. It is shown that the mean values of partial inelasticity coefficients of pions produced in nucleus-nucleus collisions decrease with an increase in mass number of the projectile nucleus. (authors)

  8. Renewable Energy Monitoring Protocol. Update 2010. Methodology for the calculation and recording of the amounts of energy produced from renewable sources in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Te Buck, S.; Van Keulen, B.; Bosselaar, L.; Gerlagh, T.; Skelton, T.

    2010-07-15

    This is the fifth, updated edition of the Dutch Renewable Energy Monitoring Protocol. The protocol, compiled on behalf of the Ministry of Economic Affairs, can be considered as a policy document that provides a uniform calculation method for determining the amount of energy produced in the Netherlands in a renewable manner. Because all governments and organisations use the calculation methods described in this protocol, this makes it possible to monitor developments in this field well and consistently. The introduction of this protocol outlines the history and describes its set-up, validity and relationship with other similar documents and agreements. The Dutch Renewable Energy Monitoring Protocol is compiled by NL Agency, and all relevant parties were given the chance to provide input. This has been incorporated as far as is possible. Statistics Netherlands (CBS) uses this protocol to calculate the amount of renewable energy produced in the Netherlands. These data are then used by the Ministry of Economic Affairs to gauge the realisation of policy objectives. In June 2009 the European Directive for energy from renewable sources was published with renewable energy targets for the Netherlands. This directive used a different calculation method - the gross energy end-use method - whilst the Dutch definition is based on the so-called substitution method. NL Agency was asked to add the calculation according to the gross end use method, although this is not clearly defined on a number of points. In describing the method, the unanswered questions become clear, as do, for example, the points the Netherlands should bring up in international discussions.

  9. Nanometer-size surface modification produced by single, low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1994-01-01

    Atomically flat surfaces of insulators have been bombarded with low energy, highly charged ions to search for nanometer-size surface modifications. It is expected that the high electron deficiency of highly charged ions will capture and/or remove many of the insulator's localized electrons when impacting on an insulating surface. The resulting local electron deficiency is expected to locally disintegrate the insulator through a open-quotes Coulomb explosionclose quotes forming nanometer-size craters. Xe ions with charge states between 10+ and 45+ and kinetic energies between 0 and 10 keV/q were obtained from the KSU-CRYEBIS, a CRYogenic Electron Beam Ion Source and directed onto various insulating materials. Mica was favored as target material as atomically flat surfaces can be obtained reliably through cleaving. However, the authors observations with an atomic force microscope have shown that mica tends to defoliate locally rather than disintegrate, most likely due to the small binding forces between adjacent layers. So far the authors measurements indicate that each ion produces one blister if the charge state is sufficiently high. The blistering does not seem to depend very much on the kinetic energy of the ions

  10. Polarization of protons produced in diffractive disintegration of deuterons by high-energy pions

    International Nuclear Information System (INIS)

    Gakh, G.Yi.; Rekalo, M.P.

    1996-01-01

    For the process of diffractive disintegration of unpolarized deuterons by the high-energy pions, π + d → π + p + n, the polarization characteristics of produced protons are calculated. Using the vector nature of the Pomeron exchange, the general structure of all components of proton polarization vector is found for d (π, π p) n. By the Pomeron-photon analogy, the amplitude of the process P + d → n + p is approximated by the isoscalar contribution of four Born diagrams similar to the case of deuteron electrodisintegration. Unitarization of the amplitude is achieved by introducing in multipole amplitudes the corresponding phases of np-scattering. The numerical calculation of all components of the polarization vector of protons, produced in the case of noncomplanar kinematics of the reaction π + d → π + p + n, is realized

  11. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, A., E-mail: a.markwitz@gns.cri.nz [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, B.; Leveneur, J. [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)

    2014-07-15

    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C{sub 3}H{sub y}{sup +} ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm{sup −3}. Raman spectroscopy was performed to probe for sp{sup 2}/sp{sup 3} bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp{sup 3} content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  12. The Integration of Gasification Systems with Gas Engine to Produce Electrical Energy from Biomass

    Science.gov (United States)

    Siregar, K.; Alamsyah, R.; Ichwana; Sholihati; Tou, S. B.; Siregar, N. C.

    2018-05-01

    The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis, and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactor were 900 mm and 1000 mm respectively. The method used here were the design the Detailed Engineering Design (DED), assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 hours with performance engine of 84% and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kWh-electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2eq/MJ. Electrical production cost for Biomass Power Generation is about Rp.1.500,/kWh which is cheaper than Solar Power Generation which is about of Rp. 3.300,-/kWh.

  13. Diversity vs. Equality: Why the Education of Roma Children Does Not Work

    Science.gov (United States)

    Kyuchukov, Hristo; New, William

    2016-01-01

    This article takes up the question of why recent efforts to reform Roma education have been largely unsuccessful. Using case studies, the authors identify and discuss situations that have produced poor results: good intentions and bad realisations, good intentions and good realisations, and misguided intentions and bad realisations. They suggest…

  14. Utilization of biogas produced by anaerobic digestion of agro-industrial waste: Energy, economic and environmental effects.

    Science.gov (United States)

    Hublin, Andrea; Schneider, Daniel Rolph; Džodan, Janko

    2014-07-01

    Anaerobic digestion of agro-industrial waste is of significant interest in order to facilitate a sustainable development of energy supply. Using of material and energy potentials of agro-industrial waste, in the framework of technical, economic, and ecological possibilities, contributes in increasing the share of energy generated from renewable energy sources. The paper deals with the benefits arising from the utilization of biogas produced by co-digestion of whey and cow manure. The advantages of this process are the profitability of the plant and the convenience in realizing an anaerobic digestion plant to produce biogas that is enabled by the benefits from the sale of electric energy at favorable prices. Economic aspects are related to the capital cost (€ 2,250,000) of anaerobic digestion treatment in a biogas plant with a 300 kW power and 510 kW heating unit in a medium size farm (450 livestock units). Considering the optimum biogas yield of 20.7 dm(3) kg(-1) of wet substrate and methane content in the biogas obtained of 79%, the anaerobic process results in a daily methane production of 2,500 kg, with the maximum power generation of 2,160,000 kWh y(-1) and heat generation of 2,400,000 kWh y(-1) The net present value (NPV), internal rate of return (IRR) and payback period for implementation of profitable anaerobic digestion process is evaluated. Ecological aspects related to carbon dioxide (CO2) and methane (CH4) emission reduction are assessed. © The Author(s) 2014.

  15. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria.

    Science.gov (United States)

    LeBlanc, Jean Guy; Chain, Florian; Martín, Rebeca; Bermúdez-Humarán, Luis G; Courau, Stéphanie; Langella, Philippe

    2017-05-08

    The aim of this review is to summarize the effect in host energy metabolism of the production of B group vitamins and short chain fatty acids (SCFA) by commensal, food-grade and probiotic bacteria, which are also actors of the mammalian nutrition. The mechanisms of how these microbial end products, produced by these bacterial strains, act on energy metabolism will be discussed. We will show that these vitamins and SCFA producing bacteria could be used as tools to recover energy intakes by either optimizing ATP production from foods or by the fermentation of certain fibers in the gastrointestinal tract (GIT). Original data are also presented in this work where SCFA (acetate, butyrate and propionate) and B group vitamins (riboflavin, folate and thiamine) production was determined for selected probiotic bacteria.

  16. Economical-environmental assessment on technologies producing electric energy

    International Nuclear Information System (INIS)

    Najafzadeh, K.

    2000-01-01

    Currently, the electric power industry is undergoing substantial regulatory and organizational change with respect to economical and environmental aspects. Under these circumstances, with utilization of analytic hierarchy process (AHP) concept, we consider the assessment of Technologies producing energy from financial and pollution viewpoint. AHP techniques is one of the efficient methods in analysis of complex and multi-criteria problems, which has plenty of applications. General pattern of this assessment has been introduced, and the main goal is determining of overall priority weights for each technology. With using this pattern, overall priority weights has been determined for thermal, combined cycle and Gas turbine plants. It has been cleared that relative priority of these plants will change, if relative priority of assessment criterions changes. For application of this approach, capital budgeting process and selection of some suitable technologies among the alternatives candidate for construction have been presented. In this process the objective is to maximize the sum of overall priority weights of technologies which have been identified from AHP. Constraints are about the construction budget and annual budget for emission allowances. This process is in the integer programming IP form an has been applied to three kind of power plants with reasonable assumptions

  17. ORLIB: a computer code that produces one-energy group, time- and spatially-averaged neutron cross sections

    International Nuclear Information System (INIS)

    Blink, J.A.; Dye, R.E.; Kimlinger, J.R.

    1981-12-01

    Calculation of neutron activation of proposed fusion reactors requires a library of neutron-activation cross sections. One such library is ACTL, which is being updated and expanded by Howerton. If the energy-dependent neutron flux is also known as a function of location and time, the buildup and decay of activation products can be calculated. In practice, hand calculation is impractical without energy-averaged cross sections because of the large number of energy groups. A widely used activation computer code, ORIGEN2, also requires energy-averaged cross sections. Accordingly, we wrote the ORLIB code to collapse the ACTL library, using the flux as a weighting function. The ORLIB code runs on the LLNL Cray computer network. We have also modified ORIGEN2 to accept the expanded activation libraries produced by ORLIB

  18. Crystalline and amorphous carbon nitride films produced by high-energy shock plasma deposition

    International Nuclear Information System (INIS)

    Bursilll, L.A.; Peng, Julin; Gurarie, V.N.; Orlov, A.V.; Prawer, S.

    1995-01-01

    High-energy shock plasma deposition techniques are used to produce carbon-nitride films containing both crystalline and amorphous components. The structures are examined by high-resolution transmission electron microscopy, parallel-electron-energy loss spectroscopy and electron diffraction. The crystalline phase appears to be face-centered cubic with unit cell parameter approx. a=0.63nm and it may be stabilized by calcium and oxygen at about 1-2 at % levels. The carbon atoms appear to have both trigonal and tetrahedral bonding for the crystalline phase. There is PEELS evidence that a significant fraction of the nitrogen atoms have sp 2 trigonal bonds in the crystalline phase. The amorphous carbon-nitride film component varies from essentially graphite, containing virtually no nitrogen, to amorphous carbon-nitride containing up to 10 at % N, where the fraction of sp 3 bonds is significant. 15 refs., 5 figs

  19. Country analysis briefs: 1994. Profiles of major world energy producers, consumers, and transport centers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Country Analysis Briefs: 1994 is a compilation of country profiles prepared by the Energy Markets and Contingency Information Division (EMCID) of the Office of Energy Markets and End Use. EMCID maintains Country Analysis Briefs (CABs) for specific countries or geographical areas that are important to world energy markets. As a general rule, CABs are prepared for all members of the Organization of Petroleum Exporting Countries (OPEC), major non-OPEC oil producers (i.e., the North Sea, Russia), major energy transit areas (i.e., Ukraine), and other areas of current interest to energy analysts and policy makers. As of January 1995, EMCID maintained over 40 CABs, updated on an annual schedule and subject to revision as events warrant. This report includes 25 CABs updated during 1994. All CABs contain a profile section, a map showing the country`s location, and a narrative section. The profile section includes outlines of the country`s economy, energy sector, and environment. The narrative provides further information and discussion of these topics. Some CABs also include a detailed map displaying locations of major oil and gas fields, pipelines, ports, etc. These maps were created as a result of special individual requests and so are not typically a standard feature of the CABs. They are presented here wherever available as a supplement to the information contained in the CABs.

  20. Synergic and conflicting issues in planning underground use to produce energy in densely populated countries, as Italy

    International Nuclear Information System (INIS)

    Quattrocchi, Fedora; Boschi, Enzo; Spena, Angelo; Buttinelli, Mauro; Cantucci, Barbara; Procesi, Monia

    2013-01-01

    Highlights: ► In densely populated countries, the public need a synergic approach to produce low-carbon energy. ► The paper is mapping coexistent and different underground technologies to produce low-GHG energy. ► The paper calculate Energy Density Potential in Land – EDPL in terms of [GW h/ha/year]. ► Draw-plate technologies platforms (EU-ZEP, etc.) should merge using underground together. ► Synergies among the different uses of deep underground (up to 5000 m) jointing the energy lobbies. -- Abstract: In densely populated countries there is a growing and compelling need to use underground for different and possibly coexisting technologies to produce “low carbon” energy. These technologies include (i) clean coal combustion merged with CO 2 Capture and Storage (CCS); (ii) last-generation nuclear power or, in any case, safe nuclear wastes disposal, both “temporary” and “geological” somewhere in Europe (at least in one site): Nuclear wastes are not necessarily associated to nuclear power plants; (iii) safe natural gas (CH 4 ) reserves to allow consumption also when the foreign pipelines are less available or not available for geopolitical reasons and (iv) “low-space-consuming” renewables in terms of Energy Density Potential in Land (EDPL measured in [GW h/ha/year]) as geothermics. When geothermics is exploited as low enthalpy technology, the heat/cool production could be associated, where possible, to increased measures of “building efficiency”, low seismic risks building reworking and low-enthalpy heat managing. This is undispensable to build up “smart cities”. In any case the underground geological knowledge is prerequisite. All these technologies have been already proposed and defined by the International Energy Agency (IEA) Road Map 2009 as priorities for worldwide security: all need to use underground in a rational and safe manner. The underground is not renewable in most of case histories [10,11]. IEA recently matched and

  1. Connecting energy producers in an intelligent way

    International Nuclear Information System (INIS)

    Eberle, M.

    2008-01-01

    In this interview with Dr. Thomas Erge, researcher at the Fraunhofer Institute for Solar Energy Systems ISE, the prospects for renewable and environment-friendly energy carriers are discussed. The author comments that, today, electrical power is mostly generated in large-scale power stations. Renewable forms of energy and combined heat and power (CHP) installations are, however, beginning to appear on the market as sources of electricity. Questions dealt with in the interview include political, social, economical and technical questions, the reliability of electricity supply, emergency power systems, decentralised generation, power pricing, energy management and control systems. Also, the effects of a reduced number of power suppliers in Germany and the associated increase in power prices are discussed. The question if this situation offers wider opportunities for decentralised power generation is posed.

  2. Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution

    Science.gov (United States)

    Efficient utilization of food waste for fuel and chemical production can positively influence both the energy and environmental sustainability. In these studies we investigated use of food waste to produce butanol by Clostridium beijerinckii P260. In control fermentation, 40.5 g/L of glucose (initia...

  3. Radial focusing and energy compression of a laser-produced proton beam by a synchronous rf field

    Directory of Open Access Journals (Sweden)

    Masahiro Ikegami

    2009-06-01

    Full Text Available The dynamics of a MeV laser-produced proton beam affected by a radio frequency (rf electric field has been studied. The proton beam was emitted normal to the rear surface of a thin polyimide target irradiated with an ultrashort pulsed laser with a power density of 4×10^{18}  W/cm^{2}. The energy spread was compressed to less than 11% at the full width at half maximum (FWHM by an rf field. Focusing and defocusing effects of the transverse direction were also observed. These effects were analyzed and reproduced by Monte Carlo simulations. The simulation results show that the transversely focused protons had a broad continuous spectrum, while the peaks in the proton spectrum were defocused. Based on this new information, we propose that elimination of the continuous energy component of laser-produced protons is possible by utilizing a focal length difference between the continuous spectral protons and the protons included in the spectral peak.

  4. Germany's solar cell promotion: Dark clouds on the horizon

    International Nuclear Information System (INIS)

    Frondel, Manuel; Ritter, Nolan; Schmidt, Christoph M.

    2008-01-01

    This article demonstrates that the large feed-in tariffs currently guaranteed for solar electricity in Germany constitute a subsidization regime that threatens to reach a level comparable to that of German hard coal production, a notoriously outstanding example of misguided political intervention. Yet, as a consequence of the coexistence of the German Renewable Energy Sources Act (EEG) and the EU Emissions Trading Scheme (ETS), the increased use of renewable energy technologies does not imply any additional emission reductions beyond those already achieved by ETS alone. Similarly disappointing is the net employment balance, which is likely to be negative if one takes into account the opportunity cost of this form of solar photovoltaic (PV) support. Along the lines of the international energy agency [IEA, 2007. Energy policies of IEA countries: Germany, 2007 review. International Energy Agency, OECD, Paris, p. 77], we recommend the immediate and drastic reduction of the magnitude of the feed-in tariffs granted for solar-based electricity. Ultimately, producing electricity on this basis is among the most expensive greenhouse gas abatement options

  5. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-08-01

    This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non

  6. Wind energy. To produce electricity with the wind

    International Nuclear Information System (INIS)

    Bareau, Helene

    2015-11-01

    This guide addresses the different aspects of wind-based power generation. It outlines the role of wind energy to meet objectives related to the share of renewable energies in the French energy mix, that wind energy is actually replacing fossil energies, that it is based on local resources within higher safety and less wastage, that current advances are made to integrate wind energy production into the grid, and that it is a solution to diversify energy production. Some figures are presented and commented, regarding onshore wind energy production in France, the location of wind farms, and wind energy production in comparison with other renewable sources. The operation of a wind turbine is described and the different types of wind turbines are evoked. The issue of wind farm planning with citizen participation is addressed: regional planning, studies of pre-feasibility for location selection, procedure, and content of the impact study (radars, fauna and flora, landscapes, safety, health). Other features are outlined: a planned dismantling, and a globally favourable perception. The next part addresses offshore wind energy: the interesting potential of stronger and more reliable wind at sea (European situation, French opportunities, elements comprised in an offshore wind farm), impacts (on marine ecosystems, on neighbouring localities, and interests for visitors). Economic aspects are then addressed: cost and profitability, economic spin-offs, and perspectives. The last part concerns individuals and the possibilities to participate to wind farm projects or to invest in small wind turbines with some prerequisites (constant and steady winds, installation assessment, required expertise, indispensable preliminary steps, costs, aids and profitability)

  7. Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity

    International Nuclear Information System (INIS)

    Kauffman, Nathan; Dumortier, Jerome; Hayes, Dermot J.; Brown, Robert C.; Laird, David A.

    2014-01-01

    A partial solution to problems associated with anthropogenic greenhouse gas (GHG) emissions could be the development and deployment of carbon-negative technologies, i.e., producing energy while reducing atmospheric carbon dioxide levels. Biofuels have been considered a possibility but have faced limitations due to competition with food production and GHG emissions through indirect land-use change (ILUC). In this article, we show how emissions from ILUC can potentially be reduced by producing food and bioenergy from biochar amended soils. The possibility of yield improvements from biochar would reduce the land requirement for crop production and thus, lead to a reduction in emissions from ILUC. In our application, biochar and bio-oil are produced via fast pyrolysis of corn stover. Bio-oil is subsequently upgraded into a fuel suitable for use in internal combustion engines. Applying the U.S. regulatory method used to determine biofuel life cycle emissions, our results show that a biochar-induced yield improvement in the U.S. Midwest ranging from 1% to 8% above trend can lead to an ILUC credit between 1.65 and 14.79 t CO 2 -equivalent ha −1  year −1 when future emissions are assessed over the next 30 years. The model is generalizable to other feedstocks and locations and illustrates the relationship between biochar and crop production. - Highlights: • If biochar leads to higher crop yields, a land-use change (LUC) credit applies. • Indirect LUC credit is applied to biofuel if biochar is produced as a by-product. • 1.65 to 14.79 t CO 2 -e ha −1  year −1 credit for 1%–8% yield increase in U.S. Midwest. • Life cycle analysis generalizable to other locations and feedstock

  8. Effectiveness of the Solar Panels in the Castro Valley Unified School District Based on Projected Amount of Energy to be Produced

    Science.gov (United States)

    Sparks, J. R.; Palmer, T. C.; Siegel, A. P.

    2014-12-01

    In recent years Americans have warmed to the idea of installing solar panels to their homes and businesses. These panels help reduce the cost of receiving energy from power plants that lose a lot of energy in transportation. These power plants provide energy by burning gas or coal producing emissions that add to the growing problem of pollution and global warming. In 2010 the Castro Valley Unified School District decided to add solar panels to Canyon Middle School, Castro Valley High School, and Castro Valley Adult School. We researched whether the solar panels reached their projected amount of energy (74%) for the sites where the panels were placed. The solar panels at all three sites were found to exceed these projected amounts. The solar panels at each site produce a little over 74% for the each school.

  9. Design and performance of an UHV beamline to produce low and hyperthermal energy ion beams

    International Nuclear Information System (INIS)

    Adler, D.L.; Cooper, B.H.

    1988-01-01

    We have constructed and tested an UHV beamline to produce beams of alkali metal and noble gas ions over the energy range 0 angular divergence, and nanoamps of current at 25 eV in a 4-mm beam spot with +- 2 0 angular divergence. By applying Liouville's theorem to the beam's emittance and using waist-to-waist transport through the beam optics, the current on the sample is maximized while limiting the spot size and angular divergence. To achieve useful current at the lowest energies, special attention was paid to minimizing space-charge effects. Beam emittances measured at the sample position are consistent with Liouville's theorem. Equations for waist-to-waist transport are derived in the Appendix

  10. Wood energy barometer. 43 million toe produced in 2003

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The use of wood in the form of energy contributes in fighting global warming since, unlike fossil energies, the carbon dioxide emitted by its combustion is reabsorbed by the forests. These environmental and energetic advantages explain why the European Union large wood countries are preparing programmes to develop both wood energy technologies and wood energy consumption; This document takes stock or gives information on the breakdown of valorization of wood energy origin primary energy, the gross electricity generation from wood energy in the 15 european union countries and Poland, the primary energy from wood energy, the comparative between different wood energy fuel prices in Europe, the number of direct and indirect job created in different sectors, the wood energy sector industrialists and a comparison between current trend and white paper objectives. (A.L.B.)

  11. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2017-10-01

    We present measurements of bulk properties of the matter produced in Au+Au collisions at √{sN N}=7.7 ,11.5 ,19.6 ,27 , and 39 GeV using identified hadrons (π±, K±, p , and p ¯) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (|y |<0.1 ) results for multiplicity densities d N /d y , average transverse momenta 〈pT〉 , and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.

  12. Kinetic-energy distributions of O- produced by dissociative electron attachment to physisorbed O2

    International Nuclear Information System (INIS)

    Huels, M.A.; Parenteau, L.; Michaud, M.; Sanche, L.

    1995-01-01

    We report measurements of the kinetic energy (E k ) distributions of O - produced by low-energy electron impact (5.5--19.5 eV) on disordered multilayers of O 2 physisorbed on a polycrystalline Pt substrate. The results confirm that dissociative electron attachment (DEA) proceeds via the formation of the 2 Π u , 2 Σ g + (I), and 2 Σ x + (II) (x=g and/or u) states of O 2 -* . We also find evidence for an additional resonance, namely the 2 Σ u + (I), positioned at about 10 eV above the neutral ground state in the Franck-Condon region, and dissociating into O - +O( 3 P). The measurements suggest that the autodetachment lifetimes of the 2 Σ u + (I) and 2 Σ g + (II) states may be longer than previously suggested. It is also observed that the effects of electron energy loss (EEL) in the solid prior to DEA, O - scattering in the solid after dissociation, and the charge-induced polarization energy of the solid, broaden the E k distributions, shift them to lower anion energies, and result in additional structure in them. The effects of EEL on the desorption dynamics of O - are estimated from high-resolution electron-energy-loss spectra and excitation functions for losses in the vicinity of the Schumann-Runge continuum of the physisorbed O 2 molecules. We find indications for an enhancement of the optically forbidden X 3 Σ g - →A 3 Σ u + transition, and observe that the gas-phase Rydberg bands, for energy losses above 7 eV, are not distinguishable in the condensed phase

  13. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    Science.gov (United States)

    Sher, Mark H.; Macklin, John J.; Harris, Stephen E.

    1989-09-26

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  14. Development and optimization of a modified process for producing the battery grade LiOH: Optimization of energy and water consumption

    International Nuclear Information System (INIS)

    Grágeda, Mario; González, Alonso; Alavia, Wilson; Ushak, Svetlana

    2015-01-01

    LiOH·H 2 O is used for preparation of alkaline batteries. The required characteristics of this compound are low levels of impurities and a specific particle size distribution. LiOH·H 2 O is produced from ore and brines. In northern Chile, lithium is produced from brines. This region presents particular desert climate conditions where water and energy are scarce. To help solve this problem, the conventional production process for battery grade LiOH·H 2 O was simulated and a modified process was developed, with an efficient consumption of energy and water, to improve the environmental sustainability of the plant, and greater process yield and product purity. Different configurations of the equipments were studied and for the best configurations the behavior of the modified process at different scenarios were simulated. It was found that the purity is independent of concentration used in feed to thickeners. The process yield increases in average 2.4% for modified process due to recycling operation. In modified process is obtained 28% more product mass, specific energy consumption decreases up to 4.8% and losses of Li/kg of product decreased by 83% compared to conventional process. The water consumption per kg of product in modified process is 1%–6.3%, being lower than in conventional process. The results presented can be considered as guidelines to address the optimization of the industrial process for obtaining the battery grade LiOH. - Highlights: • Water and energy are important resources in any sustainable industrial process. • High purity LiOH·H 2 O is a material for producing of lithium batteries. • Conventional and modified optimized processes for LiOH·H 2 O production were simulated. • Energy and water consumptions decrease for the modified process. • Optimal operational conditions of H 2 O, feed, pressure and energy were established

  15. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  16. Method for producing chemical energy

    Science.gov (United States)

    Jorgensen, Betty S.; Danen, Wayne C.

    2004-09-21

    Fluoroalkylsilane-coated metal particles having a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer are prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  17. Utilization of residual biochar produced from the pyrolysis of energy crops for soil enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Pilon, G.; Lavoie, J.M. [Sherbrooke Univ., Sherbrooke, PQ (Canada). Dept. of Chemical Engineering and Biotechnology

    2010-07-01

    Although national and international interest in the use of energy crops for the production of biofuels is increasing, it is understood that measures must be taken to ensure that the production and transportation of these energy crops does not require more energy than they provide and that the soil should not be left uncovered so as not to reduce its organic content and nutrients. In response, concerns regarding soil fertilization have increased. A technique for biomass preconversion known as pyrolysis-torrefaction involves the production of char and bio-oil from biomass. This processing method is gaining interest because the char may be useful for many applications such as a fuel, soil conditioner or carbon sequestration. An appropriate distribution of biochar applications could be potentially beneficial for the sustainability of biomass use in the imminent biomarket. In this study, biochar produced from switchgrass was prepared and characterized to verify its potential as a soil enhancer and its potential as a solid fuel. The biochar was prepared under varying reacting conditions using custom-made bench scale, batch-type fixed bed pyrolysis-torrefaction reactor. Volatiles were released by varying the residence times.

  18. Niobium Carbide-Reinforced Al Matrix Composites Produced by High-Energy Ball Milling

    Science.gov (United States)

    Travessa, Dilermando Nagle; Silva, Marina Judice; Cardoso, Kátia Regina

    2017-06-01

    Aluminum and its alloys are key materials for the transportation industry as they contribute to the development of lightweight structures. The dispersion of hard ceramic particles in the Al soft matrix can lead to a substantial strengthening effect, resulting in composite materials exhibiting interesting mechanical properties and inspiring their technological use in sectors like the automotive and aerospace industries. Powder metallurgy techniques are attractive to design metal matrix composites, achieving a homogeneous distribution of the reinforcement into the metal matrix. In this work, pure aluminum has been reinforced with particles of niobium carbide (NbC), an extremely hard and stable refractory ceramic. Its use as a reinforcing phase in metal matrix composites has not been deeply explored. Composite powders produced after different milling times, with 10 and 20 vol pct of NbC were produced by high-energy ball milling and characterized by scanning electron microscopy and by X-ray diffraction to establish a relationship between the milling time and size, morphology, and distribution of the particles in the composite powder. Subsequently, an Al/10 pct NbC composite powder was hot extruded into cylindrical bars. The strength of the obtained composite bars is comparable to the commercial high-strength, aeronautical-grade aluminum alloys.

  19. The spectrum of protons produced in pp collisions at 31 GeV total energy

    CERN Document Server

    Albrow, M G; Barber, D P; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C; Van der Veen, F

    1973-01-01

    Data are reported on the distributions in longitudinal and transverse momentum of protons produced in the range 0.5energy at the CERN ISR. The invariant inelastic cross section shows a peak at high longitudinal momenta. The shape of this peak suggests substantial production of states with masses up to at least 7 GeV. (4 refs).

  20. An energy-saving opportunity in producing lubricating oil using mixed-solventin simulated Rotary Disc Contacting (RDC) extraction tower

    Energy Technology Data Exchange (ETDEWEB)

    Hatamipour, M.S.; Fakhr Hoseini, S.M.; Tavakkoli, T.; Mehrkesh, A.H. [Chemical Engineering Department, University of Isfahan, Isfahan (Iran)

    2010-05-15

    Industrial processes are the most energy consuming processes in the world. Modification of these processes helps us with controlling the consumption of energy and minimizing energy loss. Changing raw materials is one of the ways through which we can optimize industrial processes. In this paper, a new solvent mixture (furfural + a co-solvent) was used for the extraction of lubricating base oil from lube-oil cut. It was found that the energy consumption of the new solvent mixture for obtaining a product with the same quality was much lower than the original solvent. By using this new solvent mixture, the operating temperature of the top of tower was reduced by 30 K. This leads to a high reduction in energy consumption in extraction of aromatics from lube oil. At our new extraction process by means of using new solvent mixture, the maximum energy saving was 38% per cubic meter of produced raffinate. (author)

  1. Long-term energy supply contracts in European competition policy: Fuzzy not crazy

    International Nuclear Information System (INIS)

    Hauteclocque, Adrien de; Glachant, Jean-Michel

    2009-01-01

    Long-term supply contracts often have ambiguous effects on the competitive structure, investment and consumer welfare in the long term. In the new market context, these effects are likely to be worsened and thus even harder to assess. Since liberalization and especially since the release of the Energy Sector Inquiry in early 2007, the portfolio of long-term supply contracts of the former incumbents have become a priority for review by the European Commission and the national competition authorities. It is widely believed that European Competition authorities take a dogmatic view on these contracts and systemically emphasize the risk of foreclosure over their positive effects on investment and operation. This paper depicts the methodology that has emerged in the recent line of cases and argues that this interpretation is largely misguided. It shows that a multiple-step approach is used to reduce regulation costs and balance anti-competitive effects with potential efficiency gains. However, if an economic approach is now clearly implemented, competition policy is constrained by the procedural aspect of the legal process and the remedies imposed remain open for discussion.

  2. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source

    International Nuclear Information System (INIS)

    Baillie, Devin; Aubin, J. St.; Fallone, B. G.; Steciw, S.

    2013-01-01

    Purpose: To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. Methods: An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. Results: When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV/m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show d max is at 2.15 cm for a 10 × 10 cm 2 field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. Conclusions: The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  3. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source.

    Science.gov (United States)

    Baillie, Devin; St Aubin, J; Fallone, B G; Steciw, S

    2013-04-01

    To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV∕m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show dmax is at 2.15 cm for a 10 × 10 cm(2) field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  4. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source

    Energy Technology Data Exchange (ETDEWEB)

    Baillie, Devin [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Aubin, J. St. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Steciw, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2013-04-15

    Purpose: To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. Methods: An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. Results: When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV/m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show d{sub max} is at 2.15 cm for a 10 Multiplication-Sign 10 cm{sup 2} field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. Conclusions: The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  5. The Euro

    DEFF Research Database (Denmark)

    Jespersen, Jesper

    Misunderstood macroeconomics caused the misguided and failed European monetary union with high unemployment and stagnating economic growth......Misunderstood macroeconomics caused the misguided and failed European monetary union with high unemployment and stagnating economic growth...

  6. Performance profiles of major energy producers 1979

    International Nuclear Information System (INIS)

    1981-07-01

    The purpose of this report is to examine year-to-year developments in the operations of 26 major US energy companies on a corporate level and also by major line of energy business and by major functions within each line of business. The period covered is 1977 to 1979. Comparisons of income and investment flow are featured and related to functionally allocated net investment in place. The presentation seeks to identify similarities and dissimilarities in results across lines-of-business activity or by firm size

  7. Growth of locally isolated microalga in POME to produce lipid as alternative energy sources

    Science.gov (United States)

    Elvitriana; Munir, E.; Delvian; Wahyuningsih, H.

    2018-04-01

    Purpose of this study was to find the best growth of locally isolated microalgae that produce lipids from Palm Oil Mill Effluent (POME) as an alternative energy source. Microalgae was cultivated in POME in glass vessel at room temperature using a lighting intensity of 13,000 lux and continuously aeration for 24 and 12 hours, respectively. Biomass of microalgae were analyzed daily to get their growth by spectrophotometry at 624 nm wavelength, whereas Modified Bligh and Dyer method determined lipid content. Results show that the best growth occurred at 10% inoculum with lighting cycle and aeration of 24 hours (on/off) and resulting highest biomass content of 0.99 g dry weight/L followed by the decrease of organic substances in POME. The percentage reduction of COD, BOD, TSS, and oil at POME reached above 92%, while phosphate concentration reached 89.2%. Cultivation of microalgae in POME for 12 days showed its ability to reduce organic substances and nutrients in POME and produced biomass with lipid content of 35%. These results reached to the conclusion that locally isolated microalgae has an ability to treat POME safely for environment and POME can be used as a growing medium of microalgae that produces lipids.

  8. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1989-07-01

    This Annual Report summarizes research activities carried out in 1988 in the framework of the government-funded program 'High Energy Density in Matter produced by Heavy Ion Beams'. It addresses fundamental problems of the generation of heavy ion beams and the investigation of hot dense plasmas produced by these beams. Its initial motivation and its long-term goal is the feasibility of inertial confinement fusion by intense heavy ion beams. Two outstanding events deserve to be mentioned explicity, the Heavy Ion Inertial Fusion Conference held in Darmstadt and organized by GSI end of June and the first heavy ion beam injected into the new SIS facility in November. The former event attracted more than hundred scientists for three days to the 4th Conference in this field. This symposium showed the impressive progress since the last conference in Washington two years ago. In particular the first beams in MBE-4 at LBL and results of beam plasma interaction experiments at GSI open new directions for future investigations. The ideas for non-Lionvillean injection into storage rings presented by Carlo Rubbia will bring the discussion of driver scenarios into a new stage. The latter event is a milestone for both machine and target experiments. It characterizes the beginning of the commissioning phase for the new SIS/ESR facility which will be ready for experiments at the end of this year. The commissioning of SIS is on schedule and first experiments can start at the beginning of 1990. A status report of the accelerator project is included. Theoretical activities were continued as in previous years, many of them providing guide lines for future experiments, in particular for the radiation transport aspects and for beam-plasma interaction. (orig.)

  9. On different experimental behaviour of fast secondary particles produced in 12C interactions at relativistic energies as studied with radiochemistry and in a propane chamber

    International Nuclear Information System (INIS)

    Kulakov, B.A.; Karachuk, J.; Gelovani, L.K.; Gridnev, T.G.; Sosnin, A.N.; Brandt, R.

    1998-01-01

    Energetic secondary fragments produced in the interaction of (41-44) GeV 12 C ions with copper exhibit experimentally a broader angular distribution as compared to energetic secondary fragments produced in the interactions at a lower 12 C-energy (15-25) GeV when studied with radiochemical techniques. Such a different experimental behaviour of secondary fragments produced by 12 C ions of the same two energy groups is not observed, when these secondary fragments are investigated with a propane bubble chamber. Separation of secondary particles is described

  10. A novel nuclear pyrometry for the characterization of high-energy bremsstrahlung and electrons produced in relativistic laser-plasma interactions

    International Nuclear Information System (INIS)

    Guenther, M. M.; Sonnabend, K.; Harres, K.; Roth, M.; Brambrink, E.; Vogt, K.; Bagnoud, V.

    2011-01-01

    We present a novel nuclear activation-based method for the investigation of high-energy bremsstrahlung produced by electrons above 7 MeV generated by a high-power laser. The main component is a novel high-density activation target that is a pseudo alloy of several selected isotopes with different photo-disintegration reaction thresholds. The gamma spectrum emitted by the activated targets is used for the reconstruction of the bremsstrahlung spectrum using an analysis method based on Penfold and Leiss. This nuclear activation-based technique allows for the determination of the number of bremsstrahlung photons per energy bin in a wide range energy without any anticipated fit procedures. Furthermore, the analysis method also allows for the determination of the absolute yield, the energy distribution, and the temperature of high-energy electrons at the relativistic laser-plasma interaction region. The pyrometry is sensitive to energies above 7 MeV only, i.e., this diagnostic is insensitive to any low-energy processes.

  11. A novel nuclear pyrometry for the characterization of high-energy bremsstrahlung and electrons produced in relativistic laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, M. M.; Sonnabend, K.; Harres, K.; Roth, M. [Institut fuer Kernphysik, Schlossgartenstr. 9, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Brambrink, E. [Laboratoire pour l' Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-Ecole Polytechnique-Universite Paris VI, F-91128 Palaiseau (France); Vogt, K.; Bagnoud, V. [GSI - Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt (Germany)

    2011-08-15

    We present a novel nuclear activation-based method for the investigation of high-energy bremsstrahlung produced by electrons above 7 MeV generated by a high-power laser. The main component is a novel high-density activation target that is a pseudo alloy of several selected isotopes with different photo-disintegration reaction thresholds. The gamma spectrum emitted by the activated targets is used for the reconstruction of the bremsstrahlung spectrum using an analysis method based on Penfold and Leiss. This nuclear activation-based technique allows for the determination of the number of bremsstrahlung photons per energy bin in a wide range energy without any anticipated fit procedures. Furthermore, the analysis method also allows for the determination of the absolute yield, the energy distribution, and the temperature of high-energy electrons at the relativistic laser-plasma interaction region. The pyrometry is sensitive to energies above 7 MeV only, i.e., this diagnostic is insensitive to any low-energy processes.

  12. Reaching to a featured formula to deduce the energy of the heaviest particles producing from the controlled thermonuclear fusion reactions

    Science.gov (United States)

    Majeed, Raad H.; Oudah, Osamah N.

    2018-05-01

    Thermonuclear fusion reaction plays an important role in developing and construction any power plant system. Studying the physical behavior for the possible mechanism governed energies released by the fusion products to precise understanding the related kinematics. In this work a theoretical formula controlled the general applied thermonuclear fusion reactions is achieved to calculating the fusion products energy depending upon the reactants physical properties and therefore, one can calculate other parameters governed a given reaction. By using this formula, the energy spectrum of 4He produced from T-3He fusion reaction has been sketched with respect to reaction angle and incident energy ranged from (0.08-0.6) MeV.

  13. Transportation Energy - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  14. Energy Research - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  15. Dynamical and many-body correlation effects in the kinetic energy spectra of isotopes produced in nuclear multifragmentation

    Science.gov (United States)

    Souza, S. R.; Donangelo, R.; Lynch, W. G.; Tsang, M. B.

    2018-03-01

    The properties of the kinetic energy spectra of light isotopes produced in the breakup of a nuclear source and during the de-excitation of its products are examined. The initial stage, at which the hot fragments are created, is modeled by the statistical multifragmentation model, whereas the Weisskopf-Ewing evaporation treatment is adopted to describe the subsequent fragment de-excitation, as they follow their classical trajectories dictated by the Coulomb repulsion among them. The energy spectra obtained are compared to available experimental data. The influence of the fusion cross section entering into the evaporation treatment is investigated and its influence on the qualitative aspects of the energy spectra turns out to be small. Although these aspects can be fairly well described by the model, the underlying physics associated with the quantitative discrepancies remains to be understood.

  16. Observations of visual sensations produced by Cerenkov radiation from high-energy electrons

    International Nuclear Information System (INIS)

    Steidley, K.D.; Eastman, R.M.; Stabile, R.J.

    1989-01-01

    Ten cancer patients whose eyes were therapeutically irradiated with 6-18 MeV electrons reported visual light sensations. Nine reported seeing blue light and one reported seeing white light. Controls reported seeing no light. Additionally, tests with patients ruled out the x-ray contamination of the electron beam as being important. The photon yield due to Cerenkov radiation produced by radium and its daughters for both electrons and gamma rays was calculated; it was found to account for a turn-of-the-century human observation of the radium phosphene. We conclude that the dominant mechanism of this phosphene is Cerenkov radiation, primarily from betas. From our own patient data, based on the color seen and the Cerenkov production rates, we conclude that the dominant mechanism is Cerenkov radiation and that high-energy electrons are an example of particle induced visual sensations

  17. Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries

    International Nuclear Information System (INIS)

    Ebohon, Obas John; Ikeme, Anthony Jekwu

    2006-01-01

    The need to decompose CO 2 emission intensity is predicated upon the need for effective climate change mitigation and adaptation policies. Such analysis enables key variables that instigate CO 2 emission intensity to be identified while at the same time providing opportunities to verify the mitigation and adaptation capacities of countries. However, most CO 2 decomposition analysis has been conducted for the developed economies and little attention has been paid to sub-Saharan Africa. The need for such an analysis for SSA is overwhelming for several reasons. Firstly, the region is amongst the most vulnerable to climate change. Secondly, there are disparities in the amount and composition of energy consumption and the levels of economic growth and development in the region. Thus, a decomposition analysis of CO 2 emission intensity for SSA affords the opportunity to identify key influencing variables and to see how they compare among countries in the region. Also, attempts have been made to distinguish between oil and non-oil-producing SSA countries. To this effect a comparative static analysis of CO 2 emission intensity for oil-producing and non oil-producing SSA countries for the periods 1971-1998 has been undertaken, using the refined Laspeyres decomposition model. Our analysis confirms the findings for other regions that CO 2 emission intensity is attributable to energy consumption intensity, CO 2 emission coefficient of energy types and economic structure. Particularly, CO 2 emission coefficient of energy use was found to exercise the most influence on CO 2 emission intensity for both oil and non-oil-producing sub-Saharan African countries in the first sub-interval period of our investigation from 1971-1981. In the second subinterval of 1981-1991, energy intensity and structural effect were the two major influencing factors on emission intensity for the two groups of countries. However, energy intensity effect had the most pronounced impact on CO 2 emission

  18. Producing energy without greenhouse effect gases: the CEA action

    International Nuclear Information System (INIS)

    2008-01-01

    Major actor in the domain of new energy technologies, the CEA manages the french research on the hydrogen and the fuel cells. It is also implied with INES (National Institute for the Solar Energy) in the photovoltaic and thermal solar. With the IFP (French Petroleum Institute), it manages research on biofuels. Of course the thermonuclear fusion, for the development of the energy of the future, is in its research program too. This information document presents the possibilities of these energies and the associated research programs. (A.L.B.)

  19. Producing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.; Jung, R.G.; Applebaum, D.C.; Fairand, B.P.; Gallagher, W.J.

    1977-01-01

    A method of producing x-rays by directing radiant energy from a laser onto a target is described. Conversion efficiency of at least about 3 percent is obtained by providing the radiant energy in a low-power precursor pulse of approximately uniform effective intensity focused onto the surface of the target for about 1 to 30 nanoseconds so as to generate an expanding unconfined coronal plasma having less than normal solid density throughout and comprising a low-density (underdense) region wherein the plasma frequency is less than the laser radiation frequency and a higher-density (overdense) region wherein the plasma frequency is greater than the laser radiation frequency and, about 1 to 30 nanoseconds after the precursor pulse strikes the target, a higher-power main pulse focused onto the plasma for about 10 -3 to 30 nanoseconds and having such power density and total energy that the radiant energy is absorbed in the underdense region and conducted into the overdense region to heat it and thus to produce x-rays therefrom with the plasma remaining substantially below normal solid density and thus facilitating the substantial emission of x-rays in the form of spectral lines arising from nonequilibrium ionization states

  20. Study of Muon Pairs and Vector Mesons Produced in High Energy Pb-Pb Interactions

    CERN Multimedia

    Karavicheva, T; Atayan, M; Bordalo, P; Constans, N P; Gulkanyan, H; Kluberg, L

    2002-01-01

    %NA50 %title\\\\ \\\\The experiment studies dimuons produced in Pb-Pb and p-A collisions, at nucleon-nucleon c.m. energies of $ \\sqrt{s} $ = 18 and 30 GeV respectively. The setup accepts dimuons in a kinematical range roughly defined as $0.1$ $1 GeV/c$, and stands maximal luminosity (5~10$^{7}$~Pb ions and 10$^7$ interactions per burst). The physics includes signals which probe QGP (Quark-Gluon Plasma), namely the $\\phi$, J/$\\psi$ and $\\psi^\\prime$ vector mesons and thermal dimuons, and reference signals, namely the (unseparated) $\\rho$ and $\\omega$ mesons, and Drell-Yan dimuons. The experiment is a continuation, with improved means, of NA38, and expands its study of {\\it charmonium suppression} and {\\it strangeness enhancement}.\\\\ \\\\The muons are measured in the former NA10 spectrometer, which is shielded from the hot target region by a beam stopper and absorber wall. The muons traverse 5~m of BeO and C. The impact parameter is determined by a Zero Degree Calorimeter (Ta with silica fibres). Energy dissipation ...

  1. Modeling of X-ray Images and Energy Spectra Produced by Stepping Lightning Leaders

    Science.gov (United States)

    Xu, Wei; Marshall, Robert A.; Celestin, Sebastien; Pasko, Victor P.

    2017-11-01

    Recent ground-based measurements at the International Center for Lightning Research and Testing (ICLRT) have greatly improved our knowledge of the energetics, fluence, and evolution of X-ray emissions during natural cloud-to-ground (CG) and rocket-triggered lightning flashes. In this paper, using Monte Carlo simulations and the response matrix of unshielded detectors in the Thunderstorm Energetic Radiation Array (TERA), we calculate the energy spectra of X-rays as would be detected by TERA and directly compare with the observational data during event MSE 10-01. The good agreement obtained between TERA measurements and theoretical calculations supports the mechanism of X-ray production by thermal runaway electrons during the negative corona flash stage of stepping lightning leaders. Modeling results also suggest that measurements of X-ray bursts can be used to estimate the approximate range of potential drop of lightning leaders. Moreover, the X-ray images produced during the leader stepping process in natural negative CG discharges, including both the evolution and morphological features, are theoretically quantified. We show that the compact emission pattern as recently observed in X-ray images is likely produced by X-rays originating from the source region, and the diffuse emission pattern can be explained by the Compton scattering effects.

  2. The Association of Petroleum Producers of Africa (APPA): an instrument of cooperation for the development of energy in Africa

    International Nuclear Information System (INIS)

    Semassoussi, M.H.

    1996-01-01

    The role and contribution of the Association of Petroleum Producers of Africa (APPA) to the cooperative development of energy in Africa were described. APPA was created in Lagos in 1987 by eight founding countries, i.e. Algeria, Gabon, Libya, Nigeria, Angola, Benin, Cameroun and Congo. Since then, the Ivory Coast, Egypt, Zaire and Equatorial Guinea have joined APPA. The objectives of APPA are primarily technical. They are to promote amongst its members commercial strategies, an understanding of the energy needs of Africa, and technical collaboration to improve the national energy needs definition in Africa. Current petroleum and natural gas reserves and crude oil and refined products production for the African continent were also reviewed

  3. Fight with energy producers is a fight for the euro

    International Nuclear Information System (INIS)

    Mucka, F.

    2006-01-01

    The battle between the cabinet and companies producing and distributing energy is not about meeting pre-election promises, i.e. decreasing the profits of companies in favour of consumers. The results of negotiations between the cabinet and companies will have a direct impact on Slovakians chances to adopt the common European currency by the planned deadline. Although in the pre-election period the Smer political party did not consider adoption of the euro in 2009 as a priority, the situation changed in the summer. In July, the Prime Minister supported the idea for the first time. His repeated statements supporting the plan to adhere to the original deadline were a part of his goal to stop the fall of the SKK exchange rate. Of all the Maastricht criteria applicable to Slovakia, the inflation criterion seems to be the most difficult one to meet assuming the cabinet keeps its word and government expenditure does not exceed its income by more than is permitted. It is more difficult to keep inflation below the set level than to meet the budget criterion. If Slovakia wants to join the monetary union on 1 January 2009, as of the end of first quarter 2007 inflation will have to be far lower than the current level. (author)

  4. Kinetic energy of ions produced with first-, second-, and multi-shot femtosecond laser ablation on a solid surface

    International Nuclear Information System (INIS)

    Kobayashi, Tohru; Kato, Toshiyuki; Kurata-Nishimura, Mizuki; Matsuo, Yukari; Kawai, Jun; Motobayashi, Tohru; Hayashizaki, Yoshihide

    2007-01-01

    We report that the kinetic energy of samarium (Sm) atom and Sm + ion produced by femtosecond laser ablation of solid samarium is strongly dependent on the number of ablation laser shots in the range from 1 to 10. By ablating the fresh surface (i.e. 1st shot), we find the kinetic energy of both Sm and Sm + ion to be the largest (24 and 250 eV, respectively). Almost 10 times larger kinetic energy of Sm + ion than that of Sm clearly indicates the contribution of Coulomb explosion in the acceleration process. From the second shot, kinetic energies of Sm and Sm + ion are lower than those of the first shot and almost constant (ca. 12 and 80 eV, respectively). This behaviour suggests the change in the nature of the solid surface after femtosecond laser ablation, which can be explained by the amorphization of ablated sample surface reported in recent studies

  5. Energy Fact Sheets - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  6. Energy shortage: a produced crisis. Energieknappheit - die gemachte Krise

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Five articles of the central organ of the KPD/ML, the Roter Morgen, and a declaration of the central committee of th KPD/ML are published here. The articles deal with: raw materials-utilization and deposits; the oil-multis - the world's greatest financial power; the energy industry of the FRG; nuclear power - the new trick of the old bosses; resisting the bulling of oil prices, securing energy supply on the basis of coal. The articles are clearly combative and against capitalism, energy concerns, and oil-multis. The energy crisis is declared to be a problem of capitalism which can only be solved by abolishing the capitalist system and its laws of profit.

  7. Energy shortage: a produced crisis. Energieknappheit - die gemachte Krise

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Five articles of the central organ of the KPD/ML, the Roter Morgen, and a declaration of the central committee of th KPD/ML are published here. The articles deal with: raw materials-utilization and deposits; the oil-multis - the world's greatest financial power; the energy industry of the FRG; nuclear power - the new trick of the old bosses; resisting the bulling of oil prices, securing energy supply on the basis of coal. The articles are clearly combative and against capitalism, energy concerns, and oil-multis. The energy crisis is declared to be a problem of capitalism which can only be solved by abolishing the capitalist system and its laws of profit.

  8. Petroleum term markets and OPEC producers countries

    International Nuclear Information System (INIS)

    Bensarsa, F.

    1994-01-01

    The situation of petroleum producers countries in front of term markets is described. With an economics liberalization, policy configuration changing the energetic balance (increasing of american imports, of asiatic demand and developing countries; decreasing of russian production), a more efficient technology, a right management of energetic resources with energy economy, renewable energies and non polluting energies, it is difficult for producers countries to resist at the pressure of financing tools, more and more modern and efficient as they are term markets

  9. On the idea of low-energy nuclear reactions in metallic lattices by producing neutrons from protons capturing "heavy" electrons

    Science.gov (United States)

    Tennfors, Einar

    2013-02-01

    The present article is a critical comment on Widom and Larsens speculations concerning low-energy nuclear reactions (LENR) based on spontaneous collective motion of protons in a room temperature metallic hydride lattice producing oscillating electric fields that renormalize the electron self-energy, adding significantly to the effective electron mass and enabling production of low-energy neutrons. The frequency and mean proton displacement estimated on the basis of neutron scattering from protons in palladium and applied to the Widom and Larsens model of the proton oscillations yield an electron mass enhancement less than one percent, far below the threshold for the proposed neutron production and even farther below the mass enhancement obtained by Widom and Larsen assuming a high charge density. Neutrons are not stopped by the Coulomb barrier, but the energy required for the neutron production is not low.

  10. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material

  11. Energy and Exergy Analyses of a New Combined Cycle for Producing Electricity and Desalinated Water Using Geothermal Energy

    Directory of Open Access Journals (Sweden)

    Mehri Akbari

    2014-04-01

    Full Text Available A new combined cogeneration system for producing electrical power and pure water is proposed and analyzed from the viewpoints of thermodynamics and economics. The system uses geothermal energy as a heat source and consists of a Kalina cycle, a LiBr/H2O heat transformer and a water purification system. A parametric study is carried out in order to investigate the effects on system performance of the turbine inlet pressure and the evaporator exit temperature. For the proposed system, the first and second law efficiencies are found to be in the ranges of 16%–18.2% and 61.9%–69.1%, respectively. For a geothermal water stream with a mass flow rate of 89 kg/s and a temperature of 124 °C, the maximum production rate for pure water is found to be 0.367 kg/s.

  12. Possible involvement of mitochondrial energy-producing ability in the development of right ventricular failure in monocrotaline-induced pulmonary hypertensive rats.

    Science.gov (United States)

    Daicho, Takuya; Yagi, Tatsuya; Abe, Yohei; Ohara, Meiko; Marunouchi, Tetsuro; Takeo, Satoshi; Tanonaka, Kouichi

    2009-09-01

    The present study was undertaken to explore the possible involvement of alterations in the mitochondrial energy-producing ability in the development of the right ventricular failure in monocrotaline-administered rats. The rats at the 6th week after subcutaneous injection of 60 mg/kg monocrotaline revealed marked myocardial hypertrophy and fibrosis, that is, severe cardiac remodeling. The time-course study on the cardiac hemodynamics of the monocrotaline-administered rat by the cannula and echocardiographic methods showed a reduction in cardiac double product, a decrease in cardiac output index, and an increase in the right ventricular Tei index, suggesting that the right ventricular failure was induced at the 6th week after monocrotaline administration in rats. The mitochondrial oxygen consumption rate of the right ventricular muscle isolated from the monocrotaline-administered animal was decreased, which was associated with a reduction in myocardial high-energy phosphates. Furthermore, the decrease in mitochondrial oxygen consumption rate was inversely related to the increase in the right ventricular Tei index of the monocrotaline-administered rats. These results suggest that impairment of the mitochondrial energy-producing ability is involved in the development of the right ventricular failure in monocrotaline-induced pulmonary hypertensive rats.

  13. Adaptive Neuro-Fuzzy Inference Systems as a Strategy for Predicting and Controling the Energy Produced from Renewable Sources

    Directory of Open Access Journals (Sweden)

    Otilia Elena Dragomir

    2015-11-01

    Full Text Available The challenge for our paper consists in controlling the performance of the future state of a microgrid with energy produced from renewable energy sources. The added value of this proposal consists in identifying the most used criteria, related to each modeling step, able to lead us to an optimal neural network forecasting tool. In order to underline the effects of users’ decision making on the forecasting performance, in the second part of the article, two Adaptive Neuro-Fuzzy Inference System (ANFIS models are tested and evaluated. Several scenarios are built by changing: the prediction time horizon (Scenario 1 and the shape of membership functions (Scenario 2.

  14. Misguided guidelines for managing labor.

    Science.gov (United States)

    Cohen, Wayne R; Friedman, Emanuel A

    2015-06-01

    In a recent review we expressed concerns about new guidelines for the assessment and management of labor recommended jointly by the American Congress of Obstetricians and Gynecologists (ACOG) and the Society for Maternal-Fetal Medicine (SMFM). These guidelines are based heavily on a new concept of how cervical dilatation and fetal descent progress, derived from the work of Zhang et al. In their Viewpoint article they have addressed, but not allayed, the concerns we described in our review. We assert that the dilatation curve promulgated by Zhang et al cannot be reconciled with direct clinical observation. Even if they were correct, however, it still does not follow that the ACOG/SMFM guidelines should recommend replacing the coherent system of identifying and managing labor aberrations described by Friedman. That system is grounded in well-established clinical principles based on decades of use and the objectively documented association of some labor abnormalities with poor fetal and maternal outcomes. Recommendations for new clinical management protocols should require the demonstration of superior outcomes through extensive, preferably prospective, assessment. Using untested guidelines for the management of labor may adversely affect women and children. Even if those guidelines were to reduce the currently excessive cesarean delivery rate, the price of that benefit is likely to be a trade-off in harm to parturients and their offspring. The nature and degree of that harm needs to be documented before considering adoption of the guidelines. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Energy from biomass. Energie uit biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Spaa, J H

    1990-11-01

    In view of the disadvantages of the use of fossil fuels in producing energy it is worth-while to reconsider the possibilities of biomass to produce energy. Therefore it is necessary to pay attention to production methods, production costs and the consequences of the use of biomass energy for the consumer. Also agreements have to be formulated by governments to control the production and the prices of biomass. Some possibilities to develop biomass production techniques in the Netherlands are mentioned. The results of these developments can be used by developing countries to produce energy from biomass in a more effective and cheaper way than is the case now. 16 refs., 2 ills.

  16. A Guide to Energy Savings - For the Poultry Producer.

    Science.gov (United States)

    Benson, Verel W.

    This booklet gives a brief overview of energy use in poultry operations and gives examples of cutting costs of brooding, lighting, ventilation, feeding, watering, waste removal, housing design, construction and maintenance. Finally, energy use recordkeeping is discussed. (BB)

  17. Developing an energy efficient steam reforming process to produce hydrogen from sulfur-containing fuels

    Science.gov (United States)

    Simson, Amanda

    Hydrogen powered fuel cells have the potential to produce electricity with higher efficiency and lower emissions than conventional combustion technology. In order to realize the benefits of a hydrogen fuel cell an efficient method to produce hydrogen is needed. Currently, over 90% of hydrogen is produced from the steam reforming of natural gas. However, for many applications including fuel cell vehicles, the use of a liquid fuel rather than natural gas is desirable. This work investigates the feasibility of producing hydrogen efficiently by steam reforming E85 (85% ethanol/15% gasoline), a commercially available sulfur-containing transportation fuel. A Rh-Pt/SiO2-ZrO2 catalyst has demonstrated good activity for the E85 steam reforming reaction. An industrial steam reforming process is often run less efficiently, with more water and at higher temperatures, in order to prevent catalyst deactivation. Therefore, it is desirable to develop a process that can operate without catalyst deactivation at more energy efficient conditions. In this study, the steam reforming of a sulfur-containing fuel (E85) was studied at near stoichiometric steam/carbon ratios and at 650C, conditions at which catalyst deactivation is normally measured. At these conditions the catalyst was found to be stable steam reforming a sulfur-free E85. However, the addition of low concentrations of sulfur significantly deactivated the catalyst. The presence of sulfur in the fuel caused catalyst deactivation by promoting ethylene which generates surface carbon species (coke) that mask catalytic sites. The amount of coke increased during time on stream and became increasingly graphitic. However, the deactivation due to both sulfur adsorption and coke formation was reversible with air treatment at 650°C. However, regenerations were found to reduce the catalyst life. Air regenerations produce exotherms on the catalyst surface that cause structural changes to the catalyst. During regenerations the

  18. Comments on pulses of characteristic energy produced in solar flare detonations and its possible application to other astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, P [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia e Astrofisica

    1977-06-01

    A qualitative discussion of physical conditions at neutral sheets was developed in an attempt to explain the repetitive pulsed energy-production mechanism, which has been suggested for solar flares. A characteristic energy per pulse appears to depend critically on the magnetic field strength and dipole length applied to a high temperature plasma, and seem to be regulated by discrete characteristic relative changes in the magnetic moment, following Syrovatskii's model. Discrete energy pulses are produced when neutral sheet thickness approaches to critical values, proportional to the characteristic relative changes in the magnetic moment. Repetition of pulses may occur in multi-sheet configurations as magnetically complex active centres, or at a single sheet where the total system energy change exceeds the critical conditions. The time-scale of the pulsed energy release may be explained by the tearing mode instability, and the repetition time-scale might be understood by the Sweet mechanism in limit conditions. The mechanism might have attractive applications in other high temperature astrophysical plasmas. An empirical relation is derived for pulses' energy prediction, in orders of magnitude, and some possible tests were suggested. An attempt was made to interpret soft ..gamma..-ray events of cosmic origin.

  19. Comments on pulses of characteristic energy produced in solar flare detonations and its possible application to other astrophysical plasmas

    International Nuclear Information System (INIS)

    Kaufmann, P.

    1977-01-01

    A qualitative discussion of physical conditions at neutral sheets was developed in an attempt to explain the repetitive pulsed energy-production mechanism, which has been suggested for solar flares. A characteristic energy per pulse appears to depend critically on the magnetic field strength and dipole length applied to a high temperature plasma, and seem to be regulated by discrete characteristic relative changes in the magnetic moment, following Syrovatskii's model. Discrete energy pulses are produced when neutral sheet thickness approaches to critical values, proportional to the characteristic relative changes in the magnetic moment. Repetition of pulses may occur in multi-sheet configurations as magnetically complex active centres, or at a single sheet where the total system energy change exceeds the critical conditions. The time-scale of the pulsed energy release may be explained by the tearing mode instability, and the repetition time-scale might be understood by the Sweet mechanism in limit conditions. The mechanism might have attractive applications in other high temperature astrophysical plasmas. An empirical relation is derived for pulses' energy prediction, in orders of magnitude, and some possible tests were suggested. An attempt was made to interpret soft γ-ray events of cosmic origin. (Auth.)

  20. Electromagnetic cascades produced by gamma-quanta with the energy Eγ=100-3500 MeV

    International Nuclear Information System (INIS)

    Slowinski, B.

    1990-01-01

    Fluctuations of the electron ionization loss (IL) in electromagnetic showers produced by gamma-quanta of energy E γ between 100 and 3500 MeV have been studied using pictures of the 180 l xenon bubble chamber of ITEP (Moscow). The distribution of the standard deviation σ A of the part A of the IL released along the shower axis and in its lateral direction was obtained and found to be approximately independent of Eγ at Eγ≥500 MeV when expressed as a fuction of A and normalized to maximum value of the σ A in the case of the lateral shower development. The relative spread of the average longitudinal and lateral e.m. shower dimensions are discussed too. 18 refs.; 4 figs

  1. Electronic emission produced by light projectiles at intermediate energies

    International Nuclear Information System (INIS)

    Bernardi, G.C.

    1989-01-01

    Two aspects of the electronic emission produced by light projectiles of intermediate energies have been studied experimentally. In the first place, measurements of angular distributions in the range from θ = 0 deg -50 deg induced by collisions of 50-200 keV H + incident on He have been realized. It was found that the double differential cross section of electron emission presents a structure focussed in the forward direction and which extends up to relatively large angles. Secondly, the dependence of the double differential cross section on the projectile charge was studied using H + and He 3 2+ projectiles of 50 and 100 keV/amu incident on He. Strong deviations from a constant scaling factor were found for increasing projectile charge. The double differential cross sections and the single differential cross sections as a function of the emission angle, and the ratios of the emissions induced by He 3 2+ and H + at equal incident projectile velocities are compared with the 'Continuum Distorted Wave-Eikonal Initial State' (CDW-EIS) approximation and the 'Classical Trajectory Monte Carlo' (CTMC) method. Both approximations, in which the potential of the projectile exercises a relevant role, reproduce the general aspects of the experimental results. An electron analyzer and the corresponding projectile beam line has been designed and installed; it is characterized by a series of properties which are particularly appropriate for the study of double differential electronic emission in gaseous as well as solid targets. The design permits to assure the conditions to obtain a well localized gaseous target and avoid instrumental distortions of the measured distributions. (Author) [es

  2. 5. world inventory of the electric power produced by renewable energy

    International Nuclear Information System (INIS)

    2004-03-01

    This fifth edition of the electric power production in the world by renewable energies sources, has been realized by the renewable energies observatory for ''Electricite de France''. It proposes an evaluation of the situation, providing data and analysis for each renewable energy sources, hydro electric power, wind energy, biomass, geothermal energy, photovoltaic and the green energy. (A.L.B.)

  3. Energy pattern and conservations of condiment produced from soybean (Glycine max)

    OpenAIRE

    Ismaila B. Anjorin; Rahman Akinoso; Mayowa S. Sanusi

    2018-01-01

    Energy being one of the largest operating expenses in most organizations especially manufacturing and processing industries leading to considerable scope for energy conservation and hence cost. Information on energy utilization and conservation pattern were obtained based on time taken, number of person involved and sources of energy using standard energy equations. A total of 445.40 ± 17.32MJkg-1 where thermal energy (420MJ ≈ 94%) and manual energy (25.40MJ ≈ 6%) were the only forms of energ...

  4. Anisotropy in angular distributions of 238U fission fragments by photons, produced in high energy electron interaction with Si monocrystal

    International Nuclear Information System (INIS)

    Kasilov, V.I.; Lapin, N.N.

    1981-01-01

    An enhancement is detected under the angle of 90 deg in the fission fragment yield from 238 U nuclei produced by photons emitted by high-energy electrons passing through a silicon monocrystal. The results enable one to select the most optimal conditions to obtain maximal yields of nuclear particles [ru

  5. Spectral measurements of few-electron uranium ions produced and trapped in a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    Measurements of 2s l/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole and electric quadrupole transitions in U 82+ through U 89+ have been made with a high-resolution crystal spectrometer that recorded the line radiation from stationary ions produced and trapped in a high-energy electron beam ion trap. From the measurements we infer -39.21 ± 0.23 eV for the QED contribution to the 2s 1/2 -2p 3/2 transition energy of lithiumlike U 89+ . A comparison between our measurements and various computations illustrates the need for continued improvements in theoretical approaches for calculating the atomic structure of ions with two or more electrons in the L shell

  6. HIGH ENERGY NEUTRINOS PRODUCED IN THE ACCRETION DISKS BY NEUTRONS FROM NUCLEI DISINTEGRATED IN THE AGN JETS

    Energy Technology Data Exchange (ETDEWEB)

    Bednarek, W., E-mail: bednar@uni.lodz.pl [Department of Astrophysics, The University of Lodz, 90-236 Lodz, ul. Pomorska 149/153 (Poland)

    2016-12-20

    We investigate the consequences of acceleration of nuclei in jets of active galaxies not far from the surface of an accretion disk. The nuclei can be accelerated in the re-connection regions in the jet and/or at the jet boundary, between the relativistic jet and its cocoon. It is shown that the relativistic nuclei can efficiently fragment onto specific nucleons in collisions with the disk radiation. Neutrons, directed toward the accretion disk, take a significant part of energy from the relativistic nuclei. These neutrons develop a cascade in the dense accretion disk. We calculate the neutrino spectra produced in such a hadronic cascade within the accretion disk. We propose that the neutrinos produced in such a scenario, from the whole population of super-massive black holes in active galaxies, can explain the extragalactic neutrino background recently measured by the IceCube neutrino detector, provided that a 5% fraction of galaxies have an active galactic nucleus and a few percent of neutrons reach the accretion disk. We predict that the neutrino signals in the present neutrino detectors, produced in terms of such a model, will not be detectable even from the nearby radio galaxies similar to M87.

  7. Hydrophilic functionalized silicon nanoparticles produced by high energy ball milling

    Science.gov (United States)

    Hallmann, Steffen

    The mechanochemical synthesis of functionalized silicon nanoparticles using High Energy Ball Milling (HEBM) is described. This method facilitates the fragmentation of mono crystalline silicon into the nanometer regime and the simultaneous surface functionalization of the formed particles. The surface functionalization is induced by the reaction of an organic liquid, such as alkynes and alkenes with reactive silicon sites. This method can be applied to form water soluble silicon nanoparticles by lipid mediated micelle formation and the milling in organic liquids containing molecules with bi-functional groups, such as allyl alcohol. Furthermore, nanometer sized, chloroalkyl functionalized particles can be synthesized by milling the silicon precursor in the presence of an o-chloroalkyne with either alkenes or alkynes as coreactants. This process allows tuning of the concentration of the exposed, alkyl linked chloro groups, simply by varying the relative amounts of the coreactant. The silicon nanoparticles that are formed serve as the starting point for a wide variety of chemical reactions, which may be used to alter the surface properties of the functionalized nanoparticles. Finally, the use of functionalized silicon particles for the production of superhydrophobic films is described. Here HEBM proves to be an efficient method to produce functionalized silicon particles, which can be deposited to form a stable coating exhibiting superhydrophobic properties. The hydrophobicity of the silicon film can be tuned by the milling time and thus the resulting surface roughness of the films.

  8. Renewable energies - Industrials, produce your own electricity

    International Nuclear Information System (INIS)

    Moragues, Manuel

    2016-01-01

    As a public bidding has been launched at the initiative of the French government on self-consumption in industrial and office building sites, this article discusses this issue of self-production and consumption, and its perspectives. Professionals and individuals could be interested in the recent evolutions as it was before more interesting to sell the produced photovoltaic electricity to EDF than to consume it. Some industries (warehouses, supermarkets, oil production, and airport) have already implemented this solution, and its development could boost the use of photovoltaic panels

  9. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    International Nuclear Information System (INIS)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Ikehara, Yuzuru; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki

    2016-01-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O 2 /He or N 2 /He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation. (paper)

  10. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    Science.gov (United States)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki; Ikehara, Yuzuru

    2016-10-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O2/He or N2/He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation.

  11. Method of producing molybdenum-99

    Science.gov (United States)

    Pitcher, Eric John

    2013-05-28

    Method of producing molybdenum-99, comprising accelerating ions by means of an accelerator; directing the ions onto a metal target so as to generate neutrons having an energy of greater than 10 MeV; directing the neutrons through a converter material comprising techentium-99 to produce a mixture comprising molybdenum-99; and, chemically extracting the molybdenum-99 from the mixture.

  12. On the dependance of the ''normalized multiplicity'' of particles produced in proton-nucleus interactions on the primary energy

    International Nuclear Information System (INIS)

    Babecki, J.

    1975-01-01

    The mean ''normalized multiplicities'' of particles produced in p-nucleus interactions: with the leading particles (R 1 ) and without them (R 2 ) were calculated from the emulsion data. The independence of R 2 of the primary energy E 0 were stated in very wide interval of E 0 from 6.2 to thousands of GeV. R 2 is approximately equal to the mean number of collisions of the primary particle in the nucleus. (author)

  13. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  14. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy – A life cycle perspective

    NARCIS (Netherlands)

    Vries, de J.W.; Vinken, T.M.W.J.; Hamelin, L.; Boer, de I.J.M.

    2012-01-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for

  15. FARM-PRODUCED ENERGY OF AGRICULTURAL WASTE ORIGIN IMPROVES ITS PROFITABILITY

    Directory of Open Access Journals (Sweden)

    Karol Węglarzy

    2014-03-01

    Full Text Available The most important tasks of Polish agriculture in 2014-2020 perspective will include maintaining food quality and safety, and orientation toward the part of the production of renewable energy, especially using biomass. Processing of biomass in anaerobic methane fermentation of agricultural biogas solves the problem of waste storage, reducing greenhouse gas emissions, especially high concentrations of methane, coming from the fermentation of slowly stored biomass. The economic aspect explains the popularity of biogas works; it is related to diversification of agricultural production through the introduction of a qualitatively new production of green energy from biogas, which significantly affects the profitability of agricultural production and will be an alternative for some companies, or large farms as a source of additional income and energy security. Energy generated in small biogas plants can fully protect the energy needs of a small farm releasing it from external sources and generating savings. For installations larger surplus may provide an additional source of farms’ income.

  16. Renewable energies - China, first producer of 'green' electricity by 2017

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    While being the biggest polluter and coal consumer in the world, China possess seven Chinese companies among the ten first solar array manufacturers, and some leaders in the wind energy and offshore wind energy sector. This article outlines the development of 'green' electricity production in China. This sector will exhibit a much greater growth rate than that foreseen in other countries during the next years: five times that in the USA, seven times that in India, eight times that in Germany, and eighteen times that in France. This progression relies on hydroelectricity and wind energy for 90 per cent. The article also comments the development of wind energy capacity in China at a higher rate than in Western countries

  17. Nuclear energy and its synergies with renewable energies

    International Nuclear Information System (INIS)

    Carre, F.; Mermilliod, N.; Devezeaux De Lavergne, J.G.; Durand, S.

    2011-01-01

    France has the ambition to become a world leader in both nuclear industry and in renewable energies. 3 types of synergies between nuclear power and renewable energies are highlighted. First, nuclear power can be used as a low-carbon energy to produce the equipment required to renewable energy production for instance photovoltaic cells. Secondly, to benefit from the complementary features of both energies: continuous/intermittency of the production, centralized/local production. The future development of smart grids will help to do that. Thirdly, to use nuclear energy to produce massively hydrogen from water and synthetic fuels from biomass. (A.C.)

  18. Valorization of the energy potential of fossil and fissile fuels for heat production: dual-purpose power plants and heat-producing nuclear reactors

    International Nuclear Information System (INIS)

    Lavite, Michel.

    1975-07-01

    The heat market is analyzed briefly within the French context: present structures and characteristics of the market, current means of heat production, predictable trend of the demand. The possible applications of nuclear energy to heat production, through the agency of combined electricity-steam stations or heat-producing stations, are then examined. Nuclear solutions are compared with others from the technico-economic and ecological wiewpoints and an estimate fo their respective impacts on the energy balance is attempted [fr

  19. Evaluating environmental consequences of producing herbaceous crops for bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, S.B.

    1995-12-31

    The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy`s Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO{sub 2} emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels.

  20. Energy-efficient biogas reforming process to produce syngas: The enhanced methane conversion by O_2

    International Nuclear Information System (INIS)

    Chen, Xuejing; Jiang, Jianguo; Li, Kaimin; Tian, Sicong; Yan, Feng

    2017-01-01

    Highlights: • The effect of O_2 content from 0 to 15% on Ni/SiO_2 are studied for biogas reforming. • The presence of O_2 in biogas improves CH_4 conversion and stability of biogas reforming. • An obvious carbon-resistance effect is observed due to the carbon gasification effect of O_2 in biogas. • The presence of O_2 in biogas greatly helps inhibit the catalyst sintering. - Abstract: We report an energy-efficient biogas reforming process with high and stable methane conversions by O_2 presence. During this biogas reforming process, the effects of various O_2 concentrations in biogas on initial conversions and stability at various temperatures on a Ni/SiO_2 catalyst were detailed investigated. In addition, theoretical energy consumption and conversions were calculated based on the Gibbs energy minimization method to compare with experimental results. Carbon formation and sintering during the reforming process were characterized by thermal gravity analysis, the Brunauer-Emmett-Teller method, X-ray diffraction, and high-resolution transmission electron microscopy to investigate the feasibility of applying this process to an inexpensive nickel catalyst. The results showed that 5% O_2 in biogas improved the CH_4 conversion and stability of biogas reforming. The enhancement of stability was attributed to the inhibited sintering, our first finding, and the reduced carbon deposition at the same time, which sustained a stable conversion of CH_4, and proved the applicability of base Ni catalyst to this process. Higher O_2 concentrations (⩾10%) in biogas resulted in severe decrease in CO_2 conversion and greater H_2O productivity. Our proposed biogas reforming process, with a high and stable conversion of CH_4, reduced energy input, and the applicability to inexpensive base metal catalyst, offers a good choice for biogas reforming with low O_2 concentrations (⩽5%) to produce syngas with high energy efficiency.

  1. Energy-Water Nexus | Energy Analysis | NREL

    Science.gov (United States)

    Nexus Energy-Water Nexus Water is required to produce energy. Energy is required to pump, treat , and transport water. The energy-water nexus examines the interactions between these two inextricably linked sectors. A cartoon showing the nexus of water and energy using red and blue arrows to indicate the

  2. The incredible challenge of producing energy in a deeply changing world

    International Nuclear Information System (INIS)

    Mestrallet, Gerard

    2015-01-01

    Major trends in the energy sector - emerging countries thirsty for energy, unconventional fossil fuels (a development roiling geopolitics around the globe) or the deep alterations occurring in the EU's energy policy - are forcing professionals to design a new planetary model. This sector is anticipating trends, innovating and thus proving its ability to change. These trends arise locally in response to customer needs, whether of businesses or private persons. Plans for the future will be oriented by the uses to which energy will be put. There will be room for decentralized, renewable forms of energy and related services; and priority will go to reducing the insecurity of the energy supply. The big challenge we now face is to cope with changes in the sources of energy and in related techniques and, too, with geopolitical trends

  3. Relationship between Statistical and Dynamical properties of fragments produced at Fermi Energy in Heavy ion collisions: ng

    International Nuclear Information System (INIS)

    Lehaut, G.

    2009-10-01

    The properties of the fragments produced in heavy-ion collisions around the Fermi energy have been studied through the isospin degree of freedom. First, a theoretical approach based on a lattice gas model with two types of particles (neutron,proton) interacting by an isospin dependent and Coulomb interactions was developed. The study of the phase diagram shows that this system presents three different phases (liquid, gas, fission). In the liquid and gas phases, the energy of the system was described by a density functional, where the temperature dependence acts only on the density. The symmetry term of this functional was related to the isotopic content of the biggest fragment via an iso-scaling analysis. Secondly a systematic study of the stopping power of the nuclear matter and isospin equilibration of light particles in the most violent collisions was carried out using the experimental data taken by the INDRA multidetector at GANIL and GSI. Two stopping power regimes appear; at low energy (< 40 MeV/A) the stopping power decreases with increasing beam energy, whereas at high energy the stopping power is governed by the quantity of matter along the beam direction. An other study has been focused on the Xe+Sn reaction at 32 and 45 MeV/A with different isospin systems. The separation of three different reaction mechanisms by use of a principal component analysis allowed us to observe that the isospin content of light particles seems to be independent on the mechanism, but depends on the violence of the collision (i.e. impact parameter). (author)

  4. Geothermal energy

    OpenAIRE

    Manzella A.

    2017-01-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. Fo...

  5. Radioisotopes produced by neutron irradiation of food

    International Nuclear Information System (INIS)

    Albright, S.; Seviour, R.

    2016-01-01

    The use of neutrons for cargo interrogation has the potential to drastically improve threat detection. Previous research has focussed on the production of "2"4Na, based on the isotopes produced in pharmaceuticals and medical devices. For both the total activity and the ingestion dose we show that a variety of isotopes contribute and that "2"4Na is only dominant under certain conditions. The composition of the foods has a strong influence on the resulting activity and ingestion dose suggesting that the pharmaceuticals and medical devices considered initially are not a viable analogue for foodstuffs. There is an energy dependence to the isotopes produced due to the cross-sections of different reactions varying with neutron energy. We show that this results in different isotopes dominating the ingestion dose at different energies, which has not been considered in the previous literature. - Highlights: • We show that neutron interrogation of food can produce many radioisotopes. • We show a strong dependance between food and certain radioisotopes. • Some isotopes are shown to have an energy dependence. • Previous claims that 24Na is the main threat is shown to only apply in special cases.

  6. Pricing Electricity in Pools With Wind Producers

    DEFF Research Database (Denmark)

    Morales González, Juan Miguel; Conejo, A. J.; Kai Liu

    2012-01-01

    This paper considers an electricity pool that includes a significant number of wind producers and is cleared through a network-constrained auction, one day in advance and on an hourly basis. The hourly auction is formulated as a two-stage stochastic programming problem, where the first stage...... represents the clearing of the market and the second stage models the system operation under a number of plausible wind production realizations. This formulation co-optimizes energy and reserve, and allows deriving both pool energy prices and balancing energy prices. These prices result in both cost recovery...... for producers and revenue reconciliation. A case study of realistic size is used to illustrate the functioning of the proposed pricing scheme....

  7. Energy intensities and the impact of high energy prices on producing and consuming sectors in Malaysia

    OpenAIRE

    Klinge Jacobsen, Henrik

    2007-01-01

    The increase in oil prices has put pressure on the global economy. Even economies that have a high degree of self-sufficiency concerning oil products are experiencing rising production costs and price increases for households energy use. Therefore, changes in energy policies are under consideration for countries highly dependent on imported energy as well as countries with a high degree of self-sufficiency. Examination of dependence on cheap energy sources for economic growth in different...

  8. Effects of atmospheric variability on energy utilization and conservation. Final report, 1 January 1979-31 December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, E.R.; Burns, C.C.; Cochrane, H.; Johnson, G.R.; Leong, H.; McKean, J.; Sheaffer, J.D.; Starr, A.M.; Webber, J.

    1980-04-01

    An interdisciplinary approach towards a detailed assessment of energy consumption in urban space-heating and cooling is presented in terms of measurement and modeling results. Modeling efforts concentrated on the city of Minneapolis, MN, using data from the winter seasons 1977/78 and 1978/79. Further developments of a reference model also fall back on data from Cheyenne, WY, and Greeley, CO. Mean absolute daily errors of gas consumption estimated by the physical model applied to Minneapolis are 6.26% when compared to actual energy usage for the period 12/1/77 to 2/28/78. The mean daily absolute errors for the statistical reference model for the same time period were 5.54%. Modeling of the energy consumption required detailed input of meteorological parameters from a special network of stations. As a spin-off an assessment was obtained of the effects of anthropogenic heat on urban heat-island generation under various synoptic conditions. A detailed building census, comprised of 105.722 heated structures, was obtained. A field survey in Greeley indicated that investment returns from insulating houses might not be as high as hoped for; possibly a considerable amount of insulating material is applied wastefully. Misinformation seems to be the primary cause of misguided energy conservation. Progress in conservation could be achieved if utility costs were considered in mortgage-loan applications, together with principal, interests, taxes, and insurance. Detailed energy-consumption modeling would be a premise for such fiscal-management approaches. Another extensive field survey yielded data for a local input-output model applied to the city of Greeley. Economic multipliers for dollars of output, space heating, energy use, and employment were developed and used for growth projections to the year 2003 under varying scenarios.

  9. Evaluating environmental consequences of producing herbaceous crops for bioenergy

    International Nuclear Information System (INIS)

    McLaughlin, S.B.

    1995-01-01

    The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy's Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO 2 emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels

  10. Energy intensities and the impact of high energy prices on producing and consuming sectors in Malaysia

    OpenAIRE

    Klinge Jacobsen, Henrik

    2007-01-01

    The increase in oil prices has put pressure on the global economy. Even economies that have a high degree of self-sufficiency concerning oil products are experiencing rising production costs and price increases for households energy use. Therefore, changes in energy policies are under consideration for countries highly dependent on imported energy as well as countries with a high degree of self-sufficiency. Examination of dependence on cheap energy sources for economic growth in different eco...

  11. Quantitative determination of caffeine and alcohol in energy drinks and the potential to produce positive transdermal alcohol concentrations in human subjects.

    Science.gov (United States)

    Ayala, Jessica; Simons, Kelsie; Kerrigan, Sarah

    2009-01-01

    The purpose of this study was to determine whether non-alcoholic energy drinks could result in positive "alcohol alerts" based on transdermal alcohol concentration (TAC) using a commercially available electrochemical monitoring device. Eleven energy drinks were quantitatively assayed for both ethanol and caffeine. Ethanol concentrations for all of the non-alcoholic energy drinks ranged in concentration from 0.03 to 0.230% (w/v) and caffeine content per 8-oz serving ranged from 65 to 126 mg. A total of 15 human subjects participated in the study. Subjects consumed between 6 and 8 energy drinks over an 8-h period. The SCRAM II monitoring device was used to determine TACs every 30 min before, during, and after the study. None of the subjects produced TAC readings that resulted in positive "alcohol alerts". TAC measurements for all subjects before, during and after the energy drink study period (16 h total) were study consumed a quantity of non-alcoholic energy drink that greatly exceeds what would be considered typical. Based on these results, it appears that energy drink consumption is an unlikely explanation for elevated TACs that might be identified as potential drinking episodes or "alcohol alerts" using this device.

  12. Silviculture and economic benefits of producing wood energy from conventional forestry systems and measures to mitigate negative impacts

    International Nuclear Information System (INIS)

    Manley, A.; Richardson, J.

    1995-01-01

    Activity ''Forest Energy Production'' focused on the development and evaluation, in the context of conventional forestry systems, silvicultural and forest management practices which optimise productivity for traditional products and wood for energy, while safeguarding the forest ecosystem. A series of meetings, workshops, and review papers involving the three participating countries of Canada, Sweden, and the United Kingdom were planned and completed. An additional workshop in Switzerland was also held. Increasing production of biomass for energy is generally found to be positive, from silvicultural, economic, and environmental perspectives. Eight specific forest management systems were investigated and/or reported: five conventional systems involving multiple products in softwood and mixed wood, and three hardwood systems emphasising production of biomass for energy. Modifications in silvercultural practice to also produce biomass for energy included increased opportunities for thinnings, intermediate cuttings, and stand and site rehabilitation as well as more flexible and efficient harvesting systems. Economic benefits accrued from increased investment in harvesting and burning technology, improvements in stand quality and site utilisation, and substitution for more expensive fuels, especially if all costs are considered. Environmental effects were found to be generally positive, but negative effects of nutrient and organic matter removal on the overall sustainability of specific systems are possible. These need to be addressed. Harvest and management guidelines are being designed and put into practice. Social, institutional, and technical barriers to the increased use of biomass for energy are being addressed by specific strategies and initiatives involving programs and incentives for production, market development, research and education. Net positive effects indicate increased use of forest biomass for energy, in the short and long term. (Abstract Truncated)

  13. Photovoltaic generator. Estimate of the energy produced by neural networks; Generador fotovoltaico. Estimacion de la energia producida mediante redes neuronales

    Energy Technology Data Exchange (ETDEWEB)

    Almonacid, F.; Rus, C.; Perez-Higueras, P.; Hontoria, L.

    2010-07-01

    Despite the great technological advances in photovoltaic and in particular in network-connected systems, efforts are still required in research, technological development and innovation (i + d + i) must be aimed primarily at addressing the different system parts. one aspect that can help achieve this goal is majorette estimation methods of energy produced by photovoltaic generators. There are a number of cases resulting in a decrease of the expected energy. In this paper we will compare a standard method widely used in the estimation of the power of the photovoltaic generator with another novel method, developed at the University of Jaen, based on artificial neural networks (ANN). (Author) 9 refs.

  14. Potentialities of energy generation from waste and feedstock produced by the agricultural sector in Brazil: The case of the State of Paraná

    International Nuclear Information System (INIS)

    Ribeiro, Maria de Fátima dos Santos; Raiher, Augusta Pelinski

    2013-01-01

    The State of Paraná contributes significantly for the Brazilian production of sugar cane, ethanol, soybeans and pigs. In addition to the current production of ethanol, the State has a huge potential for electricity, biodiesel and biogas production. This paper presents an overview of the current situation regarding energy generation from the agricultural sector in the State, an assessment of the potentialities of energy generation from sugar cane residues and pig agricultural chains, as well as an analysis of the socioeconomic factors underlying the availability of feedstock for biodiesel production. This study has shown that it is possible to expand the energy supply in the State using residual biomass from the sugar cane and pig production. On the other side, the biodiesel production increase in the State will depend on the expansion in the consumption of products that use the cake as raw material; the increase in the feedstock availability other than canola, castor beans and sunflower; the increase of the number of family farmers as feedstock providers, so as to ensure access for biodiesel producers to the Social Fuel Stamp. - Highlights: • Potentialities of energy generation from agriculture at Paraná State were assessed. • Energy offer from the sugar cane sector will triple if residual biomass is used. • The use of pig production wastes can increase energy offer up to 103 GW h. • Paraná produces 25% of oil seeds and only 3% of the biodiesel in Brazil. • Economic factors explaining the low share of biodiesel production are pointed out

  15. Detection systems for high energy particle producing gaseous ionization; Sistemas de deteccion de particulas de alta energia mediante ionizacion gaseosa

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, L; Duran, I

    1985-07-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Muller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures, are discussed, most relevant devices are reported along 90 pages with 98 references. (Author) 98 refs.

  16. Monte Carlo simulation for neutron yield produced by bombarding thick targets with high energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Oranj, Leila Mokhtari; Oh, Joo Hee; Yoon, Moo Hyun; Lee, Hee Seock [POSTECH, Pohang (Korea, Republic of)

    2013-04-15

    One of radiation shielding issues at heavy-ion accelerator facilities is to estimate neutron production by primary heavy ions. A few Monte Carlo transport codes such as FLUKA and PHITS can work with primary heavy ions. Recently IBS/RISP((Rare Isotope Science Project) started to design a high-energy, high-power rare isotope accelerator complex for nuclear physics, medical and material science and applications. There is a lack of experimental and simulated data about the interaction of major beam, {sup 238}U with materials. For the shielding design of the end of first accelerating section section, we calculate a differential neutron yield using the FLUKA code for the interaction of 18.5 MeV/u uranium ion beam with thin carbon stripper of 1.3 μm). The benchmarking studies were also done to prove the yield calculation for 400 MeV/n {sup 131}Xe and other heavy ions. In this study, the benchmarking for Xe-C, Xe-Cu, Xe-Al, Xe-Pb and U-C, other interactions were performed using the FLUKA code. All of results show that the FLUKA can evaluate the heavy ion induced reaction with good uncertainty. For the evaluation of neutron source term, the calculated neutron yields are shown in Fig. 2. The energy of Uranium ion beam is only 18.5 MeV/u, but the energy of produced secondary neutrons was extended over 100 MeV. So the neutron shielding and the damage by those neutrons is expected to be serious. Because of thin stripper, the neutron intensity at forward direction was high. But the the intensity of produced secondary photons was relatively low and mostly the angular property was isotropic. For the detail shielding design of stripper section of RISP rare istope accelerator, the benchmarking study and preliminary evaluation of neutron source term from uranium beam have been carried out using the FLUKA code. This study is also compared with the evaluation results using the PHITS code performed coincidently. Both studies shows that two monte carlo codes can give a good results for

  17. Weather-power station. Solar energy, wind energy, water energy

    Energy Technology Data Exchange (ETDEWEB)

    Schatta, M

    1975-10-02

    A combined power station is described, which enables one to convert solar energy and wind energy into other forms of energy. The plant consists of a water-filled boiler, in which solar energy heats the water by concentration, solar cells, and finally wind rotors, which transform wind energy into electrical energy. The transformed energy is partly available as steam heat, partly as mechanical or electrical energy. The plant can be used for supplying heating systems or electrolysis equipment. Finally, by incorporating suitable motors, a mobile version of the system can be produced.

  18. Producing new radionuclides for medicine

    International Nuclear Information System (INIS)

    Michaut, C.

    2009-01-01

    The Arronax cyclotron, a new particle accelerator dedicated to the production of radionuclides for medicine and research has been commissioned in Nantes (France). Because of its unique features: an energy of 70 MeV and an intensity of 750 μA, Arronax will produce radionuclides that can not be produce in present cyclotrons. Among others it will produce Strontium-82 and Germanium-68 that are the precursors for Rubidium-82 and Gallium-68 respectively. 20 per cent of the research works will be dedicated to other domains like radioactive wastes, the radiation biological damage and the radiation damage on electronic devices. (A.C.)

  19. Energy producers in the 21. century: Digital technology at the service of consumers and the energy transition

    International Nuclear Information System (INIS)

    Chone, Fabien

    2017-01-01

    Direct Energie, a major player in France and Belgium, has compelled recognition as a well-balanced operator in the production and supply of electricity and natural gas. Having made innovation one of the major axes of its development, this firm is using digital technology for the energy transition and in response to consumer needs. Direct Energie, a supplier of 'energy 4.0', is seeking to position itself as a leader in 'orchestrating' the consumption of energy by its customers. Given this strong position as the single supplier of energy to its customers, the regulatory framework for data transmission must be reviewed to make it compatible with the 'single contract', which binds a customer to a firm that both supplies and transports energy

  20. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  1. State Support for Promotion of Electrical Energy Produced in High Efficiency Cogeneration in Romania

    Directory of Open Access Journals (Sweden)

    Mushatescu V.

    2016-12-01

    Full Text Available Romania accumulated a useful experience in supporting high efficient cogeneration through a bonus type scheme. Spreading this experience to other countries that can choose a similar support scheme could lead to important savings and better results in developing this efficient tool. This state aid is operational, targeted to new investments stimulation for cogeneration technologies and replacement or existing plants rehabilitation. Present paper focuses on the results of support scheme after five years of its application: increase of number of producers who benefit of this aid, raising of general efficiency of high efficient cogeneration, important savings of primary energy and CO2 emissions avoided. On the other hand, use of this scheme showed a number of problems (to which this paper proposes adequate solutions on institutional/administrative, investition, technical, economical-financial and social frameworks that influences beneficiaries and/or financiers of state aid.

  2. Carbon's footprints: The politics of producing energy and emissions

    Science.gov (United States)

    Shum, Robert

    2011-12-01

    This study fills a gap in the literature on climate change policy: it investigates lessons from the historical experience of energy policy in addition to the more common analogies to environmental policy experiences that are drawn in the literature. By examining energy policies from the nineteen-seventies, an additional perspective is gained into situations where the costs of cooperation---and benefits of free-riding---are high. This provides a contrast with relatively easier cases like ozone depletion, where costs are low, benefits are high, and the incentives to participate and comply are both obvious and simple to modify. Such an approach can better explain persistent puzzles concerning divergences in policies relating to global public goods and common-pool resources, as well as to energy use and prices. The results suggest the need for a renewed focus on the incentives facing actors in the formation of climate change policies, and especially on the role that dynamic change in national resource bases play in shaping the initial conditions under which business-as-usual policy positions are set.

  3. Renewable energy to produce electricity; Nuevas fuentes de energia para producir electricidad

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas Tovar, Roberto; Lopez Rios, Serafin [Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)

    1996-05-01

    There are several new energy sources to produce electricity. One of them is the wind energy, which has reached huge commercialization in worldwide. There are in Mexico some zones with high speed wind, which can be used in a short term. This has been proved by the wind pilot power plant of La Venta, Oaxaca, where production costs of US 4.3 cents per kilowatt-hour (kWh) have been obtained. These costs are among the lowest in the world. By the other hand, among the main uses of solar energy, including both thermal and photovoltaic techniques, the biggest thermo-solar utility, with 350 megawatts (MW) of capacity, is remarkable. This is the plant located in the Mojave Desert, California, USA. In Mexico there is big potential, which can make an important contribution to supplies of electricity. Biomass is another important renewable source, particularly the use of solid municipal waste, the livestock and the wood waste. Finally, other alternate technique is represented by the fuel cells, though it is not properly renewable. However, considering its modular and low environmental impact characteristics, it can get a wide commercial development in the next decade. [Espanol] Existen diversas fuentes nuevas de energia para generar electricidad. Entre ellas, la energia eolica es una de las tecnologias alternas que mayor comercializacion ha alcanzado a nivel mundial. Mexico posee zonas con vientos de velocidades altas en las que su aplicacion puede ser inmediata, como lo prueba la experiencia obtenida con la central piloto de La Venta, Oaxaca, en donde se han alcanzado costos de produccion de 4.3 centavos de dolar por kilowatt-hora (kWh), de los mas bajos a nivel internacional. Por otra parte, entre las principales aplicaciones de la energia solar, en sus tecnologias termica y fotovoltaica, destaca el mayor de los aprovechamientos termosolares, con 350 megawatts de capacidad (MW), localizado en el desierto de Mojave, en California, EUA. En Mexico hay un gran potencial

  4. The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin

    International Nuclear Information System (INIS)

    Buta, A.

    2003-02-01

    During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)

  5. Wind energy statistics

    International Nuclear Information System (INIS)

    Holttinen, H.; Tammelin, B.; Hyvoenen, R.

    1997-01-01

    The recording, analyzing and publishing of statistics of wind energy production has been reorganized in cooperation of VTT Energy, Finnish Meteorological (FMI Energy) and Finnish Wind Energy Association (STY) and supported by the Ministry of Trade and Industry (KTM). VTT Energy has developed a database that contains both monthly data and information on the wind turbines, sites and operators involved. The monthly production figures together with component failure statistics are collected from the operators by VTT Energy, who produces the final wind energy statistics to be published in Tuulensilmae and reported to energy statistics in Finland and abroad (Statistics Finland, Eurostat, IEA). To be able to verify the annual and monthly wind energy potential with average wind energy climate a production index in adopted. The index gives the expected wind energy production at various areas in Finland calculated using real wind speed observations, air density and a power curve for a typical 500 kW-wind turbine. FMI Energy has produced the average figures for four weather stations using the data from 1985-1996, and produces the monthly figures. (orig.)

  6. Air purification in industrial plants producing automotive rubber components in terms of energy efficiency

    Directory of Open Access Journals (Sweden)

    Grzebielec Andrzej

    2017-04-01

    Full Text Available In automotive industry plants, which use injection molding machines for rubber processing, tar contaminates air to such an extent that air fails to enter standard heat recovery systems. Accumulated tar clogs ventilation heat recovery exchangers in just a few days. In the plant in which the research was conducted, tar contamination causes blockage of ventilation ducts. The effect of this phenomenon was that every half year channels had to be replaced with new ones, since the economic analysis has shown that cleaning them is not cost-efficient. Air temperature inside such plants is often, even in winter, higher than 30°C. The air, without any means of heat recovery, is discharged outside the buildings. The analyzed plant uses three types of media for production: hot water, cold water at 14°C (produced in a water chiller, and compressed air, generated in a unit with a rated power consumption of 180 kW. The aim of the study is to determine the energy efficiency improvement of this type of manufacturing plant. The main problem to solve is to provide an air purification process so that air can be used in heat recovery devices. The next problem to solve is to recover heat at such a temperature level that it would be possible to produce cold for technological purposes without air purification. Experimental studies have shown that air purification is feasible. By using one microjet head, a total of 75% of tar particles was removed from the air; by using 4 heads, a purification efficiency of 93% was obtained. This method of air purification causes air temperature to decrease from 35°C to 20°C, which significantly reduces the potential for heat recovery. The next step of the research was designing a cassette-plate heat exchanger to exchange heat without air purification. The economic analysis of such a solution revealed that replacing the heat exchanger with a new one even once a year was not cost-efficient. Another issue examined in the context of

  7. Finnish farmers' willingness to produce and supply biomass from energy crops and forest residues. A survey of landowners' attitudes and intentions

    Energy Technology Data Exchange (ETDEWEB)

    Raemoe, A.-K.; Latvala, T. (Pellervo Economic Research Inst., Helsinki (Finland)), Email: anna-kaisa.ramo@ptt.fi; Silvennoinen, H. (Univ. of Joensuu (Finland)), Email: harri.silvennoinen@joensuu.fi

    2009-07-01

    According to EU's Climate and Energy Plan Finland is obliged to increase the proportion of renewable energy sources considerably by the year 2020. The obligation is challenging and requires among others a considerably increased use of biomass. Besides wood energy crop production provides a considerable potential as energy source in Finland. Farmer forest owners are one of the key groups regarding the supply of field energy crops and energy wood in Finland. Basically, farmers have a positive attitude towards the production of field energy crops and energy wood. Their interest in bio-energy related entrepreneurship has also increased in recent years. However, farmers do not find the business environment of biomass production satisfactory. Still the results indicate that the number of field crop producers would at least double by the year 2012. The increase is, however, considerably less than the estimated potential of recent scenarios. The results also imply that famer forest owners have not any intentions to increase their energy wood supplies in the next few years. This is mainly due to undeveloped energy wood markets and unsatisfactory energy wood prices. In order to enhance the biomass production and supply, both field energy crop and energy wood markets and extension need to be improved to meet farmers' needs. (orig.)

  8. Use of Multibeam and Dual-Beam Sonar Systems to Observe Cavitating Flow Produced by Ferryboats: In a Marine Renewable Energy Perspective

    Directory of Open Access Journals (Sweden)

    Francisco Francisco

    2017-07-01

    Full Text Available With the prospect to deploy hydrokinetic energy converters in areas with heavy boat traffic, a study was conducted to observe and assess the depth range of cavitating flow produced by ferryboats in narrow channels. This study was conducted in the vicinity of Finnhamn Island in Stockholm Archipelago. The objectives of the survey were to assess whether the sonar systems were able to observe and measure the depth of what can be cavitating flow (in a form of convected cloud cavitation produced by one specific type of ferryboats frequently operating in that route, as well as investigate if the cavitating flow within the wake would propagate deep enough to disturb the water column underneath the surface. A multibeam and a dual-beam sonar systems were used as measurement instruments. The hypothesis was that strong and deep wake can disturb the optimal operation of a hydrokinetic energy converter, therefore causing damages to its rotors and hydrofoils. The results showed that both sonar system could detect cavitating flows including its strength, part of the geometrical shape and propagation depth. Moreover, the boat with a propeller thruster produced cavitating flow with an intense core reaching 4 m of depth while lasting approximately 90 s. The ferry with waterjet thruster produced a less intense cavitating flow; the core reached depths of approximately 6 m, and lasted about 90 s. From this study, it was concluded that multibeam and dual-beam sonar systems with operating frequencies higher than 200 kHz were able to detect cavitating flows in real conditions, as long as they are properly deployed and the data properly analyzed.

  9. Oil and natural gas strategies for North American energy markets: a submission by the Canadian Association of Petroleum Producers

    International Nuclear Information System (INIS)

    2001-04-01

    This proposal by the Canadian Association of Petroleum Producers (CAPP) focuses on improving North American energy markets and addressing the challenges involved in meeting continental energy requirements by urging a renewed policy effort to enhance the current market-based policies of free trade and competition that have already proven to respond to market changes better than command-control government policies. The proposal urges new strategies to support development of the oil and natural gas resources of North America, and the development of additional infrastructure to bring oil and natural gas supplies to market. The new strategy should be based on the success of free trade to increase non-discriminatory treatment of energy investment and trade in energy commodities, recognize resource development in North America as a policy priority, and reform regulatory practices to facilitate responsible, market-driven resource activity. The new strategy should also ensure competitive tax and royalty regimes as well as consistent and compatible environmental policies that eliminate layering and duplication and are competitive among the various jurisdictions. It should also recognize the continental and global nature of energy supply and the increasing interdependence of the partner nations' economies, encourage research and development, and ensure co-ordinated action on frontier natural gas development within a framework of inter-jurisdictional cooperation. Overall, the document is a thorough, credible presentation of the first principles of the oil and gas markets and an important first step towards influencing energy policy on a continental scale. 2 maps, 5 figs

  10. Reconstruction of missing transverse energy and prospect of searching for Higgs boson produced via vector boson fusion in Compact Muon Solenoid experiment

    CERN Document Server

    Pi, Haifeng

    2005-01-01

    We performed full detector simulation studies of missing transverse energy (Emiss T ) reconstruction and correction, and the prospects for searching for a low mass Higgs Boson (120 < mH < 250 GeV/c 2 ) produced via the vector boson fusion (VBF) process through the decay of H → W+W− → `νjj at Compact Muon Solenoid (CMS) experiment in Large Hadron Collider (LHC). We developed a new jet energy correction algorithm by parameterizing the jet energy distribution around the jet axis. The jet energy resolution is improved by calibrating the jet energy scale and by reducing the variance of the measurement error. Correction functions showed good performance in restoring the jet transverse momentum (pT) spectrum. The methods provide a good framework to study jet quantities and optimize jet reconstruction and correction techniques. We evaluated the performance of the CMS detector for measuring the Emiss T using QCD events. We also studied the contributions from detector resolution, minimum bias pileup, event...

  11. RESEARCH ISSUES REGARDING THE MAIN INDICATORS USED FOR ANALYSING THE INCOMES AND COSTS OF THE RENEWABLE ENERGY PRODUCERS OPERATING IN ROMANIA IN VIEW OF DEVELOPING A DECISION SUPPORT SYSTEM

    OpenAIRE

    Cornelia Paulina BOTEZATU; Cezar BOTEZATU; George CARUTASU; Alexandru PÎRJAN

    2015-01-01

    In this paper, we have analysed the main indicators regarding the incomes and costs of the renewable energy producers, indicators that a Decision Support System must take into account for when predicting, analysing and monitoring the technological and business processes in the field of energy produced from renewable sources in Romania. The results presented in this paper represent a part of the research conducted within the SIPAMER project ("Sistem Inteligent pentru Predicţia, Analiza și Moni...

  12. Thermal energy of nuclear origin produced in non-fissile materials (1962); Energie calorifique d'origine nucleaire degagee dans les materiaux non fissiles (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Naudet, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Millies, P; Berger, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1962-07-01

    A first part is devoted to the description of the interaction phenomena between elementary particles and material that may be observed during the irradiation process in a nuclear reactor: nuclear reactions due to neutrons, production of gamma rays and absorption of those gamma rays through various processes. In a second part the phenomena producing calorific energy in irradiated material are quantitatively examined. In the third part results are summed up in a formulary. The fourth part presents tables and figures giving to the reader all the numerical values necessary for practical calculations. (authors) [French] Une premiere partie est consacree a l'examen des principaux phenomenes d'interaction des particules avec la matiere qui interviennent lors d'une irradiation dans un reacteur: reactions nucleaires dues aux neutrons, production des rayons gamma et absorption de ces derniers par les divers processus. Une deuxieme partie etudie quantitativement les phenomenes qui conduisent a l'apparition d'energie calorifique dans le materiau irradie. En troisieme partie, un formulaire resume les resultats etablis. Dans une quatrieme partie, des tableaux et des courbes fournissent a l'experimentateur toutes les valeurs numeriques necessaires aux calculs pratiques. (auteurs)

  13. Total bremsstrahlung spectra of thick lead compounds produced by {sup 90}Sr beta emitter in photon energy region of 10–100 keV

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suhansar Jit [Department of Physics, B.B.S.B Polytechnic, Fatehgarh Sahib, Punjab (India); Singh, Tajinder, E-mail: tajindersingh2k9@gmail.com [Department of Physics, Mata Gujri College, Fatehgarh Sahib, Punjab (India); Singh, Doordarshi [Department of Mechanical Engineering, B.B.S.B Engineering College, Fatehgarh Sahib, Punjab (India); Singh, Amrit [Department of Physics, Baba Ajay Singh Khalsa College, Gurdas Nangal, Gurdaspur, Punjab (India); Dhaliwal, A.S. [Department of Physics, Sant Longowal Institute of Engineering & Technology, Longowal (Sangrur), Punjab (India)

    2017-06-15

    Highlights: • Total bremsstrahlung spectra in thick targets of Pb compounds by {sup 90}Sr in energy range 10–100 keV. • Experimental results show better agreement with the model which includes PB in SA up to 30 keV. • At higher photon energy region 30–100 keV the model which describes OB is more accurate. • Experimental results show positive deviations from the entire models at higher energy end spectrum. - Abstract: The total bremsstrahlung spectra in the thick targets of lead acetate trihydrate (Pb(CH{sub 3}COO){sub 2}·3H{sub 2}O), lead nitrate Pb(NO{sub 3}){sub 2} and lead chloride (PbCl{sub 2}) produced by {sup 90}Sr beta particles have been investigated in the photon energy region of 10–100 keV. The experimental bremsstrahlung spectra have been compared with the theoretical models Elwert corrected (non relativistic) Bethe Heitler theory, modified Elwert factor (relativistic) Bethe Heitler theory for ordinary bremsstrahlung and modified Elwert factor (relativistic) Bethe Heitler theory which includes polarization bremsstrahlung in the stripped atom approximation. The experimental results show better agreement with theoretical model that includes polarization bremsstrahlung in stripped approximation in the photon energy region below 30 keV. However, at higher photon energy region 30–100 keV, the theoretical model which describes ordinary bremsstrahlung is more accurate to describe the experimental bremsstrahlung spectra. The experimental results show positive deviations from the entire theoretical models at higher energy end of the spectrum. The results indicate that polarization bremsstrahlung plays important role in the formation of total bremsstrahlung spectra in lead compounds produced by continuous beta particles at low photon energy region of 10–30 keV.

  14. Update on the jet energy scale systematic uncertainty for jets produced in proton-proton collisions at $\\sqrt{s}=7$~TeV measured with the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2011-01-01

    An update to the jet energy scale systematic uncertainty for inclusive jets measured in the ATLAS detector and produced in proton-proton collisions at a centre-of-mass energy of $\\sqrt{s}=7$~TeV is described. The jet energy scale systematic uncertainty for jets reconstructed with the \\antikt~algorithm with distance parameters of $R=0.4$ and $R=0.6$ is evaluated starting from a transverse momentum of $20$~GeV and for a calorimeter coverage up to pseudo-rapidities of $|\\eta| = 4.5$. In the central detector region the jet energy scale uncertainty is obtained from the single isolated hadron response measured in-situ in proton proton collisions and in the ATLAS combined test-beam for pion momenta up to $350$~GeV. Further uncertainties are evaluated with systematic variations of Monte Carlo simulations. The uncertainty is extended to the endcap and forward detector regions exploiting the transverse momentum balance between a central and a forward jet in events where only two jets are produced. The JES uncertainty a...

  15. CALCULATING SEPARATE MAGNETIC FREE ENERGY ESTIMATES FOR ACTIVE REGIONS PRODUCING MULTIPLE FLARES: NOAA AR11158

    Energy Technology Data Exchange (ETDEWEB)

    Tarr, Lucas; Longcope, Dana; Millhouse, Margaret [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2013-06-10

    It is well known that photospheric flux emergence is an important process for stressing coronal fields and storing magnetic free energy, which may then be released during a flare. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) captured the entire emergence of NOAA AR 11158. This region emerged as two distinct bipoles, possibly connected underneath the photosphere, yet characterized by different photospheric field evolutions and fluxes. The combined active region complex produced 15 GOES C-class, two M-class, and the X2.2 Valentine's Day Flare during the four days after initial emergence on 2011 February 12. The M and X class flares are of particular interest because they are nonhomologous, involving different subregions of the active region. We use a Magnetic Charge Topology together with the Minimum Current Corona model of the coronal field to model field evolution of the complex. Combining this with observations of flare ribbons in the 1600 A channel of the Atmospheric Imaging Assembly on board SDO, we propose a minimization algorithm for estimating the amount of reconnected flux and resulting drop in magnetic free energy during a flare. For the M6.6, M2.2, and X2.2 flares, we find a flux exchange of 4.2 Multiplication-Sign 10{sup 20} Mx, 2.0 Multiplication-Sign 10{sup 20} Mx, and 21.0 Multiplication-Sign 10{sup 20} Mx, respectively, resulting in free energy drops of 3.89 Multiplication-Sign 10{sup 30} erg, 2.62 Multiplication-Sign 10{sup 30} erg, and 1.68 Multiplication-Sign 10{sup 32} erg.

  16. Are energy-dense foods really cheaper? Reexamining the relation between food price and energy density.

    Science.gov (United States)

    Lipsky, Leah M

    2009-11-01

    The inverse relation between energy density (kcal/g) and energy cost (price/kcal) has been interpreted to suggest that produce (fruit, vegetables) is more expensive than snacks (cookies, chips). The objective of this study was to show the methodologic weakness of comparing energy density with energy cost. The relation between energy density and energy cost was replicated in a random-number data set. Additionally, observational data were collected for produce and snacks from an online supermarket. Variables included total energy (kcal), total weight (g), total number of servings, serving size (g/serving), and energy density (kcal/g). Price measures included energy cost ($/kcal), total price ($), unit price ($/g), and serving price ($/serving). Two-tailed t tests were used to compare price measures by food category. Relations between energy density and price measures within food categories were examined with the use of Spearman rank correlation analysis. The relation between energy density and energy cost was shown to be driven by the algebraic properties of these variables. Food category was strongly correlated with both energy density and food price measures. Energy cost was higher for produce than for snacks. However, total price and unit price were lower for produce. Serving price and serving size were greater for produce than for snacks. Within food categories, energy density was uncorrelated with most measures of food price, except for a weak positive correlation with serving price within the produce category. The findings suggest the relation between energy density and food price is confounded by food category and depends on which measure of price is used.

  17. The use of wind to produce energy in Ketodestrin province

    International Nuclear Information System (INIS)

    Shirani, E.; Ahmadkia, H.; Talebi, F.; Mojib, J.

    2004-01-01

    Productivity of oil and gas and their high cost benefit in matters than combustion, in one hand and their problem of environmental pollution when they are burnt, on the other hand attracted the decision markers in Iran to consider the wind energy as a good alternative for energy resources . It is especially important because of the existence of regions with high potential for wind energy in Iran. The Kurdestan province is one of the windy places in Iran that has not been considered for wind energy yet. In this paper, the general characteristics of the different kinds of winds which are blown throughout the year in Kurdestan province are considered firstly. Then by using the information from the stations in the sixth major cities in the province, the wind characteristics including power, direction, intensity and probability at different months of the year, are considered. The statistical studies show that Bijar, Zarine Obatoo, Ghorveh, Sanandaj and Marivan have the most wind energy potential, and Bijar and Ghorveh are the best places to install the wind turbine. for all of the above regions, the maximum of the wind average speed and powe are obtained in March, April. May, and the minimum of the average wind speed occurs in December. Bijar, Ghorveh and Zarine Obatoo have high average wind speed and its recommended to search for best places in these regions for the wind turbine sites

  18. Distributed energy resources for a zero-energy neighbhourhood

    NARCIS (Netherlands)

    Morales Gonzalez, R.M.D.G.; Asare-Bediako, B.; Cobben, J.F.G.; Kling, W.L.; Scharrenberg, G.R.; Dijkstra, D.

    2012-01-01

    Zero energy buildings are on the increasing trend. They are perceived as appropriate technology to reducing CO2 emissions, improving energy efficiency and alleviating energy poverty. The main goal is that a grid-connected building produces enough energy on site to equal or exceed its annual energy

  19. Coherent bremsstrahlung in crystals as a tool for producing high energy photon beams to be used in photoproduction experiments at CERN SPS

    Energy Technology Data Exchange (ETDEWEB)

    Bilokon, H; D' Ettorre Piazzoli, B; Mannocchi, G [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati); Bologna, G; Picchi, P [Turin Univ. (Italy). Ist. di Fisica Generale; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati); Celani, F; Falcioni, R [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1983-01-01

    We recall the properties of coherent bremsstrahlung of high energy electrons in single crystals and show that a suitably oriented diamond crystal can produce a high energy bremsstrahlung beam whose quasimonochromatic spectral composition may be exploited for increasing the production rate in a photoproduction experiment at hundreds of GeV. A careful analysis of the required angular resolutions is performed. It turns out that the standard deviation of the electron beam angular divergence in one plane should be less than 0.3 mrad, for a beam energy of 150 GeV. The standard deviation in the perpendicular plane is not critical. In this situation the photoproduction rate in a typical case is increased by a factor of about 3 with respect to the conventional bremsstrahlung beam.

  20. Anaerobic digestion of slaughterhouse waste to produce energy and fertilizer; Anaerobitekniikka muuttaa teollisuuden orgaaniset jaetteet energiaksi ja lannoitteeksi

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, E.; Rintala, J.

    1999-07-01

    The concern over the re-use of organic wastes on ecological and economical lines is constantly increasing. Anaerobic digestion is gaining popularity as a means of organic waste management, for several reasons. Besides generating biogas for energy production, it also produces a stabilised byproduct with reduced pathogens and thus forms a valuable source of nutrients for agricultural crops. Our primary aim in this part of our work was to develop economically viable and ecologically feasible techniques for treating slaughterhouse waste. Biomethanation of one tonne of poultry slaughterhouse waste produced about 80-100 m{sup 3} of methane with 60-70% reduction in total solids. Ammonification of total organic nitrogen to ammonical nitrogen was about 60%. Evidently, the control of long chain fatty acids under anaerobic conditions is critical for fat-rich wastes. Preliminary assessment of the anaerobically digested poultry slaughterhouse waste confirms its potential as a source of organic fertilizer for agricultural use. (author)

  1. A study of events with large total transverse energy produced in proton-antiproton collisions at √s = 1.8 TeV

    International Nuclear Information System (INIS)

    Piekarz, H.

    1994-09-01

    Properties of events originating from proton-antiproton interactions in which the total transverse energy, Σ|E T |, of the event exceeded 400 GeV are presented. These events were produced at the Fermilab Tevatron Collider operating at a center-of-mass energy of 1.8 TeV and recorded in the D0 detector. The authors describe their analysis method which minimizes the effect of multiple interactions in the data sample. Based on a data sample of 5.45 ± 0.65 pb -1 , the topology of these hard scattering events as well as preliminary results for the cross-section, dσ/dΣ|E T |, are presented and discussed

  2. Method of producing excited states of atomic nuclei

    International Nuclear Information System (INIS)

    Morita, M.; Morita, R.

    1976-01-01

    A method is claimed of producing excited states of atomic nuclei which comprises bombarding atoms with x rays or electrons, characterized in that (1) in the atoms selected to be produced in the excited state of their nuclei, (a) the difference between the nuclear excitation energy and the difference between the binding energies of adequately selected two electron orbits is small enough to introduce the nuclear excitation by electron transition, and (b) the system of the nucleus and the electrons in the case of ionizing an orbital electron in said atoms should satisfy the spin and parity conservation laws; and (2) the energy of the bombarding x rays or electrons should be larger than the binding energy of one of the said two electron orbits which is located at shorter distance from the atomic nucleus. According to the present invention, atomic nuclei can be excited in a relatively simple manner without requiring the use of large scale apparatus, equipment and production facilities, e.g., factories. It is also possible to produce radioactive substances or separate a particular isotope with an extremely high purity from a mixture of isotopes by utilizing nuclear excitation

  3. Transport of accelerator produced high energy neutrons though concrete

    International Nuclear Information System (INIS)

    Prabhakar Rao, G.; Sarkar, P.K.

    1996-01-01

    Development of a computational system for estimating the production and transport of high energy neutrons in particle accelerators is reported. The energy-angle distribution of neutrons from accelerated ions bombarding thick targets is calculated by a hybrid nuclear reaction model code, ALICE-91, modified to suit the purpose. Subsequent transmission of these neutrons through concrete slabs is treated using the anisotropic source-flux iteration technique (ASFIT) in the framework of a coupled neutron-gamma transport. Several parameters of both the codes have been optimized to obtain the transmitted dose through concrete. The calculations are found to be accurate and at the same time faster compared to the detailed Monte Carlo calculations. (author). 8 refs., 2 figs

  4. Energy consumption in desalinating produced water from shale oil and gas extraction

    OpenAIRE

    Tow, Emily W.; Chung, Hyung Won; Lienhard, John H.; Thiel, Gregory Parker; Banchik, Leonardo David

    2014-01-01

    On-site treatment and reuse is an increasingly preferred option for produced water management in unconventional oil and gas extraction. This paper analyzes and compares the energetics of several desalination technologies at the high salinities and diverse compositions commonly encountered in produced water from shale formations to guide technology selection and to inform further system development. Produced water properties are modeled using Pitzer's equations, and emphasis is placed on how t...

  5. High energy density in matter produced by heavy ion beams. Annual report 1987

    International Nuclear Information System (INIS)

    1988-08-01

    Research activities presented in this annual report were carried out in 1987 in the framework of the government-funded program 'High Energy Density in Matter Produced by Heavy Ion Beams'. It addresses fundamental problems of the generation and investigation of hot dense matter. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense heavy ion beams. The new accelerator facility SIS/ESR now under construction at GSI will provide an excellent potential for research in this field. The construction work at the new validity is on schedule. The building construction is near completion and the SIS accelerator will have its first beam at the beginning of next year. First experiments at lower intensity will start in summer 1989 and the full program will run after the cooler and storage ring ESR has got operational. Accordingly, the planning and the preparation of the high energy density experiments at this unique facility was an essential part of the activities last year. In this funding period emphasis was given to the experimental activities at the existing accelerator. In addition to a number of accelerator-oriented and instrumental developments, an experiment on beam-plasma interaction had first exciting results, a significant increase of the stopping power for heavy ions in plasma was measured. Other important activities were the investigation of dielectronic recombination of highly charged ions, spectroscopic investigations aiming at the pumping of short wavelength lasers by heavy ion beams and a crossed beam experiment for the determination of Bi + + Bi + ionization cross sections. As in previous years theoretical work an space-charge dominated beam dynamics as well as on hydrodynamics of dense plasmas, radiation transport and beam plasma interaction was continued, thus providing a basis for the future experiments. (orig.)

  6. A Study of the use of a Crystal as a `Quarter-Wave Plate' to Produce High Energy Circularly Polarized Photons

    CERN Multimedia

    Kononets, I

    2002-01-01

    %NA59 %title\\\\ \\\\We present a proposal to study the use of a crystal as a `quarter-wave plate' to produce high energy circularly polarized photons, starting from unpolarized electrons. The intention is to generate linearly polarized photons by letting electrons pass a crystalline target, where they interact coherently with the lattice nuclei. The photon polarization is subsequently turned into circular polarization after passing another crystal, which acts as a `quarter-wave plate'.

  7. Energy accountancy

    International Nuclear Information System (INIS)

    Boer, G.A. de.

    1981-01-01

    G.A. de Boer reacts to recently published criticism of his contribution to a report entitled 'Commentaar op het boek 'Tussen Kernenergie en Kolen. Een Analyse' van ir. J.W. Storm van Leeuwen' (Commentary on the book 'Nuclear Energy versus Coal. An Analysis by ir. J.W. Storm van Leeuwen), published by the Dutch Ministry of Economic Affairs. The contribution (Appendix B) deals with energy analyses. He justifies his arguments for using energy accountancy for assessing different methods of producing electricity, and explains that it is simply an alternative to purely economic methods. The energy conversion yield (ratio of energy produced to energy required) is tabulated for different sources. De Boer emphasises that his article purposely discusses among other things, definitions, forms of energy, the limits of the systems, the conversion of money into energy and the definition of the energy yield at length, in order to prevent misunderstandings. (C.F.)

  8. Apparatus for producing laser targets

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Baker, W.R.

    1975-01-01

    This patent relates to an apparatus and method for producing deuterium targets or pellets of 25u to 75u diameter. The pellets are sliced from a continuously spun solid deuterium thread at a rate of up to 10 pellets/second. The pellets after being sliced from the continuous thread of deuterium are collimated and directed to a point of use, such as a laser activated combustion or explosion chamber wherein the pellets are imploded by laser energy or laser produced target plasmas for neutral beam injection

  9. Human body may produce bacteria.

    Science.gov (United States)

    Salerian, Alen J

    2017-06-01

    "Human body may produce bacteria" proposes that human body may produce bacteria and represent an independent source of infections contrary to the current paradigm of infectious disorders proposed by Louis Pasteur in 1880. The following observations are consistent with this hypothesis: A. Bidirectional transformations of both living and nonliving things have been commonly observed in nature. B. Complex multicellular organisms harbor the necessary properties to produce bacteria (water, nitrogen and oxygen). C. Physical laws suggest any previously observed phenomenon or action will occur again (life began on earth; a non living thing). D. Animal muscle cells may generate energy (fermentation). E. Sterilized food products (i.e. boiled eggs), may produce bacteria and fungus under special conditions and without any exposure to foreign living cells. "Human body may produce bacteria" may challenge the current medical paradigm that views human infectious disorders as the exclusive causative byproducts of invading foreign cells. It may also introduce new avenues to treat infectious disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution.

    Science.gov (United States)

    Huang, Haibo; Singh, Vijay; Qureshi, Nasib

    2015-01-01

    Waste is currently a major problem in the world, both in the developing and the developed countries. Efficient utilization of food waste for fuel and chemical production can positively influence both the energy and environmental sustainability. This study investigated using food waste to produce acetone, butanol, and ethanol (ABE) by Clostridium beijerinckii P260. In control fermentation, 40.5 g/L of glucose (initial glucose 56.7 g/L) was used to produce 14.2 g/L of ABE with a fermentation productivity and a yield of 0.22 g/L/h and 0.35 g/g, respectively. In a similar fermentation 81 g/L of food waste (containing equivalent glucose of 60.1 g/L) was used as substrate, and the culture produced 18.9 g/L ABE with a high ABE productivity of 0.46 g/L/h and a yield of 0.38 g/g. Fermentation of food waste at higher concentrations (129, 181 and 228 g/L) did not remarkably increase ABE production but resulted in high residual glucose due to the culture butanol inhibition. An integrated vacuum stripping system was designed and applied to recover butanol from the fermentation broth simultaneously to relieve the culture butanol inhibition, thereby allowing the fermentation of food waste at high concentrations. ABE fermentation integrated with vacuum stripping successfully recovered the ABE from the fermentation broth and controlled the ABE concentrations below 10 g/L during fermentation when 129 g/L food waste was used. The ABE productivity with vacuum fermentation was 0.49 g/L/h, which was 109 % higher than the control fermentation (glucose based). More importantly, ABE vacuum recovery and fermentation allowed near-complete utilization of the sugars (~98 %) in the broth. In these studies it was demonstrated that food waste is a superior feedstock for producing butanol using Clostridium beijerinckii. Compared to costly glucose, ABE fermentation of food waste has several advantages including lower feedstock cost, higher productivity, and less residual sugars.

  11. Kepler-Chevreux: 100 billions invested in solar photovoltaic and wind energy produce more energy than with oil

    International Nuclear Information System (INIS)

    Danielo, Olivier

    2014-01-01

    This article discusses the calculation of a new index created by Kepler-Chevreux experts: the energy return on invested capital, EROCI. This index reveals the benefit of solar-energy and wind-energy based electro-mobility compared to the oil-based thermo-mobility. This index only takes economic issues into account, but not the benefits in terms of public health, environment, climate or geopolitics. It also outlines that whenever oil prices increase or decrease, the oil sector has reached a dead end, and that photovoltaic and wind energy present a growing interest among not only ecologists but also finance experts

  12. Producing hydrogen from coke-oven gas: the Solmer project. [PSA process

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, G; Vidal, J

    1984-05-01

    After presenting the energy situation at the Solmer plant, where coke-oven gas is produced to excess, the authors examine the technical and economic possibilities of utilizing this gas for hydrogen extraction. They describe a project (based on the PSA process) for producing some 65 t/d of hydrogen and present the technical features of the scheme. An evaluation of the energy and financial costs of producing the hydrogen confirms the competitive status of the process.

  13. Radioisotopes produced by neutron irradiation of food.

    Science.gov (United States)

    Albright, S; Seviour, R

    2016-04-01

    The use of neutrons for cargo interrogation has the potential to drastically improve threat detection. Previous research has focussed on the production of (24)Na, based on the isotopes produced in pharmaceuticals and medical devices. For both the total activity and the ingestion dose we show that a variety of isotopes contribute and that (24)Na is only dominant under certain conditions. The composition of the foods has a strong influence on the resulting activity and ingestion dose suggesting that the pharmaceuticals and medical devices considered initially are not a viable analogue for foodstuffs. There is an energy dependence to the isotopes produced due to the cross-sections of different reactions varying with neutron energy. We show that this results in different isotopes dominating the ingestion dose at different energies, which has not been considered in the previous literature. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  15. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  16. Economic and energy analysis about disposal interventions of waste tires produced in Calabria; Valutazioni economiche ed energetiche di interventi di smaltimento di penumatici fuori uso in Calabria

    Energy Technology Data Exchange (ETDEWEB)

    Florio, Gaetano [Cosenza, Univ. della Calabria (Italy). Fac. di Ingegneria. Dipt. di Meccanica; Cersosimo, Attilio

    1997-05-01

    The present paper refers to an analysis aimed at researching disposal strategies, for waste tires produced in Calabria, which ensure correct disposal with regard to environmental compatibility and their evaluation in terms of material recovery and energy. The starting point has been an estimate of the quantities of potentially usable waste tires and disposal methods currently employed. It has therefore been possible to identify two specific disposal proposals for which an economic and energy evaluation has been conducted. The last part of the paper has faced the problem of plant location under consideration, with the aim of determining, for both proposal, the cost that each producer must bear to have his waste tires eliminated.

  17. 21st century's energy: hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. N.

    2007-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the Hydrogen Energy System. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st Century

  18. 21st Century's energy: Hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. Nejat; Sahin, Suemer

    2008-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century

  19. Low-energy x-ray and electron physics and applications to diagnostics development for laser-produced plasma research. Final report, April 30, 1980-April 29, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Henke, B.L.

    1981-08-01

    This final report describes a collaborative extension of an ongoing research program in low-energy x-ray and electron physics into particular areas of immediate need for the diagnostics of plasmas as involved in laser-produced fusion research. It has been for the continued support for one year of a post-doctoral research associate and for three student research assistants who have been applied to the following specific efforts: (1) the continuation of our research on the absolute characterization of x-ray photocathode systems for the 0.1 to 10 keV photon energy region. The research results were applied collaboratively to the design, construction and calibration of photocathodes for time-resolved detection with the XRD and the streak and framing cameras; (2) the design, construction and absolute calibration of optimized, bolt-on spectrographs for the absolute measurement of laser-produced plasma spectra.

  20. Low-energy x-ray and electron physics and applications to diagnostics development for laser-produced plasma research. Final report, April 30, 1980-April 29, 1981

    International Nuclear Information System (INIS)

    Henke, B.L.

    1981-08-01

    This final report describes a collaborative extension of an ongoing research program in low-energy x-ray and electron physics into particular areas of immediate need for the diagnostics of plasmas as involved in laser-produced fusion research. It has been for the continued support for one year of a post-doctoral research associate and for three student research assistants who have been applied to the following specific efforts: (1) the continuation of our research on the absolute characterization of x-ray photocathode systems for the 0.1 to 10 keV photon energy region. The research results were applied collaboratively to the design, construction and calibration of photocathodes for time-resolved detection with the XRD and the streak and framing cameras; (2) the design, construction and absolute calibration of optimized, bolt-on spectrographs for the absolute measurement of laser-produced plasma spectra

  1. Effective source size, radial, angular and energy spread of therapeutic 11C positron emitter beams produced by 12C fragmentation

    Science.gov (United States)

    Lazzeroni, Marta; Brahme, Anders

    2014-02-01

    The use of positron emitter light ion beams in combination with PET (Positron Emission Tomography) and PET-CT (Computed Tomography) imaging could significantly improve treatment verification and dose delivery imaging during radiation therapy. The present study is dedicated to the analysis of the beam quality in terms of the effective source size, as well as radial, angular and energy spread of the 11C ion beam produced by projectile fragmentation of a primary point monodirectional and monoenergetic 12C ion beam in a dedicated range shifter of different materials. This study was performed combining analytical methods describing the transport of particles in matter and the Monte Carlo code SHIELD-HIT+. A high brilliance and production yield of 11C fragments with a small effective source size and emittance is best achieved with a decelerator made of two media: a first liquid hydrogen section of about 20 cm followed by a hydrogen rich section of variable length. The calculated intensity of the produced 11C ion beam ranges from about 5% to 8% of the primary 12C beam intensity depending on the exit energy and the acceptance of the beam transport system. The angular spread is lower than 1 degree for all the materials studied, but the brilliance of the beam is the highest with the proposed mixed decelerator.

  2. Netherlands as producer of energy knowledge. Dutch governmental efforts for energy R and D in an international perspective

    International Nuclear Information System (INIS)

    Van Duin, A.M.

    2006-04-01

    The Dutch Ministry of Economic Affairs aims to link its transition policy in a broader context to international energy - and climate policy. A clear view on the Dutch position in the field of energy research policy is an important aspect of this international anchoring of the transition policy. For that purpose this report offers a first insight in the scope, the quality and the focus of Dutch energy R and D budget in comparison with the situation in a number of other countries. Furthermore, the attention is directed at recent developments and issues involved in the organisation of energy research. Several instruments for priority setting and organisational issues are recommended for consideration in the process of the international anchoring of transition policy. With regard to the per capita budgets for energy R and D, the Netherlands is leading together with Japan and the United States. Concerning the knowledge position in the field of energy, as of yet no research has been conducted expressing this knowledge position in publications, citations and patents. However, in the programming for the Dutch energy research strategy (EOS) a positive picture is presented. The role of the Netherlands in the European Framework Programmes indirectly indicates a good position as well. However, the scope of the Dutch government budget for energy R and D has been relatively strongly decreasing over the past years. The private contributions to energy R and D in the Netherlands are reasonable (50%), but the Dutch government expects that these - as a result of liberalisation - will decrease as well. In the Netherlands a relatively great part of the budget is spent on sustainable energy and energy conservation (together 70%). The Netherlands spend more on biomass and in particular on wind energy and less on solar energy than is the case in the other countries. Compared to the other countries, the Dutch budget for energy conservation has been remarkably evenly divided over the

  3. Laser-produced X-ray sources

    International Nuclear Information System (INIS)

    Hudson, L.T.; Seely, J.F.

    2010-01-01

    A formidable array of advanced laser systems are emerging that produce extreme states of light and matter. By irradiating solid and gaseous targets with lasers of increasing energy densities, new physical regimes of radiation effects are being explored for the first time in controlled laboratory settings. One result that is being accomplished or pursued using a variety of techniques, is the realization of novel sources of X-rays with unprecedented characteristics and light-matter interactions, the mechanisms of which are in many cases still being elucidated. Examples include the megajoule class of laser-produced plasmas designed in pursuit of alternative-energy and security applications and the petawatt class of lasers used for fast ignition and X-ray radiographic applications such as medical imaging and real-time imaging of plasma hydrodynamics. As these technologies mature, increased emphasis will need to be placed on advanced instrumentation and diagnostic metrology to characterize the spectra, time structure, and absolute brightness of X-rays emitted by these unconventional sources. Such customized and absolutely calibrated measurement tools will serve as an enabling technology that can help in assessing the overall system performance and progress, as well as identification of the underlying interaction mechanisms of interest to basic and applied strong-field and high-energy-density science.

  4. Energy catastrophes and energy consumption

    International Nuclear Information System (INIS)

    Davis, G.

    1991-01-01

    The possibility of energy catastrophes in the production of energy serves to make estimation of the true social costs of energy production difficult. As a result, there is a distinct possibility that the private marginal cost curve of energy producers lies to the left or right of the true cost curve. If so, social welfare will not be maximized, and underconsumption or overconsumption of fuels will exist. The occurrence of energy catastrophes and observance of the market reaction to these occurrences indicates that overconsumption of energy has been the case in the past. Postulations as to market reactions to further energy catastrophes lead to the presumption that energy consumption levels remain above those that are socially optimal

  5. Dossier Energy

    International Nuclear Information System (INIS)

    Weijer, H.; Holwerda, B.; Schrauwers, A.; Van de Graaf, A.; Van Gelder, T.

    2003-01-01

    Several aspects with respect to energy are discussed in a special section of this magazine: the security of energy supply in a liberalized market, saving energy by outsourcing (e.g. compressed air contracting), the profits of a liberalized energy market for businesses, incentives for energy saving projects and innovations, an energy efficiency project at Ineos Silicas (producer of zeolites), and energy efficient electronic equipment [nl

  6. Who is producing current without derailing the climate?

    International Nuclear Information System (INIS)

    Huet, Sylvestre

    2014-01-01

    The author examines whether it would be possible to massively produce electricity without disturbing the climate. He outlines the rather high level of CO 2 emissions by the energy sector in the World, the continuous increase of electricity consumption (mainly due to China). He comments the level of energy transition in western countries (level of low-carbon or de-carbonated energy), and notices that some good performance are due to the levels of nuclear energy and hydroelectric energy. He discusses the challenges raised by a perspective of phasing out nuclear for different countries

  7. The Integration of Gasification Systems with Gas Engine by Developing Wet Tar Scrubbers and Gas Filter to Produce Electrical Energy from Biomass

    Directory of Open Access Journals (Sweden)

    Siregar Kiman

    2018-01-01

    Full Text Available The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactorwere 900 mm and 1 000 mm respectively. The method used here werethe design the Detailed Engineering Design, assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 h with performance engine of 84 % and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kW h electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2 eq per MJ. Electrical production cost for Biomass Power Generation is about IDR 1 500 per kW h which is cheaper than solar power generation which is about of IDR 3 300 per kW h.

  8. Produced Water Treatment Using Geothermal Energy from Oil and Gas Wells: An Appropriateness of Decommissioned Wells Index (ADWI) Approach

    Science.gov (United States)

    Kiaghadi, A.; Rifai, H. S.

    2016-12-01

    This study investigated the feasibility of harnessing geothermal energy from retrofitted oil and gas decommissioned wells to power desalination units and overcome the produced water treatment energy barrier. Previous studies using heat transfer models have indicated that well depth, geothermal gradient, formation heat conductivity, and produced water salt levels were the most important constraints that affect the achievable volume of treated water. Thus, the challenge of identifying which wells would be best suited for retrofit as geothermal wells was addressed by defining an Appropriateness of Decommissioned Wells Index (ADWI) using a 25 km x 25 km grid over Texas. Heat transfer modeling combined with fuzzy logic methodology were used to estimate the ADWI at each grid cell using the scale of Very Poor, Poor, Average, Good and Excellent. Values for each of the four constraints were extracted from existing databases and were used to select 20 representative values that covered the full range of the data. A heat transfer model was run for all the 160,000 possible combination scenarios and the results were regressed to estimate weighting coefficients that indicate the relative effect of well depth, geothermal gradient, heat conductivity, and produced water salt levels on the volume of treated water in Texas. The results indicated that wells located in cells with ADWI of "Average", "Good" or "Excellent" can potentially deliver 35,000, 106,000, or 240,000 L/day of treated water, respectively. Almost 98% of the cells in the Granite Wash, 97% in Eagle Ford Shale, 90% in Haynesville Shale, 79% in Permian Basin, and 78% in Barnett Shale were identified as better than "Average" locations; whereas, south of the Eagle Ford, southwestern Permian Basin, and the center of Granite Wash were "Excellent". Importantly, most of the locations with better than "Average" ADWI are within drought prone agricultural regions that would benefit from this resilient source of clean water.

  9. Germany as an energy-producing country - quo vadis?

    International Nuclear Information System (INIS)

    Rauscher, K.

    2003-01-01

    Secure, sufficient electricity supplies available at any time, as guaranteed in Germany, are vital to the existence of our modern society. Under the conditions of deregulated markets, it must continue to be possible in Germany to offer reliable, economical and non-polluting energy supplies. These three factors should enjoy equal importance in energy policy decisions in the interest of sustainability. The skewed balance caused by political preferences as experienced at the present time can jeopardize the general objective of optimization of the three factors in the long run. As in no other country, the power industry in Germany had to make a considerable adaptation effort, inter alia, because of market deregulation, airborne pollutant reduction, and agreements on the operating life of existing nuclear power plants. Other problems are likely to arise in the near future, e.g. in connection with emission trading. The power industry is willing and able to solve these future problems. This is true in particular of the expected replacement of power plants of approx. 40 000 MW generating capacity in Germany, where the European framework must be taken into account with a replacement requirement of approx. 200 000 MW. This implies investments of euro 50 billion in Germany alone, which can be made only if there is sufficient security in planning for the operators of power plants. The choice of efficient and economically viable power generation technologies must be possible in this respect. (orig.) [de

  10. Anisotropy of energy losses in high-current Z-pinches produced by the implosion of cylindrical tungsten wire arrays

    Science.gov (United States)

    Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.; Gritsuk, A. N.; Lakhtyushko, N. I.; Medovshchikov, S. F.; Oleinik, G. M.; Svetlov, E. V.

    2014-02-01

    Results are presented from measurements of the anisotropy of energy losses in high-current Z-pinches produced by the implosion of wire arrays at the ANGARA-5-1 facility at load currents of up to 4MA. The energy losses were measured in the radial direction and along the pinch axis from the anode side. The main diagnostics were time-integrated thermocouple calorimeters, nanosecond X-ray diodes (XRDs) with different filters, and a foil radiation calorimeter with a time resolution of 2 μs. The azimuthal anisotropy of energy losses was measured for different wire array configurations and different shapes of the high-voltage electrode. The presence of strong initial azimuthal inhomogeneity of the wire mass distribution (sectioned arrays), as well as the use of conical electrodes instead of plane ones, does not increase the azimuthal inhomogeneity of the total energy losses. For cylindrical wire arrays, energy losses in the radial direction are compared with those along the pinch axis. According to XRD and calorimetric measurements, the radiation yield per unit solid angle along the pinch axis is two to three times lower than that in the radial direction. In the axial direction, the energy flux density of the expanding plasma is two to three times lower than the radiation intensity. The measured radiation yield across the pinch is 2.5-5 kJ/sr, while that along the pinch axis is 1-2 kJ/sr. The results obtained by means of XRDs agree to within measurement errors with those obtained using the radiation calorimeter. It is found that the energy per unit solid angle carried by the expanding plasma in the radial direction does not exceed 10% of the soft X-ray yield. Analysis of the structure of time-integrated pinhole images and signals from the radial and axial XRDs shows that radiation emitted in the radial direction from the hot central region of the pinch is partially screened by the less dense surrounding plasma halo, whereas radiation emitted in the axial direction is a

  11. Effect of Caffeine Contained in Sports Drink on Hormones Producing Energy Following Sprint Test Performance in Male Soccer Players

    Directory of Open Access Journals (Sweden)

    Mohammad Fayiz Abumoh'd

    2016-05-01

    Full Text Available This study investigated the effect of caffeine contained in sports drink on hormones producing energy and sprint test performance in male soccer players. Twelve participants (25.97 ± 2.70 y performed the test under thre e conditions (one week apart: caffeine with sports drink (SD-CAF, sports drink (SD, and placebo (PLA. Using a double-blind, placebo-controlled, randomized, crossover protocol, participants performed SD-CAF trial (5 mg/kg of caffeine contained in 300 ml of sports drink 30 minutes prior to sprinting test (7 × 30 m, SD trial (solely 300 ml of sports drink 30 minutes prior to sprinting test, or placebo. Blood analysis indicated significantly higher level of free thyroxine in SD-CAF (21.450 ± 3.048 compared to SD (18.742 ± 1.151 and PLA (16.983 ± 1.783. Similar findings existed regarding insulin (P 0.05. No significant differences were observed between trials in first–fourth repetitions (P > 0.05. Time of fifth-seventh repetitions were significantly lower in SD-CAF compared to SD and PLA (P < 0.05, and were significantly lower in SD than that in PLA (P < 0.05. The time of 7th repetition was (4.331 ± 0.210, 4.610 ± 0.197, 4.81 6 ± 0.171 s for SD-CAF, SD, and PLA, respectively; P < 0.05. In conclusion, caffeine interferes hormones that are responsible for producing energy which in turn have a positive effect on repeated sprint bouts.

  12. Energy paper II: Nuclear energy revival

    International Nuclear Information System (INIS)

    Anonymous

    2008-01-01

    ESI Energy paper is called 'Issue Paper' awarded by think-tank Energy Security Institute. The second issue focuses on the energy security of countries from the perspective of Renaissance of construction of nuclear power plants. Topicality is documented by fluctuations in fossil fuel prices on the world commodity markets and by extortionate potential, disposed by their main producers. The Slovak Republic is actively engaged into international dialogue on the need for the development of nuclear energy.

  13. Energy requirements, protein-energy metabolism and balance, and carbohydrates in preterm infants.

    Science.gov (United States)

    Hay, William W; Brown, Laura D; Denne, Scott C

    2014-01-01

    Energy is necessary for all vital functions of the body at molecular, cellular, organ, and systemic levels. Preterm infants have minimum energy requirements for basal metabolism and growth, but also have requirements for unique physiology and metabolism that influence energy expenditure. These include body size, postnatal age, physical activity, dietary intake, environmental temperatures, energy losses in the stool and urine, and clinical conditions and diseases, as well as changes in body composition. Both energy and protein are necessary to produce normal rates of growth. Carbohydrates (primarily glucose) are principle sources of energy for the brain and heart until lipid oxidation develops over several days to weeks after birth. A higher protein/energy ratio is necessary in most preterm infants to approximate normal intrauterine growth rates. Lean tissue is predominantly produced during early gestation, which continues through to term. During later gestation, fat accretion in adipose tissue adds increasingly large caloric requirements to the lean tissue growth. Once protein intake is sufficient to promote net lean body accretion, additional energy primarily produces more body fat, which increases almost linearly at energy intakes >80-90 kcal/kg/day in normal, healthy preterm infants. Rapid gains in adiposity have the potential to produce later life obesity, an increasingly recognized risk of excessive energy intake. In addition to fundamental requirements for glucose, protein, and fat, a variety of non-glucose carbohydrates found in human milk may have important roles in promoting growth and development, as well as production of a gut microbiome that could protect against necrotizing enterocolitis. © 2014 S. Karger AG, Basel.

  14. The nuclear phase-out. An expensive miscalculation by the federal government?

    International Nuclear Information System (INIS)

    Kerssenbrock, Trutz Graf

    2011-01-01

    With its ''energy turnaround'', implemented on 31 July 2011 through the Thirteenth Amendment to the Nuclear Energy Law (AtG), the Liberal/Christian Democrat Government finally seems to have thrown all caution to the wind. Its conduct of state affairs in the meantime appears to be governed more by calculated political manoeuvering and emotion mongering than by the constitutional order, and in legal respects it is leading the Federal Government into an impasse. The present article examines the impact of this misguided decision on the public purse in the form of (legitimate) claims for damage by the power supply companies concerned, and to what magnitude it might amount.

  15. Optimum energies for dual-energy computed tomography

    International Nuclear Information System (INIS)

    Talbert, A.J.; Brooks, R.A.; Morgenthaler, D.G.

    1980-01-01

    By performing a dual-energy scan, separate information can be obtained on the Compton and photoelectric components of attenuation for an unknown material. This procedure has been analysed for the optimum energies, and for the optimum dose distribution between the two scans. It was found that an equal dose at both energies was a good compromise, compared with optimising the dose distributing for either the Compton or photoelectric components individually. For monoenergetic beams, it was found that low energy of 40 keV produced minimum noise when using high-energy beams of 80 to 100 keV. This was true whether one maintained constant integral dose or constant surface dose. A low energy of 50 keV which is more nearly attainable in practice, produced almost as good a degree of accuracy. The analysis can be extended to polyenergetic beams by the inclusion of a noise factor. The above results were qualitatively unchanged, although the noise was increased by about 20% with integral dose equivalence and 50% with surface dose equivalence. It is very important to make the spectra as narrow as possible, especially at the low energy, in order to minimise the noise. (author)

  16. Characterization and comparison of biomass produced from various sources: Suggestions for selection of pretreatment technologies in biomass-to-energy

    International Nuclear Information System (INIS)

    Chiang, Kung-Yuh; Chien, Kuang-Li; Lu, Cheng-Han

    2012-01-01

    Highlights: ► Biomass with higher volatile matter content has a higher carbon conversion rate. ► Applying the suitable pretreatment techniques that will enhance the bioenergy yield. ► The ratio of H 2 O/fixed carbon is a critical factor for enhancing the energy conversion. -- Abstract: This study investigated the characteristics of 26 varieties of biomass produced from forestry, agriculture, municipality, and industry in Taiwan to test their applicability in thermal conversion technologies and evaluation of enhanced energy efficiency. Understanding the reactivity of the tested biomass, the cluster analysis was also used in this research to classify into characteristics groups of biomass. This research also evaluated the feasibility of energy application of tested biomass by comparing it to the physicochemical properties of various coals used in Taiwan’s power plants. The experimental results indicated that the volatile matter content of the all tested biomass was 60% and above. It can be concluded that the higher carbon conversion rate will occur in the thermal conversion process of all tested biomass. Based on the results of lower heating value (LHV) of MSW and non-hazardous industrial sludge, the LHV was lower than other tested biomass that was between 1000 and 1800 kcal/kg. This is due to the higher moisture content of MSW and sludge that resulted in the lower LHV. Besides, the LHV of other tested biomass and their derived fuels was similar to the tested coal. However, the energy densities of woody and agricultural waste were smaller than that of the coal because the bulky densities of woody and agricultural wastes were low. That is, the energy utilization efficiency of woody and agricultural waste was relatively low. To improve the energy density of tested biomass, appropriate pre-treatment technologies, such as shredding, pelletizing or torrefied technologies can be applied, that will enhance the energy utilization efficiency of all tested biomass.

  17. Effective Land Use for Renewable Energy Sources

    NARCIS (Netherlands)

    Dijkman, Teunis

    2009-01-01

    The aim of this research is to determine the energy densities for different methods to produce renew-able energy. Energy density is defined here as the energy that is annually produced on a certain area. Using low, average, and high energy density scenari

  18. Electron acceleration using laser produced plasmas

    CERN Multimedia

    CERN. Geneva; Landua, Rolf

    2005-01-01

    Low density plasmas have long been of interest as a potential medium for particle acceleration since relativistic plasma waves are capable of supporting electric fields greater than 100 GeV/m. The physics of particle acceleration using plasmas will be reviewed, and new results will be discussed which have demonstrated that relatively narrow energy spread (<3%) beams having energies greater than 100 MeV can be produced from femtosecond laser plasma interactions. Future experiments and potential applications will also be discussed.

  19. Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow.

    Science.gov (United States)

    Wathes, D C; Fenwick, M; Cheng, Z; Bourne, N; Llewellyn, S; Morris, D G; Kenny, D; Murphy, J; Fitzpatrick, R

    2007-09-01

    The peripartum period is of critical importance to subsequent health and fertility. Most cows enter a state of negative energy balance (NEB) associated with many metabolic changes which have carry over effects on the resumption and normality of estrous cyclicity and the success of subsequent inseminations. A dataset on 500 lactations explored the relationships between metabolic traits measured before and after calving with fertility. Stepwise multiple regression analysis showed that longer calving to conception intervals were associated with altered profiles of IGF-I, urea and body condition score. These relationships between metabolic profiles and fertility differed between first lactation cows (which are still growing but produce less milk) and mature animals. Early postpartum the liver undergoes extensive biochemical and morphological modifications to adapt to NEB, the uterus is extensively remodeled and must clear bacterial infections, and the ovary must resume ovulatory cycles. RNA isolated from liver and uterine tissues harvested 2 weeks postpartum from cows in mild (MNEB) and severe (SNEB) energy balance was used to screen the Affymetrix 23K bovine microarray. In liver, SNEB resulted in differential expression of key genes involved in lipid catabolism, gluconeogenesis, and the synthesis and stability of IGF-I. This was accompanied by reduced systemic concentrations of IGF-I which is likely to impact on ovarian function and early embryo development. Within endometrium, cows in SNEB showed histological evidence for higher levels of inflammation and the microarray analysis identified groups of differentially expressed genes involved in tissue remodeling and immune response. This may delay uterine repair after calving, likely contributing to the observed reduction in fertility.

  20. Measurement of secondary neutrons and gamma rays produced by neutron interactions in aluminum over the incident energy range 1 to 20 MeV

    International Nuclear Information System (INIS)

    Morgan, G.L.

    1975-11-01

    The spectra of secondary neutrons and gamma rays produced by neutron interaction in a thin sample (approximately 1/6 mean free path) of aluminum have been measured as a function of the incident neutron energy over the range 1 to 20 MeV. Data were taken at an angle of 125 0 . A linac (ORELA) was used as a neutron source with a 47-m flight path. Incident energy was determined by time-of-flight, while secondary spectra were determined by pulse-height unfolding techniques. The results of the measurements are presented in forms suitable for comparison to calculations based on the evaluated data files. (6 tables, 4 figures)

  1. Energy Tax and Competition in Energy Efficiency. The Case of Consumer Durables

    International Nuclear Information System (INIS)

    Conrad, K.

    2000-01-01

    The purpose of this paper is to analyze the role of an energy tax on technical improvements and on prices of consumer durables induced by strategic competition in energy efficiency. If the gasoline tax is raised this does in principle not affect the producers of cars because the motorist pays for it in terms of a higher cost of using the car. This, however, affects the unit sales of car producers because of substitution towards other modes of transportation. A second element of reaction to energy price variation is an indirect one and relates to the effect of energy prices on technology. Competition forces car producers to develop more energy efficient cars in order to reduce the cost of using a car. This indirect effect can partly offset the direct effect of higher energy prices on demand if it is profitable for the automobile industry to engineer more energy efficient equipment. We will analyze the impact of an energy tax on energy efficiency and on the price of a durable good. This will be done within the framework of a duopoly competing in prices and in the energy efficiency of its products. The government chooses a welfare maximizing energy tax as an incentive to innovate. Then we will analyze a strategic two-stage decision process in which the duopolists first decide about energy efficiency and then compete in prices. 18 refs

  2. The TEES process cleans waste and produces energy

    International Nuclear Information System (INIS)

    Elliott, D.C.; Silva, L.J.

    1995-02-01

    A gasification system is under development that can be used with most types of wet organic wastes. The system operates at 350 degrees C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet waste can be fed as a solution or slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. The system has utility both for direct conversion of high-moisture biomass to fuel gas or as a wastewater cleanup system for wet organic wastes including unconverted biomass from bioconversion processes. By the use of this system >99% conversions of organic waste to medium-Btu fuel gas can be achieved

  3. Efficient utilization of xylanase and lipase producing thermophilic ...

    African Journals Online (AJOL)

    Efficient utilization of xylanase and lipase producing thermophilic marine actinomycetes ( Streptomyces albus and Streptomyces hygroscopicus ) in the production of ecofriendly alternative energy from waste.

  4. Variation of kinetic energy release with temperature and electron energy for unimolecular ionic transitions

    International Nuclear Information System (INIS)

    Rabia, M.A.; Fahmy, M.A.

    1992-01-01

    The kinetic energy released during seven unimolecular ionic transitions, generated from benzyl alcohol and benzyl amine have been studied as a function of ion source temperature and ionizing electron energy. Only, the kinetic energy released during H CN elimination from fragment [C 7 H 8 N]+ ion of benzyl amine displays a temperature dependence. For only two transitions, generated from benzyl alcohol, the kinetic energy released show a significant ionizing electron energy dependence. These results may reveal the role of the internal energy of reacting ions in producing the kinetic energy released some transitions produced from benzyl alcohol

  5. Glass produced by underground nuclear explosions

    International Nuclear Information System (INIS)

    Schwartz, L.; Piwinskii, A.; Ryerson, F.; Tewes, H.; Beiriger, W.

    1983-01-01

    Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (10 12 calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 μm scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity

  6. Energy - Sandia National Laboratories

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  7. Study of resonances produced in Heavy Ion Collisions

    Science.gov (United States)

    Quattrocchi, L.; Acosta, L.; Auditore, L.; Cardella, G.; Chbihi, A.; De Filippo, E.; Favela, F.; Gnoffo, B.; Lanzalone, G.; Martel, I.; Martorana, N. S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Veselsky, M.

    2018-05-01

    At Laboratori Nazionali del Sud of Catania an experiment has been carried out in order to investigate the correlations between particles produced in 12C+24Mg reaction at 35 AMeV incident energy. Two α correlation has been explored because provide information about temperature of 8Be nuclei produced in the reaction, while three α correaltion has been studied in order to evaluate the competition between sequential and direct decay mode of resonances produced in 12C quasi-projectiles.

  8. Subjective State, Blood Pressure, and Behavioral Control Changes Produced by an "Energy Shot"

    Science.gov (United States)

    Marczinski, Cecile A; Stamates, Amy L; Ossege, Julianne; Maloney, Sarah F; Bardgett, Mark E; Brown, Clifford J

    2014-06-01

    Background: Energy drinks and energy shots are popular consumer beverages that are advertised to increase feelings of alertness. Typically, these products include high levels of caffeine, a mild psychostimulant drug. The scientific evidence demonstrating the specific benefits of energy products to users in terms of subjective state and objective performance is surprisingly lacking. Moreover, there are rising health concerns associated with the use of these products. Therefore, the purpose of this study was to investigate the acute effects of a popular energy shot (5-Hour Energy ® ) on subjective and objective measures that were assessed hourly for 6 hours following consumption. Methods: Participants ( n =14) completed a three-session study where they received the energy shot, a placebo control, and no drink. Following dose administration, participants completed subjective Profile of Mood States ratings hourly for 6 hours. Participants also repeatedly completed a behavioral control task (the cued go/no-go task) and provided blood pressure and pulse rate readings at each hour. Results: Consumption of the energy shot did improve subjective state, as measured by increased ratings of vigor and decreased ratings of fatigue. However, the energy shot did not alter objective performance, which worsened over time. Importantly, the energy shot elevated both systolic and diastolic blood pressure. Conclusions: Consumption of one energy shot may only result in modest benefits to subjective state. Individuals with preexisting hypertension or other medical conditions should be cautious about using these new consumer products.

  9. Energy trading

    International Nuclear Information System (INIS)

    Glachant, J.M.; Kimman, R.; Schweickardt, H.E.

    2001-05-01

    This document brings together 18 testimonies of experts about energy trading: 1 - the energy trading experience on European deregulated markets: structure of deregulated energy markets in Europe, case study: a two years experience of a power exchange in western Europe, case study: European energy exchanges (experience of spot and future trading), case study: risk management on energy deregulated markets; 2 - the trading activity environment and realities in France: the French electrical law and the purchase for resale, experience feedback: status after 3 months of trading in France (the first experience of a French producer), the access to the power transportation network, which legal constraints for trading in France, the access of eligible clients to the French power market, conditions of implementation of a power exchange market in France, which real trading possibilities in France for producers and self-producers in the legal frame, case study: the role of trading in the company (main part or link to process), convergence of gas and electricity markets, gas-electricity trading: which pricing models; 3 - risk management and use of new technologies potentiality, the results outside the French borders: case study: what differences between the European and US markets, prices volatility and commodity risk management: towards the on-line trading, role and developments of E-business in energy trading, how to simplify trade in a liberalized market. (J.S.)

  10. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  11. Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis.

    Science.gov (United States)

    Molina-Ramírez, Carlos; Enciso, Carla; Torres-Taborda, Mabel; Zuluaga, Robin; Gañán, Piedad; Rojas, Orlando J; Castro, Cristina

    2018-05-27

    Bacterial cellulose (BC) was produced by Komagataeibacter medellinensis using Hestrin and Schramm modified medium in the presence of alternative energy sources (AES), such as ethanol and acetic acid, to explore the effect of AES on the characteristics and properties of the resulting BC. In this study, the physicochemical and structural characteristics of the obtained BC were determined using Fourier-transform infrared spectroscopy, X-ray diffraction spectrometry, thermogravimetric analysis, and mechanical testing analysis. Ethanol and acetic acid (at 0.1 wt%) were proven to improve the BC yield by K. medellinensis by 279% and 222%, respectively. However, the crystallinity index (%), the degree of polymerization, and maximum rate of degradation temperatures decreased by 9.2%, 36%, and 4.96%, respectively, by the addition of ethanol and by 7.2%, 27%, and 4.21%, respectively, by the addition of acetic acid. The significance of this work, lies on the fact that there is not any report about how BC properties change when substances like ethanol or acetic acid are added to culture medium, and which is the mechanism that provokes those changes, that in our case we could demonstrate the relationship of a higher BC production rate (provoked by ethanol and acetic acid adding) and changes in BC properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. What is radiation and how is it produced

    International Nuclear Information System (INIS)

    Edwards, M.

    1984-01-01

    In summary, a short answer to the question posed by the title of this chapter may be attempted in the following manner. Radiation is electromagnetic or particulate energy emitted or produced as the consequence of electron motion, radioactive decay, or atomic and nuclear interactions. Ionizing radiation is that radiation having sufficient energy to produce positive and negative charges directly or indirectly when it interacts with matter. As with many ''simple'' definitions of complex subjects, this definition contains many terms equally, if not more, complex than the one it purports to define. Like the aroma a good meal, it conveys a feeling for the subject that should stimulate, rather than satisfy, the appetite

  13. The energy yield of nuclear energy

    International Nuclear Information System (INIS)

    Smith, Ph.B.

    1983-01-01

    In this paper, a comparison is made between the energy produced in a nuclear cycle in a light-water reactor without recycling of plutonium or uranium on the one hand and the energy stored into the system to realize this energy production on the other. Only empirical data are used, which means that some energy costs are omitted because no empirical data were available (e.g. energy needed to waste processing and waste disposal). The following steps are taken into account: production and processing of ores, conversion and enrichment of fuels, construction and shutdown of the reactor itself. (Auth.)

  14. Magnetic confinement of laser produced LiH plasma in LITE

    International Nuclear Information System (INIS)

    Ard, W.B.; Stufflebeam, J.H.; Tomlinson, R.G.

    1976-01-01

    In the LITE experiment, a hot, dense plasma produced by laser heating of an approximately 100 μ dia LiH particle is used to fill a minimum-B baseball coil mirror magnetic containment field. The confined laser produced plasma subsequently serves as the target for an energetic neutral hydrogen beam in experiments to investigate the target plasma buildup approach for creating and sustaining an equilibrium, steady state mirror fusion plasma. In the experiments, the LiH particle is positioned in vacuum at the laser beam focus by a feedback particle suspension system and heated by two sided irradiation with the focused dual beam, 50 j, 7 nsec output of a Q-switched Nd-glass laser. The energy density of the laser produced plasma is initially much greater than that of the surrounding magnetic field and the plasma expands, converting its internal energy into expansion kinetic energy and displacement of the magnetic field. As the energy density falls below that of the magnetic field, the expansion is stopped and the plasma becomes trapped, making the transition to a low beta, mirror confined plasma. This report is concerned with the properties and behavior of the plasma in the confinement stage

  15. The net greenhouse warming forcing of methanol produced from biomass

    International Nuclear Information System (INIS)

    Ellington, R.T.; Meo, M.; El-Sayed, D.A.

    1993-01-01

    Recent national and international actions regarding atmosphere warming mitigation, clean technology, and technology transfer have emphasized the need for a method for unambiguous greenhouse gas emissions analysis for comparing technologies, documentation of application of the method, and proof of applicability. We have developed and applied such an approach to production of methanol fuel from woody biomass. The system was defined, its emission for its entire lifetime delineated, and the atmospheric warming forcing calculated for that lifetime plus after effects. The results are presented with materials and energy balances including ancillary equipment, external energy subsidies and invested quantities. These extend the analysis considerably beyond those possible using the global warming potential (GWP). For wood input of 283 mg day -1 , 70 mg of methanol are produced. System carbon dioxide emissions are 3.18 tonne/tonne methanol produced, with another 1.37 mg emitted when that tonne methanol is burned in a vehicle. System energy usage efficiency was 41.2%, and 41.1% with inclusion of energy to construct the system. In essence, more than two Joules of carbon must be produced in wood for every Joule burned in the vehicle. (author)

  16. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Science.gov (United States)

    2010-04-01

    ... produced from coal seams. 270.302 Section 270.302 Conservation of Power and Water Resources FEDERAL ENERGY... produced from coal seams. A person seeking a determination that natural gas is occluded natural gas produced from coal seams must file an application with the jurisdictional agency which contains the...

  17. Water management technologies used by Marcellus Shale Gas Producers.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  18. Nuclear Power, Energy Economics and Energy Security

    International Nuclear Information System (INIS)

    2013-01-01

    Economic development requires reliable, affordable electricity that is provided in sufficient quantities to satisfy the minimum energy requirements at a local, regional or national level. As simple as this recipe for economic development appears, technological, infrastructural, financial and developmental considerations must be analysed and balanced to produce a national energy strategy. Complicating that task is the historic fact that energy at the desired price and in the desired quantities can be neither taken for granted nor guaranteed. Energy economics and energy security determine the options available to nations working to establish a sustainable energy strategy for the future.

  19. Renewable energy from vegetation; Les energies renouvelables d'origine vegetale

    Energy Technology Data Exchange (ETDEWEB)

    Sales, C. [Centre francais de cooperation international en recherche agronomique pour le developpement (France)

    2009-07-15

    Currently, vegetation accounts for 3 major types of energy sources, notably woody biomass, starches and vegetable oils. Bio-ethanol and biodiesel is produced from the fermentation of starches, such as sugar cane, beet sugar, sorghum, corn and potatoes. Biofuels can be produced from palm tree oil, coconut oil , soya oil, sunflower oil or any type of vegetable based oil. This article discussed energy efficiency issues and the environmental impact of developing these energies. In general, the lower energy efficiency of the starches can be attributed to the enzymes responsible for the catalysis. The article also reviewed the thermochemistry and energy efficiency regarding second generation fuels. It also discussed the burning of biomass, including woody biomass, forest waste and agricultural waste. 1 ref., 2 figs.

  20. Iran's Nuclear Program and Its Official Aim of Producing Nuclear Energy

    International Nuclear Information System (INIS)

    Khazaneh, Reza

    2008-01-01

    Iran says it aims at developing nuclear energy and mastering the whole cycle of nuclear combustion. After the withdrawal of Western experts, Russia took over the building of nuclear plants, without clearly explaining what it really intended to do. Nowadays Iran has no international assistance, either to complete the nuclear plants, or to achieve full control of the nuclear combustion cycle. Going forward seems difficult, even though Iran has proved capable of mobilizing a good deal of energy to attain its target

  1. Thermionic Properties of Carbon Based Nanomaterials Produced by Microhollow Cathode PECVD

    Science.gov (United States)

    Haase, John R.; Wolinksy, Jason J.; Bailey, Paul S.; George, Jeffrey A.; Go, David B.

    2015-01-01

    Thermionic emission is the process in which materials at sufficiently high temperature spontaneously emit electrons. This process occurs when electrons in a material gain sufficient thermal energy from heating to overcome the material's potential barrier, referred to as the work function. For most bulk materials very high temperatures (greater than 1500 K) are needed to produce appreciable emission. Carbon-based nanomaterials have shown significant promise as emission materials because of their low work functions, nanoscale geometry, and negative electron affinity. One method of producing these materials is through the process known as microhollow cathode PECVD. In a microhollow cathode plasma, high energy electrons oscillate at very high energies through the Pendel effect. These high energy electrons create numerous radical species and the technique has been shown to be an effective method of growing carbon based nanomaterials. In this work, we explore the thermionic emission properties of carbon based nanomaterials produced by microhollow cathode PECVD under a variety of synthesis conditions. Initial studies demonstrate measureable current at low temperatures (approximately 800 K) and work functions (approximately 3.3 eV) for these materials.

  2. Biomass living energy; Biomasse l'energie vivante

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Any energy source originating from organic matter is biomass, which even today is the basic source of energy for more than a quarter of humanity. Best known for its combustible properties, biomass is also used to produce biofuels. This information sheet provides also information on the electricity storage from micro-condensers to hydroelectric dams, how to save energy facing the increasing of oil prices and supply uncertainties, the renewable energies initiatives of Cork (Ireland) and the Switzerland european energy hub. (A.L.B.)

  3. 10 lessons learned by a misguided physician.

    Science.gov (United States)

    Levin, Barry E

    2017-07-01

    It was a great and humbling honor to receive the 2016 Distinguished Career Award from my SSIB colleagues. This paper summarizes the major points of my DCA talk at the 2016 annual meeting. It is a reflection on my 50year medical and research career and 10 lessons I have learned over those years which might be of help to young investigators near the beginning of their own research careers. These lessons include: the value of being receptive to the opportunities provided you; how clinician-scientists can serve as critical role models for young investigators like me and a history of how my career developed as a result of their influence; the importance of carefully examining your own data, particularly when it doesn't agree with your preconceived ideas; the critical role that students, postdocs and PhD (and even veterinarian) colleagues can play in developing one's career; the likelihood that your career path will have many interesting twists and turns determined by changes in your own scientific interests and how rewarding various areas of research focus are to you; the importance of building a close-knit laboratory staff family; the fact that science and romance can mix. Finally, I offer 3 somewhat self-evident free pieces of advice for building and maintaining a rewarding career. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Exergetic and exergoeconomic analysis of a novel hybrid solar–geothermal polygeneration system producing energy and water

    International Nuclear Information System (INIS)

    Calise, Francesco; D’Accadia, Massimo Dentice; Macaluso, Adriano; Piacentino, Antonio; Vanoli, Laura

    2016-01-01

    Highlights: • Exergetic and exergoeconomic analysis of hybrid renewable system is presented. • The system provides electric, thermal and cooling energy and desalinated water. • Exergy efficiency varies between 40–50% in the winter and 16–20% in the summer. • Electricity and fresh water costs vary between 15–17 and 57–60 c€/kW h_e_x. • Chilled and hot water costs vary between 18.6–18.9 and 1.6–1.7 c€/kW h_e_x. - Abstract: A dynamic simulation model of a novel solar–geothermal polygeneration system and the related exergetic and exergoeconomic analyses are presented in this paper. The plant is designed in order to supply electrical, thermal and cooling energy and fresh water for a small community, connected to a district heating and cooling network. The hybrid system is equipped with an Organic Rankine Cycle fueled by medium-enthalpy geothermal energy and by a Parabolic Trough Collector solar field. Geothermal brine is also used for space heating and cooling purposes. Finally, geothermal fluid supplies heat to a Multi-Effect Distillation unit, producing also desalinized water from seawater. Dynamic simulations were performed in order to design the system. The overall simulation model, implemented in TRNSYS environment, includes detailed algorithms for the simulation of system components. Detailed control strategies were included in the model in order to properly manage the system. An exergetic and exergoeconomic analysis is also implemented. The exergetic analysis allows to identify all the aspects that affect the global exergy efficiency, in order to suggest possible system enhancements. The accounting of exergoeconomic costs aims at establishing a monetary value to all material and energy flows, then providing a reasonable basis for price allocation. The analysis is applied to integral values of energy and a comparison of results between summer and winter season is performed. Results are analyzed on different time bases presenting

  5. New Applications of Electrochemically Produced Porous Semiconductors and Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Leisner Malte

    2010-01-01

    Full Text Available Abstract The growing demand for electro mobility together with advancing concepts for renewable energy as primary power sources requires sophisticated methods of energy storage. In this work, we present a Li ion battery based on Si nanowires, which can be produced reliable and cheaply and which shows superior properties, such as a largely increased capacity and cycle stability. Sophisticated methods based on electrochemical pore etching allow to produce optimized regular arrays of nanowires, which can be stabilized by intrinsic cross-links, which serve to avoid unwanted stiction effects and allow easy processing.

  6. On the nature of the disordered layer produced by ion implantation

    International Nuclear Information System (INIS)

    Zellama, K.; Germain, P.; Squelard, S.; Bourgoin, J.C.; Piaguet, J.; Robic, J.Y.

    1978-01-01

    The aim of this communication is to compare some thermodynamic parameters measured in amorphous layers produced by evaporation and in disordered layers produced by ion implantation (which will be called implanted layers). The thermodynamics parameters studied are: the temperature of the annealing stages (reflecting the activation energies for atomic rearrangement) and the activation energy of the growth rate for crystallization. This investigation has been performed in germanium because the crystallization in this material has been extensively studied. (author)

  7. Mn nanoparticles produced by inert gas condensation

    International Nuclear Information System (INIS)

    Ward, M B; Brydson, R; Cochrane, R F

    2006-01-01

    The results from experiments using the inert gas condensation method to produce nanoparticles of manganese are presented. Structural and compositional data have been collected through electron diffraction, EDX (energy dispersive X-ray) and EELS (electron energy loss spectroscopy). Both Mn 3 O 4 and pure Mn particles have been produced. Moisture in untreated helium gas causes the particles to oxidize, whereas running the helium through a liquid nitrogen trap removes the moisture and produces β-Mn particles in a metastable state. The particle sizes and the size distribution have been determined. Particle sizes range from 2nm to above 100 nm, however the majority of particles lie in the range below 20 nm with a modal particle size of 6 nm. As well as the modal particle size of 6 nm, there is another peak in the frequency curve at 16 nm that represents another group particles that lie in the range 12 to 20 nm. The smaller particles are single crystals, but the larger particles appear to have a dense region around their edge with a less dense centre. Determination of their exact nature is ongoing

  8. Electrostatic fields and charged particle acceleration in laser produced plasmas

    International Nuclear Information System (INIS)

    Hora, H.

    1983-01-01

    Some new aspects pioneered recently by Alfven in the theory of cosmic plasmas, indicate the possibility of a new treatment of the action of electrostatic double layers in the periphery of an expanding laser produced plasma. The thermally produced electrostatic double layer which has been re-derived for a homogeneous plasma shows that a strong upshift of ion energies is possible, in agreement with experiments. The number of accelerated ions is many orders of magnitude smaller than observed at keV and MeV energies. The nonlinear force acceleration could explain the number and energy of the observed fast ions. It is shown, however, that electrostatic double layers can be generated which should produce super-fast ions. A derivation of the spread double layers in the case of inhomogeneous plasmas is presented. It is concluded that the hydrodynamically expected multi GeV heavy ions for 10 TW laser pulses should produce super-fast ions up to the TeV range. Further conclusions are drawn from the electrostatically measured upshifted (by 300 keV) DT fusion alphas from laser compressed plasma. An analysis of alpha spectra attempts to distinguish between different models of the stopping power in the plasmas. The analysis preliminarily arrives at a preference for the collective model. (author)

  9. Key World Energy Statistics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The IEA produced its first handy, pocket-sized summary of key energy data in 1997. This new edition responds to the enormously positive reaction to the book since then. Key World Energy Statistics produced by the IEA contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts. It exists in different formats to suit our readers' requirements.

  10. BioCO2 - a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products.

    Science.gov (United States)

    Skjånes, Kari; Lindblad, Peter; Muller, Jiri

    2007-10-01

    Many areas of algae technology have developed over the last decades, and there is an established market for products derived from algae, dominated by health food and aquaculture. In addition, the interest for active biomolecules from algae is increasing rapidly. The need for CO(2) management, in particular capture and storage is currently an important technological, economical and global political issue and will continue to be so until alternative energy sources and energy carriers diminish the need for fossil fuels. This review summarizes in an integrated manner different technologies for use of algae, demonstrating the possibility of combining different areas of algae technology to capture CO(2) and using the obtained algal biomass for various industrial applications thus bringing added value to the capturing and storage processes. Furthermore, we emphasize the use of algae in a novel biological process which produces H(2) directly from solar energy in contrast to the conventional CO(2) neutral biological methods. This biological process is a part of the proposed integrated CO(2) management scheme.

  11. The greenhouse effect: A new source of energy

    International Nuclear Information System (INIS)

    Meunier, Francis

    2007-01-01

    Climate change induced by global warming is a result of an excess of energy at the earth's surface due to the greenhouse effect. But a new energy management can reverse the situation taking advantage of the greenhouse effect to produce renewable energy. In fact, both the renewable energy and the energy consumed which are not dissipated into heat are subtracted from the excess of energy produced by the greenhouse effect and contribute to mitigate climate change. This opens perspectives to harness the greenhouse effect [F. Meunier, Domestiquer l'effet de serre, Dunod, 2005]. Should all the primary energy be renewable energy and should part of the energy production not dissipated into heat, the present earth's energy imbalance should be beneficial and should serve to produce renewable energy

  12. The nuclear phase-out. An expensive miscalculation by the federal government?; Kernenergieausstieg. Teure Rechenfehler des Bundes?

    Energy Technology Data Exchange (ETDEWEB)

    Kerssenbrock, Trutz Graf [Kanzlei Kerssenbrock, Bruck und Goerke, Kiel (Germany)

    2011-10-15

    With its ''energy turnaround'', implemented on 31 July 2011 through the Thirteenth Amendment to the Nuclear Energy Law (AtG), the Liberal/Christian Democrat Government finally seems to have thrown all caution to the wind. Its conduct of state affairs in the meantime appears to be governed more by calculated political manoeuvering and emotion mongering than by the constitutional order, and in legal respects it is leading the Federal Government into an impasse. The present article examines the impact of this misguided decision on the public purse in the form of (legitimate) claims for damage by the power supply companies concerned, and to what magnitude it might amount.

  13. Table-top solar flares produced with laser driven magnetic reconnections

    Directory of Open Access Journals (Sweden)

    Zhong J.Y.

    2013-11-01

    Full Text Available The American Nuclear Society (ANS has presented the prestigious Edward Teller award to Dr. Bruce A. Remington during the 2011 IFSA conference due to his “pioneering scientific work in the fields of inertial confinement fusion (ICF, and especially developing an international effort in high energy density laboratory astrophysics” [1,2]. This is a great acknowledgement to the subject of high energy density laboratory astrophysics. In this context, we report here one experiment conducted to model solar flares in the laboratory with intense lasers [3]. The mega-gauss –scale magnetic fields produced by laser produced plasmas can be used to make magnetic reconnection topology. We have produced one table-top solar flare in our laboratory experiment with the same geometric setup as associated with solar flares.

  14. Hydrogen producing method and device therefor

    International Nuclear Information System (INIS)

    Iwamura, Yasuhiro; Ito, Takehiko; Goto, Nobuo; Toyota, Ichiro; Tonegawa, Hiroshi.

    1997-01-01

    The present invention concerns a process for producing hydrogen from water by utilizing a γ · X ray radiation source such as spent nuclear fuels. Hydrogen is formed from water by combining a scintillator which uses a γ · X ray radiation source as an energy source to emit UV light and an optical catalyst or an optical catalyst electrode which undergoes UV light to decompose water into hydrogen and oxygen. The present invention provides a method of effectively using spent fuel assemblies which have not been used at present and capable of converting them into hydrogen as storable chemical energy. (N.H.)

  15. New Solutions for Renewable Energy Trading

    Directory of Open Access Journals (Sweden)

    Władysław Mielczarski

    2014-09-01

    Full Text Available The paper presents one of the key problems in renewable energy trading. The support system for RES is operating on financial levels leaving to the RES producers decisions on the energy trade. However, the flawed legal regulations impose the obligations on Default Electricity Supplier (SzU1 to buy all RES production from the installations located in the areas of the SzU operation. Such legal provisions result in the additional burden on the SzU, which main duty is to provide electric energy to customers who do not want to enter competitive electricity markets. Additionally, over interpretation of the Energy Law provisions by the Energy Regulatory Authority (URE2, allowing the RES producers to trade a part of their production on electricity markets leaving the obligation on SzUs, has led to the speculative trade of renewable energy. Some RES producers sell the electricity produced in competitive markets during peak demand hours – usually working days from 7 a.m. to 8 p.m. – when the Power Exchange prices are significantly higher than the obligatory purchase price. When during off peak demand hours electricity prices in the Power Exchange are lower than the obligatory level, RES producers sell the electric energy to SzUs at the obligatory price, determined by the URE. Such an abuse of fair trade results in the additional income for the RES producers being burden on SzUs, which have to transfer such costs to energy endusers. The simulations, carried out for Poland indicate that the additional costs can count for about 200 mln zł per year.

  16. Attributing impacts to emissions traced to major fossil energy and cement producers over specific historical time periods

    Science.gov (United States)

    Ekwurzel, B.; Frumhoff, P. C.; Allen, M. R.; Boneham, J.; Heede, R.; Dalton, M. W.; Licker, R.

    2017-12-01

    Given the progress in climate change attribution research over the last decade, attribution studies can inform policymakers guided by the UNFCCC principle of "common but differentiated responsibilities." Historically this has primarily focused on nations, yet requests for information on the relative role of the fossil energy sector are growing. We present an approach that relies on annual CH4 and CO2 emissions from production through to the sale of products from the largest industrial fossil fuel and cement production company records from the mid-nineteenth century to present (Heede 2014). Analysis of the global trends with all the natural and human drivers compared with a scenario without the emissions traced to major carbon producers over full historical versus select periods of recent history can be policy relevant. This approach can be applied with simple climate models and earth system models depending on the type of climate impacts being investigated. For example, results from a simple climate model, using best estimate parameters and emissions traced to 90 largest carbon producers, illustrate the relative difference in global mean surface temperature increase over 1880-2010 after removing these emissions from 1980-2010 (29-35%) compared with removing these emissions over 1880-2010 (42-50%). The changing relative contributions from the largest climate drivers can be important to help assess the changing risks for stakeholders adapting to and reducing exposure and vulnerability to regional climate change impacts.

  17. Minimizing water consumption when producing hydropower

    Science.gov (United States)

    Leon, A. S.

    2015-12-01

    In 2007, hydropower accounted for only 16% of the world electricity production, with other renewable sources totaling 3%. Thus, it is not surprising that when alternatives are evaluated for new energy developments, there is strong impulse for fossil fuel or nuclear energy as opposed to renewable sources. However, as hydropower schemes are often part of a multipurpose water resources development project, they can often help to finance other components of the project. In addition, hydropower systems and their associated dams and reservoirs provide human well-being benefits, such as flood control and irrigation, and societal benefits such as increased recreational activities and improved navigation. Furthermore, hydropower due to its associated reservoir storage, can provide flexibility and reliability for energy production in integrated energy systems. The storage capability of hydropower systems act as a regulating mechanism by which other intermittent and variable renewable energy sources (wind, wave, solar) can play a larger role in providing electricity of commercial quality. Minimizing water consumption for producing hydropower is critical given that overuse of water for energy production may result in a shortage of water for other purposes such as irrigation, navigation or fish passage. This paper presents a dimensional analysis for finding optimal flow discharge and optimal penstock diameter when designing impulse and reaction water turbines for hydropower systems. The objective of this analysis is to provide general insights for minimizing water consumption when producing hydropower. This analysis is based on the geometric and hydraulic characteristics of the penstock, the total hydraulic head and the desired power production. As part of this analysis, various dimensionless relationships between power production, flow discharge and head losses were derived. These relationships were used to withdraw general insights on determining optimal flow discharge and

  18. Measurement of the energy loss of heavy ions in laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Knobloch-Maas, Renate

    2009-11-25

    The interaction of ions with plasma is not yet fully understood today, although it is important for inertial fusion technology. During recent years, the energy loss of heavy ions in plasma has therefore been a subject of research in the Laser and Plasma Physics group of Darmstadt University of Technology. Several experiments were carried out at the Gesellschaft fuer Schwerionenforschung (GSI) in Darmstadt using laser-created plasma, thereby taking advantage of the unique combination of GSI's accelerator facility and the laser system nhelix, which is also described in this work. The experiments focus on the measurement of the energy loss of medium heavy ions in a plasma created by directly heating a thin carbon foil with the nhelix laser, at an energy of about 50 J. In order to measure the energy loss using a time-of-flight method, a stop detector is used to register the arrival of the ion pulses after passing the plasma and a 12 m drift space. At the beginning of the work on this thesis, the ion detector types formerly used were found to be inadequately suited to the difficult task; this was changed during this thesis. The ion detector has to be able to temporarily resolve ion pulses with a frequency of 108 MHz and a width (FWHM) of 3 ns at a very low current. It also has to withstand the X-ray burst from the plasma with a dead time shorter than the difference between the X-ray and the ion time of flight between the plasma and the detector. In order to satisfy these and other demands, a new diamond detector was designed and has now been used for several measurements. In addition to the new detector, other improvements were made concerning the diagnostics and the laser. The laser-created plasma now reaches a maximum temperature exceeding 200 eV and a free electron density of up to 10{sup 22} cm{sup -3}. With this greatly improved setup, energy loss data could be obtained with a temporal resolution several times better than before, using an ion beam with a

  19. Measurement of the energy loss of heavy ions in laser-produced plasmas

    International Nuclear Information System (INIS)

    Knobloch-Maas, Renate

    2009-01-01

    The interaction of ions with plasma is not yet fully understood today, although it is important for inertial fusion technology. During recent years, the energy loss of heavy ions in plasma has therefore been a subject of research in the Laser and Plasma Physics group of Darmstadt University of Technology. Several experiments were carried out at the Gesellschaft fuer Schwerionenforschung (GSI) in Darmstadt using laser-created plasma, thereby taking advantage of the unique combination of GSI's accelerator facility and the laser system nhelix, which is also described in this work. The experiments focus on the measurement of the energy loss of medium heavy ions in a plasma created by directly heating a thin carbon foil with the nhelix laser, at an energy of about 50 J. In order to measure the energy loss using a time-of-flight method, a stop detector is used to register the arrival of the ion pulses after passing the plasma and a 12 m drift space. At the beginning of the work on this thesis, the ion detector types formerly used were found to be inadequately suited to the difficult task; this was changed during this thesis. The ion detector has to be able to temporarily resolve ion pulses with a frequency of 108 MHz and a width (FWHM) of 3 ns at a very low current. It also has to withstand the X-ray burst from the plasma with a dead time shorter than the difference between the X-ray and the ion time of flight between the plasma and the detector. In order to satisfy these and other demands, a new diamond detector was designed and has now been used for several measurements. In addition to the new detector, other improvements were made concerning the diagnostics and the laser. The laser-created plasma now reaches a maximum temperature exceeding 200 eV and a free electron density of up to 10 22 cm -3 . With this greatly improved setup, energy loss data could be obtained with a temporal resolution several times better than before, using an ion beam with a diameter of only

  20. Intermittency in multiparticle production produced by low momentum transfer at high energies

    International Nuclear Information System (INIS)

    Jang, Han Il; Jeong, Eun Mi; Kim, Jae Yool; Kim, Jae Young; Kim, Min Kyoung; Kim, Sin Joung; Kim, Tae Ick; Kim, Yeon Kyoung; Lee, Jin Ho; Lim, In Taek; Pac, Myoung Youl; Kim, Chong Oh; Bahk, Sang Yull

    1998-01-01

    We show the intermittent behavior of the distribution of the pseudo-rapidities of secondary charged particles produced by nucleus-nucleus interactions. In particular, using the modified G moments, which can be defined to suppress the statistical fluctuations, we study the intermittency in the low multiplicity processes produced by the 14.6-GeV/nucleon 28 Si - nucleus interactions. We have shown experimentally that the basic function B q,k (M), behaving as M λ(q,k) at large M, has the basic fractal behavior and that the exponent λ(q,k) depends linearly on the number of multiplicity in a bin

  1. A study of multiplicity scaling of particles produced in 16O-nucleus collisions

    International Nuclear Information System (INIS)

    Ahmad, N.

    2015-01-01

    Koba-Nielsen-Olesen (KNO) scaling has been a dominant framework to study the behaviour of multiplicity distribution of charged particles produced in high-energy hadronic collisions. Several workers have made attempt to investigate multiplicity distributions of particles produced in hadron-hadron (h-h), hadron-nucleus (h-A) and nucleus-nucleus (A-A) collisions at relativistic energies. Multiplicity distributions in p-nucleus interactions in emulsion experiments are found to be consistent with the KNO scaling. The applicability of the scaling of multiplicities was extended to FNL energies by earlier workers. Slattery has shown that KNO scaling is in agreement with the data on pp interactions over a wide-range of energies

  2. The greenhouse effect: A new source of energy

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, Francis [CNAM-IFFI (EA 21), 292 rue Saint Martin, 75141 Paris (France)]. E-mail: meunierf@cnam.fr

    2007-02-15

    Climate change induced by global warming is a result of an excess of energy at the earth's surface due to the greenhouse effect. But a new energy management can reverse the situation taking advantage of the greenhouse effect to produce renewable energy. In fact, both the renewable energy and the energy consumed which are not dissipated into heat are subtracted from the excess of energy produced by the greenhouse effect and contribute to mitigate climate change. This opens perspectives to harness the greenhouse effect [F. Meunier, Domestiquer l'effet de serre, Dunod, 2005]. Should all the primary energy be renewable energy and should part of the energy production not dissipated into heat, the present earth's energy imbalance should be beneficial and should serve to produce renewable energy.

  3. Nuclear energy and its synergies with renewable energies; Le nucleaire dans ses synergies avec les renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    Carre, F. [CEA Saclay, DEN, 91 - Gif-sur-Yvette (France); Mermilliod, N. [CEA Grenoble, Dir. de la Recherche Technologique, 38 (France); Devezeaux De Lavergne, J.G. [CEA Saclay, Dir. de l' Institut de tecchnico-economie des systemes energetiques I-tese, 91 - Gif-sur-Yvette (France); Durand, S. [CEA Grenoble, European Institute of Technology -KIC InnoEnergy, 38 (France)

    2011-05-15

    France has the ambition to become a world leader in both nuclear industry and in renewable energies. 3 types of synergies between nuclear power and renewable energies are highlighted. First, nuclear power can be used as a low-carbon energy to produce the equipment required to renewable energy production for instance photovoltaic cells. Secondly, to benefit from the complementary features of both energies: continuous/intermittency of the production, centralized/local production. The future development of smart grids will help to do that. Thirdly, to use nuclear energy to produce massively hydrogen from water and synthetic fuels from biomass. (A.C.)

  4. The research and training of human resources to produce renewable resources of energy

    Directory of Open Access Journals (Sweden)

    José Ernesto Rangel Delgado

    2008-10-01

    Full Text Available The prospective technique approach used as a context, this paper emphasizes the importance of a long term vision on the human resources development for renewable energies production. In the same sense it outlines the connection between the professions associated with the generation of renewable energy and the labor market. Results are presented on the research intellectual capacity of Mexico, highlighting, the public universities, specialized research centers, researchers, and the associated academic programs to renewable energies. Finally, it is presented the conclusions, and suggestions oriented to increase strategically, the renewable energies research for the technology development. Also it might incorporate our country towards the international market for renewable technologies, in the long term.

  5. Energy recovery from waste processing; La recuperation de l'energie issue du traitement des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, H.

    2000-07-15

    This report discusses the feasibility of energy production by waste reprocessing. After an analysis of the situation, the different steps of the methane and gas production, are detailed. Many scenari of energy efficiency are compared. The report proposes also solutions to enhance the treatment units of energy production. Propositions are discussed around five main axis: the energy improvement and the product improvement, the safety and the public health, the compensation by economical tools of the greenhouse effect impacts, the competition equilibrium between energy produced by the wastes and other energy forms and the decrease of the processing cost of wastes producing energy. (A.L.B.)

  6. A New World Energy Order is coming. Energy debate

    International Nuclear Information System (INIS)

    Odell, P.; Guillet, J.; Birol, F.; Kramer, M.; Van Gool, M.

    2007-01-01

    Peter Odell, Professor Emeritus of International Energy Studies of Erasmus University Rotterdam, Netherlands, recently wrote a remarkably succinct and provocative paper in which he described his vision of the new world energy order that is on the way in the form of eight propositions. The editors of this new magazine asked three experienced energy analysts as well as the CEO of a major energy company, the Dutch gas producer Gasunie, for a response

  7. Renewable energy in Europe

    International Nuclear Information System (INIS)

    Deshaies, M.

    2009-01-01

    Europe's increasing demand for energy and its environmental preoccupations are creating a favourable environment for the development of renewable energy sources. This article stated that although many European countries have adopted voluntary policies since the 1990s to increase the use of renewable energy sources, they have not been developed in an equal or consistent manner. A table was included to show the consumption of renewable energies by country; the percentage of renewable energies in 1995 as compared to 2006; and the consumption of primary energy resources. Combined, Germany, Spain and Denmark produce 75 per cent of wind energy in Europe, while 75 per cent of Europe's hydroelectricity is produced in Norway, Sweden, France, Italy, Austria and Switzerland. Germany has also made significant contributions in developing biomass energy. The article emphasized that the development of renewable energy sources is limited by the fact that it cannot keep up with growing energy demands. In addition, renewable energies cannot yet replace all fossil fuel consumption in Europe because of the variation in development from one country to another. 1 ref., 2 tabs., 4 figs.

  8. Energy consumption: energy consumption in mainland Norway

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, Inger Helene; Killingland, Magnus; Spilde, Dag

    2012-07-25

    The purpose of this report is to describe trends in energy consumption in mainland Norway, with an emphasis on key trends within the largest consumer groups. We also explain common terms and concepts in the field of energy consumption. Finally, we look at forecasts for future energy consumption, produced by bodies outside NVE. Total final energy consumption in mainland Norway in 2009 was 207 TWh. The most important end-user groups are households, service industries, manufacturing industry and transport. In addition, the energy sector in mainland Norway consumed 15 TWh. Energy consumed in the energy sector is not considered as final consumption, as the energy is used to produce new energy products. The long-term trend in energy consumption in mainland Norway is that fuel in the transport sector and electricity for the energy sector increases, while energy consumption in other sectors flattens out. The main reason for an increased use of fuel in the transport sector is the rise in the number of motorised machinery and vehicles in mainland Norway. This has caused a rise in gasoline and diesel consumption of 75 per cent since 1976. The petroleum sector is the largest consumer of energy within the energy sector in mainland Norway, and electricity from onshore to platforms in the North Sea and to new shore side installations has led to a rise in electricity consumption from 1 TWh in 1995 to 5 TWh in 2009. The energy consumption in households showed flat trend from 1996 to 2009, after many years of growth. The main reasons are a warmer climate, higher energy prices, the use of heats pumps and more energy-efficient buildings. In the service industries, the growth in energy consumptions has slightly decreased since the late 1990s, for much the same reasons as for households. In manufacturing industries the energy consumption have flatten out mainly due to the closure of energy-intensive businesses and the establishment of new more energy-efficient businesses. Electricity is

  9. Oil producers facing a common challenge

    International Nuclear Information System (INIS)

    Galal, E.E.

    1992-01-01

    Among the numerous challenges facing our modern world, perhaps the most urgent and dominant are energy related. From the perspective of developing countries they are, in order of priorities, development, energy security and environment. Oil covers above 38% of the global commercial energy needs and gas about 20%. In some commanding sectors of the economy, like transport, oil is for now virtually the irreplaceable source of energy. In addition, oil and gas are two valuable primary materials of the chemical industry. It also happens that oil consumption is one of the sources of environmental pollution through the emission of CO 2 . Utilisation of the world's finite fossil energy resources (88% of total commercial energy) in the service of development reflects all the negative attributes of the mismanagement of the global economy, exemplified by waste, inefficiency, unfair terms of trade, market instability and short-sighted policies. These serious inequities have been further compounded by the growing menace of environmental and climatic degradation. In dealing with the interactions between these three complex systems, i.e., energy, environment and development, it is important for oil producers to delineate their priorities clearly, if they are to disentangle credible common goals for an international convention. (author)

  10. Energy implications of bottled water

    International Nuclear Information System (INIS)

    Gleick, P H; Cooley, H S

    2009-01-01

    As bottled water use continues to expand around the world, there is growing interest in the environmental, economical, and social implications of that use, including concerns about waste generation, proper use of groundwater, hydrologic effects on local surface and groundwater, economic costs, and more. A key concern is how much energy is required to produce and use bottled water. This paper estimates the energy footprint required for various phases of bottled water production, transportation, and use. We do not develop a single comprehensive life-cycle energy estimate because of differences among water sources, bottling processes, transportation costs, and other factors, but we quantify key energy inputs necessary for site-specific assessments. We also apply these inputs to three site-specific examples of the energy required from production to the point of use: local bottled water produced and used in Los Angeles, water bottled in the South Pacific and shipped by cargo ship to Los Angeles, and water bottled in France and shipped in various ways to Los Angeles. For water transported short distances, the energy requirements of bottled water are dominated by the energy used to produce the plastic bottles. Long-distance transport, however, can lead to energy costs comparable to, or even larger than, those of producing the bottle. All other energy costs-for processing, bottling, sealing, labeling, and refrigeration-are far smaller than those for the production of the bottle and transportation. These data can be used to generate specific estimates for different sources, treatments, and delivery options.

  11. Nuclear Energy is the Answer to Cope with the Lack of Energy and Global Warming

    International Nuclear Information System (INIS)

    Wisnu Arya Wardhana

    2009-01-01

    This paper of nuclear energy is the answer to cope with the lack of energy and global warming based on the analysis of energy demand which is increasing rapidly, meanwhile the energy reserve is limited and decreased. Mostly world′s energy is generated by fossil fuel energy, mainly oil and coal. Fossil fuel energy and industrial activities produce green house gases (GHG) such as : COx, CH 4 , N 2 O, and CFC which cause of global warming. Global warming gives bad impact to environment and to human being. Every country in the world needs sufficient energy, but the energy resources is limited and decreased. The answer for this solution must be an energy source which does not produce green house gases. Why nuclear energy is chosen to cope with the lack of energy and global warming will be explained briefly in this paper. (author)

  12. Energy for the future

    International Nuclear Information System (INIS)

    Hammond, A.L.; Metz, W.D.; Maygh, T.H.II.

    1975-01-01

    A review of the most important conceivable possibilities today of producing and converting energy is given. Furthermore, the energy transfer as well as possibilities for the economical use of energy are dealt with. A presentation of the research priorities characterizes the present state of the energy policy

  13. Energy conservation and energy prices: the Hungarian experience

    International Nuclear Information System (INIS)

    Molnar, L.

    1997-01-01

    The main sources of emissions into the outdoor air are from the energy sector (e.g. power plants), industry, the transport sector and the residential sector (buildings). The danger from most of these emissions is the fact that heat plants and boilers of residential buildings in particular, are usually in the areas where people live and work and therefore their emissions may have a direct effect on health. The best way to improve this situation - to diminish emissions and to improve air quality - is to increase the efficiency of both energy production and use. This also has important consequences for the economic use of the national energy carrier stock and diminishes the need to import energy which increases the competitiveness of goods produced. The Hungarian government has set out an Energy Saving Programme to address, among other things the fact that the Hungarian average energy consumption per capita is less than the EU average but the energy intensity (the necessary energy to produce 1 USD GDP) is 3.5-4.0 times higher than the EU average. It has been shown that the best way to save energy is to invest in energy-conscious behaviour and training. Recent studies in public and residential buildings have shown that there is a potential for high energy saving in Hungarian buildings which is independent from the building technology used. Also, the pay-back times of investment in the building envelope are significantly higher than the pay-back times of investment in heating-ventilating or control systems, while the energy saved was of the same magnitude. (author) 5 figs., 5 tabs., 6 refs

  14. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, Kavin; et al.

    2017-05-01

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples for various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.

  15. Energy Statistics Manual; Manual Statistik Energi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Detailed, complete, timely and reliable statistics are essential to monitor the energy situation at a country level as well as at an international level. Energy statistics on supply, trade, stocks, transformation and demand are indeed the basis for any sound energy policy decision. For instance, the market of oil -- which is the largest traded commodity worldwide -- needs to be closely monitored in order for all market players to know at any time what is produced, traded, stocked and consumed and by whom. In view of the role and importance of energy in world development, one would expect that basic energy information to be readily available and reliable. This is not always the case and one can even observe a decline in the quality, coverage and timeliness of energy statistics over the last few years.

  16. Production of chemical energy carriers by non-expendable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Nitsch, J

    1976-01-01

    The different forms of energy (radiation, high-temperature heat and electricity) arising from non-expendable energy sources like solar energy can be used for the production of chemical energy-carriers. Possible methods are the splitting of water by means of photolysis, thermochemical cycles and electrolysis, as well as the storage of energy in closed loop chemical systems. These methods are described and efficiencies and costs of the production of these energy carriers are specified. Special problems of the long-distance transportation of hydrogen produced by solar energy are described and the resulting costs are estimated.

  17. Energy situation and perspectives of using solar energy in Crimea

    International Nuclear Information System (INIS)

    Stoyanova, I.I.; Mashkara, O.G.; Vikhorev, Yu.A.; Sokolovskaya, N.I.

    1997-01-01

    The article presents the talk on the energy situation and perspectives of the use of solar energy in Crimea, Ukraine, given at the International Workshop on applied solar energy held in Tashkent(Uzbekistan) in June 1997. The main use of solar energy is solar energy heating systems developed and produced in Crimea. The project of 100 MWt solar power plant is proposed for construction in Crimea and will improve ecological situation in resort area. (A.A.D.)

  18. Utilizing the energy from induced wind produce by highway vehicle motion

    International Nuclear Information System (INIS)

    Abas Abd Wahab; Tong, C.W.

    2000-01-01

    A research work has been conducted at the Faculty of mechanical Engineering, Universiti Teknologi Malaysia to utilize energy from airflow induced by moving vehicles along the highway for advertising and signboard lighting. Series of data collections have been made at Km 20 Johor Bahru - Kuala Lumpur Plus Highway. Wind anemometer equipped with data recorder has been placed at the highway divider to measure the wind speed induced by the vehicles moving from Johor Bahru to Kuala Lumpur and vice versa. From the data analysis it has been found that the to and from Kuala Lumpur motion of the vehicles induced a stable and continuous source of airflow (wind) ranges from 2 to 4 m/s. The energy in this induced wind has been estimated and has the potential to be used for the above said purpose. Five design models have been tested in the Faculty of mechanical Engineering Low Speed Wind Tunnel and the twisted vertical blades with circular end covers has proven to be the most efficient and suitable. The optimum sizing of the vertical axis wind turbine has also been determined. The details of the collection of wind induced data and analysis, estimation of energy content, the vertical axis wind turbine models testing and results are presented in this paper. (Author)

  19. Kansas Energy Sources: A Geological Review

    Science.gov (United States)

    Merriam, D.F.; Brady, L.L.; Newell, K.D.

    2012-01-01

    Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U. S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer. ?? 2011 International Association for Mathematical Geology.

  20. Modification of semiconductor materials using laser-produced ion streams additionally accelerated in the electric fields

    International Nuclear Information System (INIS)

    Rosinski, M.; Badziak, B.; Parys, P.; Wolowski, J.; Pisarek, M.

    2009-01-01

    The laser-produced ion stream may be attractive for direct ultra-low-energy ion implantation in thin layer of semiconductor for modification of electrical and optical properties of semiconductor devices. Application of electrostatic fields for acceleration and formation of laser-generated ion stream enables to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless laser-produced ions from the ion stream designed for implantation. For acceleration of ions produced with the use of a low fluence repetitive laser system (Nd:glass: 2 Hz, pulse duration: 3.5 ns, pulse energy:∼0.5 J, power density: 10 10 W/cm 2 ) in IPPLM the special electrostatic system has been prepared. The laser-produced ions passing through the diaphragm (a ring-shaped slit in the HV box) have been accelerated in the system of electrodes. The accelerating voltage up to 40 kV, the distance of the diaphragm from the target, the diaphragm diameter and the gap width were changed for choosing the desired parameters (namely the energy band of the implanted ions) of the ion stream. The characteristics of laser-produced Ge ion streams were determined with the use of precise ion diagnostic methods, namely: electrostatic ion energy analyser and various ion collectors. The laser-produced and post-accelerated Ge ions have been used for implantation into semiconductor materials for nanocrystal fabrication. The characteristics of implanted samples were measured using AES

  1. Window Energy Rating System and Calculation of Energy Performance of Windows

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    The goal of reducing the energy consumption in buildings is the background for the introduction of an energy rating system of fenestration products in Denmark. The energy rating system requires that producers declare, among other things, the heat loss coefficient, U, and the total solar energy...... development, e.g. when the resulting effects of a reduced frame area are evaluated....

  2. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  3. Energy efficiency, renewable energy and sustainable development

    International Nuclear Information System (INIS)

    Ervin, C.A.

    1994-01-01

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren't always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation

  4. Dose Measurements of Bremsstrahlung-Produced Neutrons at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Job, P.K.; Pisharody, M.; Semones, E.

    1998-01-01

    Bremsstrahlung is generated in the storage rings of the synchrotron radiation facilities by the radiative interaction of the circulating particle beam with both the residual gas molecules and storage ring components. These bremsstrahlung photons, having an energy range of zero to the maximum energy of the particle beam, interact with beamline components like beam stops and collimators generating photoneutrons of varying energies. There are three main processes by which photoneutrons may be produced by the high energy bremsstrahlung photons: giant nuclear dipole resonance and decay (10 MeV γ γ γ > 140 MeV). The giant resonance neutrons are emitted almost isotropically and have an average energy of about 2 MeV. High energy neutrons (E > 10 MeV) emitted from the quasi-deuteron decay and intranuclear cascade are peaked in the forward direction. At the Advanced Photon Source (APS), where bremsstrahlung energy can be as high as 7 GeV, production of photoneutrons in varying yields is possible from all of the above three processes. The bremsstrahlung produced along a typical 15.38-m straight path of the insertion device (ID) beamline of the APS has been measured and analyzed in previous studies. High-Z materials constituting the beamline components, such as collimators and beam stops, can produce photoneutrons upon interaction with these bremsstrahlung photons. The 1/E nature of the bremsstrahlung spectrum and the fact that the photoneutron production cross section is comparatively larger in the energy region 10 MeV γ 3 detector, as well as a very sensitive pressurized 3 He detector, is used for neutron dose measurements. The dose equivalent rates, normalized to bremsstrahlung power, beam current, and storage ring vacuum, are measured for various targets. This report details the experimental setup,

  5. Neutron fluence produced in medical accelerators

    International Nuclear Information System (INIS)

    Castro, R.C.; Silva, A.X. da; Crispim, V.R.

    2004-01-01

    Radiotherapy with photon and electron beams still represents the most diffused technique to control and treat tumour diseases. To increase the treatment efficiency, accelerators of higher energy are used, the increase of electron and photon energy is joined with generation of undesired fast neutron that contaminated the therapeutic beam and give a non-negligible contribution to the patient dose. In this work we have simulated with the MCNP4B code the produced neutron spectra in the interaction between the beam and the head to the accelerator and estimating the equivalent dose for neutrons by x-ray dose for aims far from the targets. (author)

  6. Angular distribution of thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, D.; Cavness, B.; Williams, S. [Department of Physics, Angelo State University, San Angelo, Texas 76909 (United States)

    2011-11-15

    Experimental results are presented comparing the intensities of the bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on a thick Ag target, measured at forward angles in the range of 0 degree sign to 55 degree sign . When the data are corrected for attenuation due to photon absorption within the target, the results indicate that the detected radiation is distributed anisotropically only at photon energies k that are approximately equal to the initial energy of the incident electrons E{sub 0}. The results of our experiments suggest that, as k/E{sub 0}{yields} 0, the detected radiation essentially becomes isotropic due primarily to the scattering of electrons within the target. A comparison to the theory of Kissel et al.[At. Data Nucl. Data Tables 28, 381 (1983)] suggests that the angular distribution of bremsstrahlung emitted by electrons incident on thick targets is similar to the angular distribution of bremsstrahlung emitted by electrons incident on free-atom targets only when k/E{sub 0}{approx_equal} 1. The experimental data also are in approximate agreement with the angular distribution predictions of the Monte Carlo program penelope.

  7. Energy investments and employment

    International Nuclear Information System (INIS)

    1993-08-01

    A study was conducted to assess the effect that different energy options would have on provincial and regional employment prospects in British Columbia. Current and future economic and employment patterns were examined to develop a more detailed understanding of the skills, age, gender, location, and other characteristics of British Columbia workers. Over 40 previous studies examining the energy/employment relationship were also reviewed. Based on this review and an analysis of the province's economic and labor conditions, the following conclusions are drawn. Investment in non-energy sectors offers better prospects for reducing unemployment than investment in the energy sector, whether for new supply or improving efficiency. Investments in the energy sector provide fewer jobs than investments in most other sectors of the economy. Among the available electricity supply options, large hydroelectric projects tend to produce the fewest jobs per investment dollar. Smaller thermal projects such as wood residue plants produce the most jobs. If and when more energy is needed in British Columbia, the most cost-effective combination of energy supply and efficiency options will also create the most jobs. Compared to traditional energy supply options, investments in energy efficiency would create about twice as many total jobs, create jobs that better match the skills of the province's unemployed and its population distribution, and create jobs that last longer on the average. Construction-related measures such as improved insulation tend to produce more jobs per investment dollar than the substitution of more energy-efficient equipment. 69 refs., 9 tabs

  8. Energy for life

    International Nuclear Information System (INIS)

    Rosenbloom, S.

    2009-01-01

    'Full text:' The production of liquid fuels, whether based on petroleum or renewable feedstock requires heat, electricity, water and possibly hydrogen. Nuclear energy can provide all of these. Nuclear energy need not be viewed as competing with fossil or renewable sources. On the contrary, nuclear energy can be coupled to renewable and fossil fuel production thereby deferring huge amounts of fossil fuel use and CO 2 emissions from these other industries in converting feedstocks into liquid fuels. This maximizes the liquid fuel production per ton of feedstock. There is some experience in this option. Although in the U.S. and Canada nuclear energy is primarily used for producing electricity, worldwide over 80 nuclear reactors have been used for non electricity uses such as industrial process energy, district heating and desalting sea water. Advanced oil recovery methods (such as tar sands) currently use large amounts of natural gas. Nuclear process heat could replace this natural gas. Nuclear process heat would also be applicable to future highly advanced techniques such as shale oil production and deep geological heating (underground refining) to release oil trapped by capillary action in depleted oil fields. Substantial research funding is now being directed to biologically based methods of producing fuels such as bio based diesel, gasoline, advanced bio ethanol and even hydrogen production. Can waste energy be utilized for bio based fuel production? About 2/3 of the energy produced by nuclear energy is normally rejected to the environment at about 120 deg F. An interesting challenge would be to use the vast resources of low temperature waste energy for driving bio based processes especially processes such as algae based methods that are not planned for northern climates like Canada. Meeting the future challenges of large scale renewable fuel production will involve large amounts of transformational energy that could be met with the hybrid energy systems

  9. Hydrogen: a clean energy for tomorrow?

    International Nuclear Information System (INIS)

    Artero, V.; Guillet, N.; Fruchart, D.; Fontecave, M.

    2011-01-01

    Hydrogen has a strong energetic potential. In order to exploit this potential and transform this energy into electricity, two chemical reactions could be used which do not release any greenhouse effect gas: hydrogen can be produced by water electrolysis, and then hydrogen and oxygen can be combined to produce water and release heat and electricity. Hydrogen can therefore be used to store energy. In Norway, the exceeding electricity produced by wind turbines in thus stored in fuel cells, and the energy of which is used when the wind weakens. About ten dwellings are thus supplied with only renewable energy. Similar projects are being tested in Corsica and in the Reunion Island. The main challenges for this technology are its cost, its compactness and its durability. The article gives an overview of the various concepts, apparatus and systems involved in hydrogen and energy production. Some researches are inspired by bacteria which produce hydrogen with enzymes. The objective is to elaborate better catalysts. Another explored perspective is the storage of solid hydrogen

  10. Comparison of the energy efficiency to produce agroethanol between various industries and processes: The transport stage

    International Nuclear Information System (INIS)

    Chavanne, Xavier; Frangi, Jean-Pierre

    2011-01-01

    The different modes of transport used in the agroethanol industry and their energy efficiencies have been studied. Their specific consumption of fuels t trans in MJ (t load km) -1 is assessed from raw data and from friction force laws. t trans depends on the mode characteristics, fuel/engine performance, velocity, geometry, total mass, actual load... Lack of precision on them increases the uncertainty on t trans (variation by a factor up to 8 for pipeline depending on the flow velocity). From t trans is deduced the consumption of the mode in the industry R trans in J for 100 J of the energy content of ethanol E etoh produced from the load. R trans takes also into account the distance of shipment d and the weight of the load in E etoh , w load . Trucks, t trans from 7 to 1.4 MJ(t load .km) -1 , can present the best R trans, lower than 0.5 J for 100 J of ethanol, because of trips over small d (less than 100 km) and of low w load (less than 0.04 t load .GJ etoh -1 for farm inputs and ethanol). R trans of the plant transport to the factory by trucks ranges to 3 J due to larger w load (up to 0.56 t load .GJ etoh -1 for sugar cane). Large part of the ethanol is moved from the factory to the local storages over 1000 km more or less depending on the proximity of consumption centers. Efficient modes such as pipeline and sea ships, t trans as low as 0.05 MJ (t load .km) -1 when optimized, can compensate for these distances with R trans around 1 J. R trans to export ethanol from Brazil to France would represent less than 5 J, much lower than the difference of consumptions R between sugar cane and sugar beet based ethanol productions. -- Highlights: → Local and global consumption rates (t and R) to carry inputs, plants or agroethanol. → t in J per km and ton of shipment, and its dependences from data and friction laws. → t from 7 for light trucks to 0.05 MJ (t load .km) -1 for optimized pipe or ship. → R in J for 100 J ethanol from t, distance and mass of load for 100

  11. Ecofriendly application of cellulase and xylanase producing marine ...

    African Journals Online (AJOL)

    windows

    2012-06-05

    Jun 5, 2012 ... producing marine Streptomyces clavuligerus as enhancer in ... pretreatment of cellulase, xylanase and the combination of enzymes. ... Energy from biomass holds a promising scope under ... investment, simplification of the fermentation media, ... biodegradation of lignocellulosic residues and enhanced ...

  12. An Agent-based Application to Enable Deregulated Energy Markets

    NARCIS (Netherlands)

    Capodieci, Nicola; Cabri, Giacomo; Pagani, Giuliano Andrea; Aiello, Marco

    2012-01-01

    Private houses are more and more enabled with devices that can produce renewable energy, and the not so remote chance of selling the surplus energy makes them new players in the energy market. This market is likely to become deregulated since each energy home-producer can negotiate the energy price

  13. Fossil fuel produced radioactivities and their effect on foodchains

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K [New South Wales Univ., Kensington (Australia). Dept. of Applied Mathematics

    1980-10-01

    The environmental impact of radioactivities produced from fossil fuel burning is not necessarily small compared with that of nuclear energy. The effect of these radioactivities on the foodchain through seafoods is discussed.

  14. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from Great Basin hot springs with agricultural residues and energy crops.

    Science.gov (United States)

    Zhao, Chao; Deng, Yunjin; Wang, Xingna; Li, Qiuzhe; Huang, Yifan; Liu, Bin

    2014-09-01

    In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA librarybased analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

  15. Energy distribution of ions produced by laser ablation of silver in vacuum

    International Nuclear Information System (INIS)

    Toftmann, B.; Schou, J.; Canulescu, S.

    2013-01-01

    The ion energy in a silver ablation plume for fluence in the range of 0.6–2.4 J cm −2 , typical for a pulsed laser deposition (PLD) experiment has been investigated. In this fluence range the ion fraction of the ablated particles becomes gradually dominant and can be utilized to characterize the ablation process. A silver target in vacuum was irradiated with a Nd:YAG laser at a wavelength of 355 nm and detailed measurements of the time-resolved angular distribution of plume ions were made. In contrast to earlier work, the beam spot was circular such that any flip-over effect of the plume is avoided. The angular energy distribution of ions in forward direction exceeds values of 500 eV, while at large angles the ion energy tail is below 100 eV. The maximum for the time-of-flight distributions agrees consistently with the prediction of Anisimov's model in the low fluence range, in which hydrodynamic motion prevails.

  16. Method of producing nano-scaled inorganic platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  17. Core fueling to produce peaked density profiles in large tokamaks

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; McGuire, K.M.; Schmidt, G.L.; Zweben, S.J.

    1994-06-01

    Peaking the density profile increases the usable bootstrap current and the average fusion power density; this could reduce the current drive power and increase the net output of power producing tokamaks. The use of neutral beams and pellet injection to produce peaked density profiles is assessed. We show that with radially ''hollow'' diffusivity profiles (and no particle pinch) moderately peaked density profiles can be produced by particle source profiles which are peaked off-axis. The fueling penetration requirements can therefore be relaxed and this greatly improves the feasibility of generating peaked density profiles in large tokamaks. In particular, neutral beam fueling does not require MeV particle energy. Even with beam voltages of ∼200 keV, however, exceptionally good particle confinement, τ p much-gt τ E is required to achieve net electrical power generation. In system with no power production requirement (e.g., neutron sources) neutral beam fueling should be capable of producing peaked density profiles in devices as large as ITER. Fueling systems with low energy cost per particle (such as cryogenic pellet injection) must be used in power producing tokamaks when τ p ∼ τ E . Simulations with pellet injection speeds of 7 km/sec show the peaking factor, n eo /left-angle n e right-angle, approaching 2

  18. Listing the investment costs and producing material analyses for given plants for energy supply

    International Nuclear Information System (INIS)

    Wagner, H.J.; Hansen, K.; Schoen, R.; Wassmann, B.

    1989-01-01

    In this comparison, the investment and material cost for the following plants are examined: 1. Solar service water treatment plants, 2. Solar heating plants, 3. Conventional comparative plants, 4. Heat pump heating plants, 5. Nuclear power stations and hardcoal-fired power stations, and 6. Wind energy converters. The technique of energy conversion of each is generally explained. In the appendix, points of the use of energy are given for the manufacture of components of the heating and installation trade. Specific energy costs per product unit are compiled for the different branches. (UA) [de

  19. Nuclear energy

    International Nuclear Information System (INIS)

    Wethe, Per Ivar

    2009-01-01

    Today we know two forms of nuclear energy: fission and fusion. Fission is the decomposition of heavy nuclei, while fusion is the melting together of light nuclei. Both processes create a large surplus of energy. Technologically, we can currently only use fission to produce energy in today's nuclear power plants, but there is intense research worldwide in order to realize a controlled fusion process. In a practical context, today's nuclear energy is a sustained source of energy since the resource base is virtually unlimited. When fusion technology is realized, the resource supply will be a marginal problem. (AG)

  20. Nanotechnological Inventions and Nanomaterials Produce A Profound Effect

    Directory of Open Access Journals (Sweden)

    VLASOV Vladimir Alexeevich

    2015-02-01

    Full Text Available The inventions in the area of nanotechnologies and nanomaterials produce a profound effect in construction, housing and communal services and adjacent economic fields as they allow us: to increase mechanical strength, coefficient of elasticity, alkali resistance and temperature of products vitrification; to obtain nanostructured coatings with the property of shape memory on the steel; to raise the dynamics of coal burning and its full burnout in the boilers of thermoelectric power station; to produce metal nanopowders with increased stored energy 10–15% etc. For example, the invention «Epoxy composition for high strength, alkali resistant structures» refers to epoxy composition used as a binder for production of high strength, thermal- and alkali-resistant glass-fiber material which can be applied in the manufacture process of construction reinforcement to strengthen concrete structures. The invention «The method to produce nanostructured reaction foil» can be used to join different materials including metal alloys, ceramics, amorphous materials and elements of microelectronic devices that are sensible to the heating. This process provides decreased labour-output ratio and energy consumption as well as the condition to manufacture foil with specified stored energy and high mechanical properties. The invention «The method of intensification of burning lowreactionary coal in the boilers of thermoelectric power station» refers to the thermal energy and can be implemented at the thermal plants. The increased dynamics of inflaming and burning leads to full burnout of powdered-coal low-reactionary fuel and decreased mechanical underfiring. The specialists may be also interested in the following inventions: fine dispersed organic suspension of carbon metal-containing nanostructures and the method to produce it; the dispersion of carbon nanotubes; the composition for reinforcement of building structures; the reinforced plate element made of

  1. Intraday Trading of Wind Energy

    DEFF Research Database (Denmark)

    Skajaa, Anders; Edlund, Kristian; Morales González, Juan Miguel

    2015-01-01

    In this paper, we tackle the problem of a wind power producer participating in a short-term electricity market that allows for the continuous, but potentially illiquid, intraday trading of energy. Considering the realistic case of a wind farm operating in the western Danish price area of Nord Pool......, we build a simple but effective algorithm for the wind power producer to fully benefit from the Elbas intraday market. We then investigate the sensitivity of the obtained benefits to the maximum volume of energy the wind power producer is willing to trade in the intraday market, the ultimate aim...... of the trade (either to decrease energy imbalances or to increase profits) and to the installed capacity of the wind farm. Our numerical results reveal that the wind power producer can substantially increase his revenues by partaking in the intraday market but with diminishing returns to scale—a result that we...

  2. Applications of irradiation in horticultural produce

    International Nuclear Information System (INIS)

    O'Beirne, David

    1985-01-01

    In the case of horticultural produce, the usefulness of irradiation is selective and irradiation may be most beneficial when used in conjunction with other preservative treatments such as mild refrigeration. Big benefits may be derived from energy saving in the degree of chilling required, in extended shelf-life and in quality retention with particular reference to mushrooms and strawberries. Research in the Irish context is urgently required

  3. Pool Strategy of a Price-Maker Wind Power Producer

    DEFF Research Database (Denmark)

    Zugno, Marco; Morales González, Juan Miguel; Pinson, Pierre

    2013-01-01

    We consider the problem of a wind power producer trading energy in short-term electricity markets. The producer is a price-taker in the day-ahead market, but a price-maker in the balancing market, and aims at optimizing its expected revenues from these market floors. The problem is formulated...... or median forecast of wind power distribution. Finally, sensitivity analyses are carried out to assess the impact on the offering strategy of the producer's penetration in the market, of the correlation between wind power production and residual system deviation, and of the shape of the forecast...

  4. Energy Costs of Energy Savings in Buildings: A Review

    Directory of Open Access Journals (Sweden)

    Daniel Rousse

    2012-08-01

    Full Text Available It is often claimed that the cheapest energy is the one you do not need to produce. Nevertheless, this claim could somehow be unsubstantiated. In this article, the authors try to shed some light on this issue by using the concept of energy return on investment (EROI as a yardstick. This choice brings semantic issues because in this paper the EROI is used in a different context than that of energy production. Indeed, while watts and negawatts share the same physical unit, they are not the same object, which brings some ambiguities in the interpretation of EROI. These are cleared by a refined definition of EROI and an adapted nomenclature. This review studies the research in the energy efficiency of building operation, which is one of the most investigated topics in energy efficiency. This study focuses on the impact of insulation and high efficiency windows as means to exemplify the concepts that are introduced. These results were normalized for climate, life time of the building, and construction material. In many cases, energy efficiency measures imply a very high EROI. Nevertheless, in some circumstances, this is not the case and it might be more profitable to produce the required energy than to try to save it.

  5. Energy distributions study of spallation neutrons produced at 0 deg. by proton beams (0.8 GeV and 1.6 GeV) and deuteron beams (1.2 and 1.6 GeV)

    International Nuclear Information System (INIS)

    Martinez, Eugenie

    1997-01-01

    We are studying the energy distributions of spallation neutrons produced at 0 deg. by protons of 0.8 GeV up to 1.6 GeV and deuterons of 1.2 and 1.6 GeV with two complementary experimental techniques: the time of flight measurement with tagged incident protons for low energy neutrons (3-400 MeV) and the use of a magnetic spectrometer at high energy (E ≥ 200 MeV). These measurements enable us to measure for the first time the neutron spectra for incident energies higher than 800 MeV. We have compared the double differential cross sections produced with 1.2 GeV protons on several thin targets (Al, Fe, Zr, W, Pb and Th). The neutron production obtained for a lead target is also studied for various energies (0.8 up to 1.6 GeV) and incident particles (p, d). Data are compared with theoretical simulations carried out using the TIERCE system and the intranuclear cascade model of J. Cugnon associated to the decay code of D. Durand. The neutron spectra calculated by using the HETC and MCNP codes, included in TIERCE, are significantly higher than the measured distributions. A better agreement is observed with the results of the Cugnon's cascade model. (author) [fr

  6. Biomass living energy

    International Nuclear Information System (INIS)

    2005-01-01

    Any energy source originating from organic matter is biomass, which even today is the basic source of energy for more than a quarter of humanity. Best known for its combustible properties, biomass is also used to produce biofuels. This information sheet provides also information on the electricity storage from micro-condensers to hydroelectric dams, how to save energy facing the increasing of oil prices and supply uncertainties, the renewable energies initiatives of Cork (Ireland) and the Switzerland european energy hub. (A.L.B.)

  7. The potential of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    On June 27 and 28, 1989, the US Department of Energy (DOE) national laboratories were convened to discuss plans for the development of a National Energy Strategy (NES) and, in particular, the analytic needs in support of NES that could be addressed by the laboratories. As a result of that meeting, interlaboratory teams were formed to produce analytic white papers on key topics, and a lead laboratory was designated for each core laboratory team. The broad-ranging renewables assignment is summarized by the following issue statement from the Office of Policy, Planning and Analysis: to what extent can renewable energy technologies contribute to diversifying sources of energy supply What are the major barriers to greater renewable energy use and what is the potential timing of widespread commercialization for various categories of applications This report presents the results of the intensive activity initiated by the June 1989 meeting to produce a white paper on renewable energy. Scores of scientists, analysts, and engineers in the five core laboratories gave generously of their time over the past eight months to produce this document. Their generous, constructive efforts are hereby gratefully acknowledged. 126 refs., 44 figs., 32 tabs.

  8. National Energy Outlook Modelling System

    Energy Technology Data Exchange (ETDEWEB)

    Volkers, C.M. [ECN Policy Studies, Petten (Netherlands)

    2013-12-15

    For over 20 years, the Energy research Centre of the Netherlands (ECN) has been developing the National Energy Outlook Modelling System (NEOMS) for Energy projections and policy evaluations. NEOMS enables 12 energy models of ECN to exchange data and produce consistent and detailed results.

  9. The use of energy analysis and indexes of energy efficiency in nuclear power

    International Nuclear Information System (INIS)

    D'yakonov, E.I.; Ignatenko, E.I.

    1991-01-01

    The results of calculating the indexes of energy efficiency for NPPs with the WWER-1000 and RBMK-1000 reactors, heat and power NPPs with the WWER-1000 and dictrict heating NPPs with the AST-500 reactor in three fuel cycles, namely, the open one and with uranium and plutonium recycles, are considered. Complex account for the quantity and quality of produced and consumed energy provides for objective evaluation of the indexes of energy efficiency during comparative analysis of nuclear power plants with different types of reactors. It is shown that complex use of the energy produced at a NPP provides for increase of indexes of energy efficiency. The highest indexes are obtained for heat and power NPP with the WWER-1000 reactor in the open fuel cycle, with uranium and plutonium recycle and for NPP with the WWER-1000 reactor with plutonium recycle

  10. Produced Water Management and Beneficial Use

    International Nuclear Information System (INIS)

    Brown, Terry; Frost, Carol; Hayes, Thomas; Heath, Leo; Johnson, Drew; Lopez, David; Saffer, Demian; Urynowicz, Michael; Wheaton, John; Zoback, Mark

    2007-01-01

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm

  11. Produced Water Management and Beneficial Use

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown; Carol Frost; Thomas Hayes; Leo Heath; Drew Johnson; David Lopez; Demian Saffer; Michael Urynowicz; John Wheaton; Mark Zoback

    2007-10-31

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm.

  12. International energy annual, 1989

    International Nuclear Information System (INIS)

    1991-02-01

    This report is prepared annually and presents the latest information and trends on world energy production, consumption, reserves, trade, and prices for five primary energy sources: petroleum, natural gas, coal, hydroelectricity, and nuclear electricity. It also presents information on petroleum products. Since the early 1980's the world's total output of primary energy has increased steadily. The annual average growth rate of energy production during the decade was 1.9 percent. Throughout the 1980's, petroleum was the world's most heavily used type of energy. In 1989, three countries--the United States, the USSR, and China--were the leading producers and consumers of world energy. Together, these countries consumed and produced almost 50 percent of the world's total energy. Global production and consumption of crude oil and natural gas liquids increased during the 1980's, despite a decline in total production and demand in the early part of the decade. World production of dry natural gas continued to rise steadily in the 1980's. For the last several years, China has been the leading producer of coal, followed by the United States. In 1989, hydroelectricity supply declined slightly from the upward trend of the last 10 years. Nuclear power generation rose slightly from the 1988 level, compared with the marked growth in earlier years. Prices for major crude oils all increased between 1988 and 1989, but remained well below the price levels at the beginning of the decade. 26 figs., 36 tabs

  13. Interactions of energy technology development and new energy exploitation with water technology development in China

    International Nuclear Information System (INIS)

    Liang, Sai; Zhang, Tianzhu

    2011-01-01

    Interactions of energy policies with water technology development in China are investigated using a hybrid input-output model and scenario analysis. The implementation of energy policies and water technology development can produce co-benefits for each other. Water saving potential of energy technology development is much larger than that of new energy exploitation. From the viewpoint of proportions of water saving co-benefits of energy policies, energy sectors benefit the most. From the viewpoint of proportions of energy saving and CO 2 mitigation co-benefits of water technology development, water sector benefits the most. Moreover, economic sectors are classified into four categories concerning co-benefits on water saving, energy saving and CO 2 mitigation. Sectors in categories 1 and 2 have big direct co-benefits. Thus, they can take additional responsibility for water and energy saving and CO 2 mitigation. If China implements life cycle materials management, sectors in category 3 can also take additional responsibility for water and energy saving and CO 2 mitigation. Sectors in category 4 have few co-benefits from both direct and accumulative perspectives. Thus, putting additional responsibility on sectors in category 4 might produce pressure for their economic development. -- Highlights: ► Energy policies and water technology development can produce co-benefits for each other. ► For proportions of water saving co-benefits of energy policies, energy sectors benefit the most. ► For proportions of energy saving and CO 2 mitigation co-benefits of water policy, water sector benefits the most. ► China’s economic sectors are classified into four categories for policy implementation at sector scale.

  14. Calculated intensity of high-energy neutron beams

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Back, B.B.

    2004-01-01

    The flux, energy and angular distributions of high-energy neutrons produced by in-flight spallation and fission of a 400 MeV/A 238 U beam and by the break-up of a 400 MeV/A deuteron beam are calculated. In both cases very intense secondary neutron beams are produced, peaking at zero degrees, with a relatively narrow energy spread. Such secondary neutron beams can be produced with the primary beams from the proposed rare isotope accelerator driver linac. The break-up of a 400 kW deuteron beam on a liquid-lithium target can produce a neutron flux of >10 10 neutrons/cm 2 /s at a distance of 10 m from the target

  15. Study of electrons distribution produced by laser-plasma interaction on x-ray generation

    International Nuclear Information System (INIS)

    Nikzad, L.; Sadighi-Bonabi, R.

    2010-01-01

    Complete text of publication follows. In the present work, X-ray beams are generated from interaction of relativistic electron beams produced by interaction of 500 mJ, 30 femtosecond Ti:sapphire laser pulses with thin solid targets such as lead, molybdenum and tungsten. After interaction of an intense pulsed laser with He gas-jet, a micron-scale laser produced plasma, creates and accelerates electron bunches, which propagate in the ion channel produced in the wake of the laser pulse. When an electron bunch is injected into the bubble in phase with its field, it will gain relativistic energies within very short distance. These accelerated electrons with Megaelectron-Volt energy and different distributions, can interact with targets to generate X-ray radiation with Kiloelectron-Volt energy, providing to be close enough to the gas-jet, where the relativistic accelerated electrons exist. Here, to determine the results, Monte Carlo simulation (MCNP-4C code) is employed to present Bremsstrahlung and characteristic X-ray production by quasi-Maxwellian and quasi-monoenergetic electron beams for three samples with different thicknesses. The outcome shows that for one specific electron spectrum and one definite target, the energy which the maximum characteristic x-ray flux takes place, varies with thickness. Also, for each material the energy which this maximum happens is constant for all thicknesses, for both produced electron spectra. For each sample, x-ray flux is calculated for different thicknesses and the thickness which the maximum characteristic x-ray flux occurs is obtained. Besides, it is concluded that by increasing the atomic number of the target, maximum X-ray flux moves towards higher energy. Also, comparison of the results for three targets and two electron distributions shows that by using quasi-monoenergetic electron spectra, more intense and narrower characteristic X-ray can be produced compared to the quasi-Maxwellian electron distribution, almost for all

  16. Fusion energy - an abundant energy source for the future

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  17. Reliability and energy efficiency of zero energy homes (Conference Presentation)

    Science.gov (United States)

    Dhere, Neelkanth G.

    2016-09-01

    Photovoltaic (PV) modules and systems are being installed increasingly on residential homes to increase the proportion of renewable energy in the energy mix. The ultimate goal is to attain sustainability without subsidy. The prices of PV modules and systems have declined substantially during the recent years. They will be reduced further to reach grid parity. Additionally the total consumed energy must be reduced by making the homes more energy efficient. FSEC/UCF Researchers have carried out research on development of PV cells and systems and on reducing the energy consumption in homes and by small businesses. Additionally, they have provided guidance on PV module and system installation and to make the homes energy efficient. The produced energy is fed into the utility grid and the consumed energy is obtained from the utility grid, thus the grid is assisting in the storage. Currently the State of Florida permits net metering leading to equal charge for the produced and consumed electricity. This paper describes the installation of 5.29 KW crystalline silicon PV system on a south-facing tilt at approximately latitude tilt on a single-story, three-bedroom house. It also describes the computer program on Building Energy Efficiency and the processes that were employed for reducing the energy consumption of the house by improving the insulation, air circulation and windows, etc. Finally it describes actual consumption and production of electricity and the installation of additional crystalline silicon PV modules and balance of system to make it a zero energy home.

  18. A possible method to produce a polarized antiproton beam at intermediate energies

    International Nuclear Information System (INIS)

    Spinka, H.; Vaandering, E.W.; Hofmann, J.S.

    1994-01-01

    A feasible and conservative design for a medium energy polarized antiproton beam has been presented. The design requires an intense beam of unpolarized antiprotons (≥ 10 7 /sec) from a typical secondary beam line in order to achieve reasonable anti pp elastic scattering count rates. All three beam spin directions can be achieved. Methods were discussed to reverse the spin directions in modest times, and to change to a polarized proton beam if desired. It is expected that experiments with such a beam would have a profound effect on the understanding of the anti NN interaction at intermediate energies

  19. Conceptualizing urban household energy use: Climbing the 'Energy Services Ladder'

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2011-01-01

    This article begins by defining energy services and identifying how they differ according to sector, urban and rural areas, and direct and indirect uses. It then investigates household energy services divided into three classes: lower income, middle income, and upper income. It finds that the primary energy technologies involved with low-income households involve a greater number of fuels and carriers, ranging from dung and fuelwood to liquefied petroleum gas and charcoal, but a fewer number of services. Middle-income households throughout the world tend to rely on electricity and natural gas, followed by coal, liquefied petroleum gas, and kerosene. These homes utilize energy to produce a much broader range services. The upper class or rich have access to the same energy fuels, carriers, and technologies as middle-income homes and families, but consume more energy (and more high luxury items). The study highlights how focusing on energy services reorients the direction of energy policy interventions, that energy services are neither uniform nor innate, and by noting exciting areas of potential research. - Research highlights: → The primary energy technologies involved with low-income households involve a greater number of fuels and carriers, ranging from dung and fuelwood to liquefied petroleum gas and charcoal, but a fewer number of services. → Middle-income households throughout the world tend to rely on electricity and natural gas, followed by coal, liquefied petroleum gas, and kerosene. These homes utilize energy to produce a much broader range services. → The upper class or rich have access to the same energy fuels, carriers, and technologies as middle-income homes and families, but consume more energy (and more high luxury items).

  20. Tungsten-nanodiamond composite powders produced by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.nunes@ist.utl.pt [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Livramento, V. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Mardolcar, U.V. [Departamento de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Centro de Ciencias Moleculares e Materiais, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Correia, J.B. [LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Carvalho, P.A. [ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2012-07-15

    The major challenge in producing tungsten-nanodiamond composites by ball milling lies in successfully dispersing carbon nanoparticles in the metallic matrix while keeping carbide formation at a minimum. Processing windows for carbide minimization have been established through systematic variation of the nanodiamond fraction, milling energy and milling time. Materials characterization has been carried out by X-ray diffraction, scanning and transmission electron microscopy and microhardness testing. Nanostructured matrices with homogeneously dispersed particles that preserved the diamond structure have been produced. Differential thermal analysis has been used to evaluate the composites thermal stability.

  1. Gulf stream. Energy from the sea

    International Nuclear Information System (INIS)

    Van Velzen, T.

    2007-01-01

    Waves can produce enough energy to supply the world with electricity five times the need. The first commercial wave power installation will be put into operation summer 2006 and a large number of projects are under development. However, the price for wave energy can not yet compete with conventionally produced electricity [nl

  2. A techno-economic evaluation of anaerobic biogas producing systems in developing countries.

    Science.gov (United States)

    Morgan, Hervan Marion; Xie, Wei; Liang, Jianghui; Mao, Hanping; Lei, Hanwu; Ruan, Roger; Bu, Quan

    2018-02-01

    Biogas production has been the focus of many individuals in the developing world; there have been several investigations that focus on improving the production process and product quality. In the developing world the lack of advanced technology and capital has hindered the development of energy production. Renewable energy has the potential to improve the standard of living for most of the 196 countries which are classified as developing economies. One of the easiest renewable energy compounds that can be produced is biogas (bio-methane). Biogas can be produced from almost any source of biomass through the anaerobic respiration of micro-organisms. Low budget energy systems are reviewed in this article along with various feedstock sources. Adapted gas purification and storage systems are also reviewed, along with the possible economic, social, health and environmental benefits of its implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Transverse-momentum distribution of produced particles in ultrarelativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ban-Hao, S.; Wong, C.

    1985-01-01

    In order to discern coherent or collective processes from incoherent processes in nucleus-nucleus reactions at high energies, we study the transverse-momentum distribution of the produced particles with an incoherent-multiple-collision model. In this model, the projectile nucleon makes successive inelastic collisions with nucleons in the target nucleus, the probability of such collisions being given by the thickness function and the nucleon-nucleon inelastic cross section. It is assumed that each baryon-baryon collision produces particles and degrades momenta just as a baryon-baryon collision in free space, and that there are no secondary collisions between the produced particles and the nucleons. We found that the average transverse momentum and the charged-multiplicity data at Fermilab and CERN ISR energies can be well explained by such a model. However, the average transverse momentum for some events observed by the Japanese-American cooperative emulsion experiment (JACEE) associated with large energy density in the central rapidity region differ markedly from the model results. Such a deviation indicates the presence of coherent or collective effects for these collisions and may indicate the possibility of a formation of quark-gluon plasma

  4. Evaluating municipal energy efficiency in biorefinery integration

    International Nuclear Information System (INIS)

    Haikonen, Turo; Tuomaala, Mari; Holmberg, Henrik; Ahtila, Pekka

    2013-01-01

    In this study biomass-based energy production was introduced to an urban city area of Helsinki, Finland. The study compared two cases in integration with a municipality: (1) biomass fuelled small-scale CHP (combined heat and power)-plant and (2) a biorefinery. The comparison was made according to primary energy consumption, primary energy factors, CO 2 (carbon dioxide) emissions and the price of produced biowax. It was also studied how results are influenced by different assumptions. The results showed that the primary energy consumption and CO 2 emissions were higher in the biorefinery case in absolute amounts as more products i.e. biowax was produced. The results indicated the primary energy factors were almost the same for both cases. Additionally, the primary energy use was very low for district heat and electricity produced in the biorefinery, when the primary energy use of the biorefinery was allocated only to the biowax. The sensitivity analysis of biowax pricing showed that a biorefinery is a competitive alternative for a CHP-plant if the prices of biomass and market electricity are low and the price of CO 2 allowance is high. In terms of overall energy efficiency comparison, the comparison cannot be properly completed, because of the different end-products of the plants. - Highlights: • Primary energy consumption and CO 2 emissions in a municipality are studied. • Energy production in a biorefinery is compared to a conventional CHP-plant. • In the biorefinery CO 2 emission per produced energy unit (CO 2 /MWh) is the lowest. • The CHP-case benefits from low primary energy consumption and electricity demand. • More than one energy efficiency figure needs to be considered in analyses

  5. Hydrogen energy - Abundant, efficient, clean: A debate over the energy-system-of-change

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Carl-Jochen [International Association for Hydrogen Energy (IAHE), c/o ENERGON Carl-Jochen Winter e.K., Obere St.-Leonhardstr. 9, 88662 Ueberlingen (Germany)

    2009-07-15

    Both secondary energies, electricity and hydrogen, have much in common: they are technology driven; both are produced from any available primary energy; once produced both are environmentally and climatically clean over the entire length of their respective conversion chains, from production to utilization; they are electrochemically interchangeable via electrolyses and fuel cells; both rely on each other, e.g., when electrolyzers and liquefiers need electricity or when electricity-providing low temperature fuel cells need hydrogen; in cases of secondary energy transport over longer distances they compete with each other; in combined fossil fuel cycles both hydrogen and electricity are produced in parallel exergetically highly efficiently; hydrogen in addition to electricity helps exergizing the energy system and, thus, maximizing the available technical work. There are dissimilarities, too: electricity transports information, hydrogen does not; hydrogen stores and transports energy, electricity does not (in macroeconomic terms). The most obvious dissimilarity is their market presence, both in capacities and in availability: Electricity is globally ubiquitous (almost), whilst hydrogen energy is still used in only selected industrial areas and in much smaller capacities. The article describes in 15 chapters, 33 figures, 3 tables, and 2 Annexes the up-and-coming hydrogen energy economy, its environmental and climatic relevance, its exergizing influence on the energy system, its effect on decarbonizing fossil fueled power plants, the introduction of the novel non-heat-engine-related electrochemical energy converter fuel cell in portable electronics, in stationary and mobile applications. Hydrogen guarantees environmentally and climatically clean transportation on land, in air and space, and at sea. Hydrogen facilitates the electrification of vehicles with practically no range limits. (author)

  6. Agriculture 2008. The critical agrarian report. Main topic 2008: Agriculture as an energy producer; Landwirtschaft 2008. Der kritische Agrarbericht. Schwerpunkt 2008: Landwirtschaft als Energieerzeuger

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.; Fink-Kessler, A.; Stodieck, F. (comps.)

    2008-01-15

    The focus of the critical agrarian report in this year is the topic 'agriculture as an energy producer'. In 44 contributions, the agrarian events of the year 2007 are analyzed and the setting the points for the future are discussed. The topics of this report are: Agricultural policy and social situation, world trade and nutrition, ecological agriculture, production and market, regional market, regional development, nature and environment, forest, animal protection and animal husbandry, genetic engineering, agrarian culture, consumer and nourishing culture.

  7. Hadron cascades produced by electromagnetic cascades

    International Nuclear Information System (INIS)

    Nelson, W.R.; Jenkins, T.M.; Ranft, J.

    1986-12-01

    A method for calculating high energy hadron cascades induced by multi-GeV electron and photon beams is described. Using the EGS4 computer program, high energy photons in the EM shower are allowed to interact hadronically according to the vector meson dominance (VMD) model, facilitated by a Monte Carlo version of the dual multistring fragmentation model which is used in the hadron cascade code FLUKA. The results of this calculation compare very favorably with experimental data on hadron production in photon-proton collisions and on the hadron production by electron beams on targets (i.e., yields in secondary particle beam lines). Electron beam induced hadron star density contours are also presented and are compared with those produced by proton beams. This FLUKA-EGS4 coupling technique could find use in the design of secondary beams, in the determination high energy hadron source terms for shielding purposes, and in the estimation of induced radioactivity in targets, collimators and beam dumps

  8. Core fuelling to produce peaked density profiles in large tokamaks

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; McGuire, K.M.; Schmidt, G.L.; Zweben, S.J.

    1995-01-01

    Peaking the density profile increases the usable bootstrap current and the average fusion power density; this could reduce the current drive power and increase the net output of power producing tokamaks. The use of neutral beams and pellet injection to produce peaked density profiles is assessed. It is shown that with radially 'hollow' diffusivity profiles (and no particle pinch) moderately peaked density profiles can be produced by particle source profiles that are peaked off-axis. The fuelling penetration requirements can therefore be relaxed and this greatly improves the feasibility of generating peaked density profiles in large tokamaks. In particular, neutral beam fuelling does not require Megavolt particle energies. Even with beam voltages of ∼ 200 keV, however, exceptionally good particle confinement is needed to achieve net electrical power generation. The required ratio of particle to thermal diffusivities is an order of magnitude outside the range reported for tokamaks. In a system with no power production requirement (e.g., neutron sources) neutral beam fuelling should be capable of producing peaked density profiles in devices as large as ITER. Fuelling systems with low energy cost per particle - such as cryogenic pellet injection - must be used in power producing tokamaks when τ P ∼ τ E . Simulations with pellet injection speeds of 7 km/s show that the peaking factor, n e0 / e >, approaches 2. (author). 65 refs, 8 figs

  9. The impact of energy prices on industrial energy efficiency and productivity

    International Nuclear Information System (INIS)

    Boyd, G.A.

    1993-01-01

    Energy prices moved into the forefront of concern in the mid and late seventies when two oil price shocks drove up energy prices dramatically. The analysis of the subsequent increase in industrial energy efficiency, i.e., decline in energy use per unit of industrial output, has filled volumes of government and private studies. Despite the volumes of analysis, there remains no consensus on the magnitude of the effect of energy prices on industrial energy efficiency or the effect of the change in energy prices on productivity. This paper examines some sources of the controversy to initiate a dialog between policy makers, analysts, and the energy consumers and producers

  10. Confinement characteristics of high-energy ions produced by ICRF heating in the large helical device

    International Nuclear Information System (INIS)

    Kumazawa, R; Saito, K; Torii, Y; Mutoh, T; Seki, T; Watari, T; Osakabe, M; Murakami, S; Sasao, M; Watanabe, T; Yamamoto, T; Notake, T; Takeuchi, N; Saida, T; Shimpo, F; Nomura, G; Yokota, M; Kato, A; Zao, Y; Okada, H; Isobe, M; Ozaki, T; Narihara, K; Nagayama, Y; Inagaki, S; Morita, S; Krasilnikov, A V; Idei, H; Kubo, S; Ohkubo, K; Sato, M; Shimozuma, T; Yoshimura, Y; Ikeda, K; Nagaoka, K; Oka, Y; Takeiri, Y; Tsumori, K; Ashikawa, N; Emoto, M; Funaba, H; Goto, M; Ida, K; Kobuchi, T; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Muto, S; Nakamura, Y; Nakanishi, H; Nishimura, K; Noda, N; Ohdachi, S; Peterson, B J; Sagara, A; Sakakibara, S; Sakamoto, R; Sato, K; Shoji, M; Suzuki, H; Tanaka, K; Toi, K; Tokuzawa, T; Watanabe, K Y; Yamada, I; Yamamoto, S; Yoshinuma, M; Yokoyama, M; Watanabe, K-Y; Kaneko, O; Kawahata, K; Komori, A; Ohyabu, N; Yamada, H; Yamazaki, K; Sudo, S; Matsuoka, K; Hamada, Y; Motojima, O; Fujiwara, M

    2003-01-01

    The behaviour of high-energy ions accelerated by an ion cyclotron range of frequency (ICRF) electric field in the large helical device (LHD) is discussed. A better confinement performance of high-energy ions in the inward-shifted magnetic axis configuration was experimentally verified by measuring their energy spectrum and comparing it with the effective temperature determined by an electron slowing down process. In the standard magnetic axis configuration a saturation of the measured tail temperature was observed as the effective temperature was increased. The ratio between these two quantities is a measure of the quality of transfer efficiency from high-energy ions to a bulk plasma; when this efficiency was compared with Monte Carlo simulations the results agreed fairly well. The ratio of the stored energy of the high-energy ions to that of the bulk plasma was measured using an ICRF heating power modulation method; it was deduced from phase differences between total and bulk plasma stored energies and the modulated ICRF heating power. The measured high energy fraction agreed with that calculated using the injected ICRF heating power, the transfer efficiency determined in the experiment and the confinement scaling of the LHD plasma

  11. Producing explicit UPSILON flavor in e/sup +/e/sup -/ annihilation at DORIS energies. [neutral currents, cross section, signature, 15 to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Genz, H [Karlsruhe Univ. (TH) (Germany, F.R.). Inst. fuer Theoretische Kernphysik; Gorn, M [Karlsruhe Univ. (TH) (Germany, F.R.)

    1978-07-31

    If the neutral currents changing the flavor implicit in the UPSILON(9.5) are not suppressed, vector mesons with explicit UPSILON flavor should be produced in e/sup +/e/sup -/ annihilation at up to two e/sup +/e/sup -/ energies between ..sqrt..s approximately 5 - 6.5 GeV with a cross section sigma (peak, averaged over 7 MeV beam resolution) approximately 0.25% of sigma(e/sup +/e/sup -/..--> mu../sup +/..mu../sup -/). The signature would be monochromatic ..gamma.. lines with Esub(..gamma..)approximately 50-150 MeV, probably together with K production. Explicit flavor of a (anti QQ)sub(V) at 30 GeV would be produced at ..sqrt..s approximately 15-16 and ..sqrt..s approximately 20 GeV with sigmasup(averaged)sub(peak) approximately 3% and 5% of sigmasub(..mu../sup +/..mu../sup -/) with GAMMAsub(beam) = 27 and 48 MeV, respectively. The signature would be the same as above.

  12. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  13. Are Development Projects Pursuing Short-Term Benefits at the Expense of Sustainability?

    Directory of Open Access Journals (Sweden)

    Yigezu Yigezu

    2017-10-01

    Full Text Available When evaluated purely on financial grounds, most developmental interventions targeting the livestock sector exhibit a positive impact. This study also provides empirical evidence that a project which provided loans to livestock producers in Syria succeeded in increasing the annual farm income and reducing the income risk. However, these annual benefits were accompanied by a reduction in technical efficiency which, unabated, may compound over the years and compromise the livestock enterprise’s sustainability. The development lesson from these findings is that misguided interventions with well-known short-term livelihoods benefits could, in the long run, hurt the very sector which they aim to support.

  14. Energy, the engine for progress? 120 keys to understand energies

    International Nuclear Information System (INIS)

    Mathis, Paul

    2014-01-01

    Through 120 issues or questions, the author proposes an overview of issues related to energy. He first addresses general issues (definition of energy, relationship between heat and temperature, between energy and climate change, types of energy), discusses the relationship between life and energy (our energy need, energy in food, use and consumption of energy by living materials), proposes an history of the use of energy resources by mankind, gives an overview of energy resources (origins, primary and final energies, energy mix, fossil energies, oil producers, peak oil, shale gases, coal is back, nuclear energy and accidents, renewable energies, biomass and biofuel production, the issue of energy storage, and so on). He discusses the various aspects and issues of energy transition, and the role of energy in the society (prices, technological perspectives, risks, accidents and their consequences, the strategic role of energy). He finally comments the perspectives: the interest of using scenarios, the use of hydrogen, future biofuels, micro-algae, thermal solar power plants, sea energies, etc.

  15. Energies in India

    International Nuclear Information System (INIS)

    Gama, Michel

    2013-01-01

    Based on information gathered during a mission in India, and also from reports and local newspapers and magazines, the author gives an overview of the energy issue in India: population, energy consumption, greenhouse gas emissions, electricity consumption, economic activities and life conditions, biomass production, potential for solar energy production, hydraulic energy production and operators, situation regarding coal, oil and natural gas as primary energies, situation of the nuclear industry and sector (international agreements and cooperation, reactor fleet, research centres). A table indicates the level and percentage of the different produced and imported consumed primary and final energies

  16. Energy balances 2005

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    Denmark's energy consumption was 800 PJ in 2005 when corrected for the fuel consumption used for producing electricity for export. The consumption is 0,5 % higher than in 2004. Since 1975, the energy consumption has been on the same level with minor fluctuations which are mainly due to the climate. The energy balances is an account of production, import and export, and consumption of energy. The consumption is accounted as physical amounts as well as gross consumption. Also, accounts are presented of the costs of energy in basis prices and in market prices, including excises on energy, CO 2 , and SO 2 . (LN)

  17. Producer controlled transportation and other innovations

    International Nuclear Information System (INIS)

    Cornelson, D. W.

    1997-01-01

    The emergence of producer-driven natural gas pipelines in Alberta was chronicled, providing a brief history of gas pipeline development in the province. The relationship between risk taking and reward expectations was explained as a prelude to a description of Alliance Pipelines, and its proposal to establish a competitive transportation market and international commodity pricing for Alberta gas. Owners of Alliance represent about 25 per cent of gas production in Western Canada. Equity participation is by way of ownership of units in three limited liability partnerships, and of shares of three general partners that manage the affairs of the limited liability partnership. This arrangement allows participating gas producers to avoid putting Alliance Pipelines' debt on their balance sheets, and to achieve certain tax advantages. Equally important, the partnership structure provides a solid foundation for risk/reward allocation among the partners. Details about proposed operating procedures, Alliance Pipelines' obligations to its owners, and the benefits of ownership were discussed. Alliance Pipelines Co. has the tacit approval of the Alberta government to let the market decide and its promise not do anything to jeopardize Alliance's competitive position vis-a-vis other pipelines. Applications have been submitted for Federal Energy Regulatory Commission (FERC), and National Energy Board (NEB) approvals

  18. Nuclear and hadronic reaction mechanisms producing spin asymmetry

    Indian Academy of Sciences (India)

    We briefly review concept of the quark recombination (QRC) model and a general success of the model. To solve the existing problem, so called anomalous spin observables, in the high energy hyperon spin phenomena, we propose a mechanism; the primarily produced quarks, which are predominantly and quarks, ...

  19. Financing energy development

    International Nuclear Information System (INIS)

    Kariwara, Y.

    1990-01-01

    The 1990s is likely to be a decade of double growth: in energy demand and environmental protection. This leads the author of this paper to ask the pertinent questions of where the money will come from, and in what form, to finance the growth in capacity to produce this energy and the technology required to produce and burn it cleanly. With a focus on Asian energy markets, this paper first illustrates the problem by describing the rapid growth of energy demand in the region. It describes the growth in Japan as well as China and the fast-growing economies of Hong Kong, Indonesia, Malaysia, the Philippines, Singapore, South Korea, Taiwan, and Thailand. Energy demand growth rates of almost 5 percent in the 1980s are expected to continue to grow at that rate at least until 2005, doubling today's level of consumption and putting the energy supply system under great strain. Because of the large sums involved, this paper pints out the necessity of inventing new, innovative devices for future fund raising. This will require the participation of institutions such as insurance companies and regional banks that have little experience in the energy field. This paper suggests that these and the established players in energy finance will have recourse to two new approaches: Build-Operate-Transfer and Trustee Borrowing schemes

  20. The water footprint of energy from biomass: a quantitative assessment and consequences of an increasing share of bio-energy in energy supply

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert; van der Meer, Theodorus H.

    2009-01-01

    This paper assesses the water footprint (WF) of different primary energy carriers derived from biomass expressed as the amount of water consumed to produce a unit of energy (m3/GJ). The paper observes large differences among the WFs for specific types of primary bio-energy carriers. The WF depends

  1. Energy Matters, September/October 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-13

    Energy Matters is a quarterly newsletter to update partners on Motor Challenge progress. This issue includes these topics: small town plastics manufacturer produces big local energy and cost savings; technical advances improve industrial energy efficiency; energy service companies: cost-savings partners for industry; choosing the right energy service company to prove the value of motor upgrades projects; energy assets: tapping the hidden value; steam workshops promote energy efficiency; performance optimization tips.

  2. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy – A life cycle perspective

    DEFF Research Database (Denmark)

    De Vries, J.W.; Vinken, T.M.W.J; Hamelin, Lorie

    2012-01-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for an...... (up to 568%), but at expense of increasing climate change (through LUC), marine eutrophication, and land use. Codigestion with wastes or residues like roadside grass gave the best environmental performance.......-substrates for anaerobic digestion. Environmental impact categories considered were climate change, terrestrial acidification, marine and freshwater eutrophication, particulate matter formation, land use, and fossil fuel depletion. Six scenarios were evaluated: mono-digestion of manure, co-digestion with: maize silage...

  3. Feedback control of a Darrieus wind turbine and optimization of the produced energy

    Science.gov (United States)

    Maurin, T.; Henry, B.; Devos, F.; de Saint Louvent, B.; Gosselin, J.

    1984-03-01

    A microprocessor-driven control system, applied to the feedback control of a Darrieus wind turbine is presented. The use of a dc machine as a generator to recover the energy and as a motor to start the engine, allows simplified power electronics. The architecture of the control unit is built to ensure four different functions: starting, optimization of the recoverable energy, regulation of the speed, and braking. An experimental study of the system in a wind tunnel allowed optimization of the coefficients of the proportional and integral (pi) control algorithm. The electrical energy recovery was found to be much more efficient using the feedback system than without the control unit. This system allows a better characterization of the wind turbine and a regulation adapted to the wind statistics observed in one given geographical location.

  4. γ-Oryzanol nanoemulsions produced by a low-energy emulsification method: an evaluation of process parameters and physicochemical stability.

    Science.gov (United States)

    Zhong, Jinfeng; Liu, Xiong; Wang, Yonghua; Qin, Xiaoli; Li, Zeling

    2017-06-21

    γ-Oryzanol is a natural antioxidant and nutraceutical compound, which makes it a good candidate for nutraceuticals, food supplements and pharmaceutical preparations. However, the incorporation of γ-oryzanol into aqueous formulations is rather difficult and its bioavailability can be severely decreased because of its water-insoluble property. In this study, γ-oryzanol-enriched nanoemulsion based fish oil and medium-chain triglyceride as carrier oils were proposed. The main objective was to optimize process parameters to form stable nanoemulsions and evaluate their physicochemical stability. The formulations of stable γ-oryzanol nanoemulsions were composed of 10% mixed carrier oils (weight ratio of fish oil to medium-chain triglyceride = 3 : 7) and 10% mixed surfactants (weight ratio of Tween 80 to Span 20 = 3 : 1). The nanoemulsions were stable at a broad pH range of 2-7 and high salt concentrations (≤0.8 mol L -1 ) and sucrose levels (≤16%). The nanoemulsions were much more stable at heating temperatures below 50 °C than at elevated heating temperatures (60 and 70 °C). The nanoemulsions maintained their physical stability at various storage temperatures (5-37 °C) for 18 days. Nanoemulsions at 5 and 23 °C had lower peroxide values and anisidine values than those at an elevated storage temperature (37 °C). These results demonstrate that the low-energy emulsification method can produce γ-oryzanol-enriched nanoemulsions using fish oil and medium-chain triglyceride as carrier oils, and provide useful information for producing bioactive lipids-loaded nanoemulsions for food systems, personal care and pharmaceutical products.

  5. An estimation of percentage of pion, kaon and other particles produced in nuclear emulsion - a simulated approach

    International Nuclear Information System (INIS)

    Bhattacharyya, Swarnapratim; Haiduc, Maria; Neagu, Alina Tania; Firu, Elena

    2014-01-01

    Multiparticle production in both high-energy nuclear and particle collisions is still a mystery, as far as the understanding of the dynamics of the production of secondary particles, especially of the soft varieties, is concerned. Of the various types of particles produced, mesons, especially the π-mesons, constitute, in practical terms, the near totality of the produced particles. Along with pions, in high-energy interactions kaons, hyperons and other mesons are also produced. In online experiments such as RHIC or LHC all the mesons can be detected. However, in emulsion experiments, there is no identification of the produced particles making a study of particle ratio fluctuations or net charge fluctuations impossible. In emulsion experiments, therefore, it is not possible to distinguish between pions and other mesons. There is one way to look at the compositions of the particles produced in high-energy nucleus-nucleus interactions in nuclear emulsion track detector

  6. Modeling of X-ray emissions produced by stepping lightning leaders

    OpenAIRE

    Xu , Wei; Celestin , Sebastien; Pasko , Victor P.

    2014-01-01

    International audience; Intense and brief bursts of X-ray emissions have been measured during the stepping processof both natural cloud-to-ground (CG) and rocket-triggered lightning flashes. In this paper, we investigatetheoretically the energy spectra of X-rays produced by the bremsstrahlung emission of thermal runawayelectrons accelerated in the inhomogeneous electric field produced around lightning leader tips. The X-rayenergy spectrum depends on the physical properties of the associated l...

  7. Misguided U.S. Food Policy Toward North Korea

    National Research Council Canada - National Science Library

    Bubia, Donald

    1999-01-01

    .... The United States, apparently caught unaware, paused for many months to consider the political and security ramifications of donating significant food, medicines, and funds to the effort. Given previous U.S...

  8. Misguided U.S. Food Policy Toward North Korea

    National Research Council Canada - National Science Library

    Bubia, Donald

    1999-01-01

    In 1995, the United Nations' World Food Program published an urgent plea for nations to donate food and medicines to relieve a complex food emergency in the Democratic Peoples Republic of Korea (DPRK or North Korea...

  9. The geopolitics of energy

    International Nuclear Information System (INIS)

    Eilts, H.F.

    1995-01-01

    The sources of world energy are largely in the underdeveloped, Third World Countries. Political stability is a critical factor in the geopolitics of energy and especially in under-developed countries. Energy consumers, like the US, the Europeans and the Japanese, whatever indigenous or nearby sources of energy may exist, remain heavily dependent on external oil and natural gas supplies. This situation will continue into the next century. Inevitably, therefore, they will be caught up in internal political and societal problems integral to the producing states. Similarly, issues affecting fossil fuel transportation to refineries and consuming facilities all over the world will affect energy costs and availability. Consumers are at the mercy of indigenous problems in producing states over which they have little or no control. As new production areas are sought throughout the world, intra-regional disputes over ownership of oil or natural gas will undoubtedly arise as efforts are made to find mutually agreeable solutions that assure consumers reasonably guaranteed supplies. (author)

  10. Energy use and energy intensity of the U.S. chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is

  11. Energy sector in Ecuador: Current status

    International Nuclear Information System (INIS)

    Pelaez-Samaniego, M.R.; Garcia-Perez, M.; Cortez, L.A.B.; Oscullo, J.; Olmedo, G.

    2007-01-01

    This paper describes the current energy sector in Ecuador, its present structure, the oil industry, subsidies, and renewable energy, focusing on the evolution and reform of the electricity sector. Currently, 86% of the primary energy originates from nonrenewable sources. In 2005, the gross electricity generation was 15 127 GWh (45.5% hydropower, 43.11% thermal, and 11.39% imported). Ecuador is the fifth largest oil producer in South America but lacks sufficient oil refining capacity. Reserves of natural gas (NG) are small, and most of NG is produced from oil fields without energy recovery. Several projects are underway to increase the utilization of NG and renewable energies to meet Ecuador commitments to the Kyoto Protocol

  12. The role played by stakeholders in the public debate that brought Italy out of the club of nuclear energy producers.

    Science.gov (United States)

    Cantone, Marie Claire; Sturloni, Giancarlo; Brunelli, Giancarlo

    2007-10-01

    In 1964, Italy was the fourth largest world producer of electricity generated by nuclear reactors, second in Europe only to United Kingdom. In subsequent years, various controversial political events contributed towards drastically slowing down the development of the Italian national nuclear program. The 1986 Chernobyl Nuclear Power Plant accident, which caused a public outcry all over Europe, had particularly serious repercussions in Italy. In a controversial referendum, held in November 1987, Italian citizens voted to repeal three laws promoting the installation of nuclear power plants (NPP) on Italian soil and allowing the National Institute for Electrical Energy (ENEL) to participate in the construction of NPP's abroad. This work analyzes the reasons for that decision and the communication strategies of the stakeholders that took part in the public debate on nuclear energy during the weeks following the Chernobyl accident. Drawing from the methodologies used in media studies, a quantitative and qualitative analysis of two leading Italian newspapers was performed. The results reveal that a variety of stakeholders, upholding different values and interests, took part in the debate. There being no tradition of a public dialogue and participation in Italy, the debate was polarized to a "yes/no choice," which eventually caused Italy to abandon the production of nuclear power for civilian use.

  13. Methodology to produce a water and energy stream map (WESM in the South African manufacturing industry

    Directory of Open Access Journals (Sweden)

    Davies, Edward

    2016-11-01

    Full Text Available The increasing demand for water and energy in South Africa, and the capacity constraints and restrictions of both resources, have led to a rapid increase in their cost. The manufacturing industry remains South Africa’s third-largest consumer of water and second- largest consumer of national energy. The improvement of water and energy efficiency is becoming an increasingly important theme for both organisational success and national economic sustainability. This paper presents the ‘lean based water and energy stream mapping framework’ developed for the manufacturing industry, with the specific objective of decreasing its water and energy intensity. As with the traditional value stream mapping tool, the water and energy stream mapping focuses on eliminating water- and energy-specific wastes within a process. Water and energy waste categories that will be used in conjunction with the framework will also be discussed. The key objective of this paper is to detail the process of creating the water and energy stream mapping, and the statistical forecasting methodology used to develop the baseline water and energy demand data. The outcome of the implementation of the framework is the future state water and energy stream mapping, which is effectively a blueprint for increased water and energy efficiency within a studied process.

  14. Effects produced in GaAs by MeV ion bombardment

    International Nuclear Information System (INIS)

    Wie, C.R.

    1985-01-01

    The first part of this thesis presents work performed on the ionizing energy beam induced adhesion enhancement of thin (approx.500 A) Au films on GaAs substrates. The ionizing beam, employed in the present thesis, is the MeV ions (i.e., 16 O, 19 F, and 35 Cl), with energies between 1 and 20 MeV. Using the Scratch test for adhesion measurement, and ESCA for chemical analysis of the film substrate interface, the native oxide layer at the interface is shown to play an important role in the adhesion enhancement by the ionizing radiation. A model is discussed that explains the experimental data on the dependence of adhesion enhancement on the energy which was deposited into electronic processes at the interface. The second part of the thesis presents research results on the radiation damage in GaAs crystals produced by MeV ions. Lattice parameter dilatation in the surface layers of the GaAs crystals becomes saturated after a high dose bombardment at room temperature. The strain produced by nuclear collisions is shown to relax partially due to electronic excitation (with a functional dependence on the nuclear and electronic stopping power of bombarding ions. Data on the GaAs and GaP crystals suggest that low temperature recovery stage defects produce major crystal distortion

  15. USSR energy efficiency and prospects

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1991-06-01

    The U.S.S.R. is the largest energy producer and the second largest energy consumer in the world. Its share of global energy use reached above 17% in 1988. The soviet energy system is characterized by low efficiency and high per capita energy consumption, although there are some reasons justifying the greater U.S.S.R. energy use per unit of product output than in other industrialized countries. The present energy-savings potential is approximately equal to one-half of the domestic energy consumption. Improvements in energy efficiency at all levels of the national economy are now considered to be the primary goal of national energy policy for the next couple of decades. Being endowed with abundant natural gas resources, the U.S.S.R. will count on this energy source in the future to improve its energy efficiency, reduce expenses and cope with air pollution. After 2005-2010, stabilized primary energy consumption may be reached or there may even be a decline of total energy use. The U.S.S.R. could reduce CO 2 emissions by 20% by 2030 but with substantial negative impacts on GNP growth. Required improvements in the Soviet energy system depend on changes in energy management, including reduction of the role of centralized planning, decentralization and privatization of energy-producing facilities, energy-price reforms, reshaping of investment patterns, reduction in military expenditures, etc. (author)

  16. From consumer to energy producer. Financing of decentral energy production with the participation of citizens as consumer by means of the Consumer Stock Ownership Plans (CSOP); Vom Verbraucher zum Energieproduzenten. Finanzierung dezentraler Energieproduktion unter Beteiligung von Buergern als Konsumenten mittels sog. Consumer Stock Ownership Plans (CSOPs)

    Energy Technology Data Exchange (ETDEWEB)

    Lowitzsch, Jens; Goebel, Katarzyna [Europa-Universitaet Viadrina, Frankfurt an der Oder (Germany). Osteuropaeisches Wirtschaftsrecht und Europaeische Rechtspolitik

    2013-06-15

    Sustainable growth? A paradoxical term in order to sell sustainability as a logical consequence of a continuous policy of controlled growth. In the context of sustainable energy today there is a lot of talk about growth. However, sustainability is not continuous growth, but at worst shrinkage and at best intelligent growth. The decentralization of the production of renewable energy with consumers as producers is as a way to sustainability.

  17. Excitation energy and angular momentum of quasiprojectiles produced in the Xe+Sn collisions at incident energies between 25 and 50 MeV/nucleon

    International Nuclear Information System (INIS)

    Steckmeyer, J.C.; Genouin-Duhamel, E.; Vient, E.; Colin, J.; Durand, D.; Auger, G.; Bacri, C.O.; Bellaize, N.; Borderie, B.; Bougault, R.; Bouriquet, B.; Brou, R.; Buchet, P.; Charvet, J.L.; Chbihi, A.; Cussol, D.; Dayras, R.; De Cesare, N.; Demeyer, A.; Dore, D.; Frankland, J.D.; Galichet, E.; Gerlic, E.; Guinet, D.; Hudan, S.; Lautesse, P.; Lavaud, F.; Laville, J.L.; Lecolley, J.F.; Leduc, C.; Legrain, R.; Le Neindre, N.; Lopez, O.; Louvel, M.; Maskay, A.M.; Nalpas, L.; Normand, J.; Parlog, M.; Pawlowski, P.; Plagnol, E.; Rivet, M.F.; Rosato, E.; Saint-Laurent, F.; Tabacaru, G.; Tamain, B.; Tassan-Got, L.; Tirel, O.; Turzo, K.; Vigilante, M.; Volant, C.; Wieleczko, J.P.

    2001-01-01

    The excitation energy and angular momentum transferred to quasiprojectiles have been measured in the 129 Xe+ nat Sn collisions at bombarding energies between 25 and 50 MeV/nucleon. The excitation energy of quasiprojectiles has been determined from the kinetic energy of all decay products (calorimetry). It increases with the violence of the collision, approaching 10 MeV/nucleon in the most dissipative ones. The angular momentum has been deduced from the kinetic energies and angular distributions of the emitted light charged particles (p, d, t, 3 He and α). The (apparent) spin value decreases with the violence of the collision. Larger spin values are observed at the lowest bombarding energy. Data are compared with the predictions of dynamical and statistical models. They reproduce the data in a quantitative way indicating that large spin values are transferred to quasiprojectiles during the interaction. The results show that the one-body dissipation formalism still applies at intermediate bombarding energies and low-energy dissipations. With the increase of the energy, the data seem to be better described when the two-body interaction is accounted for

  18. Energy policy, the energy price fallacy and the role of nuclear energy in the UK

    International Nuclear Information System (INIS)

    Brookes, L.G.

    1978-01-01

    The widely held belief that the world energy problem will be solved by rising prices - closing the energy gap by reducing demand and bringing in new, large, previously overcostly energy sources is rejected by the author who feels that high prices are the problem and not the solution. It is argued that supply and demand will be brought into balance at some price, and the objective of energy policy should be to make it as low as possible, by concentrating on the exploitation of large, low-cost energy sources. The role of nuclear energy in this discussion is considered with respect to three specific points: the currently identified reserves of low-cost uranium, if used in fast reactors, represent an energy source greater than all other energy sources put together; nuclear power is the cheapest, safest and cleanest way of producing electricity; and electricity production accounts for a very large part of total primary energy consumption. (U.K.)

  19. How is Order 636 affecting the gas producing industry?

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This paper is an interview with an energy representative for a major gas-producing company regarding the impact of the Federal Energy Regulatory Commission (FERC) Order 636. This legislation was suppose to streamline the interstate transportation of natural gas unhindered by local distribution company (LCD) interference. Many times these LCD's owned a portion of the necessary pipeline route used to transport natural gas, and as a result, had a priority on purchasing pipeline gas whenever they needed. This could, in turn, result in a depletion of contract gas which was in-route to a specified contract market. Such interferences caused problems with the contract markets, but could boost the net profits to natural gas companies who had excess gas that could be sold in-route to other markets. This paper addresses both the pro's and cons' of this new regulation on both the pipeline and gas producing companies

  20. Economic modelling of energy services: Rectifying misspecified energy demand functions

    International Nuclear Information System (INIS)

    Hunt, Lester C.; Ryan, David L.

    2015-01-01

    Although it is well known that energy demand is derived, since energy is required not for its own sake but for the energy services it produces – such as heating, lighting, and motive power – energy demand models, both theoretical and empirical, often fail to take account of this feature. In this paper, we highlight the misspecification that results from ignoring this aspect, and its empirical implications – biased estimates of price elasticities and other measures – and provide a relatively simple and empirically practicable way to rectify it, which has a strong theoretical grounding. To do so, we develop an explicit model of consumer behaviour in which utility derives from consumption of energy services rather than from the energy sources that are used to produce them. As we discuss, this approach opens up the possibility of examining many aspects of energy demand in a theoretically sound way that have not previously been considered on a widespread basis, although some existing empirical work could be interpreted as being consistent with this type of specification. While this formulation yields demand equations for energy services rather than for energy or particular energy sources, these are shown to be readily converted, without added complexity, into the standard type of energy demand equation(s) that is (are) typically estimated. The additional terms that the resulting energy demand equations include, compared to those that are typically estimated, highlight the misspecification that is implicit when typical energy demand equations are estimated. A simple solution for dealing with an apparent drawback of this formulation for empirical purposes, namely that information is required on typically unobserved energy efficiency, indicates how energy efficiency can be captured in the model, such as by including exogenous trends and/or including its possible dependence on past energy prices. The approach is illustrated using an empirical example that involves

  1. Comparative costs of hydrogen produced from photovoltaic electrolysis and from photoelectrochemical processes

    International Nuclear Information System (INIS)

    Block, D.L.

    1998-01-01

    The need for hydrogen produced from renewable energy sources is the key element to the world's large-scale usage of hydrogen and to the hydrogen economy envisioned by the World Hydrogen Energy Association. Renewables-produced hydrogen is also the most technically difficult problem to be solved. Hydrogen will never achieve large-scale usage until it can be competitively produced from renewable energy. One of the important questions that has to be addressed is: What are the economics of present and expected future technologies that will be used to produce hydrogen from renewables? The objective of this study is to give an answer to this question by determining the cost of hydrogen (in U.S.$/MBtu) from competing renewable production technologies. It should be noted that the costs and efficiencies assumed in this paper are assumptions of the author, and that the values are expected to be achieved after additional research on photoelectrochemical process technologies. The cost analysis performed is for three types of hydrogen (H 2 ) produced from five different types of renewable processes: photovoltaic (PV) electrolysis, three photoelectrochemical (PEC) processes and higher temperature electrolysis (HTE). The costs and efficiencies for PV, PEC and HTE processes are established for present day, and for expected costs and efficiencies 10 years into the future. A second objective of this analysis is to set base case costs of PV electrolysis. For any other renewable process, the costs for PV electrolysis, which is existing technology, sets the numbers which the other processes must better. (author)

  2. Decree of the 6 May 2017 defining the conditions of additional remuneration of electricity produced by electricity production installations using wind mechanical energy with a maximum of 6 wind turbines. Decree of the 9 May 2014 defining purchase and additional remuneration conditions for the electricity produced by installations using mainly biogas produced by methanization of matters resulting from urban or industrial waste water treatment. Decree of the 9 May 2017 defining purchase conditions for electricity produced by installations implanted on building and using photovoltaic solar energy, with an installed power less than or equal to 100 kilowatts as those concerned at the 3. of the article D.314-15 of the Code of Energy, and located in continental metropolitan territory

    International Nuclear Information System (INIS)

    Royal, Segolene; Sapin, Michel

    2017-01-01

    This document gathers three legal texts which respectively define and eventually give elements and methods of calculation of conditions of additional remuneration or purchase of electricity produced by limited wind energy installations, by biogas-based electricity production installations, and by photovoltaic installations mounted on buildings

  3. Electromagnetic or other directed energy pulse launcher

    Science.gov (United States)

    Ziolkowski, Richard W.

    1990-01-01

    The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

  4. Energy peaks: A high energy physics outlook

    Science.gov (United States)

    Franceschini, Roberto

    2017-12-01

    Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.

  5. Energy production from renewable energy sources

    International Nuclear Information System (INIS)

    2001-04-01

    This table summarizes the electricity and heat produced in France and in overseas departments from renewable energy sources for 1998 (revised), 1999 (temporary) and 2000 (estimated): hydraulic, wind, solar photovoltaic and thermal, geothermal, solid municipal wastes, wood and wood wastes, biogas, ethanol and ester bio-fuels. (J.S.)

  6. Produced water: Market and global trends - oil production - water production - choice of technology

    International Nuclear Information System (INIS)

    Robertson, Steve

    2006-01-01

    The presentation discusses various aspects of the world oil production, the energy demand, the future oil supply, the oil prices and the production growth. Some problems with produced water are also discussed as well as aspects of the market for produced water technology (tk)

  7. Creating energy security indexes with decision matrices and quantitative criteria

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Larry; Shupe, Darren

    2010-09-15

    Energy security is becoming an important policy issue in a growing number of jurisdictions because of volatile energy markets and production challenges faced by many producers. As a result, policymakers and politicians are looking for tools or methods that can create an energy security index with results that are justifiable, understandable, and reproducible. This paper describes a method which employs a decision matrix to produce an energy security index using quantitative criteria and metrics. The method allows a range of indexes to be produced, thereby offering further insight into the state of a jurisdiction's energy security.

  8. Basse-Normandie Energy and Climate Observatory - OBNEC: Renewable energy production and energy efficiency in Basse-Normandie (Situation 2010, 2011, 2012, 2013 - Evolution 2004-2010, 2004-2011, 2004-2012, 2004-2013), Final energy production and consumption in Basse-Normandie (Situation 2010, 2011, 2012, 2013, 2014 - Evolution 2004-2010, 2008-2011, 2008-2012, 2004-2014). Haute-Normandie Energy and Climate Observatory (Data 2012-2013), Haute-Normandie Climate-Air-Energy situation - Inventory of energies and of greenhouse gas and pollutant emissions (Reference year 2005 - Release 2011)

    International Nuclear Information System (INIS)

    Lamy, Francoise; Lefrancois, Guillaume

    2005-01-01

    With slight differences from on year to the other, these publications propose a regional synthesis of renewable energy production and energy efficiency, and overviews of renewable electric production by different sources, of renewable heat production by different sources, of biogas production, of a follow-up of the regional Climate-Air-Energy scheme (SRCAE), and of energy efficiency in different sectors for the Basse-Normandie region. Another publication proposes a renewable energy assessment for the whole Haute-Normandie region with a presentation of the territory, an overview of its electric power production and consumption, a presentation of its regional schemes, and an overview of the situation and evolution of the different renewable energies for the 2012-2013 period with a distinction between those producing electricity, those producing electricity and heat, and those producing heat. The next publications present maps, graphs and comments of results obtained by an energy inventory and an inventory of greenhouse gas and pollutant emissions. These results are first presented as a whole, and then for the industrial, the housing, the office building, the transport, and the agriculture sectors

  9. Ocean energy

    International Nuclear Information System (INIS)

    2009-01-01

    There are 5 different ways of harnessing ocean energy: tides, swells, currents, osmotic pressure and deep water thermal gradients. The tidal power sector is the most mature. A single French site - The Rance tidal power station (240 MW) which was commissioned in 1966 produces 90% of the world's ocean energy. Smaller scale power stations operate around the world, 10 are operating in the European Union and 5 are being tested. Underwater generators and wave energy converters are expanding. In France a 1 km 2 sea test platform is planned for 2010. (A.C.)

  10. Inquiry on the valorisation of heat produced by methanization with co-generation in France. Energy and territory: Valorisation of heat produced by methanization

    International Nuclear Information System (INIS)

    Bazin, Florian; David, Laura; Heuraux, Thalie; Jeziorny, Thibaud; Massazza, Michael; Mosse, Noemie; Nguyen Dai, Kim Yen; Pruvost, Paul; Regimbart, Amelie; Rogee, Pierre-Emmanuel; Roy, Samuel; Segret, Emilien

    2014-01-01

    A leaflet first proposes graphs which illustrate the valorisation of heat produced by methanization with co-generation in France: material and methods, farm characterisation, plant sources, valorisation modes. The second document proposes detailed and discussed presentations of the various involved processes. Contributions address methanization as a whole, valorisation of heat produced by co-generation through heating of agricultural and domestic buildings or through digestate dehydration, digestate hygienisation, and other types of valorisation such as fodder drying, cereal drying, wood drying, compost drying, fabrication of rape seed, greenhouse crops, cultures of micro algae, and mushroom farming

  11. Energy Systems Integration Partnerships: NREL + Cogent Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Sonja E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    NREL is collaborating with Cogent Energy Systems (Cogent) to introduce small-scale waste-to-energy technology in microgrids.The focus of the project is to test and demonstrate the feasibility, reliability, and usefulness of integrating electricity generated using a simulated syngas composition matching the syngas stream to be produced by a HelioStorm-based WTE gasifier to power a microgrid as a means of addressing and complementing the intermittency of other sources of electricity.

  12. Evaluation the potential economic impacts of Taiwanese biomass energy production

    International Nuclear Information System (INIS)

    Chen, Chi-Chung; McCarl, Bruce; Chang, Ching-Cheng; Tso, Chunto

    2011-01-01

    The Taiwanese rice paddy land set-aside program diverts a substantial land area. Given today's high energy prices and interests in energy security, that set-aside area could be converted to produce bioenergy feedstocks. This study evaluates the economic and environmental impacts of such a policy change using a Taiwanese agricultural sector model. The results show that such a strategy provides increased farm revenue, increased rural employment, increased energy sufficiency and reduced greenhouse gas emissions but also increased government expenditures. These outcomes indicate that the agricultural sector could play a positive role by producing renewable energy. -- Highlights: → This paper evaluates the economic and environmental impacts of converting set-aside area to produce bioenergy feedstocks. → Taiwanese agricultural sector model is built and applied to evaluate such impacts. → The empirical results show that producing bioenergy using set-aside area could provide increased farm revenue, increased rural employment, increased energy sufficiency and reduced greenhouse gas emissions but also increased government expenditures. → Agricultural sector in Taiwan could play a positive role by producing renewable energy.

  13. Renewable energy outlook in Iran and World's energy structure

    International Nuclear Information System (INIS)

    Azarm, D.; Adl, M.

    2001-01-01

    Limited fossil fuel resources and environmental impact of energy production technologies causing Global Warming have encouraged wide spread used of renewable energies. This article reviews the characteristics of renewable energy sources as well as their status within IR of Iran and pro-countries. According to the mentioned Information and Status, currently 22% of world electricity is produced through conversion of various renewable energies and expected to grow even further. This trend has been a main factor in reduction of end-used renewable energy prices. Consideration of social and environmental costs of fossil fuel use will help to reveal compatibility of renewable energies. Utilization of renewable energy potentials apart from proven environmental advantages and job creation effects may conserve country's conventional fossil fuel resources. In general, growth of renewable energy in a country is direct result of existing energy policies with respect to increasing the share of clean energies in the energy basket. Nevertheless in Iran yearly demand hikes for energy and considering the fact the fossil fuel reservoirs are limited, utilization of renewable energy potentials is inevitable

  14. Kinetic Storage as an Energy Management System

    International Nuclear Information System (INIS)

    Garcia-Tabares, L.

    2007-01-01

    The possibility of storing energy is increasingly important and necessary. The reason is that storage modifies the basic equation of the energy production balance which states that the power produced should equal the power consumed. When there is a storage device in the grid, this equation is modified such that, in the new balance, the energy produced should equal the algebraic sum of the energy consumed and the energy stored (positive in storage phase and negative when released). This means that the generation profile can be uncoupled from the consumption profile, with the resulting improvement of efficiency. Even small-sized storage systems can be very effective. (Author) 10 refs

  15. Consuming the world's energy: Update series. Energy efficiency trends in oil countries

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This issue of Energy Detente addresses energy efficiency in selected oil producing countries over time and compare the varying effects of important crude oil price changes. As economies around the world heighten their benefits from conservation and efficient use of energy, oil producers will be crucial examples not only for their own sakes, but for consuming countries dependent upon their exports. In this sense, their potential for leadership and vision seems greater than ever. Specifically, 6 oil-exporting countries are featured: Australia, Kuwait, Indonesia, Nigeria, the United Kingdom, and Venezuela. This issue also presents the following: (1) the ED Refining Netback Data Series for the US Gulf and West Coasts, Rotterdam, and Singapore as of February 21, 1992; and (2) the ED Fuel Price/Tax Series for countries of the Eastern Hemisphere, February, 1992 edition

  16. An MHD energy storage system comprising a heavy-water producing electrolysis plant and a H2/O2/CsOH MHD generator/steam turbine combination to provide a means of transferring nuclear reactor energy from the base-load regime into the intermediate-load and peaking regimes

    International Nuclear Information System (INIS)

    Townsend, S.J.; Koziak, W.W.

    1975-01-01

    The concept is presented of the MHD Energy Storage System, comprising a heavy-water producing electrolysis plant for electricity absorption, hydrogen/oxygen storage and a high-efficiency MHD generator/steam turbine unit for electricity production on demand from the grid. The overall efficiency at 56 to 60 percent is comparable to pumped storage hydro, but at only one-half to two-thirds the capital cost and at considerably greater freedom of location. The MHD Energy Storage System combined with the CANDU nuclear reactor in Canadian use can supply all-nuclear energy to the grid at a unit energy cost lower than when oil or coal fired plants are used in the same grid

  17. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  18. White Certificates for energy efficiency improvement with energy taxes: A theoretical economic model

    International Nuclear Information System (INIS)

    Oikonomou, Vlasis; Jepma, Catrinus; Becchis, Franco; Russolillo, Daniele

    2008-01-01

    In this paper we analyze interactions of two energy policy instruments, namely a White Certificates (WhC) scheme as an innovative policy instrument for energy efficiency improvement and energy taxation. These policy instruments differ in terms of objectives and final impacts on the price of electricity. We examine the effect of these policy instruments in the electricity sector, focusing on electricity producers and suppliers in a competitive market. Using microeconomic theory, we identify synergies between market players and demonstrate the total effect on the electricity price when suppliers internalize the behaviour of producers in their decisions. This model refers to an ideal market situation of full liberalization. The cases we examine consist of electricity producers with and without a carbon tax, electricity suppliers with and without an electricity tax, and with WhC obligations. Furthermore, we present a parallel implementation of WhC for electricity suppliers with carbon tax on electricity producers and an electricity tax with WhC obligations to electricity suppliers. We demonstrate differences in optimization behaviour of producers and suppliers. Based on a couple of cases of WhC with carbon and electricity taxes, various positive and negative effects of both schemes in terms of target achievement and efficiency are present, which can lead to an added value of such schemes in the policy mix, although uncertainties of outcomes are quite high. A basic finding is that in a merit order several parameters can increase final electricity price after the implementation of different policies: demand for electricity and electricity supply cost at a large scale and then follow the level of level of obligation for energy saving, level of penalty, and price of WhC (representing the marginal costs of energy saving projects). The impact magnitude of parameters depends on the values chosen and on the initial position of suppliers (i.e. if their actual behaviour deviates

  19. Methanol as an energy source and/or energy carrier in membrane processes

    NARCIS (Netherlands)

    Gallucci, F.; Basile, A.; Drioli, E.

    2007-01-01

    Methanol is commonly considered a hydrogen source and/or hydrogen carrier. In fact, methanol can be produced by partial oxidation of biomass and in this case it is considered a source for hydrogen and therefore for energy. It can also be produced from carbon dioxide and hydrogen; in this case, it

  20. Energy efficiency in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    In Finland a significant portion of energy originates from renewable sources and cogeneration, that is, combined production of electricity and heat. Combined heat and electricity production is typical in the Finnish industry and in the district heating sector. One third of all electricity and 15 % of district heating is produced by cogeneration. District heating schemes provide about 45 % of heat in buildings. Overall efficiency in industry exceeds 80 % and is even higher in the district heating sector. In 1996 25 % of Finland`s primary energy was produced from renewable energy sources which is a far higher proportion than the European Union average of 6 %. Finland is one of the leading users of bioenergy. Biomass including peat, provides approximately 50 % of fuel consumed by industry and is utilised in significant amounts in combined heat and electricity plants. For example, in the pulp and paper industry, by burning black liquor and bark during the production of chemical pulp, significant amounts of energy are generated and used in paper mills. Conservation and efficient use of energy are central to the Finnish Government`s Energy Strategy. The energy conservation programme aims to increase energy efficiency by 10-20 % by the year 2010. Energy saving technology plays a key role in making the production and use of energy more efficient. In 1996 of FIM 335 million (ECU 57 million) spent on funding research, FIM 120 million (ECU 20 million) was spent on research into energy conservation

  1. Trust During an Energy Crisis

    OpenAIRE

    Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

    2003-01-01

    In every energy crisis the U.S. has faced—beginning with the first crisis in 1973—we have seen a common sequence of events, which has been labelled the “energy crisis cycle” (Smith 2002). The steps in the cycle are: (1) When the demand for energy exceeded the supply, energy prices rose sharply — starting the energy crisis cycle. (2) Along with increases in energy prices came large increases in the profits of energy producers. (3) Politicians and interest group advocates criticized the energy...

  2. Solar energy applications in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Ilenikhena, P.A.; Ezemonye, L.I.N.

    2010-09-15

    Solar radiation being abundantly present in Nigeria was one area of focus in renewable energy sources. Researches were carried out and technologies produced for direct harnessing of the energy in six energy centres across the country. Some state governments in collaboration with non-governmental agencies also sponsored solar energy projects in some villages that are not connected to the national grid.

  3. The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system.

    Science.gov (United States)

    Kautza, Adam; Mazeika, S; Sullivan, P

    2016-03-01

    Rivers are increasingly recognized as providing nutritional subsidies (i.e., energy and nutrients) to adjacent terrestrial food webs via depredation of aquatic organisms (e.g., emergent aquatic insects, crayfish, fish) by terrestrial consumers. However, because these prey organisms assimilate energy from both aquatic (e.g., benthic algae, phytoplankton, aquatic macrophytes) and terrestrial (e.g., riparian leaf detritus) primary producers, river subsidies to terrestrial consumers represent a combination of aquatically and terrestrially derived energy. To date, the explicit contribution of energy derived from aquatic primary producers to terrestrial consumers has not been fully explored yet might be expected to be quantitatively important to terrestrial food webs. At 12 reaches along a 185-km segment of the sixth-order Scioto River system (Ohio, USA), we quantified the relative contribution of energy derived from aquatic primary producers to a suite of terrestrial riparian consumers that integrate the adjacent landscape across multiple spatial scales through their foraging activities (tetragnathid spiders, rove beetles, adult coenagrionid damselflies, riparian swallows, and raccoons). We used naturally abundant stable isotopes (13C and 15N) of periphyton, phytoplankton, macrophytes, and terrestrial vegetation to evaluate the energetic contribution of aquatic primary producers to terrestrial food webs. Shoreline tetragnathid spiders were most reliant on aquatic primary producers (50%), followed by wider-ranging raccoons (48%), damselflies (44%), and riparian swallows (41%). Of the primary producers, phytoplankton (19%) provisioned the greatest nutritional contribution to terrestrial consumers (considered collectively), followed by periphyton (14%) and macrophytes (11%). Our findings provide empirical evidence that aquatic primary producers of large streams and rivers can be a critical nutritional resource for terrestrial food webs. We also show that aquatically

  4. Nonrenewable energy cost of corn-ethanol in China

    International Nuclear Information System (INIS)

    Yang, Q.; Chen, G.Q.

    2012-01-01

    Nonrenewable energy cost is accounted for the believed renewable biofuel of corn-ethanol in China. By a process-based energy analysis, nonrenewable energy cost in the corn-ethanol production process incorporating agricultural crop production, industrial conversion and wastewater treatment is conservatively estimated as 1.70 times that of the ethanol energy produced, corresponding to a negative energy return in contrast to the positive ones previously reported. Nonrenewable energy cost associated with wastewater treatment usually ignored in previous researches is shown important in the energy balance. Denoting the heavy nonrenewability of the produced corn-ethanol, the calculated nonrenewable energy cost would rise to 3.64 folds when part of the nonrenewable energy cost associated with water consumption, transportation and environmental remediation is included. Due to the coal dominated nonrenewable energy structure in China, corn-ethanol processes in China are mostly a conversion of coal to ethanol. Validations and discussions are also presented to reveal policy implications against corn based ethanol as an alternative energy in long term energy security planning. - Highlights: ► Nonrenewable energy (NE) cost is conservatively accounted for corn-ethanol in China. ► Corn cultivation, ethanol conversion and wastewater treatment are included. ► NE cost is estimated as 1.70 times that of the ethanol energy produced. ► Corn-ethanol processes in China are mostly a conversion of coal to ethanol.

  5. Hadron energy resolution at ICAL

    International Nuclear Information System (INIS)

    Devi, Moon Moon; Ghosh, Anushree; Kaur, Daljeet; Mohan, Lakshmi S.

    2013-01-01

    We have performed a simulation study for determining the hadron energy resolution of INO-ICAL detector within a GEANT4 based simulation framework. We do this by propagating single pions from a fixed or a randomised vertex, as also with the NUANCE (neutrino event generator) generated events in which hadrons are produced in the energy range (0.5 ≤ E ≤ 15 GeV). Hadron interactions produce a shower of hits inside the detector. The energy of hadrons can therefore be reconstructed only by taking these hits into account. Hit distribution for each energy and angle bin has been obtained and analyzed. In order to find the suitable fit for such hit distributions a comparative study has been performed by applying different fit functions and results will be shown

  6. Solar energy for buildings: clean energies utilisation and development

    International Nuclear Information System (INIS)

    Omer, Abdeen M.

    2015-01-01

    The move towards a de-carbonized world, driven partly by climate science and partly by the business opportunities it offers, will need the promotion of environmentally friendly alternatives, if an acceptable stabilization level of atmospheric carbon dioxide is to be achieved. This requires the harnessing and use of natural resources that produce no air pollution or greenhouse gases and provides comfortable coexistence of human, livestock, and plants. This article presents a comprehensive review of energy sources, and the development of sustainable technologies to explore these energy sources. It also includes potential renewable energy technologies, efficient energy systems, energy savings techniques and other mitigation measures necessary to reduce climate changes. The article concludes with the technical status of the ground source heat pumps (GSHP) technologies. (full text)

  7. Conceptualizing urban household energy use: Climbing the 'Energy Services Ladder'

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K., E-mail: bsovacool@nus.edu.s [Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2011-03-15

    This article begins by defining energy services and identifying how they differ according to sector, urban and rural areas, and direct and indirect uses. It then investigates household energy services divided into three classes: lower income, middle income, and upper income. It finds that the primary energy technologies involved with low-income households involve a greater number of fuels and carriers, ranging from dung and fuelwood to liquefied petroleum gas and charcoal, but a fewer number of services. Middle-income households throughout the world tend to rely on electricity and natural gas, followed by coal, liquefied petroleum gas, and kerosene. These homes utilize energy to produce a much broader range services. The upper class or rich have access to the same energy fuels, carriers, and technologies as middle-income homes and families, but consume more energy (and more high luxury items). The study highlights how focusing on energy services reorients the direction of energy policy interventions, that energy services are neither uniform nor innate, and by noting exciting areas of potential research. - Research highlights: {yields} The primary energy technologies involved with low-income households involve a greater number of fuels and carriers, ranging from dung and fuelwood to liquefied petroleum gas and charcoal, but a fewer number of services. {yields} Middle-income households throughout the world tend to rely on electricity and natural gas, followed by coal, liquefied petroleum gas, and kerosene. These homes utilize energy to produce a much broader range services. {yields} The upper class or rich have access to the same energy fuels, carriers, and technologies as middle-income homes and families, but consume more energy (and more high luxury items).

  8. Solar energy. Inexhaustible, clean, profitable

    International Nuclear Information System (INIS)

    Colombo, S.

    2001-01-01

    The growth of US dollar together with the crisis of euro are producing a strong increase in the cost of traditional energy sources: oil and natural gas. Therefore, it is the ideal situation for boosting the alternative energy sources, above all the solar energy which is the most promising [it

  9. Draft nuclear energy policy statement for DOE report to the International Energy Agency: long version

    International Nuclear Information System (INIS)

    1994-01-01

    US national energy policy recognizes that the continued development of commercial nuclear power in the United States is vital to US national security and energy stability since it is a significant domestic energy resource that is relatively free from international pressures. As of this writing (August 1989) the United States had 108 nuclear power reactors in commercial status. In January 1989 nuclear energy produced 46 billion KwH or 20% of total US electricity generated in contrast to 45 billion KwH (18.8%) produced in January 1988. The US Federal Government has been engaged in a variety of activities to ensure that nuclear energy remains a safe, economically competitive and environmentally acceptable option. Much of the federal effort in recent months has been devoted to developing initiatives designed to remove institutional and regulatory obstacles to the continued use of nuclear power as part of the US energy system. Within this context, the following paragraphs summarize the major features of the current status of the US nuclear energy program and policies

  10. Neuropeptides controlling energy balance: orexins and neuromedins

    Science.gov (United States)

    Nixon, Joshua P.; Kotz, Catherine M.; Novak, Colleen M.; Billington, Charles J.; Teske, Jennifer A.

    2016-01-01

    In this section we review the feeding and energy expenditure effects of orexin (also known as hypocretin) and neuromedin. Orexins are multifunctional neuropeptides that affect energy balance by participating in regulation of appetite, arousal, and spontaneous physical activity. Central orexin signaling for all functions originates in the lateral hypothalamus–perifornical area, and is likely functionally differentiated based on site of action and on interacting neural influences. The effect of orexin on feeding is likely related to arousal in some ways, but is nonetheless a separate neural process that depends on interactions with other feeding related neuropeptides. In a pattern distinct from other neuropeptides, orexin stimulates both feeding and energy expenditure. Orexin increases in energy expenditure are mainly by increasing spontaneous physical activity, and this energy expenditure effect is more potent than the effect on feeding. Global orexin manipulations, such as in transgenic models, produce energy balance changes consistent with a dominant energy expenditure effect of orexin. Neuromedins are gut-brain peptides that reduce appetite. There are gut sources of neuromedin, but likely the key appetite related neuromedin producing neurons are in hypothalamus and parallel other key anorectic neuropeptide expression in the arcuate to paraventricular hypothalamic projection. As with other hypothalamic feeding related peptides, hindbrain sites are likely also important sources and targets of neuromedin anorectic action. Neuromedin increases physical activity in addition to reducing appetite, thus producing a consistent negative energy balance effect. Together with the various other neuro-peptides, -transmitters, -modulators and –hormones, neuromedin and orexin act in the appetite network to produce changes in food intake and energy expenditure, which ultimately influences the regulation of body weight. PMID:22249811

  11. Measurement of the energy spectra relative to neutrons produced at very small angle in $\\mathrm{\\sqrt{s} = 13 ~ TeV}$ proton-proton collisions using the LHCf Arm2 detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00533910

    In the last years, several ground-based experiments have measured flux and composition of ultra high energy cosmic rays - i.e. cosmic rays having energies above $10^{18} ~ eV$ - up to the GZK cutoff region. Nevertheless, these analyses suffer of large uncertainties due to the fact that they must rely on hadronic interaction models, that exhibit very different behavior in the forward region due to the lack of high energy calibration data. To provide measurements that can be useful to tune these models is exactly the main aim of the LHC-forward (LHCf) experiment. Thanks to two small sampling calorimeter, Arm1 and Arm2, installed at $\\pm 140 ~ m$ from LHC IP1, LHCf can detect neutral particles produced in the very forward region ($\\eta > 8.4$) by proton-proton and proton-ion high energy collisions (proton-proton interaction at $\\sqrt{s} = 14 ~ TeV$ is equivalent to the collision of a $10^{17} ~ eV$ proton with a proton at rest, hence it is possible to perform measurements at an energy close to the typical one of...

  12. Solar energy utilization in the USSR

    International Nuclear Information System (INIS)

    Shpil'rajn, Eh.Eh.

    1993-01-01

    The conditions for solar energy utilization in the USSR are not too favorable. Only in the country's southern regions is there sufficient insolation to make solar energy utilization economical. In higher latitudes only seasonable use of solar energy is reasonable. Up to now, the main application of solar energy was to produce low temperature heat for hot water production, drying of agricultural goods, space heating and thermal treating of concrete. A substantial part of the solar heating installations is flat plate solar collectors. The total installed area of solar collectors slightly exceeds 100,000 m 2 . The collectors are produced by industry, as well as by small enterprises. In some cases selective coatings are used over the absorber plates; black nickel or chromium is the main coating material. Recently, new projects were launched to develop and produce advanced collectors with enhanced efficiency and reliability. Substantial progress has been made in the USSR in developing and producing photovoltaic cells, mainly for space applications. Terrestrial applications of photovoltaic is only in the very early stage. About 100 Kw of photovoltaic cells are produced annually in the USSR, based on mono or polycrystalline silicon. Some experimental photovoltaic-arrays in the range of several tenth of Kw are installed in different places. Research and development work is carried out to produce thin film cells. Effort are in progress to construct automated production lines for 1 MW per year of crystalline and amorphous silicon. In the Crimea, a solar power plant SES-5 (5 MW peak power) was commissioned some years ago. The plant is of a tower type, with a circular helioscope field. The plants working fluid is steam. The experienced gained demonstrates that this design concept has several disadvantages. The cost of electricity produced by such type plants extremely high. Recently, alternative types of solar power plants have been under development, in particular, a project

  13. The role of co-located storage for wind power producers in conventional electricity markets

    KAUST Repository

    Bitar, E.; Rajagopal, R.; Khargonekar, P.; Poolla, K.

    2011-01-01

    In this paper we study the problem of optimizing contract offerings for an independent wind power producer (WPP) participating in conventional day-ahead forward electricity markets for energy. As wind power is an inherently variable source of energy

  14. What is the place of the energy supply security and energy independence in the energy policy?

    International Nuclear Information System (INIS)

    2001-12-01

    Since the petroleum crisis and the electric power cuts of the 1999 storm, the energy security interest is growing. The author recall the structural risks of the energy systems and the vulnerability of the occidental economies to the supply disruptions. They propose then a long term cooperation between producer and consumer countries, a development of operational tools to face the crisis and a supply security inside the europe. (A.L.B.)

  15. The energy broadening resulting from electron stripping process of a low energy Au- beam

    International Nuclear Information System (INIS)

    Taniike, Akira; Sasao, Mamiko; Hamada, Yasuji; Fujita, Junji; Wada, Motoi.

    1994-12-01

    Energy loss spectra of Au + ions produced from Au - ions by electron stripping in He, Ar, Kr and Xe have been measured in the impact energy range of 24-44 keV. The energy broadening of the Au + beam increases as the beam energy increases, and the spectrum shows a narrower energy width for heavy target atoms. The dependence of the spectrum width upon the beam energy and that upon the target mass are well described by the calculation based on the unified potential and semi-classical internal energy transfer model of Firsov's. (author)

  16. Scoping studies - photon and low energy neutron interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G.; Harker, Y.; Jones, J. [LMITCo, Idaho Falls, ID (United States); Harmon, F. [Idaho State Univ., Pocatello, ID (United States)

    1997-11-01

    High energy photon interrogation of waste containers, with the aim of producing photo nuclear reactions, in specific materials, holds the potential of good penetration and rapid analysis. Compact high energy ({le} 10 MeV) photon sources in the form of electron linacs producing bremstrahlung radiation are readily available. Work with the Varitron variable energy accelerator at ISU will be described. Advantages and limitations of the technique will be discussed. Using positive ion induced neutron producing reactions, it is possible to generate neutrons in a specific energy range. By this means, variable penetration and specific reactions can be excited in the assayed material. Examples using the {sup 3}H(p,n) and {sup 7}Li(p,n) reactions as neutron sources will be discussed. 4 refs., 7 figs.

  17. Environmental considerations in energy crop production

    International Nuclear Information System (INIS)

    Ranney, J.W.; Mann, L.K.

    1994-01-01

    This paper is a preliminary attempt to provide information on the probable environmental effects of energy crop production relative to other potential uses of the land. While dedicated energy crop production is anticipated to occur primarily on land currently in agricultural production, some pastureland and forestland with a high potential for conversion to agricultural production may be utilized. Experimental results suggest that chemical use on energy crops will be lower than on most row crops and that land producing energy crops should experience less erosion than land producing row crops. Long-term site productivity should not be a major issue if macro-and micro-fertilizers are added as needed and nutrient-conserving production techniques are used. (Author)

  18. Energy Return on Investment (EROI of Oil Shale

    Directory of Open Access Journals (Sweden)

    Peter A. O’Connor

    2011-11-01

    Full Text Available The two methods of processing synthetic crude from organic marlstone in demonstration or small-scale commercial status in the U.S. are in situ extraction and surface retorting. The considerable uncertainty surrounding the technological characterization, resource characterization, and choice of the system boundary for oil shale operations indicate that oil shale is only a minor net energy producer if one includes internal energy (energy in the shale that is used during the process as an energy cost. The energy return on investment (EROI for either of these methods is roughly 1.5:1 for the final fuel product. The inclusions or omission of internal energy is a critical question. If only external energy (energy diverted from the economy to produce the fuel is considered, EROI appears to be much higher. In comparison, fuels produced from conventional petroleum show overall EROI of approximately 4.5:1. “At the wellhead” EROI is approximately 2:1 for shale oil (again, considering internal energy and 20:1 for petroleum. The low EROI for oil shale leads to a significant release of greenhouse gases. The large quantities of energy needed to process oil shale, combined with the thermochemistry of the retorting process, produce carbon dioxide and other greenhouse gas emissions. Oil shale unambiguously emits more greenhouse gases than conventional liquid fuels from crude oil feedstocks by a factor of 1.2 to 1.75. Much of the discussion regarding the EROI for oil shale should be regarded as preliminary or speculative due to the very small number of operating facilities that can be assessed.

  19. Uranium-Molybdenum particles produced by electro-erosion

    International Nuclear Information System (INIS)

    Cabanillas, Edgardo D.; Lopez, Marisol; Pasqualini, Enrique E.; Lombardo, D. J. C.

    2003-01-01

    We have produced spheroidal U-Mo particles by the electro-erosion method using pure water as dielectric. The particles were characterised by optical metallography, scanning electron microscopy, energy dispersive spectrometry (EDS-EDAX) and X-ray diffraction. Spheroidal UO 2 particles with a peculiar distribution size were obtained with two distribution centred at 10 and 70 μm. The obtained particles have central inclusions of U and Mo compounds. (author)

  20. Bioenergy to save the world. Producing novel energy plants for growth on abandoned land.

    Science.gov (United States)

    Schröder, Peter; Herzig, Rolf; Bojinov, Bojin; Ruttens, Ann; Nehnevajova, Erika; Stamatiadis, Stamatis; Memon, Abdul; Vassilev, Andon; Caviezel, Mario; Vangronsveld, Jaco

    2008-05-01

    Following to the 2006 climate summit, the European Union formally set the goal of limiting global warming to 2 degrees Celsius. But even today, climate change is already affecting people and ecosystems. Examples are melting glaciers and polar ice, reports about thawing permafrost areas, dying coral reefs, rising sea levels, changing ecosystems and fatal heat periods. Within the last 150 years, CO2 levels rose from 280 ppm to currently over 400 ppm. If we continue on our present course, CO2 equivalent levels could approach 600 ppm by 2035. However, if CO2 levels are not stabilized at the 450-550 ppm level, the consequences could be quite severe. Hence, if we do not act now, the opportunity to stabilise at even 550 ppm is likely to slip away. Long-term stabilisation will require that CO2 emissions ultimately be reduced to more than 80% below current levels. This will require major changes in how we operate. Reducing greenhouse gases from burning fossil fuels seems to be the most promising approach to counterbalance the dramatic climate changes we would face in the near future. It is clear since the Kyoto protocol that the availability of fossil carbon resources will not match our future requirements. Furthermore, the distribution of fossil carbon sources around the globe makes them an even less reliable source in the future. We propose to screen crop and non-crop species for high biomass production and good survival on marginal soils as well as to produce mutants from the same species by chemical mutagenesis or related methods. These plants, when grown in adequate crop rotation, will provide local farming communities with biomass for the fermentation in decentralized biogas reactors, and the resulting nitrogen rich manure can be distributed on the fields to improve the soil. Such an approach will open new economic perspectives to small farmers, and provide a clever way to self sufficient and sustainable rural development. Together with the present economic reality

  1. New energy technologies 3 - Geothermal and biomass energies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Alazard-Toux, N.; His, S.; Douard, F.; Duplan, J.L.; Monot, F.; Jaudin, F.; Le Bel, L.; Labeyrie, P.

    2007-01-01

    This third tome of the new energy technologies handbook is devoted to two energy sources today in strong development: geothermal energy and biomass fuels. It gives an exhaustive overview of the exploitation of both energy sources. Geothermal energy is presented under its most common aspects. First, the heat pumps which encounter a revival of interest in the present-day context, and the use of geothermal energy in collective space heating applications. Finally, the power generation of geothermal origin for which big projects exist today. The biomass energies are presented through their three complementary aspects which are: the biofuels, in the hypothesis of a substitutes to fossil fuels, the biogas, mainly produced in agricultural-type facilities, and finally the wood-fuel which is an essential part of biomass energy. Content: Forewords; geothermal energy: 1 - geothermal energy generation, heat pumps, direct heat generation, power generation. Biomass: 2 - biofuels: share of biofuels in the energy context, present and future industries, economic and environmental status of biofuel production industries; 3 - biogas: renewable natural gas, involuntary bio-gases, man-controlled biogas generation, history of methanation, anaerobic digestion facilities or biogas units, biogas uses, stakes of renewable natural gas; 4 - energy generation from wood: overview of wood fuels, principles of wood-energy conversion, wood-fueled thermal energy generators. (J.S.)

  2. Energy press kit; Dossier energie

    Energy Technology Data Exchange (ETDEWEB)

    Czarnes, R.; Chauvot, M.; Depagneux, M.A.; Bollack, L.; Cittanova, M.L.; Madelaine, N.; Alves, J.; Burg, D

    2004-06-01

    This special dossier treats of the changes that will happen in France with the deregulation of energy markets. It comprises 19 articles dealing with: the big bang of July 1, 2004 in the electricity and gas sector (on July 1, 2004, all professional consumers will have the possibility to chose their electricity and gas supplier. If Electricite de France (EdF) and Gaz de France (GdF) monopolies will split up, several questions remain unanswered for clients); the impossible penetration of the French market (3 weeks before the enhanced opening of power markets, EdF's competitors remain surprisingly limited and are mainly French actors. The big European competitors follow a wait-and-see policy); the independent power producer Compagnie Generale du Rhone wants to diversify its clients and is looking towards local authorities; Direct Energie: the 'low-cost' company for the mutualization of electricity purchases of small professionals; Endesa, the French daughter company of the Spanish electric utility, is looking for a balance between production and sales; HEW, daughter company of Vattenfall Europe and present in France since April 2000, wants to increase its margins more than its capacity; energy profilers are making consumption profiles for EdF's competitors; Poweo, energy retailing company built in 2002, is fetching very small companies; Atel, French daughter company of the Swiss power producer, does not foresee important changes in July 1; interview of F. Roussely, head of EdF about the liberalization of the electricity sector; the main energy groups favorable to deregulation; case study: Accor, the hotel trade group, has chosen Compagnie Generale du Rhone as power supplier; electricity: why prices are increasing; various foreign experiences; UK: the consolidation time (fully liberalized and privatized between several companies, the British energy market is under total re-building); USA: the deregulation process has failed and stays stuck to 24

  3. Hadron-nucleus interactions at high energy

    International Nuclear Information System (INIS)

    Gomez, R.; Dauwe, L.; Haggerty, H.

    1986-05-01

    Properties of energetic secondaries produced at large angles using 800 GeV incident protons are presented. H 2 , Be, C, Al, Cu and Pb targets were used for the study. The yields for producing such secondaries vary as A/sup α/ where A is the atomic mass number of the target and α attains values as large as 1.6. There is evidence that jet-like events have α values approaching unity, indicating a hard scattering mechanism may be occurring. Events with large values of target-fragmentation energy have, on average, large values of energy in the central region and small values of forward-going energy. Energy flows and number of secondaries are independent of the target when events with similar amounts of energy in the central region are studied

  4. New energy horizons

    International Nuclear Information System (INIS)

    Berg, Eugene

    2015-01-01

    In a context of high oil price decrease, and based on various publications on energy (journals and books), the author proposes a synthetic overview of evolutions of the energy landscape. He first addresses the emergence of shale gas and oil which raises the issue of energy independence. He sheds a light on the different types of gas and on extraction techniques, comments statistics on the evolution of consumption and the status of reserves. He addresses issues related to the geopolitics of energies: the energy issue for Europe, the situation of historic Middle-East leader countries in front of emerging energy producing countries, the US dream of energy self-sufficiency, and the game between great powers. The last part addresses major energy perspectives in terms of sources, of fossil share in electric power production

  5. Energy Production and Transmutation of Nuclear Waste by Accelerator Driven Systems

    Science.gov (United States)

    Zhivkov, P. K.

    2018-05-01

    There is a significant amount of highly radiotoxic long-life nuclear waste (NW) produced by NPP (Nuclear Power Plants). Transmutation is a process which transforms NW into less radiotoxic nuclides with a shorter period of half-life by spallation neutrons or radiative capture of neutrons produced by ADS (Accelerator Driven System). In the processes of transmutation new radioactive nuclides are produced. ADS is big energy consumer equipment. It is a method for production of a high-flux and high-energy neutron field. All these processes occur in ADS simultaneously. ADS is able to transmute actinides and produce energy simultaneously. The article considers the energy production problems in ADS. Several ideas are developed regarding the solution of the global energy supply.

  6. Conventional and unconventional energy sources for mankind

    International Nuclear Information System (INIS)

    Sethna, H.N.

    1981-01-01

    Plenty of industrial nations of the world is founded on the fact that only 1% of their energy requirement is met by muscle power, both of human and animal origin, while 99% comes mostly from fossil fuels. However, fossil fuels are not an eternal source and hence to conserve it, other sources must also be used. Availability of energy sources such as coal, biogas, solar energy, wind, tidal energy is examined and their draw-backs are pointed out. Another energy source i.e. nuclear energy can however substantially contribute to the energy scene. Fission reactors can contribute nearly 25% of the world energy requirements within two decades. Breeder reactors, if successfully developed, can meet the energy requirements of the world for few thousands of years. Fusion reactors, if successful for commercial exploitation, will form almost an inexhaustible source of energy. An added advantage is that they produce much less radioactive waste than that produced by fission reactors. (author)

  7. Importance of energy efficiency in Venezuela

    International Nuclear Information System (INIS)

    Corrie, R.

    1991-01-01

    Venezuela's economic development relies heavily on oil. The nation's energy production equals 3.5 million barrels of oil equivalent (boe) per day. Oil comprises 71% of the energy Venezuela produces, natural gas 20%, hydro 9% and coal 1%. Of the energy produced, Venezuela exports three quarters and consumes the remainder. Over 99% of Venezuela's energy exports are crude oil and oil products. Economic problems have constrained Venezuela's development in recent years. Saddled with an external debt of $US 32 billion, Venezuela will continue to encounter barriers for years to come. The nation is, however, in the process of restructuring its economy. As part of this process, the Venezuelan government has begun to integrate opportunities for improving the efficiency of its energy use. As a major oil producer and exporter, Venezuela is conscious of its responsibility to the international community to limit its emissions of energy-related CO 2 into the atmosphere. For this reason, the Venezuelan government is in the process of creating a program to conserve and ration the use of energy. This effort incorporates a number of measures including the substitution of natural gas for liquid fuels for all end uses (including transportation activities), the increased reliance on hydropower in the generation of electricity and the reduction of waste in the production of natural gas to 2% of the economically recollectable volume

  8. Swiss overall energy statistics 1979

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The comprehensive statistics are produced by the Federal Department of Energy and the Swiss National Committee of the World Energy Conference, and are divided into three sections, (1) Consumption of energy in 1979, (2) Development of the energy balance-sheet from 1974 to 1979, and (3) Comments relative to the energy balance-sheet. Appendices are also included giving tables of energy consumption in the year 1950 and for the period 1960 - 1979, and the energy consumption by industry and other branches in 1979. (A.G.P.)

  9. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  10. Optimal contracts for wind power producers in electricity markets

    KAUST Repository

    Bitar, E.

    2010-12-01

    This paper is focused on optimal contracts for an independent wind power producer in conventional electricity markets. Starting with a simple model of the uncertainty in the production of power from a wind turbine farm and a model for the electric energy market, we derive analytical expressions for optimal contract size and corresponding expected optimal profit. We also address problems involving overproduction penalties, cost of reserves, and utility of additional sensor information. We obtain analytical expressions for marginal profits from investing in local generation and energy storage. ©2010 IEEE.

  11. Low-Cost energy contraption design using playground seesaw

    Science.gov (United States)

    Banlawe, I. A. P.; Acosta, N. J. E. L.

    2017-05-01

    The study was conducted at Western Philippines University, San Juan, Aborlan, Palawan. The study used the mechanical motion of playground seesaw as a means to produce electrical energy. The study aimed to design a low-cost prototype energy contraption using playground seesaw using locally available and recycled materials, to measure the voltage, current and power outputs produced at different situations and estimate the cost of the prototype. Using principle of pneumatics, two hand air pumps were employed on the two end sides of the playground seesaw and the mechanical motion of the seesaw up and down produces air that is used to rotate a DC motor to produce electrical energy. This electricity can be utilized for powering basic or low-power appliances. There were two trials of testing, each trial tests the different pressure level of the air tank and tests the opening of on-off valve (Full open and half open) when the compressed air was released. Results showed that all pressure level at full open produced significantly higher voltage, than the half open. However, the mean values of the current and power produced in all pressure level at full and half open have negligible variation. These results signify that the energy contraption using playground seesaw is an alternative viable source of electrical energy in the playgrounds, parks and other places and can be used as an auxiliary or back-up source for electricity.

  12. Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition

    International Nuclear Information System (INIS)

    Szklo, Alexandre; Schaeffer, Roberto

    2006-01-01

    In this viewpoint, we discuss the importance of consorting alternative energy sources with oil, and not of opposing them. That is why we introduce the concept of alternative energy systems, which we feel is broader-ranging and more effective than alternative energy sources, as this deals with the actual transformation process of the global energy system. Alternative energy systems integrate oil with other energy sources and pave the way for new systems, which will benefit from what we call the 'virtues of oil'. They produce energy carriers for multi-fuel and multi-product strategies, where flexibility is a key target, allied to other co-benefits, especially those related to the increased use of renewable energy sources. The concept of alternative energy systems can bring a new light to the oil transition era discussion and might also influence energy policies for promoting renewables

  13. Higgs seesaw mechanism as a source for dark energy.

    Science.gov (United States)

    Krauss, Lawrence M; Dent, James B

    2013-08-09

    Motivated by the seesaw mechanism for neutrinos which naturally generates small neutrino masses, we explore how a small grand-unified-theory-scale mixing between the standard model Higgs boson and an otherwise massless hidden sector scalar can naturally generate a small mass and vacuum expectation value for the new scalar which produces a false vacuum energy density contribution comparable to that of the observed dark energy dominating the current expansion of the Universe. This provides a simple and natural mechanism for producing the correct scale for dark energy, even if it does not address the long-standing question of why much larger dark energy contributions are not produced from the visible sector. The new scalar produces no discernible signatures in existing terrestrial experiments so that one may have to rely on other cosmological tests of this idea.

  14. Energetic, exergetic and economic analysis of an innovative Solar CombiSystem (SCS) producing thermal and electric energies: Application in residential and tertiary households

    International Nuclear Information System (INIS)

    Hazami, Majdi; Mehdaoui, Farah; Naili, Nabiha; Noro, Marco; Lazzarin, Renato; Guizani, AmenAllah

    2017-01-01

    Highlights: • The present work studies the potential of using innovative SCS in Tunisia. • In cold months the SCS provide about 50–75% of the total exergy provides. • The SCS produces between 70–150% of electric energy needs. • The SCS payback period (Pb) based on electric water heater was 10.2 years. • The SCS payback period (Pb) based on gas/gas town was about and 8.7 years. - Abstract: The endeavor of this paper is to study of the potential offered by the expenditure of an innovative Solar CombiSystem, SCS, used for the space heating load, the domestic hot water supply and the electric energy production. The investigation achieved in this work was based on an experimental and a simulation studies. A TRNSYS simulation program was achieved in order to evaluate the SCS monthly/annual thermal and electric performances. It was found that the proposed SCS covered between 20 and 45% of the SH energy needs by considering only solar energy. The result shows also that the SCS provided from 40 to 70% of the total DHW needs. It was also found that the SCS electric production ranged between 32 and 225 MJ/m 2 with a gain factor varying between 49 and 125%. An economic appraisal was also achieved to appraise the SCS feasibility. The results of the economic analysis show that the annual energy saved (ARE) and the payback period (Pb) based on electric water heater were respectively equal to 7618.3 kW h/year and 10.2 years. It was found that ARE and Pb based on gas/gas town were about 5825 m 3 and 8.7 years, respectively. The results of the economic analysis shows that the adoption of the SCS saves about 48% of electric energy and about 46% of gas/gas town kept back by the conventional system.

  15. Energy losses produced by differential currents in the metallic ducts of electric installations; Perdidas de energia producidas por corrientes diferenciales en la tuberia metalica de instalaciones electricas

    Energy Technology Data Exchange (ETDEWEB)

    Campero L, Eduardo; Bratu S, Neagu; Marquez M, Luis; Caballero R, Rafael [Universidad Autonoma Metropolitana Unidad Azcapotzalco, Mexico, D. F. (Mexico)

    1994-12-31

    In this article it is explained what is known as differential currents and the conditions in which they appear in the electrical installations. A short outline is made on the magnetic induction phenomenon that appears in metallic conduits, due to the circulation of differential currents along the inside of the tube and that in turn produces energy losses in the form of heat, that is dissipated in the tube surrounding environment. The results of the measurements performed in the laboratory are shown in order to quantify the energy losses in the metallic conduit. It was found that for certain conditions these losses are significant. [Espanol] En este articulo se explica lo que se entiende por corrientes diferenciales y se describen las condiciones en las que estas aparecen en las instalaciones electricas. Se plantea brevemente el fenomeno de induccion magnetica que aparece en las tuberias metalicas, debido a la circulacion de corrientes diferenciales por el interior del tubo y que a su vez produce perdidas de energia en forma de calor, que se disipa en el ambiente que rodea al tubo. Se muestran los resultados de las mediciones que se llevaron a cabo en laboratorio para poder cuantificar las perdidas en tuberia metalica conduit. Se encontro que para ciertas condiciones estas perdidas son significativas.

  16. Comments on the Russian energy policy

    International Nuclear Information System (INIS)

    Lavrovsky, I.

    1992-01-01

    The state of the energy industries and markets in the former Soviet Union is reviewed, with a focus on the oil sector. In spite of the economic recession, the demand for primary energy resources and electricity has dropped only slightly. A decrease in energy production has not yet hurt industries such as oil refining and equipment manufacturing. The low oil price in the domestic trade, ca $2.70/bbl, means that producers have an incentive to hoard oil in the ground or sell preferably to the export market. Non-energy industries are entering the oil market as well. Oil production has fallen by early depletion of the best reservoirs, the unwillingness of producers to produce because of low domestic oil prices, lack of investment, and inadequate technology. It is suggested that Russian oil needs to stay in Russia to stimulate economic growth and increase energy demand. Russia will need hard support such as exploration and production programs, modernization of processing facilities, development of infrastructure, technical assistance, management training, and a restructuring of the outdated financial system. All of this will require more involvement from western companies

  17. Evaluation of electrical energy production patterns

    International Nuclear Information System (INIS)

    Conti, F.; Graziani, G.; Zanantoni, C.

    1975-06-01

    The main features and typical applications of the code TOTEM, developed by the CCR under request of DG XVII are described. The code is used to evaluate the physical and economical consequences of electrical power station installation policies. The input data are: the time-dependent electrical energy demand and its load duration curve, the physical and economical characteristics of the power stations, and the splitting of the energy between the various types of stations, apart from the energy produced by a plutonium burner and plutonium producer, which is calculated by the code. The output includes; costs, fuel consumption, separative work requirements

  18. Nuclear power: tomorrow's energy source

    International Nuclear Information System (INIS)

    2002-01-01

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  19. Sustainable-energy managment practices in an energy economy

    Science.gov (United States)

    Darkwa, K.

    2001-10-01

    The economic survival of any nation depends upon its ability to produce and manage sufficient supplies of low-cost safe energy. The world's consumption of fossil fuel resources currently increasing at 3% per annum is found to be unsustainable. Projections of this trend show that mankind will exhaust all known reserves in the second half of the coming century. Governments, industrialists, commercial organizations, public sector departments and the general public have now become aware of the urgent requirements for the efficient management of resources and energy-consuming activities. Most organizations in the materials, manufacturing and retail sectors and in the service industries have also created energy management departments, or have employed consultants, to monitor energy consumption and to reduce wastage. Conversely, any sustained attempt to reduce rates of energy consumption even by as little as 0.1% per annum ensures relatively an eternal future supply as well as reduction on environmental and ecological effect. Thus, there is no long- term solution to energy flow problem other than systematic and effective energy management and the continuous application of the techniques of energy management. Essential energy management strategies in support of a sustainable energy- economy are discussed.

  20. A simple method to produce quasi-simultaneous multiple energy helium implantation

    International Nuclear Information System (INIS)

    Paszti, F.; Fried, M.; Manuaba, A.; Mezey, G.; Kotai, E.; Lohner, T.

    1982-11-01

    If a monoenergetic ion beam is bombarding a target through an absorber foil tilted continuously (i.e. its effective thickness changing continuously), the depth distribution of the implanted ions in the sample depends on the way the absorber is moving. The present paper describes a way of absorber tilting for obtaining a uniform depth distribution and its experimental verification in the case of MeV energy helium ions implanted into aluminium target. (author)

  1. Study of the state of the plasma produced by oblique-incident laser

    International Nuclear Information System (INIS)

    Sheng Jiatian; Zhang Guoping; Liu Wei; Ye Chunfu; Hu Shengyong

    1997-01-01

    The plasma state and the gain region produced by the oblique-incidence laser on Ge target are studied and are compared with that produced by the vertical one. As a result of study, the absorption efficiency of the pumping energy turns far smaller, the plasma state changes remarkable and the gain region becomes much narrower when incident angle is greater than 30 degree

  2. Notification of the French Energy Regulator the 5 june 2001 on the order fixing the purchase conditions of the electricity produced by installations using the wind energy; Avis de la commission de regulation de l'electricite en date du 5 juin 2001 sur l'arrete fixant les conditions d'achat de l'electricite produite par les installations utilisant l'energie mecanique du vent

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This document presents the economic analysis realized by the CRE, French Energy Regulator, to give its opinion on the order concerning the purchase conditions of the electricity produced by wind energy. An operating costs comparison with other energies forms shows that the proposed tariff will lead to a significant increase of the electric power. In consequence, the CRE is opposed to this order. (A.L.B.)

  3. World energy outlook 2014

    CERN Document Server

    International Energy Agency. Paris

    2014-01-01

    The global energy landscape is evolving at a rapid pace, reshaping long-held expectations for our energy future. The 2014 edition of the World Energy Outlook (WEO) will incorporate all the latest data and developments to produce a comprehensive and authoritative analysis of medium- and longer-term energy trends. It will complement a full set of energy projections – which extend from today through, for the first time, the year 2040 – with strategic insights into their meaning for energy security, the economy and the environment. Oil, natural gas, coal, renewables and energy efficiency will be covered, along with updates on trends in energy-related CO2 emissions, fossil-fuel and renewable energy subsidies, and universal access to modern energy services.

  4. Implementation of a sustainable energy plantation system

    International Nuclear Information System (INIS)

    El Bassam, N.; Bacher, W.

    2000-01-01

    Renewable energy sources should be developed to form the foundation of the global energy structure in the future. This is related to the shortage of fossil energy resources, the greenhouse effects, the increasing number of world's population and the increasing demand for energy and food. Fuels derived from energy crops are not only potentially renewable, but are also sufficiently similar in origin to the fossil fuels to provide direct substitution. They can be converted into a wide variety of energy carriers. Together with solar- and wind technique, adequate energy supply can be to meet the demand of people in rural regions. The concept of Integrated Energy Farms (IEF) has been developed and described in this contribution which includes a decentralised living area from which the daily necessities (food and energy) can be produced directly on-site for approximately 700 people. The area needed to produce biofuels will not exceed 10 % of the whole farm area. (Author)

  5. Nuclear power: tomorrow's energy source; Le nucleaire: une energie pour l'avenir

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  6. The nuclear energy in the frame of the energy sources

    International Nuclear Information System (INIS)

    Bogas, J.

    2008-01-01

    This article analyses the different technological alternatives for addressing the energy challenges of our society (security of supply, competitiveness and sustain ability), emphasizing the need for nuclear energy to achieving those goals. Recently, the view of society about nuclear power has shifted from a position of outright hostility towards an acceptance still not totally defined. That is so, that people of environmentalism as the founders of Green peace James Love lock, Patrick Moore or the writer Gwyneth Cravens have said that nuclear energy is the option to produce energy that less increases CO 2 emissions, and that without it targets for reduction may not meet. (Author) 4 refs

  7. Producer gas production of Indonesian biomass in fixed-bed downdraft gasifier as an alternative fuels for internal combustion engines

    Science.gov (United States)

    Simanjuntak, J. P.; Lisyanto; Daryanto, E.; Tambunan, B. H.

    2018-03-01

    downdraft biomass gasification reactors, coupled with reciprocating internal combustion engines (ICE) are a viable technology for small scale heat and power generation. The direct use of producer gas as fuel subtitution in an ICE could be of great interest since Indonesia has significant land area in different forest types that could be used to produce bioenergy and convert forest materials to bioenergy for use in energy production and the versatility of this engine. This paper will look into the aspect of biomass energie as a contributor to energy mix in Indonesia. This work also contains information gathered from numerous previews study on the downdraft gasifier based on experimental or simulation study on the ability of producer gas as fuels for internal combustion engines aplication. All data will be used to complement the preliminary work on biomass gasification using downdraft to produce producer gas and its application to engines.

  8. Green energy in Europe: selling green energy with green certificates

    International Nuclear Information System (INIS)

    Ouillet, L.

    2002-01-01

    Sales of green power products are booming in Europe: 50,000 customers in the United Kingdom, 775,000 in the Netherlands and 300,000 in Germany. Laws of physics are however formal: the way in which electricity flows within the grid does not allow suppliers to assure customers that they are directly receiving electricity produced exclusively from renewable energy sources. What are marketers selling their customers then? Laetitia Ouillet, Greenprices, takes a closer look and focuses on the potential of selling green energy in the forms of renewable energy certificates. (Author)

  9. World Energy Projection System model documentation

    International Nuclear Information System (INIS)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA

  10. World Energy Projection System model documentation

    Energy Technology Data Exchange (ETDEWEB)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  11. Energy Statistics Manual; Manuel sur les statistiques de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Detailed, complete, timely and reliable statistics are essential to monitor the energy situation at a country level as well as at an international level. Energy statistics on supply, trade, stocks, transformation and demand are indeed the basis for any sound energy policy decision. For instance, the market of oil -- which is the largest traded commodity worldwide -- needs to be closely monitored in order for all market players to know at any time what is produced, traded, stocked and consumed and by whom. In view of the role and importance of energy in world development, one would expect that basic energy information to be readily available and reliable. This is not always the case and one can even observe a decline in the quality, coverage and timeliness of energy statistics over the last few years.

  12. Energy and physics

    Energy Technology Data Exchange (ETDEWEB)

    Kapitsa, P L

    1976-01-01

    The development of large power energy sources is reviewed in the light of fundamental limitations imposed by nature on the energy flux density. The energy sources based on electrostatic generators, gas units (direct conversion of hydrogen oxidation chemical energy to electric one), solar batteries, geothermal energy, wind power and hydroelectric power appear to be unpromising. The solution of the world energy crisis is connected with nuclear energy, and, first of all, with thermonuclear reaction of deuterium and tritium nuclei. In contrast to uranium employment the thermonuclear process produces no significant quantity of radioactive wastes, runs far less risk during accidents and cannot be used as an explosive. The realisation of a controlled thermonuclear reaction is pointed out to face a number of physical and technical problems still to be solved.

  13. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  14. IEA Energy Technology Essentials: Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Nuclear power is the topic covered in this edition.

  15. IEA Energy Technology Essentials: Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Fuel cells is the topic covered in this edition.

  16. Producer responsibility and recycling solar photovoltaic modules

    International Nuclear Information System (INIS)

    McDonald, N.C.; Pearce, J.M.

    2010-01-01

    Rapid expansion of the solar photovoltaic (PV) industry is quickly causing solar to play a growing importance in the energy mix of the world. Over the full life cycle, although to a smaller degree than traditional energy sources, PV also creates solid waste. This paper examines the potential need for PV recycling policies by analyzing existing recycling protocols for the five major types of commercialized PV materials. The amount of recoverable semiconductor material and glass in a 1 m 2 area solar module for the five types of cells is quantified both physically and the profit potential of recycling is determined. The cost of landfill disposal of the whole solar module, including the glass and semiconductor was also determined for each type of solar module. It was found that the economic motivation to recycle most PV modules is unfavorable without appropriate policies. Results are discussed on the need to regulate for appropriate energy and environmental policy in the PV manufacturing industry particularly for PV containing hazardous materials. The results demonstrate the need to encourage producer responsibility not only in the PV manufacturing sector but also in the entire energy industry.

  17. Geo-policy of the energy

    International Nuclear Information System (INIS)

    Favennec, J.P.

    2007-01-01

    This book aims to answer to the energy users: how are produced the different energies, what is the future, who are the actors of the energy market, what are the supplying constraints and what is the impact of the China and India economic growth on these resources? The first part precises the main characteristics of the energy sector. The second part analyzes region by region, the world energy challenges and details the geopolitical aspects. (A.L.B.)

  18. Review of produced water recycle and beneficial reuse

    Energy Technology Data Exchange (ETDEWEB)

    Hum, F.; Tsang, P. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory; Harding, T. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory]|[Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering

    2006-11-15

    Fresh water scarcity and increasing water demands are concerns facing jurisdictions around the world. A number of water management initiatives involving produced water recycling and reuse in Alberta and Canada will have a significant impact on sustainable development in Alberta. Produced water must first be treated to meet water quality requirements and regulatory guidelines for specific applications. This paper presented a comprehensive technical and economic review of commercially available water treatment technologies and discussed technical challenges in recycling produced water for steam generation and for commercial use. It provided an introduction to fresh water allocations and oil, gas and water production volumes in Alberta. In addition to research and development activities, the paper identified guidelines from Alberta Environment and the Energy and Utilities Board. Benefits of treated produced water were discussed. Desalination technologies include both distillation processes and membrane processes. The paper provided cost estimates based on a literature view and discussed the potential water treatment for south-east Alberta. The paper also offered a number of recommendations for further research. It was concluded that treating and recycling produced water for agriculture, irrigation, commercial and domestic uses are at early stages of research and development and that regulatory guidelines on water quality, health and safety for specific industries, ownership and transfer of produced water need to be developed in order to facilitate beneficial reuse of produced water. 57 refs., 7 tabs., 14 figs.

  19. An innovative apparatus provided with a cutting auger for producing short logs for biomass energy from fast-growing tree species

    Energy Technology Data Exchange (ETDEWEB)

    Colorio, G.; Tomasone, R.; Cedrola, C.; Pagano, M.; Pochi, D.; Fanigliulo, R.; Sperandio, G. [Council for Research in Agriculture, Agricultural Engineering Research Unit, Rome (Italy)

    2010-07-01

    This paper reported on a new cutting mechanism that cuts fresh wood into small pieces instead of wood chips in order to avoid the problem of fermentation that occurs in storage. The prototype cutting device performs a gradual and oblique cut. It consists of a large auger in which a knife is inserted on the outer edge of the helicoid. Tree trunks up to 20 cm in diameter are fed perpendicularly into the machine and are pushed along the axis where slices are cut off against a fixed sharp-edged counter blade. The cylinder enclosing the auger is the main frame of the machine, and is closed at one end, where a heavy flywheel delivers the energy coming from the tractor's power take-off (PTO). The wood pieces ranging in length from 4 to 19 cm exit through the opposite end. The auger is 700 mm in diameter with a 300 mm pitch spacing. The logs are pushed into the machine by counter-rotating rollers placed in the feed funnel. Tests were conducted to determine the operative performance and power requirements of the machine. The cutting method requires less power compared to wood chipping machines. Work capacity is greater when producing slices instead of chips and the system produces less noise and fewer vibrations. The auger reaches a constant velocity of 200 RPM and can easily cut fresh wood of different species.

  20. Energy Systems in the Era of Energy Vectors A Key to Define, Analyze and Design Energy Systems Beyond Fossil Fuels

    CERN Document Server

    Orecchini, Fabio

    2012-01-01

    What lies beyond the era of fossil fuels? While most answers focus on different primary energy resources, Energy Systems in the Era of Energy Vectors provides a completely new approach. Instead of providing a traditional consumption analysis of classical primary energy resources such as oil, coal, nuclear power and gas, Energy Systems in the Era of Energy Vectors describes and assesses energy technologies, markets and future strategies, focusing on their capacity to produce, exchange, and use energy vectors. Special attention is given to the renewable energy resources available in different areas of the world and made exploitable by the integration of energy vectors in the global energy system. Clear definitions of energy vectors and energy systems are used as the basis for a complete explanation and assessment of up-to-date, available technologies for energy resources, transport and storage systems, conversion and use. The energy vectors scheme allows the potential realisation of a worldwide sustainable ener...