WorldWideScience

Sample records for producing leukemia-reactive cytotoxic

  1. Cell surface antigens of radiation leukemia virus-induced BALB/c leukemias defined by syngeneic cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Kaneko, Yukio; Oettgen, H.F.; Obata, Yuichi; Nakayama, Eiichi.

    1989-01-01

    Two cell surface antigens of mouse leukemias were defined by BALB/c cytotoxic T lymphocytes (CTL) generated against syngeneic radiation leukemia virus (RadLV)-induced leukemia, BALBRV1 or BALBRVD. Hyperimmunization of BALB/c mice with irradiated leukemias followed by in vitro sensitization of primed spleen cells resulted in the generation of CTL with high killing activity. The specificity of CTL was examined by direct cytotoxicity assays and competitive inhibition assays. A shared cell surface antigen, designated as BALBRV1 antigen, was detected by BALB/c anti-BALBRV1 CTL. BALBRV1 antigen was expressed not only on RadLV-induced BALB/c leukemias except for BALBRVD, but also on spontaneous or X-ray-induced BALB/c leukemias, chemically-induced leukemias with the H-2 d haplotype and some chemically-induced BALB/c sarcomas. In contrast, a unique cell surface antigen, designated as BALBRVD antigen, was detected by BALB/c anti-BALBRVD CTL. BALBRVD antigen was expressed only on BALBRVD, but not on thirty-nine normal lymphoid or tumor cells. These two antigens could be distinguished from those previously defined on Friend, Moloney, Rauscher or Gross murine leukemia virus (MuLV) leukemias, or MuLV-related antigens. Both cytotoxic responses were blocked by antisera against H-2K d , but not H-2D d . The relationship of BALBRV1 antigen and BALBRVD antigen to endogenous MuLV is discussed with regard to the antigenic distribution on tumor cell lines. (author)

  2. Monoclonal antibodies reactive with hairy cell leukemia

    NARCIS (Netherlands)

    Visser, L; Shaw, A; Slupsky, J; Vos, H; Poppema, S

    Monoclonal antibodies reactive with hairy cell leukemia were developed to aid in the diagnosis of this subtype of B cell chronic lymphocytic leukemia and to gain better insight into the origin of hairy cells. Three antibodies were found to be of value in the diagnosis of hairy cell leukemia.

  3. Heterogenous populations of cytotoxic cells in the peritoneal cavity of BALB/c mice immunized with allogeneic EL4 leukemia cells

    International Nuclear Information System (INIS)

    Zighelboim, J.; Bonavida, B.; Fahey, J.L.

    1974-01-01

    Adherent cells, presumably macrophages, obtained from the peritoneal cavity shortly after rejection of the allogeneic leukemia EL4, produced effective cell-mediated cytotoxicity (CMC) in vitro. These cytotoxic cells were sensitive to anti-macrophage serum and resistant to anti-thymocyte serum and 10,000 roentgen irradiation. In contrast, a second population of specifically cytotoxic cells were nonadherent, sensitive to x-rays and anti-thymocyte serum, but not to anti-macrophage serum. The two cell populations had a cooperative cytotoxic effect in vitro against allogeneic tumor cells

  4. Selective cytotoxicity of the antibacterial peptide ABP-dHC-Cecropin A and its analog towards leukemia cells.

    Science.gov (United States)

    Sang, Ming; Zhang, Jiaxin; Zhuge, Qiang

    2017-05-15

    Some cationic antibacterial peptides, with typical amphiphilic α-helical conformations in a membrane-mimicking environment, exhibit anticancer properties as a result of a similar mechanism of action towards both bacteria and cancer cells. We previously reported the cDNA sequence of the antimicrobial peptide ABP-dHC-Cecropin A precursor cloned from drury (Hyphantria cunea) (dHC). In the present study, we synthesized and structurally characterized ABP-dHC-Cecropin A and its analog, ABP-dHC-Cecropin A-K(24). Circular dichroism spectroscopy showed that ABP-dHC-Cecropin A and its analog adopt a well-defined α-helical structure in a 50% trifluorethanol solution. The cytotoxicity and cell selectivity of these peptides were further examined in three leukemia cell lines and two non-cancerous cell lines. The MTT assay indicated both of these peptides have a concentration-dependent cytotoxic effect in leukemia cells, although the observed cytotoxicity was greater with ABP-dHC-Cecropin A-K(24) treatment, whereas they were not cytotoxic towards the non-cancerous cell lines. Moreover, ABP-dHC-Cecropin A and its analog had a lower hemolytic effect in human red blood cells. Together, these results suggest the peptides are selectively cytotoxic towards leukemia cells. Confocal laser scanning microscopy determined that the peptides were concentrated at the surface of the leukemia cells, and changes in the cell membrane were determined with a permeability assay, which suggested that the anticancer activity of ABP-dHC-Cecropin A and its analog is a result of its presence at the leukemia cell membrane. ABP-dHC-Cecropin A and its analog may represent a novel anticancer agent for leukemia therapy, considering its cancer cell selectivity and relatively low cytotoxicity in normal cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Human monoclonal antibodies reactive with human myelomonocytic leukemia cells.

    Science.gov (United States)

    Posner, M R; Santos, D J; Elboim, H S; Tumber, M B; Frackelton, A R

    1989-04-01

    Peripheral blood mononuclear cells from a patient with chronic myelogenous leukemia (CML), in remission, were depleted of CD8-positive T-cells and cultured with Epstein-Barr virus. Four of 20 cultures (20%) secreted human IgG antibodies selectively reactive with the cell surfaces of certain human leukemia cell lines. Three polyclonal, Epstein-Barr virus-transformed, B-cell lines were expanded and fused with the human-mouse myeloma analogue HMMA2.11TG/O. Antibody from secreting clones HL 1.2 (IgG1), HL 2.1 (IgG3), and HL 3.1 (IgG1) have been characterized. All three react with HL-60 (promyelocytic), RWLeu4 (CML promyelocytic), and U937 (monocytic), but not with KG-1 (myeloblastic) or K562 (CML erythroid). There is no reactivity with T-cell lines, Burkitt's cell lines, pre-B-leukemia cell lines, or an undifferentiated CML cell line, BV173. Leukemic cells from two of seven patients with acute myelogenous leukemia and one of five with acute lymphocytic leukemia react with all three antibodies. Normal lymphocytes, monocytes, polymorphonuclear cells, red blood cells, bone marrow cells, and platelets do not react. Samples from patients with other diverse hematopoietic malignancies showed no reactivity. Immunoprecipitations suggest that the reactive antigen(s) is a lactoperoxidase iodinatable series of cell surface proteins with molecular weights of 42,000-54,000 and a noniodinatable protein with a molecular weight of 82,000. Based on these data these human monoclonal antibodies appear to react with myelomonocytic leukemic cells and may detect a leukemia-specific antigen or a highly restricted differentiation antigen.

  6. A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells.

    Science.gov (United States)

    Chen, Yu Qing; Min, Cui; Sang, Ming; Han, Yang Yang; Ma, Xiao; Xue, Xiao Qing; Zhang, Shuang Quan

    2010-08-01

    Some cationic antibacterial peptides exhibit a broad spectrum of cytotoxic activity against cancer cells, which could provide a new class of anticancer drugs. In the present study, the anticancer activity of ABP-CM4, an antibacterial peptide from Bombyx mori, against leukemic cell lines THP-1, K562 and U937 was evaluated, and the cytotoxicity compared with the effects on non-cancerous mammalian cells, including peripheral blood mononuclear cells (PBMCs), HEK-293 and erythrocytes. ABP-CM4 reduced the number of viable cells of the leukemic cell lines after exposure for 24h. The reduction was concentration dependent, and the IC50 values ranged from 14 to 18 microM. Conversely, ABP-CM4, even at 120 microM, exhibited no cytotoxicity toward HEK-293 or PBMCs, indicating that there was no significant effect on these two types of non-cancer cells. ABP-CM4 at a concentration of 200 microM had no hemolytic activity on mammalian erythrocytes. Together, these results suggested a selective cytotoxicity in leukemia cells. Flow cytometry demonstrated that the binding activity of ABP-CM4 to leukemia cells was much higher than that to HEK-293 or PBMCs, and there was almost no binding to erythrocytes. FITC-labeled ABP-CM4 molecules were examined under a confocal microscope and found to be concentrated at the surface of leukemia cells and changes of the cell membrane were determined by a cell permeability assay, which led us to the conclusion that ABP-CM4 could act at the cell membrane for its anticancer activity on leukemia cells. Collectively, our results indicated that ABP-CM4 has the potential for development as a novel antileukemic agent. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells.

    Science.gov (United States)

    Manlove, Luke S; Berquam-Vrieze, Katherine E; Pauken, Kristen E; Williams, Richard T; Jenkins, Marc K; Farrar, Michael A

    2015-10-15

    BCR-ABL(+) acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific Ag that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL(+) leukemia progression although ultimately this immune response fails. To address how BCR-ABL(+) leukemia escapes immune surveillance, we developed a peptide: MHC class II tetramer that labels endogenous BCR-ABL-specific CD4(+) T cells. Naive mice harbored a small population of BCR-ABL-specific T cells that proliferated modestly upon immunization. The small number of naive BCR-ABL-specific T cells was due to negative selection in the thymus, which depleted BCR-ABL-specific T cells. Consistent with this observation, we saw that BCR-ABL-specific T cells were cross-reactive with an endogenous peptide derived from ABL. Despite this cross-reactivity, the remaining population of BCR-ABL reactive T cells proliferated upon immunization with the BCR-ABL fusion peptide and adjuvant. In response to BCR-ABL(+) leukemia, BCR-ABL-specific T cells proliferated and converted into regulatory T (Treg) cells, a process that was dependent on cross-reactivity with self-antigen, TGF-β1, and MHC class II Ag presentation by leukemic cells. Treg cells were critical for leukemia progression in C57BL/6 mice, as transient Treg cell ablation led to extended survival of leukemic mice. Thus, BCR-ABL(+) leukemia actively suppresses antileukemia immune responses by converting cross-reactive leukemia-specific T cells into Treg cells. Copyright © 2015 by The American Association of Immunologists, Inc.

  8. Adaptation to TKI Treatment Reactivates ERK Signaling in Tyrosine Kinase-Driven Leukemias and Other Malignancies.

    Science.gov (United States)

    Bruner, J Kyle; Ma, Hayley S; Li, Li; Qin, Alice Can Ran; Rudek, Michelle A; Jones, Richard J; Levis, Mark J; Pratz, Keith W; Pratilas, Christine A; Small, Donald

    2017-10-15

    FMS-like tyrosine kinase-3 (FLT3) tyrosine kinase inhibitors (TKI) have been tested extensively to limited benefit in acute myeloid leukemia (AML). We hypothesized that FLT3/internal tandem duplication (ITD) leukemia cells exhibit mechanisms of intrinsic signaling adaptation to TKI treatment that are associated with an incomplete response. Here, we identified reactivation of ERK signaling within hours following treatment of FLT3/ITD AML cells with selective inhibitors of FLT3. When these cells were treated with inhibitors of both FLT3 and MEK in combination, ERK reactivation was abrogated and anti-leukemia effects were more pronounced compared with either drug alone. ERK reactivation was also observed following inhibition of other tyrosine kinase-driven cancer cells, including EGFR-mutant lung cancer, HER2-amplified breast cancer, and BCR-ABL leukemia. These studies reveal an adaptive feedback mechanism in tyrosine kinase-driven cancers associated with reactivation of ERK signaling in response to targeted inhibition. Cancer Res; 77(20); 5554-63. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. C22:0- and C24:0-dihydroceramides confer mixed cytotoxicity in T-cell acute lymphoblastic leukemia cell lines.

    Directory of Open Access Journals (Sweden)

    Michael W Holliday

    Full Text Available We previously reported that fenretinide (4-HPR was cytotoxic to acute lymphoblastic leukemia (ALL cell lines in vitro in association with increased levels of de novo synthesized dihydroceramides, the immediate precursors of ceramides. However, the cytotoxic potentials of native dihydroceramides have not been defined. Therefore, we determined the cytotoxic effects of increasing dihydroceramide levels via de novo synthesis in T-cell ALL cell lines and whether such cytotoxicity was dependent on an absolute increase in total dihydroceramide mass versus an increase of certain specific dihydroceramides. A novel method employing supplementation of individual fatty acids, sphinganine, and the dihydroceramide desaturase-1 (DES inhibitor, GT-11, was used to increase de novo dihydroceramide synthesis and absolute levels of specific dihydroceramides and ceramides. Sphingolipidomic analyses of four T-cell ALL cell lines revealed strong positive correlations between cytotoxicity and levels of C22:0-dihydroceramide (ρ = 0.74-0.81, P ≤ 0.04 and C24:0-dihydroceramide (ρ = 0.84-0.90, P ≤ 0.004, but not between total or other individual dihydroceramides, ceramides, or sphingoid bases or phosphorylated derivatives. Selective increase of C22:0- and C24:0-dihydroceramide increased level and flux of autophagy marker, LC3B-II, and increased DNA fragmentation (TUNEL assay in the absence of an increase of reactive oxygen species; pan-caspase inhibition blocked DNA fragmentation but not cell death. C22:0-fatty acid supplemented to 4-HPR treated cells further increased C22:0-dihydroceramide levels (P ≤ 0.001 and cytotoxicity (P ≤ 0.001. These data demonstrate that increases of specific dihydroceramides are cytotoxic to T-cell ALL cells by a caspase-independent, mixed cell death mechanism associated with increased autophagy and suggest that dihydroceramides may contribute to 4-HPR-induced cytotoxicity. The targeted increase of specific acyl chain dihydroceramides

  10. Laboratory determination of chemotherapeutic drug resistance in tumor cells from patients with leukemia, using a fluorometric microculture cytotoxicity assay (FMCA).

    Science.gov (United States)

    Larsson, R; Kristensen, J; Sandberg, C; Nygren, P

    1992-01-21

    An automated fluorometric microculture cytotoxicity assay (FMCA) based on the measurement of fluorescence generated from cellular hydrolysis of fluorescein diacetate (FDA) to fluorescein was employed for chemotherapeutic-drug-sensitivity testing of tumor-cell suspensions from patients with leukemia. Fluorescence was linearly related to cell number, and reproducible measurements of drug sensitivity could be performed using fresh or cryopreserved leukemia cells. A marked heterogeneity with respect to chemotherapeutic drug sensitivity was observed for a panel of cytotoxic drugs tested in 43 samples from 35 patients with treated or untreated acute and chronic leukemia. For samples obtained from patients with chronic lymphocytic and acute myelocytic leukemia, sensitivity profiles for standard drugs corresponded to known clinical activity and the assay detected primary and acquired drug resistance. Individual in vitro/in vivo correlations indicated high specificity with respect to the identification of drug resistance. The results suggest that the FMCA may be a simple and rapid method for in vivo-representative determinations of chemotherapeutic drug resistance in tumor cells obtained from patients with leukemia.

  11. Dendritic cells decreased the concomitant expanded Tregs and Tregs related IL-35 in cytokine-induced killer cells and increased their cytotoxicity against leukemia cells.

    Directory of Open Access Journals (Sweden)

    Ying Pan

    Full Text Available Regulatory T cells (Tregs are potent immunosuppressive cells and essential for inducing immune tolerance. Recent studies have reported that Tregs and Tregs related cytokines can inhibit the antitumor activity of cytokine-induced killer (CIK cells, but dendritic cells co-cultured CIK (DC-CIK cells can be used for induction of a specific immune response by blocking of Tregs and TGF-β, IL-10. As a novel identified cytokine, IL-35 is specially produced by Tregs and plays an essential role in immune regulation. However, it remains unknown whether IL-35 roles in tumor immunotherapy mediated by CIK and DC-CIK cells. In this study, we cultured CIK and DC-CIK cells from the same healthy adult samples, and investigated their phenotype, proliferation, cytotoxic activity against leukemia cell lines K562 and NB4 by FCM and CCK-8, measured IL-35, TGF-β and IL-10 protein by ELISA, detected Foxp3, IL-35 and IL-35 receptor mRNA by Real-time PCR, respectively. We found Tregs and IL-35 concomitantly expanded by a time-dependent way during the generation of CIK cells, but DC significantly down-regulated the expression of them and simultaneously up-regulated the proliferation ability as well as cytotoxic activity of CIK cells against leukemia cell lines. Therefore, our data suggested that DC decreased concomitant expanded Tregs and Tregs related IL-35 in CIK cells and might contribute to improve their cytotoxicity against leukemia cells in vitro.

  12. Effects of gamma irradiation on cytotoxicity against leukemia L1210 cells and chromatogram profile of sirih merah (piper crocatum Ruiz & Pav.) leaves

    International Nuclear Information System (INIS)

    Katrin, E.; Susanto; Winarno, H.; Komarudin, D.

    2013-01-01

    Sirih merah leaves Piper crocatum Ruiz & Pav. is a plant that contains flavonoids, tannins, volatile oil and empirically has been used as traditional medicine. This research aimed to study the effect of gamma irradiation on the cytotoxicity activity of sirih merah leaves against L1210 leukemia cells and their chromatograms profile, respectively. Dried sirih merah leaves (water content 8.03%) were irradiated with doses of 5, 7.5, 10 and 15 kGy using a cobalt-60 source. Then the samples were macerated in three kinds of solvent gradually, namely n-hexane, ethyl acetate, and ethanol, thus obtained three kinds of extracts. Cytotoxicity activity test were performed against L1210 leukemia cells by the direct method using trypan blue staining. The most active extracts inhibited the growth of leukemia L1210 cells was ethanol extract (IC 50 of 4.12 μg/ml), then fractionated by column chromatography, obtained 7 fractions. Fraction 2 was the most active fraction inhibited L210 leukemia cells with IC 50 value 13.12 μg/ml. Cytotoxic activity of fraction 2 of sirih merah leaves up to 7.5 kGy did not change significantly compared with the unirradiated sample, but at doses ≥ 10 kGy cytotoxic activity of fraction 2 were significantly decreased. TLC chromatogram of fraction 2 unirradiated and irradiated to a dose of 7.5 kGy were not seen any change, but the TLC-densitometric and GC-MS spectrum indicated changes. Based on the results of the cytotoxic activity of fraction 2 against L1210 leukemia cells and concluded that the TLC profiles of 7.5 kGy dose is the maximum dose for irradiation of sirih merah leaves without changing their bioactivity. (author)

  13. Tropism, Cytotoxicity, and Inflammatory Properties of Two Envelope Genes of Murine Leukemia Virus Type-Endogenous Retroviruses of C57BL/6J Mice

    Directory of Open Access Journals (Sweden)

    Young-Kwan Lee

    2011-01-01

    Full Text Available Envelope (env proteins of certain endogenous retroviruses (ERVs participate in various pathophysiological processes. In this study, we characterized pathophysiologic properties of two murine leukemia virus-type ERV (MuLV-ERV env genes cloned from the ovary of C57BL/6J mice. The two env genes (named ENVOV1 and ENVOV2, with 1,926\\,bp coding region, originated from two MuLV-ERV loci on chromosomes 8 and 18, respectively. ENVOV1 and ENVOV2 were ~75 kDa and predominantly expressed on the cell membrane. They were capable of producing pseudotype murine leukemia virus virions. Tropism trait and infectivity of ENVOV2 were similar to the polytropic env; however, ENVOV1 had very low level of infectivity. Overexpression of ENVOV2, but not ENVOV1, exerted cytotoxic effects and induced expression of COX-2, IL-1β, IL-6, and iNOS. These findings suggest that the ENVOV1 and ENVOV2 are capable of serving as an env protein for virion assembly, and they exert differential cytotoxicity and modulation of inflammatory mediators.

  14. Spontaneous cytotoxic T-Cell reactivity against indoleamine 2,3-dioxygenase-2

    DEFF Research Database (Denmark)

    Sørensen, Rikke Bæk; Køllgaard, Tania; Andersen, Rikke Sick

    2011-01-01

    in mouse models of cancer in a nontoxic fashion. Here, we describe the immunogenicity of IDO2 by showing the presence of spontaneous cytotoxic T-cell reactivity against IDO2 in peripheral blood of both healthy donors and cancer patients. Furthermore, we show that these IDO2-specific T cells are cytotoxic...

  15. A Developed NK-92MI Cell Line with Siglec-7neg Phenotype Exhibits High and Sustainable Cytotoxicity against Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Chin-Han Huang

    2018-04-01

    Full Text Available Altered sialic acid processing that leads to upregulation of cell surface sialylation is recognized as a key change in malignant tissue glycosylation. This cancer-associated hypersialylation directly impacts the signaling interactions between tumor cells and their surrounding microenvironment, especially the interactions mediated by immune cell surface sialic acid-binding immunoglobulin-like lectins (Siglecs to relay inhibitory signals for cytotoxicity. First, we obtained a Siglec-7neg NK-92MI cell line, NK-92MI-S7N, by separating a group of Siglec-7neg cell population from an eight-month-long-term NK-92MI in vitro culture by fluorescence-activated cell sorting (FACS. The effect of Siglec-7 loss on NK-92MI-S7N cells was characterized by the cell morphology, proliferation, and cytotoxic activity via FACS, MTS assay, cytotoxic assay, and natural killer (NK degranulation assay. We found the expression levels of Siglec-7 in NK-92MI were negatively correlated with NK cytotoxicity against leukemia cells. This NK-92MI-S7N cell not only shared very similar phenotypes with its parental cells but also possessed a high and sustainable killing activity. Furthermore, this Siglec-7neg NK line was unexpectedly capable of eliminating a NK-92MI-resistant leukemia cell, THP-1, through enhancing the effector-target interaction. In this study, a NK cell line with high and sustainable cytotoxicity was established and this cell may provide a potential application in NK-based treatment for leukemia patients.

  16. Feasibility of the fluorometric microculture cytotoxicity assay (FMCA) for cytotoxic drug sensitivity testing of tumor cells from patients with acute lymphoblastic leukemia.

    Science.gov (United States)

    Nygren, P; Kristensen, J; Jonsson, B; Sundström, C; Lönnerholm, G; Kreuger, A; Larsson, R

    1992-11-01

    The automated fluorometric microculture cytotoxicity assay (FMCA) was used for chemotherapeutic drug sensitivity testing of fresh and cryopreserved tumor cells from patients with acute lymphoblastic leukemia (ALL) at diagnosis and relapse. The technique success rate was 87% for fresh and 81% for cryopreserved samples. Up to 16 different cytotoxic drugs were routinely tested, but neither asparaginase nor methotrexate produced dose-response related cell kill. FMCA data showed good correlation to the well established Disc assay and the drug sensitivity reported by the FMCA was in good agreement with known clinical activity. Samples from children and initial ALL tended to be more drug sensitive than those from adults and ALL at relapse, respectively. For 36 samples clinical outcome was correlated to the quartile position in comparison to all other samples for the most in vitro active drug actually given to the patient. For patients with samples in the first, second, third, and fourth quartiles, the probabilities of complete remission were 89, 57, 38, and 0%, respectively. Using the median value as cut-off line, the sensitivity and specificity of the assay were 87 and 62%, respectively. It is concluded that the FMCA with a minimum of effort and with high success rate report clinically relevant drug sensitivity profiles for ALL.

  17. Impact of cytomegalovirus reactivation on relapse and survival in patients with acute leukemia who received allogeneic hematopoietic stem cell transplantation in first remission

    OpenAIRE

    Yoon, Jae-Ho; Lee, Seok; Kim, Hee-Je; Jeon, Young-Woo; Lee, Sung-Eun; Cho, Byung-Sik; Lee, Dong-Gun; Eom, Ki-Seong; Kim, Yoo-Jin; Min, Chang-Ki; Cho, Seok-Goo; Min, Woo-Sung; Lee, Jong Wook

    2016-01-01

    Cytomegalovirus (CMV)-reactivation is associated with graft-vs-leukemia (GVL) effect by stimulating natural-killer or T-cells, which showed leukemia relapse prevention after hematopoietic stem cell transplantation (HSCT). We enrolled patients with acute myeloid leukemia (n = 197) and acute lymphoid leukemia (n = 192) who underwent allogeneic-HSCT in first remission. We measured RQ-PCR weekly to detect CMV-reactivation and preemptively used ganciclovir (GCV) when the titer increased twice cons...

  18. In vitro evaluation of triazenes: DNA cleavage, antibacterial activity and cytotoxicity against acute myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Domingues, Vanessa O.; Hoerner, Rosmari; Reetz, Luiz G.B.; Kuhn, Fabio, E-mail: rosmari.ufsm@gmail.co [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Analises Clinicas e Toxicologicas; Coser, Virginia M.; Rodrigues, Jacqueline N.; Bauchspiess, Rita; Pereira, Waldir V. [Hospital Universitario de Santa Maria, RS (Brazil). Dept. de Hematologia-Oncologia; Paraginski, Gustavo L.; Locatelli, Aline; Fank, Juliana de O.; Giglio, Vinicius F.; Hoerner, Manfredo, E-mail: hoerner.manfredo@gmail.co [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica

    2010-07-01

    The asymmetric diazoamines 1-(2-chlorophenyl)-3-(4-carboxyphenyl)triazene (1), 1-(2-fluorophenyl)-3-(4-carboxyphenyl)triazene (2) and 1-(2-fluorophenyl)-3-(4-amidophenyl) triazene (3) were evaluated for their ability to cleave pUC18 and pBSKII plasmid DNA, antibacterial activity and in vitro cytotoxicity against acute myeloid leukemia cells and normal leukocytes using the bioassay of reduction of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The triazenes showed ability to cleave the two types of plasmid DNA: triazene 1 at pH 8.0 and 50 deg C; triazene 2 at pH 6.5 and 37 and 50 deg C; triazene 3 at pH 6.5 and 37 deg C. The compounds presented cytotoxic activity against myeloid leukemia cells. Compound 1 showed high activity against B. cereus (MIC = 32 {mu}g mL{sup -1}). The observation of intermolecular hydrogen bonding in the solid state of compound 3, based on the structural analysis by X-ray crystallography, as well as the results of IR and UV-Vis spectroscopic analyses of compounds 1, 2 and 3 are discussed in the present work. (author)

  19. Cytotoxicity of Vitex agnus-castus fruit extract and its major component, casticin, correlates with differentiation status in leukemia cell lines.

    Science.gov (United States)

    Kikuchi, Hidetomo; Yuan, Bo; Nishimura, Yoshio; Imai, Masahiko; Furutani, Ryota; Kamoi, Saki; Seno, Misako; Fukushima, Shin; Hazama, Shingo; Hirobe, Chieko; Ohyama, Kunio; Hu, Xiao-Mei; Takagi, Norio; Hirano, Toshihiko; Toyoda, Hiroo

    2013-12-01

    We have demonstrated that an extract from the ripe fruit of Vitex agnus-castus (Vitex) exhibits cytotoxic activities against various types of solid tumor cells, whereas its effects on leukemia cells has not been evaluated to date. In this study, the effects of Vitex and its major component, casticin, on leukemia cell lines, HL-60 and U-937, were investigated by focusing on proliferation, induction of apoptosis and differentiation. Identification and quantitation by NMR spectroscopy showed that casticin accounted for approximate 1% weight of Vitex. Dose-dependent cytotoxicity of Vitex and casticin was observed in both cell lines, and HL-60 cells were more sensitive to the cytotoxicity of Vitex/casticin compared to U-937 cells. Furthermore, compared to unstimulated HL-60 cells, phorbol 12-myristate 13-acetate (PMA)- and 1,25-dihydroxyvitamin D₃ (VD₃)-differentiated HL-60 cells acquired resistance to Vitex/casticin based on the results from cell viability and apoptosis induction analysis. Since the HL-60 cell line is more immature than the U-937 cell line, these results suggested that the levels of cytotoxicity of Vitex/casticin were largely attributed to the degree of differentiation of leukemia cells; that is, cell lines with less differentiated phenotype were more susceptible than the differentiated ones. RT-PCR analysis demonstrated that PMA upregulated the expression of intercellular adhesion molecule-1 (ICAM-1) in HL-60 cells, and that anti-ICAM-1 monoclonal antibody not only abrogated PMA-induced aggregation and adhesion of the cells but also restored its sensitivity to Vitex. These results suggested that ICAM-1 plays a crucial role in the acquired resistance in PMA-differentiated HL-60 cells by contributing to cell adhesion. These findings provide fundamental insights into the clinical application of Vitex/casticin for hematopoietic malignancy.

  20. Potentiation of luteolin cytotoxicity by flavonols fisetin and quercetin in human chronic lymphocytic leukemia cell lines.

    Science.gov (United States)

    Sak, Katrin; Kasemaa, Kristi; Everaus, Hele

    2016-09-14

    Despite numerous studies chronic lymphocytic leukemia (CLL) still remains an incurable disease. Therefore, all new compounds and novel strategies which are able to eradicate CLL cells should be considered as valuable clues for a potential future remedy against this malignancy. In the present study, the cytotoxic profiles of natural flavonoids were described in two human CLL cell lines, HG-3 and EHEB, indicating the flavone luteolin as the most potent flavonoid with half-maximal inhibitory constants (IC50) of 37 μM and 26 μM, respectively. Luteolin significantly increased the apoptotic cell population in both cell lines by increasing the activities of caspases-3 and -9 and triggering the intrinsic apoptotic pathway. Two flavonols, fisetin and quercetin, were somewhat less efficient in suppressing cellular viability, whereas baicalein, chrysin, (+)-catechin and hesperetin exerted only a small or no response at doses as high as 100 μM. Both fisetin and quercetin were able to augment the cytotoxic activity of luteolin in both cell lines by reducing the IC50 values up to four fold. As a result of this, luteolin displayed cytotoxicity activity already at low micromolar concentrations that could potentially be physiologically achievable through oral ingestion. No other tested flavonoids were capable of sensitizing CLL cells to luteolin pointing to a specific binding of fisetin and quercetin to the cellular targets which interfere with the signaling pathways induced by luteolin. Although further molecular studies to unravel this potentiating mechanism are certainly needed, this phenomenon could contribute to future remedies for prevention and treatment of chronic lymphocytic leukemia.

  1. Sponge-Associated Bacteria Produce Non-cytotoxic Melanin Which Protects Animal Cells from Photo-Toxicity.

    Science.gov (United States)

    Vijayan, Vijitha; Jasmin, Chekidhenkuzhiyil; Anas, Abdulaziz; Parakkaparambil Kuttan, Sreelakshmi; Vinothkumar, Saradavey; Perunninakulath Subrayan, Parameswaran; Nair, Shanta

    2017-09-01

    Melanin is a photo-protective polymer found in many organisms. Our research shows that the bacteria associated with darkly pigmented sponges (Haliclona pigmentifera, Sigmadocia pumila, Fasciospongia cavernosa, Spongia officinalis, and Callyspongia diffusa) secrete non-cytotoxic melanin, with antioxidant activity that protects animal cells from photo-toxicity. Out of 156 bacterial strains screened, 22 produced melanin and these melanin-producing bacteria (MPB) were identified as Vibrio spp., Providencia sp., Bacillus sp., Shewanella sp., Staphylococcus sp., Planococcus sp., Salinococcus sp., and Glutamicibacter sp. Maximum melanin production was exhibited by Vibrio alginolyticus Marine Microbial Reference Facility (MMRF) 534 (50 mg ml -1 ), followed by two isolates of Vibrio harveyi MMRF 535 (40 mg ml -1 ) and MMRF 546 (30 mg ml -1 ). Using pathway inhibition assay and FT-IR spectral analysis, we identified the melanin secreted into the culture medium of MPB as 1,8-dihydroxynaphthalene-melanin. The bacterial melanin was non-cytotoxic to mouse fibroblast L929 cells and brine shrimps up to a concentration of 200 and 500 ppm, respectively. Bacterial melanin showed antioxidant activity at very low concentration (IC 50 -9.0 ppm) and at 50 ppm, melanin protected L929 cells from UV-induced intracellular reactive oxygen stress. Our study proposes sponge-associated bacteria as a potential source of non-cytotoxic melanin with antioxidant potentials.

  2. Diagnosis of large granular lymphocytic leukemia in a patient previously treated for acute myeloblastic leukemia

    OpenAIRE

    Sinem Civriz Bozdag; Sinem Namdaroglu; Omur Kayikci; Gülsah Kaygusuz; Itir Demiriz; Murat Cinarsoy; Emre Tekgunduz; Fevzi Altuntas

    2013-01-01

    Large granular lymphocytic (LGL) leukemia is a lymphoproliferative disease characterized by the clonal expansion of cytotoxic T or natural killer cells. We report on a patient diagnosed with T-cell LGL leukemia two years after the achievement of hematologic remission for acute myeloblastic leukemia.

  3. Neolignans from Nectandra megapotamica (Lauraceae Display in vitro Cytotoxic Activity and Induce Apoptosis in Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Vitor Ponci

    2015-07-01

    Full Text Available Nectandra megapotamica (Spreng. Mez. (Lauraceae is a well-known Brazilian medicinal plant that has been used in folk medicine to treat several diseases. In continuation of our ongoing efforts to discover new bioactive natural products from the Brazilian flora, this study describes the identification of cytotoxic compounds from the MeOH extract of N. megapotamica (Lauraceae leaves using bioactivity-guided fractionation. This approach resulted in the isolation and characterization of eight tetrahydrofuran neolignans: calopeptin (1, machilin-G (2, machilin-I (3, aristolignin (4, nectandrin A (5, veraguensin (6, ganschisandrin (7, and galgravin (8. Different assays were conducted to evaluate their cytotoxic activities and to determine the possible mechanism(s related to the activity displayed against human leukemia cells. The most active compounds 4, 5 and 8 gave IC50 values of 14.2 ± 0.7, 16.9 ± 0.8 and 16.5 ± 0.8 µg/mL, respectively, against human leukemia (HL-60 tumor cells. Moreover, these compounds induced specific apoptotic hallmarks, such as plasma membrane bleb formation, nuclear DNA condensation, specific chromatin fragmentation, phosphatidyl-serine exposure on the external leaflet of the plasma membrane, cleavage of PARP as well as mitochondrial damage, which as a whole could be related to the intrinsic apoptotic pathway.

  4. Human T cell leukemia virus reactivation with progression of adult T-cell leukemia-lymphoma.

    Directory of Open Access Journals (Sweden)

    Lee Ratner

    Full Text Available Human T-cell leukemia virus-associated adult T-cell leukemia-lymphoma (ATLL has a very poor prognosis, despite trials of a variety of different treatment regimens. Virus expression has been reported to be limited or absent when ATLL is diagnosed, and this has suggested that secondary genetic or epigenetic changes are important in disease pathogenesis.We prospectively investigated combination chemotherapy followed by antiretroviral therapy for this disorder. Nineteen patients were prospectively enrolled between 2002 and 2006 at five medical centers in a phase II clinical trial of infusional chemotherapy with etoposide, doxorubicin, and vincristine, daily prednisone, and bolus cyclophosphamide (EPOCH given for two to six cycles until maximal clinical response, and followed by antiviral therapy with daily zidovudine, lamivudine, and alpha interferon-2a for up to one year. Seven patients were on study for less than one month due to progressive disease or chemotherapy toxicity. Eleven patients achieved an objective response with median duration of response of thirteen months, and two complete remissions. During chemotherapy induction, viral RNA expression increased (median 190-fold, and virus replication occurred, coincident with development of disease progression.EPOCH chemotherapy followed by antiretroviral therapy is an active therapeutic regimen for adult T-cell leukemia-lymphoma, but viral reactivation during induction chemotherapy may contribute to treatment failure. Alternative therapies are sorely needed in this disease that simultaneously prevent virus expression, and are cytocidal for malignant cells.

  5. Cytotoxic and Antifungal Activities of 5-Hydroxyramulosin, a Compound Produced by an Endophytic Fungus Isolated from Cinnamomum mollisimum

    Directory of Open Access Journals (Sweden)

    Carolina Santiago

    2012-01-01

    Full Text Available An endophytic fungus isolated from the plant Cinnamomum mollissimum was investigated for the bioactivity of its metabolites. The fungus, similar to a Phoma sp., was cultured in potato dextrose broth for two weeks, followed by extraction with ethyl acetate. The crude extract obtained was fractionated by high-performance liquid chromatography. Both crude extract and fractions were assayed for cytotoxicity against P388 murine leukemic cells and inhibition of bacterial and fungal pathogens. The bioactive extract fraction was purified further and characterized by nuclear magnetic resonance, mass spectral and X-ray crystallography analysis. A polyketide compound, 5-hydroxyramulosin, was identified as the constituent of the bioactive fungal extract fraction. This compound inhibited the fungal pathogen Aspergillus niger (IC50 1.56 μg/mL and was cytotoxic against murine leukemia cells (IC50 2.10 μg/mL. 5-Hydroxyramulosin was the major compound produced by the endophytic fungus. This research suggests that fungal endophytes are a good source of bioactive metabolites which have potential applications in medicine.

  6. Pharmacological modification of multi-drug resistance (MDR) in vitro detected by a novel fluorometric microculture cytotoxicity assay. Reversal of resistance and selective cytotoxic actions of cyclosporin A and verapamil on MDR leukemia T-cells.

    Science.gov (United States)

    Larsson, R; Nygren, P

    1990-07-15

    A novel fluorometric microculture cytotoxicity assay (FMCA), based on measurements of fluorescein diacetate (FDA) hydrolysis and DNA staining by Hoechst 33342, was used for drug sensitivity testing and detection of resistance reversal in acute lymphoblastic leukemia (ALL) cell lines. The 72-hr assay was found to be sensitive, reproducible and linearly related to the number of viable cells within a broad range of cell concentrations. At clinically achievable drug concentrations, the calcium channel blocker Verapamil (ver) and the immunosuppressant Cyclosporin A (csA) were found to partly reverse acquired Vincristine (vcr) resistance in multi-drug resistant (MDR) T-ALL L100 cells with little or no effect on the drug-sensitive parental L0 cell line. By combining the fluorometric indices, we found that low concentrations of csA were growth-inhibitory, whereas higher concentrations (greater than 10 micrograms/ml) were progressively cytotoxic for drug-sensitive L0 cells. In MDR L100 cells, on the other hand, csA produced significant cell kill even at low drug concentrations. Ver had no effects on sensitive L0 cells but showed considerable cytotoxic action towards MDR L100 cells. There was no apparent relationship between drug reversal of vcr resistance and the cytotoxic actions of the drug per se since the calcium channel blocker diltiazem (dil) significantly potentiated the actions of vcr on MDR L100 cells without being more toxic to these cells (compared to vcr-sensitive L0 cells).

  7. Bortezomib interactions with chemotherapy agents in acute leukemia in vitro.

    Science.gov (United States)

    Horton, Terzah M; Gannavarapu, Anurhadha; Blaney, Susan M; D'Argenio, David Z; Plon, Sharon E; Berg, Stacey L

    2006-07-01

    Although there is effective chemotherapy for many patients with leukemia, 20% of children and up to 65% of adults relapse. Novel therapies are needed to treat these patients. Leukemia cells are very sensitive to the proteasome inhibitor bortezomib (VELCADE(R), PS-341), which enhances the in vitro cytotoxic effects of dexamethasone and doxorubicin in multiple myeloma. To determine if bortezomib enhances the cytotoxicity of agents used in leukemia, we employed an in vitro tetrazolium-based colorimetric assay (MTT) to evaluate the cytotoxic effects of bortezomib alone and in combination with dexamethasone, vincristine, doxorubicin, cytarabine, asparaginase, geldanamycin, trichostatin A, and the bcl-2 inhibitor HA14.1. We demonstrated that primary leukemia lymphoblasts and leukemia cell lines are sensitive to bortezomib, with an average IC(50) of 12 nM. Qualitative and quantitative bortezomib-drug interactions were evaluated using the universal response surface approach (URSA). Bortezomib was synergistic with dexamethasone in dexamethasone-sensitive leukemia cells, and additive with vincristine, asparaginase, cytarabine, and doxorubicin. The anti-leukemic activity of bortezomib was also additive with geldanamycin and HA14.1, and additive or synergistic with trichostatin A. These results were compared to analysis using the median-dose effect method, which generated complex drug interactions due to differences in dose-response curve sigmoidicities. These data suggest bortezomib could potentiate the cytotoxic effects of combination chemotherapy in patients with leukemia.

  8. In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing.

    Science.gov (United States)

    Rajavel, Krishnamoorthy; Gomathi, Rajkumar; Manian, Sellamuthu; Rajendra Kumar, Ramasamy Thangavelu

    2014-01-21

    Understanding the bacterial cytotoxicity of CNTs is important for a wide variety of applications in the biomedical, environmental, and health sectors. A majority of the earlier reports attributed the bactericidal cytotoxicity of CNTs to bacterial cell membrane damage by direct physical puncturing. Our results reveal that bacterial cell death via bacterial cell membrane damage is induced by reactive oxygen species (ROS) produced from CNTs and is not due to direct physical puncturing by CNTs. To understand the actual mechanism of bacterial killing, we elucidated the bacterial cytotoxicity of SWCNTs and MWCNTs against Gram-negative human pathogenic bacterial species Escherichia coli, Shigella sonnei, Klebsiella pneumoniae, and Pseudomonas aeruginosa and its amelioration upon functionalizing the CNTs with antioxidant tannic acid (TA). Interestingly, the bacterial cells treated with CNTs exhibited severe cell damage under laboratory (ambient) and sunlight irradiation conditions. However, CNTs showed no cytotoxicity to the bacterial cells when incubated in the dark. The quantitative assessments carried out by us made it explicit that CNTs are effective generators of ROS such as (1)O2, O2(•-), and (•)OH in an aqueous medium under both ambient and sunlight-irradiated conditions. Both naked and TA-functionalized CNTs showed negligible ROS production in the dark. Furthermore, strong correlations were obtained between ROS produced by CNTs and the bacterial cell mortality (with the correlation coefficient varying between 0.7618 and 0.9891) for all four tested pathogens. The absence of bactericidal cytotoxicity in both naked and functionalized CNTs in the dark reveals that the presence of ROS is the major factor responsible for the bactericidal action compared to direct physical puncturing. This understanding of the bactericidal activity of the irradiated CNTs, mediated through the generation of ROS, could be interesting for novel applications such as regulated ROS delivery

  9. Anti-proliferative, Cytotoxic and NF-ĸB Inhibitory Properties of Spiro(Lactone-Cyclohexanone) Compounds in Human Leukemia.

    Science.gov (United States)

    Bouhenna, Mustapha M; Orlikova, Barbora; Talhi, Oualid; Schram, Ben; Pinto, Diana C G A; Taibi, Nadia; Bachari, Khaldoun; Diederich, Marc; Silva, Artur M S; Mameri, Nabil

    2017-09-01

    NF-ĸB affects most aspects of cellular physiology. Deregulation of NF-ĸB signaling is associated with inflammatory diseases and cancer. In this study, we evaluated the cytotoxic and NF-ĸB inhibition potential of new spiro(lactone-cyclohexanone) compounds in two different human leukemia cell lines (U937 and K562). The anti-proliferative effects of the spiro(lactone-cyclohexanone) compounds on human K562 and U937 cell lines was evaluated by trypan blue staining, as well as their involvement in NF-kB regulation were analyzed by luciferase reporter gene assay, Caspase-3/7 activities were evaluated to analyze apoptosis induction. Both spiro(coumarin-cyclohexanone) 4 and spiro(6- methyllactone-cyclohexanone) 9 down-regulated cancer cell viability and proliferation. Compound 4 inhibited TNF-α-induced NF-ĸB activation in a dose-dependent manner and induced caspase-dependent apoptosis in both leukemia cell lines. Results show that compound 4 and compound 9 have potential as anti-cancer agents. In addition, compound 4 exerted NF-kB inhibition activity in leukemia cancer cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Natural and semi-synthetic clerodanes of Croton cajucara and their cytotoxic effects against ehrlich carcinoma and human K562 leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, Maria Aparecida M. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil). Dept. de Quimica; Martins, Jenilce R.; Pinto, Angelo C.; Kaiser, Carlos R. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Esteves-Souza, Andressa; Echevarria, Aurea [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Quimica]. E-mail: echevarr@ufrrj.br

    2007-03-15

    The clerodane-type diterpene, trans-dehydrocrotonin (1) the major component of Croton cajucara has shown striking correlation with its therapeutic use in traditional folk medicine. Phytochemical investigations led to the isolation of the metabolites 1, cajucarinolide (6), isocajucarinolide (7), trans-crotonin (2), trans-cajucarin B (3), cis-cajucarin B (4), trans-cajucarin A (5), N-methyltyrosine, vanillic acid and 4-hydroxy-benzoic acid. 6 and 7 were synthesized in good yield by regiospecific oxidation of 1 using singlet-oxygen. All clerodanes were studied for their cytotoxic effects against human K562 leukemia and Ehrlich carcinoma cells. Ehrlich carcinoma assays with IC{sub 50} = 166 {mu}M (1), 164 {mu}M (2), 65 {mu}M (6) and 10 {mu}M (7) related to cell growth inhibitory effects were dose dependent. Furthermore, moderate cytotoxic activity against K562 leukemia cells was observed with IC{sub 50} = 38 {mu}M (3), 33 {mu}M (5), 36 {mu}M (6) and 43 {mu}M (7). The semi-synthetic 2, 6 and 7 showed similar results when compared to the corresponding natural clerodanes. (author)

  11. Natural and semi-synthetic clerodanes of Croton cajucara and their cytotoxic effects against ehrlich carcinoma and human K562 leukemia cells

    International Nuclear Information System (INIS)

    Maciel, Maria Aparecida M.; Martins, Jenilce R.; Pinto, Angelo C.; Kaiser, Carlos R.; Esteves-Souza, Andressa; Echevarria, Aurea

    2007-01-01

    The clerodane-type diterpene, trans-dehydrocrotonin (1) the major component of Croton cajucara has shown striking correlation with its therapeutic use in traditional folk medicine. Phytochemical investigations led to the isolation of the metabolites 1, cajucarinolide (6), isocajucarinolide (7), trans-crotonin (2), trans-cajucarin B (3), cis-cajucarin B (4), trans-cajucarin A (5), N-methyltyrosine, vanillic acid and 4-hydroxy-benzoic acid. 6 and 7 were synthesized in good yield by regiospecific oxidation of 1 using singlet-oxygen. All clerodanes were studied for their cytotoxic effects against human K562 leukemia and Ehrlich carcinoma cells. Ehrlich carcinoma assays with IC 50 = 166 μM (1), 164 μM (2), 65 μM (6) and 10 μM (7) related to cell growth inhibitory effects were dose dependent. Furthermore, moderate cytotoxic activity against K562 leukemia cells was observed with IC 50 = 38 μM (3), 33 μM (5), 36 μM (6) and 43 μM (7). The semi-synthetic 2, 6 and 7 showed similar results when compared to the corresponding natural clerodanes. (author)

  12. A flavone derivative from Sesbania sesban leaves and its cytotoxicity against murine leukemia P-388 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dianhar, Hanhan, E-mail: liadewi@chem.itb.ac.id; Syah, Yana Maolana, E-mail: liadewi@chem.itb.ac.id; Mujahidin, Didin, E-mail: liadewi@chem.itb.ac.id; Hakim, Euis Holisotan, E-mail: liadewi@chem.itb.ac.id; Juliawaty, Lia Dewi, E-mail: liadewi@chem.itb.ac.id [Natural Product Chemistry Research Group, Organic Chemistry Division, Program Study of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganeca 10, Bandung 40132 (Indonesia)

    2014-03-24

    Sesbania sesban, locally named as Jayanti, is one of Indonesia plants belonging to Fabaceae family. This species is traditionally used by Indonesian people to cure digestive disorders, fever, or headache. Jayanti can grow well in tropical to subtropical region, such as in Asia and Africa. Based on literature, qualitative analysis of the methanol extract of leaves of S. sesban showed that it contained flavonoids, alkaloids, saponins and glycosides. In addition, the activity assay of extracts of different tissues of this species showed antitumor, antimalarial, and antidiabetic activityies (leaves and seed extracts), antioxidants (flower extract), and analgesic (wood extract). Though the extracts of S. sesban parts showed interesting activities, chemical study of those extracts have not been widely reported. Therefore, the objective of this research was to isolate the secondary metabolites from methanol extract of leaves of S. sesban and to determine their cytotoxicity against murine leukemia P-388 cells. One compound has been obtained and identified as 3-hydroxy-4',7-dimethoxyflavone (1), a new isolated compound from nature. This compound was obtained through separation of methanol extract using various chromatographic techniques, such as vacuum liquid chromatography and radial chromatography. The structure elucidation of isolated compound was based on 1D NMR ({sup 1}H-NMR and {sup 13}C-NMR) and 2D NMR (HMBC). The cytotoxicity of methanol extract and compound 1 against murine leukemia P-388 cells examined through MTT assay showed IC{sub 50} value of 60.04 μg/mL and 5.40 μg/mL, respectively.

  13. A flavone derivative from Sesbania sesban leaves and its cytotoxicity against murine leukemia P-388 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dianhar, Hanhan; Syah, Yana Maolana, E-mail: liadewi@chem.itb.ac.id; Mujahidin, Didin; Hakim, Euis Holisotan, E-mail: liadewi@chem.itb.ac.id; Juliawaty, Lia Dewi, E-mail: liadewi@chem.itb.ac.id [Natural Product Chemistry Research Group, Organic Chemistry Division, Program Study of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganeca 10, Bandung 40132 (Indonesia)

    2014-03-24

    Sesbania sesban, locally named as Jayanti, is one of Indonesia plants belonging to Fabaceae family. This species is traditionally used by Indonesian people to cure digestive disorders, fever, or headache. Jayanti can grow well in tropical to subtropical region, such as in Asia and Africa. Based on literature, qualitative analysis of the methanol extract of leaves of S. sesban showed that it contained flavonoids, alkaloids, saponins and glycosides. In addition, the activity assay of extracts of different tissues of this species showed antitumor, antimalarial, and antidiabetic activityies (leaves and seed extracts), antioxidants (flower extract), and analgesic (wood extract). Though the extracts of S. sesban parts showed interesting activities, chemical study of those extracts have not been widely reported. Therefore, the objective of this research was to isolate the secondary metabolites from methanol extract of leaves of S. sesban and to determine their cytotoxicity against murine leukemia P-388 cells. One compound has been obtained and identified as 3-hydroxy-4',7-dimethoxyflavone (1), a new isolated compound from nature. This compound was obtained through separation of methanol extract using various chromatographic techniques, such as vacuum liquid chromatography and radial chromatography. The structure elucidation of isolated compound was based on 1D NMR ({sup 1}H-NMR and {sup 13}C-NMR) and 2D NMR (HMBC). The cytotoxicity of methanol extract and compound 1 against murine leukemia P-388 cells examined through MTT assay showed IC{sub 50} value of 60.04 μg/mL and 5.40 μg/mL, respectively.

  14. A flavone derivative from Sesbania sesban leaves and its cytotoxicity against murine leukemia P-388 cells

    Science.gov (United States)

    Dianhar, Hanhan; Syah, Yana Maolana; Mujahidin, Didin; Hakim, Euis Holisotan; Juliawaty, Lia Dewi

    2014-03-01

    Sesbania sesban, locally named as Jayanti, is one of Indonesia plants belonging to Fabaceae family. This species is traditionally used by Indonesian people to cure digestive disorders, fever, or headache. Jayanti can grow well in tropical to subtropical region, such as in Asia and Africa. Based on literature, qualitative analysis of the methanol extract of leaves of S. sesban showed that it contained flavonoids, alkaloids, saponins and glycosides. In addition, the activity assay of extracts of different tissues of this species showed antitumor, antimalarial, and antidiabetic activityies (leaves and seed extracts), antioxidants (flower extract), and analgesic (wood extract). Though the extracts of S. sesban parts showed interesting activities, chemical study of those extracts have not been widely reported. Therefore, the objective of this research was to isolate the secondary metabolites from methanol extract of leaves of S. sesban and to determine their cytotoxicity against murine leukemia P-388 cells. One compound has been obtained and identified as 3-hydroxy-4',7-dimethoxyflavone (1), a new isolated compound from nature. This compound was obtained through separation of methanol extract using various chromatographic techniques, such as vacuum liquid chromatography and radial chromatography. The structure elucidation of isolated compound was based on 1D NMR (1H-NMR and 13C-NMR) and 2D NMR (HMBC). The cytotoxicity of methanol extract and compound 1 against murine leukemia P-388 cells examined through MTT assay showed IC50 value of 60.04 μg/mL and 5.40 μg/mL, respectively.

  15. A flavone derivative from Sesbania sesban leaves and its cytotoxicity against murine leukemia P-388 cells

    International Nuclear Information System (INIS)

    Dianhar, Hanhan; Syah, Yana Maolana; Mujahidin, Didin; Hakim, Euis Holisotan; Juliawaty, Lia Dewi

    2014-01-01

    Sesbania sesban, locally named as Jayanti, is one of Indonesia plants belonging to Fabaceae family. This species is traditionally used by Indonesian people to cure digestive disorders, fever, or headache. Jayanti can grow well in tropical to subtropical region, such as in Asia and Africa. Based on literature, qualitative analysis of the methanol extract of leaves of S. sesban showed that it contained flavonoids, alkaloids, saponins and glycosides. In addition, the activity assay of extracts of different tissues of this species showed antitumor, antimalarial, and antidiabetic activityies (leaves and seed extracts), antioxidants (flower extract), and analgesic (wood extract). Though the extracts of S. sesban parts showed interesting activities, chemical study of those extracts have not been widely reported. Therefore, the objective of this research was to isolate the secondary metabolites from methanol extract of leaves of S. sesban and to determine their cytotoxicity against murine leukemia P-388 cells. One compound has been obtained and identified as 3-hydroxy-4',7-dimethoxyflavone (1), a new isolated compound from nature. This compound was obtained through separation of methanol extract using various chromatographic techniques, such as vacuum liquid chromatography and radial chromatography. The structure elucidation of isolated compound was based on 1D NMR ( 1 H-NMR and 13 C-NMR) and 2D NMR (HMBC). The cytotoxicity of methanol extract and compound 1 against murine leukemia P-388 cells examined through MTT assay showed IC 50 value of 60.04 μg/mL and 5.40 μg/mL, respectively

  16. Vitamins C and K3: A Powerful Redox System for Sensitizing Leukemia Lymphocytes to Everolimus and Barasertib.

    Science.gov (United States)

    Ivanova, Donika; Zhelev, Zhivko; Lazarova, Dessislava; Getsov, Plamen; Bakalova, Rumiana; Aoki, Ichio

    2018-03-01

    Recent studies provided convincing evidence for the anticancer activity of combined application of vitamin C and pro-vitamin K3 (menadione). The molecular pathways underlying this process are still not well established. The present study aimed to investigate the effect of the combination of vitamin C plus pro-vitamin K3 on the redox status of leukemia and normal lymphocytes, as well as their sensitizing effect for a variety of anticancer drugs. Cytotoxicity of the substances was analyzed by trypan blue staining and automated counting of live and dead cells. Apoptosis was analyzed by fluorescein isothiocyanate-annexin V test. Oxidative stress was evaluated by the intracellular levels of reactive oxygen and nitrogen species and protein-carbonyl products. Combined administration of 300 μM vitamin C plus 3 μM pro-vitamin K3 reduced the viability of leukemia lymphocytes by ~20%, but did not influence the viability of normal lymphocytes. All combinations of anticancer drug plus vitamins C and K3 were characterized by synergistic cytotoxicity towards Jurkat cells, compared to cells treated with drug alone for 24 h. In the case of barasertib and everolimus, this synergistic cytotoxicity increased within 72 hours. It was accompanied by strong induction of apoptosis, but a reduction of level of hydroperoxides and moderately increased protein-carbonyl products in leukemia cells. Leukemia lymphocytes were more sensitive to combined administration of anticancer drug (everolimus or barasertib) plus vitamins C and K3, compared to normal lymphocytes. The combination of vitamin C plus K3 seems to be a powerful redox system that could specifically influence redox homeostasis of leukemia cells and sensitize them to conventional chemotherapy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. 6-Thioguanine Reactivates Epigenetically Silenced Genes in Acute Lymphoblastic Leukemia Cells by Facilitating Proteasome-mediated Degradation of DNMT1

    OpenAIRE

    Yuan, Bifeng; Zhang, Jing; Wang, Hongxia; Xiong, Lei; Cai, Qian; Wang, Tina; Jacobsen, Steven; Pradhan, Sriharsa; Wang, Yinsheng

    2011-01-01

    Thiopurines including 6-thioguanine (SG), 6-mercaptopurine and azathioprine are effective anticancer agents with remarkable success in clinical practice, especially in effective treatment of acute lymphoblastic leukemia (ALL). SG is understood to act as a DNA hypomethylating agent in ALL cells, however, the underlying mechanism leading to global cytosine demethylation remains unclear. Here we report that SG treatment results in reactivation of epigenetically silenced genes in T leukemia cells...

  18. Immunogenicity moderation effect of interleukin-24 on myelogenous leukemia cells.

    Science.gov (United States)

    Yu, Xin; Miao, Jingcheng; Xia, Wei; Gu, Zong-Jiang

    2018-04-01

    Previous studies have shown that interleukin-24 (IL-24) has tumor-suppressing activity by multiple pathways. However, the immunogenicity moderation effect of IL-24 on malignant cells has not been explored extensively. In this study, we investigated the role of IL-24 in immunogenicity modulation of the myelogenous leukemia cells. Data show that myelogenous leukemia cells express low levels of immunogenicity molecules. Treatment with IL-24 could enhance leukemia cell immunogenicity, predominantly regulate leukemia cells to produce immune-associated cytokines, and improve the cytotoxic sensitivity of these cells to immune effector cells. IL-24 expression could retard transplanted leukemia cell tumor growth in vivo in athymic nude mice. Moreover, IL-24 had marked effects on downregulating the expression of angiogenesis-related proteins vascular endothelial growth factor, cluster of differentiation (CD) 31, CD34, collagen IV and metastasis-related factors CD147, membrane type-1 matrix metalloproteinase (MMP), and MMP-2 and MMP-9 in transplanted tumors. These findings indicated novel functions of this antitumor gene and characterized IL-24 as a promising agent for further clinical trial for hematologic malignancy immunotherapy.

  19. Nyctanthes arbortristis mediated synthesis of silver nanoparticles: Cytotoxicity assay against THP-1 human leukemia cell lines

    Science.gov (United States)

    Kumari, Priti; Kumari, Niraj; Jha, Anal K.; Singh, K. P.; Prasad, K.

    2018-05-01

    Green synthesis, characterizations and applications of nanoparticles have become an important branch of nanotechnology now a day. In this paper, green synthesis of silver nanoparticles (AgNPs) using the aqueous extract of Nyctanthes arbortristis as a reducing and stabilizing agent, has been discussed. Present synthetic method is very handy, cost-effective and reproducible. Formation of AgNPs was characterized by X-ray diffraction, dynamic light scattering, scanning electron microscopy and UV-visible spectroscopy techniques. The phytochemicals responsible for nano-transformation were principally flavonoids, phenols and glycosides present in the leaves. Further, the dose dependent cytotoxicity assay of biosynthesized AgNPs against THP-1 human leukemia cell lines showed the encouraging results.

  20. Treatment of Aggressive NK-Cell Leukemia

    DEFF Research Database (Denmark)

    Boysen, Anders Kindberg; Jensen, Paw; Johansen, Preben

    2011-01-01

    Aggressive NK-cell leukemia is a rare malignancy with neoplastic proliferation of natural killer cells. It often presents with constitutional symptoms, a rapid declining clinical course, and a poor prognosis with a median survival of a few months. The disease is usually resistant to cytotoxic...... literature concerning treatment of aggressive NK-cell leukemia....

  1. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia.

    Science.gov (United States)

    Zhou, Qing; Munger, Meghan E; Highfill, Steven L; Tolar, Jakub; Weigel, Brenda J; Riddle, Megan; Sharpe, Arlene H; Vallera, Daniel A; Azuma, Miyuki; Levine, Bruce L; June, Carl H; Murphy, William J; Munn, David H; Blazar, Bruce R

    2010-10-07

    Tumor-induced immune defects can weaken host immune response and permit tumor cell growth. In a systemic model of murine acute myeloid leukemia (AML), tumor progression resulted in increased regulatory T cells (Treg) and elevation of program death-1 (PD-1) expression on CD8(+) cytotoxic T cells (CTLs) at the tumor site. PD-1 knockout mice were more resistant to AML despite the presence of similar percentage of Tregs compared with wild type. In vitro, intact Treg suppression of CD8(+) T-cell responses was dependent on PD-1 expression by T cells and Tregs and PD-L1 expression by antigen-presenting cells. In vivo, the function of adoptively transferred AML-reactive CTLs was reduced by AML-associated Tregs. Anti-PD-L1 monoclonal antibody treatment increased the proliferation and function of CTLs at tumor sites, reduced AML tumor burden, and resulted in long-term survivors. Treg depletion followed by PD-1/PD-L1 blockade showed superior efficacy for eradication of established AML. These data demonstrated that interaction between PD-1 and PD-L1 can facilitate Treg-induced suppression of T-effector cells and dampen the antitumor immune response. PD-1/PD-L1 blockade coupled with Treg depletion represents an important new approach that can be readily translated into the clinic to improve the therapeutic efficacy of adoptive AML-reactive CTLs in advanced AML disease.

  2. Ocaratuzumab, an Fc-engineered antibody demonstrates enhanced antibody-dependent cell-mediated cytotoxicity in chronic lymphocytic leukemia.

    Science.gov (United States)

    Cheney, Carolyn M; Stephens, Deborah M; Mo, Xiaokui; Rafiq, Sarwish; Butchar, Jonathan; Flynn, Joseph M; Jones, Jeffrey A; Maddocks, Kami; O'Reilly, Adrienne; Ramachandran, Abhijit; Tridandapani, Susheela; Muthusamy, Natarajan; Byrd, John C

    2014-01-01

    Chronic lymphocytic leukemia (CLL) is common in both developed and developing nations where the need for inexpensive and convenient administration of therapy is apparent. Ocaratuzumab is a novel Fc-engineered humanized IgG1 anti-CD20 monoclonal antibody (mAb) designed for effective antibody-dependent cell-mediated cytotoxicity (ADCC) at very low concentrations that may facilitate sub-cutaneous (vs. intravenous) dosing. Here, we report ocaratuzumab's potency against CLL cells. In vitro assessment of ocaratuzumab's direct cytotoxicity (DC), complement-dependent cytotoxicity (CDC), antibody-dependent cellular phagocytosis (ADCP), and ADCC was performed on CLL cells. Ocaratuzumab induced DC, CDC, and ADCP similarly to rituximab or ofatumumab (anti-CD20 mAbs). However, ocaratuzumab showed an advantage in NK cell-mediated ADCC over these antibodies. In allogeneic ADCC, [E:T (effector:target) ratios = 25:1, 12:1, 6:1], ocaratuzumab (10 µg/mL) improved ADCC by ~3-fold compared with rituximab or ofatumumab (P<0.001 all tested E:T ratios). Notably, the superiority of ocaratuzumab-induced ADCC was observed at low concentrations (0.1-10 ug/ml; P<0.03; allogeneic assays). In extended allogeneic ADCC E:T titration, ocaratuzumab (0.1 µg/mL) demonstrated 19.4% more cytotoxicity than rituximab (E:T = 0.38:1; P = 0.0066) and 21.5% more cytotoxicity than ofatumumab (E:T = 1.5:1; P = 0.0015). In autologous ADCC, ocaratuzumab (10 µg/mL) demonstrated ~1.5-fold increase in cytotoxicity compared with rituximab or ofatumumab at all E:T ratios tested (E:Ts = 25:1,12:1,6:1; all P<0.001). Obinutuzumab, a glyco-engineered anti-CD20 mAb, showed no improvement in ADCC activity compared with ocaratuzumab. The enhanced ADCC of ocaratuzumab suggests that it may be effective at low concentrations. If supported by clinical investigation, this feature could potentially allow for subcutaneous dosing at low doses that could expand the potential of administering chemoimmunotherapy in developing

  3. Surface chemistry and cytotoxicity of reactively sputtered tantalum oxide films on NiTi plates

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, K. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Kolaj-Robin, O.; Belochapkine, S.; Laffir, F. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Gandhi, A.A. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Tofail, S.A.M., E-mail: tofail.syed@ul.ie [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland)

    2015-08-31

    NiTi, an equiatomic alloy containing nickel and titanium, exhibits unique properties such as shape memory effect and superelasticity. NiTi also forms a spontaneous protective titanium dioxide (TiO{sub 2}) layer that allows its use in biomedical applications. Despite the widely perceived biocompatibility there remain some concerns about the sustainability of the alloy's biocompatibility due to the defects in the TiO{sub 2} protective layer and the presence of high amount of sub-surface Ni, which can give allergic reactions. Many surface treatments have been investigated to try to improve both the corrosion resistance and biocompatibility of this layer. For such purposes, we have sputter deposited tantalum (Ta) oxide thin films onto the surface of the NiTi alloy. Despite being one of the promising metals for biomedical applications, Ta, and its various oxides and their interactions with cells have received relatively less attention. The oxidation chemistry, crystal structure, morphology and biocompatibility of these films have been investigated. In general, reactive sputtering especially in the presence of a low oxygen mixture yields a thicker film with better control of the film quality. The sputtering power influenced the surface oxidation states of Ta. Both microscopic and quantitative cytotoxicity measurements show that Ta films on NiTi are biocompatible with little to no variation in cytotoxic response when the surface oxidation state of Ta changes. - Highlights: • Reactive sputtering in low oxygen mixture yields thicker better quality films. • Sputtering power influenced surface oxidation states of Ta. • Cytotoxicity measurements show Ta films on NiTi are biocompatible. • Little to no variation in cytotoxic response when oxidation state changes.

  4. ent-Jungermannenone C Triggers Reactive Oxygen Species-Dependent Cell Differentiation in Leukemia Cells.

    Science.gov (United States)

    Yue, Zongwei; Xiao, Xinhua; Wu, Jinbao; Zhou, Xiaozhou; Liu, Weilong; Liu, Yaxi; Li, Houhua; Chen, Guoqiang; Wu, Yingli; Lei, Xiaoguang

    2018-02-23

    Acute myeloid leukemia (AML) is a hematologic malignancy that is characterized by clonal proliferation of myeloid blasts. Despite the progress that has been made in the treatment of various malignant hematopoietic diseases, the effective treatment of AML remains very challenging. Differentiation therapy has emerged as a promising approach for leukemia treatment, and new and effective chemical agents to trigger the differentiation of AML cells, especially drug-resistant cells, are urgently required. Herein, the natural product jungermannenone C, a tetracyclic diterpenoid isolated from liverworts, is reported to induce cell differentiation in AML cells. Interestingly, the unnatural enantiomer of jungermannenone C (1) was found to be more potent than jungermannenone C in inducing cell differentiation. Furthermore, compound 1 targets peroxiredoxins I and II by selectively binding to the conserved cysteine residues and leads to cellular reactive oxygen species accumulation. Accordingly, ent-jungermannenone C (1) shows potential for further investigation as an effective differentiation therapy against AML.

  5. Cytotoxic effect of betulinic acid and betulinic acid acetate isolated ...

    African Journals Online (AJOL)

    Cytotoxic effect of betulinic acid and betulinic acid acetate isolated from Melaleuca cajuput on human myeloid leukemia (HL-60) cell line. ... The cytotoxic effect of betulinic acid (BA), isolated from Melaleuca cajuput a Malaysian plant and its four synthetic derivatives were tested for their cytotoxicity in various cell line or ...

  6. Cytotoxicity of anthraquinones from the roots of Pentas schimperi towards multi-factorial drug-resistant cancer cells.

    Science.gov (United States)

    Kuete, Victor; Donfack, Arno R Nanfack; Mbaveng, Armelle T; Zeino, Maen; Tane, Pierre; Efferth, Thomas

    2015-08-01

    Multidrug resistance in cancer represents a major problem in chemotherapy. The present study was designed to assess the cytotoxicity of anthraquinones from Pentas schimperi, namely damnacanthal (1), damnacanthol (2), 3-hydroxy-2-hydroxymethyl anthraquinone (3) and schimperiquinone B (4) against nine drug-sensitive and multidrug resistant (MDR) cancer cell lines. The resazurin reduction assay was used to evaluate the cytotoxicity of the above compounds, whilst caspase-Glo assay was used to detect the activation of caspases enzymes by compounds 1 and 2. Cell cycle, mitochondrial membrane potential (MMP) and levels of reactive oxygen species were all analyzed via flow cytometry. Anthraquinones 1 and 2 displayed cytotoxic effects with IC50 values below 81 μM on all the nine tested cancer cell lines whilst 3 and 4 displayed selective activities. The recorded IC50 values for compounds 1 and 2 ranged from 3.12 μM and 12.18 μM (towards leukemia CCRF-CEM cells) and from 30.32 μM and 80.11 μM (towards gliobastoma U87MG.ΔEGFR cells) respectively, and from 0.20 μM (against CCRF-CEM cells) to 195.12 μM (against CEM/ADR5000 cells) for doxorubicin. Compounds 1 and 2 induced apoptosis in CCRF-CEM leukemia cells, mediated by the disruption of the MMP and increase in ROS production. Anthraquinones from Pentas schimperi and mostly 1 and 2 are potential cytotoxic natural products that deserve more investigations to develop novel antineoplastic drugs against multifactorial drug resistant cancers.

  7. PaDef defensin from avocado (Persea americana var. drymifolia) is cytotoxic to K562 chronic myeloid leukemia cells through extrinsic apoptosis.

    Science.gov (United States)

    Flores-Alvarez, Luis José; Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2018-06-01

    Plant defensins, a group of antimicrobial peptides, show selective cytotoxicity toward cancer cells. However, their mechanisms of action remain poorly understood. Here, we evaluated the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on K562 chronic myeloid leukemia cells and analyzed the pathway involved in the induction of cell death. The defensin PaDef was not cytotoxic against human PBMCs; however, it was cytotoxic for K562 cell line (IC 50  = 97.3 μg/ml) activating apoptosis at 12 h. PaDef did not affect the mitochondrial membrane potential (ΔΨm), neither the transmembranal potential or the release of intracellular calcium. Also, PaDef induced gene expression of caspase 8 (∼2 fold), TNF-α (∼4 fold) and TNFR1 (∼10 fold). In addition, the activation of caspase 8 was detected at 24 h, whereas caspase 9 activity was not modified, suggesting that the extrinsic apoptosis pathway could be activated. In conclusion, PaDef induces apoptosis on K562 cells, which is related to the activation of caspase 8 and involves the participation of TNF-α, which is a novel property for a plant defensin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. IL-15 improves the cytotoxicity of cytokine-induced killer cells against leukemia cells by upregulating CD3+CD56+ cells and downregulating regulatory T cells as well as IL-35.

    Science.gov (United States)

    Tao, Qianshan; Chen, Tianping; Tao, Lili; Wang, Huiping; Pan, Ying; Xiong, Shudao; Zhai, Zhimin

    2013-01-01

    Cytokine-induced killer (CIK) cells are usually generated from peripheral blood mononuclear cells with the stimulation of IL-2 in vitro. Unlike the conventional IL-2-stimulated CIK cells (IL-2-CIK cells), we investigated the characteristics and potential mechanism of IL-15-stimulated CIK cells (IL-15-CIK cells) in this study. Compared with IL-2-CIK cells, the percentage of CD3CD56 cells was significantly increased in IL-15-CIK cells, but the expression of regulatory T (Treg) cells and IL-35 was significantly decreased in IL-15-CIK cells. Meanwhile, the in vitro cytotoxicity against human myeloid leukemia cells K562 of IL-15-CIK cells was significantly augmented compared with IL-2-CIK cells. These data suggest that IL-15 may improve the cytotoxicity of CIK cells against leukemia cells by upregulating CD3CD56 cells and downregulating Treg cells and IL-35.

  9. The p53-reactivating small-molecule RITA enhances cisplatin-induced cytotoxicity and apoptosis in head and neck cancer.

    Science.gov (United States)

    Roh, Jong-Lyel; Ko, Jung Ho; Moon, Soo Jin; Ryu, Chang Hwan; Choi, Jun Young; Koch, Wayne M

    2012-12-01

    We evaluated whether the restoration of p53 function by the p53-reactivating small molecule RITA (reactivation of p53 and induction of tumor cell apoptosis enhances cisplatin-induced cytotoxicity and apoptosis in head-and-neck cancer (HNC). RITA induced prominent accumulation and reactivation of p53 in a wild-type TP53-bearing HNC cell line. RITA showed maximal growth suppression in tumor cells showing MDM2-dependent p53 degradation. RITA promoted apoptosis in association with upregulation of p21, BAX, and cleaved caspase-3; notably, the apoptotic response was blocked by pifithrin-α, demonstrating its p53 dependence. With increasing concentrations, RITA strongly induced apoptosis rather than G2-phase arrest. In combination therapy, RITA enhanced cisplatin-induced growth inhibition and apoptosis of HNC cells invitro and in vivo. Our data suggest that the restoration of p53 tumor-suppressive function by RITA enhances the cytotoxicity and apoptosis of cisplatin, an action that may offer an attractive strategy for treating HNC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Bovine leukemia virus reduces anti-viral cytokine activities and NK cytotoxicity by inducing TGF-β secretion from regulatory T cells.

    Science.gov (United States)

    Ohira, Kosuke; Nakahara, Ayako; Konnai, Satoru; Okagawa, Tomohiro; Nishimori, Asami; Maekawa, Naoya; Ikebuchi, Ryoyo; Kohara, Junko; Murata, Shiro; Ohashi, Kazuhiko

    2016-03-01

    CD4(+)CD25(high)Foxp3(+) T cells suppress excess immune responses that lead to autoimmune and/or inflammatory diseases, and maintain host immune homeostasis. However, CD4(+)CD25(high)Foxp3(+) T cells reportedly contribute to disease progression by over suppressing immune responses in some chronic infections. In this study, kinetic and functional analyses of CD4(+)CD25(high)Foxp3(+) T cells were performed in cattle with bovine leukemia virus (BLV) infections, which have reported immunosuppressive characteristics. In initial experiments, production of the Th1 cytokines IFN-γ and TNF-α was reduced in BLV-infected cattle compared with uninfected cattle, and numbers of IFN-γ or TNF-α producing CD4(+) T cells decreased with disease progression. In contrast, IFN-γ production by NK cells was inversely correlated with BLV proviral loads in infected cattle. Additionally, during persistent lymphocytosis disease stages, NK cytotoxicity was depressed as indicated by low expression of the cytolytic protein perforin. Concomitantly, total CD4(+)CD25(high)Foxp3(+) T cell numbers and percentages of TGF-β(+) cells were increased, suggesting that TGF-β plays a role in the functional declines of CD4(+) T cells and NK cells. In further experiments, recombinant bovine TGF-β suppressed IFN-γ and TNF-α production by CD4(+) T cells and NK cytotoxicity in cultured cells. These data suggest that TGF-β from CD4(+)CD25(high)Foxp3(+) T cells is immunosuppressive and contributes to disease progression and the development of opportunistic infections during BLV infection.

  11. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Pierre Sujobert

    2015-06-01

    Full Text Available AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2α/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers.

  12. Molecular cytotoxic mechanisms of anticancer hydroxychalcones.

    Science.gov (United States)

    Sabzevari, Omid; Galati, Giuseppe; Moridani, Majid Y; Siraki, Arno; O'Brien, Peter J

    2004-06-30

    Chalcones are being considered as anticancer agents as they are natural compounds that are particularly cytotoxic towards K562 leukemia or melanoma cells. In this study, we have investigated phloretin, isoliquiritigenin, and 10 other hydroxylated chalcones for their cytotoxic mechanisms towards isolated rat hepatocytes. All hydroxychalcones partly depleted hepatocyte GSH and oxidized GSH to GSSG. These chalcones also caused a collapse of mitochondrial membrane potential and increased oxygen uptake. Furthermore, glycolytic or citric acid cycle substrates prevented cytotoxicity and mitochondrial membrane potential collapse. The highest pKa chalcones were the most effective at collapsing the mitochondrial membrane potential which suggests that the cytotoxic activity of hydroxychalcones are likely because of their ability to uncouple mitochondria.

  13. Leukemia Associated Antigens: Their Dual Role as Biomarkers and Immunotherapeutic Targets for Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Michael Schmitt

    2007-01-01

    Full Text Available Leukemia associated antigens (LAAs are being increasingly identified by methods such as cytotoxic T-lymphocyte (CTL cloning, serological analysis of recombinant cDNA expression libraries (SEREX and mass spectrometry (MS. In additional, large scale screening techniques such as microarray, single nucleotide polymorphisms (SNPs, serial analysis of gene expression (SAGE and 2-dimensional gel electrophoresis (2-DE have expanded our understanding of the role that tumor antigens play in the biological processes which are perturbed in acute myeloid leukemia (AML. It has become increasingly apparent that these antigens play a dual role, not only as targets for immunotherapy, but also as biomarkers of disease state, stage, response to treatment and survival. We need biomarkers to enable the identification of the patients who are most likely to benefit from specific treatments (conventional and/or novel and to help clinicians and scientists improve clinical end points and treatment design. Here we describe the LAAs identified in AML, to date, which have already been shown to play a dual role as biomarkers of AML disease.Abbreviations: AML: acute myeloid leukemia; APL: acute promyelocytic leukemia; ATRA: all-trans-retinoic acid; B-CLL: B-cell chronic lymphocytic leukemia; CT: cancer-testis; CTL: cytotoxic T-lymphocyte; FAB: French-American-British; HI: hypusination inhibitors; HSP: heat shock protein; ITD: internal tandem duplication; LAA: leukemia associated antigen; MDS: myelodysplastic syndrome; MGEA6: meningioma antigen 6; MPD: myeloproliferative disease; MS: mass spectrometry; NK: natural killer; PRAME: preferentially expressed antigen of melanoma; PRTN3: proteinase 3; RAGE-1: renal antigen 1; RHAMM: receptor for hyaluronic acid-mediated motility; RQ-PCR: real-time PCR; SAGE: serial analysis of gene expression; SCT: stem cell transplant; SEREX: serological analysis of recombinant cDNA expression libraries; SNPs: single nucleotide polymorphisms; UPD

  14. Leukemia

    Science.gov (United States)

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  15. Cytotoxicity of Endoperoxides from the Caribbean Sponge Plakortis halichondrioides towards Sensitive and Multidrug-Resistant Leukemia Cells: Acids vs. Esters Activity Evaluation

    Directory of Open Access Journals (Sweden)

    Tanja Schirmeister

    2017-03-01

    Full Text Available The 6-epimer of the plakortide H acid (1, along with the endoperoxides plakortide E (2, plakortin (3, and dihydroplakortin (4 have been isolated from a sample of the Caribbean sponge Plakortis halichondrioides. To perform a comparative study on the cytotoxicity towards the drug-sensitive leukemia CCRF-CEM cell line and its multi-drug resistant subline CEM/ADR5000, the acid of plakortin, namely plakortic acid (5, as well as the esters plakortide E methyl ester (6 and 6-epi-plakortide H (7 were synthesized by hydrolysis and Steglich esterification, respectively. The data obtained showed that the acids (1, 2, 5 exhibited potent cytotoxicity towards both cell lines, whereas the esters showed no activity (6, 7 or weaker activity (3, 4 compared to their corresponding acids. Plakortic acid (5 was the most promising derivative with half maximal inhibitory concentration (IC50 values of ca. 0.20 µM for both cell lines.

  16. Suppression of NRF2–ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells

    International Nuclear Information System (INIS)

    Peng, Hui; Wang, Huihui; Xue, Peng; Hou, Yongyong; Dong, Jian; Zhou, Tong; Qu, Weidong; Peng, Shuangqing; Li, Jin; Carmichael, Paul L.; Nelson, Bud; Clewell, Rebecca; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2016-01-01

    Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the antioxidant response element (ARE)-dependent transcription, plays a pivotal role in chemical detoxification in normal and tumor cells. Consistent with previous findings that NRF2–ARE contributes to chemotherapeutic resistance of cancer cells, we found that stable knockdown of NRF2 by lentiviral shRNA in human acute monocytic leukemia (AML) THP-1 cells enhanced the cytotoxicity of several chemotherapeutic agents, including arsenic trioxide (As 2 O 3 ), etoposide and doxorubicin. Using an ARE-luciferase reporter expressed in several human and mouse cells, we identified a set of compounds, including isonicotinic acid amides, isoniazid and ethionamide, that inhibited NRF2–ARE activity. Treatment of THP-1 cells with ethionamide, for instance, significantly reduced mRNA expression of multiple ARE-driven genes under either basal or As 2 O 3 -challenged conditions. As determined by cell viability and cell cycle, suppression of NRF2–ARE by ethionamide also significantly enhanced susceptibility of THP-1 and U937 cells to As 2 O 3 -induced cytotoxicity. In THP-1 cells, the sensitizing effect of ethionamide on As 2 O 3 -induced cytotoxicity was highly dependent on NRF2. To our knowledge, the present study is the first to demonstrate that ethionamide suppresses NRF2–ARE signaling and disrupts the transcriptional network of the antioxidant response in AML cells, leading to sensitization to chemotherapeutic agents. - Highlights: • Identification of novel inhibitors of ARE-dependent transcription • Suppression of NRF2–ARE sensitizes THP-1 cells to chemotherapy. • Ethionamide suppresses ARE-dependent transcriptional activity. • Ethionamide and isoniazid increase the cytotoxicity of As 2 O 3 in AML cells. • Sensitization of THP-1 cells to As 2 O 3 toxicity by ethionamide is NRF2-dependent.

  17. Chromatogram Profiles and Cytotoxic Activity of Irradiated Mahkota Dewa (Phaleria Macrocarpa (Scheff.) Boerl) Leaves

    International Nuclear Information System (INIS)

    Katrin, E.; Winarno, H.; Selvie

    2011-01-01

    Gamma irradiation has been used by the industries for preservation of herbal medicine, but it has not been studied the effect of gamma irradiation on their efficacy, especially their bioactivity as anticancer substances. The purpose of this research was to study the effect of gamma irradiation on the mahkota dewa leaves which has been claimed to contain potent anticancer substances. Maceration of dried mahkota dewa leaves successively with n-hexane, ethyl acetate, and ethanol gave crude extracts which the ethyl acetate was the most cytotoxic extract against leukemia L1210 cells with an inhibition concentration fifty (IC 50 ) value of 10.3 μg/ml. Further separation of ethyl acetate extract by column chromatograph gave 7 fractions, and fraction 2 showed the most cytotoxic fraction exhibited the most cytotoxic extract against leukemia L1210 cells with an IC 50 value of 1.9 μg/ml. Since, the fraction 2 of ethyl acetate extract was the most potent fraction, the irradiated samples were treated with the same procedure as treatment of fraction 2 from control sample. Cytotoxic activity test of fractions 2 from irradiated samples showed that the cytotoxic activity decreased depending on increasing of irradiation dose. Gamma irradiation dose up to 7.5 kGy on mahkota dewa leaves could decreased the cytotoxic activity of fraction 2 as the most cytotoxic-potential fraction against leukemia L1210 cells, but decreasing the cytotoxic activity has not exceeded the limit of the fraction declared inactive. So that the irradiation dose up to 7.5 kGy can be used for decontamination of bacteria and fungus/yeast without eliminating the cytotoxic activity. Gamma irradiation also caused changes in the thin layer chromatograph (TLC) spots and HPLC chromatograms profiles of fraction 2 which was the most cytotoxic fraction in ethyl acetate extract of mahkota dewa leaves against leukemia L1210 cells. One of the main peaks (peak 1) on HPLC chromatograms decreased with increasing the

  18. Chromatogram Profiles and Cytotoxic Activity of Irradiated Mahkota Dewa (Phaleria Macrocarpa Scheff. Boerl Leaves

    Directory of Open Access Journals (Sweden)

    E. Katrin1

    2011-04-01

    Full Text Available Gamma irradiation has been used by the industries for preservation of herbal medicine, but it has not been studied the effect of gamma irradiation on their efficacy, especially their bioactivity as anticancer substances. The purpose of this research was to study the effect of gamma irradiation on the mahkota dewa leaves which has been claimed to contain potent anticancer substances. Maceration of dried mahkota dewa leaves successively with n-hexane, ethyl acetate, and ethanol gave crude extracts which the ethyl acetate was the most cytotoxic extract against leukemia L1210 cells with an inhibition concentration fifty (IC50 value of 10.3 µg/ml. Further separation of ethyl acetate extract by column chromatograph gave 7 fractions, and fraction 2 showed the most cytotoxic fraction exhibited the most cytotoxic extract against leukemia L1210 cells with an IC50 value of 1.9 µg/ml. Since, the fraction 2 of ethyl acetate extract was the most potent fraction, the irradiated samples were treated with the same procedure as treatment of fraction 2 from control sample. Cytotoxic activity test of fractions 2 from irradiated samples showed that the cytotoxic activity decreased depending on increasing of irradiation dose. Gamma irradiation dose up to 7.5 kGy on mahkota dewa leaves could decreased the cytotoxic activity of fraction 2 as the most cytotoxic-potential fraction against leukemia L1210 cells, but decreasing the cytotoxic activity has not exceeded the limit of the fraction declared inactive. So that the irradiation dose up to 7.5 kGy can be used for decontamination of bacteria and fungus/yeast without eliminating the cytotoxic activity. Gamma irradiation also caused changes in the thin layer chromatograph (TLC spots and HPLC chromatograms profiles of fraction 2 which was the most cytotoxic fraction in ethyl acetate extract of mahkota dewa leaves against leukemia L1210 cells. One of the main peaks (peak 1 on HPLC chromatograms decreased with increasing

  19. Zosuquidar restores drug sensitivity in P-glycoprotein expressing acute myeloid leukemia (AML)

    International Nuclear Information System (INIS)

    Tang, Ruoping; Faussat, Anne-Marie; Perrot, Jean-Yves; Marjanovic, Zora; Cohen, Simy; Storme, Thomas; Morjani, Hamid; Legrand, Ollivier; Marie, Jean-Pierre

    2008-01-01

    Chemotherapeutic drug efflux via the P-glycoprotein (P-gp) transporter encoded by the MDR1/ABCB1 gene is a significant cause of drug resistance in numerous malignancies, including acute leukemias, especially in older patients with acute myeloid leukemia (AML). Therefore, the P-gp modulators that block P-gp-mediated drug efflux have been developed, and used in combination with standard chemotherapy. In this paper, the capacity of zosuquidar, a specific P-gp modulator, to reverse chemoresistance was examined in both leukemia cell lines and primary AML blasts. The transporter protein expressions were analyzed by flow cytometry using their specific antibodies. The protein functionalities were assessed by the uptake of their fluorescence substrates in presence or absence their specific modulators. The drug cytotoxicity was evaluated by MTT test. Zosuquidar completely or partially restored drug sensitivity in all P-gp-expressing leukemia cell lines tested and enhanced the cytotoxicity of anthracyclines (daunorubicin, idarubicin, mitoxantrone) and gemtuzumab ozogamicin (Mylotarg) in primary AML blasts with active P-gp. In addition, P-gp inhibition by zosuquidar was found to be more potent than cyclosporine A in cells with highly active P-gp. These in vitro studies suggest that zosuquidar may be an effective adjunct to cytotoxic chemotherapy for AML patients whose blasts express P-gp, especially for older patients

  20. Non-natural and photo-reactive amino acids as biochemical probes of immune function.

    Directory of Open Access Journals (Sweden)

    Marta Gómez-Nuñez

    Full Text Available Wilms tumor protein (WT1 is a transcription factor selectively overexpressed in leukemias and cancers; clinical trials are underway that use altered WT1 peptide sequences as vaccines. Here we report a strategy to study peptide-MHC interactions by incorporating non-natural and photo-reactive amino acids into the sequence of WT1 peptides. Thirteen WT1 peptides sequences were synthesized with chemically modified amino acids (via fluorination and photo-reactive group additions at MHC and T cell receptor binding positions. Certain new non-natural peptide analogs could stabilize MHC class I molecules better than the native sequences and were also able to elicit specific T-cell responses and sometimes cytotoxicity to leukemia cells. Two photo-reactive peptides, also modified with a biotin handle for pull-down studies, formed covalent interactions with MHC molecules on live cells and provided kinetic data showing the rapid clearance of the peptide-MHC complex. Despite "infinite affinity" provided by the covalent peptide bonding to the MHC, immunogenicity was not enhanced by these peptides because the peptide presentation on the surface was dominated by catabolism of the complex and only a small percentage of peptide molecules covalently bound to the MHC molecules. This study shows that non-natural amino acids can be successfully incorporated into T cell epitopes to provide novel immunological, biochemical and kinetic information.

  1. Selective toxicity of persian gulf sea cucumber holothuria parva on human chronic lymphocytic leukemia b lymphocytes by direct mitochondrial targeting.

    Science.gov (United States)

    Salimi, Ahmad; Motallebi, Abbasali; Ayatollahi, Maryam; Seydi, Enayatollah; Mohseni, Ali Reza; Nazemi, Melika; Pourahmad, Jalal

    2017-04-01

    Natural products isolated from marine environment are well known for their pharmacodynamic potential in diversity of disease treatments such as cancer or inflammatory conditions. Sea cucumbers are one of the marine animals of the phylum Echinoderm. Many studies have shown that the sea cucumber contains antioxidants and anti-cancer compounds. Chronic lymphocytic leukemia (CLL) is a disease characterized by the relentless accumulation of CD5 + B lymphocytes. CLL is the most common leukemia in adults, about 25-30% of all leukemias. In this study B lymphocytes and their mitochondria (cancerous and non-cancerous) were obtained from peripheral blood of human subjects and B lymphocyte cytotoxicity assay, and caspase 3 activation along with mitochondrial upstream events of apoptosis signaling including reactive oxygen species (ROS) production, collapse of mitochondrial membrane potential (MMP) and mitochondrial swelling were determined following the addition of Holothuria parva extract to both cancerous and non-cancerous B lymphocytes and their mitochondria. Our in vitro finding showed that mitochondrial ROS formation, MMP collapse, and mitochondrial swelling and cytochrome c release were significantly (P < 0.05) increased after addition of different concentrations of H. parva only in cancerous BUT NOT normal non-cancerous mitochondria. Consistently, different concentrations of H. parva significantly (P < 0.05) increased cytotoxicity and caspase 3 activation only in cancerous BUT NOT normal non-cancerous B lymphocytes. These results showed that H. parva methanolic extract has a selective mitochondria mediated apoptotic effect on chronic lymphocytic leukemia B lymphocytes hence may be promising in the future anticancer drug development for treatment of CLL. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1158-1169, 2017. © 2016 Wiley Periodicals, Inc.

  2. Kinetin (N -furfuryladenine): Cytotoxicity against MCF-7 breast ...

    African Journals Online (AJOL)

    Jane

    2011-07-06

    Jul 6, 2011 ... The cytotoxicity effect of kinetin on MCF-7 breast cancer cell lines was ... Medium (DMEM) containing 10% FBS, 2 mM glutamine, 100 units/ml ..... apoptosis of human myeloid leukemia cells by cytokinins and cytokinin ...

  3. Cytotoxicity, Antiproliferative Effects, and Apoptosis Induction of Methanolic Extract of Cynometra cauliflora Linn. Whole Fruit on Human Promyelocytic Leukemia HL-60 Cells

    Directory of Open Access Journals (Sweden)

    T-Johari S. A. Tajudin

    2012-01-01

    Full Text Available Methanolic extract of Cynometra cauliflora whole fruit was assayed for cytotoxicity against the human promyelocytic leukemia HL-60 and the normal mouse fibroblast NIH/3T3 cell lines by using the MTT assay. The CD50 of the extract for 72 hours was 0.9 μg/mL whereas the value for the cytotoxic drug vincristine was 0.2 μg/mL. The viability of the NIH/3T3 cells was at 80.0% when treated at 15.0 μg/mL. The extract inhibited HL-60 cell proliferation with dose dependence. AO/PI staining of HL-60 cells treated with the extract revealed that majority of cells were in the apoptotic cell death mode. Flow cytometry analysis of HL-60 cells treated at CD50 of the extract showed that the early apoptotic cells were 31.0, 26.3 and 19.9% at 24, 48, and 72 hours treatment, respectively. The percentage of late apoptotic cells was increased from 62.0 at 24 hours to 64.1 and 70.2 at 48 and 72 hours, respectively. Meanwhile, percent of necrotic cells were 4.9, 6.6, and 8.5 at 24, 48, and 72 hours, respectively. This study has shown that the methanolic extract of C. cauliflora whole fruit was cytotoxic towards HL-60 cells and induced the cells into apoptotic cell death mode, but less cytotoxic towards NIH/3T3 cells.

  4. Quantification of newly produced B and T lymphocytes in untreated chronic lymphocytic leukemia patients

    Directory of Open Access Journals (Sweden)

    Caimi Luigi

    2010-11-01

    Full Text Available Abstract Background The immune defects occurring in chronic lymphocytic leukemia are responsible for the frequent occurrence of infections and autoimmune phenomena, and may be involved in the initiation and maintenance of the malignant clone. Here, we evaluated the quantitative defects of newly produced B and T lymphocytes. Methods The output of B and T lymphocytes from the production and maturation sites was analyzed in chronic lymphocytic leukemia patients and healthy controls by quantifying kappa-deleting recombination excision circles (KRECs and T-cell receptor excision circles (TRECs by a Real-Time PCR assay that simultaneously detects both targets. T-lymphocyte subsets were analyzed by six-color flow cytometric analysis. Data comparison was performed by two-sided Mann-Whitney test. Results KRECs level was reduced in untreated chronic lymphocytic leukemia patients studied at the very early stage of the disease, whereas the release of TRECs+ cells was preserved. Furthermore, the observed increase of CD4+ lymphocytes could be ascribed to the accumulation of CD4+ cells with effector memory phenotype. Conclusions The decreased number of newly produced B lymphocytes in these patients is likely related to a homeostatic mechanism by which the immune system balances the abnormal B-cell expansion. This feature may precede the profound defect of humoral immunity characterizing the later stages of the disease.

  5. on Lymphoblastic Leukemia Jurkat Cells

    African Journals Online (AJOL)

    human tumor cell line (Hela) by using MTT assay. [13]. In the present study, we have observed the cytotoxic effect of ethanolic extract of C. arvensis against Jurkat cells, a human lymphoblastic leukemia cell line, by using Trypan blue, MTS assay and FACS analysis. It was shown from the trypan blue exclusion assay that ...

  6. Myeloblastic and lymphoblastic markers in acute undifferentiated leukemia and chronic myelogenous leukemia in blast crisis.

    Science.gov (United States)

    Shumak, K H; Baker, M A; Taub, R N; Coleman, M S

    1980-11-01

    Blast cells were obtained from 17 patients with acute undifferentiated leukemia and 13 patients with chronic myelogenous leukemia in blast crisis. The blasts were tested with anti-i serum in cytotoxicity tests and with antisera to myeloblastic leukemia-associated antigens in immunofluorescence tests. The terminal deoxynucleotidyl transferase (TDT) content of the blasts was also measured. Lymphoblasts react strongly with anti-i, do not react with anti-myeloblast serum, and have high levels of TDT; myeloblasts react weakly with anti-i, do not react with anti-myeloblast serum, and have very low levels of TDT. Of the 17 patients with acute undifferentiated leukemia, there were six with blasts which reacted like lymphoblasts, six with blasts which reacted like myeloblasts, and five with blasts bearing different combinations of these lymphoblastic and myeloblastic markers. Eight of the 11 patients with lymphoblastic or mixed lymphoblastic-myeloblastic markers, but only one of the six with myeloblastic markers, achieved complete or partial remission in response to therapy. Thus, in acute undifferentiated leukemia, classification of blasts with these markers may be of prognostic value. Of the 13 patients with chronic myelogenous leukemia in blast crises, the markers were concordant (for myeloblasts) in only two cases. Three of the 13 patients had TDT-positive blasts, but the reactions of these cells with anti-i and with anti-myeloblast serum differed from those seen with lymphoblasts from patients with acute lymphoblastic leukemia. Although the cell involved in "lymphoid" blast crisis of chronic myelogenous leukemia is similar in many respects to that involved in acute lymphoblastic leukemia, these cells are not identical.

  7. Upregulation of adhesion molecules on leukemia targets improves the efficacy of cytotoxic T cells transduced with chimeric anti-CD19 receptor.

    Science.gov (United States)

    Laurin, David; Marin, Virna; Biagi, Ettore; Pizzitola, Irene; Agostoni, Valentina; Gallot, Géraldine; Vié, Henri; Jacob, Marie Christine; Chaperot, Laurence; Aspord, Caroline; Plumas, Joël

    2013-04-01

    T lymphocytes engineered to express chimeric antigen receptors (CARs) interact directly with cell surface molecules, bypassing MHC antigen presentation dependence. We generated human anti-CD19ζ CAR cytotoxic T lymphocytes and cytokine-induced killer cells and studied their sensitivity to the expression of adhesion molecules for the killing of primary B-lineage acute lymphoblastic leukemia (B-ALL) targets. Despite a very low basal expression of surface adhesion molecules, B-ALL blasts were lysed by the anti-CD19ζ-CAR transduced effectors as expected. We next investigated the regulatory role of adhesion molecules during CAR-mediated cytolysis. The blocking of these accessory molecules strongly limited the chimeric effector's cytotoxicity. Thereafter, B-ALL cells surface adhesion molecule level expression was induced by IFN-γ or by the combined use of CD40L and IL-4 and the cells were submitted to anti-CD19ζ-CAR transduced effectors lysis. Upregulation of adhesion molecules expression by blasts potentiated their killing. The improved cytotoxicity observed was dependent on target surface expression of adhesion molecules, particularly CD54. Taken together, these results indicate that adhesion molecules, and principally CD54, are involved in the efficiency of recognition by effector chimeric ζ. These observations have potential implications for the design of immunotherapy treatment approaches for hematological malignancies and tumors based on the adoption of CAR effector cells.

  8. Nrf2 activation ameliorates cytotoxic effects of arsenic trioxide in acute promyelocytic leukemia cells through increased glutathione levels and arsenic efflux from cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, Shoichi; Suzuki, Toshihiro; Koike, Shin [Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 (Japan); Yuan, Bo; Takagi, Norio [Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 (Japan); Ogasawara, Yuki, E-mail: yo@my-pharm.ac.jp [Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 (Japan)

    2016-08-15

    Carnosic acid (CA), a phenolic diterpene isolated from Rosmarinus officinalis, has been shown to activate nuclear transcription factor E2-related factor 2 (Nrf2), which plays a central role in cytoprotective responses to oxidative and electrophilic stress. Recently, the Nrf2-Kelch ECH associating protein 1 (Keap1) pathway has been associated with cancer drug resistance attributable to modulation of the expression and activation of antioxidant and detoxification enzymes. However, the exact mechanisms by which Nrf2 activation results in chemoresistance are insufficiently understood to date. This study investigated the mechanisms by which the cytotoxic effects of arsenic trioxide (ATO), an anticancer drug, were decreased in acute promyelocytic leukemia cells treated with CA, a typical activator of Nrf2 used to stimulate the Nrf2/Keap1 system. Our findings suggest that arsenic is non-enzymatically incorporated into NB4 cells and forms complexes that are dependent on intracellular glutathione (GSH) concentrations. In addition, the arsenic complexes are recognized as substrates by multidrug resistance proteins and subsequently excreted from the cells. Therefore, Nrf2-associated activation of the GSH biosynthetic pathway, followed by increased levels of intracellular GSH, are key mechanisms underlying accelerated arsenic efflux and attenuation of the cytotoxic effects of ATO. - Highlights: • Nrf2 activation attenuates the effect of arsenic trioxide to acute promyelocytic leukemia cells. • The sensitivity of arsenic trioxide to NB4 cells was dependent on efflux rate of arsenic. • Activation of the GSH biosynthesis is essential in Nrf2-regulated responses for arsenic efflux.

  9. Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Guoqiang, E-mail: zhougq1982@163.com; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying [Hebei University, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science (China)

    2016-05-15

    Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.

  10. Properties of murine leukemia viruses produced by leukemic cells established from NIH Swiss mice with radiation-induced leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Okumoto, Masaaki; Nishikawa, Ryosuke; Takamori, Yasuhiko; Iwai, Yoshiaki; Iwai, Mineko [Radiation Center of Osaka Prefecture, Sakai (Japan); Imai, Shunsuke; Morimoto, Junji; Tsubura, Yoshihiko

    1984-06-01

    Three leukemic cell lines, designated NIH-RL1, NIH-RL2 and NFS-RL1, were established from spleen and thymuses of NIH Swiss and NFS mice with radiation-induced leukemia. The culture fluids of these cell lines contained RNA-dependent DNA polymerase (RDDP) activities associated with particles of buoyant density of 1.15-1.17 (g/cm/sup 3/). The divalent cation reqirement of these enzymes was characteristic for that of murine leukemia viruses. In competition radioimmunoassay, a major core protein, p30, was detected in culture fluid of each leukemic cell line. Competition curves of viral p30 produced by these cell lines revealed that these viruses were very similar to those of xenotropic viruses of NZB mice. These viruses were undetectable both by XC plaque assay using SC-1 cells as an indicator cell, and by mink S/sup +/L/sup -/ focus induction assay. These viruses also lacked productive infectivity to mink lung cells (CCL-64), and were nononcogenic in syngeneic mice when the viruses were intrathymically inoculated.

  11. Suppression of NRF2–ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hui [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States); Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing (China); Wang, Huihui [School of Public Health, China Medical University, 77 Puhe Road, Shenyang North New Area, Shenyang (China); Xue, Peng [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States); Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Hou, Yongyong [School of Public Health, China Medical University, 77 Puhe Road, Shenyang North New Area, Shenyang (China); Dong, Jian [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States); Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan (China); Zhou, Tong [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States); Qu, Weidong [Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Peng, Shuangqing [Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing (China); Li, Jin; Carmichael, Paul L. [Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom); Nelson, Bud; Clewell, Rebecca; Zhang, Qiang; Andersen, Melvin E. [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States); Pi, Jingbo, E-mail: jpi@mail.cmu.edu.cn [School of Public Health, China Medical University, 77 Puhe Road, Shenyang North New Area, Shenyang (China); The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States)

    2016-02-01

    Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the antioxidant response element (ARE)-dependent transcription, plays a pivotal role in chemical detoxification in normal and tumor cells. Consistent with previous findings that NRF2–ARE contributes to chemotherapeutic resistance of cancer cells, we found that stable knockdown of NRF2 by lentiviral shRNA in human acute monocytic leukemia (AML) THP-1 cells enhanced the cytotoxicity of several chemotherapeutic agents, including arsenic trioxide (As{sub 2}O{sub 3}), etoposide and doxorubicin. Using an ARE-luciferase reporter expressed in several human and mouse cells, we identified a set of compounds, including isonicotinic acid amides, isoniazid and ethionamide, that inhibited NRF2–ARE activity. Treatment of THP-1 cells with ethionamide, for instance, significantly reduced mRNA expression of multiple ARE-driven genes under either basal or As{sub 2}O{sub 3}-challenged conditions. As determined by cell viability and cell cycle, suppression of NRF2–ARE by ethionamide also significantly enhanced susceptibility of THP-1 and U937 cells to As{sub 2}O{sub 3}-induced cytotoxicity. In THP-1 cells, the sensitizing effect of ethionamide on As{sub 2}O{sub 3}-induced cytotoxicity was highly dependent on NRF2. To our knowledge, the present study is the first to demonstrate that ethionamide suppresses NRF2–ARE signaling and disrupts the transcriptional network of the antioxidant response in AML cells, leading to sensitization to chemotherapeutic agents. - Highlights: • Identification of novel inhibitors of ARE-dependent transcription • Suppression of NRF2–ARE sensitizes THP-1 cells to chemotherapy. • Ethionamide suppresses ARE-dependent transcriptional activity. • Ethionamide and isoniazid increase the cytotoxicity of As{sub 2}O{sub 3} in AML cells. • Sensitization of THP-1 cells to As{sub 2}O{sub 3} toxicity by ethionamide is NRF2-dependent.

  12. Auger electron-emitting "1"1"1In-DTPA-NLS-CSL360 radioimmunoconjugates are cytotoxic to human acute myeloid leukemia (AML) cells displaying the CD123"+/CD131"− phenotype of leukemia stem cells

    International Nuclear Information System (INIS)

    Gao, Catherine; Leyton, Jeffrey V.; Schimmer, Aaron D.; Minden, Mark; Reilly, Raymond M.

    2016-01-01

    Chimeric IgG_1 monoclonal antibody CSL360 recognizes the CD123"+/CD131"− phenotype expressed by leukemic stem cells (LSC). Auger electron-emitting "1"1"1In-DTPA-NLS-CSL360 radioimmunoconjugates incorporating nuclear translocation sequence (NLS) peptides bound specifically to Raji cells transfected with CD123 and exhibited a K_D of 11 nmols/L in a competition receptor-binding assay using CD123-transfected CHO cells. "1"1"1In-DTPA-NLS-CSL360 was bound, internalized and transported to the nucleus of human AML-5 myeloid leukemia cells. The clonogenic survival of AML-5 cells was reduced by "1"1"1In-DTPA-NLS-CSL360 up to 3.7-fold. Isotype control "1"1"1In-DTPA-chIgG_1 was 2-fold less cytotoxic, and unlabeled CSL360, DTPA-NLS-CSL360 or free "1"1"1In acetate did not decrease cell survival. These results are promising for further evaluation of "1"1"1In-DTPA-NLS-CSL360 for Auger electron radioimmunotherapy of AML targeting the critical LSC subpopulation. - Highlights: • "1"1"1In-DTPA-NLS-CSL360 the CD123"+/CD131"− phenotype of leukemic stem cells (LSC). • "1"1"1In-DTPA-NLS-CSL360 was bound, internalized and imported into the nucleus of AML-5 leukemia cells. • "1"1"1In-DTPA-NLS-CSL360 reduced the clonogenic survival of AML-5 leukemia cells by 4-fold.

  13. Acute Lymphocytic Leukemia

    Science.gov (United States)

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...

  14. Acute Myeloid Leukemia

    Science.gov (United States)

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...

  15. Chronic Lymphocytic Leukemia

    Science.gov (United States)

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  16. Chronic Myeloid Leukemia

    Science.gov (United States)

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  17. Winery by-products: extraction optimization, phenolic composition and cytotoxic evaluation to act as a new source of scavenging of reactive oxygen species.

    Science.gov (United States)

    Melo, Priscilla Siqueira; Massarioli, Adna Prado; Denny, Carina; dos Santos, Luciana Ferracini; Franchin, Marcelo; Pereira, Giuliano Elias; Vieira, Thais Maria Ferreira de Souza; Rosalen, Pedro Luiz; de Alencar, Severino Matias

    2015-08-15

    Nearly 20 million tons of winery by-products, with many biological activities, are discarded each year in the world. The extraction of bioactive compounds from Chenin Blanc, Petit Verdot, and Syrah grape by-products, produced in the semi-arid region in Brazil, was optimized by a Central Composite Rotatable Design. The phenolic compounds profile, antioxidant capacity against synthetic free radicals (DPPH and ABTS), reactive oxygen species (ROS; peroxyl radical, superoxide radical, hypochlorous acid), cytotoxicity assay (MTT) and quantification of TNF-α production in RAW 264.7 cells were conducted. Gallic acid, syringic acid, procyanidins B1 and B2, catechin, epicatechin, epicatechin gallate, quercetin 3-β-d-glucoside, delfinidin 3-glucoside, peonidin 3-O-glucoside, and malvidin 3-glucoside were the main phenolic compounds identified. In general, rachis showed higher antioxidant capacity than pomace extract, especially for Chenin Blanc. All extracts showed low cytotoxicity against RAW 264.7 cells and Petit Verdot pomace suppressed TNF-α liberation in vitro. Therefore, these winery by-products can be considered good sources of bioactive compounds, with great potential for application in the food and pharmaceutical industries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Human T cell leukemia/lymphoma virus type I infection of a CD4+ proliferative/cytotoxic T cell clone progresses in at least two distinct phases based on changes in function and phenotype of the infected cells

    NARCIS (Netherlands)

    Yssel, H.; de Waal Malefyt, R.; Duc Dodon, M. D.; Blanchard, D.; Gazzolo, L.; de Vries, J. E.; Spits, H.

    1989-01-01

    The effect of human T cell leukemia/lymphoma virus type I (HTLV-I) infection on the function and the phenotype of a human proliferating/cytotoxic T cell clone, specific for tetanus toxin, was investigated. During the period after infection, two distinct phases were observed, based on growth

  19. Targeting Hsp90 by 17-AAG in leukemia cells: mechanisms for synergistic and antagonistic drug combinations with arsenic trioxide and Ara-C.

    Science.gov (United States)

    Pelicano, H; Carew, J S; McQueen, T J; Andreeff, M; Plunkett, W; Keating, M J; Huang, P

    2006-04-01

    17-Allylamino-17-demethoxygeldanamycin (17-AAG) is a new anticancer agent currently in clinical trials. The ability of 17-AAG to abrogate the function of heat-shock protein Hsp90 and modulate cellular sensitivity to anticancer agents has prompted recent research to use this compound in drug combination therapy. Here we report that 17-AAG has striking opposite effects on the activity of arsenic trioxide (ATO) and ara-C. Combination of 17-AAG with ATO exhibited a synergistic effect in leukemia cells, whereas coincubation of 17-AAG and ara-C showed antagonistic activity. Mechanistic studies revealed that ATO exerted cytotoxic action by reactive oxygen species generation, and activated Akt survival pathway. 17-AAG abrogated Akt activation and enhanced the activity of ATO. In contrast, treatment of leukemia cells with 17-AAG caused a G1 arrest, a decrease in DNA synthesis and reduced ara-C incorporation into DNA, leading to antagonism. The ability of 17-AAG to enhance the antileukemia activity of ATO was further demonstrated in primary leukemia cells isolated from patients with acute myeloid leukemia and chronic lymphocytic leukemia, including cells from refractory patients. Our data suggest that combination of 17-AAG and ATO may be an effective therapeutic regimen. Caution should be exercised in using 17-AAG together with ara-C, as their combination effects are schedule dependent.

  20. Cytotoxic potential and chromatogram profile of sarang semut tuber (Myrmecodia Pendans Merr. & Perry) after gamma irradiation

    International Nuclear Information System (INIS)

    Ermin Katrin Winarno; Susanto; Hendig Winarno; Siva Fauziah

    2015-01-01

    Sarang semut tuber (Myrmecodia pendans Merr. & Perry) has cytotoxic activity. Preservation efforts of sarang semut tuber was performed with gamma irradiation. The research purposed to study the effect of gamma on cytotoxic activity against leukemia L1210 cell lines and chromatogram profiles of sarang semut tuber (Myrmecodia pendans Merr. & Perry). The dried sarang semut tuber were gamma irradiated with a variety of doses of 5; 7.5; 10; and 15 kGy. The experiments were performed with two replicates for each dose. Then samples were macerated with solvent by gradient polarity with n-hexane, ethyl acetate, and ethanol. Extracts were tested against the leukemia L1210 cell lines. From the results obtained showed that the ethanol extract was the most active against leukemia L1210 cell lines (IC50 9.88 μg/ml) compared with n-heksan (IC50 23.44 μg/ml) and ethyl acetate extract (IC50 17.32 μg/ml). Ethanol extracts were fractionated by column chromatography, the result were obtained 7 fractions. Based on the cytotoxic activity test for each fraction, the fraction 1 had the highest activity (IC50 ≤ 3.23 μg/ml). The identifications of ethanol extract and fraction 1 by CLT-densitometry showed that the spots area increased and decreased after gamma irradiation. The chromatogram profile of fraction 1 showed that the major peak area decreased after irradiation. The maximum irradiation dose without damaging the cytotoxic activity of sarang semut tuber againts leukemia L1210 cell lines was 5 kGy. (author)

  1. HLA-DR-, CD33+, CD56+, CD16- myeloid/natural killer cell acute leukemia: a previously unrecognized form of acute leukemia potentially misdiagnosed as French-American-British acute myeloid leukemia-M3.

    Science.gov (United States)

    Scott, A A; Head, D R; Kopecky, K J; Appelbaum, F R; Theil, K S; Grever, M R; Chen, I M; Whittaker, M H; Griffith, B B; Licht, J D

    1994-07-01

    We have identified and characterized a previously unrecognized form of acute leukemia that shares features of both myeloid and natural killer (NK) cells. From a consecutive series of 350 cases of adult de novo acute myeloid leukemia (AML), we identified 20 cases (6%) with a unique immunophenotype: CD33+, CD56+, CD11a+, CD13lo, CD15lo, CD34+/-, HLA-DR-, CD16-. Multicolor flow cytometric assays confirmed the coexpression of myeloid (CD33, CD13, CD15) and NK cell-associated (CD56) antigens in each case, whereas reverse transcription polymerase chain reaction (RT-PCR) assays confirmed the identity of CD56 (neural cell adhesion molecule) in leukemic blasts. Although two cases expressed CD4, no case expressed CD2, CD3, or CD8 and no case showed clonal rearrangement of genes encoding the T-cell receptor (TCR beta, gamma, delta). Leukemic blasts in the majority of cases shared unique morphologic features (deeply invaginated nuclear membranes, scant cytoplasm with fine azurophilic granularity, and finely granular Sudan black B and myeloperoxidase cytochemical reactivity) that were remarkably similar to those of acute promyelocytic leukemia (APL); particularly the microgranular variant (FAB AML-M3v). However, all 20 cases lacked the t(15;17) and 17 cases tested lacked the promyelocytic/retinoic acid receptor alpha (RAR alpha) fusion transcript in RT-PCR assays; 12 cases had 46,XX or 46,XY karyotypes, whereas 2 cases had abnormalities of chromosome 17q: 1 with del(17)(q25) and the other with t(11;17)(q23;q21) and the promyelocytic leukemia zinc finger/RAR alpha fusion transcript. All cases tested (6/20), including the case with t(11;17), failed to differentiate in vitro in response to all-trans retinoic acid (ATRA), suggesting that these cases may account for some APLs that have not shown a clinical response to ATRA. Four of 6 cases tested showed functional NK cell-mediated cytotoxicity, suggesting a relationship between these unique CD33+, CD56+, CD16- acute leukemias and

  2. Adaptive immunity to leukemia is inhibited by cross-reactive induced regulatory T cells

    OpenAIRE

    Manlove, Luke S.; Berquam-Vrieze, Katherine E.; Pauken, Kristen E.; Williams, Richard T.; Jenkins, Marc K.; Farrar, Michael A.

    2015-01-01

    BCR-ABL+ acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific antigen that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL+ leukemia progression although ultimately this immune response fails. To address how BCR-ABL+ leukemia escapes immune surveillance, we developed a peptide: MHC-II tetramer that labels endogenous BCR-ABL-specific CD4+ T cell...

  3. Specific inhibition of cytotoxic memory cells produced against uv-induced tumors in uv-irradiation mice

    International Nuclear Information System (INIS)

    Thorn, R.M.

    1978-01-01

    Cytotoxic responses of uv-irradiated mice against syngeneic uv-induced tumors were measured by using a 51 Cr-release assay to determine if uv treatment induced a specific reduction of cytotoxic activity. The in vivo and in vitro primary responses against syngeneic tumors and allogeneic cells were unaffected, as was the ''memory'' response (in vivo stimulation, in vitro restimulation) against alloantigens. In contrast, the memory response of uv-treated mice against syngeneic, uv-induced tumors was consistently and significantly depressed. The cytotoxicity generated by tumor cell stimulation in vivo or in vitro was tumor-specific and T cell-dependent. Since the primary response against syngeneic uv-induced tumors produces apparently normal amounts of tumor-specific cytotoxic activity, uv-treated mice may not reject transplanted syngeneic tumors because of too few T effector memory cells. These results imply that, at least in this system, tumor rejection depends mostly on the secondary responses against tumor antigens and that at least one carcinogen can, indirectly, specifically regulate immune responses

  4. Synergistic cytotoxic action of vitamin C and vitamin K3.

    Science.gov (United States)

    Zhang, W; Negoro, T; Satoh, K; Jiang, Y; Hashimoto, K; Kikuchi, H; Nishikawa, H; Miyata, T; Yamamoto, Y; Nakano, K; Yasumoto, E; Nakayachi, T; Mineno, K; Satoh, T; Sakagami, H

    2001-01-01

    We investigated the combination effect of sodium ascorbate (vitamin C) and menadione (vitamin K3) on the viability of various cultured cells. Human oral squamous cell carcinoma (HSC-2, HSC-3) and human promyelocytic leukemia (HL-60) cells were more sensitive to these vitamins as compared to normal cells (human gingival fibroblast HGF, human periodontal ligament fibroblast HPLF, human pulp cell HPC). The combination of vitamin C and vitamin K3 produced synergistic cytotoxicity against all these 6 cell lines. Treatment with vitamin C or vitamin K3, or their combination, induced internucleosomal DNA fragmentation only in HL-60 cells, but not in the oral tumor cell lines (HSC-2, HSC-3, HSG). ESR spectroscopy showed that vitamins C and K3 produce radicals under alkaline conditions and that the combination of these two vitamins synergistically enhanced their respective radical intensities.

  5. Cytotoxicity of cardiotonic steroids in sensitive and multidrug-resistant leukemia cells and the link with Na(+)/K(+)-ATPase.

    Science.gov (United States)

    Zeino, Maen; Brenk, Ruth; Gruber, Lisa; Zehl, Martin; Urban, Ernst; Kopp, Brigitte; Efferth, Thomas

    2015-06-01

    Cardiotonic steroids have long been in clinical use for treatment of heart failure and are now emerging as promising agents in various diseases, especially cancer. Their main target is Na(+)/K(+)-ATPase, a membrane protein involved in cellular ion homeostasis. Na(+)/K(+)-ATPase has been implicated in cancer biology by affecting several cellular events and signaling pathways in both sensitive and drug-resistant cancer cells. Hence, we investigated the cytotoxic activities of 66 cardiotonic steroids and cardiotonic steroid derivatives in sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells. Data were then subjected to quantitative structure-activity relationship analysis (QSAR) and molecular docking into Na(+)/K(+)-ATPase, which both indicated a possible differential expression of the pump in the mentioned cell lines. This finding was confirmed by western blotting, intracellular potassium labeling and next generation sequencing which showed that Na(+)/K(+)-ATPase was less expressed in multidrug-resistant than in sensitive cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. PDL1 Signals through Conserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Maria Gato-Cañas

    2017-08-01

    Full Text Available PDL1 blockade produces remarkable clinical responses, thought to occur by T cell reactivation through prevention of PDL1-PD1 T cell inhibitory interactions. Here, we find that PDL1 cell-intrinsic signaling protects cancer cells from interferon (IFN cytotoxicity and accelerates tumor progression. PDL1 inhibited IFN signal transduction through a conserved class of sequence motifs that mediate crosstalk with IFN signaling. Abrogation of PDL1 expression or antibody-mediated PDL1 blockade strongly sensitized cancer cells to IFN cytotoxicity through a STAT3/caspase-7-dependent pathway. Moreover, somatic mutations found in human carcinomas within these PDL1 sequence motifs disrupted motif regulation, resulting in PDL1 molecules with enhanced protective activities from type I and type II IFN cytotoxicity. Overall, our results reveal a mode of action of PDL1 in cancer cells as a first line of defense against IFN cytotoxicity.

  7. Leukemia cutis in three children: clinical and immunohistochemical studies.

    Science.gov (United States)

    Koga, M; Furukawa, S

    1996-01-01

    We report 3 children with leukemia cutis observed at the initial diagnosis of systemic leukemia. Leukemia subtypes in the three children were congenital monocytic, acute undifferentiated, and acute monocytic, respectively. The patients were girls age 10 days, 14 years, and 11 months, respectively, at diagnosis. We describe the clinical features of the cases and the results of immunohistochemical studies on paraffin-embedded skin biopsy specimens. The skin lesions were tumors and areas of reddish purple erythema in the first child, pigmented erythema in the second, and bright red erythema in the first child, pigmented erythema in the second, and bright red erythema in the third. In the first two patients skin lesion biopsy specimens had dense leukemic infiltrates in the dermis with reactive T lymphocytes scattered among them. In the third patient, the infiltrating cells were almost all reactive T lymphocytes, with a few leukemic cells. A relationship between the leukemic-reactive cell ratio and the prognosis was suggested; dense leukemic cell infiltrates may be associated with a poor prognosis.

  8. Phytochemical analysis and cytotoxicity towards multidrug-resistant leukemia cells of essential oils derived from Lebanese medicinal plants.

    Science.gov (United States)

    Saab, Antoine M; Guerrini, Alessandra; Sacchetti, Gianni; Maietti, Silvia; Zeino, Maʼen; Arend, Joachim; Gambari, Roberto; Bernardi, Francesco; Efferth, Thomas

    2012-12-01

    Juniperus excelsa fruit essential oil as well as J. oxycedrus, Cedrus libani, and Pinus pinea wood essential oils have been obtained with yields between 2.2 ± 0.3 % to 3.4 ± 0.5 % and analyzed by gas chromatography. Sesquiterpenes mainly characterized C. libani and J. oxycedrus essential oils, while in P. pinea and J. excelsa, monoterpenes were the most abundant compounds. In J. oxycedrus, cis-calamenene (7.8 %), cuparene (3.8 %), and cis-thujopsenal (2.0 %) have been detected for the first time. The cytotoxic activity of these essential oils against drug-sensitive CCRF-CEM and multidrug-resistant P-glycoprotein-expressing CEM/ADR5000 leukemia cells has been investigated (IC₅₀ values: 29.46 to 61.54 µg/mL). Remarkably, multidrug-resistant CEM/ADR5000 cells did not reveal cross-resistance, indicating that these essential oils might be useful to treat otherwise drug-resistant and refractory tumors. Georg Thieme Verlag KG Stuttgart · New York.

  9. Study of the Cytotoxic Effects of the New Synthetic Isothiocyanate CM9 and Its Fullerene Derivative on Human T-Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Elena De Gianni

    2015-02-01

    Full Text Available One important strategy to develop effective anticancer agents is based on natural products. Many active phytochemicals are in human clinical trials and have been used for a long time, alone and in association with conventional anticancer drugs, for the treatment of various types of cancers. A great number of in vitro, in vivo and clinical reports document the multi-target anticancer activities of isothiocyanates and of compounds characterized by a naphthalenetetracarboxylic diimide scaffold. In order to search for new anticancer agents with a better pharmaco-toxicological profile, we investigated hybrid compounds obtained by inserting isothiocyanate group(s on a naphthalenetetracarboxylic diimide scaffold. Moreover, since water-soluble fullerene derivatives can cross cell membranes thus favoring the delivery of anticancer therapeutics, we explored the cytostatic and cytotoxic activity of hybrid compounds conjugated with fullerene. We studied their cytostatic and cytotoxic effects on a human T-lymphoblastoid cell line by using different flow cytometric assays. In order to better understand their pharmaco-toxicological potential, we also analyzed their genotoxicity. Our global results show that the synthesized compounds reduced significantly the viability of leukemia cells. However, the conjugation with a non-toxic vector did not increase their anticancer potential. This opens an interesting research pattern for certain fullerene properties.

  10. Hybrid TiO2 -Ruthenium Nano-photosensitizer Synergistically Produces Reactive Oxygen Species in both Hypoxic and Normoxic Conditions.

    Science.gov (United States)

    Gilson, Rebecca C; Black, Kvar C L; Lane, Daniel D; Achilefu, Samuel

    2017-08-28

    Photodynamic therapy (PDT) is widely used to treat diverse diseases, but its dependence on oxygen to produce cytotoxic reactive oxygen species (ROS) diminishes the therapeutic effect in a hypoxic environment, such as solid tumors. Herein, we developed a ROS-producing hybrid nanoparticle-based photosensitizer capable of maintaining high levels of ROS under both normoxic and hypoxic conditions. Conjugation of a ruthenium complex (N3) to a TiO 2 nanoparticle afforded TiO 2 -N3. Upon exposure of TiO 2 -N3 to light, the N3 injected electrons into TiO 2 to produce three- and four-fold more hydroxyl radicals and hydrogen peroxide, respectively, than TiO 2 at 160 mmHg. TiO 2 -N3 maintained three-fold higher hydroxyl radicals than TiO 2 under hypoxic conditions via N3-facilitated electron-hole reduction of adsorbed water molecules. The incorporation of N3 transformed TiO 2 from a dual type I and II PDT agent to a predominantly type I photosensitizer, irrespective of the oxygen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Thys, Ryan G., E-mail: rthys@wakehealth.edu [Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016 (United States); Lehman, Christine E., E-mail: clehman@wakehealth.edu [Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016 (United States); Pierce, Levi C.T., E-mail: Levipierce@gmail.com [Human Longevity, Inc., San Diego, California 92121 (United States); Wang, Yuh-Hwa, E-mail: yw4b@virginia.edu [Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0733 (United States)

    2015-09-15

    Highlights: • Environmental/chemotherapeutic agents cause DNA breakage in MLL and CBFB in HSPCs. • Diethylnitrosamine-induced DNA breakage at MLL and CBFB shown for the first time. • Chemical-induced DNA breakage occurs at topoisomerase II cleavage sites. • Chemical-induced DNA breaks display a pattern similar to those in leukemia patients. • Long-term exposures suggested to generate DNA breakage at leukemia-related genes. - Abstract: Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The

  12. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells

    International Nuclear Information System (INIS)

    Thys, Ryan G.; Lehman, Christine E.; Pierce, Levi C.T.; Wang, Yuh-Hwa

    2015-01-01

    Highlights: • Environmental/chemotherapeutic agents cause DNA breakage in MLL and CBFB in HSPCs. • Diethylnitrosamine-induced DNA breakage at MLL and CBFB shown for the first time. • Chemical-induced DNA breakage occurs at topoisomerase II cleavage sites. • Chemical-induced DNA breaks display a pattern similar to those in leukemia patients. • Long-term exposures suggested to generate DNA breakage at leukemia-related genes. - Abstract: Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The

  13. Bone marrow stromal elements in murine leukemia; Decreased CSF-producing fibroblasts and normal IL-1 expression by macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ishay, Z [Laboratory of Experimental Hematology, Department of Anatomy and Embryology, Hebrew University-Hadassah Medical School (Israel); Barak, V [Laboratory of Immunology, Department of Oncology, Hadassah University Hospital (Israel); Shoshan, S [Faculty of Dental Medicine, Connective Tissue Research Laboratory, Hebrew University, Jerusalem (Israel); Prindull, G [Department of Pediatrics, University of Gottingen, Gottingen (Germany, F.R.)

    1990-01-01

    A study of bone marrow stromal elements in murine acute myeloid leukemia (AML) was carried out. Our previous studies had indicated marrow stromal deficiency in murine AML. In the current investigation, separate stromal cells were cultured and the results obtained have shown that, while marrow stromal macrophages are normal in leukemia and express adequate amounts of IL-1, the fibroblasts are markedly reduced. However, if sufficient fibroblasts are pooled in vitro, they produce adequate amounts of CSF. Test of TNF{alpha} in leukemic cells CM, as possible cause of marrow stromal inhibition in leukemia, had not disclosed this cytokine. Further, it was observed that total body lethal irradiation of leukemic mice aggravates the stromal deficiency, confirming results of our previous investigations. It is concluded that bone marrow stromal deficiency in murine AML is due to decreased fibroblasts and, implicity, reduced CSF production. (author).

  14. Cytotoxicity of pyrrolizidine alkaloid in human hepatic parenchymal and sinusoidal endothelial cells: Firm evidence for the reactive metabolites mediated pyrrolizidine alkaloid-induced hepatotoxicity.

    Science.gov (United States)

    Yang, Mengbi; Ruan, Jianqing; Fu, Peter P; Lin, Ge

    2016-01-05

    Pyrrolizidine alkaloids (PAs) widely distribute in plants and can cause hepatic sinusoidal obstruction syndrome (HSOS), which typically presents as a primary sinusoidal endothelial cell damage. It is well-recognized that after ingestion, PAs undergo hepatic cytochromes P450 (CYPs)-mediated metabolic activation to generate dehydropyrrolizidine alkaloids (DHPAs), which are hydrolyzed to dehydroretronecine (DHR). DHPAs and DHR are reactive metabolites having same core pyrrole moiety, and can bind proteins to form pyrrole-protein adducts, which are believed as the primary cause for PA-induced HSOS. However, to date, the direct evidences supporting the toxicity of DHPAs and DHR in the liver, in particular in the sinusoidal endothelial cells, are lacking. Using human hepatic sinusoidal endothelial cells (HSEC) and HepG2 (representing hepatic parenchymal cells), cells that lack CYPs activity, this study determined the direct cytotoxicity of dehydromonocrotaline, a representative DHPA, and DHR, but no cytotoxicity of the intact PA (monocrotaline) in both cell lines, confirming that reactive metabolites mediate PA intoxication. Comparing with HepG2, HSEC had significantly lower basal glutathione (GSH) level, and was significantly more susceptible to the reactive metabolites with severer GSH depletion and pyrrole-protein adducts formation. The toxic potency of two reactive metabolites was also compared. DHPA was more reactive than DHR, leading to severer toxicity. In conclusion, our results unambiguously provided the first direct evidence for the critical role of DHPA and DHR in the reactive metabolites-mediated PA-induced hepatotoxicity, which occurs predominantly in HSEC due to severe GSH depletion and the significant formation of pyrrole-protein adducts in HSEC. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis

    Directory of Open Access Journals (Sweden)

    Mariana Belén Joray

    2015-01-01

    Full Text Available The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1, isoliquiritigenin (2, pinocembrin (3, 7-hydroxyflavanone (4, and 7,4′-dihydroxy-3′-methoxyflavanone (5. Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL and chronic myeloid leukemia (CML cell lines including their multidrug resistant (MDR phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM and a lower effect against CML cells (IC50 = 27.5–30.0 μM. Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound.

  16. Granzyme B of cytotoxic T cells induces extramitochondrial reactive oxygen species production via caspase-dependent NADPH oxidase activation.

    Science.gov (United States)

    Aguiló, Juan I; Anel, Alberto; Catalán, Elena; Sebastián, Alvaro; Acín-Pérez, Rebeca; Naval, Javier; Wallich, Reinhard; Simon, Markus M; Pardo, Julián

    2010-07-01

    Induction of reactive oxygen species (ROS) is a hallmark of granzyme B (gzmB)-mediated pro-apoptotic processes and target cell death. However, it is unclear to what extent the generated ROS derive from mitochondrial and/or extra-mitochondrial sources. To clarify this point, we have produced a mutant EL4 cell line, termed EL4-rho(0), which lacks mitochondrial DNA, associated with a decreased mitochondrial membrane potential and a defective ROS production through the electron transport chain of oxidative phosphorylation. When incubated with either recombinant gzmB plus streptolysin or ex vivo gzmB(+) cytotoxic T cells, EL4-rho(0) cells showed phosphatydylserine translocation, caspase 3 activation, Bak conformational change, cytochrome c release and apoptotic morphology comparable to EL4 cells. Moreover, EL4-rho(0) cells produced ROS at levels similar to EL4 under these conditions. GzmB-mediated ROS production was almost totally abolished in both cell lines by the pan-caspase inhibitor, Z-VAD-fmk. However, addition of apocynin, a specific inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, led to a significant reduction of ROS production and cell death only in EL4-rho(0) but not EL4 cells. These data suggest that gzmB-induced cell death is accompanied by a caspase-dependent pathway of extra-mitochondrial ROS production, most probably through activation of NADPH oxidase.

  17. Induction of apoptosis by hydrolyzable tannins from Eugenia jambos L. on human leukemia cells.

    Science.gov (United States)

    Yang, L L; Lee, C Y; Yen, K Y

    2000-08-31

    Eugenia jambos L. (Myrtaceae) is an antipyretic and anti-inflammatory herb of Asian folk medicine. A 70% acetone extract exerted the strongest cytotoxic effects on human leukemia cells (HL-60) from a preliminary screening of 15 plants. The cytotoxic principles were separated by bio-assay-guided fractionation to HL-60 cells; two hydrolyzable tannins (1-O-galloyl castalagin and casuarinin) were isolated from the 70% acetone extract. All significantly inhibited human promyelocytic leukemia cell line HL-60 and showed less cytotoxicity to human adenocarcinoma cell line SK-HEP-1 and normal cell lines of human lymphocytes and Chang liver cells. Thus, these compounds were exhibited the dose-dependent manner in HL-60 cells and the IC(50) were 10.8 and 12.5 microM, respectively. Flow cytometric analysis demonstrated the presence of apoptotic cells with low DNA content, a decrease of cell population at G(2)/M phase, and a concomitant increase of cell population at G(1) phase. The apoptosis induced by these two compounds was also demonstrated by DNA fragmentation assay and microscopic observation. These results suggest that the cytotoxic mechanism of both antitumor principle constituents might be the induction of apoptosis in HL-60 cells.

  18. Improvement of Leukemia diagnose with molecular techniques

    International Nuclear Information System (INIS)

    Campos Rudin, M.E.

    1997-01-01

    The objective of this study was to contribute with new techniques to the clinical diagnosis and to the monitoring of mycloid chronic leukemias in Costa Rica. The same one achieved to determine that is viable to apply radioactive and non reactive methodologies, for the molecular detection of the Philadelphia chromosome.It also found that the application of techniques of cellular biology, helps to classify better the mycloide leukemias and the chronic mycloproliferatives and miclodisplaced disorders. (S. Grainger) [es

  19. Compound A398, a novel podophyllotoxin analogue: cytotoxicity and induction of apoptosis in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Alethéia L Silveira

    Full Text Available Despite advances in oncology research, cancer is one of the leading causes of death worldwide. Thus, there is a demand for the development of more selective and effective antitumor agents. This study showed that A398, a novel podophyllotoxin analogue, was cytotoxic to the HT-29, MCF-7, MOLT-4 and HL-60 tumor cell lines, being less active in human peripheral blood mononuclear cells and normal cell lines FGH and IEC-6. Tests using the HepG2 lineage indicated that its metabolites do not contribute to its cytotoxicity. In the HL-60 cells, A398 induced apoptosis in a time and concentration-dependent manner, promoting mitochondrial depolarization, inhibition of Bcl-2, phosphatidylserine exposure, activation of caspases -8, -9 and -3, and DNA fragmentation. The production of reactive oxygen species does not seem to be a crucial event for the apoptotic process. Pretreatment with specific inhibitors of kinases ERK1/2, JNK and p38 resulted in an increased percentage of death induced by A398. These results indicate that the compound induced apoptosis through activation of intrinsic and extrinsic death pathways with the mechanism involving the inhibition of the MAPKs and Bcl-2. Taken together, our findings suggest that A398 has an anticancer potential, proving itself to be a candidate for preclinical studies.

  20. Essential oils from Schinus terebinthifolius leaves - chemical composition and in vitro cytotoxicity evaluation.

    Science.gov (United States)

    Santana, Jeferson S; Sartorelli, Patricia; Guadagnin, Rafael C; Matsuo, Alisson L; Figueiredo, Carlos R; Soares, Marisi G; da Silva, Adalberto M; Lago, João Henrique G

    2012-10-01

    In folk medicine, Schinus terebinthifolius Raddi (Anacardiaceae), has been used as a remedy for ulcers, respiratory problems, wounds, rheumatism, gout, diarrhea, skin ailments and arthritis, as well as to treat tumors and leprosy. To investigate the chemical composition and cytotoxicity of essential oil from leaves of S. terebinthifolius as well as the identification of active compounds from this oil. Essential oil from S. terebinthifolius leaves, obtained by hydrodistillation using a Clevenger-type apparatus, was characterized in terms of its chemical composition. Also, the crude oil was subjected to chromatographic separation procedures to afford an active fraction composed of α- and β-pinenes. These compounds, including hydrogenation (pinane) and epoxydation (α-pinene oxide) derivatives from α-pinene, were tested in vitro against murine melanoma cell line (B16F10-Nex2) and human melanoma (A2058), breast adenocarcinoma (MCF7), leukemia (human leukemia (HL-60) and cervical carcinoma (HeLa) cell lines. Forty-nine constituents were identified in the oil (97.9% of the total), with germacrene D (23.7%), bicyclogermacrene (15.0%), β-pinene (9.1%) and β-longipinene (8.1%) as the main compounds. The crude essential oil showed cytotoxic effects in several cell lines, mainly on leukemia and human cervical carcinoma. Fractions composed mainly of α- and β-pinenes as well as those composed of individually pinenes showed effective activities against all tested cell lines. Aiming to determinate preliminary structure/activity relationships, α-pinene was subjected to epoxydation and hydrogenation procedures whose obtained α-pinene oxide showed an expressive depression in its cytotoxicity effect, similar as observed to pinane derivative. The obtained results indicated that the monoterpenes α- and β-pinenes could be responsible to the cytotoxic activity detected in the crude oil from leaves of S. terebinthifolius. In addition, it was possibly inferred that the presence

  1. Emodin Induces Apoptotic Death in Murine Myelomonocytic Leukemia WEHI-3 Cells In Vitro and Enhances Phagocytosis in Leukemia Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Yuan-Chang Chang

    2011-01-01

    Full Text Available Emodin is one of major compounds in rhubarb (Rheum palmatum L., a plant used as herbal medicine in Chinese population. Although many reports have shown that emodin exhibits anticancer activity in many tumor cell types, there is no available information addressing emodin-affected apoptotic responses in the murine leukemia cell line (WEHI-3 and modulation of the immune response in leukemia mice. We investigated that emodin induced cytotoxic effects in vitro and affected WEHI-3 cells in vivo. This study showed that emodin decreased viability and induced DNA fragmentation in WEHI-3 cells. Cells after exposure to emodin for 24 h have shown chromatin condensation and DNA damage. Emodin stimulated the productions of ROS and Ca2+ and reduced the level of ΔΨm by flow cytometry. Our results from Western blotting suggest that emodin triggered apoptosis of WEHI-3 cells through the endoplasmic reticulum (ER stress, caspase cascade-dependent and -independent mitochondrial pathways. In in vivo study, emodin enhanced the levels of B cells and monocytes, and it also reduced the weights of liver and spleen compared with leukemia mice. Emodin promoted phagocytic activity by monocytes and macrophages in comparison to the leukemia mice group. In conclusions, emodin induced apoptotic death in murine leukemia WEHI-3 cells and enhanced phagocytosis in the leukemia animal model.

  2. Anticancer immune reactivity and long-term survival after treatment of metastatic ovarian cancer with dendritic cells

    Science.gov (United States)

    BERNAL, SAMUEL D.; ONA, ENRIQUE T.; RIEGO-JAVIER, AILEEN; DE VILLA, ROMULO; CRISTAL-LUNA, GLORIA R.; LAGUATAN, JOSEPHINE B.; BATAC, EUNICE R.; CANLAS, OSCAR Q.

    2012-01-01

    Hematopoietic stem cells collected by leukapheresis of a patient with metastatic ovarian carcinoma (OVCA) were induced into dendritic cell (DC) differentiation and fused with liposomal constructs of autologous and allogeneic ovarian carcinoma antigens (DC-OVCA). The proliferation of autologous T cells induced by DCs was determined by [3H]-thymidine uptake. Maximal T-cell proliferation was observed in co-cultures of DCs fused with liposomal OVCA constructs compared with intact autologous OVCA cells. The combination of autologous and allogeneic liposomal OVCA constructs induced greater T-cell proliferation than either alone. The cytotoxicity of DC-activated T cells against various target cells were analyzed by a 51Cr-release assay. The combination of autologous and allogeneic liposomal OVCA constructs showed the highest stimulation of T cell-mediated cytotoxicity against OVCA cells, but had minimal cytotoxicity against normal fibroblasts or leukemia cells. The liposomal preparations of DC-OVCA were injected monthly into a patient with metastatic ovarian carcinoma whose tumors progressed following multiple courses of chemotherapy. DCs analyzed from the patient post-immunization showed 2- to 3-fold greater OVCA cytotoxicity compared to pre-immunization DCs. Immunoblots using the patient's serum showed reactivity with a number of proteins from ovarian cancer extracts, but not in normal fibroblasts and breast cancer. Following the DC-OVCA treatment, the metastatic lesions progressively decreased in size to the point of being undetectable by serial CAT scans. Seven years following the initial diagnosis, the patient continues to be free of cancer. This report described the anticancer immune reactivity and anti-tumor response induced by DCs sensitized with liposomal constructs of OVCA antigens. Immune cell therapy may therefore be a useful adjunct to surgery and chemotherapy for the treatment of ovarian cancer. PMID:22740858

  3. Cyanobacteria from Terrestrial and Marine Sources Contain Apoptogens Able to Overcome Chemoresistance in Acute Myeloid Leukemia Cells

    Science.gov (United States)

    Liu, Liwei; Herfindal, Lars; Jokela, Jouni; Shishido, Tania Keiko; Wahlsten, Matti; Døskeland, Stein Ove; Sivonen, Kaarina

    2014-01-01

    In this study, we investigated forty cyanobacterial isolates from biofilms, gastropods, brackish water and symbiotic lichen habitats. Their aqueous and organic extracts were used to screen for apoptosis-inducing activity against acute myeloid leukemia cells. A total of 28 extracts showed cytotoxicity against rat acute myeloid leukemia (IPC-81) cells. The design of the screen made it possible to eliminate known toxins, such as microcystins and nodularin, or known metabolites with anti-leukemic activity, such as adenosine and its analogs. A cytotoxicity test on human embryonic kidney (HEK293T) fibroblasts indicated that 21 of the 28 extracts containing anti-acute myeloid leukemia (AML) activity showed selectivity in favor of leukemia cells. Extracts L26-O and L30-O were able to partly overcome the chemotherapy resistance induced by the oncogenic protein Bcl-2, whereas extract L1-O overcame protection from the deletion of the tumor suppressor protein p53. In conclusion, cyanobacteria are a prolific resource for anti-leukemia compounds that have potential for pharmaceutical applications. Based on the variety of cellular responses, we also conclude that the different anti-leukemic compounds in the cyanobacterial extracts target different elements of the death machinery of mammalian cells. PMID:24705501

  4. Cyanobacteria from Terrestrial and Marine Sources Contain Apoptogens Able to Overcome Chemoresistance in Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Liwei Liu

    2014-04-01

    Full Text Available In this study, we investigated forty cyanobacterial isolates from biofilms, gastropods, brackish water and symbiotic lichen habitats. Their aqueous and organic extracts were used to screen for apoptosis-inducing activity against acute myeloid leukemia cells. A total of 28 extracts showed cytotoxicity against rat acute myeloid leukemia (IPC-81 cells. The design of the screen made it possible to eliminate known toxins, such as microcystins and nodularin, or known metabolites with anti-leukemic activity, such as adenosine and its analogs. A cytotoxicity test on human embryonic kidney (HEK293T fibroblasts indicated that 21 of the 28 extracts containing anti-acute myeloid leukemia (AML activity showed selectivity in favor of leukemia cells. Extracts L26-O and L30-O were able to partly overcome the chemotherapy resistance induced by the oncogenic protein Bcl-2, whereas extract L1-O overcame protection from the deletion of the tumor suppressor protein p53. In conclusion, cyanobacteria are a prolific resource for anti-leukemia compounds that have potential for pharmaceutical applications. Based on the variety of cellular responses, we also conclude that the different anti-leukemic compounds in the cyanobacterial extracts target different elements of the death machinery of mammalian cells.

  5. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation.

    Directory of Open Access Journals (Sweden)

    Xiao-Na Pan

    Full Text Available Nowadays, drug resistance still represents a major obstacle to successful acute myeloid leukemia (AML treatment and the underlying mechanism is not fully elucidated. Here, we found that high expression of c-Myc was one of the cytogenetic characteristics in the drug-resistant leukemic cells. c-Myc over-expression in leukemic cells induced resistance to chemotherapeutic drugs, enhanced colony formation capacity and inhibited cell differentiation induced by all-trans retinoic acid (ATRA. Meanwhile, inhibition of c-Myc by shRNA or specific c-Myc inhibitor 10058-F4 rescued the sensitivity to cytotoxic drugs, restrained the colony formation ability and promoted differentiation. RT-PCR and western blotting analysis showed that down-regulation of C/EBPβ contributed to the poor differentiation state of leukemic cells induced by c-Myc over-expression. Importantly, over-expression of C/EBPβ could reverse c-Myc induced drug resistance. In primary AML cells, the c-Myc expression was negatively correlated with C/EBPβ. 10058-F4, displayed anti-proliferative activity and increased cellular differentiation with up-regulation of C/EBPβ in primary AML cells. Thus, our study indicated that c-Myc could be a novel target to overcome drug resistance, providing a new approach in AML therapy.

  6. Novel cytotoxic exhibition mode of antimicrobial peptide anoplin in MEL cells, the cell line of murine Friend leukemia virus-induced leukemic cells.

    Science.gov (United States)

    Zhu, Li-Na; Fu, Cai-Yun; Zhang, Shi-Fu; Chen, Wei; Jin, Yuan-Ting; Zhao, Fu-Kun

    2013-09-01

    Anoplin is a recently discovered antimicrobial peptide (AMP) isolated from the venom sac of the spider wasp Anoplius samariensis, and it is one of the shortest α-helical AMP found naturally to date consisting of only ten amino acids. Previous results showed that anoplin exhibits potent antimicrobial activity but little hemolytic activity. In this study, we synthesized anoplin, studied its cytotoxicity in Friend virus-induced leukemia cells [murine erythroleukemia (MEL) cells], and proposed its possible mechanism. Our results showed that anoplin could inhibit the proliferation of MEL cells in a dose-dependent and time-dependent manner via disrupting the integrity of cell membrane, which indicated that anoplin exerts its cytotoxicity efficacy. In addition, the cell cycle distribution of MEL cells was arrested in the G₀/G₁ phase significantly. However, anoplin could not induce obvious apoptosis in MEL cells, as well as anoplin could not induce visible changes on morphology and quantity in the bone marrow cells isolated from normal mice. All of these results indicate that anoplin, as generally believed, is a selective AMP, a value characteristic in the design of safe therapeutic agents. The cytotoxicity of anoplin on MEL cells was mainly attributable to the plasma membrane perturbation and also to the intracellular events such as the arrest of cell cycle. Although this is an initial study that explored the activity of anoplin in vitro rather than in vivo, with the increasing resistance of conventional chemotherapy, there is no doubt that anoplin has desirable feature to be developed as a novel and selective anticancer agent. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.

  7. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation

    Science.gov (United States)

    Chibli, Hicham; Carlini, Lina; Park, Soonhyang; Dimitrijevic, Nada M.; Nadeau, Jay L.

    2011-06-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  8. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    Energy Technology Data Exchange (ETDEWEB)

    Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N. M.; Nadeau, J. L. (Center for Nanoscale Materials); ( CSE); (McGill Univ.)

    2011-01-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  9. The effect of gamma irradiation on cytotoxic activity of the flesh of Mahkota Dewa (Phaleria macrocarpa (Scheff) Boerl) Fruits

    International Nuclear Information System (INIS)

    Ermin K Winarno; Mazda; Hindra Rahmawati; Hendig Winarno

    2010-01-01

    Gamma irradiation had been used by herbs medicine industries for preservation of medicinal plants, but the effect of irradiation on their bioactivities has not been observed. The purpose of this research was to obtain the optimum radiation dose for the preservation of mahkota dewa flesh fruits without damaging their cytotoxic activities. To evaluate the effect of irradiation, dried samples of flesh fruit of mahkota dewa were irradiated at various doses of 0; 5; 7.5; 10; 15 and 20 kGy. Microbial contamination was tested using Indonesian National Standard method, which indicated that all microbes were killed at the dose of 5 kGy. Each sample was macerated with ethanol, and the extracts obtained were then fractionated with column chromatography, from which 8 fractions were obtained. Cytotoxicity test of the fractions against leukemia L1210 cells, showed that the Fr.3 was the most cytotoxic. To determine optimal irradiation dose to inhibit and to kill bacteria and yeast/mold in the mahkota dewa flesh fruit samples without decreasing cytotoxic activity, a thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) analysis of the Fr.3 were done. The results showed that the doses of ≥ 5 kGy inhibited the growth and killed all the bacteria, yeast and mold without decreasing significantly the cytotoxic activity of ethanol extract against leukemia L1210 cell. The significant decrease of cytotoxic against leukemia L1210 of ethanol extract were occurred after ≥ 10 kGy irradiation of the samples. At the dose of 10 kGy, the cytotoxicity decreased even though it was not exceeded the limit of the fraction was declared inactive. Analysis of thin layer chromatogram profiles showed that the Fr.3 contained at least 10 components. Irradiation until the dose of 20 kGy decreased the major peak intensity. with the increasing of irradiation doses. It was concluded that the dose of 5 kGy to 10 kGy were the optimum dose for the preservation of flesh fruit of

  10. Targeting the CXCR4 pathway using a novel anti-CXCR4 IgG1 antibody (PF-06747143 in chronic lymphocytic leukemia

    Directory of Open Access Journals (Sweden)

    Manoj K. Kashyap

    2017-05-01

    Full Text Available Abstract Background The CXCR4-CXCL12 axis plays an important role in the chronic lymphocytic leukemia (CLL-microenvironment interaction. Overexpression of CXCR4 has been reported in different hematological malignancies including CLL. Binding of the pro-survival chemokine CXCL12 with its cognate receptor CXCR4 induces cell migration. CXCL12/CXCR4 signaling axis promotes cell survival and proliferation and may contribute to the tropism of leukemia cells towards lymphoid tissues and bone marrow. Therefore, we hypothesized that targeting CXCR4 with an IgG1 antibody, PF-06747143, may constitute an effective therapeutic approach for CLL. Methods Patient-derived primary CLL-B cells were assessed for cytotoxicity in an in vitro model of CLL microenvironment. PF-06747143 was analyzed for cell death induction and for its potential to interfere with the chemokine CXCL12-induced mechanisms, including migration and F-actin polymerization. PF-06747143 in vivo efficacy was determined in a CLL murine xenograft tumor model. Results PF-06747143, a novel-humanized IgG1 CXCR4 antagonist antibody, induced cell death of patient-derived primary CLL-B cells, in presence or absence of stromal cells. Moreover, cell death induction by the antibody was independent of CLL high-risk prognostic markers. The cell death mechanism was dependent on CXCR4 expression, required antibody bivalency, involved reactive oxygen species production, and did not require caspase activation, all characteristics reminiscent of programmed cell death (PCD. PF-06747143 also induced potent B-CLL cytotoxicity via Fc-driven antibody-dependent cell-mediated cytotoxicity (ADCC and complement-dependent cytotoxicity activity (CDC. PF-06747143 had significant combinatorial effect with standard of care (SOC agents in B-CLL treatment, including rituximab, fludarabine (F-ara-A, ibrutinib, and bendamustine. In a CLL xenograft model, PF-06747143 decreased tumor burden and improved survival as a monotherapy

  11. Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure

    International Nuclear Information System (INIS)

    Panessa-Warren, Barbara J.; Maye, Mathew M.; Warren, John B.; Crosson, Kenya M.

    2009-01-01

    Globally carbon nanoparticles are increasingly utilized, yet it is not known if these nanoparticles pose a threat to the environment or human health. This investigation examined 'as-prepared', and acid cleaned carbon nanoparticle physicochemical characteristics (by FTIR, TEM, FESEM, UV-VIS and X-ray microanalysis), and whether these characteristics changed following 2.5-7 yr exposure to pH neutral saline or fresh water. To determine if these aqueous aged nanotubes were cytotoxic, these nanotubes were incubated with human epithelial monolayers and analyzed for cell viability (vital staining) and ultrastructural nanoparticle binding/localization (TEM, FESEM). The presence of Ni and Y catalyst, was less damaging to cells than CNT lattice surface oxidation. Extended fresh water storage of oxidized CNTs did not reduce surface reactive groups, nor lessen cell membrane destruction or cell death. However storing oxidized CNTs in saline or NOM significantly reduced CNT-induced cell membrane damage and increased cell survival to control levels. - Oxidized SWCNTs in pH neutral fresh and saline water showed no reduction in surface oxidation with time, yet exposure of these nanotubes to saline and NOM reduced human cell toxicity markedly

  12. Reactive Oxygen Species Regulate the Inflammatory Function of NKT Cells through Promyelocytic Leukemia Zinc Finger.

    Science.gov (United States)

    Kim, Yeung-Hyen; Kumar, Ajay; Chang, Cheong-Hee; Pyaram, Kalyani

    2017-11-15

    Reactive oxygen species (ROS) are byproducts of aerobic metabolism and contribute to both physiological and pathological conditions as second messengers. ROS are essential for activation of T cells, but how ROS influence NKT cells is unknown. In the present study, we investigated the role of ROS in NKT cell function. We found that NKT cells, but not CD4 or CD8 T cells, have dramatically high ROS in the spleen and liver of mice but not in the thymus or adipose tissues. Accordingly, ROS-high NKT cells exhibited increased susceptibility and apoptotic cell death with oxidative stress. High ROS in the peripheral NKT cells were primarily produced by NADPH oxidases and not mitochondria. We observed that sorted ROS-high NKT cells were enriched in NKT1 and NKT17 cells, whereas NKT2 cells were dominant in ROS-low cells. Furthermore, treatment of NKT cells with antioxidants led to reduced frequencies of IFN-γ- and IL-17-expressing cells, indicating that ROS play a role in regulating the inflammatory function of NKT cells. The transcription factor promyelocytic leukemia zinc finger (PLZF) seemed to control the ROS levels. NKT cells from adipose tissues that do not express PLZF and those from PLZF haplodeficient mice have low ROS. Conversely, ROS were highly elevated in CD4 T cells from mice ectopically expressing PLZF. Thus, our findings demonstrate that PLZF controls ROS levels, which in turn governs the inflammatory function of NKT cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Antihyperlipidemic, Antioxidant and Cytotoxic Activities of Methanolic and Aqueous Extracts of Different Parts of Star Fruit.

    Science.gov (United States)

    Saghir, Sultan A M; Sadikun, Amirin; Al-Suede, Fouad S R; Majid, Amin M S A; Murugaiyah, Vikneswaran

    Star fruit (Averrhoa carambola) is a well-known plant in Malaysia which bears a great significance in traditional medicine. This study aimed to evaluate the antihyperlipidemic effect, antioxidant potential and cytotoxicity of aqueous and methanolic extracts of ripe and unripe fruits, leaves and stem of A. carambola. Antihyperlipidemic activity was assessed in poloxamer-407 (P-407) induced acute hyperlipidemic rat's model. The antioxidant activity was assessed in vitro using 2, 2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging, 1-diphenyl-2-dipicrylhydrazyl radical scavenging (DPPH) and ferric reducing antioxidant power (FRAP) assays. In addition, cytotoxicity of A. carambola extracts was assessed using MTS assay on four leukemic cell lines (human colon cancer, human promyeloid leukemia, erythroid leukemia, acute myeloid leukemia) and one normal cell (human umbilical vein endothelial cells). Methanolic extract of leaves had the most potent antihyperlipidemic activity in P-407 model, whereby it significantly reduced serum levels of total cholesterol (Pcarambola stem and leaves showed the strongest antioxidant activity. Total phenolic and flavonoid contents of the extracts exhibited significant correlations with antioxidant but not with antihyperlipidemic activities. All plant parts showed no cytotoxic effect on the selected cancer or normal cell lines. Antihyperlipidemic activity of different parts of A. carambola is greatly affected by extraction solvents used. Methanolic extract of A. carambola leaves exhibited higher antihyperlipidemic and antioxidant potentials compared to other parts of the plant.

  14. Sesquiterpene lactones: Mechanism of antineoplastic activity; relationship of cellular glutathione to cytotoxicity; and disposition

    International Nuclear Information System (INIS)

    Grippo, A.A.

    1987-01-01

    Helenalin, a sesquiterpene lactone, inhibited the growth of P388 lymphocytic and L1210 lymphoid leukemia, and Ehrlich ascites and KB carcinoma cells. The L1210 leukemia cells were most sensitive to the cytotoxic effects of helenalin. Helenalin's antineoplastic effects were due to inhibition of DNA synthesis by suppressing the activities of enzymes involved in this biosynthetic pathway; i.e., IMP dehydrogenase, ribonucleoside diphosphate reductase, thioredoxin complex, GSH disulfide oxidoreductase and DNA polymerase α activities. The relationship of reduced glutathione (GSH) to the cytotoxic effects of helanalin was evaluated. L1210 cells, which were more sensitive to helenalin's toxicity, contained lower basal concentrations of GSH. Helenalin decreased the concentration of reduced glutathione in both L1210 and P388 leukemia cells. Concurrent administration of helanalin with agents reported to raise GSH concentrations did not substantially effect GSH levels, nor were survival times of tumor-bearing mice enhanced. Following intraperitoneal administration of 3 H-plenolin, no radioactive drug and/or metabolite was sequestered in the organs of BDF 1 mice. Approximately 50% of 3 H-plenolin and/or its metabolites were eliminated via urine while lesser amounts of radioactive drug and/or metabolites were eliminated in the feces

  15. Are diamond nanoparticles cytotoxic?

    Science.gov (United States)

    Schrand, Amanda M; Huang, Houjin; Carlson, Cataleya; Schlager, John J; Omacr Sawa, Eiji; Hussain, Saber M; Dai, Liming

    2007-01-11

    Finely divided carbon particles, including charcoal, lampblack, and diamond particles, have been used for ornamental and official tattoos since ancient times. With the recent development in nanoscience and nanotechnology, carbon-based nanomaterials (e.g., fullerenes, nanotubes, nanodiamonds) attract a great deal of interest. Owing to their low chemical reactivity and unique physical properties, nanodiamonds could be useful in a variety of biological applications such as carriers for drugs, genes, or proteins; novel imaging techniques; coatings for implantable materials; and biosensors and biomedical nanorobots. Therefore, it is essential to ascertain the possible hazards of nanodiamonds to humans and other biological systems. We have, for the first time, assessed the cytotoxicity of nanodiamonds ranging in size from 2 to 10 nm. Assays of cell viability such as mitochondrial function (MTT) and luminescent ATP production showed that nanodiamonds were not toxic to a variety of cell types. Furthermore, nanodiamonds did not produce significant reactive oxygen species. Cells can grow on nanodiamond-coated substrates without morphological changes compared to controls. These results suggest that nanodiamonds could be ideal for many biological applications in a diverse range of cell types.

  16. Analogues of luteinizing hormone-releasing hormone containing cytotoxic groups.

    Science.gov (United States)

    Janáky, T; Juhász, A; Bajusz, S; Csernus, V; Srkalovic, G; Bokser, L; Milovanovic, S; Redding, T W; Rékási, Z; Nagy, A

    1992-02-01

    In an attempt to produce better cytotoxic analogues, chemotherapeutic antineoplastic radicals including an alkylating nitrogen mustard derivative of D-phenylalanine (D-melphalan), reactive cyclopropane, anthraquinone derivatives [2-(hydroxymethyl)anthraquinone and the anticancer antibiotic doxorubicin], and an antimetabolite (methotrexate) were coupled to suitably modified agonists and antagonists of luteinizing hormone-releasing hormone (LH-RH). Analogues with D-lysine6 and D-ornithine6 or N epsilon-(2,3-diaminopropionyl)-D-lysine and N delta-(2,3-diaminopropionyl)-D-ornithine were used as carriers for one or two cytotoxic moieties. The enhanced biological activities produced by the incorporation of D amino acids into position 6 of the agonistic analogues were further increased by the attachment of hydrophobic cytotoxic groups, resulting in compounds with 10-50 times higher activity than LH-RH. Most of the monosubstituted agonistic analogues showed high affinities for the membrane receptors of human breast cancer cells, while the receptor binding affinities of peptides containing two cytotoxic side chains were lower. Antagonistic carriers [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,D-Lys6,D-Ala10] LH-RH [where Nal(2) is 3-(2-naphthyl)alanine], [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,N epsilon-(2,3-diaminopropionyl)-D-Lys6,D-Ala10]LH-RH, and their D-Pal(3)3 homologs [Pal(3) is 3-(3-pyridyl)alanine] as well as [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Pal(3)3,Tyr5,N epsilon-(2,3-diamino-propionyl)-D-Lys6,D-Ala10]LH-RH were linked to cytotoxic compounds. The hybrid molecules inhibited ovulation in rats at doses of 10 micrograms and suppressed LH release in vitro. The receptor binding of cytotoxic analogues was decreased compared to the precursor peptides, although analogues with 2-(hydroxymethyl)anthraquinone hemiglutarate had high affinities. All of the cytotoxic analogues tested inhibited [3H]thymidine incorporation into DNA in cultures of human breast and prostate cancer cell lines

  17. Murine and human leukemias.

    Science.gov (United States)

    Burchenal, J H

    1975-01-01

    Essentially all the drugs which are active against human leukemias and lymphomas are active against one type or another of the rodent leukemias and lymphomas. Leukemia L1210 has been generally the most successful screening tool for clinically active compounds. Leukemia P388, however, seems to be better in detecting active antibiotics and natural products and P1534 is particularly sensitive to the Vinca alkaloids, while L5178Y, EARAD, and 6C3HED are useful in detecting the activities of various asparaginase containing fractions. Cell cultures of these leukemias can demonstrate mechanism of drug action and quantitate resistance. Spontaneous AKR leukemia is a model of the advanced human disease. In these leukemias vincristine and prednisone produce a 4 log cell kill. Cytoxan and arabinosyl cytosine (Ara-C) are also effective. On the other hand drugs such as mercaptopurine (6MP) and methotrexate which are highly active in the maintenance phase of acute lymphocytic leukemia (ALL) and in L1210 have little or no activity against the AKR spontaneous system. Mouse leukemias can also detect schedule dependence, synergistic combinations, cross resistance, oral activity, and the ability of drugs to pass the blood brain barrier. A case in point is the Ara-C analog 2,2'-anhydro-arabinofuranosyl-5-fluorocytosine (AAFC) which is not schedule dependent, is active orally, is potentiated by thioguanine, and is effective against intracerebrally inoculated mouse leukemia. AAFC and its analogs might thus be a considerable improvement over Ara-C which is at the present time the most important component of the combination treatment of acute myelogenous leukemia (AML).

  18. Structural requirements for bioactivation of anticonvulsants to cytotoxic metabolites in vitro.

    Science.gov (United States)

    Riley, R J; Kitteringham, N R; Park, B K

    1989-01-01

    The formation of cytotoxic metabolites from the anticonvulsants phenytoin and carbamazepine was investigated in vitro using a hepatic microsomal enzyme system and human mononuclear leucocytes as target cells. Both drugs were metabolised to cytotoxic products. In order to assess the structural requirements for this bioactivation, a series of structurally related compounds was investigated. It was found that molecules which contain either an amide function or an aryl ring may undergo activation in vitro, but only the metabolism-dependent toxicity of the latter is potentiated by pre-treatment of the target cells with an epoxide hydrolase inhibitor. Taken collectively, these data are consistent with the concept that reactive epoxide metabolites of both phenytoin and carbamazepine may produce toxicity in individuals with an inherited deficiency in epoxide hydrolase. PMID:2590607

  19. Ultraviolet irradiation produces cytotoxic synergy and increased DNA interstrand crosslinking with cis- and trans-diamminedichloroplatinum(II)

    International Nuclear Information System (INIS)

    Swinnen, L.J.; Erickson, L.C.

    1989-01-01

    The excision-repair mechanism responsible for the removal of UV-induced thymine dimers may also play a role in the repair of cis-diamminedichloroplatinum(II) (cis-DDP)-induced DNA adducts in both bacteria and mammalian cells. It was hypothesized that UV dimers and cis-DDP adducts, when present simultaneously, might compete for a common repair system. Colony survival assays were performed in HT-29 human colon carcinoma cells exposed either to cis-DDP alone or to cis-DDP immediately followed by UV exposure. Progressively greater cytotoxic synergy with both increasing UV dose and cis-DDP dose was observed, to a point of saturation beyond which further toxicity was purely additive. An approximate doubling in DNA crosslink frequency, relative to cis-DDP alone, was found in cells exposed to cis-DDP plus UV. Since cis-DDP produces both inter- and intrastrand DNA crosslinks similar studies were performed with trans-DDP, which is incapable of producing intrastrand crosslinks, but does produce interstrand crosslinks. Cytotoxic synergy and increased interstrand crosslinking again resulted from the addition of UV exposure, but not to the same extent as seen with cis-DDP. (author)

  20. Chronic lymphocytic leukemia cells display p53-dependent drug-induced Puma upregulation

    NARCIS (Netherlands)

    Mackus, W. J. M.; Kater, A. P.; Grummels, A.; Evers, L. M.; Hooijbrink, B.; Kramer, M. H. H.; Castro, J. E.; Kipps, T. J.; van Lier, R. A. W.; van Oers, M. H. J.; Eldering, E.

    2005-01-01

    We investigated the apoptosis gene expression profile of chronic lymphocytic leukemia (CLL) cells in relation to (1) normal peripheral and tonsillar B-cell subsets, (2) IgV(H) mutation status, and (3) effects of cytotoxic drugs. In accord with their noncycling, antiapoptotic status in vivo, CLL

  1. Bovine lactoferricin causes apoptosis in Jurkat T-leukemia cells by sequential permeabilization of the cell membrane and targeting of mitochondria

    International Nuclear Information System (INIS)

    Mader, Jamie S.; Richardson, Angela; Salsman, Jayme; Top, Deniz; Antueno, Roberto de; Duncan, Roy; Hoskin, David W.

    2007-01-01

    Bovine lactoferricin (LfcinB) is a cationic antimicrobial peptide that kills Jurkat T-leukemia cells by the mitochondrial pathway of apoptosis. However, the process by which LfcinB triggers mitochondria-dependent apoptosis is not well understood. Here, we show that LfcinB-induced apoptosis in Jurkat T-leukemia cells was preceded by LfcinB binding to, and progressive permeabilization of the cell membrane. Colloidal gold electron microscopy revealed that LfcinB entered the cytoplasm of Jurkat T-leukemia cells prior to the onset of mitochondrial depolarization. LfcinB was not internalized by endocytosis because endocytosis inhibitors did not prevent LfcinB-induced cytotoxicity. Furthermore, intracellular delivery of LfcinB via fusogenic liposomes caused the death of Jurkat T-leukemia cells, as well as normal human fibroblasts. Collectively, these findings suggest that LfcinB caused damage to the cell membrane that allowed LfcinB to enter the cytoplasm of Jurkat T-leukemia cells and mediate cytotoxicity. In addition, confocal microscopy showed that intracellular LfcinB co-localized with mitochondria in Jurkat T-leukemia cells, while flow cytometry and colloidal gold electron microscopy showed that LfcinB rapidly associated with purified mitochondria. Furthermore, purified mitochondria treated with LfcinB rapidly lost transmembrane potential and released cytochrome c. We conclude that LfcinB-induced apoptosis in Jurkat T-leukemia cells resulted from cell membrane damage and the subsequent disruption of mitochondrial membranes by internalized LfcinB

  2. Vaccination of adult and newborn mice of a resistant strain (C57BL/6J) against challenge with leukemias induced by Moloney murine leukemia virus

    International Nuclear Information System (INIS)

    Reif, A.E.

    1985-01-01

    Adult or newborn C57BL/6J mice were immunized with isogenic Moloney strain MuLV-induced leukemia cells irradiated with 10,000 rads or treated with low concentrations of formalin. Groups of immunized and control mice were challenged with a range of doses of viable leukemia cells, and tumor deaths were recorded for 90 days after challenge. Then, the doses of challenge cells which produced 50% tumor deaths were calculated for immunized and control mice. The logarithm of their ratio quantified the degree of protection provided by immunization. For adult C57BL/6J mice, a single immunization with MuLV-induced leukemia cells was not effective; either cells plus Bacillus Calmette-Guerin or Corynebacterium parvum, or else two immunizations with irradiated leukemia cells were needed to produce statistically significant increases in the values of the doses of challenge cells which produced 50% tumor deaths. Cross-protection was obtained by immunization with other isogenic MuLV-induced leukemias, but not by immunization with isogenic carcinogen-induced tumors or with an isogenic spontaneous leukemia. For newborn mice, a single injection of irradiated leukemia cells provided 1.3 to 1.5 logs of protection, and admixture of B. Calmette-Guerin or C. parvum increased this protection to 2.4 to 2.7 logs. Since irradiated and frozen-thawed MuLV-induced leukemia cells contained viable MuLV, leukemia cells treated with 0.5 or 1.0% formalin were tested as an alternative. A single injection of formalin-treated isogenic leukemia cells admixed with C. parvum provided between 1.7 and 2.8 logs of protection. These results demonstrate that a single vaccination of newborn animals against a highly antigenic virally induced leukemia produces strong protection against a subsequent challenge with viable leukemia cells

  3. Graft-versus-leukemia, donor selection for adoptive immunotherapy in mice

    International Nuclear Information System (INIS)

    LeFeber, W.P.; Truitt, R.L.; Rose, W.C.; Bortin, M.M.

    1977-01-01

    The optimal donor for adoptive immunotherapy would exhibit great antitumor reactivity and no antihost reactivity. Immunocompetent cells from 11 strains of mice were tested in vivo for their reactivity against a long-passage AKR acute lymphoblastic leukemia and against immunosuppressed nonleukemic AKR mice. Donor mice were syngeneic, unprimed H-2 compatible, primed H-2 compatible, congenic, or H-2 incompatible with AKR. Bioassays were used to evaluate the relative graft-vs.-leukemia (GvL) reactivity and the relative graft-vs.-host (GvH) reactivity of transplanted bone marrow and lymph-node cells from the panel of donors. No significant GvL reactivity was found when cells from syngeneic, unprimed H-2 compatible, or congenic donors were tested. H-2 compatible donors that were immunized with γ-irradiated AKR leukemic spleen cells showed modest GvL reactivity, but associated with the immunization was a disproportionate increase in acute and delayed GvH mortality. Among the H-2 mismatched donors, mice of the SJL strain appeared to most closely approach the ideal because of least intense GvH reactivity and maximal GvL reactivity. As measured in these experiments there was no correlation between the severity of GvH disease and the efficacy of the GvL reaction; GvL reactivity in unprimed donors was always associated with H-2 incompatibility; disparity between donor and recipient at H-2 did not guarantee an effective GvL reaction; and the increase in GvL reactivity obtained by immunizing H-2 compatible donors was overshadowed by the increase in GvH disease

  4. Acute leukemia after successful chemotherapy for oat cell carcinoma

    International Nuclear Information System (INIS)

    Rose, V.L.; Keppen, M.D.; Eichner, E.R.; Pitha, J.V.; Murray, J.L.

    1983-01-01

    A report of acute myelomonocytic leukemia following successful therapy for oat cell carcinoma is presented. The patient had been treated with extensive cytotoxic and radiation therapy, and was without clinical evidence of disease at one year follow-up. Eighteen months later, a peripheral smear revealed numerous blasts with monocytoid characteristics. This unusual presentation is discussed and compared with several other cases appearing in the recent literature

  5. A novel method for producing target cells and assessing cytotoxic T lymphocyte activity in outbred hosts

    Directory of Open Access Journals (Sweden)

    Bendinelli Mauro

    2009-03-01

    Full Text Available Abstract Background Cytotoxic T lymphocytes play a crucial role in the immunological control of microbial infections and in the design of vaccines and immunotherapies. Measurement of cytotoxic T lymphocyte activity requires that the test antigen is presented by target cells having the same or compatible class I major hystocompatibility complex antigens as the effector cells. Conventional assays use target cells labeled with 51chromium and infer cytotoxic T lymphocyte activity by measuring the isotope released by the target cells lysed following incubation with antigen-specific cytotoxic T lymphocytes. This assay is sensitive but needs manipulation and disposal of hazardous radioactive reagents and provides a bulk estimate of the reporter released, which may be influenced by spontaneous release of the label and other poorly controllable variables. Here we describe a novel method for producing target in outbred hosts and assessing cytotoxic T lymphocyte activity by flow cytometry. Results The method consists of culturing skin fibroblasts, immortalizing them with a replication defective clone of simian virus 40, and finally transducing them with a bicistronic vector encoding the target antigen and the reporter green fluorescent protein. When used in a flow cytometry-based assay, the target cells obtained with this method proved valuable for assessing the viral envelope protein specific cytotoxic T lymphocyte activity in domestic cats acutely or chronically infected with feline immunodeficiency virus, a lentivirus similar to human immunodeficiency virus and used as animal model for AIDS studies. Conclusion Given the versatility of the bicistronic vector used, its ability to deliver multiple and large transgenes in target cells, and its extremely wide cell specificity when pseudotyped with the vesicular stomatitis virus envelope protein, the method is potentially exploitable in many animal species.

  6. Brosimacutins J-M, four new flavonoids from Brosimum acutifolium and their cytotoxic activity.

    Science.gov (United States)

    Takashima, Junko; Komiyama, Kanki; Ishiyama, Haruaki; Kobayashi, Jun'ichi; Ohsaki, Ayumi

    2005-07-01

    Four new flavonoids, brosimacutins J-M (1 - 4), were isolated from the bark of Brosimum acutifolium Huber together with a known flavan, brosimine A (5). The structures of compounds 1-4 were elucidated by spectroscopic means. 27 constituents of this plant including compounds 1-5 were evaluated for their cytotoxic activity against murine leukemia P388 cells. Although no compounds tested had any reversal effect on vincristine resistance, brocimacutins J-M (1-4) were cytotoxic to vincristine-resistant P388 cells (IC50 4.4 - 19 microg/mL).

  7. Ibrutinib synergizes with MDM-2 inhibitors in promoting cytotoxicity in B chronic lymphocytic leukemia.

    Science.gov (United States)

    Voltan, Rebecca; Rimondi, Erika; Melloni, Elisabetta; Rigolin, Gian Matteo; Casciano, Fabio; Arcidiacono, Maria Vittoria; Celeghini, Claudio; Cuneo, Antonio; Zauli, Giorgio; Secchiero, Paola

    2016-10-25

    The aim of this study was to investigate the anti-leukemic activity of the Bruton tyrosine kinase inhibitor Ibrutinib in combination with the small molecule MDM-2 inhibitor Nutlin-3 in preclinical models. The potential efficacy of the Ibrutinib/Nutlin-3 combination was evaluated in vitro in a panel of B leukemic cell lines (EHEB, JVM-2, JVM-3, MEC-1, MEC-2) and in primary B-chronic lymphocytic leukemia (B-CLL) patient samples, by assessing cell viability, cell cycle profile, apoptosis and intracellular pathway modulations. Validation of the combination therapy was assessed in a B leukemic xenograft mouse model. Ibrutinib exhibited variable anti-leukemic activity in vitro and the combination with Nutlin-3 synergistically enhanced the induction of apoptosis independently from the p53 status. Indeed, the Ibrutinib/Nutlin-3 combination was effective in promoting cytotoxicity also in primary B-CLL samples carrying 17p13 deletion and/or TP53 mutations, already in therapy with Ibrutinib. Molecular analyses performed on both B-leukemic cell lines as well as on primary B-CLL samples, while confirming the switch-off of the MAPK and PI3K pro-survival pathways by Ibrutinib, indicated that the synergism of action with Nutlin-3 was independent by p53 pathway and was accompanied by the activation of the DNA damage cascade signaling through the phosphorylation of the histone protein H2A.X. This observation was confirmed also in the JVM-2 B leukemic xenograft mouse model. Taken together, our data emphasize that the Ibrutinib/Nutlin-3 combination merits to be further evaluated as a therapeutic option for B-CLL.

  8. Antileukemic Activity of 1-Oxyphenazine Produced by Pseudomonas Aureofaciens Phz 127/11

    Directory of Open Access Journals (Sweden)

    I. N. FEKLISTOVA

    2014-06-01

    Full Text Available It`s known that some phenazines antibiotics possess an antitumor activity. For example bis(phenazine-1-carboxamide inhibits a panel of tumor cell lines including P388 leukemia, Lewis lung carcinoma and human Jurkat leukemia; XR5944 – phenazine compound – may be useful in breast cancer therapeutics.Acute myeloid leukemia (AML is an oncologic pathology of myeloid hemopoiesis, characterized by the rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the production of normal blood cells. AML is the most common acute leukemia affecting adults, its incidence increases with age.In this paper we described the synthesis of 1-oxyphenazine antibiotic by Pseudomonas aureofaciens phz 127/11 bacteria and characterized its ability to inhibit the growth AML cells Kasumi-1 line. These cells produce chimeric AML1-ETO protein modulating expression level of genes that are crucial for the appropriate differentiation of granulocytes. The cells are positive for myeloperoxidase showing a morphology of myeloid maturation.Isolation of bacterial phenazine antibiotics from the culture medium for P. aureofaciens phz 127/11 growth was carried out according to a scheme proposed by M. Levitch, E. Stadtman. Identification of phenazine compounds was performed using liquid chromatography with mass spectrometric detection LCMS-QP8000α ("Shimadzu" Japan.In order to study cytotoxic effect of the 1-oxyphenazine on Kasumi-1 line cells, phenazine antibiotic (0.5-12 mg/ml was added to the culture medium. Cells were counted in 72 hours after phenazine applying. 1-oxyphenazine was shown to suppress AML cell growth in dose dependent manner. At a rate of 10 mg/ml 1-oxyphenazine not only inhibited reproduction of cells Kasumi-1 line: percentage of alive cells fallen to 36.5% in comparison with untreated cells, but also had strong cytotoxic effect: it caused apoptotic death of 59.76% of cells.We have shown that 1-oxyphenazine synthesized by

  9. Construction of a new anti-CD19 chimeric antigen receptor and the anti-leukemia function study of the transduced T cells

    Science.gov (United States)

    An, Na; Tao, Zhongfei; Li, Saisai; Xing, Haiyan; Tang, Kejing; Tian, Zheng; Rao, Qing; Wang, Min; Wang, Jianxiang

    2016-01-01

    Chimeric antigen receptor (CAR) transduced T cells have been used to efficiently kill the target tumor cells depending on the single chain variable fragment (scFv) against the specific tumor associated antigen. Here we show the high specific cytotoxicity of the CAR-T cells with very low effector to target cell (E:T) ratio owing to the CD19-scFv, which was constructed in our laboratory and proved to be highly effective in our previous study. Four plasmids containing three generation of CAR were constructed by cloning the CD19-CAR fragment into the lentiviral vector pCDH. CD3 positive T cells were successfully transduced and the CAR protein expression was confirmed by flow cytometry and Western blot. When cocultured with CD19 positive leukemia cell line Nalm-6 cells, CAR-T cells showed specific cytotoxicity: the percentage of target cells decreased to 0 in 24 hours; IL-2, IFN-γ and TNF-α produced in cocultured supernatants increased obviously; and the cytotoxicity reached more than 80%, still remarkable even when the E:T ratio was as low as 1:4. Dynamic change of cell interaction between CAR-T and leukemia cells was visually tracked by using living cells workstation for the first time. A NOD/SCID B-ALL murine model was established using Nalm-6 cells inoculation with a morbidity rate of 100%, and the survival time was prolonged statistically with CAR-T cell treatment. These data demonstrate that the CAR-T cells we prepared could be a promising treatment strategy for CD19 positive tumor diseases. PMID:26840021

  10. Targeting the TAM Receptors in Leukemia.

    Science.gov (United States)

    Huey, Madeline G; Minson, Katherine A; Earp, H Shelton; DeRyckere, Deborah; Graham, Douglas K

    2016-11-08

    Targeted inhibition of members of the TAM (TYRO-3, AXL, MERTK) family of receptor tyrosine kinases has recently been investigated as a novel strategy for treatment of hematologic malignancies. The physiologic functions of the TAM receptors in innate immune control, natural killer (NK) cell differentiation, efferocytosis, clearance of apoptotic debris, and hemostasis have previously been described and more recent data implicate TAM kinases as important regulators of erythropoiesis and megakaryopoiesis. The TAM receptors are aberrantly or ectopically expressed in many hematologic malignancies including acute myeloid leukemia, B- and T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. TAM receptors contribute to leukemic phenotypes through activation of pro-survival signaling pathways and interplay with other oncogenic proteins such as FLT3, LYN, and FGFR3. The TAM receptors also contribute to resistance to both cytotoxic chemotherapeutics and targeted agents, making them attractive therapeutic targets. A number of translational strategies for TAM inhibition are in development, including small molecule inhibitors, ligand traps, and monoclonal antibodies. Emerging areas of research include modulation of TAM receptors to enhance anti-tumor immunity, potential roles for TYRO-3 in leukemogenesis, and the function of the bone marrow microenvironment in mediating resistance to TAM inhibition.

  11. Targeting the TAM Receptors in Leukemia

    Directory of Open Access Journals (Sweden)

    Madeline G. Huey

    2016-11-01

    Full Text Available Targeted inhibition of members of the TAM (TYRO-3, AXL, MERTK family of receptor tyrosine kinases has recently been investigated as a novel strategy for treatment of hematologic malignancies. The physiologic functions of the TAM receptors in innate immune control, natural killer (NK cell differentiation, efferocytosis, clearance of apoptotic debris, and hemostasis have previously been described and more recent data implicate TAM kinases as important regulators of erythropoiesis and megakaryopoiesis. The TAM receptors are aberrantly or ectopically expressed in many hematologic malignancies including acute myeloid leukemia, B- and T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. TAM receptors contribute to leukemic phenotypes through activation of pro-survival signaling pathways and interplay with other oncogenic proteins such as FLT3, LYN, and FGFR3. The TAM receptors also contribute to resistance to both cytotoxic chemotherapeutics and targeted agents, making them attractive therapeutic targets. A number of translational strategies for TAM inhibition are in development, including small molecule inhibitors, ligand traps, and monoclonal antibodies. Emerging areas of research include modulation of TAM receptors to enhance anti-tumor immunity, potential roles for TYRO-3 in leukemogenesis, and the function of the bone marrow microenvironment in mediating resistance to TAM inhibition.

  12. Leukemia - B-Cell Prolymphocytic Leukemia and Hairy Cell Leukemia

    Science.gov (United States)

    ... Leukemia - B-cell Prolymphocytic Leukemia and Hairy Cell Leukemia Introduction Statistics Risk Factors Symptoms and Signs Diagnosis Stages Treatment Options About Clinical Trials Latest Research ...

  13. Radiotherapy for leukemia in children, (1). Radiotherapy for central nervous system leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Toru; Konishi, Kiyosaburo; Sato, Noriko; Fujiwara, Fumihiro [Maizuru National Hospital, Kyoto (Japan)

    1983-07-01

    Following the development of effective chemotherapy for producing remissions of acute lymphocytic leukemia (ALL), a new phenomenon has emerged in this disease--central nervous system (CNS) leukemia. CNS leukemia has become an increasingly frequent obstacle to prolongation of initial complete remission. Prophylactic irradiation of the CNS concomitant with intrathecal administration of methotrexate (IT-MTX) has proved to be effective in the reduction of CNS involvement. The purpose of this paper is to describe the results of irradiation for prevention of CNS leukemia and to discuss their implications. The patients consisted of 32 children with acute leukemia, admitted to MAIZURU National Hospital from 1966 to 1980; 22 patients of them had ALL, the others ANLL (acute non-lymphocytic leukemia). Preventive CNS therapy was started in 1974, (group A), but there was no prevention before 1974 (group B). 1. In group B, six patients was treated by therapeutic cranial irradiation, but all cases resulted in death. 2. In group A, seven patients was treated by prophylactic cranial irradiation combined with IT-MTX, and all of them have been alive without CNS relapse for 2 to 4 2/3 years after therapy. 3. In group A, none of 7 patients (0 %) relapsed CNS leukemia initially as compared to 7 (50 %) of 14 in group B, thus preventive efficacy was clear. 4. There were no severe complications attributable to the radiotherapy, with or without IT-MTX.

  14. Heterogeneity of clonogenic cells in acute myeloblastic leukemia.

    OpenAIRE

    Sabbath, K D; Ball, E D; Larcom, P; Davis, R B; Griffin, J D

    1985-01-01

    The expression of differentiation-associated surface antigens by the clonogenic leukemic cells from 20 patients with acute myeloblastic leukemia (AML) was studied with a panel of seven cytotoxic monoclonal antibodies (anti-Ia, -MY9, -PM-81, -AML-2-23, -Mol, -Mo2, and -MY3). The surface antigen phenotypes of the clonogenic cells were compared with the phenotypes of the whole leukemic cell population, and with the phenotypes of normal hematopoietic progenitor cells. In each case the clonogenic ...

  15. Oxygen radical detoxification enzymes in doxorubicin-sensitive and -resistant P388 murine leukemia cells

    International Nuclear Information System (INIS)

    Ramu, A.; Cohen, L.; Glaubiger, D.

    1984-01-01

    One of the proposed mechanisms for the cytotoxic effects of anthracycline compounds suggests that the effect is mediated through the formation of intracellular superoxide radicals. It is therefore possible that doxorubicin resistance is associated with increased intracellular enzyme capacity to convert these superoxide radicals to inactive metabolites. We have measured the relative activities of superoxide dismutase, glutathione peroxidase, and catalase in P388 mouse leukemia cells and in a doxorubicin-resistant subline. Since oxygen-reactive metabolites also play a role in mediating the cytotoxicity of ionizing radiation, the radiosensitivity of both cell lines was also studied. No significant differences in superoxide dismutase activity between these cell lines was observed, indicating that they have a similar capacity to convert superoxide anion radicals to hydrogen peroxide. P388 cells that are resistant to doxorubicin have 1.5 times the glutathione content and 1.5 times the activity of glutathione peroxidase measured in drug-sensitive P388 cells. However, incubation with 1-chloro-2,4-dinitrobenzene, which covalently binds glutathione, had no effect on the sensitivity of either cell line to doxorubicin. Measured catalase activity in drug-resistant P388 cells was one-third of the activity measured in doxorubicin-sensitive P388 cells. The activity of this enzyme was much higher than that of glutathione peroxidase in terms of H 2 O 2 deactivation in both cell lines. It is therefore unlikely that doxorubicin-resistant P388 cells have an increased ability to detoxify reactive oxygen metabolites when compared to drug-sensitive cells. Doxorubicin-resistant P388 cells were significantly more sensitive to X-irradiation than were drug-sensitive P388 cells. These observations suggest that the difference in catalase activity in these cell lines may be associated with the observed differences in radiosensitivity

  16. Microchip screening platform for single cell assessment of NK cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Karolin eGuldevall

    2016-04-01

    Full Text Available Here we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK cells within larger populations. Human primary NK cells were distributed across a silicon-glass microchip containing 32 400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75% were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3 target cells within the 12 hours long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g. in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy.

  17. Microchip Screening Platform for Single Cell Assessment of NK Cell Cytotoxicity

    Science.gov (United States)

    Guldevall, Karolin; Brandt, Ludwig; Forslund, Elin; Olofsson, Karl; Frisk, Thomas W.; Olofsson, Per E.; Gustafsson, Karin; Manneberg, Otto; Vanherberghen, Bruno; Brismar, Hjalmar; Kärre, Klas; Uhlin, Michael; Önfelt, Björn

    2016-01-01

    Here, we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK) cells within larger populations. Human primary NK cells were distributed across a silicon–glass microchip containing 32,400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis, the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75%) were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3) target cells within the 12-h long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors, it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g., in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy. PMID:27092139

  18. Alantolactone selectively ablates acute myeloid leukemia stem and progenitor cells

    Directory of Open Access Journals (Sweden)

    Yahui Ding

    2016-09-01

    Full Text Available Abstract Background The poor outcomes for patients diagnosed with acute myeloid leukemia (AML are largely attributed to leukemia stem cells (LSCs which are difficult to eliminate with conventional therapy and responsible for relapse. Thus, new therapeutic strategies which could selectively target LSCs in clinical leukemia treatment and avoid drug resistance are urgently needed. However, only a few small molecules have been reported to show anti-LSCs activity. Methods The aim of the present study was to identify alantolactone as novel agent that can ablate acute myeloid leukemia stem and progenitor cells from AML patient specimens and evaluate the anticancer activity of alantolactone in vitro and in vivo. Results The present study is the first to demonstrate that alantolactone, a prominent eudesmane-type sesquiterpene lactone, could specifically ablate LSCs from AML patient specimens. Furthermore, in comparison to the conventional chemotherapy drug, cytosine arabinoside (Ara-C, alantolactone showed superior effects of leukemia cytotoxicity while sparing normal hematopoietic cells. Alantolactone induced apoptosis with a dose-dependent manner by suppression of NF-kB and its downstream target proteins. DMA-alantolactone, a water-soluble prodrug of alantolactone, could suppress tumor growth in vivo. Conclusions Based on these results, we propose that alantolactone may represent a novel LSCs-targeted therapy and eudesmane-type sesquiterpene lactones offer a new scaffold for drug discovery towards anti-LSCs agents.

  19. Leukemia

    International Nuclear Information System (INIS)

    Mabuchi, Kiyohiko; Kusumi, Shizuyo

    1992-01-01

    Leukemia is the first malignant disease found among A-bomb survivors. Leukemia registration has greatly contributed to epidemiological and hematological studies on A-bomb radiation-related leukemia and other hematopoietic diseases, consisting of community population and the RERF Life Span Study (LSS) sample (approximately 120,000 persons containing A-bomb survivors). Using the fixed LSS cohort, the prevalence rate of leukemia reached the peak during the years 1950-1954, and thereafter, it has been gradually decreased. However, risk patterns for leukemia are still unsolved: has leukemia risk increased in recent years?; are serial changes in leukemia risk influenced by age at the time of exposure (ATE)?; is there variation between Hiroshima and Nagasaki?; and others. To solve these questions, leukemia data are now under analysis using the revised DS86. Relative risk for leukemia, especially chronic myelogenous leukemia and acute lymphocytic leukemia (ALL), is found to be linearly increased with increasing bone marrow doses. Serial patterns of both excess risk and excess relative risk have revealed that leukemia risk is high at 5-10 years after A-bombing in younger A-bomb survivors ATE. The influence of age ATE on serial changes is noticeable in ALL. Another factor involved in the prevalence of leukemia is background (spontaneously developed leukemia), which is the recent interest because young A-bomb survivors ATE reach the cancer-prone age. (N.K.)

  20. Development of tumor-reactive T cells after nonmyeloablative allogeneic hematopoietic stem cell transplant for chronic lymphocytic leukemia.

    Science.gov (United States)

    Nishida, Tetsuya; Hudecek, Michael; Kostic, Ana; Bleakley, Marie; Warren, Edus H; Maloney, David; Storb, Rainer; Riddell, Stanley R

    2009-07-15

    Allogeneic nonmyeloablative hematopoietic stem cell transplant (NM-HSCT) can result in durable remission of chronic lymphocytic leukemia (CLL). It is thought that the efficacy of NM-HSCT is mediated by recognition of tumor cells by T cells in the donor stem cell graft. We evaluated the development of CTLs specific for CLL after NM-HSCT to determine if their presence correlated with antitumor efficacy. Peripheral blood mononuclear cells obtained from 12 transplant recipients at intervals after NM-HSCT were stimulated in vitro with CLL cells. Polyclonal T-cell lines and CD8(+) T-cell clones were derived from these cultures and evaluated for lysis of donor and recipient target cells including CLL. The presence and specificity of responses was correlated with clinical outcomes. Eight of the 12 patients achieved remission or a major antitumor response and all 8 developed CD8(+) and CD4(+) T cells specific for antigens expressed by CLL. A clonal analysis of the CD8(+) T-cell response identified T cells specific for multiple minor histocompatibility (H) antigens expressed on CLL in six of the responding patients. A significant fraction of the CD8(+) T-cell response in some patients was also directed against nonshared tumor-specific antigens. By contrast, CLL-reactive T cells were not detected in the four patients who had persistent CLL after NM-HSCT, despite the development of graft-versus-host disease. The development of a diverse T-cell response specific for minor H and tumor-associated antigens expressed by CLL predicts an effective graft-versus-leukemia response after NM-HSCT.

  1. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    International Nuclear Information System (INIS)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Ikehara, Yuzuru; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki

    2016-01-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O 2 /He or N 2 /He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation. (paper)

  2. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    Science.gov (United States)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki; Ikehara, Yuzuru

    2016-10-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O2/He or N2/He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation.

  3. A role of ZnO nanoparticle electrostatic properties in cancer cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Wingett D

    2016-07-01

    Full Text Available Denise Wingett,1–3 Panagiota Louka,1 Catherine B Anders,2 Jianhui Zhang,4 Alex Punnoose2,41Department of Biological Sciences, 2Biomolecular Sciences PhD Program, Boise State University, Boise, ID, 3Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, 4Department of Physics, Boise State University, Boise, ID, USA Abstract: ZnO nanoparticles (NPs have previously been shown to exhibit selective cytotoxicity against certain types of cancerous cells suggesting their potential use in biomedical applications. In this study, we investigate the effect of surface modification of ZnO NPs on their cytotoxicity to both cancerous and primary T cells. Our results show that polyacrylic acid capping produces negatively charged ZnO NPs that are significantly more toxic compared to uncapped positively charged NPs of identical size and composition. In contrast, the greatest selectivity against cancerous cells relative to normal cells is observed with cationic NPs. In addition, differences in NP cytotoxicity inversely correlate with NP hydrodynamic size, propensity for aggregation, and dissolution profiles. The generation of reactive oxygen species (ROS was also observed in the toxicity mechanism with anionic NPs generating higher levels of mitochondrial superoxide without appreciably affecting glutathione levels. Additional experiments evaluated the combined effects of charged ZnO NPs and nontoxic cationic or anionic CeO2 NPs. Results show that the CeO2 NPs offer protective effects against cytotoxicity from anionic ZnO NPs via antioxidant properties. Altogether, study data indicate that surface modification of NPs and resulting changes in their surface charge affect the level of intracellular ROS production, which can be ameliorated by the CeO2 ROS scavenger, suggesting that ROS generation is a dominant mechanism of ZnO NP cytotoxicity. These findings demonstrate the importance of surface electrostatic

  4. Cytotoxicity and modes of action of four Cameroonian dietary spices ethno-medically used to treat cancers: Echinops giganteus, Xylopia aethiopica, Imperata cylindrica and Piper capense.

    Science.gov (United States)

    Kuete, Victor; Sandjo, Louis P; Wiench, Benjamin; Efferth, Thomas

    2013-08-26

    Echinops giganteus, Imperata cylindrica, Piper capense and Xylopia aethiopica are four medicinal spices used in Cameroon to treat cancers. The above plants previously displayed cytotoxicity against leukemia CCRF-CEM and CEM/ADR5000 cell lines as well as human pancreatic MiaPaCa-2 cells. The present study aims at emphasizing the study of the cytotoxicity and the modes of action of the above plants on a panel of ten cancer cell lines including various sensitive and drug-resistant phenotypes. The study has been extended to the isolation of the bioactive constituents from Echinops giganteus. The cytotoxicity of the extracts was determined using a resazurin reduction assay, whereas the caspase-Glo assay was used to detect the activation of caspases 3/7, caspase 8 and caspase 9 in cells treated with the four extracts. Flow cytometry was used for cell cycle analysis and detection of apoptotic cells, analysis of mitochondrial membrane potential (MMP) as well as measurement of reactive oxygen species (ROS). The four tested extracts inhibited the proliferation of all tested cancer cell lines including sensitive and drug-resistant phenotypes. Collateral sensitivity of cancer cells to the extract of Echinops giganteus was generally better than to doxorubicin. The recorded IC50 ranges were 3.29 µg/mL [against human knockout clones HCT116 (p53(-/-)) colon cancer cells] to 14.32 µg/mL (against human liver hepatocellular carcinoma HepG2 cells) for the crude extract from Echinops giganteus, 4.17 µg/mL (against breast cancer cells transduced with control vector MDA-MB231 cells) to 19.45 µg/mL (against MDA-MB-231 BCRP cells) for that of Piper capense, 4.11 µg/mL (against leukemia CCRF-CEM cells) to 30.60 µg/mL (against leukemia HL60AR cells) for Xylopia aethiopica, 3.28 µg/mL [against HCT116 (p53(-/-)) cells] to 33.43 µg/mL (against HepG2 cells) for Imperata cylindica and 0.11 µg/mL (against CCRF-CEM cells) to 132.47 µg/mL (against HL60AR cells) for doxorubicin. The four

  5. Cytotoxic effects of S-(dimethylarsino)-glutathione: A putative intermediate metabolite of inorganic arsenicals

    International Nuclear Information System (INIS)

    Hirano, Seishiro; Kobayashi, Yayoi

    2006-01-01

    Glutathione (GSH) plays an important role in the metabolism of arsenite and arsenate by generating arsenic-glutathione complexes. Although dimethylarsinic acid (DMA V ) is the major metabolite of inorganic arsenicals (iAs) in urine, it is not clear how DMA V is produced from iAs. In the present study we report that S-(dimethylarsino)-glutathione (DMA III (SG)), a putative precursor of dimethylarsinic acid DMA V , was unstable in the culture medium without excess GSH and generated volatile substances which were highly cytotoxic for both rat heart microvascular endothelial cells and HL60, a human leukemia cell line. Cytotoxicity of DMA III (SG) was higher than that of iAs and its LC 5 value was calculated to be 7.8 μM in the endothelial cells. To our surprise DMA III (SG) effectively killed cells in the neighbor wells of the same multi-well dish, indicating that volatile toxic compounds generated from DMA III (SG) in the culture medium. High performance lipid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) analyses suggested that the freshly generated volatile compounds dissolved into aqueous solution and formed an unstable arsenic compound and the unstable compound was further converted to DMA V . These results suggested that DMA III (SG) exerts its cytotoxicity by generating volatile arsenicals and is implicated in the metabolic conversion of inorganic arsenicals into DMA V , a major final metabolite of inorganic arsenicals in most mammals

  6. Acquired Dependence of Acute Myeloid Leukemia on the DEAD-Box RNA Helicase DDX5

    Directory of Open Access Journals (Sweden)

    Anthony Mazurek

    2014-06-01

    Full Text Available Acute myeloid leukemia (AML therapy involves compounds that are cytotoxic to both normal and cancer cells, and relapsed AML is resistant to subsequent chemotherapy. Thus, agents are needed that selectively kill AML cells with minimal toxicity. Here, we report that AML is dependent on DDX5 and that inhibiting DDX5 expression slows AML cell proliferation in vitro and AML progression in vivo but is not toxic to cells from normal bone marrow. Inhibition of DDX5 expression in AML cells induces apoptosis via induction of reactive oxygen species (ROS. This apoptotic response can be blocked either by BCL2 overexpression or treatment with the ROS scavenger N-acetyl-L-cysteine. Combining DDX5 knockdown with a BCL2 family inhibitor cooperates to induce cell death in AML cells. By inhibiting DDX5 expression in vivo, we show that DDX5 is dispensable for normal hematopoiesis and tissue homeostasis. These results validate DDX5 as a potential target for blocking AML.

  7. Oxidative stress in normal hematopoietic stem cells and leukemia.

    Science.gov (United States)

    Samimi, Azin; Kalantari, Heybatullah; Lorestani, Marzieh Zeinvand; Shirzad, Reza; Saki, Najmaldin

    2018-04-01

    Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  8. The human T-cell leukemia virus type-1 p30II protein activates p53 and induces the TIGAR and suppresses oncogene-induced oxidative stress during viral carcinogenesis.

    Science.gov (United States)

    Romeo, Megan; Hutchison, Tetiana; Malu, Aditi; White, Averi; Kim, Janice; Gardner, Rachel; Smith, Katie; Nelson, Katherine; Bergeson, Rachel; McKee, Ryan; Harrod, Carolyn; Ratner, Lee; Lüscher, Bernhard; Martinez, Ernest; Harrod, Robert

    2018-05-01

    In normal cells, aberrant oncogene expression leads to the accumulation of cytotoxic metabolites, including reactive oxygen species (ROS), which can cause oxidative DNA-damage and apoptosis as an intrinsic barrier against neoplastic disease. The c-Myc oncoprotein is overexpressed in many lymphoid cancers due to c-myc gene amplification and/or 8q24 chromosomal translocations. Intriguingly, p53 is a downstream target of c-Myc and hematological malignancies, such as adult T-cell leukemia/lymphoma (ATL), frequently contain wildtype p53 and c-Myc overexpression. We therefore hypothesized that p53-regulated pro-survival signals may thwart the cell's metabolic anticancer defenses to support oncogene-activation in lymphoid cancers. Here we show that the Tp53-induced glycolysis and apoptosis regulator (TIGAR) promotes c-myc oncogene-activation by the human T-cell leukemia virus type-1 (HTLV-1) latency-maintenance factor p30 II , associated with c-Myc deregulation in ATL clinical isolates. TIGAR prevents the intracellular accumulation of c-Myc-induced ROS and inhibits oncogene-induced cellular senescence in ATL, acute lymphoblastic leukemia, and multiple myeloma cells with elevated c-Myc expression. Our results allude to a pivotal role for p53-regulated antioxidant signals as mediators of c-Myc oncogenic functions in viral and non-viral lymphoid tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Cytotoxic diterpenoids from the roots of Salvia lachnocalyx

    Directory of Open Access Journals (Sweden)

    Hossein Hadavand Mirzaei

    Full Text Available ABSTRACT Salvia lachnocalyx Hedge, Lamiaceae, is an endemic sage which grows naturally in the Fars Province of Iran. The phytochemical analyses of the roots of S. lachnocalyx led to the isolation of five known diterpenoids: ferruginol (1, taxodione (2, sahandinone (3, 4-dehydrosalvilimbinol (4 and labda-7,14-dien-13-ol (5. Their chemical structures were elucidated using one (1H and 13C and two dimensional (COSY, HSQC and HMBC NMR spectroscopic data as well as electron impact mass spectra. The cytotoxicity of the purified compounds was evaluated against three human cancer cell lines; MOLT-4 (acute lymphoblastic leukemia, HT-29 (colorectal adenocarcinoma and MCF7 (breast adenocarcinoma and all of the isolated compounds showed considerable cytotoxic activity against these cell lines. Compounds 2 and 3 (IC50 range: 0.41–3.87 µg/ml with endocyclic α,β-unsaturated carbonyl functional group, exhibited the highest cytotoxic activities compared to the other compounds (IC50 range: 6.85–17.23 µg/ml. In conclusion, compounds 2 and 3 are presented as compounds that deserve further investigation of their biological activities.

  10. GENERATION OF CYTOTOXIC LYMPHOCYTES IN MIXED LYMPHOCYTE REACTIONS

    Science.gov (United States)

    Forman, James; Möller, Göran

    1973-01-01

    Generation of cytotoxic effector cells by a unidirectional mixed lymphocyte reaction (MLR) in the mouse H-2 system was studied using labeled YAC (H-2a) leukemia cells as targets. The responding effector cell displayed a specific cytotoxic effect against target cells of the same H-2 genotype as the stimulating cell population. Killing of syngeneic H-2 cells was not observed, even when the labeled target cells were "innocent bystanders" in cultures where specific target cells were reintroduced. Similar results were found with spleen cells taken from mice sensitized in vivo 7 days earlier. The effector cell was not an adherent cell and was not activated by supernatants from MLR. The supernatants were not cytotoxic by themselves. When concanavalin A or phytohemagglutinin was added to the cytotoxic test system, target and effector cells were agglutinated. Under these conditions, killing of H-2a target cells was observed in mixed cultures where H-2a lymphocytes were also the effector cells. These findings indicate that specifically activated, probably thymus-derived lymphocytes, can kill nonspecifically once they have been activated and providing there is close contact between effector and target cells. Thus, specificity of T cell killing appears to be restricted to recognition and subsequent binding to the targets, the actual effector phase being nonspecific. PMID:4269560

  11. In vitro Cytotoxic Activity of Four Plants Used in Persian Traditional Medicine

    Directory of Open Access Journals (Sweden)

    Fatemeh Zare Shahneh

    2013-08-01

    Full Text Available Purpose: The aim of this study was to investigate in vitro cytotoxic activity of four methanolic crude plant extracts against panel cell lines. Methods: Methanolic extracts were tested for their possible antitumor activity and cytotoxicity using the 3-(4,5-dimetylthiazol-2-yl-2,5- diphenyltetrazolium bromide (MTT assay on six cancer cell lines; non-Hodgkin’s B-cell lymphoma (Raji, human leukemic monocyte lymphoma (U937, human acute myelocytic leukemia (KG-1A, human breast carcinoma (MCF-7 cells, human Prostate Cancer (PC3 and mouse fibrosarcoma (WEHI-164 cell lines and one normal cell line; Human Umbilical Vein Endothelial Cells (HUVEC. Results: All species showed dose dependent inhibition of cell proliferation. IC50 values ranging from 25.66±1.2 to 205.11±1.3 μg/ml. The highest cytotoxic activity Chelidonium majus L> Ferulago Angulata DC> Echinophora platyloba DC> Salvia officinalis L, respectively. Conclusion: all extracts demonstrate promising cytotoxicity activity as a natural resource for future bio-guided fractionation and isolation of potential antitumor agents.

  12. PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia.

    Science.gov (United States)

    Padua, Rose Ann; Larghero, Jerome; Robin, Marie; le Pogam, Carol; Schlageter, Marie-Helene; Muszlak, Sacha; Fric, Jan; West, Robert; Rousselot, Philippe; Phan, Thi Hai; Mudde, Liesbeth; Teisserenc, Helene; Carpentier, Antoine F; Kogan, Scott; Degos, Laurent; Pla, Marika; Bishop, J Michael; Stevenson, Freda; Charron, Dominique; Chomienne, Christine

    2003-11-01

    Despite improved molecular characterization of malignancies and development of targeted therapies, acute leukemia is not curable and few patients survive more than 10 years after diagnosis. Recently, combinations of different therapeutic strategies (based on mechanisms of apoptosis, differentiation and cytotoxicity) have significantly increased survival. To further improve outcome, we studied the potential efficacy of boosting the patient's immune response using specific immunotherapy. In an animal model of acute promyelocytic leukemia, we developed a DNA-based vaccine by fusing the human promyelocytic leukemia-retinoic acid receptor-alpha (PML-RARA) oncogene to tetanus fragment C (FrC) sequences. We show for the first time that a DNA vaccine specifically targeted to an oncoprotein can have a pronounced effect on survival, both alone and when combined with all-trans retinoic acid (ATRA). The survival advantage is concomitant with time-dependent antibody production and an increase in interferon-gamma (IFN-gamma). We also show that ATRA therapy on its own triggers an immune response in this model. When DNA vaccination and conventional ATRA therapy are combined, they induce protective immune responses against leukemia progression in mice and may provide a new approach to improve clinical outcome in human leukemia.

  13. Synthesis and in vitro cytotoxicity of mPEG-SH modified gold nanorods

    Science.gov (United States)

    Didychuk, Candice L.; Ephrat, Pinhas; Belton, Michelle; Carson, Jeffrey J. L.

    2008-02-01

    Plasmon-resonant gold nanorods show great potential as an agent for contrast-enhanced biomedical imaging or for phototherapeutics. This is primarily due to the high molar extinction coefficient at the absorption maximum and the dependence of the wavelength of the absorption maximum on the aspect ratio, which is tunable in the near-infrared (NIR) during synthesis. Although gold nanorods can be produced in high-yield through the seed-mediated growth technique, the presence of residual cetyltrimethylammonium bromide (CTAB), a stabilizing surfactant required for nanorod growth, interferes with cell function and causes cytotoxicity. To overcome this potential obstacle to in vivo use, we synthesized gold nanorods and conjugated them to a methoxy (polyethylene glycol)-thiol (mPEG (5000)-SH). This approach yielded mPEG-SH modified gold nanorods with optical and morphometric properties that were similar to raw (CTAB) nanorods. Both the CTAB and mPEG-SH nanorods were tested for cytotoxicity against the HL-60 human leukemia cell line by trypan blue exclusion, and the mPEG-SH modified gold nanorods were also tested against a rat insulinoma (RIN-38) and squamous cell carcinoma (SCCVII) cell line. Cells incubated for 24 h with the mPEG-SH modified nanorods had little change in cell viability compared to cells incubated with vehicle alone. This was in contrast to cytotoxicity of CTAB nanorods on HL-60 cells. These results suggest that mPEG-SH modified gold nanorods are better suited for cell loading protocols and injection into animals and facilitate their use for imaging and phototherapeutic purposes.

  14. 10-Acetylirciformonin B, A Sponge Furanoterpenoid, Induces DNA Damage and Apoptosis in Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Fu-Wen Kuo

    2012-10-01

    Full Text Available 10-Acetylirciformonin B, a furanoterpenoid derived from irciformonin B found in a marine sponge, has been reported to possess potent cytotoxic activity against several cancer cell lines. However, the mechanism of its apoptotic activity against human leukemia cells has never been reported. The purpose of this study was to investigate the cytotoxic effects of 10-acetylirciformonin B and its possible mechanism of action against leukemia HL 60 cells. We found that 10-acetylirciformonin B decreased cell viability through the inhibition of cell growth as well as the induction of DNA damage and apoptosis in a dose-dependent manner. The induction of DNA damage was mediated by the increase of p-CHK2 and γ-H2A.X, which was suggested from the increase of tail movement in the neutral Comet assay. Induction of apoptosis was mediated with the increase in caspases 8, 9 and 3 activation as well as PARP cleavage. In summary, our resultsindicate that 10-acetylirciformonin B treatment causes apoptosis in leukaemia cells; probably through a caspase-dependent regulatory pathway.

  15. Generation of B-cell chronic lymphocytic leukemia (B-CLL)-reactive T-cell lines and clones from HLA class I-matched donors using modified B-CLL cells as stimulators: implications for adoptive immunotherapy.

    Science.gov (United States)

    Hoogendoorn, M; Wolbers, J Olde; Smit, W M; Schaafsma, M R; Barge, R M Y; Willemze, R; Falkenburg, J H F

    2004-07-01

    Allogeneic stem cell transplantation following reduced-intensity conditioning is being evaluated in patients with advanced B-cell chronic lymphocytic leukemia (B-CLL). The curative potential of this procedure is mediated by donor-derived alloreactive T cells, resulting in a graft-versus-leukemia effect. However, B-CLL may escape T-cell-mediated immune reactivity since these cells lack expression of costimulatory molecules. We examined the most optimal method to transform B-CLL cells into efficient antigen-presenting cells (APC) using activating cytokines, by triggering toll-like receptors (TLRs) using microbial pathogens and by CD40 stimulation with CD40L-transfected fibroblasts. CD40 activation in the presence of IL-4 induced strongest upregulation of costimulatory and adhesion molecules on B-CLL cells and induced the production of high amounts of IL-12 by the leukemic cells. In contrast to primary B-CLL cells as stimulator cells, these malignant APCs were capable of inducing the generation of B-CLL-reactive CD8(+) CTL lines and clones from HLA class I-matched donors. These CTL lines and clones recognized and killed primary B-CLL as well as patient-derived lymphoblasts, but not donor cells. These results show the feasibility of ex vivo generation of B-CLL-reactive CD8(+) CTLs. This opens new perspectives for adoptive immunotherapy, following allogeneic stem cell transplantation in patients with advanced B-CLL.

  16. Epidemiology and Clinical Significance of Secondary and Therapy-Related Acute Myeloid Leukemia

    DEFF Research Database (Denmark)

    Granfeldt Østgård, Lene Sofie; Medeiros, Bruno C; Sengeløv, Henrik

    2015-01-01

    PURPOSE: Secondary and therapy-related acute myeloid leukemia (sAML and tAML, respectively) remain therapeutic challenges. Still, it is unclear whether their inferior outcome compared with de novo acute myeloid leukemia (AML) varies as a result of previous hematologic disease or can be explained...... leukemia and myeloproliferative neoplasia) versus de novo AML. Limited to intensive therapy patients, we compared chance of complete remission by logistic regression analysis and used a pseudo-value approach to compare relative risk (RR) of death at 90 days, 1 year, and 3 years, overall and stratified...... myeloid disorder or prior cytotoxic exposure was associated with decreased complete remission rates and inferior survival (3-year adjusted RR for MDS-sAML, non-MDS-sAML, and tAML: RR, 1.14; 95% CI, 1.02 to 1.32; RR, 1.27; 95% CI, 1.16 to 1.34; and RR, 1.16; 95% CI, 1.03 to 1.32, respectively) compared...

  17. Synthesis and cytotoxicity evaluation of thiosemicarbazones and their thiazole derivatives

    Directory of Open Access Journals (Sweden)

    Saulo Feheiberg Pinto Braga

    Full Text Available ABSTRACT The aims of this study were to synthesize a series of thiosemicarbazones and their thiazole derivatives, to investigate their cytotoxic activity against three human cancers and normal (Vero cells cell lines, and to evaluate the pro-apoptotic potential of the most active compounds. Materials and Methods: The thiosemicarbazones were obtained by reacting an aromatic aldehyde with thiosemicarbazide (yield 71-96%, which were subjected to a cyclization with α-bromoacetophenone to yield the required thiazole heterocycles (yield 63-100%. All the synthesized compounds were screened at 50 µM concentration against three cell lines representing HL60 (promyelocytic leukemia, Jurkat (acute lymphoblastic leukemia, and MCF-7 (breast cancer. The pro-apoptotic effect was measured by flow cytometry as the percentage of cells with hypodiploid DNA. Results: Three thiazole compounds showed activity against at least one tumor cell line (IC50 = 43-76 µM and low cytotoxicity against Vero cells (IC50 > 100 M. The most active compound of this series induced 91% and 51% DNA fragmentation in HL60 and MCF-7 cell lines, respectively, suggesting that this compound triggered apoptosis in these cells. Conclusion: Among the synthesized compounds, one in particular was found to exert antiproliferative and pro-apoptotic activity on tumor cells and can be considered promising as a lead molecule for the design of new analogues with improved activity.

  18. Simplified Method to Produce Human Bioactive Leukemia Inhibitory Factor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Houman Kahroba

    2016-07-01

    Full Text Available Background Human leukemia inhibitory factor (hLIF is a poly functional cytokine with numerous regulatory effects on different cells. Main application of hLIF is maintaining pluripotency of embryonic stem cells. hLIF indicated effective work in implantation rate of fertilized eggs and multiple sclerosis (MS treatment. Low production of hLIF in eukaryotic cells and prokaryotic host’s problems for human protein production convinced us to develop a simple way to reach high amount of this widely used clinical and research factor. Objectives In this study we want to purify recombinant human leukemia inhibitory factor in single simple method. Materials and Methods This is an experimental study, gene expression: human LIF gene was codon optimized for expression in Escherichia coli and attached his-tag tail to make it extractable. After construction and transformation of vector to E. coli, isopropyl β-D-1-thiogalactopyranoside (IPTG used for induction. Single step immobilized metal affinity chromatography (IMAC used for purification confirmed by Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE and western blotting. Bioactivity of the hLIF were tested by MTT assay with TF-1 cells and CISH gene stimulation in monocyte and TF-1 by real-time PCR. Induction by 0.4 mM of IPTG in 25°C for 3 hours indicated best result for soluble expression. SPSS indicated P ˂ 0.05 that is significant for our work. Results Cloning, expression, and extraction of bio active rhLIF was successfully achieved according MTT assay and real time PCR after treatment of TF-1 and monocyte cell lines. Conclusions We developed an effective single step purification method to produce bioactive recombinant hLIF in E. coli. For the first time we used CISH gene stimulating for bioactivity test for qualifying of recombinant hLIF for application.

  19. Dexamethasone-(C21-phosphoramide)-[anti-EGFR]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency against pulmonary adenocarcinoma (A549).

    Science.gov (United States)

    Coyne, Cody P; Narayanan, Lakshmi

    2016-01-01

    Corticosteroids are effective in the management of a variety of disease states, such as several forms of neoplasia (leukemia and lymphoma), autoimmune conditions, and severe inflammatory responses. Molecular strategies that selectively "target" delivery of corticosteroids minimize or prevents large amounts of the pharmaceutical moiety from passively diffusing into normal healthy cell populations residing within tissues and organ systems. The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR] was synthesized by reacting dexamethasone-21-monophosphate with a carbodiimide reagent to form a dexamethasone phosphate carbodiimide ester that was subsequently reacted with imidazole to create an amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate. Monoclonal anti-EGFR immunoglobulin was combined with the amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate, resulting in the synthesis of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Following spectrophotometric analysis and validation of retained epidermal growth factor receptor type 1 (EGFR)-binding avidity by cell-ELISA, the selective anti-neoplasic cytotoxic potency of dexamethasone-(C21-phosphoramide)-[anti-EGFR] was established by MTT-based vitality stain methodology using adherent monolayer populations of human pulmonary adenocarcinoma (A549) known to overexpress the tropic membrane receptors EGFR and insulin-like growth factor receptor type 1. The dexamethasone:IgG molar-incorporation-index for dexamethasone-(C21-phosphoramide)-[anti-EGFR] was 6.95:1 following exhaustive serial microfiltration. Cytotoxicity analysis: covalent bonding of dexamethasone to monoclonal anti-EGFR immunoglobulin did not significantly modify the ex vivo antineoplastic cytotoxicity of dexamethasone against pulmonary adenocarcinoma at and between the standardized dexamethasone equivalent concentrations of 10(-9) M and 10(-5) M. Rapid increases in

  20. A chemical genetic screen for modulators of asymmetrical 2,2'-dimeric naphthoquinones cytotoxicity in yeast.

    Directory of Open Access Journals (Sweden)

    Ashkan Emadi

    Full Text Available BACKGROUND: Dimeric naphthoquinones (BiQ were originally synthesized as a new class of HIV integrase inhibitors but have shown integrase-independent cytotoxicity in acute lymphoblastic leukemia cell lines suggesting their use as potential anti-neoplastic agents. The mechanism of this cytotoxicity is unknown. In order to gain insight into the mode of action of binaphthoquinones we performed a systematic high-throughput screen in a yeast isogenic deletion mutant array for enhanced or suppressed growth in the presence of binaphthoquinones. METHODOLOGY/PRINCIPAL FINDINGS: Exposure of wild type yeast strains to various BiQs demonstrated inhibition of yeast growth with IC(50s in the microM range. Drug sensitivity and resistance screens were performed by exposing arrays of a haploid yeast deletion mutant library to BiQs at concentrations near their IC(50. Sensitivity screens identified yeast with deletions affecting mitochondrial function and cellular respiration as having increased sensitivity to BiQs. Corresponding to this, wild type yeast grown in the absence of a fermentable carbon source were particularly sensitive to BiQs, and treatment with BiQs was shown to disrupt the mitochondrial membrane potential and lead to the generation of reactive oxygen species (ROS. Furthermore, baseline ROS production in BiQ sensitive mutant strains was increased compared to wild type and could be further augmented by the presence of BiQ. Screens for resistance to BiQ action identified the mitochondrial external NAD(PH dehydrogenase, NDE1, as critical to BiQ toxicity and over-expression of this gene resulted in increased ROS production and increased sensitivity of wild type yeast to BiQ. CONCLUSIONS/SIGNIFICANCE: In yeast, binaphthoquinone cytotoxicity is likely mediated through NAD(PH:quonine oxidoreductases leading to ROS production and dysfunctional mitochondria. Further studies are required to validate this mechanism in mammalian cells.

  1. Dose- and Time-Dependent Response of Human Leukemia (HL-60 Cells to Arsenic Trioxide Treatment

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2006-06-01

    Full Text Available The treatment of acute promyelocytic leukemia (APL has been based on the administration of all-trans retinoic acid plus anthracycline chemotherapy, which is very effective as first line therapy; however 25 to 30% of patients will relapse with their disease becoming refractory to conventional therapy. Recently, studies have shown arsenic trioxide to be effective in the treatment of acute promyelocytic leukemia. In this study, we used the human leukemia (HL-60 cell line as a model to evaluate the cytoxicity of arsenic trioxide based on the MTT assay. Data obtained from this assay indicated that arsenic trioxide significantly reduced the viability of HL-60 cells, showing LD50 values of 14.26 + 0.5μg/mL, 12.54 + 0.3μg/mL, and 6.4 + 0.6μg/mL upon 6, 12, and 24 hours of exposure, respectively; indicating a dose- and time-dependent response relationship. Findings from the present study indicate that arsenic trioxide is highly cytotoxic to human leukemia (HL-60 cells, supporting its use as an effective therapeutic agent in the management of acute promyelocytic leukemia.

  2. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    International Nuclear Information System (INIS)

    Ristic, Biljana; Bosnjak, Mihajlo; Arsikin, Katarina; Mircic, Aleksandar; Suzin-Zivkovic, Violeta; Bogdanovic, Andrija; Perovic, Vladimir; Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2014-01-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  3. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, Biljana [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Bosnjak, Mihajlo [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Arsikin, Katarina [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Mircic, Aleksandar; Suzin-Zivkovic, Violeta [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Bogdanovic, Andrija [Clinic for Hematology, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade (Serbia); Perovic, Vladimir [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Trajkovic, Vladimir, E-mail: vtrajkovic@med.bg.ac.rs [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Harhaji-Trajkovic, Ljubica, E-mail: buajk@yahoo.com [Institute for Biological Research, University of Belgrade, Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade (Serbia)

    2014-08-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  4. EM23, a natural sesquiterpene lactone from Elephantopus mollis H.B.K., induces apoptosis in human myeloid leukemia cells through thioredoxin- and reactive oxygen species-mediated signaling pathways

    Directory of Open Access Journals (Sweden)

    Hongyu eLi

    2016-03-01

    Full Text Available Elephantopus mollis H.B.K. (EM is a traditional herbal medicine with multiple pharmacological activities. However, the efficacy of EM in treating human leukemia is currently unknown. In the current study, we report that EM23, a natural sesquiterpene lactone isolated from EM, inhibits the proliferation of human chronic myeloid leukemia K562 cells and acute myeloid leukemia HL-60 cells by inducing apoptosis. Translocation of membrane-associated phospholipid phosphatidylserines, changes in cell morphology, activation of caspases and cleavage of PARP were concomitant with this inhibition. The involvement of the mitochondrial pathway in EM23-mediated apoptosis was suggested by observed disruptions in mitochondrial membrane potential (MMP. Mechanistic studies indicated that EM23 caused a marked increase in the level of reactive oxygen species (ROS. Pretreatment with N-acetyl-L-cysteine (NAC, a ROS scavenger, almost fully reversed EM23-mediated apoptosis. In EM23-treated cells, the expression levels of thioredoxin (Trx and thioredoxinreductase (TrxR, two components of the Trx system involved in maintaining cellular redox homeostasis, were significantly down-regulated. Concomitantly, Trx regulated the activation of apoptosis signal-regulating kinase 1 (ASK1 and its downstream regulatory targets, the p38, JNK, and ERK MAPKs. EM23-mediated activation of ASK1/MAPKs was significantly inhibited in the presence of NAC. Furthermore, tumor necrosis factor alpha (TNF-α-mediated activation of nuclear factor-κB (NF-κB was suppressed by EM23, as suggested by the observed blockage of p65 nuclear translocation, phosphorylation and reversion of IκBα degradation following EM23 treatment. Taken together, these results provide important insights into the anticancer activities of the EM component EM23 against human chronic myeloid leukemia K562 cells and acute myeloid leukemia HL-60 cells.

  5. Cytotoxic, Antiproliferative and Pro-Apoptotic Effects of 5-Hydroxyl-6,7,3′,4′,5′-Pentamethoxyflavone Isolated from Lantana ukambensis

    Directory of Open Access Journals (Sweden)

    Wamtinga Richard Sawadogo

    2015-12-01

    Full Text Available Lantana ukambensis (Vatke Verdc. is an African food and medicinal plant. Its red fruits are eaten and highly appreciated by the rural population. This plant was extensively used in African folk medicinal traditions to treat chronic wounds but also as anti-leishmanial or cytotoxic remedies, especially in Burkina Faso, Tanzania, Kenya, or Ethiopia. This study investigates the in vitro bioactivity of polymethoxyflavones extracted from a L. ukambensis as anti-proliferative and pro-apoptotic agents. We isolated two known polymethoxyflavones, 5,6,7,3′,4′,5′-hexamethoxyflavone (1 and 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (2 from the whole plant of L. ukambensis. Their chemical structures were determined by spectroscopic analysis and comparison with published data. These molecules were tested for the anti-proliferative, cytotoxic and pro-apoptotic effects on human cancer cells. Among them, 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (2 was selectively cytotoxic against monocytic lymphoma (U937, acute T cell leukemia (Jurkat, and chronic myelogenous leukemia (K562 cell lines, but not against peripheral blood mononuclear cells (PBMCs from healthy donors, at all tested concentrations. Moreover, this compound exhibited significant anti-proliferative and pro-apoptotic effects against U937 acute myelogenous leukemia cells. This study highlights the anti-proliferative and pro-apoptotic effects of 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (2 and provides a scientific basis of traditional use of L. ukambensis.

  6. Insights on the antitumor effects of kahweol on human breast cancer: Decreased survival and increased production of reactive oxygen species and cytotoxicity

    International Nuclear Information System (INIS)

    Cárdenas, Casimiro; Quesada, Ana R.; Medina, Miguel Ángel

    2014-01-01

    Highlights: • Kahweol inhibits growth and attachment-independent proliferation of tumor cells. • Kahweol induces apoptosis in MDA-MB231 human breast cancer cells. • Kahweol-induced apoptosis involves caspase activation and cytochrome c release. • Kahweol does not protect against hydrogen peroxide cytotoxicity. • Kahweol increases hydrogen peroxide production by human breast cancer cells. - Abstract: The present study aims to identify the modulatory effects of kahweol, an antioxidant diterpene present in coffee beans, on a panel of human tumor cell lines. Kahweol inhibits tumor cell proliferation and clonogenicity and induces apoptosis in several kinds of human tumor cells. In the estrogen receptor-negative MDA-MB231 human breast cancer, the mentioned effects are accompanied by caspases 3/7 and 9 activation and cytochrome c release. On the other hand, kahweol increases the production of reactive oxygen species and their cytotoxicity in human breast cancer cells but not in normal cells. Taken together, our data suggest that kahweol is an antitumor compound with inhibitory effects on tumor cell growth and survival, especially against MDA-MB231 breast cancer cells

  7. Insights on the antitumor effects of kahweol on human breast cancer: Decreased survival and increased production of reactive oxygen species and cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Cárdenas, Casimiro [Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, E-29071 Málaga (Spain); IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga (Spain); Research Support Central Services (SCAI) of the University of Málaga, E-29071 Málaga (Spain); Quesada, Ana R. [Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, E-29071 Málaga (Spain); IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga (Spain); CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga (Spain); Medina, Miguel Ángel, E-mail: medina@uma.es [Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, E-29071 Málaga (Spain); IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga (Spain); CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga (Spain)

    2014-05-09

    Highlights: • Kahweol inhibits growth and attachment-independent proliferation of tumor cells. • Kahweol induces apoptosis in MDA-MB231 human breast cancer cells. • Kahweol-induced apoptosis involves caspase activation and cytochrome c release. • Kahweol does not protect against hydrogen peroxide cytotoxicity. • Kahweol increases hydrogen peroxide production by human breast cancer cells. - Abstract: The present study aims to identify the modulatory effects of kahweol, an antioxidant diterpene present in coffee beans, on a panel of human tumor cell lines. Kahweol inhibits tumor cell proliferation and clonogenicity and induces apoptosis in several kinds of human tumor cells. In the estrogen receptor-negative MDA-MB231 human breast cancer, the mentioned effects are accompanied by caspases 3/7 and 9 activation and cytochrome c release. On the other hand, kahweol increases the production of reactive oxygen species and their cytotoxicity in human breast cancer cells but not in normal cells. Taken together, our data suggest that kahweol is an antitumor compound with inhibitory effects on tumor cell growth and survival, especially against MDA-MB231 breast cancer cells.

  8. Apoptosis of leukemia K562 and Molt-4 cells induced by emamectin benzoate involving mitochondrial membrane potential loss and intracellular Ca2+ modulation.

    Science.gov (United States)

    Yun, Xinming; Rao, Wenbing; Xiao, Ciying; Huang, Qingchun

    2017-06-01

    Leukemia threatens millions of people's health and lives, and the pesticide-induced leukemia has been increasingly concerned because of the etiologic exposure. In this paper, cytotoxic effect of emamectin benzoate (EMB), an excellent natural-product insecticide, was evaluated through monitoring cell viability, cell apoptosis, mitochondrial membrane potential and intracellular Ca 2+ concentration ([Ca 2+ ] i ) in leukemia K562 and Molt-4 cells. Following the exposure to EMB, cell viability was decreased and positive apoptosis of K562 and Molt-4 cells was increased in a concentration- and time- dependent fashion. In the treatment of 10μM EMB, apoptotic cells accounted for 93.0% to K562 cells and 98.9% to Molt-4 cells based on the control, meanwhile, 63.47% of K562 cells and 81.15% of Molt-4 cells exhibited late apoptotic and necrotic features with damaged cytoplasmic membrane. 48h exposure to 10μM EMB increased significantly the great number of cells with mitochondrial membrane potential (MMP) loss, and the elevation of [Ca 2+ ] i level was peaked and persisted within 70s in K562 cells whilst 50s in Molt-4 cells. Moreover, a stronger cytotoxicity of EMB was further observed than that of imatinib. The results authenticate the efficacious effect of EMB as a potential anti-leukemia agent and an inconsistency with regard to insecticide-induced leukemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cytotoxic Constituents from bark and leaves of Amyris pinnata Kunth.

    Directory of Open Access Journals (Sweden)

    Luis Enrique Cuca-Suarez

    2015-04-01

    Full Text Available From leaves and bark of Amyris pinnata Kunth twelve compounds were isolated, corresponding to six lignans 1-6, three coumarins 7-9, a sesquiterpene 10, an oxazole alkaloid 11, and a prenylated flavonoid 12,. Metabolites were identified by spectroscopic techniques ( 1H and 13C NMR, EIMS and by comparison with published data in the literature. C ytotoxicity against leukemia, solid tumors, and normal cells was evaluated for all isolated compounds. Lignans were found to be the most cytotoxic compounds occurring in A. pinnata.

  10. JAK2 aberrations in childhood B-cell precursor acute lymphoblastic leukemia

    Science.gov (United States)

    de Goffau-Nobel, Willemieke; Hoogkamer, Alex Q.; Boer, Judith M.; Boeree, Aurélie; van de Ven, Cesca; Koudijs, Marco J.; Besselink, Nicolle J.M.; de Groot-Kruseman, Hester A.; Zwaan, Christian Michel; Horstmann, Martin A.; Pieters, Rob; den Boer, Monique L.

    2017-01-01

    JAK2 abnormalities may serve as target for precision medicines in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In the current study we performed a screening for JAK2 mutations and translocations, analyzed the clinical outcome and studied the efficacy of two JAK inhibitors in primary BCP-ALL cells. Importantly, we identify a number of limitations of JAK inhibitor therapy. JAK2 mutations mainly occurred in the poor prognostic subtypes BCR-ABL1-like and non- BCR-ABL1-like B-other (negative for sentinel cytogenetic lesions). JAK2 translocations were restricted to BCR-ABL1-like cases. Momelotinib and ruxolitinib were cytotoxic in both JAK2 translocated and JAK2 mutated cells, although efficacy in JAK2 mutated cells highly depended on cytokine receptor activation by TSLP. However, our data also suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and microenvironment-induced resistance. Furthermore, inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon release of the inhibitors. This preclinical evidence implies that further optimization and evaluation of JAK inhibitor treatment is necessary prior to its clinical integration in pediatric BCP-ALL. PMID:29163799

  11. A Novel Natural Product, KL-21, Inhibits Proliferation and Induces Apoptosis in Chronic Lymphocytic Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Aysun Adan Gökbulut

    2015-06-01

    Full Text Available INTRODUCTION: The aims of this study were to examine the cytotoxic and apoptotic effects of KL-21, a novel plant product (produced by Naturin Natural Products, İzmir, Turkey, on 232B4 chronic lymphocytic leukemia (CLL cells and to determine the cytotoxic effects on healthy BEAS-2B human bronchial epithelial cells. METHODS: The cytotoxic effect of KL-21 was determined by MTT cell proliferation assay. Changes in caspase-3 enzyme activity were measured using the caspase-3 colorimetric assay. Changes in mitochondrial membrane potential were determined using the JC-1 dye-based method. Annexin V-FITC/PI double staining was performed to measure the apoptotic cell population. Effects of KL-21 on cell cycle profiles of CLL cells were investigated by flow cytometry. RESULTS: We detected time- and concentration-dependent increases in the cytotoxic effect of KL-21 on 232B4 CLL cells. However, we also showed that, especially at higher concentrations, KL-21 was less cytotoxic towards BEAS-2B healthy cells than towards CLL cells. Annexin-V/PI double staining results showed that the apoptotic cell population increased in 232B4 cells. Increasing concentrations of KL-21 increased caspase-3 enzyme activity and induced loss of mitochondrial membrane potential. KL-21 administration resulted in small increases in the percentage of the cells in the G0/G1 phase while it decreased the S phase cell population up to 1 mg/mL. At the highest concentration, most of the cells accumulated in the G0/G1 phase. DISCUSSION AND CONCLUSION: KL-21 has a growth-inhibitory effect on 232B4 CLL cells. KL-21 causes apoptosis and cell cycle arrest at G0/G1.

  12. Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system

    International Nuclear Information System (INIS)

    Dalai, Swayamprava; Pakrashi, Sunandan; Joyce Nirmala, M.; Chaudhri, Apoorvi; Chandrasekaran, N.; Mandal, A.B.; Mukherjee, Amitava

    2013-01-01

    Highlights: •TiO 2 NPs cytotoxicity at low exposure levels (≤1 μg/mL) to freshwater algae. •ROS generation, NP adsorption and internalization contributors to toxicity. •Observational evidence of genotoxicity by nanoparticles in an algal cell. •Reduced bioavailability thus detoxification of NPs by microalgae. •Possible role of EPS in detoxification. -- Abstract: In the current study, two aspects concerning (i) the cytotoxicity potential of TiO 2 nanoparticles (NPs) toward freshwater algal isolate Scenedesmus obliquus and (ii) the potential detoxification of NPs by the microalgae were assessed under light (UV-illumination) and dark conditions at low exposure levels (≤1 μg/mL), using sterile freshwater as the test medium. The statistically significant reduction in cell viability, increase in reactive oxygen species production and membrane permeability (light vs. dark) suggested photo-induced toxicity of TiO 2 NPs. The electron micrographs demonstrated adsorption of the NPs onto the cell surface and substantiated their internalization/uptake. The fluorescence micrographs and the confocal laser scanning (CLSM) images suggested the absence of a definite/intact nucleus in the light treated cells pointing toward the probable genotoxic effects of NPs. In a separate three cycle experiment, a continuous decrease in the cytotoxicity was observed, whereas, at the end of each cycle only fresh algae were added to the supernatant containing NPs from the previous cycle. The decreasing concentrations of the NPs in the subsequent cycles owing to agglomeration–sedimentation processes exacerbated by the algal interactions played a crucial role in the detoxification. In addition, the exo-polymeric substances produced by the cells could have rendered the available NPs less reactive, thereby, enhancing the detoxification effects

  13. Lentinan: hematopoietic, immunological, and efficacy studies in a syngeneic model of acute myeloid leukemia.

    Science.gov (United States)

    McCormack, Emmet; Skavland, Jørn; Mujic, Maja; Bruserud, Øystein; Gjertsen, Bjørn Tore

    2010-01-01

    Lentinan, a beta-glucan nutritional supplement isolated from the shitake mushroom (Lentula edodes), is a biological response modifier with immunostimulatory properties. Concomitantly, the role of beta-glucans as chemoimmunotherapeutic in a number of solid cancers has been widely documented. We investigated the effects of nutritional grade lentinan upon BN rats and in a preclinical syngeneic model of acute myeloid leukemia. BN rats supplemented daily with lentinan exhibited weight gains, increased white blood cells, monocytes, and circulating cytotoxic T-cells; and had a reduction in anti-inflammatory cytokines IL-4, IL-10, and additionally IL-6. Lentinan treatment of BN rats with BNML leukemia resulted in improved cage-side health and reduced cachexia in the terminal stage of this aggressive disease. Combination of lentinan with standards of care in acute myeloid leukemia, idarubicin, and cytarabine increased average survival compared with monotherapy and reduced cachexia. These results indicate that nutritional supplementation of cancer patients with lentinan should be further investigated.

  14. Therapeutic Effects of Myeloid Cell Leukemia-1 siRNA on Human Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Hadi Karami

    2014-05-01

    Full Text Available Purpose: Up-regulation of Mcl-1, a known anti-apoptotic protein, is associated with the survival and progression of various malignancies including leukemia. The aim of this study was to explore the effect of Mcl-1 small interference RNA (siRNA on the proliferation and apoptosis of HL-60 acute myeloid leukemia (AML cells. Methods: siRNA transfection was performed using Lipofectamine™2000 reagent. Relative mRNA and protein expressions were quantified by quantitative real-time PCR and Western blotting, respectively. Trypan blue assay was performed to assess tumor cell proliferation after siRNA transfection. The cytotoxic effect of Mcl-1 siRNA on leukemic cells was measured using MTT assay. Apoptosis was detected using ELISA cell death assay. Results: Mcl-1 siRNA clearly lowered both Mcl-1 mRNA and protein levels in a time-dependent manner, leading to marked inhibition of cell survival and proliferation. Furthermore, Mcl-1 down-regulation significantly enhanced the extent of HL-60 apoptotic cells. Conclusion: Our results suggest that the down-regulation of Mcl-1 by siRNA can effectively trigger apoptosis and inhibit the proliferation of leukemic cells. Therefore, Mcl-1 siRNA may be a potent adjuvant in AML therapy.

  15. Radiotherapy for leukemia in children, (1)

    International Nuclear Information System (INIS)

    Miyazaki, Toru; Konishi, Kiyosaburo; Sato, Noriko; Fujiwara, Fumihiro

    1983-01-01

    Following the development of effective chemotherapy for producing remissions of acute lymphocytic leukemia (ALL), a new phenomenon has emerged in this disease--central nervous system (CNS) leukemia. CNS leukemia has become an increasingly frequent obstacle to prolongation of initial complete remission. Prophylactic irradiation of the CNS concomitant with intrathecal administration of methotrexate (IT-MTX) has proved to be effective in the reduction of CNS involvement. The purpose of this paper is to describe the results of irradiation for prevention of CNS leukemia and to discuss their implications. The patients consisted of 32 children with acute leukemia, admitted to MAIZURU National Hospital from 1966 to 1980; 22 patients of them had ALL, the others ANLL (acute non-lymphocytic leukemia). Preventive CNS therapy was started in 1974, (group A), but there was no prevention before 1974 (group B). 1. In group B, six patients was treated by therapeutic cranial irradiation, but all cases resulted in death. 2. In group A, seven patients was treated by prophylactic cranial irradiation combined with IT-MTX, and all of them have been alive without CNS relapse for 2 to 4 2/3 years after therapy. 3. In group A, none of 7 patients (0 %) relapsed CNS leukemia initially as compared to 7 (50 %) of 14 in group B, thus preventive efficacy was clear. 4. There were no severe complications attributable to the radiotherapy, with or without IT-MTX. (author)

  16. Gold(III) bis(thiosemicarbazonate) compounds in breast cancer cells: Cytotoxicity and thioredoxin reductase targeting.

    Science.gov (United States)

    Rodríguez-Fanjul, Vanessa; López-Torres, Elena; Mendiola, M Antonia; Pizarro, Ana María

    2018-03-25

    Gold(III) compounds have received increasing attention in cancer research. Three gold complexes of general formula [Au III L]Cl, where L is benzil bis(thiosemicarbazonate), compound 1, benzil bis(4-methyl-3-thiosemicarbazonate), compound 2, or benzil bis(4-cyclohexyl-3-thiosemicarbazonate), compound 3, have been synthesized and fully characterized, including the X-ray crystal structure of compound 3, confirming square-planar geometry around the gold(III) centre. Compound 1 showed moderate cytotoxicity and accumulation in MCF7 breast cancer cells but did not inhibit thioredoxin reductase (TrxR) activity and did not induce reactive oxygen species (ROS) production. Compound 2, the least cytotoxic, was found to be capable of modestly inhibiting TrxR activity and produced low levels of ROS in the MCF7 cell line. The most cytotoxic compound, 3, had the highest cellular accumulation and its distribution pattern showed a clear preference for the cytosol and mitochondria of MCF7 cells. It readily hampered intracellular TrxR activity leading to a dramatic alteration of the cellular redox state and to the induction of cell death. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Monocytic leukemias.

    Science.gov (United States)

    Shaw, M T

    1980-05-01

    The monocytic leukemias may be subdivided into acute monocytic leukemia, acute myelomonocytic leukemia, and subacute and chronic myelomonocytic leukemia. The clinical features of acute monocytic and acute myelomonocytic leukemias are similar and are manifestations of bone marrow failure. Gingival hypertrophy and skin infiltration are more frequent in acute monocytic leukemia. Cytomorphologically the blast cells in acute monocytic leukemia may be undifferentiated or differentiated, whereas in the acute myelomonocytic variety there are mixed populations of monocytic and myeloblastic cells. Cytochemical characteristics include strongly positive reactions for nonspecific esterase, inhibited by fluoride. The functional characteristics of acute monocytic and acute myelomonocytic cells resemble those of monocytes and include glass adherence and phagocytoses, the presence of Fc receptors for IgG and C'3, and the production of colony stimulating activity. Subacute and chronic myelomonocytic leukemias are insidious and slowly progressive diseases characterized by anemia and peripheral blood monocytosis. Atypical monocytes called paramyeloid cells are characteristic. The drugs used in the treatment of acute monocytic and acute myelomonocytic leukemias include cytosine arabinoside, the anthracyclines, and VP 16-213. Drug therapy in subacute and chronic myelomonocytic leukemias is not usually indicated, although VP 16-213 has been claimed to be effective.

  18. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    OpenAIRE

    Takuya Yamane; Tatsuji Sakamoto; Takenori Nakagaki; Yoshihisa Nakano

    2018-01-01

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cell...

  19. Anti-ATLA (antibody to adult T-cell leukemia virus-associated antigen), highly positive in OKT4-positive mature T-cell malignancies.

    Science.gov (United States)

    Tobinai, K; Nagai, M; Setoya, T; Shibata, T; Minato, K; Shimoyama, M

    1983-01-01

    Serum or plasma specimens from 252 patients with lymphoid malignancies were screened for reactivity with adult T-cell leukemia virus-associated antigen (ATLA), and the relationship between the immunologic phenotype of the tumor cells and ATLA reactivity was determined. Anti-ATLA antibodies were found in 24 (29.3%) of 82 patients with T-cell malignancy. In contrast, the antibodies were found in none of the 106 patients with B-cell malignancy and only rarely in patients with other lymphoid malignancies without blood transfusions. Among the patients with T-cell malignancy, anti-ATLA antibodies were found in 23 (45.1%) of the 51 patients with OKT4-positive mature T-cell (inducer/helper T-cell) malignancy, but in none of the patients with T-cell malignancy of pre-T, thymic T-cell or OKT8-positive mature T-cell (suppressor/cytotoxic T-cell) phenotype. Furthermore, among the OKT4-positive mature T-cell malignancies, the antibodies were found in 16 (84.2%) of 19 patients with ATL and in 5 (27.8%) of 18 patients with mature (peripheral) T-cell lymphoma, in none of four with typical T-chronic lymphocytic leukemia, in one of nine with mycosis fungoides and in the one patient with small-cell variant of Sézary's syndrome. These results suggest that anti-ATLA positive T-cell malignancies with OKT4-positive mature T-cell phenotype must be the same disease, because it is highly possible that they have the same etiology and the same cellular origin. In the atypical cases, it seems necessary to demonstrate monoclonal integration of proviral DNA of ATLV or HTLV into the tumor cells in order to establish the final diagnosis of ATL.

  20. Protective Effect of Prolactin against Methylmercury-Induced Mutagenicity and Cytotoxicity on Human Lymphocytes

    Directory of Open Access Journals (Sweden)

    Liz Carmem Silva-Pereira

    2014-09-01

    Full Text Available Mercury exhibits cytotoxic and mutagenic properties as a result of its effect on tubulin. This toxicity mechanism is related to the production of free radicals that can cause DNA damage. Methylmercury (MeHg is one of the most toxic of the mercury compounds. It accumulates in the aquatic food chain, eventually reaching the human diet. Several studies have demonstrated that prolactin (PRL may be differently affected by inorganic and organic mercury based on interference with various neurotransmitters involved in the regulation of PRL secretion. This study evaluated the cytoprotective effect of PRL on human lymphocytes exposed to MeHg in vitro, including observation of the kinetics of HL-60 cells (an acute myeloid leukemia lineage treated with MeHg and PRL at different concentrations, with both treatments with the individual compounds and combined treatments. All treatments with MeHg produced a significant increase in the frequency of chromatid gaps, however, no significant difference was observed in the chromosomal breaks with any treatment. A dose-dependent increase in the mitotic index was observed for treatments with PRL, which also acts as a co-mitogenic factor, regulating proliferation by modulating the expression of genes that are essential for cell cycle progression and cytoskeleton organization. These properties contribute to the protective action of PRL against the cytotoxic and mutagenic effects of MeHg.

  1. Protective Effect of Prolactin against Methylmercury-Induced Mutagenicity and Cytotoxicity on Human Lymphocytes

    Science.gov (United States)

    Silva-Pereira, Liz Carmem; da Rocha, Carlos Alberto Machado; Cunha, Luiz Raimundo Campos da Silva e; da Costa, Edmar Tavares; Guimarães, Ana Paula Araújo; Pontes, Thais Brilhante; Diniz, Domingos Luiz Wanderley Picanço; Leal, Mariana Ferreira; Moreira-Nunes, Caroline Aquino; Burbano, Rommel Rodríguez

    2014-01-01

    Mercury exhibits cytotoxic and mutagenic properties as a result of its effect on tubulin. This toxicity mechanism is related to the production of free radicals that can cause DNA damage. Methylmercury (MeHg) is one of the most toxic of the mercury compounds. It accumulates in the aquatic food chain, eventually reaching the human diet. Several studies have demonstrated that prolactin (PRL) may be differently affected by inorganic and organic mercury based on interference with various neurotransmitters involved in the regulation of PRL secretion. This study evaluated the cytoprotective effect of PRL on human lymphocytes exposed to MeHg in vitro, including observation of the kinetics of HL-60 cells (an acute myeloid leukemia lineage) treated with MeHg and PRL at different concentrations, with both treatments with the individual compounds and combined treatments. All treatments with MeHg produced a significant increase in the frequency of chromatid gaps, however, no significant difference was observed in the chromosomal breaks with any treatment. A dose-dependent increase in the mitotic index was observed for treatments with PRL, which also acts as a co-mitogenic factor, regulating proliferation by modulating the expression of genes that are essential for cell cycle progression and cytoskeleton organization. These properties contribute to the protective action of PRL against the cytotoxic and mutagenic effects of MeHg. PMID:25247425

  2. Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells.

    Science.gov (United States)

    Burkhardt, Ute E; Hainz, Ursula; Stevenson, Kristen; Goldstein, Natalie R; Pasek, Mildred; Naito, Masayasu; Wu, Di; Ho, Vincent T; Alonso, Anselmo; Hammond, Naa Norkor; Wong, Jessica; Sievers, Quinlan L; Brusic, Ana; McDonough, Sean M; Zeng, Wanyong; Perrin, Ann; Brown, Jennifer R; Canning, Christine M; Koreth, John; Cutler, Corey; Armand, Philippe; Neuberg, Donna; Lee, Jeng-Shin; Antin, Joseph H; Mulligan, Richard C; Sasada, Tetsuro; Ritz, Jerome; Soiffer, Robert J; Dranoff, Glenn; Alyea, Edwin P; Wu, Catherine J

    2013-09-01

    Patients with advanced hematologic malignancies remain at risk for relapse following reduced-intensity conditioning (RIC) allogeneic hematopoietic stem cell transplantation (allo-HSCT). We conducted a prospective clinical trial to test whether vaccination with whole leukemia cells early after transplantation facilitates the expansion of leukemia-reactive T cells and thereby enhances antitumor immunity. We enrolled 22 patients with advanced chronic lymphocytic leukemia (CLL), 18 of whom received up to 6 vaccines initiated between days 30 and 45 after transplantation. Each vaccine consisted of irradiated autologous tumor cells admixed with GM-CSF-secreting bystander cells. Serial patient PBMC samples following transplantation were collected, and the impact of vaccination on T cell activity was evaluated. At a median follow-up of 2.9 (range, 1-4) years, the estimated 2-year progression-free and overall survival rates of vaccinated subjects were 82% (95% CI, 54%-94%) and 88% (95% CI, 59%-97%), respectively. Although vaccination only had a modest impact on recovering T cell numbers, CD8+ T cells from vaccinated patients consistently reacted against autologous tumor, but not alloantigen-bearing recipient cells with increased secretion of the effector cytokine IFN-γ, unlike T cells from nonvaccinated CLL patients undergoing allo-HSCT. Further analysis confirmed that 17% (range, 13%-33%) of CD8+ T cell clones isolated from 4 vaccinated patients by limiting dilution of bulk tumor-reactive T cells solely reacted against CLL-associated antigens. Our studies suggest that autologous tumor cell vaccination is an effective strategy to advance long-term leukemia control following allo-HSCT. Clinicaltrials.gov NCT00442130. NCI (5R21CA115043-2), NHLBI (5R01HL103532-03), and Leukemia and Lymphoma Society Translational Research Program.

  3. Cytotoxic Capacity of IL-15-Stimulated Cytokine-Induced Killer Cells Against Human Acute Myeloid Leukemia and Rhabdomyosarcoma in Humanized Preclinical Mouse Models

    Energy Technology Data Exchange (ETDEWEB)

    Rettinger, Eva; Meyer, Vida; Kreyenberg, Hermann [Department of Pediatric Hematology, Oncology and Hemostaseology, University Children’s Hospital of Frankfurt/Main, Goethe-University Frankfurt/Main, Frankfurt/Main (Germany); Volk, Andreas [Chemotherapeutisches Forschungsinstitut, Georg-Speyer-Haus, Frankfurt/Main (Germany); Kuçi, Selim; Willasch, Andre [Department of Pediatric Hematology, Oncology and Hemostaseology, University Children’s Hospital of Frankfurt/Main, Goethe-University Frankfurt/Main, Frankfurt/Main (Germany); Koscielniak, Ewa [Department of Pediatric Oncology and Hematology, Olgahospital Stuttgart, Stuttgart (Germany); Fulda, Simone [Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt/Main, Frankfurt/Main (Germany); Wels, Winfried S. [Chemotherapeutisches Forschungsinstitut, Georg-Speyer-Haus, Frankfurt/Main (Germany); Boenig, Halvard [Institute for Transfusion Medicine and Immunohematology, Goethe-University Frankfurt/Main, Division for Cell Processing, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Frankfurt/Main (Germany); Klingebiel, Thomas; Bader, Peter, E-mail: eva.rettinger@kgu.de, E-mail: peter.bader@kgu.de [Department of Pediatric Hematology, Oncology and Hemostaseology, University Children’s Hospital of Frankfurt/Main, Goethe-University Frankfurt/Main, Frankfurt/Main (Germany)

    2012-04-09

    Allogeneic stem cell transplantation (allo-SCT) has become an important treatment modality for patients with high-risk acute myeloid leukemia (AML) and is also under investigation for soft tissue sarcomas. The therapeutic success is still limited by minimal residual disease (MRD) status ultimately leading to patients’ relapse. Adoptive donor lymphocyte infusions based on MRD status using IL-15-expanded cytokine-induced killer (CIK) cells may prevent relapse without causing graft-versus-host-disease (GvHD). To generate preclinical data we developed mouse models to study anti-leukemic- and anti-tumor-potential of CIK cells in vivo. Immunodeficient mice (NOD/SCID/IL-2Rγc{sup −}, NSG) were injected intravenously with human leukemic cell lines THP-1, SH-2 and with human rhabdomyosarcoma (RMS) cell lines RH41 and RH30 at minimal doses required for leukemia or tumor engraftment. Mice transplanted with THP-1 or RH41 cells were randomly assigned for analysis of CIK cell treatment. Organs of mice were analyzed by flow cytometry as well as quantitative polymerase chain reaction for engraftment of malignant cells and CIK cells. Potential of CIK cells to induce GvHD was determined by histological analysis. Tissues of the highest degree of THP-1 cell expansion included bone marrow followed by liver, lung, spleen, peripheral blood (PB), and brain. RH30 and RH41 engraftment mainly took place in liver and lung, but was also detectable in spleen and PB. In spite of delayed CIK cell expansion compared with malignant cells, CIK cells injected at equal amounts were sufficient for significant reduction of RH41 cells, whereas against fast-expanding THP-1 cells 250 times more CIK than THP-1 cells were needed to achieve comparable results. Our preclinical in vivo mouse models showed a reliable 100% engraftment of malignant cells which is essential for analysis of anti-cancer therapy. Furthermore our data demonstrated that IL-15-activated CIK cells have potent cytotoxic capacity

  4. The top ten clues to understand the origin of chronic lymphocytic leukemia (CLL).

    Science.gov (United States)

    García-Muñoz, Ricardo; Feliu, Jesús; Llorente, Luis

    2015-01-01

    The fundamental task of the immune system is to protect the individual from infectious organisms without serious injury to self. The essence of acquired immunity is molecular self/non self discrimination. Chronic lymphocytic leukemia is characterized by a global failure of immune system that begins with the failure of immunological tolerance mechanisms (autoimmunity) and finish with the incapacity to response to non-self antigens (immunodeficiency). Immunological tolerance mechanisms are involved in chronic lymphocytic leukemia (CLL) development. During B cell development some self-reactive B cells acquire a special BCR that recognize their own BCR. This self-autoantibody-self BCR interaction promotes survival, differentiation and proliferation of self-reactive B cells. Continuous self-autoantibody-self BCR interaction cross-linking induces an increased rate of surface BCR elimination, CD5+ expression, receptor editing and anergy. Unfortunately, some times this mechanisms increase genomic instability and promote additional genetic damage that immortalize self-reactive B cells and convert them into CLL like clones with the capability of clonal evolution and transformed CLL B cells. This review summarizes the immunological effects of continuous self-autoantibody-self BCR interaction cross-linking in the surface of self-reactive B cells and their role in CLL development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Treatment of Multidrug-Resistant Leukemia Cells by Novel Artemisinin-, Egonol-, and Thymoquinone-Derived Hybrid Compounds

    Directory of Open Access Journals (Sweden)

    Lisa Gruber

    2018-04-01

    Full Text Available Two major obstacles for successful cancer treatment are the toxicity of cytostatics and the development of drug resistance in cancer cells during chemotherapy. Acquired or intrinsic drug resistance is responsible for almost 90% of treatment failure. For this reason, there is an urgent need for new anticancer drugs with improved efficacy against cancer cells, and with less toxicity on normal cells. There are impressive examples demonstrating the success of natural plant compounds to fight cancer, such as Vinca alkaloids, taxanes, and anthracyclines. Artesunic acid (ARTA, a drug for malaria treatment, also exerts cytotoxic activity towards cancer cells. Multidrug resistance often results from drug efflux pumps (ABC-transporters that reduce intracellular drug levels. Hence, it would be interesting to know, whether ARTA could overcome drug resistance of tumor cells, and in what way ABC-transporters are involved. Different derivatives showing improved features concerning cytotoxicity and pharmacokinetic behavior have been developed. Considering both drug sensitivity and resistance, we chose a sensitive and a doxorubicin-resistant leukemia cell line and determined the killing effect of ARTA on these cells. Molecular docking and doxorubicin efflux assays were performed to investigate the interaction of the derivatives with P-glycoprotein. Using single-cell gel electrophoresis (alkaline comet assay, we showed that the derivatives of ARTA induce DNA breakage and accordingly programmed cell death, which represents a promising strategy in cancer treatment. ARTA activated apoptosis in cancer cells by the iron-mediated generation of reactive oxygen species (ROS. In conclusion, ARTA derivatives may bear the potential to be further developed as anticancer drugs.

  6. Targeted treatment for chronic lymphocytic leukemia: clinical potential of obinutuzumab

    Directory of Open Access Journals (Sweden)

    Smolej L

    2014-12-01

    Full Text Available Lukáš Smolej 4th Department of Internal Medicine – Hematology, University Hospital Hradec Králové and Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic Abstract: Introduction of targeted agents revolutionized the treatment of chronic lymphocytic leukemia (CLL in the past decade. Addition of chimeric monoclonal anti-CD20 antibody rituximab to chemotherapy significantly improved efficacy including overall survival (OS in untreated fit patients; humanized anti-CD52 antibody alemtuzumab and fully human anti-CD20 antibody ofatumumab lead to improvement in refractory disease. Novel small molecule inhibitors such as ibrutinib and idelalisib demonstrated excellent activity and were very recently licensed in relapsed/refractory CLL. Obinutuzumab (GA101 is the newest monoclonal antibody approved for the treatment of CLL. This novel, glycoengineered, type II humanized anti-CD20 antibody is characterized by enhanced antibody-dependent cellular cytotoxicity and direct induction of cell death compared to type I antibodies. Combination of obinutuzumab and chlorambucil yielded significantly better OS in comparison to chlorambucil monotherapy in untreated comorbid patients. These results led to approval of obinuzutumab for the treatment of CLL. Numerous clinical trials combining obinutuzumab with other cytotoxic drugs and novel small molecules are currently under way. This review focuses on the role of obinutuzumab in the treatment of CLL. Keywords: chronic lymphocytic leukemia, anti-CD20 antibodies, chlorambucil, rituximab, ofatumumab, obinutuzumab, overall survival

  7. Decitabine induces delayed reactive oxygen species (ROS) accumulation in leukemia cells and induces the expression of ROS generating enzymes.

    Science.gov (United States)

    Fandy, Tamer E; Jiemjit, Anchalee; Thakar, Manjusha; Rhoden, Paulette; Suarez, Lauren; Gore, Steven D

    2014-03-01

    Azanucleoside DNA methyltransferase (DNMT) inhibitors are currently approved by the U.S. Food and Drug Administration for treatment of myelodysplastic syndrome. The relative contributions of DNMT inhibition and other off-target effects to their clinical efficacy remain unclear. Data correlating DNA methylation reversal and clinical response have been conflicting. Consequently, it is necessary to investigate so-called off-target effects and their impact on cell survival and differentiation. Flow cytometry was used for cell cycle, apoptosis, and reactive oxygen species (ROS) accumulation analysis. Gene expression analysis was performed using real-time PCR. DNA methylation was detected by methylation-specific PCR. Mitochondrial membrane potential was analyzed using JC-1 dye staining. Western blotting was used for quantitative protein expression analysis. 5-Aza-2'-deoxycytidine (DAC) induced cell-cycle arrest and apoptosis in leukemia cells. p53 expression was dispensable for DAC-induced apoptosis. DAC induced delayed ROS accumulation in leukemia cells but not in solid tumor cells and p53 expression was dispensable for ROS increase. ROS increase was deoxycytidine kinase dependent, indicating that incorporation of DAC into nuclear DNA is required for ROS generation. ROS accumulation by DAC was caspase-independent and mediated the dissipation of the mitochondrial membrane potential. Concordantly, ROS scavengers diminished DAC-induced apoptosis. DAC induced the expression of different NADPH oxidase isoforms and upregulated Nox4 protein expression in an ATM-dependent manner, indicating the involvement of DNA damage signaling in Nox4 upregulation. These data highlight the importance of mechanisms other than DNA cytosine demethylation in modulating gene expression and suggest investigating the relevance of ROS accumulation to the clinical activity of DAC. ©2014 AACR

  8. Effects of Ligusticum porteri (Osha) Root Extract on Human Promyelocytic Leukemia Cells

    OpenAIRE

    Nguyen, Khanh; Sparks, Jean; Omoruyi, Felix

    2017-01-01

    Background: Ligusticum porteri roots have been traditionally used in folk medicine, but the scientific basis is unclear. Objective: To investigate the cytotoxicity, antioxidant, and immunomodulatory effects of L. porteri root extract on human promyelocytic leukemia (HL-60) cells and H2O2-induced oxidative damaged HL-60 cells. Materials and Methods: HL-60 cells were incubated with different concentrations of root extract, and cells were harvested for viability assays on day 3 and 7. Cytokine l...

  9. Detection of tumor-specific cytotoxic drug activity in vitro using the fluorometric microculture cytotoxicity assay and primary cultures of tumor cells from patients.

    Science.gov (United States)

    Nygren, P; Fridborg, H; Csoka, K; Sundström, C; de la Torre, M; Kristensen, J; Bergh, J; Hagberg, H; Glimelius, B; Rastad, J

    1994-03-01

    The semi-automated fluorometric microculture cytotoxicity assay (FMCA), based on the measurement of fluorescence generated from cellular hydrolysis of fluorescein diacetate (FDA) by viable cells, was employed for cytotoxic drug sensitivity testing of tumor cells from patients with hematological or solid tumors. In total, 390 samples from 20 diagnoses were tested with up to 12 standard cytotoxic drugs. The technical success rate for different tumor types ranged from 67 to 95%. Fluorescence was linearly related to cell number but variably steep depending on tumor type. Samples from most solid tumors thus showed higher signal-to-noise ratios than hematological samples. A wide spectrum of in vitro drug activity was obtained, with acute leukemias and non-Hodgkin's lymphomas being sensitive to almost all tested drugs, whereas renal and adrenocortical carcinomas were essentially totally resistant. Between these extremes were samples of breast and ovarian carcinomas and sarcomas. When in vitro response was compared with known clinical response patterns, a good correspondence was observed. The results indicate that the FMCA is a rapid and efficient method for in vitro measurement of tumor-specific drug activity both in hematological and in solid tumors. The assay may be suitable for new drug development and direction of phase-2 trials to suitable patients.

  10. Biting back: BiTE antibodies as a promising therapy for acute myeloid leukemia.

    Science.gov (United States)

    Walter, Roland B

    2014-06-01

    The experience with gemtuzumab ozogamicin has highlighted both the potential value and limitations of antibodies in acute myeloid leukemia (AML). Recently, bispecific T-cell engager (BiTE) antibodies have emerged as a means to harness polyclonal cytotoxic T-cells and cause highly efficient lysis of targeted tumor cells. Promising early results have been obtained with the CD19-directed BiTE antibody, blinatumomab, in patients with acute lymphoblastic leukemia. A first candidate for AML is the CD33/CD3 molecule, AMG 330, for which several recent preclinical studies demonstrated high potency and efficacy in destroying CD33(+) human AML cells. Many questions remain to be addressed, but BiTE antibodies may offer an exciting new tool in a disease for which the outcomes in many patients remain unsatisfactory.

  11. Importance of glutamine metabolism in leukemia cells by energy production through TCA cycle and by redox homeostasis.

    Science.gov (United States)

    Goto, Mineaki; Miwa, Hiroshi; Shikami, Masato; Tsunekawa-Imai, Norikazu; Suganuma, Kazuto; Mizuno, Shohei; Takahashi, Miyuki; Mizutani, Motonori; Hanamura, Ichiro; Nitta, Masakazu

    2014-07-01

    Some cancer cells depend on glutamine despite of pronounced glycolysis. We examined the glutamine metabolism in leukemia cells, and found that HL-60 cells most depended on glutamine in the 4 acute myelogenous leukemia (AML) cell lines examined: growth of HL-60 cells was most suppressed by glutamine deprivation and by inhibition of glutaminolysis, which was rescued by tricarboxylic acid (TCA) cycle intermediate, oxaloacetic acid. Glutamine is also involved in antioxidant defense function by increasing glutathione. Glutamine deprivation suppressed the glutathione content and elevated reactive oxygen species most evidently in HL-60 cells. Glutamine metabolism might be a therapeutic target in some leukemia.

  12. Myricetin is a novel inhibitor of human inosine 5′-monophosphate dehydrogenase with anti-leukemia activity

    International Nuclear Information System (INIS)

    Pan, Huiling; Hu, Qian; Wang, Jingyuan; Liu, Zehui; Wu, Dang; Lu, Weiqiang; Huang, Jin

    2016-01-01

    Human inosine 5′-monophosphate dehydrogenase (hIMPDH) is a rate-limiting enzyme in the de novo biosynthetic pathway of purine nucleotides, playing crucial roles in cellular proliferation, differentiation, and transformation. Dysregulation of hIMPDH expression and activity have been found in a variety of human cancers including leukemia. In this study, we found that myricetin, a naturally occurring phytochemical existed in berries, wine and tea, was a novel inhibitor of human type 1 and type 2 IMPDH (hIMPDH1/2) with IC_5_0 values of 6.98 ± 0.22 μM and 4.10 ± 0.14 μM, respectively. Enzyme kinetic analysis using Lineweaver-Burk plot revealed that myricetin is a mix-type inhibitor for hIMPDH1/2. Differential scanning fluorimetry and molecular docking simulation data demonstrate that myricetin is capable of binding with hIMPDH1/2. Myricetin treatment exerts potent anti-proliferative and pro-apoptotic effects on K562 human leukemia cells in a dose-dependent manner. Importantly, cytotoxicity of myricetin on K562 cells were markedly attenuated by exogenous addition of guanosine, a salvage pathway of maintaining intracellular pool of guanine nucleotides. Taking together, these results indicate that natural product myricetin exhibits potent anti-leukemia activity by interfering with purine nucleotides biosynthetic pathway through the suppression of hIMPDH1/2 catalytic activity. - Highlights: • Myricetin, a common dietary flavonoid, is a novel inhibitor of hIMPDH1/2. • Myricetin directly binds with hIMPDH1/2 and induces cell cycle arrest and apoptosis of leukemia cells. • The cytotoxicity of myricetin on K562 cells is markedly attenuated by exogenous addition of guanosine.

  13. Myricetin is a novel inhibitor of human inosine 5′-monophosphate dehydrogenase with anti-leukemia activity

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Huiling; Hu, Qian; Wang, Jingyuan; Liu, Zehui; Wu, Dang [Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237 (China); Lu, Weiqiang, E-mail: wqlu@bio.ecnu.edu.cn [Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Huang, Jin, E-mail: huangjin@ecust.edu.cn [Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237 (China)

    2016-09-02

    Human inosine 5′-monophosphate dehydrogenase (hIMPDH) is a rate-limiting enzyme in the de novo biosynthetic pathway of purine nucleotides, playing crucial roles in cellular proliferation, differentiation, and transformation. Dysregulation of hIMPDH expression and activity have been found in a variety of human cancers including leukemia. In this study, we found that myricetin, a naturally occurring phytochemical existed in berries, wine and tea, was a novel inhibitor of human type 1 and type 2 IMPDH (hIMPDH1/2) with IC{sub 50} values of 6.98 ± 0.22 μM and 4.10 ± 0.14 μM, respectively. Enzyme kinetic analysis using Lineweaver-Burk plot revealed that myricetin is a mix-type inhibitor for hIMPDH1/2. Differential scanning fluorimetry and molecular docking simulation data demonstrate that myricetin is capable of binding with hIMPDH1/2. Myricetin treatment exerts potent anti-proliferative and pro-apoptotic effects on K562 human leukemia cells in a dose-dependent manner. Importantly, cytotoxicity of myricetin on K562 cells were markedly attenuated by exogenous addition of guanosine, a salvage pathway of maintaining intracellular pool of guanine nucleotides. Taking together, these results indicate that natural product myricetin exhibits potent anti-leukemia activity by interfering with purine nucleotides biosynthetic pathway through the suppression of hIMPDH1/2 catalytic activity. - Highlights: • Myricetin, a common dietary flavonoid, is a novel inhibitor of hIMPDH1/2. • Myricetin directly binds with hIMPDH1/2 and induces cell cycle arrest and apoptosis of leukemia cells. • The cytotoxicity of myricetin on K562 cells is markedly attenuated by exogenous addition of guanosine.

  14. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    Science.gov (United States)

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  15. Methotrexate resistance in relation to treatment outcome in childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Wojtuszkiewicz, Anna; Peters, Godefridus J; van Woerden, Nicole L

    2015-01-01

    BACKGROUND: Methotrexate (MTX) eradicates leukemic cells by disrupting de novo nucleotide biosynthesis and DNA replication, resulting in cell death. Since its introduction in 1947, MTX-containing chemotherapeutic regimens have proven instrumental in achieving curative effects in acute lymphoblast...... resistant to MTX at diagnosis may allow for tailoring novel treatment strategies to individual leukemia patients....... leukemia (ALL). However, drug resistance phenomena pose major obstacles to efficacious ALL chemotherapy. Moreover, clinically relevant molecular mechanisms underlying chemoresistance remain largely obscure. Several alterations in MTX metabolism, leading to impaired accumulation of this cytotoxic agent...... in tumor cells, have been classified as determinants of MTX resistance. However, the relation between MTX resistance and long-term clinical outcome of ALL has not been shown previously. METHODS: We have collected clinical data for 235 childhood ALL patients, for whom samples taken at the time of diagnosis...

  16. Application of FTIR microspectroscopy for the follow-up of childhood leukemia chemotherapy

    Science.gov (United States)

    Mordechai, Shaul; Mordehai, J.; Ramesh, Jagannathan; Levi, C.; Huleihal, Mahmud; Erukhimovitch, Vitaly; Moser, A.; Kapelushnik, J.

    2001-11-01

    Acute Lymphoblastic Leukemia (ALL) accounts for majority of the childhood leukemia. Outcome of children with ALL treatment has improved dramatically. Sensitive techniques are available today for detection of minimal residual disease in children with ALL, which provide insight into the effective cytotoxic treatment. Here, we present a case study, where lymphocytes isolated from two children before and after the treatment were characterized using microscopic Fourier Transform Infrared spectroscopy. Significant changes in the absorbance and spectral pattern in the wavenumber region between 800-1800 cm-1 were found after the treatment. Preliminary analysis of the spectra revealed that the protein content decreased in the T-lymphoma patient before the treatment in comparison to the age matched controls. The chemotherapy treatment resulted in decreased nucleic acids, total carbohydrates and cholesterol contents to a remarkable extent in both B and T lymphoma patients.

  17. KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity.

    Science.gov (United States)

    Suck, Garnet; Branch, Donald R; Smyth, Mark J; Miller, Richard G; Vergidis, Joanna; Fahim, Soad; Keating, Armand

    2005-10-01

    To compare the cytotoxicity of KHYG-1 with other natural killer (NK)/NK T-cell lines and identify molecules that may be associated with enhanced cytotoxicity, thereby eventually leading to improved NK cell-mediated cancer immunotherapy. NK/NK T-cell lines KHYG-1, NK-92, YT, and SNT-8 were compared with a novel flow cytometric cytotoxicity assay under different culture conditions. Transcription, expression, and phosphorylation studies were performed using polymerase chain reaction sequence-specific primers, reverse transcription polymerase chain reaction, immunoblotting, and flow cytometry. KHYG-1 is a highly cytotoxic cell line, exceeding the cytolytic capacity of the other cell lines against K562. KHYG-1 is also highly cytotoxic against the leukemia cell lines EM2, EM3, and HL60. The novel activation receptor NKp44 and its adaptor, DAP12, NKG2D, and constitutively phosphorylated ERK2 may be associated with the enhanced cytotoxicity of KHYG-1. This cell line most likely mediates cytolysis by granzyme M (but not granzymes A and B) together with perforin, which is constitutively fully cleaved to the 60-kD form, in contrast to the other cell lines. KHYG-1 is a valuable model for the study of enhanced cytotoxicity by NK cells. In addition to the activation of NKp44, KHYG-1 may induce apoptosis of tumor cells by the newly described granzyme M/perforin pathway. Targeted modifications of effector molecules demonstrated in this model could generate NK cells with even greater killing ability that may be particularly attractive for clinical application. Moreover, our demonstration of greater cytotoxicity of KHYG-1 versus NK-92 cells, already in clinical trials, suggests a direct therapeutic role for KHYG-1.

  18. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells.

    Science.gov (United States)

    Mathew, Nimitha R; Baumgartner, Francis; Braun, Lukas; O'Sullivan, David; Thomas, Simone; Waterhouse, Miguel; Müller, Tony A; Hanke, Kathrin; Taromi, Sanaz; Apostolova, Petya; Illert, Anna L; Melchinger, Wolfgang; Duquesne, Sandra; Schmitt-Graeff, Annette; Osswald, Lena; Yan, Kai-Li; Weber, Arnim; Tugues, Sonia; Spath, Sabine; Pfeifer, Dietmar; Follo, Marie; Claus, Rainer; Lübbert, Michael; Rummelt, Christoph; Bertz, Hartmut; Wäsch, Ralph; Haag, Johanna; Schmidts, Andrea; Schultheiss, Michael; Bettinger, Dominik; Thimme, Robert; Ullrich, Evelyn; Tanriver, Yakup; Vuong, Giang Lam; Arnold, Renate; Hemmati, Philipp; Wolf, Dominik; Ditschkowski, Markus; Jilg, Cordula; Wilhelm, Konrad; Leiber, Christian; Gerull, Sabine; Halter, Jörg; Lengerke, Claudia; Pabst, Thomas; Schroeder, Thomas; Kobbe, Guido; Rösler, Wolf; Doostkam, Soroush; Meckel, Stephan; Stabla, Kathleen; Metzelder, Stephan K; Halbach, Sebastian; Brummer, Tilman; Hu, Zehan; Dengjel, Joern; Hackanson, Björn; Schmid, Christoph; Holtick, Udo; Scheid, Christof; Spyridonidis, Alexandros; Stölzel, Friedrich; Ordemann, Rainer; Müller, Lutz P; Sicre-de-Fontbrune, Flore; Ihorst, Gabriele; Kuball, Jürgen; Ehlert, Jan E; Feger, Daniel; Wagner, Eva-Maria; Cahn, Jean-Yves; Schnell, Jacqueline; Kuchenbauer, Florian; Bunjes, Donald; Chakraverty, Ronjon; Richardson, Simon; Gill, Saar; Kröger, Nicolaus; Ayuk, Francis; Vago, Luca; Ciceri, Fabio; Müller, Antonia M; Kondo, Takeshi; Teshima, Takanori; Klaeger, Susan; Kuster, Bernhard; Kim, Dennis Dong Hwan; Weisdorf, Daniel; van der Velden, Walter; Dörfel, Daniela; Bethge, Wolfgang; Hilgendorf, Inken; Hochhaus, Andreas; Andrieux, Geoffroy; Börries, Melanie; Busch, Hauke; Magenau, John; Reddy, Pavan; Labopin, Myriam; Antin, Joseph H; Henden, Andrea S; Hill, Geoffrey R; Kennedy, Glen A; Bar, Merav; Sarma, Anita; McLornan, Donal; Mufti, Ghulam; Oran, Betul; Rezvani, Katayoun; Shah, Omid; Negrin, Robert S; Nagler, Arnon; Prinz, Marco; Burchert, Andreas; Neubauer, Andreas; Beelen, Dietrich; Mackensen, Andreas; von Bubnoff, Nikolas; Herr, Wolfgang; Becher, Burkhard; Socié, Gerard; Caligiuri, Michael A; Ruggiero, Eliana; Bonini, Chiara; Häcker, Georg; Duyster, Justus; Finke, Jürgen; Pearce, Erika; Blazar, Bruce R; Zeiser, Robert

    2018-03-01

    Individuals with acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) in the gene encoding Fms-related tyrosine kinase 3 (FLT3) who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) have a 1-year survival rate below 20%. We observed that sorafenib, a multitargeted tyrosine kinase inhibitor, increased IL-15 production by FLT3-ITD + leukemia cells. This synergized with the allogeneic CD8 + T cell response, leading to long-term survival in six mouse models of FLT3-ITD + AML. Sorafenib-related IL-15 production caused an increase in CD8 + CD107a + IFN-γ + T cells with features of longevity (high levels of Bcl-2 and reduced PD-1 levels), which eradicated leukemia in secondary recipients. Mechanistically, sorafenib reduced expression of the transcription factor ATF4, thereby blocking negative regulation of interferon regulatory factor 7 (IRF7) activation, which enhanced IL-15 transcription. Both IRF7 knockdown and ATF4 overexpression in leukemia cells antagonized sorafenib-induced IL-15 production in vitro. Human FLT3-ITD + AML cells obtained from sorafenib responders following sorafenib therapy showed increased levels of IL-15, phosphorylated IRF7, and a transcriptionally active IRF7 chromatin state. The mitochondrial spare respiratory capacity and glycolytic capacity of CD8 + T cells increased upon sorafenib treatment in sorafenib responders but not in nonresponders. Our findings indicate that the synergism of T cells and sorafenib is mediated via reduced ATF4 expression, causing activation of the IRF7-IL-15 axis in leukemia cells and thereby leading to metabolic reprogramming of leukemia-reactive T cells in humans. Therefore, sorafenib treatment has the potential to contribute to an immune-mediated cure of FLT3-ITD-mutant AML relapse, an otherwise fatal complication after allo-HCT.

  19. Decolorization and Mineralization of Reactive Dyes, by the H2O2/UV Process With Electrochemically Produced H2O2

    NARCIS (Netherlands)

    Jeric, T.; Bisselink, R.J.M.; Tongeren, W. van; Marechal. A.M. Le

    2013-01-01

    Decolorization of Reactive Red 238, Reactive Orange 16, Reactive Black 5 and Reactive Blue 4 was studied in the UV/H2O2 process with H2O2 being produced electrochemically. The experimental results show that decolorization increased considerably when switching on the electrochemical production of

  20. Urtica dioica Induces Cytotoxicity in Human Prostate Carcinoma ...

    African Journals Online (AJOL)

    Purpose: To evaluate the cytotoxic mechanisms of an extract from the leaves of the Urtica dioica (UD) plant in LNCaP prostate cancer cells. Methods: LNCaP cells were exposed to the UD extract for 24hrs and cell viability assessed using the MTT assay. Reactive oxygen species generation was assessed using the NBT ...

  1. Synthesis and Cytotoxic Evaluation of a Series of 2-Amino-Naphthoquinones against Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Thiago A. P. de Moraes

    2014-08-01

    Full Text Available The cytotoxicity of a series of aminonaphthoquinones resulting from the reaction of suitable aminoacids with 1,4-naphthoquinone was assayed against SF-295 (glioblastoma, MDAMB-435 (breast, HCT-8 (colon, HCT-116 (colon, HL-60 (leukemia, OVCAR-8 (ovarian, NCI-H358M (bronchoalveolar lung carcinoma and PC3-M (prostate cancer cells and also against PBMC (peripheral blood mononuclear cells. The results demonstrated that all the synthetic aminonaphthoquinones had relevant cytotoxic activity against all human cancer lines used in this experiment. Five of the compounds showed high cytotoxicity and selectivity against all cancer cell lines tested (IC50 = 0.49 to 3.89 µg·mL−1. The title compounds were less toxic to PBMC, since IC50 was 1.5 to eighteen times higher (IC50 = 5.51 to 17.61 µg·mL−1 than values shown by tumour cell lines. The mechanism of cell growth inhibition and structure–activity relationships remains as a target for future investigations.

  2. Cytotoxicity of actinomycetes associated with the ascidian Eudistoma vannamei (Millar, 1977, endemic of northeastern coast of Brazil

    Directory of Open Access Journals (Sweden)

    Paula C Jimenez

    2013-04-01

    Full Text Available Previous studies demonstrated that the crude extract of the ascidian Eudistoma vannamei, endemic from northeasttern Brazil, strongly hinders growth of tumor cells in vitro by inducing apoptosis due to tryptophan derivatives, which are commonly found in bacteria. This study presents a bioactivity-guided screening among actinomycetes, associated with E. vannamei, aiming at recognizing active principles with biological relevance. Twenty strains of actinomycetes, designated as EVA 0101 through 0120, were isolated from colonies of E. vannamei among which 11 were selected for cytotoxicity evaluation. The extracts from EVA 0102, 0103, 0106, 0109 and 0113 were the most active, and were further studied for IC50 determination and chemical analysis by ¹H NMR. IC50 values obtained ranged from 3.62 µg mL-1 (for EVA 0109 in leukemia cells to 84.65 µg/mL (for EVA 0106 in melanoma cells. All active extracts exhibited the same TLC and spectroscopic profiles, suggesting the presence of quinones and other related secondary metabolites. Furthermore, these strains were identified and compared based on their respective 16S rRNA sequences. The results herein identified the five strains as Micromonospora spp. while phylogenetic analysis suggests that they are possibly two different Micromonospora species producing the cytotoxic compounds.

  3. Juvenile Myelomonocytic Leukemia

    Science.gov (United States)

    ... myeloproliferative neoplasms, leukemia , and other conditions . Chronic Myelomonocytic Leukemia Key Points Chronic myelomonocytic leukemia is a disease ... chance of recovery) and treatment options. Chronic myelomonocytic leukemia is a disease in which too many myelocytes ...

  4. Radiogenic leukemia revisited

    International Nuclear Information System (INIS)

    Moloney, W.C.

    1987-01-01

    Radiation-induced leukemia is considered to be similar to the de novo disease. However, following an analysis of clinical and hematological findings in leukemia occurring in irradiated cervical cancer patients, adult Japanese atomic-bomb survivors, and spondylitics treated with x-ray, striking differences were noted. Acute leukemias in cervical cancer patients and Japanese survivors were similar in type to acute de novo leukemias in adults. Cell types among spondylitics were very dissimilar; rare forms, eg, acute erythromyelocytic leukemia (AEL) and acute megakaryocytic leukemia, were increased. Pancytopenia occurred in 25 of 35 cases and erythromyelodysplastic disorders were noted in seven of 35 acute cases. The leukemias and myelodysplastic disorders closely resembled those occurring in patients treated with alkylating agents. This similarity suggests a common pathogenesis involving marrow stem cell injury and extra-medullary mediators of hematopoiesis. Investigation of early acute leukemias and myelodysplastic disorders with newer techniques may provide valuable insights into the pathogenesis of leukemia in humans

  5. Malignant monoblasts can function as effector cells in natural killer cell and antibody-dependent cellular cytotoxicity assays

    DEFF Research Database (Denmark)

    Hokland, P; Hokland, M; Ellegaard, J

    1981-01-01

    This is the first report describing natural killer (NK) and antibody-dependent cellular cytotoxicity (ADCC) of malignant monoblasts. Pure acute monoblastic leukemia was diagnosed in bone marrow aspirations from two patients by use of conventional cytochemical methods as well as multiple immunolog...... no modulation was seen in ADCC. These findings are discussed in the light of our present knowledge of lymphoid NK cells. Udgivelsesdato: 1981-May...

  6. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    Directory of Open Access Journals (Sweden)

    Takuya Yamane

    2018-03-01

    Full Text Available The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  7. Influence of Chemotherapy on the Lipid Peroxidation and Antioxidant Status in Patients with Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Zohreh Sanaat

    2012-07-01

    Full Text Available Chemotherapeutic agents used in patients with cancer cause to generate the enormous amounts of free radicals associated with cell injury. In this study we assess the effects of chemotherapy regimen on oxidant/antioxidant status in patients with acute myeloid leukemia (AML. 38 newly diagnosed patients with acute myeloid leukemia were recruited in this study. All patients received cytarabine and daunorubicin as chemotherapy regimen. Plasma levels of malondialdehyde (MDA, total antioxidant status (TAS, and the levels of erythrocyte activity of superoxide dismutase (SOD and glutathione peroxidase (GPx were determined before chemotherapy and 14 days after chemotherapy with cytarabine and daunorubicin. Plasma MDA concentrations increased significantly (from 2.68±0.89 nmol/L to 3.14±1.29 nmol/L during the 14days post-chemotherapy period (P=0.04. Plasma TAS concentrations changed with chemotherapy from 1.09±0.15 mmol/L to 1.02±0.14 mmol/L with P=0.005. Erythrocyte SOD and GPX activity decreased overtime from 1157.24±543.61 U/g Hb to 984.01±419.09 U/g Hb (P=0.04 and 46.96±13.70 U/g Hb to 41.40±6.44 U/g Hb (P=0.02 respectively. We report here that there is an increase in malondialdehyde levels and a decrease in the levels of antioxidant enzymes and total antioxidant status. This suggests that chemotherapy causes these changes as a result of enormous production of reactive oxygen species in the patients with AML. Antioxidant supplementation must be approached with caution because of the probability of reduction the therapeutic efficacy of these cytotoxic drugs.

  8. An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia.

    Science.gov (United States)

    Leong, Steven R; Sukumaran, Siddharth; Hristopoulos, Maria; Totpal, Klara; Stainton, Shannon; Lu, Elizabeth; Wong, Alfred; Tam, Lucinda; Newman, Robert; Vuillemenot, Brian R; Ellerman, Diego; Gu, Chen; Mathieu, Mary; Dennis, Mark S; Nguyen, Allen; Zheng, Bing; Zhang, Crystal; Lee, Genee; Chu, Yu-Waye; Prell, Rodney A; Lin, Kedan; Laing, Steven T; Polson, Andrew G

    2017-02-02

    Acute myeloid leukemia (AML) is a major unmet medical need. Most patients have poor long-term survival, and treatment has not significantly changed in 40 years. Recently, bispecific antibodies that redirect the cytotoxic activity of effector T cells by binding to CD3, the signaling component of the T-cell receptor, and a tumor target have shown clinical activity. Notably, blinatumomab is approved to treat relapsed/refractory acute lymphoid leukemia. Here we describe the design, discovery, pharmacologic activity, pharmacokinetics, and safety of a CD3 T cell-dependent bispecific (TDB) full-length human IgG1 therapeutic antibody targeting CLL-1 that could potentially be used in humans to treat AML. CLL-1 is prevalent in AML and, unlike other targets such as CD33 and CD123, is not expressed on hematopoietic stem cells providing potential hematopoietic recovery. We selected a high-affinity monkey cross-reactive anti-CLL-1 arm and tested several anti-CD3 arms that varied in affinity, and determined that the high-affinity CD3 arms were up to 100-fold more potent in vitro. However, in mouse models, the efficacy differences were less pronounced, probably because of prolonged exposure to TDB found with lower-affinity CD3 TDBs. In monkeys, assessment of safety and target cell depletion by the high- and low-affinity TDBs revealed that only the low-affinity CD3/CLL1 TDB was well tolerated and able to deplete target cells. Our data suggest that an appropriately engineered CLL-1 TDB could be effective in the treatment of AML. © 2017 by The American Society of Hematology.

  9. Cytotoxicity of TiO{sub 2} nanoparticles and their detoxification in a freshwater system

    Energy Technology Data Exchange (ETDEWEB)

    Dalai, Swayamprava; Pakrashi, Sunandan; Joyce Nirmala, M.; Chaudhri, Apoorvi; Chandrasekaran, N. [Centre for Nanobiotechnology, VIT University, Vellore (India); Mandal, A.B. [Chemical Laboratory, Central Leather Research Institute, Chennai (India); Mukherjee, Amitava, E-mail: amitav@vit.ac.in [Centre for Nanobiotechnology, VIT University, Vellore (India)

    2013-08-15

    Highlights: •TiO{sub 2} NPs cytotoxicity at low exposure levels (≤1 μg/mL) to freshwater algae. •ROS generation, NP adsorption and internalization contributors to toxicity. •Observational evidence of genotoxicity by nanoparticles in an algal cell. •Reduced bioavailability thus detoxification of NPs by microalgae. •Possible role of EPS in detoxification. -- Abstract: In the current study, two aspects concerning (i) the cytotoxicity potential of TiO{sub 2} nanoparticles (NPs) toward freshwater algal isolate Scenedesmus obliquus and (ii) the potential detoxification of NPs by the microalgae were assessed under light (UV-illumination) and dark conditions at low exposure levels (≤1 μg/mL), using sterile freshwater as the test medium. The statistically significant reduction in cell viability, increase in reactive oxygen species production and membrane permeability (light vs. dark) suggested photo-induced toxicity of TiO{sub 2} NPs. The electron micrographs demonstrated adsorption of the NPs onto the cell surface and substantiated their internalization/uptake. The fluorescence micrographs and the confocal laser scanning (CLSM) images suggested the absence of a definite/intact nucleus in the light treated cells pointing toward the probable genotoxic effects of NPs. In a separate three cycle experiment, a continuous decrease in the cytotoxicity was observed, whereas, at the end of each cycle only fresh algae were added to the supernatant containing NPs from the previous cycle. The decreasing concentrations of the NPs in the subsequent cycles owing to agglomeration–sedimentation processes exacerbated by the algal interactions played a crucial role in the detoxification. In addition, the exo-polymeric substances produced by the cells could have rendered the available NPs less reactive, thereby, enhancing the detoxification effects.

  10. Study of CO2 gasification reactivity of biocarbon produced at different conditions

    OpenAIRE

    Wang, Liang; Maziarka, Przemysław; Skreiberg, Øyvind; Løvås, Terese; Wadrzyk, Mariusz; Sevault, Alexis

    2017-01-01

    Biocarbon has a great potential to replace fossil reductants and help reduce greenhouse gas emissions from carbon intensive metallurgical industries. In this work, biocarbon samples were produced from Norway spruce under different final temperatures (550, 650 and 800 °C) and holding times (10 and 30 minutes). The CO2 gasification reactivity of the biocarbon, or biomass char, samples was investigated in a thermogravimetric analyser at different gasification temperatures (850, 900 and 950 °C). ...

  11. SB-715992 in Treating Patients With Acute Leukemia, Chronic Myelogenous Leukemia, or Advanced Myelodysplastic Syndromes

    Science.gov (United States)

    2013-01-10

    Acute Undifferentiated Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  12. Novel somatic mutations in large granular lymphocytic leukemia affecting the STAT-pathway and T-cell activation

    International Nuclear Information System (INIS)

    Andersson, E I; Rajala, H L M; Eldfors, S; Ellonen, P; Olson, T; Jerez, A; Clemente, M J; Kallioniemi, O; Porkka, K; Heckman, C; Loughran, T P Jr; Maciejewski, J P; Mustjoki, S

    2013-01-01

    T-cell large granular lymphocytic (T-LGL) leukemia is a clonal disease characterized by the expansion of mature CD3+CD8+ cytotoxic T cells. It is often associated with autoimmune disorders and immune-mediated cytopenias. Our recent findings suggest that up to 40% of T-LGL patients harbor mutations in the STAT3 gene, whereas STAT5 mutations are present in 2% of patients. In order to identify putative disease-causing genetic alterations in the remaining T-LGL patients, we performed exome sequencing from three STAT mutation-negative patients and validated the findings in 113 large granular lymphocytic (LGL) leukemia patients. On average, 11 CD8+ LGL leukemia cell-specific high-confidence nonsynonymous somatic mutations were discovered in each patient. Interestingly, all patients had at least one mutation that affects either directly the STAT3-pathway (such as PTPRT) or T-cell activation (BCL11B, SLIT2 and NRP1). In all three patients, the STAT3 pathway was activated when studied by RNA expression or pSTAT3 analysis. Screening of the remaining 113 LGL leukemia patients did not reveal additional patients with same mutations. These novel mutations are potentially biologically relevant and represent rare genetic triggers for T-LGL leukemia, and are associated with similar disease phenotype as observed in patients with mutations in the STAT3 gene

  13. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    Science.gov (United States)

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  14. Radioisotope examination of hairy-cell leukemia patients

    International Nuclear Information System (INIS)

    Fortynova, J.; Friedmann, B.; Bakos, K.; Malaskova, V.; Voslarova, Z.; Vopatova, M.

    1983-01-01

    13 patients with hairy-cell leukemia were simultaneously tested using different radioisotope methods (scintiscan of the spleen and bone marrow, total blood volume and erythrocytic pool in the spleen, erythrocyte and platelet kinetics). Some of the methods (bone marrow scintiscan, total blood volume and erythrocytic pool in the spleen, and kinetic studies) produced characteristic results in those patients: they could add precision to the diagnosis of the disease, and they could also be used for better elucidation of the pathogenic mechanisms of other clinical signs characteristic of hairy-cell leukemia. In spite of the undeniably significant value of the said methods for precise diagnosis of hairy-cell leukemia, histological tests of the bioptic material of bone marrow and spleen and bone marrow needle biopsy remain better and indispensable methods. (author)

  15. Leukemia-Initiating Cells in T-Cell Acute Lymphoblastic Leukemia

    OpenAIRE

    Tan, Shi Hao; Bertulfo, Fatima Carla; Sanda, Takaomi

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy characterized by the clonal proliferation of immature T-cell precursors. T-ALL has many similar pathophysiological features to acute myeloid leukemia, which has been extensively studied in the establishment of the cancer stem cell (CSC) theory, but the CSC concept in T-ALL is still debatable. Although leukemia-initiating cells (LICs), which can generate leukemia in a xenograft setting, have been found in both human T-AL...

  16. [Cytotoxic effect of physalis peruviana in cell culture of colorectal and prostate cancer and chronic myeloid leukemia].

    Science.gov (United States)

    Quispe-Mauricio, Angel; Callacondo, David; Rojas, José; Zavala, David; Posso, Margarita; Vaisberg, Abraham

    2009-01-01

    The plants have been used as drugs for centuries. However, limited research has been done on its great potential as sources of new therapeutic agents. The purpose of this study was to evaluate Physalis peruviana cytotoxic activity on cell lines HT-29, PC-3, K-562 and VERO. The HT-29 cell lines, PC-3, K-562 and VERO, were exposed to four concentrations of P. peruviana ethanolic leave and stem extracts, also at different concentrations of cisplatin and 5-fluorouracil (5-FU), which were used as positive controls. We found rates of growth within 48 hours, then we determined the inhibitory concentration 50 (IC50) using linear regression analysis and the index of selectivity of each sample. The P. peruviana ethanolic leave and stem extracts showed cytotoxic activity. The IC50 in g/mL in leaves and stems were, 0.35 (r =-0.95 p peruviana leaves and steams ethanolic extracts were more cytotoxic than cisplatin and 5 FU, on the lines HT-29, PC-3 and K562. Furthermore the P. peruviana cytotoxic effects were less than cisplatin and 5-FU for VERO control cells lines.

  17. [{sup 131}I]FIAU labeling of genetically transduced, tumor-reactive lymphocytes: cell-level dosimetry and dose-dependent toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zanzonico, Pat [Memorial Sloan-Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Koehne, Guenther; Doubrovina, Ekaterina; O' Reilly, Richard J. [Memorial Sloan-Kettering Cancer Center, Allogeneic Transplantation Service, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Immunology Program, New York, NY (United States); Gallardo, Humilidad F. [Memorial Sloan-Kettering Cancer Center, Gene Transfer and Somatic Cell Engineering Facility, New York, NY (United States); Doubrovin, Mikhail; Blasberg, Ronald G. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Neurology, New York, NY (United States); Finn, Ronald [Memorial Sloan-Kettering Cancer Center, Radiochemistry and Cyclotron Core Facility, New York, NY (United States); Riviere, Isabelle; Sadelain, Michel [Memorial Sloan-Kettering Cancer Center, Immunology Program, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Gene Transfer and Somatic Cell Engineering Facility, New York, NY (United States); Larson, Steven M. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States)

    2006-09-15

    Donor T cells have been shown to be reactive against and effective in adoptive immunotherapy of Epstein-Barr virus (EBV) lymphomas which develop in some leukemia patients post marrow transplantation. These T cells may be genetically modified by incorporation of a replication-incompetent viral vector (NIT) encoding both an inactive mutant nerve growth factor receptor (LNGFR), as an immunoselectable surface marker, and a herpes simplex virus thymidine kinase (HSV-TK), rendering the cells sensitive to ganciclovir. The current studies are based on the selective HSV-TK-catalyzed trapping (phosphorylation) of the thymidine analog [{sup 131}I]-2'-fluoro-2'-deoxy-1-{beta}-D-arabinofuransyl-5-iodo-uracil (FIAU) as a means of stably labeling such T cells for in vivo trafficking (including tumor targeting) studies. Because of the radiosensitivity of lymphocytes and the potentially high absorbed dose to the nucleus from intracellular {sup 131}I (even at tracer levels), the nucleus absorbed dose (D{sub n}) and dose-dependent immune functionality were evaluated for NIT {sup +} T cells labeled ex vivo in [{sup 131}I ]FIAU-containing medium. Based on in vitro kinetic studies of [{sup 131}I ]FIAU uptake by NIT {sup +} T cells, D{sub n} was calculated using an adaptation of the MIRD formalism and the recently published MIRD cellular S factors. Immune cytotoxicity of [{sup 131}I ]FIAU-labeled cells was assayed against {sup 51}Cr-labeled target cells [B-lymphoblastoid cells (BLCLs) ] in a standard 4-h release assay. At median nuclear absorbed doses up to 830 cGy, a {sup 51}Cr-release assay against BLCLs showed no loss of immune cytotoxicity, thus demonstrating the functional integrity of genetically transduced, tumor-reactive T cells labeled at this dose level for in vivo cell trafficking and tumor targeting studies. (orig.)

  18. Filling and mining the reactive metabolite target protein database.

    Science.gov (United States)

    Hanzlik, Robert P; Fang, Jianwen; Koen, Yakov M

    2009-04-15

    The post-translational modification of proteins is a well-known endogenous mechanism for regulating protein function and activity. Cellular proteins are also susceptible to post-translational modification by xenobiotic agents that possess, or whose metabolites possess, significant electrophilic character. Such non-physiological modifications to endogenous proteins are sometimes benign, but in other cases they are strongly associated with, and are presumed to cause, lethal cytotoxic consequences via necrosis and/or apoptosis. The Reactive Metabolite Target Protein Database (TPDB) is a searchable, freely web-accessible (http://tpdb.medchem.ku.edu:8080/protein_database/) resource that attempts to provide a comprehensive, up-to-date listing of known reactive metabolite target proteins. In this report we characterize the TPDB by reviewing briefly how the information it contains came to be known. We also compare its information to that provided by other types of "-omics" studies relevant to toxicology, and we illustrate how bioinformatic analysis of target proteins may help to elucidate mechanisms of cytotoxic responses to reactive metabolites.

  19. Effects of the antitumoural dequalinium on NB4 and K562 human leukemia cell lines. Mitochondrial implication in cell death.

    Science.gov (United States)

    Galeano, Eva; Nieto, Elena; García-Pérez, Ana Isabel; Delgado, M Dolores; Pinilla, Montserrat; Sancho, Pilar

    2005-10-01

    Dequalinium (DQA) is a delocalized lipophylic cation that selectively targets the mitochondria of carcinoma cells. However, the underlying mechanisms of DQA action are not yet well understood. We have studied the effects of DQA on two different leukemia cell lines: NB4, derived from acute promyelocytic leukemia, and K562, derived from chronic myeloid leukemia. We found that DQA displays differential cytotoxic activity in these cell lines. In NB4 cells, a low DQA concentration (2microM) induces a mixture of apoptosis and necrosis, whereas a high DQA concentration (20microM) induces mainly necrosis. However, K562 cell death was always by necrosis as the cells showed a resistance to apoptosis at all time-periods and DQA concentrations assayed. In both cell lines, the cell death seems to be mediated by alterations of mitochondrial function as evidenced by loss of mitochondrial transmembrane potential, O2*- accumulation and ATP depletion. The current study improves the knowledge on DQA as a novel anticancer agent with a potential application in human acute promyelocytic leukemia chemotherapy.

  20. The Role of B Cells for in Vivo T Cell Responses to a Friend Virus-Induced Leukemia

    Science.gov (United States)

    Schultz, Kirk R.; Klarnet, Jay P.; Gieni, Randall S.; Hayglass, Kent T.; Greenberg, Philip D.

    1990-08-01

    B cells can function as antigen-presenting cells and accessory cells for T cell responses. This study evaluated the role of B cells in the induction of protective T cell immunity to a Friend murine leukemia virus (F-MuLV)-induced leukemia (FBL). B cell-deficient mice exhibited significantly reduced tumor-specific CD4^+ helper and CD8^+ cytotoxic T cell responses after priming with FBL or a recombinant vaccinia virus containing F-MuLV antigens. Moreover, these mice had diminished T cell responses to the vaccinia viral antigens. Tumor-primed T cells transferred into B cell-deficient mice effectively eradicated disseminated FBL. Thus, B cells appear necessary for efficient priming but not expression of tumor and viral T cell immunity.

  1. Chronic myelogenous leukemia (CML)

    Science.gov (United States)

    CML; Chronic myeloid leukemia; Chronic granulocytic leukemia; Leukemia - chronic granulocytic ... nuclear disaster. It takes many years to develop leukemia from radiation exposure. Most people treated for cancer ...

  2. Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp.

    Directory of Open Access Journals (Sweden)

    Md. Imdadul Huque Khan

    Full Text Available Objective: Endophytes have the potential to synthesize various bioactive secondary metabolites. The aim of the study was to find new cytotoxic and antibacterial metabolites from endophytic fungus, Cladosporium sp. isolated from the leaves of Rauwolfia serpentina (L. Benth. ex Kurz. (Fam: Apocyanaceae. Materials and methods: The endophytic fungus was grown on potato dextrose agar medium and extracted using ethyl acetate. Secondary metabolites were isolated by chromatographic separation and re-crystallization, and structures were confirmed by 1H NMR, 13C NMR and mass spectroscopic data. The cytotoxicity was determined by WST-1 assay and brine shrimp lethality bioassay, while antibacterial activity was assessed by disc diffusion method. Results: Two naphthoquinones, namely anhydrofusarubin (1 and methyl ether of fusarubin (2, were isolated from Cladosporium sp. The isolated compounds 1 and 2, by WST-1 assay against human leukemia cells (K-562 showed potential cytotoxicity with IC50 values of 3.97 μg/mL and 3.58 μg/mL, respectively. Initial screening of crude ethyl acetate extract and column fractions F-8 and F-10 exhibited noticeable cytotoxicity to brine shimp nauplii with LC50 values of 42.8, 1.2 and 2.1 μg/mL, respectively. Moreover, the isolated compound 2 (40 μg/disc showed prominent activities against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus megaterium with an average zone of inhibition of 27 mm, 25 mm, 24 mm and 22 mm, respectively and the activities were compared with kanamycin (30 μg/disc. Conclusion: Our findings indicate that anhydrofusarubin (1 and methyl ether of fusarubin (2 might be useful lead compounds to develop potential cytotoxic and antimicrobial drugs. Keywords: Endophytic fungi, Cladosporium species, Fusarubin, Cytoxicity, Antibacterial activity

  3. Chronic Myelogenous Leukemia

    Science.gov (United States)

    Chronic myelogenous leukemia Overview Chronic myelogenous leukemia (CML) is an uncommon type of cancer of the blood cells. The term "chronic" in chronic myelogenous leukemia indicates that this cancer ...

  4. Chronic neutrophilic leukemia.

    Science.gov (United States)

    Bredeweg, Arthur; Burch, Micah; Krause, John R

    2018-01-01

    Chronic neutrophilic leukemia is a rare myeloproliferative disorder characterized by a sustained peripheral blood neutrophilia, absence of the BCR/ABL oncoprotein, bone marrow hypercellularity with less than 5% myeloblasts and normal neutrophil maturation, and no dysplasia. This leukemia has been associated with mutations in the colony-stimulating factor 3 receptor (CSF3R) that may activate this receptor, leading to the proliferation of neutrophils that are the hallmark of chronic neutrophilic leukemia. We present a case of chronic neutrophilic leukemia and discuss the criteria for diagnosis and the significance of mutations found in this leukemia.

  5. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    Science.gov (United States)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain; Jung, Hun Bok; Carroll, Kenneth C.

    2018-01-23

    An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.

  6. Current Approaches in the Treatment of Relapsed and Refractory Acute Myeloid Leukemia

    Science.gov (United States)

    Ramos, Nestor R.; Mo, Clifton C.; Karp, Judith E.; Hourigan, Christopher S.

    2015-01-01

    The limited sensitivity of the historical treatment response criteria for acute myeloid leukemia (AML) has resulted in a different paradigm for treatment compared with most other cancers presenting with widely disseminated disease. Initial cytotoxic induction chemotherapy is often able to reduce tumor burden to a level sufficient to meet the current criteria for “complete” remission. Nevertheless, most AML patients ultimately die from their disease, most commonly as clinically evident relapsed AML. Despite a variety of available salvage therapy options, prognosis in patients with relapsed or refractory AML is generally poor. In this review, we outline the commonly utilized salvage cytotoxic therapy interventions and then highlight novel investigational efforts currently in clinical trials using both pathway-targeted agents and immunotherapy based approaches. We conclude that there is no current standard of care for adult relapsed or refractory AML other than offering referral to an appropriate clinical trial. PMID:25932335

  7. Cytotoxic oleanane-type triterpenoid saponins from the Rhizomes of Anemone rivularis var. flore-minore.

    Science.gov (United States)

    Wang, Xiaoyang; Wang, Minchang; Xu, Min; Wang, Yi; Tang, Haifeng; Sun, Xiaoli

    2014-02-18

    Phytochemical investigation of the n-BuOH extract of the rhizomes of Anemone rivularis var. flore-minore led to the isolation of five new oleanane-type triterpenoid saponins 1-5, together with five known saponins 6-10. Their structures were determined by the extensive use of 1D and 2D NMR experiments, along with ESIMS analyses and acid hydrolysis. The aglycone of 4 and 5 was determined as 21α-hydroxyoleanolic acid, which was reported in this genus for the first time. The cytotoxicity of these compounds was evaluated against four human cancer cell line, including HL-60 (promyelocytic leukemia), HepG2 (hepatocellular carcinoma), A549 (lung carcinoma) and HeLa (cervical carcinoma). The monodesmosidic saponins 6-8 exhibited cytotoxic activity toward all tested cancer cell lines, with IC50 values in the 7.25-22.38 μM range.

  8. Transient thrombocytosis with megathrombocytes in a case of acute myeloblastic leukemia

    Directory of Open Access Journals (Sweden)

    Kotru Mrinalini

    2009-01-01

    Full Text Available Thrombocytosis is commonly seen in reactive conditions and certain neoplastic states, such as chronic myeloproliferative disorders. It is rarely seen in acute leukemia. A 12-year-old girl with acute myeloblastic leukemia (FAB M2 in remission presented with pyoderma. Her hemogram revealed anemia (Hb-6.4g/dl, leucopenia (TLC - 1.2 x 109/L and thrombocytosis (platelet count- 580 x 109/L. A peripheral blood film showed numerous abnormally large platelets with few atypical cells. The thrombocytosis subsided with the clearance of infection but atypical cells persisted. One month later, she relapsed. Cytogenetic analysis revealed variable results (trisomy 9 and deletion 3. This case has been presented because thrombocytosis is rare in AML and its appearance calls for a close follow-up.

  9. Cytotoxic protein from the mushroom Coprinus comatus possesses a unique mode for glycan binding and specificity.

    Science.gov (United States)

    Zhang, Peilan; Li, Kunhua; Yang, Guang; Xia, Changqing; Polston, Jane E; Li, Gengnan; Li, Shiwu; Lin, Zhao; Yang, Li-Jun; Bruner, Steven D; Ding, Yousong

    2017-08-22

    Glycans possess significant chemical diversity; glycan binding proteins (GBPs) recognize specific glycans to translate their structures to functions in various physiological and pathological processes. Therefore, the discovery and characterization of novel GBPs and characterization of glycan-GBP interactions are significant to provide potential targets for therapeutic intervention of many diseases. Here, we report the biochemical, functional, and structural characterization of a 130-amino-acid protein, Y3, from the mushroom Coprinus comatus Biochemical studies of recombinant Y3 from a yeast expression system demonstrated the protein is a unique GBP. Additionally, we show that Y3 exhibits selective and potent cytotoxicity toward human T-cell leukemia Jurkat cells compared with a panel of cancer cell lines via inducing caspase-dependent apoptosis. Screening of a glycan array demonstrated GalNAcβ1-4(Fucα1-3)GlcNAc (LDNF) as a specific Y3-binding ligand. To provide a structural basis for function, the crystal structure was solved to a resolution of 1.2 Å, revealing a single-domain αβα-sandwich motif. Two monomers were dimerized to form a large 10-stranded, antiparallel β-sheet flanked by α-helices on each side, representing a unique oligomerization mode among GBPs. A large glycan binding pocket extends into the dimeric interface, and docking of LDNF identified key residues for glycan interactions. Disruption of residues predicted to be involved in LDNF/Y3 interactions resulted in the significant loss of binding to Jurkat T-cells and severely impaired their cytotoxicity. Collectively, these results demonstrate Y3 to be a GBP with selective cytotoxicity toward human T-cell leukemia cells and indicate its potential use in cancer diagnosis and treatment.

  10. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Minakshi Rana

    2016-07-01

    Full Text Available The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L. enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa extract (CMCE. CMCE (1 or 10 µg/mL; 14 h significantly decreased LPS (50-100 ng/mL induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100 and 300 mg/kg; 10 days p.o. pre-treated and LPS (10 mg/kg challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3 and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia.

  11. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

    Directory of Open Access Journals (Sweden)

    Agnes S. M. Yong

    2017-04-01

    Full Text Available Chronic myeloid leukemia (CML is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01% in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR, which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important

  12. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

    Science.gov (United States)

    Hughes, Amy; Yong, Agnes S. M.

    2017-01-01

    Chronic myeloid leukemia (CML) is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22)], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs) represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01%) in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR), which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK) cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important in mediating

  13. Pharmacological effect of aminoferrocene in mice with L1210 leukemia.

    Science.gov (United States)

    Chekhun, V F; Mokhir, A; Daum, S; Todor, I N; Lukianova, N Yu; Shvets, Yu V; Burlaka, A P

    2015-06-01

    To study the cytostatic and some biological effects of aminoferrocene using mice with L1210 lymphoid leukemia. Experiments were performed on BDF1 male mice (DBA/2, female × C57Bl/6, male) with transplantable L1210 lymphoid leukemia. Determination of antitumor activity of Benzyl-Fc Boron (Bn), it was injected intraperitoneally 6 times daily, starting on day 2 after L1210 leukemia cell transplantation. Doses of Bn such as 26; 260 and 2600 μg/kg were used. The determination of intracellular content of cardiolipin, thiols, reactive oxygen species (ROS) and also analysis of Annexin V positivity and mitochondrial transmembrane potential (JC-1 staining) were performed with use of flow cytometry. The levels of "free iron" complexes, transferrin active forms and the rate of NO generation were measured by EPR-specroscopy. Six daily injections of Bn at a dose of 26 μg/kg resulted in an increased survival of mice with L1210 leukemia by 28% (p < 0.05). Bn led to an increase of apoptotic cells number and ROS amount in leukemia cells. Besides, Bn caused a decrease of cardiolipin and nonprotein thiol compounds content. The membrane electrochemical potential of cell mitochondria was decreased also after Bn administration. Studies using EPR-spectroscopy revealed a significant increase in a level of "free iron", content of transferrin active species and generation rate of NO by inducible NO-synthase in L1210 cells after aminoferrocene administration. Our data indicate that Benzyl-Fc Boron can be promising candidate for realizing a new strategy of anticancer therapy with the use of ROS-inducing agents.

  14. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity

    Science.gov (United States)

    Thathia, Shabnam H.; Ferguson, Stuart; Gautrey, Hannah E.; van Otterdijk, Sanne D.; Hili, Michela; Rand, Vikki; Moorman, Anthony V.; Meyer, Stefan; Brown, Robert; Strathdee, Gordon

    2012-01-01

    Background Altered regulation of many transcription factors has been shown to be important in the development of leukemia. TWIST2 modulates the activity of a number of important transcription factors and is known to be a regulator of hematopoietic differentiation. Here, we investigated the significance of epigenetic regulation of TWIST2 in the control of cell growth and survival and in response to cytotoxic agents in acute lymphoblastic leukemia. Design and Methods TWIST2 promoter methylation status was assessed quantitatively, by combined bisulfite and restriction analysis (COBRA) and pyrosequencing assays, in multiple types of leukemia and TWIST2 expression was determined by quantitative reverse transcriptase polymerase chain reaction analysis. The functional role of TWIST2 in cell proliferation, survival and response to chemotherapy was assessed in transient and stable expression systems. Results We found that TWIST2 was inactivated in more than 50% of cases of childhood and adult acute lymphoblastic leukemia through promoter hypermethylation and that this epigenetic regulation was especially prevalent in RUNX1-ETV6-driven cases. Re-expression of TWIST2 in cell lines resulted in a dramatic reduction in cell growth and induction of apoptosis in the Reh cell line. Furthermore, re-expression of TWIST2 resulted in increased sensitivity to the chemotherapeutic agents etoposide, daunorubicin and dexamethasone and TWIST2 hypermethylation was almost invariably found in relapsed adult acute lymphoblastic leukemia (91% of samples hypermethylated). Conclusions This study suggests a dual role for epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia, initially through altering cell growth and survival properties and subsequently by increasing resistance to chemotherapy. PMID:22058208

  15. Isometachromin, a new cytotoxic sesquiterpenoid from a deep water sponge of the family Spongiidae.

    Science.gov (United States)

    McConnell, O J; Longley, R; Gunasekera, M

    1992-09-15

    Isometachromin (1), a new sesquiterpene-quinone that is related structurally to metachromin C (2), and the known compounds ilimaquinone (3) and 5-epi-ilimaquinone (4), were isolated from a deep water sponge in the family Spongiidae; the structure of isometachromin was elucidated by spectral methods. Isometachromin exhibits in vitro cytotoxicity against the human lung cancer cell line A549 (IC50 = 2.6 micrograms/ml), but not against P388 murine leukemia (IC 50 > or equal to 10 micrograms/ml) and also exhibits antimicrobial activity.

  16. Silenced B-Cell Receptor Response To Autoantigen In A Poor-Prognostic Subset Of Chronic Lymphocytic Leukemia

    DEFF Research Database (Denmark)

    Bergh, Ann-Charlotte; Evaldsson, Chamilly; Pedersen, Lone Bredo

    2014-01-01

    Chronic lymphocytic leukemia B cells express auto/xeno antigen-reactive antibodies that bind to self-epitopes and resemble natural IgM antibodies in their repertoire. One of the antigenic structures recognized is oxidation-induced malonedialdehyde that is present on low-density lipoprotein......-cell receptor unresponsiveness to cognate self-antigen on its own in poor-prognostic subset #1 chronic lymphocytic leukemia, indicating that these cells proliferate by other mechanisms that may override B-cell receptor silencing brought about in a context of self-tolerance/anergy. These novel findings have...

  17. Kelainan Hemostasis pada Leukemia

    Directory of Open Access Journals (Sweden)

    Zelly Dia Rofinda

    2012-09-01

    Full Text Available AbstrakLatar belakang: Leukemia adalah penyakit keganasan pada jaringan hematopoietik yang ditandai denganpenggantian elemen sumsum tulang normal oleh sel darah abnormal atau sel leukemik. Salah satu manifestasi klinisdari leukemia adalah perdarahan yang disebabkan oleh berbagai kelainan hemostasis.Kelainan hemostasis yang dapat terjadi pada leukemia berupa trombositopenia, disfungsi trombosit,koagulasi intravaskuler diseminata, defek protein koagulasi, fibrinolisis primer dan trombosis. Patogenesis danpatofosiologi kelainan hemostasis pada leukemia tersebut terjadi dengan berbagai mekanisme.Kata kunci: leukemia, kelainan hemostasisAbstractBackground: AbstractLeukemia is a malignancy of hematopoietic tissue which is characterized bysubstituted of bone marrow element with abnormal blood cell or leukemic cell. One of clinical manifestation ofleukemia is bleeding that is caused by several hemostasis disorders.Hemostasis disorders in leukemia such asthrombocytopenia, platelet dysfunction, disseminated intravascular coagulation, coagulation protein defect, primaryfibrinolysis and thrombosis. Pathogenesis and pathophysiology of thus hemostasis disorders in leukemia occur withdifferent mechanism.Keywords: leukemia, hemostasis disorder

  18. [Cellular immunophenotypes in 97 adults with acute leukemia].

    Science.gov (United States)

    Piedras, J; López-Karpovitch, X; Cárdenas, M R

    1997-01-01

    To analyze hematopoietic cell surface antigen reactivity in acute leukemia (AL) by flow cytometry and identify acute mixed-lineage leukemias (AMLL) employing the most widely accepted criteria. Ninety seven patients with de novo AL were studied. Cell surface antigens were investigated with monoclonal antibodies directed to: B lymphoid (CD10, CD19, CD20, CD21, CD22); T lymphoid (CD2, CD3, CD5, CD7); and myeloid (CD13, CD14, CD15, CD33, CD41) cell lineages. Maturation cell-associated antigens (CD34, HLA-DR and TdT) were also studied. Twelve patients unclassified by cytomorphology could be classified by immunophenotype. Using cytomorphologic, cytochemical and immunophenotypic data, 54 cases corresponded to acute lymphoblastic leukemia (ALL) and 43 were acute myeloblastic leukemia (AML). In All there were 63% B lineage, 15% T, 7% T/B, 6% undifferentiated and 9% mixed-lineage (coexpression of two or more myeloid-associated antigens). In AML, myeloid immunophenotype was observed in 86% undifferentiated in 2%, and mixed-lineage in 12% (coexpression of two or more lymphoid-associated antigens). In addition, 26% of ALL cases and 12% of AML cases expressed a single myeloid and lymphoid antigen respectively. The most common aberrant antigens in ALL and AML were CD13 and CD7 respectively. The highest frequency of CD34 antigen expression (90%) was detected in patients with AMLL. Flow cytometric immunophenotypic analysis allowed to: a) establish diagnosis in cytomorphologically unclassified cases; b) identify AMLL with a frequency similar to that reported in other series; and c) confirm the heterogeneity of AL.

  19. A cytotoxic study of eugenol and its ortho dimer (bis-eugenol)

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Yasushi [Meikai Univ., Sakado, Saitama (Japan). School of Dentistry

    2000-07-01

    Eugenol is widely used not only as a dental material such as pulp capping material, provisional cement, root canal sealer, and impression paste, but also as a perfume ingredients. Eugenol has antioxidant, bactericidal, and sedative activities, inhibits and non-enzymatic peroxidation. It was previously reported that eugenol exhibited the cytotoxic activity toward pulp cells and gingial fibroblasts and also that the cytotoxic activity was predominantly performed by radicals derived from the oxidation of eugenol. This study was based on the hypothesis that the toxicity of eugenol may be greately reduced if the radicalization of eugenol was diminished by the dimerization of eugenol. Thus, bis-eugenol, the dimer of eugenol, was synthesized to characterize the effect of this eugenol-related compound. The cytotoxic activity of bis-eugenol against human gingival fibroblasts (HGF cell) or human submandibular gland cancer cells (HSG cell) was studied in the presence or absence of light irradiation (visible or ultraviolet light), and compared with that of eugenol. The cytotoxic activity of eugenol was significantly greater than that of bis-eugenol. The cytotoxic activity of irradiated eugenol, but not that of irradiated bis-eugenol, was significantly higher than that of the non-irradiated counterpart. Bis-eugenol at a relatively low concentration declined the phototoxic activity of irradiation on living cells. Also, the generation of reactive oxygen in HSG cells in the ab-sence or the presence of irradiated bis-eugenol or eugenol was evaluated by an ACAS laser cytometry, and the results indicated that eugenol, but not bis-eugenol, generated reactive oxygen in the cells. The DPPH-radical scavenging activity of bis-eugenol was larger than that of eugenol. Furthermore, eugenol had a positive apoptosis-inducing effect on HSG cells. The structure-activity relationships of eugenol-related compounds showed that the nature of the substituent at the ortho or para-position of eugenol

  20. A cytotoxic study of eugenol and its ortho dimer (bis-eugenol)

    International Nuclear Information System (INIS)

    Kashiwagi, Yasushi

    2000-01-01

    Eugenol is widely used not only as a dental material such as pulp capping material, provisional cement, root canal sealer, and impression paste, but also as a perfume ingredients. Eugenol has antioxidant, bactericidal, and sedative activities, inhibits and non-enzymatic peroxidation. It was previously reported that eugenol exhibited the cytotoxic activity toward pulp cells and gingial fibroblasts and also that the cytotoxic activity was predominantly performed by radicals derived from the oxidation of eugenol. This study was based on the hypothesis that the toxicity of eugenol may be greately reduced if the radicalization of eugenol was diminished by the dimerization of eugenol. Thus, bis-eugenol, the dimer of eugenol, was synthesized to characterize the effect of this eugenol-related compound. The cytotoxic activity of bis-eugenol against human gingival fibroblasts (HGF cell) or human submandibular gland cancer cells (HSG cell) was studied in the presence or absence of light irradiation (visible or ultraviolet light), and compared with that of eugenol. The cytotoxic activity of eugenol was significantly greater than that of bis-eugenol. The cytotoxic activity of irradiated eugenol, but not that of irradiated bis-eugenol, was significantly higher than that of the non-irradiated counterpart. Bis-eugenol at a relatively low concentration declined the phototoxic activity of irradiation on living cells. Also, the generation of reactive oxygen in HSG cells in the ab-sence or the presence of irradiated bis-eugenol or eugenol was evaluated by an ACAS laser cytometry, and the results indicated that eugenol, but not bis-eugenol, generated reactive oxygen in the cells. The DPPH-radical scavenging activity of bis-eugenol was larger than that of eugenol. Furthermore, eugenol had a positive apoptosis-inducing effect on HSG cells. The structure-activity relationships of eugenol-related compounds showed that the nature of the substituent at the ortho or para-position of eugenol

  1. Cytotoxicity and inhibitory properties against topoisomerase II of doxorubicin and its formamidine derivatives.

    Science.gov (United States)

    Kik, Krzysztof; Studzian, Kazimierz; Wasowska-Łukawska, Małgorzata; Oszczapowicz, Irena; Szmigiero, Leszek

    2009-01-01

    This work was undertaken to compare cytotoxicity, DNA damaging properties and effect on DNA cleavage by topoisomerase II of the anthracycline drug doxorubicin (DOX) and its two derivatives with a formamidino group containing a cyclic amine moiety such as morpholine (DOXM) or hexamethyleneimine (DOXH). The tetrazolium dye colorimetric assay was used to determine the cytotoxic activity of anthracyclines toward L1210 leukemia cells. DNA damage was measured by alkaline elution technique. The effect of anthracyclines on DNA cleavage was studied in a cell-free system containing supercoiled pBR322 DNA and purified human topoisomerase II. The cytotoxicity data and the results of studies on the mechanism of DNA break formation by anthracyclines at the cellular level and in the cell-free system showed that the presence of the formamidino group in the doxorubicin molecule reduced its ability to stimulate DNA cleavage by DNA topoisomerase II. DNA topoisomerase II is not a primary cellular target for DOXM or DOXH. An advantageous feature of formamidinoanthracyclines is their mechanism of cytotoxic action which is not related to the inhibition of DNA topoisomerase II. Therefore this class of anthracyclines seems to be a good source for selection of an anticancer drug directed toward cancer cells with the developed multidrug resistance attributed to the presence of altered DNA topoisomerase II.

  2. Dexamethasone-(C21-phosphoramide-[anti-EGFR]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency against pulmonary adenocarcinoma (A549

    Directory of Open Access Journals (Sweden)

    Coyne CP

    2016-08-01

    Full Text Available Cody P Coyne,1 Lakshmi Narayanan2 1Department of Basic Sciences, 2Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, USA Purpose: Corticosteroids are effective in the management of a variety of disease states, such as several forms of neoplasia (leukemia and lymphoma, autoimmune conditions, and severe inflammatory responses. Molecular strategies that selectively “target” delivery of corticosteroids minimize or prevents large amounts of the pharmaceutical moiety from passively diffusing into normal healthy cell populations residing within tissues and organ systems. Materials and methods: The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide-[anti-EGFR] was synthesized by reacting dexamethasone-21-monophosphate with a carbodiimide reagent to form a dexamethasone phosphate carbodiimide ester that was subsequently reacted with imidazole to create an amine-reactive dexamethasone-(C21-phosphorylimidazolide intermediate. Monoclonal anti-EGFR immunoglobulin was combined with the amine-reactive dexamethasone-(C21-phosphorylimidazolide intermediate, resulting in the synthesis of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide-[anti-EGFR]. Following spectrophotometric analysis and validation of retained epidermal growth factor receptor type 1 (EGFR-binding avidity by cell-ELISA, the selective anti-neoplasic cytotoxic potency of dexamethasone-(C21-phosphoramide-[anti-EGFR] was established by MTT-based vitality stain methodology using adherent monolayer populations of human pulmonary adenocarcinoma (A549 known to overexpress the tropic membrane receptors EGFR and insulin-like growth factor receptor type 1. Results: The dexamethasone:IgG molar-incorporation-index for dexamethasone-(C21-phosphoramide-[anti-EGFR] was 6.95:1 following exhaustive serial microfiltration. Cytotoxicity analysis: covalent bonding of dexamethasone to monoclonal anti-EGFR immunoglobulin

  3. Atypical Chronic Myelogenous Leukemia

    Science.gov (United States)

    ... myeloproliferative neoplasms, leukemia , and other conditions . Chronic Myelomonocytic Leukemia Key Points Chronic myelomonocytic leukemia is a disease ... chance of recovery) and treatment options. Chronic myelomonocytic leukemia is a disease in which too many myelocytes ...

  4. Chaetominine reduces MRP1-mediated drug resistance via inhibiting PI3K/Akt/Nrf2 signaling pathway in K562/Adr human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingyun; Wei, Xing [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai (China); Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai (China); Lu, Yanhua, E-mail: luyanhua@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai (China); Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai (China)

    2016-05-13

    Drug resistance limits leukemia treatment and chaetominine, a cytotoxic alkaloid that promotes apoptosis in a K562 human leukemia cell line via the mitochondrial pathway was studied with respect to chemoresistance in a K562/Adr human resistant leukemia cell line. Cytotoxicity assays indicated that K562/Adr resistance to adriamycin (ADR) did not occur in the presence of chaetominine and that chaetominine increased chemosensitivity of K562/Adr to ADR. Data show that chaetominine enhanced ADR-induced apoptosis and intracellular ADR accumulation in K562/Adr cells. Accordingly, chaetominine induced apoptosis by upregulating ROS, pro-apoptotic Bax and downregulating anti-apoptotic Bcl-2. RT-PCR and western-blot confirmed that chaetominine suppressed highly expressed MRP1 at mRNA and protein levels. But little obvious alternation of another drug transporter MDR1 mRNA was observed. Furthermore, inhibition of MRP1 by chaetominine relied on inhibiting Akt phosphorylation and nuclear Nrf2. In summary, chaetominine strongly reverses drug resistance by interfering with the PI3K/Akt/Nrf2 signaling, resulting in reduction of MRP1-mediated drug efflux and induction of Bax/Bcl-2-dependent apoptosis in an ADR-resistant K562/Adr leukemia cell line. - Highlights: • Chaetominine enhanced chemosensitivity of ADR against K562/Adr cells. • Chaetominine increased intracellular ADR levels via inhibiting MRP1. • Chaetominine induced apoptosis of K562/Adr cells through upregulation of ROS and modulation of Bax/Bcl-2. • Inhibition of MRP1 and Nrf2 by chaetominine treatment was correlative with blockade of PI3K/Akt signaling.

  5. Tumor necrosis factor-alpha potentiates the cytotoxicity of amiodarone in Hepa1c1c7 cells: roles of caspase activation and oxidative stress.

    Science.gov (United States)

    Lu, Jingtao; Miyakawa, Kazuhisa; Roth, Robert A; Ganey, Patricia E

    2013-01-01

    Amiodarone (AMD), a class III antiarrhythmic drug, causes idiosyncratic hepatotoxicity in human patients. We demonstrated previously that tumor necrosis factor-alpha (TNF-α) plays an important role in a rat model of AMD-induced hepatotoxicity under inflammatory stress. In this study, we developed a model in vitro to study the roles of caspase activation and oxidative stress in TNF potentiation of AMD cytotoxicity. AMD caused cell death in Hepa1c1c7 cells, and TNF cotreatment potentiated its toxicity. Activation of caspases 9 and 3/7 was observed in AMD/TNF-cotreated cells, and caspase inhibitors provided minor protection from cytotoxicity. Intracellular reactive oxygen species (ROS) generation and lipid peroxidation were observed after treatment with AMD and were further elevated by TNF cotreatment. Adding water-soluble antioxidants (trolox, N-acetylcysteine, glutathione, or ascorbate) produced only minor attenuation of AMD/TNF-induced cytotoxicity and did not influence the effect of AMD alone. On the other hand, α-tocopherol (TOCO), which reduced lipid peroxidation and ROS generation, prevented AMD toxicity and caused pronounced reduction in cytotoxicity from AMD/TNF cotreatment. α-TOCO plus a pancaspase inhibitor completely abolished AMD/TNF-induced cytotoxicity. In summary, activation of caspases and oxidative stress were observed after AMD/TNF cotreatment, and caspase inhibitors and a lipid-soluble free-radical scavenger attenuated AMD/TNF-induced cytotoxicity.

  6. Cytotoxicity of selected Cameroonian medicinal plants and Nauclea pobeguinii towards multi-factorial drug-resistant cancer cells.

    Science.gov (United States)

    Kuete, Victor; Sandjo, Louis P; Mbaveng, Armelle T; Seukep, Jackson A; Ngadjui, Bonaventure T; Efferth, Thomas

    2015-09-04

    Malignacies are still a major public concern worldwide and despite the intensive search for new chemotherapeutic agents, treatment still remains a challenging issue. This work was designed to assess the cytotoxicity of six selected Cameroonian medicinal plants, including Nauclea pobeguinii and its constituents 3-acetoxy-11-oxo-urs-12-ene (1), p-coumaric acid (2), citric acid trimethyl ester (3), resveratrol (4), resveratrol β- D -glucopyranoside (5) and strictosamide (6), against 8 drug-sensitive and multidrug-resistant (MDR) cancer cell lines. The resazurin reduction assay was used to evaluate the cytotoxicity of the crude extracts and compounds, whilst column chromatography was used to isolate the constituents of Nauclea pobeguinii. Structural characterization of isolated compounds was performed using nuclear magnetic resonance (NMR) spectroscopic data. Preliminary experiments on leukemia CCRF-CEM cells at 40 μg/mL showed that the leaves and bark extracts from Tragia benthamii, Canarium schweinfurthii, Myrianthus arboreus, Dischistocalyx grandifolius and Fagara macrophylla induced more than 50 % growth of this cell line contrary to the leaves and bark extracts of N. pobeguinii. IC50 values below or around 30 μg/mL were obtained with leaves and bark extracts of N. pobeguinii towards two and five, respectively, of the 8 tested cancer cell lines. The lowest IC50 value was obtained with the bark extract of N. pobeguinii against HCT116 (p53 (-/-) ) colon cancer cells (8.70 μg/mL). Compounds 4 and 6 displayed selective activity on leukemia and carcinoma cells, whilst 1-3 were not active. IC50 values below 100 μM were recorded with compound 5 on all 9 tested cancer cell lines as well as with 4 against 7 out of 8 and 6 against 2 out of 8 cell lines. Collateral sensitivity was observed in CEM/ADR5000 leukemia cells, MDA-MB-231-BCRP breast adenocarcinoma cells (0.53-fold), HCT116 (p53 (+/+) ) cells, human U87MG.ΔEGFR glioblastome multiforme cells to the methanolic

  7. LONG-TERM RESULTS OF TARGET THERAPY WITH FIRST AND * SECOND-LINE TYROSINE KINASE INHIBITORS IN PATIENTS WITH CHRONIC MYELOID LEUKEMIA

    Directory of Open Access Journals (Sweden)

    L. L. Vysotskaya

    2015-01-01

    Full Text Available Aim: To assess long-term efficacy of firstand second-line tyrosine kinase inhibitors in non-selected patients with chronic myeloid leukemia in a real-life clinical setting.Materials and methods: The assessment is based on long-term results of a prospective single center comparative clinical trial that was based on non-selected groups of 116 patients with various stages of chronic myeloid leukemia being treated with a first generation tyrosine kinase inhibitor imatinib, and of 44 patients being treated with a second generation tyrosine kinase inhibitor nilotinib. We analyzed all-cause mortality, progression-free survival from April 2005 to April 2013, with a median of the follow-up of 128 months.Results: In 116 patients with chronic myeloid leukemia treated with imatinib, the Kaplan-Meier survival estimate was 120 months. In 44 patients at an early chronic phase, 5-year overall survival and progression-free survival was 93.2% and 8-year overall and progression-free survival was 79.5%. In 44 patients at a late chronic stage, 5-year overall and progression-free survival was 95.5%, 8-year overall and progression-free survival, 72.7%. In 28 patients at acceleration phase, 5-years overall survival was 78.6% and 8-year overall survival, 46%. Median of overall survival in patients treated with nilotinib was not reached. During 78.6 months of combination treatment with cytotoxic agents, tyrosine kinase inhibitors of the first (imatinib and second line (nilotinib, overall survival was 100%.Conclusion: In clinical practice, inclusion of patients with chronic myeloid leukemia and imatinib resistance (disease relapse or imatinib intolerance into the treatment program with frontline therapy with general cytotoxic agents and thereafter with firstand second-line tyrosine kinase inhibitors significantly improves overall survival.

  8. Analysis of the Effects of Cell Stress and Cytotoxicity on In ...

    Science.gov (United States)

    Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, concentration-dependent responses of 1063 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a diverse battery of 821 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to better distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress / cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least two viability/cytotoxicity assays within the concentration range tested (typically up to 100 M) activated a median of 12% of assay endpoints while those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (e.g., receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering of specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a g

  9. Low cytotoxic tissue adhesive based on oxidized dextran and epsilon-poly-L-lysine.

    Science.gov (United States)

    Hyon, Suong-Hyu; Nakajima, Naoki; Sugai, Hajime; Matsumura, Kazuaki

    2014-08-01

    A novel adhesive hydrogel consisting of dextran and epsilon-poly(L-lysine) (dextran-PL) with multiple biomedical applications was developed. Periodate oxidation in aqueous media almost stoichiometrically introduces aldehyde groups in dextran molecules, and aldehyde dextran can react with the primary amino groups in epsilon-PL (ɛ-PL) at neutral pH to form a hydrogel. The gelation time of the hydrogel can be easily controlled by the extent of oxidation in dextran and of the acylation in ɛ-PL by anhydrides. The shear adhesion strength of dextran-PL was 10 times higher than that of fibrin glue, when wet collagen sheets were selected as test specimens. The cytotoxicity of aldehyde dextran and ɛ-PL were 1000 times lower than that of glutaraldehyde and poly(allylamine). The considerably low cytotoxicity of aldehyde dextran could be ascribed to its low reactivity with amine species when compared with glutaraldehyde. In contrast, a high reactivity of amino groups in ɛ-PL was observed when compared with glycine, L-lysine, and gelatin, which could be explained by their poor dissociation at neutral pH, thus leading to low cytotoxicity. © 2013 Wiley Periodicals, Inc.

  10. Involvement of p38 MAPK- and JNK-modulated expression of Bcl-2 and Bax in Naja nigricollis CMS-9-induced apoptosis of human leukemia K562 cells.

    Science.gov (United States)

    Chen, Ying-Jung; Liu, Wen-Hsin; Kao, Pei-Hsiu; Wang, Jeh-Jeng; Chang, Long-Sen

    2010-06-15

    CMS-9, a phospholipase A(2) (PLA(2)) isolated from Naja nigricollis venom, induced apoptosis of human leukemia K562 cells, characterized by mitochondrial depolarization, modulation of Bcl-2 family members, cytochrome c release and activation of caspases 9 and 3. Moreover, an increase in intracellular Ca2+ concentration and the production of reactive oxygen species (ROS) was noted. Pretreatment with BAPTA-AM (Ca2+ chelator) and N-acetylcysteine (NAC, ROS scavenger) proved that Ca2+ was an upstream event in inducing ROS generation. Upon exposure to CMS-9, activation of p38 MAPK and JNK was observed in K562 cells. BAPTA-AM or NAC abrogated CMS-9-elicited p38 MAPK and JNK activation, and rescued viability of CMS-9-treated K562 cells. SB202190 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor) suppressed CMS-9-induced dissipation of mitochondrial membrane potential, Bcl-2 down-regulation, Bax up-regulation and increased mitochondrial translocation of Bax. Inactivation of PLA(2) activity reduced drastically the cytotoxicity of CMS-9, and a combination of lysophosphatidylcholine and stearic acid mimicked the cytotoxic effects of CMS-9. Taken together, our data suggest that CMS-9-induced apoptosis of K562 cells is catalytic activity-dependent and is mediated through mitochondria-mediated death pathway triggered by Ca2+/ROS-evoked p38 MAPK and JNK activation. 2010 Elsevier Ltd. All rights reserved.

  11. Cellular Uptake and Photo-Cytotoxicity of a Gadolinium(III-DOTA-Naphthalimide Complex “Clicked” to a Lipidated Tat Peptide

    Directory of Open Access Journals (Sweden)

    William I. O’Malley

    2016-02-01

    Full Text Available A new bifunctional macrocyclic chelator featuring a conjugatable alkynyl-naphthalimide fluorophore pendant group has been prepared and its Gd(III complex coupled to a cell-penetrating lipidated azido-Tat peptide derivative using Cu(I-catalysed “click” chemistry. The resulting fluorescent conjugate is able to enter CAL-33 tongue squamous carcinoma cells, as revealed by confocal microscopy, producing a very modest anti-proliferative effect (IC50 = 93 µM. Due to the photo-reactivity of the naphthalimide moiety, however, the conjugate’s cytotoxicity is significantly enhanced (IC50 = 16 µM upon brief low-power UV-A irradiation.

  12. Heterogeneity in acute undifferentiated leukemia.

    Science.gov (United States)

    LeMaistre, A; Childs, C C; Hirsch-Ginsberg, C; Reuben, J; Cork, A; Trujillo, J M; Andersson, B; McCredie, K B; Freireich, E; Stass, S A

    1988-01-01

    From January 1985 to May 1987, we studied 256 adults with newly diagnosed acute leukemia. Acute undifferentiated leukemia (AUL) was diagnosed in 12 of the 256 (4.6%) cases when lineage could not be delineated by light microscopy and light cytochemistry. To further characterize the blasts, immunophenotyping, ultrastructural myeloperoxidase (UMPO), and ultrastructural platelet peroxidase parameters were examined in 10, 11, and 6 of the 12 cases, respectively. Five cases demonstrated UMPO and were reclassified as acute myeloblastic leukemia (AML). Of the six UMPO-negative cases, three had a myeloid and one had a mixed immunophenotype. One UMPO-negative patient with a myeloid immunophenotype was probed for the immunoglobulin heavy chain gene (JH) and the beta chain of the T-cell receptor gene (Tcr beta) with no evidence of rearrangement. Six cases were treated with standard acute lymphoblastic leukemia (ALL) chemotherapy and failed to achieve complete remission (CR). Various AML chemotherapeutic regimens produced CR in only 3 of the 12 cases. One case was treated with gamma interferon and the other 2 with high-dose Ara-C. Our findings indicate a myeloid lineage can be detected by UMPO (5/12) in some cases of AUL. A germline configuration with JH and Tcr beta in one case as well as a myeloid immunophenotype in 3 UMPO-negative cases raises the possibility that myeloid lineage commitment may occur in the absence of myeloid peroxidase (MPO) cytochemical positivity.

  13. Serum concentrations of nitrite and malondialdehyde as markers of oxidative stress in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Maria Juracy Petrola

    2012-01-01

    Full Text Available BACKGROUND: Chronic myeloid leukemia is a neoplasm characterized by clonal expansion of hematopoietic progenitor cells resulting from the (9:22(q34,11 translocation. The tyrosine kinase abl fusion protein,the initial leukemogenic event in chronic myeloid leukemia, is constitutively activated thus inducing the production of reactive oxygen species. Of particular relevance is the fact that an increase in reactive oxygen species can facilitate genomic instability and may contribute to disease progression. OBJETIVE: To evaluate oxidative stress by determining the levels of malondialdehyde and nitrite in chronic myeloid leukemia patients under treatment with 1st and 2nd generation tyrosine kinase inhibitors monitored at a referral hospital in Fortaleza, Ceará. METHODS: A cross-sectional study was performed of 64 male and female adults. Patients were stratified according to treatment. The levels of malondialdehyde and nitrite were determined by spectrophotometry. Statistical differences between groups were observed using the Student t-test and Fisher's exact test. The results are expressed as mean ± standard error of mean. The significance level was set for a p-value < 0.05 in all analyses. RESULTS: The results show significantly higher mean concentrations of nitrite and malondialdehyde in chronic myeloid leukemia patients using second-generation tyrosine kinase inhibitors compared to patients on imatinib. Conclusion: It follows that chronic myeloid leukemia patients present higher oxidative activity and that the increases in oxidative damage markers can indicate resistance to 1st generation tyrosine kinase inhibitors.

  14. Chromosomal minimal critical regions in therapy-related leukemia appear different from those of de novo leukemia by high-resolution aCGH.

    Directory of Open Access Journals (Sweden)

    Nathalie Itzhar

    Full Text Available Therapy-related acute leukemia (t-AML, is a severe complication of cytotoxic therapy used for primary cancer treatment. The outcome of these patients is poor, compared to people who develop de novo acute leukemia (p-AML. Cytogenetic abnormalities in t-AML are similar to those found in p-AML but present more frequent unfavorable karyotypes depending on the inducting agent. Losses of chromosome 5 or 7 are observed after alkylating agents while balanced translocations are found after topoisomerase II inhibitors. This study compared t-AML to p-AML using high resolution array CGH in order to find copy number abnormalities (CNA at a higher resolution than conventional cytogenetics. More CNAs were observed in 30 t-AML than in 36 p-AML: 104 CNAs were observed with 63 losses and 41 gains (mean number 3.46 per case in t-AML, while in p-AML, 69 CNAs were observed with 32 losses and 37 gains (mean number of 1.9 per case. In primary leukemia with a previously "normal" karyotype, 18% exhibited a previously undetected CNA, whereas in the (few t-AML with a normal karyotype, the rate was 50%. Several minimal critical regions (MCRs were found in t-AML and p-AML. No common MCRs were found in the two groups. In t-AML a 40 kb deleted MCR pointed to RUNX1 on 21q22, a gene coding for a transcription factor implicated in frequent rearrangements in leukemia and in familial thrombocytopenia. In de novo AML, a 1 Mb MCR harboring ERG and ETS2 was observed from patients with complex aCGH profiles. High resolution cytogenomics obtained by aCGH and similar techniques already published allowed us to characterize numerous non random chromosome abnormalities. This work supports the hypothesis that they can be classified into several categories: abnormalities common to all AML; those more frequently found in t-AML and those specifically found in p-AML.

  15. Therapy-related acute promyelocytic leukemia following etoposide-based chemotherapy in non-seminomatous germ cell tumor

    Directory of Open Access Journals (Sweden)

    T N Kumar

    2014-01-01

    Full Text Available Therapy related AML (t- AML accounts for 10-20% of all cases of AML. Cytotoxic agents implicated are alkylating agents, topoisomerase II inhibitors and rarely anti metabolites and anti tubulin agents. A growing incidence of therapy related acute promyelocytic leukemia (t-APL has been reported over the last few decades in malignant and non malignant conditions. To the best of our knowledge this is the first t-APL case report to be reported in NSGCT post etoposide based therapy.

  16. Evidence for the replication of bovine leukemia virus in the B lymphocytes

    International Nuclear Information System (INIS)

    Paul, P.S.; Pomeroy, K.A.; Johnson, D.W.; Muscoplat, C.C.; Handwerger, B.S.; Soper, F.F.; Sorensen, D.K.

    1977-01-01

    Bovine peripheral blood lymphocytes from a cow with persistent lymphocytosis were separated on nylon wool columns into nylon-adherent and nonadherent populations. Nylon-adherent cells were highly enriched for surface immunoglobulin (SIg) bearing B lymphocytes (95.5%) and nonadherent cells for SIg negative non-B cells, presumably T lymphocytes (96.3%). The B lymphocytes were found to be the major producers for bovine leukemia virus. A total of 39% of the B-enriched cells, surviving after 72 hours in culture, produced bovine leukemia virus as compared with 0.5% of the non-B cells

  17. Cytotoxic macrolides from a new species of the deep-water marine sponge Leiodermatium.

    Science.gov (United States)

    Sandler, Joel S; Colin, Patrick L; Kelly, Michelle; Fenical, William

    2006-09-15

    Chemical investigation of a new species of the deep-water marine sponge Leiodermatium, collected by manned submersible at a depth of 740 feet in Palau, resulted in the isolation of two cytotoxic macrolides, leiodolides A (1) and B (2). The leiodolides represent the first members of a new class of 19-membered ring macrolides, incorporating several unique functional groups including a conjugated oxazole ring, a bromine substituent, and an alpha-hydroxy-alpha-methyl carboxylic acid side-chain terminus. The structures of these new metabolites were established by spectroscopic analysis, chemical modification, and degradation. The relative and absolute stereochemistries at most chiral centers were assigned on detailed interpretation of spectroscopic data, coupled with chemical degradation and application of the modified Mosher ester method. Leiodolide A showed significant cytotoxicity (average GI(50) = 2.0 microM) in the National Cancer Institute's 60 cell line panel with enhanced activity against HL-60 leukemia and OVCAR-3 ovarian cancer cell lines.

  18. Quantitation of human thymus/leukemia-associated antigen by radioimmunoassay in different forms of leukemia.

    Science.gov (United States)

    Chechik, B E; Jason, J; Shore, A; Baker, M; Dosch, H M; Gelfand, E W

    1979-12-01

    Using a radioimmunoassay, increased levels of a human thymus/leukemia-associated antigen (HThy-L) have been detected in leukemic cells and plasma from most patients with E-rosette-positive acute lymphoblastic leukemia (ALL) and a number of patients with E-rosette-negative ALL, acute myeloblastic leukemia (AML), acute monomyelocytic leukemia (AMML), and acute undifferentiated leukemia (AVL). Low levels of HThy-L have been demonstrated in white cells from patients with chronic myelocytic leukemia (stable phase) and in mononuclear cells from patients with chronic lymphatic leukemia. The relationship between HThy-L and differentiation of hematopoietic cells is discussed.

  19. Reactivity Of Radiolytically-Produced Nitrogen Oxide Radicals Toward Aromatic Compounds

    International Nuclear Information System (INIS)

    Elias, Gracy

    2010-01-01

    radiolysis of the modifier (Cs-7SB), which solvates both metal complexes, is responsible for this change. These reactions presumably occur due to reactions with radiolytically-produced nitrogen-centered radicals like (sm b ullet)NO, (sm b ullet)NO 2 and (sm b ullet)NO 3 . Anisole (C 6 H 5 -OCH 3 ) was used in this study as a surrogate for Cs-7SB, since both are aryl ethers. Toluene was used as a surrogate for Cs-7SB because of the alkyl group on the benzene ring in both molecules. Anisole, highly reactive in acids, is a small molecule compared to Cs-7SB and the nitration products are easier to identify compared to those for the larger Cs-7SB molecule. Toluene is less reactive than anisole. Therefore, the highly reactive anisole and the less reactive toluene were considered in this study as model compounds to compare the reaction mechanisms and the nitrated products in acidic media under irradiation. Experiments were designed to elucidate the mechanism of the nitration of aromatic rings in γ-irradiated aqueous nitric acid. Since a suite of radical and ionic reactive species are produced in this condensed-phase system, solutions of nitric acid, neutral nitrate and neutral nitrite were irradiated in separate experiments to isolate selected reactive species. Product nitration species were assessed by high performance liquid chromatography (HPLC) with a reversed phase C-18 column and photodiode array detector. The nitrated anisole product distributions were the same with and without radiation in acidic solution, although more products were formed with radiation. In the irradiated acidic condensed phase, radiation-enhanced nitrous acid-catalyzed nitrosonium ion electrophilic aromatic substitution followed by oxidation reactions dominated over radical addition reactions. In contrast, the distribution of nitrated derivatives for toluene showed nitronium ion electrophilic substitution in the unirradiated acidic medium as a result of thermal nitration only at elevated temperatures

  20. The leukemias: Epidemiologic aspects

    International Nuclear Information System (INIS)

    Linet, M.S.

    1984-01-01

    Particularly geared to physicians and cancer researchers, this study of the epidemiology and etiology of leukemia analyzes the four major leukemia subtypes in terms of genetic and familial determinant factors and examines the incidence, distribution and frequency of reported leukemia clusters. Linet discusses the connection between other types of malignancies, their treatments, and the subsequent development of leukemia and evaluates the impact on leukemia onset of such environmental factors as radiation therapy, drugs, and occupational hazards

  1. In Vitro Cytotoxic Effects of Cuscuta chinensis Whole Extract on Human Acute Lymphoblastic Leukemia Cell Line

    Directory of Open Access Journals (Sweden)

    Fatemeh Zeraati

    2010-12-01

    Full Text Available Background: One of the major paths for drug development isthe study of bioactivities of natural products. Therefore, theaim of this study was to compare the cytotoxic effects ofaqueous extract of whole Cuscuta chinensis Lam., which is atraditional medicinal herb commonly used in Iran and otheroriental countries, on the human caucasian acute lymphoblasticleukemia (CCRF-CEM and another human lymphocyte,Jurkat (JM cell lines.Methods: In vitro cytotoxic screening with various concentrations(0, 0.1, 1, 10, 25 and 50 μg/ml of the extract wasperformed using microscope and methyl tetrazolium bromidetest (MTT.Results: The minimum effective concentration of the plantextract was 1 μg/ml, and increasing the dose to 10 μg/mlinduced increasingly stronger effects. The inhibitory concentration50% (IC50 of the extract against CCRF wasabout 3 μg/ml in 24 hours and 2.5 μg/ml in 48 hrs. In contrast,the extract did not have cytotoxic effect for the JMcells at these doses.Conclusion: The findings of the present study suggest that C.chinensis is toxic against CCRF-CEM and JM tumor cells.Whether or not such effects can be employed for the treatmentof such tumors must await future studies.Iran J Med Sci 2010; 35(4: 310-314.

  2. A new extract of the plant calendula officinalis produces a dual in vitro effect: cytotoxic anti-tumor activity and lymphocyte activation

    Directory of Open Access Journals (Sweden)

    Collado Antonia

    2006-05-01

    Full Text Available Abstract Background Phytopharmacological studies of different Calendula extracts have shown anti-inflamatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE, a novel extract of the plant Calendula Officinalis (Asteraceae. Methods An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. Results The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. Conclusion These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation

  3. A new extract of the plant calendula officinalis produces a dual in vitro effect: cytotoxic anti-tumor activity and lymphocyte activation

    International Nuclear Information System (INIS)

    Jiménez-Medina, Eva; Garcia-Lora, Angel; Paco, Laura; Algarra, Ignacio; Collado, Antonia; Garrido, Federico

    2006-01-01

    Phytopharmacological studies of different Calendula extracts have shown anti-inflamatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented in vivo anti-tumoral activity in nude

  4. Cytotoxic protein from the mushroom Coprinus comatus possesses a unique mode for glycan binding and specificity

    Science.gov (United States)

    Zhang, Peilan; Yang, Guang; Xia, Changqing; Polston, Jane E.; Li, Gengnan; Li, Shiwu; Lin, Zhao; Yang, Li-jun; Bruner, Steven D.

    2017-01-01

    Glycans possess significant chemical diversity; glycan binding proteins (GBPs) recognize specific glycans to translate their structures to functions in various physiological and pathological processes. Therefore, the discovery and characterization of novel GBPs and characterization of glycan–GBP interactions are significant to provide potential targets for therapeutic intervention of many diseases. Here, we report the biochemical, functional, and structural characterization of a 130-amino-acid protein, Y3, from the mushroom Coprinus comatus. Biochemical studies of recombinant Y3 from a yeast expression system demonstrated the protein is a unique GBP. Additionally, we show that Y3 exhibits selective and potent cytotoxicity toward human T-cell leukemia Jurkat cells compared with a panel of cancer cell lines via inducing caspase-dependent apoptosis. Screening of a glycan array demonstrated GalNAcβ1–4(Fucα1–3)GlcNAc (LDNF) as a specific Y3-binding ligand. To provide a structural basis for function, the crystal structure was solved to a resolution of 1.2 Å, revealing a single-domain αβα-sandwich motif. Two monomers were dimerized to form a large 10-stranded, antiparallel β-sheet flanked by α-helices on each side, representing a unique oligomerization mode among GBPs. A large glycan binding pocket extends into the dimeric interface, and docking of LDNF identified key residues for glycan interactions. Disruption of residues predicted to be involved in LDNF/Y3 interactions resulted in the significant loss of binding to Jurkat T-cells and severely impaired their cytotoxicity. Collectively, these results demonstrate Y3 to be a GBP with selective cytotoxicity toward human T-cell leukemia cells and indicate its potential use in cancer diagnosis and treatment. PMID:28784797

  5. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia

    Directory of Open Access Journals (Sweden)

    Chen YJ

    2016-07-01

    macrophagic differentiation in AML U937 cells by lapatinib. We also noted the synergistic effects of the use of lapatinib and cytotoxic drugs in U937 leukemia cells. These results indicate that lapatinib may have potential for development as a novel antileukemia agent. Keywords: lapatinib, autophagic cell death, leukemia, differentiation, AML

  6. Emerging therapies for acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Caner Saygin

    2017-04-01

    Full Text Available Abstract Acute myeloid leukemia (AML is characterized by clinical and biological heterogeneity. Despite the advances in our understanding of its pathobiology, the chemotherapy-directed management has remained largely unchanged in the past 40 years. However, various novel agents have demonstrated clinical activity, either as single agents (e.g., isocitrate dehydrogenase (IDH inhibitors, vadastuximab or in combination with standard induction/consolidation at diagnosis and with salvage regimens at relapse. The classes of agents described in this review include novel cytotoxic chemotherapies (CPX-351 and vosaroxin, epigenetic modifiers (guadecitabine, IDH inhibitors, histone deacetylase (HDAC inhibitors, bromodomain and extraterminal (BET inhibitors, FMS-like tyrosine kinase receptor 3 (FLT3 inhibitors, and antibody-drug conjugates (vadastuximab, as well as cell cycle inhibitors (volasertib, B-cell lymphoma 2 (BCL-2 inhibitors, and aminopeptidase inhibitors. These agents are actively undergoing clinical investigation alone or in combination with available chemotherapy.

  7. Inheritance of leukemia in humans

    International Nuclear Information System (INIS)

    Kamada, Nanao

    1991-01-01

    Since Gardner et al. reported an increased incidence of leukemia among children of workers of a nuclear reactor in Sellafield, UK, there have been a number of discussions on the possibility of increased incidence of leukemia among children born from parents exposed to radiation or chemical agents. In this present paper, apart from the leukemia incidence in children from atomic bomb survivors which was discussed by Dr. Yoshimoto, familial leukemia, i.e., a cluster of leukemia among family members within four genetic relations, was discussed with special reference to the age distribution, type of leukemia and consanguinity. Leukemia in twin and leukemias in individuals with congenital anomalies with or without chromosome abnormalities were also discussed. (author)

  8. T315 Decreases Acute Myeloid Leukemia Cell Viability through a Combination of Apoptosis Induction and Autophagic Cell Death

    Directory of Open Access Journals (Sweden)

    Chang-Fang Chiu

    2016-08-01

    Full Text Available T315, an integrin-linked kinase (ILK inhibitor, has been shown to suppress the proliferation of breast cancer, stomach cancer and chronic lymphocytic leukemia cells. Here we demonstrate that T315 decreases cell viability of acute myeloid leukemia (AML cell lines (HL-60 and THP-1 and primary leukemia cells from AML patients in a dose-responsive manner. Normal human bone marrow cells are less sensitive than leukemia cells to T315. T315 down regulates protein kinase B (Akt and p-Akt and induces caspase activation, poly-ADP-ribose polymerase (PARP cleavage, apoptosis and autophagy through an ILK-independent manner. Interestingly, pretreatment with autophagy inhibitors rescues cells from apoptosis and concomitant PARP cleavage, which implicates a key role of autophagic cell death in T315-mediated cytotoxicity. T315 also demonstrates efficacy in vivo, suppressing the growth of THP-1 xenograft tumors in athymic nude mice when administered intraperitoneally. This study shows that autophagic cell death and apoptosis cooperatively contribute to the anticancer activity of T315 in AML cells. In conclusion, the complementary roles of apoptotic and autophagic cell death should be considered in the future assessment of the translational value of T315 in AML therapy.

  9. Repression of tax expression is associated both with resistance of human T-cell leukemia virus type 1-infected T cells to killing by tax-specific cytotoxic T lymphocytes and with impaired tumorigenicity in a rat model.

    Science.gov (United States)

    Nomura, Machiko; Ohashi, Takashi; Nishikawa, Keiko; Nishitsuji, Hironori; Kurihara, Kiyoshi; Hasegawa, Atsuhiko; Furuta, Rika A; Fujisawa, Jun-ichi; Tanaka, Yuetsu; Hanabuchi, Shino; Harashima, Nanae; Masuda, Takao; Kannagi, Mari

    2004-04-01

    Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Although the viral transactivation factor, Tax, has been known to have apparent transforming ability, the exact function of Tax in ATL development is still not clear. To understand the role of Tax in ATL development, we introduced short-interfering RNAs (siRNAs) against Tax in a rat HTLV-1-infected T-cell line. Our results demonstrated that expression of siRNA targeting Tax successfully downregulated Tax expression. Repression of Tax expression was associated with resistance of the HTLV-1-infected T cells to Tax-specific cytotoxic-T-lymphocyte killing. This may be due to the direct effect of decreased Tax expression, because the Tax siRNA did not alter the expression of MHC-I, CD80, or CD86. Furthermore, T cells with Tax downregulation appeared to lose the ability to develop tumors in T-cell-deficient nude rats, in which the parental HTLV-1-infected cells induce ATL-like lymphoproliferative disease. These results indicated the importance of Tax both for activating host immune response against the virus and for maintaining the growth ability of infected cells in vivo. Our results provide insights into the mechanisms how the host immune system can survey and inhibit the growth of HTLV-1-infected cells during the long latent period before the onset of ATL.

  10. Chlorpromazine inhibits tumour necrosis factor synthesis and cytotoxicity in vitro.

    Science.gov (United States)

    Zinetti, M; Galli, G; Demitri, M T; Fantuzzi, G; Minto, M; Ghezzi, P; Alzani, R; Cozzi, E; Fratelli, M

    1995-11-01

    Chlorpromazine (CPZ) has been previously shown to protect against endotoxin [lipopolysaccharide (LPS)] lethality and inhibit the release of tumour necrosis factor in vivo. We investigated at the cellular level whether this was due to direct inhibition of tumour necrosis factor-alpha (TNF-alpha) synthesis, using LPS-stimulated THP-1 human monocytic leukemia cells. We also studied the effect of CPZ on human TNF-alpha action by assessing TNF-alpha cytotoxicity on mouse fibrosarcoma L929 cells. CPZ (1-100 microM) inhibited TNF-alpha production in THP-1 cells in a dose dependent manner by a maximum of 80%. This effect was comparable to that of two well-known inhibitory drugs, dexamethasone and cyclicAMP. Inhibition was also evident at the mRNA level. On the other hand CPZ (10-25 microM) also inhibited TNF-alpha activity: in fact it reduced the cytotoxicity of TNF-alpha on L929 cells (EC50 was increased four times) and could provide protection even as a post-treatment. CPZ inhibited TNF-induced apoptosis in L929 cells, as detected by analysis of nuclear morphology. However, since we showed that apoptosis was very limited, and was not the main mode of cell death in our conditions, this could not explain the overall protection. Since CPZ did not interfere with either the oligomerization state of TNF-alpha or its receptor binding, our data suggest that it reduced cytotoxicity by inhibiting some steps in the TNF-alpha signalling pathways.

  11. Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells.

    Science.gov (United States)

    Bruno, Silvia; Ledda, Bernardetta; Tenca, Claudya; Ravera, Silvia; Orengo, Anna Maria; Mazzarello, Andrea Nicola; Pesenti, Elisa; Casciaro, Salvatore; Racchi, Omar; Ghiotto, Fabio; Marini, Cecilia; Sambuceti, Gianmario; DeCensi, Andrea; Fais, Franco

    2015-09-08

    B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process.

  12. DNA-binding, DNA cleavage and cytotoxicity studies of two anthraquinone derivatives.

    Science.gov (United States)

    Gholivand, M B; Kashanian, S; Peyman, H

    2012-02-15

    The interaction of native calf thymus DNA (CT-DNA) with two anthraquinones including quinizarin (1,4-dihydroxy anthraquinone) and danthron (1,8-dihydroxy anthraquinone) in a mixture of 0.04M Brittone-Robinson buffer and 50% of ethanol were studied at physiological pH by spectrofluorometric and cyclic voltammetry techniques. The former technique was used to calculate the binding constants of anthraquinones-DNA complexes at different temperatures. Thermodynamic study indicated that the reactions of both anthraquinone-DNA systems are predominantly entropically driven. Furthermore, the binding mechanisms on the reaction of the two anthraquinones with DNA and the effect of ionic strength on the fluorescence property of the system have also been investigated. The results of the experiments indicated that the binding modes of quinizarin and danthron with DNA were evaluated to be groove binding. Moreover, the cytotoxic activity of both compounds against human chronic myelogenous leukemia K562 cell line and DNA cleavage were investigated. The results indicated that these compounds slightly cleavage pUC18 plasmid DNA and showed minor antitumor activity against K562 (human chronic myeloid leukemia) cell line. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Targeting HDAC3, a new partner protein of AKT in the reversal of chemoresistance in acute myeloid leukemia via DNA damage response.

    Science.gov (United States)

    Long, J; Fang, W Y; Chang, L; Gao, W H; Shen, Y; Jia, M Y; Zhang, Y X; Wang, Y; Dou, H B; Zhang, W J; Zhu, J; Liang, A B; Li, J M; Hu, Jiong

    2017-12-01

    Resistance to cytotoxic chemotherapy drugs remains as the major cause of treatment failure in acute myeloid leukemia. Histone deacetylases (HDAC) are important regulators to maintain chromatin structure and control DNA damage; nevertheless, how each HDAC regulates genome stability remains unclear, especially under genome stress conditions. Here, we identified a mechanism by which HDAC3 regulates DNA damage repair and mediates resistance to chemotherapy drugs. In addition to inducing DNA damage, chemotherapy drugs trigger upregulation of HDAC3 expression in leukemia cells. Using genetic and pharmacological approaches, we show that HDAC3 contributes to chemotherapy resistance by regulating the activation of AKT, a well-documented factor in drug resistance development. HDAC3 binds to AKT and deacetylates it at the site Lys20, thereby promoting the phosphorylation of AKT. Chemotherapy drug exposure enhances the interaction between HDAC3 and AKT, resulting in decrease in AKT acetylation and increase in AKT phosphorylation. Whereas HDAC3 depletion or inhibition abrogates these responses and meanwhile sensitizes leukemia cells to chemotoxicity-induced apoptosis. Importantly, in vivo HDAC3 suppression reduces leukemia progression and sensitizes MLL-AF9 + leukemia to chemotherapy. Our findings suggest that combination therapy with HDAC3 inhibitor and genotoxic agents may constitute a successful strategy for overcoming chemotherapy resistance.

  14. Silymarin attenuated paraquat-induced cytotoxicity in macrophage by regulating Trx/TXNIP complex, inhibiting NLRP3 inflammasome activation and apoptosis.

    Science.gov (United States)

    Liu, Zhenning; Sun, Mingli; Wang, Yu; Zhang, Lichun; Zhao, Hang; Zhao, Min

    2018-02-01

    Oxidative stress and inflammation are involved in paraquat-induced cytotoxicity. Silymarin can exert a potent antioxidative and anti-inflammatory effect in various pathophysiological processes. The aim of this current study is to explore the protective effect and potential mechanism of silymarin in paraquat-induced macrophage injury. Cells were pretreated with different doses of silymarin for 3h before exposure to paraquat. At 24h after exposure to paraquat, the paraquat-induced cytotoxicity to macrophage was measured via the MTT assay and LDH release. The levels of intracellular reactive oxygen species, GSH-Px, SOD, and lipid peroxidation product malondialdehyde were measured to evaluate the oxidative effect of paraquat. NLRP3 inflammasome and cytokines secretion in macrophage exposed to paraquat at 24h were measured via immunofluorescence microscopy, western blot or Elisa. Our results revealed that paraquat could dramatically cause cytotoxicity and reactive oxygen species generation, enhance TXNIP expression, and induce NLRP3 inflammasome activation and cytokines secretion. The pretreatment with silymarin could remarkably reduce the cytotoxicity, promote the expression of Trx and antioxidant enzymes, and suppress the TXNIP and NLRP3 inflammasome activation. In conclusion, silymarin attenuated paraquat-induced cytotoxicity in macrophage by inhibiting oxidative stress, NLRP3 inflammasome activation, cytokines secretion and apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Occupation and leukemia in Nordic countries

    DEFF Research Database (Denmark)

    Talibov, Madar; Kautiainen, Susanna; Martinsen, Jan Ivar

    2012-01-01

    We studied occupational variation of the risk of acute myeloid leukemia, chronic lymphocytic leukemia, and other leukemia in Nordic countries.......We studied occupational variation of the risk of acute myeloid leukemia, chronic lymphocytic leukemia, and other leukemia in Nordic countries....

  16. Interleukin 1 as an autocrine growth factor for acute myeloid leukemia cells

    International Nuclear Information System (INIS)

    Cozzolino, F.; Rubartelli, A.; Aldinucci, D.; Sitia, R.; Torcia, M.; Shaw, A.; Di Guglielmo, R.

    1989-01-01

    Production of interleukin 1 (IL-1) by leukemic cells was studied in 13 cases of acute myeloid leukemia. Intracytoplasmic immunofluorescence studies showed that the cells invariably contained the cytokine. Endogenous labeling studies demonstrated that acute myeloid leukemia cells produced either only the 33-kDa propeptide or both the propeptide and the 17-kDa mature form of IL-1β. The 33-kDa propeptide IL-1α was always produced but was less frequently released. Involvement of IL-1 in leukemic cell growth was investigated using two antibodies specific for IL-1 subtypes, which inhibited spontaneous cell proliferation in the six cases studied. After acid treatment of the cells, a surface receptor for IL-1 could be demonstrated, which mediated 125 I-labeled IL-1-specific uptake by leukemic cells. Furthermore, recombinant IL-1α or IL-1β induced significant cell proliferation in 10 12 cases. The above findings were uncorrelated with the cytologic type (French-American-British classification) of leukemia. The studies suggest that IL-1 may act as an autocrine growth factor in most cases of acute myeloid leukemia

  17. Immunogenicity of Bcl-2 in patients with cancer

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Svane, Inge Marie; Kvistborg, Pia

    2005-01-01

    patients suffering from unrelated tumor types (ie, pancreatic cancer, breast cancer, acute myeloid leukemia [AML], and chronic lymphocytic leukemia [CLL]). Additionally, we show that these Bcl-2-reactive T cells are indeed peptide-specific, cytotoxic effector cells. Thus, Bcl-2 may serve as an important......B-cell lymphoma 2 (Bcl-2) is a pivotal regulator of apoptotic cell death and it is overexpressed in many cancers. Consequently, the Bcl-2 protein is an attractive target for drug design, and Bcl-2-specific antisense oligonucleotides or small-molecule Bcl-2 inhibitors have shown broad anticancer......-2 in cancer and the fact that immune escape by down-regulation or loss of expression of this protein would impair sustained tumor growth makes Bcl-2 a very attractive target for anticancer immunotherapy. Herein, we describe spontaneous T-cell reactivity against Bcl-2 in peripheral blood from...

  18. Evaluation of the Cytotoxic Effect of the Brittle Star (Ophiocoma Erinaceus) Dichloromethane Extract and Doxorubicin on EL4 Cell Line.

    Science.gov (United States)

    Afzali, Mahbubeh; Baharara, Javad; Nezhad Shahrokhabadi, Khadijeh; Amini, Elaheh

    2017-01-01

    Leukemia is a blood disease that creates from inhibition of differentiation and increased proliferation rate. The nature has been known as a rich source of medically useful substances. High diversity of bioactive molecules, extracted from marine invertebrates, makes them as ideal candidates for cancer research. The study has been done to investigate cytotoxic effects of dichloromethane brittle star extract and doxorubicin on EL4 cancer cells. Blood cancer EL4 cells were cultured and treated at different concentrations of brittle star ( Ophiocoma erinaceus ) dichloromethane extract at 24, 48 and 72 h. Cell toxicity was studied using MTT assay. Cell morphology was examined using an invert microscope. Further, apoptosis was examined using Annexin V-FITC, propodium iodide, DAPI, and Acridine orange/propodium iodide staining. Eventually, the apoptosis pathways were analyzed using measurement of Caspase-3 and -9 activity. The statistical analysis was performed using SPSS, ANOVA software, and Tukey's test. P EL4 proliferation as IC 50 =32 µg/mL. All experiments related to apoptosis analysis confirmed that dichloromethane brittle star extract and doxorubicin have a cytotoxic effect on EL4 cells inIC 50 concentration. The study showed that dichloromethane brittle star extract is as an adjunct to doxorubicin in treatment of leukemia cells.

  19. Cytotoxic Effect on Human Myeloma Cells and Leukemic Cells by the Agaricus blazei Murill Based Mushroom Extract, Andosan™

    Directory of Open Access Journals (Sweden)

    Jon-Magnus Tangen

    2017-01-01

    Full Text Available Agaricus blazei Murill is an edible mushroom of the Basidiomycetes family, which has been found to contain a number of compounds with antitumor properties, such as proteoglycans and ergosterol. In the present investigation, we show that the commercial mushroom product Andosan, which contains 82.4% Agaricus blazei Murill, together with medicinal mushrooms Hericium erinaceus (14.7% and Grifola frondosa (2.9%, has a cytotoxic effect on primary myeloma cells, other myeloma cell lines, and leukemia cell lines in vitro. Although the exact content and hence the mechanisms of action of the Andosan extract are unknown, we have found in this investigation indications of cell cycle arrest when myeloma cell lines are cultivated with Andosan. This may be one of the possible explanations for the cytotoxic effects of Andosan.

  20. Synsepalum dulcificum extracts exhibit cytotoxic activity on human colorectal cancer cells and upregulate c-fos and c-jun early apoptotic gene expression

    Directory of Open Access Journals (Sweden)

    Jichang Seong

    2018-01-01

    Full Text Available Objective: To explore cytotoxicity of Synsepalum dulcificum (S. dulcificum Daniell (Sapotaceae on human colon cancer (HCT-116 and HT-29, human monocytic leukemia (THP-1 and normal (HDFn cell lines, and its effect on the expression of early apoptotic genes, c-fos and c-jun. Methods: Leaf, stem and berry of S. dulcificum were separately extracted by using 2 solvents, 10% ethanol (EtOH and 80% methanol (MeOH. PrestoBlue® cell viability assay and qRT-PCR assay were conducted to examine the above objectives respectively. Results: Stem MeOH, stem EtOH, and berry EtOH extracts of S. dulcificum were cytotoxic to HCT-116 and HT-29 human colon cancer cells. For HCT-116, IC50 values of these 3 extracts were not significantly different (P>0.05 from that of the positive control bleomycin (IC50 of 33.57 μg/mL, while for HT-29, IC50 values of these 3 extracts were significantly lower (P<0.05 than that of bleomycin (IC50 of 25.24 μg/mL. None of the extracts were cytotoxic to the THP-1 monocytic leukemia cells and HDFn normal human dermal fibroblasts. For both HCT-116 and HT-29, these extracts significantly up-regulated (P<0.05 the expression of c-fos and c-jun compared to the untreated negative control. Conclusions: The results of this study suggest that cytotoxicity of stem MeOH, stem EtOH, and berry EtOH extracts of S. dulcificum on HCT-116 and HT-29 colon cancer cells is due to the induced apoptosis which is caused by the up-regulation of the expression of early apoptotic genes, c-fos and c-jun.

  1. Nitric oxide-releasing nanoparticles: synthesis, characterization, and cytotoxicity to tumorigenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Pelegrino, Milena T. [Universidade Federal de São Paulo, Exact and Earth Sciences Department (Brazil); Silva, Letícia C.; Watashi, Carolina M. [Universidade Federal do ABC, UFABC, Center of Natural and Human Sciences (Brazil); Haddad, Paula S. [Universidade Federal de São Paulo, Exact and Earth Sciences Department (Brazil); Rodrigues, Tiago; Seabra, Amedea B., E-mail: amedea.seabra@ufabc.edu.br [Universidade Federal do ABC, UFABC, Center of Natural and Human Sciences (Brazil)

    2017-02-15

    Nitric oxide (NO) is involved in several biological processes, including toxicity against tumor cells. The aim of this study was to synthesize, characterize, and evaluate the cytotoxicity of NO-releasing chitosan nanoparticles. A thiol-containing molecule, mercaptosuccinic acid (MSA), was encapsulated (encapsulation efficiency of 99%) in chitosan/sodium tripolyphosphate nanoparticles (CS NPs). The obtained nanoparticles showed an average hydrodynamic size of 108.40 ± 0.96 nm and polydispersity index of 0.26 ± 0.01. MSA-CS NPs were nitrosated leading to S-nitroso-MSA-CS NPs, which act as NO donor. The cytotoxicity of CS NPs, MSA-CS NPs, and S-nitroso-MSA-CS NPs were evaluated in several tumor cells, including human hepatocellular carcinoma (HepG2), mouse melanoma (B16F10), and human chronic myeloid leukemia (K562) cell lines and Lucena-1, a vincristine-resistant K562 cell line. Both CS NPs and MSA-CS NPs did not cause toxic effects in these cells, whereas S-nitroso-MSA-CS NPs caused potent cytotoxic effects in all the tested tumor cell lines. The half-maximal inhibitory concentration values of S-nitroso-MSA-CS NPs were 19.7, 10.5, 22.8, and 27.8 μg·mL{sup −1} for HepG2, B16F10, K562, and Lucena-1 cells, respectively. In contrast, S-nitroso-MSA-CS NPs exhibited lower cytotoxic to non-tumorigenic melanocytes (Melan-A) when compared with melanoma B16F10. Therefore, the results highlight the potential use of NO-releasing CS NPs in antitumor chemotherapy.

  2. Comparative cytotoxicity assessments of some manufactured and anthropogenic nanoparticulate materials

    Science.gov (United States)

    Soto, Karla Fabiola

    toxicity evaluation, cytokine production, mitochondrial function (MTT assay), reactive oxygen species generation (ROS), were assessed after 48 and 336 hours under control and exposed conditions. A simple, direct-contact assay was developed to evaluate the toxicity of anthropogenic particulate matter (PM), without removing it from high volume filter collections and exposing collected PM by direct contact with the human epithelial (A549) cells in culture. The cell viability data revealed that the manufactured nanomaterials exhibit cytotoxic response for the murine alveolar and human macrophage cell line, but in particular to the human epithelial cell line. Assay results for the direct-contact of filter-collected carbonaceous nanoparticulate, showed toxicity for all PM, but with various natural gas combustion PM being the most toxic. Light optical microscopy examination of affected human epithelial cells confirmed quantitative results. These nanoparticulate soots also produced the most reactive oxygen species (ROS) on the A549 cell culture as well as along with the Fe2O3, MWCNT-N, and black carbon (BC). Comparison of polycyclic aromatic hydrocarbon (PAH) content and concentration for the carbonaceous PM showed no PAH correlation with relative cell viability after 48 h. In addition, there was no correlation of cytotoxic response with specific surface area in the manufactured nanoparticulate materials. In conclusion, the manufactured as well as the anthropogenic nanomaterials were observed to generate large amounts of ROS and cytokines. This study suggests that the mechanism of toxicity is likely due to the generation of reactive oxygen species (ROS). Also, the comparative assessments presented, should be viewed as a precaution when considering the inhalation of the corresponding nanoparticulate materials in concentrations approaching those identified to be dangerous for recognized pathogens such as silica, black carbon, and asbestos. Humans should avoid breathing these

  3. Comparison of para-aminophenol cytotoxicity in rat renal epithelial cells and hepatocytes.

    Science.gov (United States)

    Li, Ying; Bentzley, Catherine M; Tarloff, Joan B

    2005-04-01

    Several chemicals, including para-aminophenol (PAP), produce kidney damage in the absence of hepatic damage. Selective nephrotoxicity may be related to the ability of the kidney to reabsorb filtered water, thereby raising the intraluminal concentration of toxicants and exposing tubular epithelial cells to higher concentrations than would be present in other tissues. The present experiments tested the hypothesis that hepatocytes and renal epithelial cells exposed to equivalent concentrations of PAP would be equally susceptible to toxicity. Hepatocytes and renal epithelial cells were prepared by collagenase digestion of tissues obtained from female Sprague-Dawley rats. Toxicity was monitored using trypan blue exclusion, oxygen consumption and ATP content. We measured the rate of PAP clearance and formation of PAP-glutathione conjugate by HPLC. We found that renal epithelial cells accumulated trypan blue and showed declines in oxygen consumption and ATP content at significantly lower concentrations of PAP and at earlier time points than hepatocytes. The half-life of PAP in hepatocyte incubations was significantly shorter (0.71+/-0.07 h) than in renal epithelial cell incubations (1.33+/-0.23 h), suggesting that renal epithelial cells were exposed to PAP for longer time periods than hepatocytes. Renal epithelial cells formed significantly less glutathione conjugates of PAP (PAP-SG) than did hepatocytes, consistent with less efficient detoxification of reactive PAP intermediates by renal epithelial cells. Finally, hepatocytes contained significant more reduced glutathione (NPSH) than did renal epithelial cells, possibly explaining the enhanced formation of PAP-SG by this cell population. In conclusion, our data indicates that renal epithelial cells are intrinsically more susceptible to PAP cytotoxicity than are hepatocytes. This enhanced cytotoxicity may be due to longer exposure to PAP and/or reduced detoxification of reactive intermediates due to lower concentrations

  4. The Tim-3-galectin-9 Secretory Pathway is Involved in the Immune Escape of Human Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Isabel Gonçalves Silva

    2017-08-01

    Full Text Available Acute myeloid leukemia (AML is a severe and often fatal systemic malignancy. Malignant cells are capable of escaping host immune surveillance by inactivating cytotoxic lymphoid cells. In this work we discovered a fundamental molecular pathway, which includes ligand-dependent activation of ectopically expressed latrophilin 1 and possibly other G-protein coupled receptors leading to increased translation and exocytosis of the immune receptor Tim-3 and its ligand galectin-9. This occurs in a protein kinase C and mTOR (mammalian target of rapamycin-dependent manner. Tim-3 participates in galectin-9 secretion and is also released in a free soluble form. Galectin-9 impairs the anti-cancer activity of cytotoxic lymphoid cells including natural killer (NK cells. Soluble Tim-3 prevents secretion of interleukin-2 (IL-2 required for the activation of cytotoxic lymphoid cells. These results were validated in ex vivo experiments using primary samples from AML patients. This pathway provides reliable targets for both highly specific diagnosis and immune therapy of AML.

  5. L-Arginine Increases Cytotoxicity in Irradiated Ehrlich Carcinoma Cell Line: Possible Potential Role of Nitric Oxide

    International Nuclear Information System (INIS)

    Noaman, E.

    2008-01-01

    Cancer cells possess nitric oxide syntheses (NOS) which metabolize L-Arginine (L-Arg) for producing nitric oxide (NO) The present study investigates the relations between NO and ionizing radiation in the Ehrlich ascites carcinoma (EAC) cell line. NOS activity was stimulated by exposure of cells to L-Arg just after irradiation. L-Arg (5 m M) supply led to an increase in ionizing radiation induced cytotoxicity (% of viability 18± 3 %) whereas, neither L-Arg itself nor ionizing irradiation caused cell death at the doses used in this study. Also, cells were treated either with L-Thio citrulline (L-Thio), an irreversible inhibitor of NOS or with exogenous superoxide dismutase (SOD) and catalase. L-Thio and SOD prevented L-Arg mediated deleterious effects on Irradiated cells, whereas catalase was ineffective. Intracellular antioxidant enzyme activity was also determined. Ionizing radiation + L-Arg stress altered the activity of catalase (66 % decrease) and glutathione peroxidase (83 % decrease). Our findings demonstrated that L-Arg induces increase the radiation-mediated deleterious effects in Ehrlich ascites carcinoma cells cytotoxicity and that the ratio NO/ O 2 plays a key role in these processes. NO could participate the deleterious effect of irradiation, in conjugation with others reactive oxygen species (ROS) produced during the oxidation of intracellular components by ionizing radiation (dose 6 Gy)

  6. Congenital Leukemia in Down's syndrome

    International Nuclear Information System (INIS)

    Iqbal, W.; Khan, F.; Muzaffar, M.; Khan, U. A.; Rehman, M. U.; Khan, M. A.; Bari, A.

    2006-01-01

    Congenital Leukemia is a condition and often associated with fatal outcome/sup 1/. Most of the neonatal cases reported have acute non-lymphoblastic leukemia, in contrast to the predominance of acute lymphoblastic leukemia found in later childhood. congenital leukemia is occasionally associated with number of congenital anomalies and with chromosomal disorders such as Down's syndrome. Subtle cytogenetic abnormalities may occur more commonly in the affected infants and their parents, when studied with newer cytogenetic techniques/sup 2/. Inherent unstable hematopoieses resulting from chromosomal aberration in children with Downs's syndrome can present with transient myeloproliferative disorder, mimicking leukemia which undergoes spontaneous recovery/sup 3/. Only few cases of congenital leukemia with Downs syndrome, presented as congenital leukemia. (author)

  7. Splenic function in chronic myelogenous leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Covas, D.T.; Zago, M.A.

    1987-01-01

    Spleen function was evaluated by measurement of the clearance of autologous heat-damaged /sup 99m/Tc-labelled erythrocytes from the circulation and into the spleen and the enumeration of pitted erythrocytes by interference contrast microscopy, and the spleen area was determined by scintillation scanning. All measurements were performed on 12 patients with chronic myelogenous leukemia and compared with 10 controls with apparently normal spleens, 6 splenectomized subjects and 9 patients with a reactive splenomegaly. Patients with CML had spleen function test results similar to normal controls in spite of having enlarged spleens whose projection area did not differ from that of the patients with reactive splenomegaly. Thus, patients with CML have a decreased spleen function per unit volume and signs of splenic hypofunction in the peripheral blood. The reduction of spleen function per unit volume in CML is the result of a severe decrease of the splenic blood perfusion which could result from the combined effects of the myeloid metaplasia and the increased whole-blood viscosity due to high white-cell counts.

  8. Splenic function in chronic myelogenous leukemia

    International Nuclear Information System (INIS)

    Covas, D.T.; Zago, M.A.

    1987-01-01

    Spleen function was evaluated by measurement of the clearance of autologous heat-damaged 99m Tc-labelled erythrocytes from the circulation and into the spleen and the enumeration of pitted erythrocytes by interference contrast microscopy, and the spleen area was determined by scintillation scanning. All measurements were performed on 12 patients with chronic myelogenous leukemia and compared with 10 controls with apparently normal spleens, 6 splenectomized subjects and 9 patients with a reactive splenomegaly. Patients with CML had spleen function test results similar to normal controls in spite of having enlarged spleens whose projection area did not differ from that of the patients with reactive splenomegaly. Thus, patients with CML have a decreased spleen function per unit volume and signs of splenic hypofunction in the peripheral blood. The reduction of spleen function per unit volume in CML is the result of a severe decrease of the splenic blood perfusion which could result from the combined effects of the myeloid metaplasia and the increased whole-blood viscosity due to high white-cell counts. (author)

  9. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, M; Tomonaga, M; Amenomori, T; Matsuo, T [Nagasaki Univ. (Japan). School of Medicine

    1991-12-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5{approx}0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author).

  10. Atomic bomb and leukemia

    International Nuclear Information System (INIS)

    Ichimaru, M.; Tomonaga, M.; Amenomori, T.; Matsuo, T.

    1991-01-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5∼0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author)

  11. The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction

    Directory of Open Access Journals (Sweden)

    Thurber Aaron

    2009-01-01

    Full Text Available Abstract Nanotechnology represents a new and enabling platform that promises to provide a range of innovative technologies for biological applications. ZnO nanoparticles of controlled size were synthesized, and their cytotoxicity toward different human immune cells evaluated. A differential cytotoxic response between human immune cell subsets was observed, with lymphocytes being the most resistant and monocytes being the most susceptible to ZnO nanoparticle-induced toxicity. Significant differences were also observed between previously activated memory lymphocytes and naive lymphocytes, indicating a relationship between cell-cycle potential and nanoparticle susceptibility. Mechanisms of toxicity involve the generation of reactive oxygen species, with monocytes displaying the highest levels, and the degree of cytotoxicity dependent on the extent of nanoparticle interactions with cellular membranes. An inverse relationship between nanoparticle size and cytotoxicity, as well as nanoparticle size and reactive oxygen species production was observed. In addition, ZnO nanoparticles induce the production of the proinflammatory cytokines, IFN-γ, TNF-α, and IL-12, at concentrations below those causing appreciable cell death. Collectively, these results underscore the need for careful evaluation of ZnO nanoparticle effects across a spectrum of relevant cell types when considering their use for potential new nanotechnology-based biological applications.

  12. Molecular Therapeutic Approaches for Pediatric Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Sarah K Tasian

    2014-03-01

    Full Text Available Approximately two thirds of children with acute myeloid leukemia (AML are cured with intensive multi-agent chemotherapy. However, primary chemorefractory and relapsed AML remains a significant source of childhood cancer mortality, highlighting the need for new therapies. Further therapy intensification with traditional cytotoxic agents is not feasible given the potential for significant toxicity to normal tissues with conventional chemotherapy and the risk for long-term end-organ dysfunction. Significant emphasis has been placed upon the development of molecularly targeted therapeutic approaches for adults and children with high-risk subtypes of AML with the goal of improving remission induction and minimizing relapse. Several promising agents are currently in clinical testing or late preclinical development for AML, including monoclonal antibodies against leukemia cell surface proteins, kinase inhibitors, proteasome inhibitors, epigenetic agents, and chimeric antigen receptor engineered T cell immunotherapies. Many of these therapies have been specifically tested in children with relapsed/refractory AML via phase 1 and 2 trials with a smaller number of new agents under phase 3 evaluation for children with de novo AML. Although successful identification and implementation of new drugs for children with AML remains a formidable challenge, enthusiasm for novel molecular therapeutic approaches is great given the potential for significant clinical benefit for children who will otherwise fail standard therapy.

  13. 7-N-Acetylcysteine-pyrrole conjugate-A potent DNA reactive metabolite of pyrrolizidine alkaloids.

    Science.gov (United States)

    He, Xiaobo; Ma, Liang; Xia, Qingsu; Fu, Peter P

    2016-10-01

    Plants containing pyrrolizidine alkaloids (PAs) are widespread throughout the world and are the most common poisonous plants affecting livestock, wildlife, and humans. PAs require metabolic activation to form reactive dehydropyrrolizidine alkaloids (dehydro-PAs) that are capable of alkylating cellular DNA and proteins, form (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA and DHP-protein adducts, and lead to cytotoxicity, genotoxicity, and tumorigenicity. In this study, we determined that the metabolism of riddelliine and monocrotaline by human and rat liver microsomes in the presence of N-acetylcysteine both produced 7-N-acetylcysteine-DHP (7-NAC-DHP) and DHP. Reactions of 7-NAC-DHP with 2'-deoxyguanosine (dG), 2'-deoxyadenosine (dA), and calf thymus DNA in aqueous solution followed by enzymatic hydrolysis yielded DHP-dG and/or DHP-dA adducts. These results indicate that 7-NAC-DHP is a reactive metabolite that can lead to DNA adduct formation. Copyright © 2016. Published by Elsevier B.V.

  14. 7-N-Acetylcysteine-pyrrole conjugate—A potent DNA reactive metabolite of pyrrolizidine alkaloids

    Directory of Open Access Journals (Sweden)

    Xiaobo He

    2016-10-01

    Full Text Available Plants containing pyrrolizidine alkaloids (PAs are widespread throughout the world and are the most common poisonous plants affecting livestock, wildlife, and humans. PAs require metabolic activation to form reactive dehydropyrrolizidine alkaloids (dehydro-PAs that are capable of alkylating cellular DNA and proteins, form (±-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP-DNA and DHP-protein adducts, and lead to cytotoxicity, genotoxicity, and tumorigenicity. In this study, we determined that the metabolism of riddelliine and monocrotaline by human and rat liver microsomes in the presence of N-acetylcysteine both produced 7-N-acetylcysteine-DHP (7-NAC-DHP and DHP. Reactions of 7-NAC-DHP with 2′-deoxyguanosine (dG, 2′-deoxyadenosine (dA, and calf thymus DNA in aqueous solution followed by enzymatic hydrolysis yielded DHP-dG and/or DHP-dA adducts. These results indicate that 7-NAC-DHP is a reactive metabolite that can lead to DNA adduct formation.

  15. Cytotoxicity of lambda-cyhalothrin on the macrophage cell line RAW 264.7.

    Science.gov (United States)

    Zhang, Quan; Wang, Cui; Sun, Liwei; Li, Ling; Zhao, Meirong

    2010-01-01

    The wide use and wide-spectrum toxicity of synthetic pyrethroids (SPs) insecticides make them an emerging ecotoxicological concern. Some previous studies showed that SPs possessed cytotoxicity in some immune cells such as human lymphocytes and rat bone marrow. However, the cytotoxicity of SPs to macrophages, which are crucial to innate immunity, has not been explored. In the present report, we investigated a new pyrethroid insecticide, lambda-cyhalothrin (LCT), which may increase the generation of reactive oxygen species (ROS) and DNA damage levels and cause cytotoxicity in RAW 264.7 cells in dose- and time-dependent manners. The results for the first time implicated increased endogenous ROS and DNA damage as co-mediators of LCT-induced cytotoxicity in macrophages. Our results also suggested that macrophages were involved in synthetic pyrethroid-induced adverse immune effects. Considering the ubiquitous environmental presence of SPs, this study provided new information relative to the potential long-term physiological and immunological effects associated with chronic exposure to SPs. Hence, the potential immunotoxicity of SPs should be considered in assessing the safety of these compounds in sensitive environmental compartments.

  16. Bioinformatic analysis of xenobiotic reactive metabolite target proteins and their interacting partners

    Directory of Open Access Journals (Sweden)

    Hanzlik Robert P

    2009-06-01

    Full Text Available Abstract Background Protein covalent binding by reactive metabolites of drugs, chemicals and natural products can lead to acute cytotoxicity. Recent rapid progress in reactive metabolite target protein identification has shown that adduction is surprisingly selective and inspired the hope that analysis of target proteins might reveal protein factors that differentiate target- vs. non-target proteins and illuminate mechanisms connecting covalent binding to cytotoxicity. Results Sorting 171 known reactive metabolite target proteins revealed a number of GO categories and KEGG pathways to be significantly enriched in targets, but in most cases the classes were too large, and the "percent coverage" too small, to allow meaningful conclusions about mechanisms of toxicity. However, a similar analysis of the directlyinteracting partners of 28 common targets of multiple reactive metabolites revealed highly significant enrichments in terms likely to be highly relevant to cytotoxicity (e.g., MAP kinase pathways, apoptosis, response to unfolded protein. Machine learning was used to rank the contribution of 211 computed protein features to determining protein susceptibility to adduction. Protein lysine (but not cysteine content and protein instability index (i.e., rate of turnover in vivo were among the features most important to determining susceptibility. Conclusion As yet there is no good explanation for why some low-abundance proteins become heavily adducted while some abundant proteins become only lightly adducted in vivo. Analyzing the directly interacting partners of target proteins appears to yield greater insight into mechanisms of toxicity than analyzing target proteins per se. The insights provided can readily be formulated as hypotheses to test in future experimental studies.

  17. Reanalysis of atomic bomb survivors' leukemia based on the recent classification for leukemias

    International Nuclear Information System (INIS)

    Matsuo, Tatsuki; Tomonaga, Masao.

    1990-01-01

    Four hundred and ninety-three A-bomb survivors developing leukemia, who had been exposed within 9,000 m from the hypocenter, were entered on the study for reanalysis of their disease based on the new classification. Chronic myelocytic leukemia (CML) showed the highest concordance rate (95%) between the previous and new classifications. For 10 survivors previously diagnosed as having chronic lymphocytic leukemia (CLL), a new classification diagnosed CLL as well in 3 and adult T-cell leukemia in the other 7. None of the A-bomb survivors exposed to one Gy or more had subtype M3 of acute myelocytic leukemia (AML), although the exposed group had almost the same distribution pattern of AML subtypes as the naturally induced leukemic group. The incidence of CML was significantly lower than that of AML in Nagasaki A-bomb survivors. As A-bomb survivors were older at the time of A-bombing, the relative risk of acute lymphoblastic leukemia (ALL) was decreased; that of CML and other types of leukemia was increased. An increased relative risk of ALL and CML tended to be associated with larger doses. A significantly shortened interval between A-bomb exposure and the development of leukemia was also associated with larger doses. (N.K.)

  18. Leukemia-Initiating Cells in T-Cell Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Tan, Shi Hao; Bertulfo, Fatima Carla; Sanda, Takaomi

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy characterized by the clonal proliferation of immature T-cell precursors. T-ALL has many similar pathophysiological features to acute myeloid leukemia, which has been extensively studied in the establishment of the cancer stem cell (CSC) theory, but the CSC concept in T-ALL is still debatable. Although leukemia-initiating cells (LICs), which can generate leukemia in a xenograft setting, have been found in both human T-ALL patients and animal models, the nature and origin of LICs are largely unknown. In this review, we discuss recent studies on LICs in T-ALL and the potential mechanisms of LIC emergence in this disease. We focus on the oncogenic transcription factors TAL1, LMO2 , and NOTCH1 and highlight the significance of the transcriptional regulatory programs in normal hematopoietic stem cells and T-ALL.

  19. Leukemia-Initiating Cells in T-Cell Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Shi Hao Tan

    2017-09-01

    Full Text Available T-cell acute lymphoblastic leukemia (T-ALL is a hematological malignancy characterized by the clonal proliferation of immature T-cell precursors. T-ALL has many similar pathophysiological features to acute myeloid leukemia, which has been extensively studied in the establishment of the cancer stem cell (CSC theory, but the CSC concept in T-ALL is still debatable. Although leukemia-initiating cells (LICs, which can generate leukemia in a xenograft setting, have been found in both human T-ALL patients and animal models, the nature and origin of LICs are largely unknown. In this review, we discuss recent studies on LICs in T-ALL and the potential mechanisms of LIC emergence in this disease. We focus on the oncogenic transcription factors TAL1, LMO2, and NOTCH1 and highlight the significance of the transcriptional regulatory programs in normal hematopoietic stem cells and T-ALL.

  20. Cytotoxicity and Antiproliferative Activity Assay of Clove Mistletoe (Dendrophthoe pentandra (L. Miq. Leaves Extracts

    Directory of Open Access Journals (Sweden)

    Vida Elsyana

    2016-01-01

    Full Text Available Clove mistletoe (Dendrophthoe pentandra (L. Miq. is a semiparasitic plant that belongs to Loranthaceae family. Clove mistletoe was traditionally used for cancer treatment in Indonesia. In the present study, we examined cytotoxicity of clove mistletoe leaves extracts against brine shrimps and conducted their antiproliferative activity on K562 (human chronic myelogenous leukemia and MCM-B2 (canine benign mixed mammary cancer cell lines in vitro. The tested samples were water extract, ethanol extract, ethanol fraction, ethyl acetate fraction, and n-hexane fraction. Cytotoxicity was screened using Brine Shrimp Lethality Test (BSLT. Antiproliferative activity was conducted using Trypan Blue Dye Method and cells were counted using haemocytometer. The results showed that n-hexane fraction exhibited significant cytotoxicity with LC50 value of 55.31 μg/mL. The n-hexane fraction was then considered for further examination. The n-hexane fraction of clove mistletoe could inhibit growth of K562 and MCM-B2 cancer cell lines in vitro. The inhibition activity of clove mistletoe n-hexane fraction at concentration of 125 μg/mL on K562 cancer cell lines was 38.69%, while on MCM-B2 it was 41.5%. Therefore, it was suggested that clove mistletoe had potential natural anticancer activity.

  1. 1-{beta}-D-arabinofuranosylcytosine is cytotoxic in quiescent normal lymphocytes undergoing DNA excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Takahiro; Kawai, Yasukazu; Ueda, Takanori [Fukui Medical Univ., Matsuoka (Japan)

    2002-12-01

    We have sought to clarify the potential activity of the S-phase-specific antileukemic agent 1-{beta}-D-arabinofuranosylcytosine (ara-C), an inhibitor of DNA synthesis, in quiescent cells that are substantially non-sensitive to nucleoside analogues. It was hypothesized that the combination of ara-C with DNA damaging agents that initiate DNA repair will expand ara-C cytotoxicity to non-cycling cells. The repair kinetics, which included incision of damaged DNA, gap-filling by DNA synthesis and rejoining by ligation, were evaluated using the single cell gel electrophoresis (Comet) assay and the thymidine incorporation assay. When normal lymphocytes were treated with ultraviolet C or with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), the processes of DNA excision repair were promptly initiated and rapidly completed. When the cells were incubated with ara-C prior to irradiation or BCNU treatment, the steps of DNA synthesis and rejoining in the repair processes were both inhibited. The ara-C-mediated inhibition of the repair processes was concentration-dependent, with the effect peaking at 10{mu}M. The combination of ara-C with these DNA repair initiators exerted subsequent cytotoxicity, which was proportional to the extent of the repair inhibition in the presence of ara-C. In conclusion, ara-C was cytotoxic in quiescent cells undergoing DNA repair. This might be attributed to unrepaired DNA damage that remained in the cells, thereby inducing lethal cytotoxicity. Alternatively, ara-C might exert its own cytotoxicity by inhibiting DNA synthesis in the repair processes. Such a strategy may be effective against a dormant subpopulation in acute leukemia that survives chemotherapy. (author)

  2. 1-β-D-arabinofuranosylcytosine is cytotoxic in quiescent normal lymphocytes undergoing DNA excision repair

    International Nuclear Information System (INIS)

    Yamauchi, Takahiro; Kawai, Yasukazu; Ueda, Takanori

    2002-01-01

    We have sought to clarify the potential activity of the S-phase-specific antileukemic agent 1-β-D-arabinofuranosylcytosine (ara-C), an inhibitor of DNA synthesis, in quiescent cells that are substantially non-sensitive to nucleoside analogues. It was hypothesized that the combination of ara-C with DNA damaging agents that initiate DNA repair will expand ara-C cytotoxicity to non-cycling cells. The repair kinetics, which included incision of damaged DNA, gap-filling by DNA synthesis and rejoining by ligation, were evaluated using the single cell gel electrophoresis (Comet) assay and the thymidine incorporation assay. When normal lymphocytes were treated with ultraviolet C or with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), the processes of DNA excision repair were promptly initiated and rapidly completed. When the cells were incubated with ara-C prior to irradiation or BCNU treatment, the steps of DNA synthesis and rejoining in the repair processes were both inhibited. The ara-C-mediated inhibition of the repair processes was concentration-dependent, with the effect peaking at 10μM. The combination of ara-C with these DNA repair initiators exerted subsequent cytotoxicity, which was proportional to the extent of the repair inhibition in the presence of ara-C. In conclusion, ara-C was cytotoxic in quiescent cells undergoing DNA repair. This might be attributed to unrepaired DNA damage that remained in the cells, thereby inducing lethal cytotoxicity. Alternatively, ara-C might exert its own cytotoxicity by inhibiting DNA synthesis in the repair processes. Such a strategy may be effective against a dormant subpopulation in acute leukemia that survives chemotherapy. (author)

  3. Synthesis, Cytotoxicity and Molecular Docking Study of Complexes Containing Thiazole Moiety

    Directory of Open Access Journals (Sweden)

    Mohammed Shafeeulla

    2017-07-01

    Full Text Available The ligand 5-methyl-2-phenyl-4-[(E-1,3-thiazol-2-yldiazenyl]-2,4-dihydro-3H-pyrazol-3-one (Dy has been synthesized by diazo coupling reactions of 5-methyl-2-phenyl- 2,4-dihydro-3H-pyrazol-3-one with 2-aminothiazole and ferric hydrogen sulfate (FHS, as a catalyst, under solvent-free conditions. A series of complexes of the ligand with Co(II, Ni(II, Cu(II, and Zn(II ions are synthesized and structurally characterized by 1H NMR, FTIR, and UV–Visible spectral techniques. The cytotoxic activity of the complexes and the uncoordinated ligand against human breast cancer (MCF-7 and chronic myelogenous leukemia cell line (human erythroleukemia (K-562 cell lines exhibits good viability in the range of 50.16–55.16% at a concentration of >100-110 µg/mL as compared to the inhibition in the untreated cells. Further, the metal complexes and ligand were screened against antibacterial strains of S. typhi, S. aureus, and E. coli. Both the cytotoxicity and antioxidant studies are correlated with computational docking analysis and powder XRD studies reviles that all complexes are in crystalline nature.

  4. Antileukemic activity of the HSP70 inhibitor pifithrin-μ in acute leukemia

    International Nuclear Information System (INIS)

    Kaiser, M; Kühnl, A; Reins, J; Fischer, S; Ortiz-Tanchez, J; Schlee, C; Mochmann, L H; Heesch, S; Benlasfer, O; Hofmann, W-K; Thiel, E; Baldus, C D

    2011-01-01

    Heat shock protein (HSP) 70 is aberrantly expressed in different malignancies and has emerged as a promising new target for anticancer therapy. Here, we analyzed the in vitro antileukemic effects of pifithrin-μ (PFT-μ), an inhibitor of inducible HSP70, in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) cell lines, as well as in primary AML blasts. PFT-μ significantly inhibited cell viability at low micromolar concentrations in all cell lines tested, with IC50 values ranging from 2.5 to 12.7 μ, and was highly active in primary AML blasts with a median IC50 of 8.9 μ (range 5.7–37.2). Importantly, higher IC50 values were seen in normal hematopoietic cells. In AML and ALL, PFT-μ induced apoptosis and cell cycle arrest in a dose-dependent fashion. PFT-μ also led to an increase of the active form of caspase-3 and reduced the intracellular concentrations of AKT and ERK1/2 in NALM-6 cells. Moreover, PFT-μ enhanced cytotoxicity of cytarabine, 17-(allylamino)-17-desmethoxygeldanamycin, suberoylanilide hydroxamic acid, and sorafenib in NALM-6, TOM-1 and KG-1a cells. This is the first study demonstrating significant antileukemic effects of the HSP70 inhibitor PFT-μ, alone and in combination with different antineoplastic drugs in both AML and ALL. Our results suggest a potential therapeutic role for PFT-μ in acute leukemias

  5. Targeted immunotherapy in acute myeloblastic leukemia: from animals to humans.

    Science.gov (United States)

    Robin, Marie; Schlageter, Marie-Hélène; Chomienne, Christine; Padua, Rose-Ann

    2005-10-01

    Immunity against acute myeloid leukemia (AML) is demonstrated in humans by the graft-versus-leukemia effect in allogeneic hematopoietic stem cell transplantation. Specific leukemic antigens have progressively been discovered and circulating specific T lymphocytes against Wilms tumor antigen, proteinase peptide or fusion-proteins produced from aberrant oncogenic chromosomal translocations have been detected in leukemic patients. However, due to the fact that leukemic blasts develop various escape mechanisms, antileukemic specific immunity is not able to control leukemic cell proliferation. The aim of immunotherapy is to overcome tolerance and boost immunity to elicit an efficient immune response against leukemia. We review different immunotherapy strategies tested in preclinical animal models of AML and the human trials that spurred from encouraging results obtained in animal models, demonstrate the feasibility of immunotherapy in AML patients.

  6. Irradiated KHYG-1 retains cytotoxicity: potential for adoptive immunotherapy with a natural killer cell line.

    Science.gov (United States)

    Suck, G; Branch, D R; Keating, A

    2006-05-01

    To evaluate gamma-irradiation on KHYG-1, a highly cytotoxic natural killer (NK) cell line and potential candidate for cancer immunotherapy. The NK cell line KHYG-1 was irradiated at 1 gray (Gy) to 50 Gy with gamma-irradiation, and evaluated for cell proliferation, cell survival, and cytotoxicity against tumor targets. We showed that a dose of at least 10 Gy was sufficient to inhibit proliferation of KHYG-1 within the first day but not its cytolytic activity. While 50 Gy had an apoptotic effect in the first hours after irradiation, the killing of K562 and HL60 targets was not different from non-irradiated cells but was reduced for the Ph + myeloid leukemia lines, EM-2 and EM-3. gamma-irradiation (at least 10 Gy) of KHYG-1 inhibits cell proliferation but does not diminish its enhanced cytolytic activity against several tumor targets. This study suggests that KHYG-1 may be a feasible immunotherapeutic agent in the treatment of cancers.

  7. Allium compounds, dipropyl and dimethyl thiosulfinates as antiproliferative and differentiating agents of human acute myeloid leukemia cell lines

    Directory of Open Access Journals (Sweden)

    Faten Merhi

    2008-08-01

    Full Text Available Faten Merhi1, Jacques Auger2, Francine Rendu1, Brigitte Bauvois11UMR 7131 UPMC Paris Universitas/CNRS, Groupe Hospitalier Broussais-HEGP, Paris, France; 2University F. Rabelais, IRBI, UPRESA CNRS 6035, Tours, FranceAbstract: Epidemiologic studies support the premise that Allium vegetables may lower the risk of cancers. The beneficial effects appear related to the organosulfur products generated upon processing of Allium. Leukemia cells from patients with acute myeloid leukemia (AML display high proliferative capacity and have a reduced capacity of undergoing apoptosis and maturation. Whether the sulfur-containing molecules thiosulfinates (TS, diallyl TS (All2TS, dipropyl TS (Pr2TS and dimethyl TS (Me2TS, are able to exert chemopreventative activity against AML is presently unknown. The present study was an evaluation of proliferation, cytotoxicity, differentiation and secretion of AML cell lines (U937, NB4, HL-60, MonoMac-6 in response to treatment with these TS and their related sulfides (diallylsulfide, diallyl disulfide, dipropyl disulfide, dimethyl disulfide. As assessed by flow cytometry, ELISA, gelatin zymogaphy and RT-PCR, we showed that Pr2TS and Me2TS, but not All2TS and sulfides, 1 inhibited cell proliferation in dose- and time-dependent manner and this process was neither due to cytotoxicity nor apoptosis, 2 induced macrophage maturation, and 3 inhibited the levels of secreted MMP-9 (protein and activity and TNF-α protein, without altering mRNA levels. By establishing for the first time that Pr2TS and Me2TS affect proliferation, differentiation and secretion of leukemic cell lines, this study provides the opportunity to explore the potential efficiency of these molecules in AML.Keywords: acute myeloid leukemia, thiosulfinate, proliferation, differentiation, matrix metalloproteinase-9

  8. The stimulating effects of polyphenol and protein fractions from jelly fig (Ficus awkeotsang Makino achenes against proliferation of leukemia cells

    Directory of Open Access Journals (Sweden)

    Yi-Zhen Shih

    2017-10-01

    Full Text Available This study aimed to investigate the direct and immune-stimulated antiproliferative activities of jelly fig achenes fractions including pectinesterase inhibitors, crude polyphenols extract, and purified polyphenols extract (PP. Beside the measurement of cell viability of U937, the quantity of cytokines in conditioned medium and morphologic changes in leukemia were observed. After surveying all fractions in jelly fig, the obtained fractions of polyphenol exhibited the highest stimulating effects and directly cytotoxic effects against leukemia with the lowest effect found in protein fractions. The leukemia treated by our PP fraction showed dose-dependent response between the concentration and G2/M cell numbers of the U937 cells. The PP fraction had more pronounced effect on immune-stimulated than direct antiproliferative activities. The finding was also supported by morphological analysis by showing the formation of apoptotic bodies and differentiation from immature U937 cells into mature monocytes/macrophages on cells cultured with PP-conditioned medium. In conclusion, polyphenol fraction of pectinesterase inhibitors from jelly fig showed the immune-stimulated antiproliferative activities against U937 cell.

  9. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    Science.gov (United States)

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  10. Occurrence of chronic lymphocytic leukemia in patients with chronic myelogenous leukemia

    Directory of Open Access Journals (Sweden)

    Pritish K Bhattacharyya

    2013-01-01

    Full Text Available Chronic lymphocytic leukemia (CLL is the most common leukemia of adults in the western world and constitutes about 33% of all leukemia′s. The incidence of CLL increases with age and are more common in older population. Chronic myeloid leukemia (CML on the contrary occurs in both young adults and elderly and is a chronic myeloproliferative disease that originates from abnormal pluripotent stem cells and results in involvement of multiple hematopoietic lineages, but predominantly myeloid and less commonly lymphoid. Association between CLL and myeloid malignancies (CML, acute myeloid leukemia and MDS, myelodysplastic syndrome is rare. In literature documenting CLL and CML in same patients, occur either simultaneously or CML is preceded by CLL.

  11. Experimental studies of leukemia

    International Nuclear Information System (INIS)

    Yokoro, Kenjiro

    1977-01-01

    Mouse leukemia, especially the relationship between that and endogenous type-C RNA virus (murine leukemia virus, MLV), was generally discussed centering around the recent findings and reports. Correlation of carcinogenesis due to x-rays and carcinogens with the occurrence of MLV, the relationship of total body fractionated x-ray irradiation and successive acellular transmission by the neonatal inoculation with MLV, and the relationship between N-nitrosobutylurea or N-nitrosoethylurea and MLV were discussed. The relationship between the occurrence of MLV and thymus or spleen was also discussed. Biotic differences in mice and rats, the relationship between MLV the organotropism of MLV and provocation of leukemia, the directivity of MLV to thymus and the etiologic correlation of rat leukemia or mouse leukemia with MLV were mentioned. (Ichikawa, K.)

  12. Rudimentary, low tech incinerators as a means to produce reactive pozzolan out of sugar cane straw

    International Nuclear Information System (INIS)

    Martirena, Fernando; Middendorf, Bernhard; Day, Robert L.; Gehrke, Matthias; Roque, Pablo; Martinez, Lesday; Betancourt, Sergio

    2006-01-01

    The ashes of agricultural wastes from the processing of sugar cane are recognized as having pozzolanic properties. Burning of these wastes under controlled conditions, e.g. temperature and residence time results in significant improvement in reactivity. There are many reports of low-tech incinerators that have been successfully used to produce reactive rice husk ash in Asia. The paper presents the results of the evaluation of a rudimentary incinerator where sugar cane straw is burnt in order to obtain a reactive ash. The incinerator is designed and constructed according to state-of-the-art recommendations for this kind of device. Various burning trials were performed in order to obtain ash for the experiment. X-ray diffraction analysis performed on powdered ash shows significant presence of amorphous (glassy) material. Lime-pozzolana pastes were prepared. The pastes were subjected to X-ray diffraction, thermo-gravimetric analysis, chemical titration, and SEM observation, as a means to examine the pozzolanicity of the ash via the progress with time of calcium hydroxide consumption, and changes in the pore size distribution and strength. Calcium silicate hydrate phases are the main reaction product of the pozzolanic reaction. The long residence time of the ash in the burning chamber seems to be the reason for the fairly low reactivity of the ash; the reactivity of the ash was not significantly improved in comparison with that of the ash burnt in uncontrolled conditions in the open air

  13. Cytotoxic effects and apoptosis induction of enrofloxacin in hepatic cell line of grass carp (Ctenopharyngodon idellus).

    Science.gov (United States)

    Liu, Bo; Cui, Yanting; Brown, Paul B; Ge, Xianping; Xie, Jun; Xu, Pao

    2015-12-01

    We determined the effect of enrofloxacin on the lactate dehydrogenase (LDH) release, reactive oxygen species (ROS), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), malondialdehyde (MDA), mitochondria membrane potential (ΔΨm) and apoptosis in the hepatic cell line of grass carp (Ctenopharyngodon idellus). Cultured cells were treated with different concentrations of enrofloxacin (12.5-200 ug/mL) for 24 h. We found that the cytotoxic effect of enrofloxacin was mediated by apoptosis, and that this apoptosis occurred in a dose-dependent manner. The doses of 50,100 and 200 μg/mL enrofloxacin increased the LDH release and MDA concentration, induced cell apoptosis and reduced the ΔΨm compared to the control. The highest dose of 200 ug/mL enrofloxacin also significantly induced apoptosis accompanied by ΔΨm disruption and ROS generation and significantly reduced T-AOC and increased MDA concentration compared to the control. Our results suggest that the dose of 200 ug/mL enrofloxacin exerts its cytotoxic effect and produced ROS via apoptosis by affecting the mitochondria of the hepatic cells of grass carp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Extramedullary leukemia in children with acute myeloid leukemia

    DEFF Research Database (Denmark)

    Støve, Heidi Kristine; Sandahl, Julie Damgaard; Abrahamsson, Jonas

    2017-01-01

    BACKGROUND: The prognostic significance of extramedullary leukemia (EML) in childhood acute myeloid leukemia is not clarified. PROCEDURE: This population-based study included 315 children from the NOPHO-AML 2004 trial. RESULTS: At diagnosis, 73 (23%) patients had EML: 39 (12%) had myeloid sarcoma...... the OS. No patients relapsed at the primary site of the myeloid sarcoma despite management without radiotherapy....

  15. Cis-drivers and trans-drivers of bovine leukemia virus oncogenesis.

    Science.gov (United States)

    Safari, Roghaiyeh; Hamaidia, Malik; de Brogniez, Alix; Gillet, Nicolas; Willems, Luc

    2017-10-01

    The bovine leukemia virus (BLV) is a retrovirus inducing an asymptomatic and persistent infection in ruminants and leading in a minority of cases to the accumulation of B-lymphocytes (lymphocytosis, leukemia or lymphoma). Although the mechanisms of oncogenesis are still largely unknown, there is clear experimental evidence showing that BLV infection drastically modifies the pattern of gene expression of the host cell. This alteration of the transcriptome in infected B-lymphocytes results first, from a direct activity of viral proteins (i.e. transactivation of gene promoters, protein-protein interactions), second, from insertional mutagenesis by proviral integration (cis-activation) and third, from gene silencing by microRNAs. Expression of viral proteins stimulates a vigorous immune response that indirectly modifies gene transcription in other cell types (e.g. cytotoxic T-cells, auxiliary T-cells, macrophages). In principle, insertional mutagenesis and microRNA-associated RNA interference can modify the cell fate without inducing an antiviral immunity. Despite a tight control by the immune response, the permanent attempts of the virus to replicate ultimately induce mutations in the infected cell. Accumulation of these genomic lesions and Darwinian selection of tumor clones are predicted to lead to cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Leukemia-associated antigens in man.

    Science.gov (United States)

    Brown, G; Capellaro, D; Greaves, M

    1975-12-01

    Rabbit antisera raised against acute lymphoblastic leukemia (ALL) cells were used to distinguish ALL from other leukemias, to identify rare leukemia cells in the bone marrow of patients in remission, and to define human leukemia-associated antigens. Antibody binding was studied with the use of immunofluorescence reagents and the analytic capacity of the Fluorescence Activated Cell Sorter-1 (FACS-1). The results indicated that most non-T-cell ALL have three leukemia-associated antigens on their surface which are absent from normal lymphoid cells: 1) an antigen shared with myelocytes, myeloblastic leukemia cells, and fetal liver (hematopoietic) cells; 2) an antigen shared with a subset of intermediate normoblasts in normal bone marrow and fetal liver; and 3) an antigen found thus far only on non-T-cell ALL and in some acute undifferentiated leukemias, which we therefore regard as a strong candidate for a leukemia-specific antigen. These antigens are absent from a subgroup of ALL patients in which the lymphoblasta express T-cell surface markers. Preliminary studies on the bone marrow samples of patients in remission indicated that rare leukemia cells were present in some samples. The implications of these findings with respect to the heterogeneity and cell origin(s) of ALL, its diagnosis, and its potential monitoring during treatment were discussed.

  17. Vorinostat in Treating Patients With Acute Myeloid Leukemia

    Science.gov (United States)

    2014-04-30

    Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  18. Benzimidazole condensed ring systems 10 (1). Synthesis and cytotoxic activity of some pyrido[1,2-a]benzimidazoles.

    Science.gov (United States)

    Badawey, E S; Kappe, T

    1995-01-01

    As a part of research project on the synthesis of a number of pyrido[1,2-a]benzimidazole derivatives with possible antineoplastic activity and as a result of the interesting antineoplastic activity recorded for one such compounds (NSC 649900), some new pyrido[1,2-a]benzimidazoles were prepared and evaluated for such activity. Compound (11, NSC 660334) exhibited a moderate in vitro antineoplastic activity especially against most of the leukemia cell lines, while compound (10, VM30309) showed a good cytotoxic activity against Artina salina larvae (IC50 = 1.75 micrograms/ml).

  19. Cytotoxic sesquiterpene lactones and other constituents of Centaurea omphalotricha

    Energy Technology Data Exchange (ETDEWEB)

    Kolli, El Hadj; Leon, Francisco; Benayache, Samir, E-mail: jfleon@ipna.csic.es, E-mail: sbenayache@yahoo.com [Laboratoire de Valorisation des Ressources Naturelles et Synthese de Substances Bioactives, Equipe Associee a l' A.N.D.R.S., Universite Mentouri, Constantine (Algeria); Benayache, Fadila [Laboratoire de Phytochimie et Analyses Physico-Chimiques et Biologiques, Universite Mentouri, Constantine (Algeria); Estevez, Sara; Quintana, Jose; Estevez, Francisco [Departamento de Bioquimica, Unidad Asociada al CSIC, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria (Spain); Instituto Canario de Investigacion del Cancer, Las Palmas de Gran Canaria, Gran Canaria (Spain); Brouard, Ignacio; Bermejo, Jaime [Instituto de Productos Naturales y Agrobiologia, CSIC, La Laguna, Tenerife (Spain)

    2012-05-15

    Phytochemical research of the aerial parts of Centaurea omphalotricha led to the isolation of three new sesquiterpene lactones, 4'-acetyl cynaropicrin, 4'-acetyl cebellin F and 15-acetyl dehydromelitensin, together with twelve known compounds, seven sesquiterpene lactones, two isoprenoids and three flavonoids. The structures of the new compounds were elucidated by means of extensive 1D and 2D NMR, and MS, and by comparison with reported data in the literature. The effect of sesquiterpene lactones on the viability of the human tumor cell lines HL-60 and U937 was also investigated and 3-acetyl cynaropicrin, and 4'-acetyl cynaropicrin were found to be the most cytotoxic compounds against human leukemia cells with an IC{sub 50} values of 2.0 =- 0.9 and 5.1 +- 0.4 {mu}mol L{sup -1}, respectively. (author)

  20. Semisynthetic Esters of 17-Hydroxycativic Acid with in Vitro Cytotoxic Activity against Leukemia Cell Lines

    Czech Academy of Sciences Publication Activity Database

    Cavallaro, V.; Řezníčková, Eva; Jorda, Radek; Alza, N.P.; Murray, A.P.; Kryštof, Vladimír

    2017-01-01

    Roč. 40, č. 11 (2017), s. 1923-1928 ISSN 0918-6158 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : biological evaluation * derivatives * andrographolide * apoptosis * cancer * agents * diterpenes * inhibition * activation * chemistry * diterpenoid * 17-hydroxycativic acid * cytotoxic activity * human cancer cell * apoptosis Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Hematology Impact factor: 1.683, year: 2016

  1. Systematic chemical and molecular profiling of MLL-rearranged infant acute lymphoblastic leukemia reveals efficacy of romidepsin

    Science.gov (United States)

    Cruickshank, M N; Ford, J; Cheung, L C; Heng, J; Singh, S; Wells, J; Failes, T W; Arndt, G M; Smithers, N; Prinjha, R K; Anderson, D; Carter, K W; Gout, A M; Lassmann, T; O'Reilly, J; Cole, C H; Kotecha, R S; Kees, U R

    2017-01-01

    To address the poor prognosis of mixed lineage leukemia (MLL)-rearranged infant acute lymphoblastic leukemia (iALL), we generated a panel of cell lines from primary patient samples and investigated cytotoxic responses to contemporary and novel Food and Drug Administration-approved chemotherapeutics. To characterize representation of primary disease within cell lines, molecular features were compared using RNA-sequencing and cytogenetics. High-throughput screening revealed variable efficacy of currently used drugs, however identified consistent efficacy of three novel drug classes: proteasome inhibitors, histone deacetylase inhibitors and cyclin-dependent kinase inhibitors. Gene expression of drug targets was highly reproducible comparing iALL cell lines to matched primary specimens. Histone deacetylase inhibitors, including romidepsin (ROM), enhanced the activity of a key component of iALL therapy, cytarabine (ARAC) in vitro and combined administration of ROM and ARAC to xenografted mice further reduced leukemia burden. Molecular studies showed that ROM reduces expression of cytidine deaminase, an enzyme involved in ARAC deactivation, and enhances the DNA damage–response to ARAC. In conclusion, we present a valuable resource for drug discovery, including the first systematic analysis of transcriptome reproducibility in vitro, and have identified ROM as a promising therapeutic for MLL-rearranged iALL. PMID:27443263

  2. Profile of blinatumomab and its potential in the treatment of relapsed/refractory acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Ribera JM

    2015-06-01

    Full Text Available Josep-Maria Ribera, Albert Ferrer, Jordi Ribera, Eulàlia GenescàClinical Hematology Department, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona, SpainAbstract: The CD19 marker is expressed on the surface of normal and malignant immature or mature B-cells. On the other hand, immunotherapy involving T-cells is a promising modality of treatment for many neoplastic diseases including leukemias and lymphomas. The CD19/CD3-bispecific T-cell-engaging (BiTE® monoclonal antibody blinatumomab can transiently engage cytotoxic T-cells to CD19+ target B-cells inducing serial perforin-mediated lysis. In the first clinical trial, blinatumomab showed efficacy in non-Hodgkin’s lymphomas, but the most important trials have been conducted in relapsed/refractory (R/R acute lymphoblastic leukemia (ALL and in ALL with minimal residual disease. Encouraging reports on the activity of blinatumomab in R/R Philadelphia chromosome-negative B-cell precursor ALL led to its approval by the US Food and Drug Administration on December 3, 2014 after an accelerated review process. This review focuses on the profile of blinatumomab and its activity in R/R ALL.Keywords: acute lymphoblastic leukemia, relapsed/refractory, BiTE® monoclonal antibodies, blinatumomab

  3. Source of cytotoxicity in a colloidal silver nanoparticle suspension.

    Science.gov (United States)

    Hatipoglu, Manolya Kukut; Keleştemur, Seda; Altunbek, Mine; Culha, Mustafa

    2015-05-15

    Silver nanoparticles (AgNPs) are increasingly used in a variety of applications because of their potential antimicrobial activity and their plasmonic and conductivity properties. In this study, we investigated the source of cytotoxicity, genotoxicity, and reactive oxygen species (ROS) production on human dermal fibroblast and human lung cancer (A549) cell lines upon exposure to AgNP colloidal suspensions prepared with the simplest and most commonly used Lee–Meisel method with a variety of reaction times and the concentrations of the reducing agent. The AgNPs synthesized with shorter reaction times were more cytotoxic and genotoxic due to the presence of a few nanometer-sized AgNP seeds. The suspensions prepared with an increased citrate concentration were not cytotoxic, but they induced more ROS generation on A549 cells due to the high citrate concentration. The genotoxicity of the suspension decreased significantly at the higher citrate concentrations. The analysis of both transmission electron microscopy images from the dried droplet areas of the colloidal suspensions and toxicity data indicated that the AgNP seeds were the major source of toxicity. The completion of the nucleation step and the formation of larger AgNPs effectively decreased the toxicity.

  4. Progress in the leukemias

    International Nuclear Information System (INIS)

    Galton, D.A.G.; Spiers, A.S.D.

    1971-01-01

    Recent work on the epidemiology of leukemia is reviewed in relation to factors of possible etiologic importance. There is still much geographic variation in the accuracy of diagnosis, the reliability of death certification, and the provision of national registries for classifying leukemia according to cytologic type. This variation and the low incidence of all types of leukemia make difficult the recognition of potentially significant distributions or trends that might suggest the operation of environmental leukemogens and their interaction with genetically determined susceptibility. Exposure to ionizing radiation remains the only predisposing factor beyond doubt for acute and chronic granulocytic leukemia, but its exact role remains obscure. There is no evidence that radiation plays a part in the etiology of chronic lymphocytic leukemia. In the population of survivors of the Hiroshima atomic bomb explosion of 1945, the incidence of leukemia (mainly CGL), though declining in the second 10-year period, was still higher than that of Japan as a whole. The suggestion that the exposure of women to radiation could increase the likelihood of leukemia in their still unconceived children was examined by the Atomic Bomb Casualty Commission in a prospective study of 17,700 children, and no increase in the incidence of leukemia was found in the children of parents who had been heavily exposed to radiation before conception. In the 1960's a decline in the United States mortality rates for leukemia among the white population was recorded. This decline was most marked in children below age 5, and it was suggested that the decline could have resulted from a drop in the use of diagnostic radiology in pregnant women following the reports in 1956 of the Medical Research Council and the National Academy of Sciences on the biologic hazards of radiation. A similar decline in mortality was reported from Norway. (464 references) (U.S.)

  5. Lipid peroxidation and cytotoxicity induced by respirable volcanic ash

    Energy Technology Data Exchange (ETDEWEB)

    Cervini-Silva, Javiera, E-mail: jcervini@correo.cua.uam.mx [Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana Unidad Cuajimalpa, México City (Mexico); Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Nieto-Camacho, Antonio [Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Gomez-Vidales, Virginia [Laboratorio de Resonancia Paramagnética Electrónica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Ramirez-Apan, María Teresa [Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Palacios, Eduardo; Montoya, Ascención [Dirección de Investigación y Posgrado, Instituto Mexicano del Petróleo (Mexico); Kaufhold, Stephan [BGR Bundesansaltfür Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); and others

    2014-06-01

    Highlights: • Respirable volcanic ash induces oxidative degradation of lipids in cell membranes. • Respirable volcanic ash triggers cytotoxicity in murin monocyle/macrophage cells. • Oxidative stress is surface controlled but not restricted by surface- Fe{sup 3+}. • Surface Fe{sup 3+} acts as a stronger inductor in allophanes vs phyllosilicates or oxides. • Registered cell-viability values were as low as 68.5 ± 6.7%. - Abstract: This paper reports that the main component of respirable volcanic ash, allophane, induces lipid peroxidation (LP), the oxidative degradation of lipids in cell membranes, and cytotoxicity in murin monocyle/macrophage cells. Naturally-occurring allophane collected from New Zealand, Japan, and Ecuador was studied. The quantification of LP was conducted using the Thiobarbituric Acid Reactive Substances (TBARS) assay. The cytotoxic effect was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay. Electron-Paramagnetic Resonance (EPR) determinations of naturally-occurring allophane confirmed the incorporation in the structure and clustering of structural Fe{sup 3+}, and nucleation and growth of small-sized Fe (oxyhydr)oxide or gibbsite. LP induced by allophane varied with time, and solid concentration and composition, reaching 6.7 ± 0.2 nmol TBARS mg prot{sup −1}. LP was surface controlled but not restricted by structural or surface-bound Fe{sup 3+}, because redox processes induced by soluble components other than perferryl iron. The reactivity of Fe{sup 3+} soluble species stemming from surface-bound Fe{sup 3+} or small-sized Fe{sup 3+} refractory minerals in allophane surpassed that of structural Fe{sup 3+} located in tetrahedral or octahedral sites of phyllosilicates or bulk iron oxides. Desferrioxamine B mesylate salt (DFOB) or ethylenediaminetetraacetic acid (EDTA) inhibited LP. EDTA acted as a more effective inhibitor, explained by multiple electron transfer pathways. Registered cell

  6. Dietary heme induces instantaneous oxidative stress but delayed cytotoxicity and compensatory hyperproliferation in mouse colon

    NARCIS (Netherlands)

    IJssennagger, Noortje; Rijnierse, A.; Wit, de Nicole; Boekschoten, Mark; Dekker, Jan; Schonewille, Arjan; Muller, Michael; Meer, van der Roelof

    2013-01-01

    Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is compensated by hyperproliferation and hyperplasia of crypt cells, which was induced by a

  7. Reactive oxygen species activate differentiation gene transcription of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway.

    Science.gov (United States)

    Lam, Chung Fan; Yeung, Hoi Ting; Lam, Yuk Man; Ng, Ray Kit

    2018-05-01

    Reactive oxygen species (ROS) and altered cellular redox status are associated with many malignancies. Acute myeloid leukemia (AML) cells are maintained at immature state by differentiation blockade, which involves deregulation of transcription factors in myeloid differentiation. AML cells can be induced to differentiate by phorbol-12-myristate-13-acetate (PMA), which possesses pro-oxidative activity. However, the signaling events mediated by ROS in the activation of transcriptional program during AML differentiation has not been fully elucidated. Here, we investigated AML cell differentiation by treatment with PMA and ROS scavenger N-acetyl-l-cysteine (NAC). We observed elevation of intracellular ROS level in the PMA-treated AML cells, which correlated with differentiated cell morphology and increased CD11b + mature cell population. The effect of PMA can be abolished by NAC co-treatment, supporting the involvement of ROS in the process. Moreover, we demonstrated that short ROS elevation mediated cell cycle arrest, but failed to activate myeloid gene transcription; whereas prolonged ROS elevation activated JNK/c-JUN signaling pathway. Inhibition of JNK suppressed the expression of key myeloid transcriptional regulators c-JUN, SPI-1 and MAFB, and prevented AML cells from undergoing terminal differentiation. These findings provide new insights into the crucial role of JNK/c-Jun signaling pathway in the activation of transcriptional program during ROS-mediated AML differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Cellular determinants involving mitochondrial dysfunction, oxidative stress and apoptosis correlate with the synergic cytotoxicity of epigallocatechin-3-gallate and menadione in human leukemia Jurkat T cells.

    Science.gov (United States)

    Tofolean, Ioana Teodora; Ganea, Constanta; Ionescu, Diana; Filippi, Alexandru; Garaiman, Alexandru; Goicea, Alexandru; Gaman, Mihnea-Alexandru; Dimancea, Alexandru; Baran, Irina

    2016-01-01

    We have investigated the growth-suppressive action of epigallocatechin-3-gallate (EGCG) on human leukemia Jurkat T cells. Results show a strong correlation between the dose-dependent reduction of clonogenic survival following acute EGCG treatments and the EGCG-induced decline of the mitochondrial level of Ca(2+). The cell killing ability of EGCG was synergistically enhanced by menadione. In addition, the cytotoxic effect of EGCG applied alone or in combination with menadione was accompanied by apoptosis induction. We also observed that in acute treatments EGCG displays strong antioxidant properties in the intracellular milieu, but concurrently triggers some oxidative stress generating mechanisms that can fully develop on a longer timescale. In parallel, EGCG dose-dependently induced mitochondrial depolarization during exposure, but this condition was subsequently reversed to a persistent hyperpolarized mitochondrial state that was dependent on the activity of respiratory Complex I. Fluorimetric measurements suggest that EGCG is a mitochondrial Complex III inhibitor and indicate that EGCG evokes a specific cellular fluorescence with emission at 400nm and two main excitation bands (at 330nm and 350nm) that may originate from a mitochondrial supercomplex containing dimeric Complex III and dimeric ATP-synthase, and therefore could provide a valuable means to characterize the functional properties of the respiratory chain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Cucurbitacin E as a new inhibitor of cofilin phosphorylation in human leukemia U937 cells.

    Science.gov (United States)

    Nakashima, Souichi; Matsuda, Hisashi; Kurume, Ai; Oda, Yoshimi; Nakamura, Seikou; Yamashita, Masayuki; Yoshikawa, Masayuki

    2010-05-01

    Cucurbitane-type triterpenes, cucurbitacins B and E, were reported to exhibit cytotoxic effects in several cell lines mediated by JAK/STAT3 signaling. However, neither compound inhibited phosphorylation of STAT3 in human leukemia (U937) cells at low concentrations. We therefore synthesized a biotin-linked cucurbitacin E to isolate target proteins based on affinity for the molecule. As a result, cofilin, which regulates the depolymerization of actin, was isolated and suggested to be a target. Cucurbitacins E and I inhibited the phosphorylation of cofilin in a concentration-dependent manner, and their effective concentrations having the same range as the concentrations at which they had cytotoxic effects in U937 cells. In addition, the fibrous-/globular-actin ratio was decreased after treatment with cucurbitacin E in HT1080 cells. These findings suggested that the inhibition of cofilin's phosphorylation increased the severing activity of cofilin, and then the depolymerization of actin was enhanced after treatment with cucurbitacin E at lower concentrations. 2010 Elsevier Ltd. All rights reserved.

  10. Chaetoglobosins produced by Chaetomium globosum, endophytic fungus found in association with Viguiera robusta Gardn (Asteraceae); Chaetoglobosinas produzidas por Chaetomium globosum, fungo endofitico associado a Viguiera robusta Gardn. (Aasteraceae)

    Energy Technology Data Exchange (ETDEWEB)

    Momesso, Luciano da S.; Kawano, Cristina Y.; Ribeiro, Patricia H.; Nomizo, Auro; Goldman, Gustavo H.; Pupo, Monica T. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: mtpupo@fcfrp.usp.br

    2008-07-01

    Endophytes live in association with host plants during all or part of their life cycle without causing any apparent disease. They are considered outstanding and underexploited sources of novel bioactive compounds. Chaetomium globosum was isolated as an endophytic fungus from the healthy leaves of Viguiera robusta. C. globosum is a remarkable producer of chaetoglobosins, which are typically cytotoxic. In this work, chaetoglobosins B (1), D (2) and E (3) have been produced by the endophytic C. globosum strain. Chaetoglobosin B was evaluated against Jurkat (leukemia) and B16F10 (melanoma) tumoral cells and showed 89.55% and 57.10% of inhibition at 0.1 mg mL{sup -1}, respectively. Chaetoglobosin B also showed weak antibacterial activity against Staphylococcus aureus (MIC 120 {mu}g/mL) and Escherichia coli (MIC 189 {mu}g/mL). (author)

  11. New and cytotoxic anthraquinones from Pleospora sp. IFB-E006, an endophytic fungus in Imperata cylindrical.

    Science.gov (United States)

    Ge, H M; Song, Y C; Shan, C Y; Ye, Y H; Tan, R X

    2005-11-01

    In addition to 7-methoxy-2-methyl-3,4,5-trihydroxyanthraquinone (1), physcion (2), macrosporin (3), deoxybostrycin (4), altersolanol B (5) and dactylariol (6), a new hexahydroanthraquinone named pleospdione (7) was isolated from the culture of Pleospora sp . IFB-E006, an endophytic fungus residing in the normal stem of Imperata cylindrical (Gramineae). Structure determination of pleospdione was accomplished using IR, HR-ESI-MS, 1D and 2D NMR spectral analysis. Compounds 4 - 6 exhibited significant cytotoxic activity against human colon cancer (SW1116) and leukemia (K562) cell lines while compounds 1, 2 and 7 were only weakly or moderately active.

  12. Profile of imatinib in pediatric leukemia

    Directory of Open Access Journals (Sweden)

    Burke MJ

    2014-02-01

    Full Text Available Michael J BurkeDepartment of Pediatrics, Division of Hematology/Oncology/Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USAAbstract: Using targeted therapy for treatment of cancer has become the paradigm to which clinical trials aspire. Imatinib, the BCR-ABL1 tyrosine kinase inhibitor (TKI, was the first of its kind to specifically target and inhibit the underlying Philadelphia chromosome (Ph+ oncogene found to be driving chronic myeloid leukemia in adults, and has since become standard of care for the treatment of chronic myeloid leukemia in children. Imatinib, with its ability to target Ph+ leukemia, has been successfully incorporated into the treatment of not only pediatric chronic myeloid leukemia but also Ph+ acute lymphoblastic leukemia. With the incorporation of imatinib into combination chemotherapy for pediatric Ph+ acute lymphoblastic leukemia, current survival rates are far higher than at any other time for this once dreadful disease. With more children today receiving treatment with imatinib for either chronic myeloid leukemia or Ph+ acute lymphoblastic leukemia, knowledge is accumulating surrounding the short-term and long-term toxicities observed in children, adolescents, and young adults treated with this TKI. In summary, the TKI imatinib has made a historic impact in the treatment of pediatric Ph+ leukemias, transforming what were once very high-risk diseases with considerable morbidity and mortality into ones that are now very treatable but with a new awareness surrounding the long-term toxicities that may come with this price for cure.Keywords: imatinib, leukemia, lymphoblastic leukemia, chronic myeloid leukemia, pediatric

  13. What You Need to Know about Leukemia

    Science.gov (United States)

    ... Publications Reports What You Need To Know About™ Leukemia This booklet is about leukemia. Leukemia is cancer of the blood and bone marrow ( ... This book covers: Basics about blood cells and leukemia Types of doctors who treat leukemia Treatments for ...

  14. Dose-response relationship of leukemia incidence among atomic bomb survivors and their controls by absorbed marrow dose and two types of leukemia Hiroshima and Nagasaki, October 1950 - December 1978

    International Nuclear Information System (INIS)

    Ishimaru, Toranosuke; Otake, Masanori; Ichimaru, Michito; Mikami, Motoko.

    1982-07-01

    Analysis of the relationship of the incidence of leukemia to gamma and neutron dose among atomic bomb survivors until 1971 has been reported previously by RERF. The present inquiry was prompted by the extension of case finding to 1978 and by the recent availability of new dose estimates for this fixed cohort. It is focused on the relationship of absorbed marrow dose of gamma rays and neutrons to the incidence of two types of leukemia in the fixed cohort of A-bomb survivors and their controls, the Life Span Study extended sample, in the period October 1950-December 1978. Three dose-response models have been fitted to the data on acute leukemia and chronic granulocytic leukemia. The relationship of the incidence of acute leukemia to gamma and neutron dose again suggests that the ''best'' fitting model involves a dependence on the square of the gamma dose and a linear dependence on neutrons. The estimated relative biological effectiveness (RBE) of neutrons in the induction of acute leukemia is approximately 44/√Dn(Dn = neutron dose) under this model. Based on the 95% confidence limits of the estimated RBE, the risk of this disease is estimated as 0.0026 - 0.0072 cases per million person-years per rem 2 of marrow dose. This analysis has failed, however, to produce a significant dose-response function for the incidence of chronic granulocytic leukemia in relation to the two kinds of radiation. (author)

  15. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Science.gov (United States)

    Hamilton, Gerhard

    2014-01-01

    Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4) inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC) cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS) and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose)-Polymerase 1 (PARP1) inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS. PMID:24608973

  16. Chromosome aberrations and oncogene alterations in atomic bomb related leukemias - different mechanisms from de novo leukemias

    International Nuclear Information System (INIS)

    Tanaka, K.; Tanaka, H.; Kamada, N.

    2003-01-01

    It is well known that leukemia occurred more frequently among atomic bomb survivors. In 132 atomic bomb related ( AB- related) leukemia patients during 1978-1999, 33 acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS) patients had their exposure doses of more than 1Gy (DS86). Chromosome aberrations of the 33 patients were compared with those from 588 de novo AML/MDS patients who had been bone before August 1945 as control. No FAB M3 patient was observed in the exposed group. Most AB-related AML preceded a long term of MDS stage. Twenty seven of the 33 patients showed complex types of chromosome aberrations with more than three chromosomes involving chromosomes 5,7 and 11. The number of chromosomes abnormality per cell in the AB-related leukemia was 3.78 while 0.92 in de novo leukemia. Only one of the 33 patients had normal karyotype, while 44.1% in de novo leukemia patients. Translocations of chromosome 11 at 11q13 to 11q23 and deletion/ loss of chromosome 20 were frequently observed in AB-related leukemia. No leukemia-type specific translocations such as t(8;21),t(15;17) and 11q23 were found in the 33 AB-related leukemia patients. Furthermore, molecular analyses using FISH and PCR-SSCP revealed the presence of breakpoint located outside of MLL gene in the patients with translocations at 11q22-23 and DNA base derangements of RUNT domain of AML1(CBF β 2)gene with AML/MDS patients without t(8;21) and with a high dose of exposure. These results suggest that AB-related leukemia derives from an exposed pluripotent hematopoietic stem cell which has been preserved for a long time in the bone marrow, expressing high genetic instability such as microsatellite instability. On the other hand, de novo leukemia develops from a committed hematopoietic stem cell and shows simple and leukemia-type specific chromosome aberrations. These findings are important for understanding mechanisms for radiation-induced leukemia

  17. Analysis of cytotoxic effects of chlorhexidine gluconate as antiseptic agent on human blood lymphocytes.

    Science.gov (United States)

    Salimi, Ahmad; Alami, Bahare; Pourahmad, Jalal

    2017-08-01

    The aim of this study was to assess the cytotoxicity of chlorhexidine gluconate (CHG) on human blood lymphocytes as a useful ex vivo model for accelerated human toxicity studies. Using biochemical and flow cytometry assessments, we demonstrated that addition of CHG at 1 μM concentration to human blood lymphocytes induced cytotoxicity following 6 h. The CHG-induced cytotoxicity on human blood lymphocytes was associated with intracellular reactive oxygen species generation, mitochondrial membrane potential collapse, lysosomal membrane injury, lipid peroxidation, and depletion of glutathione. According to our results, CHG triggers oxidative stress and organelles damages in lymphocytes which are important cells in defense against foreign agents. Finally our findings suggest that using of antioxidants and mitochondrial/lysosomal protective agents could be of benefit for the people in the exposure with CHG. © 2017 Wiley Periodicals, Inc.

  18. Transient virus expression during murine leukemia induction by x-irradiation

    International Nuclear Information System (INIS)

    Haas, M.

    1977-01-01

    Most x-irradiation-induced thymomas in C57BL/6 mice are virus-free when assayed by immunofluorescence for the gs antigen (gsa) of murine leukemia virus (MuLV). Virus was induced transiently in bone marrow cells and later appeared in thymus cells. Six to 7 weeks post irradiation, thymocytes and bone marrow cells were MuLV gsa-negative and remained negative for the lifetime of most animals, whether or not they contracted overt leukemia. During the period when MuLV gsa-positive bone marrow cells were found, XC-positive syncytia-producing bone marrow cells were also found. Virus information was expressed, therefore, for a limited duration, long before any signs of leukemia in the animal were evident. MuLV gsa-positive thymocytes taken from mice 4 weeks after x-irradiation were cocultivated with a series of indicator cells. B-tropic virus, in addition to a xenotropic virus, was isolated from these cells. Ecotropic virus was not found in normal mouse thymocytes, in irradiated thymocytes a few days after termination of the X-irradiation sequence, or in most primary thymomas. All thymocytes produced only xenotropic virus in the cocultivation assays. Expression of the ecotropic virus was, therefore, transient, as assayed by immunofluorescence, XC syncytia formation, and virus isolation from MuLV gsa-positive thymus cells

  19. Identification of stable cytotoxic factors in the gas phase extract of cigarette smoke and pharmacological characterization of their cytotoxicity.

    Science.gov (United States)

    Noya, Yoichi; Seki, Koh-Ichi; Asano, Hiroshi; Mai, Yosuke; Horinouchi, Takahiro; Higashi, Tsunehito; Terada, Koji; Hatate, Chizuru; Hoshi, Akimasa; Nepal, Prabha; Horiguchi, Mika; Kuge, Yuji; Miwa, Soichi

    2013-12-06

    Smoking is a major risk factor for atherosclerotic vascular diseases, but the mechanism for its genesis is unknown. We have recently shown that the gas phase of cigarette smoke (nicotine- and tar-free cigarette smoke extract; CSE) likely to reach the systemic circulation contains stable substances which cause cytotoxicity like plasma membrane damage and cell death in cultured cells, and also that the plasma membrane damage is caused through sequential activation of protein kinase C (PKC) and NADPH oxidase (NOX) and the resulting generation of reactive oxygen species (PKC/NOX-dependent mechanism), whereas cell death is caused through PKC/NOX-dependent and -independent mechanisms. To identify these stable substances, the CSE was prepared by passing the main-stream smoke of 10 cigarettes through a Cambridge glass fiber filter, trapping of the smoke in a vessel cooled at -80°C, and subsequent dissolution in 10ml of water. The CSE was fractionated into nine fractions using reversed-phase HPLC, and each fraction was screened for cytotoxicity in cultured cells, using propidium iodide uptake assay for cell membrane damage and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] reduction assay for cell viability. The cytotoxicity was positive in two of the nine fractions (Fr2 and Fr5). After extraction of the active fractions into dichloromethane, GC/MS analysis identified 2-cyclopenten-1-one (CPO) in Fr5 but none in Fr2. After derivatization of the active fractions with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride, GC/MS analysis identified acrolein, acetone and propionaldehyde in Fr2, and methyl vinyl ketone (MVK) in Fr5. After 4-h incubation, authentic acrolein and MVK induced concentration-dependent cytotoxicity with EC50 values of 75.9±8.2 and 47.0±8.0μM (mean±SEM; n=3), respectively, whereas acetone, propionaldehyde and CPO were without effect. However, after 24-h incubation, CPO induced concentration

  20. Childhood Leukemia and Primary Prevention

    Science.gov (United States)

    Whitehead, Todd P.; Metayer, Catherine; Wiemels, Joseph L.; Singer, Amanda W.; Miller, Mark D.

    2016-01-01

    Leukemia is the most common pediatric cancer, affecting 3,800 children per year in the United States. Its annual incidence has increased over the last decades, especially among Latinos. Although most children diagnosed with leukemia are now cured, many suffer long-term complications, and primary prevention efforts are urgently needed. The early onset of leukemia – usually before age five – and the presence at birth of “pre-leukemic” genetic signatures indicate that pre- and postnatal events are critical to the development of the disease. In contrast to most pediatric cancers, there is a growing body of literature – in the United States and internationally – that has implicated several environmental, infectious, and dietary risk factors in the etiology of childhood leukemia, mainly for acute lymphoblastic leukemia, the most common subtype. For example, exposures to pesticides, tobacco smoke, solvents, and traffic emissions have consistently demonstrated positive associations with the risk of developing childhood leukemia. In contrast, intake of vitamins and folate supplementation during the pre-conception period or pregnancy, breastfeeding, and exposure to routine childhood infections have been shown to reduce the risk of childhood leukemia. Some children may be especially vulnerable to these risk factors, as demonstrated by a disproportionate burden of childhood leukemia in the Latino population of California. The evidence supporting the associations between childhood leukemia and its risk factors – including pooled analyses from around the world and systematic reviews – is strong; however, the dissemination of this knowledge to clinicians has been limited. To protect children’s health, it is prudent to initiate programs designed to alter exposure to well-established leukemia risk factors rather than to suspend judgement until no uncertainty remains. Primary prevention programs for childhood leukemia would also result in the significant co

  1. Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells

    Directory of Open Access Journals (Sweden)

    Xu Yuanji

    2011-05-01

    Full Text Available Abstract Background Celastrol is an active ingredient of the traditional Chinese medicinal plant Tripterygium Wilfordii, which exhibits significant antitumor activity in different cancer models in vitro and in vivo; however, the lack of information on the target and mechanism of action of this compound have impeded its clinical application. In this study, we sought to determine the mode of action of celastrol by focusing on the processes that mediate its anticancer activity. Methods The downregulation of heat shock protein 90 (HSP90 client proteins, phosphorylation of c-Jun NH2-terminal kinase (JNK, and cleavage of PARP, caspase 9 and caspase 3 were detected by western blotting. The accumulation of reactive oxygen species (ROS was analyzed by flow cytometry and fluorescence microscopy. Cell cycle progression, mitochondrial membrane potential (MMP and apoptosis were determined by flow cytometry. Absorption spectroscopy was used to determine the activity of mitochondrial respiratory chain (MRC complexes. Results Celastrol induced ROS accumulation, G2-M phase blockage, apoptosis and necrosis in H1299 and HepG2 cells in a dose-dependent manner. N-acetylcysteine (NAC, an antioxidative agent, inhibited celastrol-induced ROS accumulation and cytotoxicity. JNK phosphorylation induced by celastrol was suppressed by NAC and JNK inhibitor SP600125 (SP. Moreover, SP significantly inhibited celastrol-induced loss of MMP, cleavage of PARP, caspase 9 and caspase 3, mitochondrial translocation of Bad, cytoplasmic release of cytochrome c, and cell death. However, SP did not inhibit celastrol-induced ROS accumulation. Celastrol downregulated HSP90 client proteins but did not disrupt the interaction between HSP90 and cdc37. NAC completely inhibited celastrol-induced decrease of HSP90 client proteins, catalase and thioredoxin. The activity of MRC complex I was completely inhibited in H1299 cells treated with 6 μM celastrol in the absence and presence of NAC

  2. Acute Lymphocytic Leukemia

    Science.gov (United States)

    ... that may increase the risk of acute lymphocytic leukemia include: Previous cancer treatment. Children and adults who've had certain types of chemotherapy and radiation therapy for other kinds of cancer may have an increased ... leukemia. Exposure to radiation. People exposed to very high ...

  3. Cooperation of imipramine blue and tyrosine kinase blockade demonstrates activity against chronic myeloid leukemia

    Science.gov (United States)

    Laidlaw, Kamilla M.E.; Berhan, Samuel; Liu, Suhu; Silvestri, Giovannino; Holyoake, Tessa L.; Frank, David A.; Aggarwal, Bharat; Bonner, Michael Y.; Perrotti, Danilo

    2016-01-01

    The use of tyrosine kinase inhibitors (TKI), including nilotinib, has revolutionized the treatment of chronic myeloid leukemia (CML). However current unmet clinical needs include combating activation of additional survival signaling pathways in persistent leukemia stem cells after long-term TKI therapy. A ubiquitous signaling alteration in cancer, including CML, is activation of reactive oxygen species (ROS) signaling, which may potentiate stem cell activity and mediate resistance to both conventional chemotherapy and targeted inhibitors. We have developed a novel nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, imipramine blue (IB) that targets ROS generation. ROS levels are known to be elevated in CML with respect to normal hematopoietic stem/progenitor cells and not corrected by TKI. We demonstrate that IB has additive benefit with nilotinib in inhibiting proliferation, viability, and clonogenic function of TKI-insensitive quiescent CD34+ CML chronic phase (CP) cells while normal CD34+ cells retained their clonogenic capacity in response to this combination therapy in vitro. Mechanistically, the pro-apoptotic activity of IB likely resides in part through its dual ability to block NF-κB and re-activate the tumor suppressor protein phosphatase 2A (PP2A). Combining BCR-ABL1 kinase inhibition with NADPH oxidase blockade may be beneficial in eradication of CML and worthy of further investigation. PMID:27438151

  4. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers.

    Science.gov (United States)

    Palma, Marzia; Gentilcore, Giusy; Heimersson, Kia; Mozaffari, Fariba; Näsman-Glaser, Barbro; Young, Emma; Rosenquist, Richard; Hansson, Lotta; Österborg, Anders; Mellstedt, Håkan

    2017-03-01

    Chronic lymphocytic leukemia is characterized by impaired immune functions largely due to profound T-cell defects. T-cell functions also depend on co-signaling receptors, inhibitory or stimulatory, known as immune checkpoints, including cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed death-1 (PD-1). Here we analyzed the T-cell phenotype focusing on immune checkpoints and activation markers in chronic lymphocytic leukemia patients (n=80) with different clinical characteristics and compared them to healthy controls. In general, patients had higher absolute numbers of CD3 + cells and the CD8 + subset was particularly expanded in previously treated patients. Progressive patients had higher numbers of CD4 + and CD8 + cells expressing PD-1 compared to healthy controls, which was more pronounced in previously treated patients ( P =0.0003 and P =0.001, respectively). A significant increase in antigen-experienced T cells was observed in patients within both the CD4 + and CD8 + subsets, with a significantly higher PD-1 expression. Higher numbers of CD4 + and CD8 + cells with intracellular CTLA-4 were observed in patients, as well as high numbers of proliferating (Ki67 + ) and activated (CD69 + ) CD4 + and CD8 + cells, more pronounced in patients with active disease. The numbers of Th1, Th2, Th17 and regulatory T cells were substantially increased in patients compared to controls ( P leukemia T cells display increased expression of immune checkpoints, abnormal subset distribution, and a higher proportion of proliferating cells compared to healthy T cells. Disease activity and previous treatment shape the T-cell profile of chronic lymphocytic leukemia patients in different ways. Copyright© Ferrata Storti Foundation.

  5. Autonomous growth potential of leukemia blast cells is associated with poor prognosis in human acute leukemias

    Directory of Open Access Journals (Sweden)

    Jakubowski Ann A

    2009-12-01

    Full Text Available Abstract We have described a severe combined immunodeficiency (SCID mouse model that permits the subcutaneous growth of primary human acute leukemia blast cells into a measurable subcutaneous nodule which may be followed by the development of disseminated disease. Utilizing the SCID mouse model, we examined the growth potential of leukemic blasts from 133 patients with acute leukemia, (67 acute lymphoblastic leukemia (ALL and 66 acute myeloid leukemia (AML in the animals after subcutaneous inoculation without conditioning treatment. The blasts displayed three distinct growth patterns: "aggressive", "indolent", or "no tumor growth". Out of 133 leukemias, 45 (33.8% displayed an aggressive growth pattern, 14 (10.5% displayed an indolent growth pattern and 74 (55.6% did not grow in SCID mice. The growth probability of leukemias from relapsed and/or refractory disease was nearly 3 fold higher than that from patients with newly diagnosed disease. Serial observations found that leukemic blasts from the same individual, which did not initiate tumor growth at initial presentation and/or at early relapse, may engraft and grow in the later stages of disease, suggesting that the ability of leukemia cells for engraftment and proliferation was gradually acquired following the process of leukemia progression. Nine autonomous growing leukemia cell lines were established in vitro. These displayed an aggressive proliferation pattern, suggesting a possible correlation between the capacity of human leukemia cells for autonomous proliferation in vitro and an aggressive growth potential in SCID mice. In addition, we demonstrated that patients whose leukemic blasts displayed an aggressive growth and dissemination pattern in SClD mice had a poor clinical outcome in patients with ALL as well as AML. Patients whose leukemic blasts grew indolently or whose leukemia cells failed to induce growth had a significantly longer DFS and more favorable clinical course.

  6. Esterase reactions in acute myelomonocytic leukemia.

    Science.gov (United States)

    Kass, L

    1977-05-01

    Specific and nonspecific esterase reactions of bone marrow cells from 14 patients with untreated acute myelomonocytic leukemia and six patients with acute histiomonocytic leukemia were examined. The technic for esterase determination permitted simultaneous visualization of both esterases on the same glass coverslip containing the marrow cells. In cases of acute histiomonocytic leukemia, monocytes, monocytoid hemohistioblasts and undifferentiated blasts stained intensely positive for nonspecific esterase, using alpha-naphthyl acetate as the substrate. No evidence of specific esterase activity using naphthol ASD-chloroacetate as the substrate and fast blue BBN as the dye coupler was apparent in these cells. In all of the cases of acute myelomonocytic leukemia, both specific and nonspecific esterases were visualized within monocytes, monocytoid cells, and granulocytic cells that had monocytoid-type nuclei. Nonspecific esterase activity was not observed in polymorphonuclear leukocytes in cases of myelomonocytic leukemia. The results support a current viewpoint that acute myelomonocytic leukemia may be a variant of acute myeloblastic leukemia, and that cytochemically, many of the leukemic cells in myelomonocytic leukemia share properties of both granulocytes and monocytes.

  7. Hepatitis B Virus Reactivation after Partial Hepatic Irradiation Alone: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Kyung [Dankook University College of Medicine, Cheonan (Korea, Republic of)

    2010-11-15

    Reactivation of the hepatitis B virus (HBV) is a well-recognized complication in patients with chronic HBV infection who receive cytotoxic or other immunosuppressive therapy. In cases of patients treated by radiotherapy however, only a few of such reports exist and most of these include the patients previously treated by chemotherapy or transarterial chemoembolization. The results of this study point to a case of a patient with reactivation of HBV after radiotherapy alone. This study shows the possibility of HBV reactivation by partial hepatic irradiation alone hence, special attention should be paid to patients with HBV disease.

  8. Hepatitis B Virus Reactivation after Partial Hepatic Irradiation Alone: A Case Report

    International Nuclear Information System (INIS)

    Kim, Bo Kyung

    2010-01-01

    Reactivation of the hepatitis B virus (HBV) is a well-recognized complication in patients with chronic HBV infection who receive cytotoxic or other immunosuppressive therapy. In cases of patients treated by radiotherapy however, only a few of such reports exist and most of these include the patients previously treated by chemotherapy or transarterial chemoembolization. The results of this study point to a case of a patient with reactivation of HBV after radiotherapy alone. This study shows the possibility of HBV reactivation by partial hepatic irradiation alone hence, special attention should be paid to patients with HBV disease.

  9. Radioinduced leukemia. An introduction to the study of experimental leukemia in mice

    International Nuclear Information System (INIS)

    Baudon, P.P.

    1974-01-01

    This thesis attempts to gain insight into any mechanisms involved in the onset of irradiation-induced leukemia in mice, then to show up the presence of a virus in the same animals. Concerning the mechanisms of radio-induced leukemias the pathogenic factors according to Kaplan are analysed: role of the thymus and cell mutation theory; lymphoid leukemias of extra-thymic origin; leukemogenesis co-factor; inhibiting action of the bone narrow. Evidence of the virus in mice was obtained by the use of electron microscopy, by inoculation. The contribution of experimental leukemia research is analysed, especially as it affects the therapeutic aspect. It is shown that in spite of setbacks in the most recent research on man, therapeutic trials on animals should be viewed from the angle of imminent human applications [fr

  10. Leukemia, multiple myeloma, and malignant lymphoma

    International Nuclear Information System (INIS)

    Ichimaru, M.; Ishimaru, T.; Ohkita, T.

    1986-01-01

    Excess risk of leukemia among atomic bomb (A-bomb) survivors increased with radiation dose in Hiroshima and Nagasaki. The incidence of all types of leukemia, except chronic lymphocytic leukemia, has increased among A-bomb survivors. However, chronic myelogenous leukemia (CML) is thought to be the most characteristic type of the A-bomb induced leukemias. The highest risk of leukemia among A-bomb survivors was recognized in 1951 and has not yet disappeared in survivors in Hiroshima. Excess risk of leukemia in the younger age at time of bomb (ATB) groups appeared early; however, in older age ATB groups it appeared much later especially among Hiroshima survivors. In both cities the effect of radiation exposure on the occurrence of CML was more clearly observable in the younger age ATB groups and occurred more frequently in Hiroshima. Leukemia among individuals exposed in utero and children of A-bomb survivors has not increased significantly. The relationship between radiation induced leukemia and chromosome abnormalities is discussed. Twenty years after the A-bomb, the risk of multiple myeloma (MM) increased among survivors aged 20-59 years ATB. Non-Hodgkin's malignant lymphoma also increased among A-bomb survivors and showed roughly the same tendency as MM

  11. Leukemia, multiple myeloma, and malignant lymphoma

    International Nuclear Information System (INIS)

    Ichimaru, Michito; Ohkita, Takeshi; Ishimaru, Toranosuke.

    1986-01-01

    Excess risk of leukemia among atomic bomb (A-bomb) survivors increased with radiation dose in Hiroshima and Nagasaki. The incidence of all types of leukemia, except chronic lymphocytic leukemia, has increased among A-bomb survivors. However, chronic myelogenous leukemia (CML) is thought to be the most characteristic type of the A-bomb induced leukemias. The highest risk of leukemia among A-bomb survivors was recognized in 1951 and has not yet disappeared in survivors in Hiroshima. Excess risk of leukemia in the younger age at time of bomb (ATB) groups appeared early; however, in the older age ATB groups it appeared much later especially among Hiroshima survivors. In both cities the effect of radiation exposure on the occurrence of CML was more clearly observable in the younger age ATB groups and occurred more frequently in Hiroshima. Leukemia among individuals exposed in utero and children of A-bomb survivors has not increased significantly. The relationship between radiation induced leukemia and chromosome abnormalities is discussed. Twenty years after the A-bomb, the risk of multiple myeloma (MM) increased among survivors aged 20 - 59 years ATB. Non-Hodgkin's malignant lymphoma also increased among A-bomb survivors and showed roughly the same tendency as MM. (author)

  12. Differential effects of IL-2 and IL-21 on expansion of the CD4+ CD25+ Foxp3+ T regulatory cells with redundant roles in natural killer cell mediated antibody dependent cellular cytotoxicity in chronic lymphocytic leukemia.

    Science.gov (United States)

    Gowda, Aruna; Ramanunni, Asha; Cheney, Carolyn; Rozewski, Darlene; Kindsvogel, Wayne; Lehman, Amy; Jarjoura, David; Caligiuri, Michael; Byrd, John C; Muthusamy, Natarajan

    2010-01-01

    CD4(+) CD25(+) regulatory T cells are expanded in solid and hematological malignancies including chronic lymphocytic leukemia (CLL). Several cytokines and co-stimulatory molecules are required for generation, survival and maintenance of their suppressive effect. We and others have shown direct cytotoxic effect of the novel common gamma chain cytokine interleukin (IL)-21 on primary B cells from CLL patients. Since members of this family of cytokines are known to exhibit their effects on diverse immune cells, we have examined the effects of IL-21 on CLL patient derived regulatory T cell (Treg) induction, expansion and the inhibitory effect on natural killer cells in vitro. We demonstrate here the expression of IL-21 receptor in CD4(+)CD25(High) regulatory cells from CLL patients. In contrast to IL-2, the IL-21 cytokine failed to mediate expansion of regulatory T cells or induced expression of Foxp3 in CD4(+)CD25(Intermediate) or CD4(+)CD25(Dim/-) T cells in whole blood derived from CLL patients. Interestingly, in contrast to their differential effects on expansion of the CD4(+)CD25(+)Foxp3(+)T cells, IL-2 and IL-21 exhibited a redundant role in Treg mediated suppression of NK cell mediated antibody dependent cytotoxicity function. Given the infusion related toxicities and pro-survival effect of IL-2 in CLL, these studies provide a rationale to explore IL-21 as an alternate gamma chain cytokine in CLL therapy.

  13. Acute Lymphoblastic Leukemia (ALL) (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Acute Lymphoblastic Leukemia (ALL) KidsHealth / For Parents / Acute Lymphoblastic Leukemia (ALL) What's in this article? About Leukemia Causes ...

  14. Anti-ATLA (antibody to adult T-cell leukemia-lymphoma virus-associated antigen)-negative adult T-cell leukemia-lymphoma.

    Science.gov (United States)

    Shimoyama, M; Minato, K; Tobinai, K; Nagai, M; Setoya, T; Watanabe, S; Hoshino, H; Miwa, M; Nagoshi, H; Ichiki, N; Fukushima, N; Sugiura, K; Funaki, N

    1983-01-01

    Five cases of adult T-cell leukemia-lymphoma (ATL) having typical clinicohematologic and morphologic features but negative for anti-ATLA [antibody to ATL virus (ATLV)-associated antigen (ATLA)] are presented. Some differences in immunologic, epidemiologic, and serologic data between anti-ATLA-positive and -negative ATLs are also described. Expression of ATLA in early primary cultured leukemic cells was found to be negative in three patients tested (Cases 1, 2 and 4), however, a long-term cultured cell line, ATL-6A, derived from peripheral blood leukemia cells from Case 1, was found to express ATLA. Mother of Case 1 and a daughter of Case 2 were anti-ATLA negative. These results indicate that ATLV was involved in certain anti-ATLA-negative ATL patients, at least in Case 1, and that the patient had no detectable immune response against ATLV and ATLA. However, in other cases in which no ATLA reactivity of serum and no ATLA expression in cultured leukemic cells were observed, another possibility such as activation of an unknown cellular oncogene specific for ATL without ATLV involvement may be considered. In order to prove these possibilities definitely, it is necessary to elucidate whether or not proviral DNA of ATLV is integrated into chromosomal DNA of ATL cells and to find a cellular oncogene specific for ATL in the future.

  15. Leukemia Mediated Endothelial Cell Activation Modulates Leukemia Cell Susceptibility to Chemotherapy through a Positive Feedback Loop Mechanism.

    Directory of Open Access Journals (Sweden)

    Bahareh Pezeshkian

    Full Text Available In acute myeloid leukemia (AML, the chances of achieving disease-free survival are low. Studies have demonstrated a supportive role of endothelial cells (ECs in normal hematopoiesis. Here we show that similar intercellular relationships exist in leukemia. We demonstrate that leukemia cells themselves initiate these interactions by directly modulating the behavior of resting ECs through the induction of EC activation. In this inflammatory state, activated ECs induce the adhesion of a sub-set of leukemia cells through the cell adhesion molecule E-selectin. These adherent leukemia cells are sequestered in a quiescent state and are unaffected by chemotherapy. The ability of adherent cells to later detach and again become proliferative following exposure to chemotherapy suggests a role of this process in relapse. Interestingly, differing leukemia subtypes modulate this process to varying degrees, which may explain the varied response of AML patients to chemotherapy and relapse rates. Finally, because leukemia cells themselves induce EC activation, we postulate a positive-feedback loop in leukemia that exists to support the growth and relapse of the disease. Together, the data defines a new mechanism describing how ECs and leukemia cells interact during leukemogenesis, which could be used to develop novel treatments for those with AML.

  16. How Is Chronic Myeloid Leukemia Diagnosed?

    Science.gov (United States)

    ... Myeloid Leukemia? More In Chronic Myeloid Leukemia About Chronic Myeloid Leukemia Causes, Risk Factors, and Prevention Early Detection, Diagnosis, and Staging Treatment After Treatment Back To Top Imagine a world ...

  17. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases.

    Science.gov (United States)

    Wang, Yating; Wei, Sixi; Wang, Jishi; Fang, Qin; Chai, Qixiang

    2014-07-01

    Phenethyl isothiocyanate (PEITC), a potential cancer chemopreventive constituent of cruciferous vegetables, including watercress, has been reported to inhibit cancer cell growth by arresting the cell cycle and inducing apoptosis in various human cancer cell models. However, the role of PEITC in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms have yet to be elucidated. In the present study, PEITC was found to induce cell death through the induction of reactive oxygen species (ROS) stress and oxidative damage. Heme oxygenase‑1 (HO‑1), which participates in the development of numerous tumors and the sensitivity of these tumors to chemotherapeutic drugs, plays a protective role by modulating oxidative injury. Therefore, the present study assessed the inhibitory effect of PEITC on K562 cells and whether HO‑1 facilitated cell apoptosis and ROS generation. PEITC was found to suppress cell growth and cause apoptosis by promoting Fas and Fas ligand expression, increasing ROS generation and by the successive release of cytochrome c as well as the activation of caspase‑9 and caspase‑3. PEITC was also combined with the HO‑1 inhibitor zinc protoporphyrin IX and the inducer hemin to assess whether HO‑1 determines cell survival and ROS generation. The results of the present study suggest that PEITC may be a potential anti‑tumor compound for CML therapy, and that HO‑1 has a critical function in PEITC‑induced apoptosis and ROS generation.

  18. Proteasome inhibitor carfilzomib interacts synergistically with histone deacetylase inhibitor vorinostat in Jurkat T-leukemia cells.

    Science.gov (United States)

    Gao, Minjie; Gao, Lu; Tao, Yi; Hou, Jun; Yang, Guang; Wu, Xiaosong; Xu, Hongwei; Tompkins, Van S; Han, Ying; Wu, Huiqun; Zhan, Fenghuang; Shi, Jumei

    2014-06-01

    In the present study, we investigated the interactions between proteasome inhibitor carfilzomib (CFZ) and histone deacetylase inhibitor vorinostat in Jurkat T-leukemia cells. Coexposure of cells to minimally lethal concentrations of CFZ with very low concentration of vorinostat resulted in synergistic antiproliferative effects and enhanced apoptosis in Jurkat T-leukemia cells, accompanied with the sharply increased reactive oxygen species (ROS), the striking decrease in the mitochondrial membrane potential (MMP), the increased release of cytochrome c, the enhanced activation of caspase-9 and -3, and the cleavage of PARP. The combined treatment of Jurkat cells pre-treated with ROS scavengers N-acetylcysteine (NAC) significantly blocked the loss of mitochondrial membrane potential, suggesting that ROS generation was a former event of the loss of mitochondrial membrane potential. Furthermore, NAC also resulted in a marked reduction in apoptotic cells, indicating a critical role for increased ROS generation by combined treatment. In addition, combined treatment arrested the cell cycle in G2-M phase. These results imply that CFZ interacted synergistically with vorinostat in Jurkat T-leukemia cells, which raised the possibility that the combination of carfilzomib with vorinostat may represent a novel strategy in treating T-cell Leukemia. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  19. Chimeras of receptors for gibbon ape leukemia virus/feline leukemia virus B and amphotropic murine leukemia virus reveal different modes of receptor recognition by retrovirus

    DEFF Research Database (Denmark)

    Pedersen, Lene; Johann, Stephen V; van Zeijl, Marja

    1995-01-01

    Glvr1 encodes the human receptor for gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B), while the related gene Glvr2 encodes the human receptor for amphotropic murine leukemia viruses (A-MLVs). The two proteins are 62% identical in their amino acid sequences...

  20. Apparent feline leukemia virus-induced chronic lymphocytic leukemia and response to treatment.

    Science.gov (United States)

    Kyle, Kristy N; Wright, Zachary

    2010-04-01

    Chylothorax secondary to chronic lymphocytic leukemia (CLL) was diagnosed in a feline leukemia virus (FeLV)-positive 8-year-old castrated male domestic shorthair feline. The leukemia resolved following therapy with chlorambucil, prednisone, cyclophosphamide, doxorubicin, and lomustine. To our knowledge, this is the first reported case of CLL in an FeLV-positive cat. Although a causative relationship cannot be proven, patients diagnosed with either disease may benefit from diagnostics to rule out the presence of the other concurrent condition. Copyright 2009 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  1. Association of HLA Class I and Class II genes with bcr-abl transcripts in leukemia patients with t(9;22 (q34;q11

    Directory of Open Access Journals (Sweden)

    Cano Pedro

    2004-06-01

    Full Text Available Abstract Background Based on the site of breakpoint in t(9;22 (q34;q11, bcr-abl fusion in leukemia patients is associated with different types of transcript proteins. In this study we have seen the association of HLA genes with different types of bcr-abl transcripts. The association could predict the bcr-abl peptide presentation by particular HLA molecules. Methods The study included a total of 189 patients of mixed ethnicity with chronic myelogenous leukemia and acute lymphocytic leukemia who were being considered for bone marrow transplantation. Typing of bcr-abl transcripts was done by reverse transcriptase PCR method. HLA typing was performed by molecular methods. The bcr-abl and HLA association was studied by calculating the relative risks and chi-square test. Results Significant negative associations (p Conclusions The negative associations of a particular bcr-abl transcript with specific HLA alleles suggests that these alleles play a critical role in presenting peptides derived from the chimeric proteins and eliciting a successful T-cell cytotoxic response. Knowledge of differential associations between HLA phenotypes and bcr-abl fusion transcript types would help in developing better strategies for immunization with the bcr-abl peptides against t(9;22 (q34;q11-positive leukemia.

  2. Targeting chemotherapy-resistant leukemia by combining DNT cellular therapy with conventional chemotherapy.

    Science.gov (United States)

    Chen, Branson; Lee, Jong Bok; Kang, Hyeonjeong; Minden, Mark D; Zhang, Li

    2018-04-24

    While conventional chemotherapy is effective at eliminating the bulk of leukemic cells, chemotherapy resistance in acute myeloid leukemia (AML) is a prevalent problem that hinders conventional therapies and contributes to disease relapse, and ultimately patient death. We have recently shown that allogeneic double negative T cells (DNTs) are able to target the majority of primary AML blasts in vitro and in patient-derived xenograft models. However, some primary AML blast samples are resistant to DNT cell therapy. Given the differences in the modes of action of DNTs and chemotherapy, we hypothesize that DNT therapy can be used in combination with conventional chemotherapy to further improve their anti-leukemic effects and to target chemotherapy-resistant disease. Drug titration assays and flow-based cytotoxicity assays using ex vivo expanded allogeneic DNTs were performed on multiple AML cell lines to identify therapy-resistance. Primary AML samples were also tested to validate our in vitro findings. Further, a xenograft model was employed to demonstrate the feasibility of combining conventional chemotherapy and adoptive DNT therapy to target therapy-resistant AML. Lastly, blocking assays with neutralizing antibodies were employed to determine the mechanism by which chemotherapy increases the susceptibility of AML to DNT-mediated cytotoxicity. Here, we demonstrate that KG1a, a stem-like AML cell line that is resistant to DNTs and chemotherapy, and chemotherapy-resistant primary AML samples both became more susceptible to DNT-mediated cytotoxicity in vitro following pre-treatment with daunorubicin. Moreover, chemotherapy treatment followed by adoptive DNT cell therapy significantly decreased bone marrow engraftment of KG1a in a xenograft model. Mechanistically, daunorubicin increased the expression of NKG2D and DNAM-1 ligands on KG1a; blocking of these pathways attenuated DNT-mediated cytotoxicity. Our results demonstrate the feasibility and benefit of using DNTs as

  3. Human Cytotoxic T Lymphocytes Form Dysfunctional Immune Synapses with B Cells Characterized by Non-Polarized Lytic Granule Release

    Directory of Open Access Journals (Sweden)

    Anna Kabanova

    2016-04-01

    Full Text Available Suppression of the cytotoxic T cell (CTL immune response has been proposed as one mechanism for immune evasion in cancer. In this study, we have explored the underlying basis for CTL suppression in the context of B cell malignancies. We document that human B cells have an intrinsic ability to resist killing by freshly isolated cytotoxic T cells (CTLs, but are susceptible to lysis by IL-2 activated CTL blasts and CTLs isolated from immunotherapy-treated patients with chronic lymphocytic leukemia (CLL. Impaired killing was associated with the formation of dysfunctional non-lytic immune synapses characterized by the presence of defective linker for activation of T cells (LAT signaling and non-polarized release of the lytic granules transported by ADP-ribosylation factor-like protein 8 (Arl8. We propose that non-lytic degranulation of CTLs are a key regulatory mechanism of evasion through which B cells may interfere with the formation of functional immune synapses by CTLs.

  4. Taraxinic acid, a hydrolysate of sesquiterpene lactone glycoside from the Taraxacum coreanum NAKAI, induces the differentiation of human acute promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Choi, Jung-Hye; Shin, Kyung-Min; Kim, Na-Young; Hong, Jung-Pyo; Lee, Yong Sup; Kim, Hyoung Ja; Park, Hee-Juhn; Lee, Kyung-Tae

    2002-11-01

    The present work was performed to elucidate the active moiety of a sesquiterpene lactone, taraxinic acid-1'-O-beta-D-glucopyranoside (1). from Taraxacum coreanum NAKAI on the cytotoxicity of various cancer cells. Based on enzymatic hydrolysis and MTT assay, the active moiety should be attributed to the aglycone taraxinic acid (1a). rather than the glycoside (1). Taraxinic acid exhibited potent antiproliferative activity against human leukemia-derived HL-60. In addition, this compound was found to be a potent inducer of HL-60 cell differentiation as assessed by a nitroblue tetrazolium reduction test, esterase activity assay, phagocytic activity assay, morphology change, and expression of CD 14 and CD 66 b surface antigens. These results suggest that taraxinic acid induces the differentiation of human leukemia cells to monocyte/macrophage lineage. Moreover, the expression level of c-myc was down-regulated during taraxinic acid-dependent HL-60 cell differentiation, whereas p21(CIP1) and p27(KIP1) were up-regulated. Taken together, our results suggest that taraxinic acid may have potential as a therapeutic agent in human leukemia.

  5. New Cinchona Oximes Evaluated as Reactivators of Acetylcholinesterase and Butyrylcholinesterase Inhibited by Organophosphorus Compounds

    Directory of Open Access Journals (Sweden)

    Maja Katalinić

    2017-07-01

    Full Text Available For the last six decades, researchers have been focused on finding efficient reactivators of organophosphorus compound (OP-inhibited acetylcholinesterase (AChE and butyrylcholinesterase (BChE. In this study, we have focused our research on a new oxime scaffold based on the Cinchona structure since it was proven to fit the cholinesterases active site and reversibly inhibit their activity. Three Cinchona oximes (C1, C2, and C3, derivatives of the 9-oxocinchonidine, were synthesized and investigated in reactivation of various OP-inhibited AChE and BChE. As the results showed, the tested oximes were more efficient in the reactivation of BChE and they reactivated enzyme activity to up to 70% with reactivation rates similar to known pyridinium oximes used as antidotes in medical practice today. Furthermore, the oximes showed selectivity towards binding to the BChE active site and the determined enzyme-oxime dissociation constants supported work on the future development of inhibitors in other targeted studies (e.g., in treatment of neurodegenerative disease. Also, we monitored the cytotoxic effect of Cinchona oximes on two cell lines Hep G2 and SH-SY5Y to determine the possible limits for in vivo application. The cytotoxicity results support future studies of these compounds as long as their biological activity is targeted in the lower micromolar range.

  6. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    Science.gov (United States)

    2017-03-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  7. Cytotoxic and genotoxic effects caused by 153 Sm-EDTMP, combined with BrdU a thymidine analog

    International Nuclear Information System (INIS)

    Morales A, E.; Ferro F, G.; Morales R, P.

    2006-01-01

    The ablation of the bone marrow previous to the transplant by means of radiation and chemical antineoplastics its affect indiscriminately to the healthy tissues and in particular those that are in proliferation. The objective of this work is to determine the effect of the incorporation from the BrdU to the DNA on the genotoxicity and cytotoxicity of the cells of the bone marrow caused by the radiopharmaceutical 153 Sm-EDTMP. The genotoxicity was determined by the rate of erythrocytes polychromatic micro nucleates (EPC-MN) and the cytotoxicity by the frequency of EPC. Both parameters determined in peripheral blood after the BrdU administration and 153 Sm-EDTMP. The combination of the BrdU and r1 radiopharmaceutical produced a bigger cytotoxicity that the radiation and the BrdU alone; on the other hand it produced a reduction of the EPC-MN produced by the radiation, suggesting that the cytotoxicity didn't allow the expression of the genotoxicity. (Author)

  8. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.

    Science.gov (United States)

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-02-10

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  9. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Marija Matulionyte

    2017-02-01

    Full Text Available In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS of bovine serum albumin-encapsulated (BSA-Au NCs and 2-(N-morpholino ethanesulfonic acid (MEScapped photoluminescent gold nanoclusters (Au-MES NCs were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  10. Analysis of tanshinone IIA induced cellular apoptosis in leukemia cells by genome-wide expression profiling

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-01-01

    Full Text Available Abstract Background Tanshinone IIA (Tan IIA is a diterpene quinone extracted from the root of Salvia miltiorrhiza, a Chinese traditional herb. Although previous studies have reported the anti-tumor effects of Tan IIA on various human cancer cells, the underlying mechanisms are not clear. The current study was undertaken to investigate the molecular mechanisms of Tan IIA's apoptotic effects on leukemia cells in vitro. Methods The cytotoxicity of Tan IIA on different types of leukemia cell lines was evaluated by the 3-[4,5-dimethylthiazol-2,5]-diphenyl tetrazolium bromide (MTT assay on cells treated without or with Tan IIA at different concentrations for different time periods. Cellular apoptosis progression with and without Tan IIA treatment was analyzed by Annexin V and Caspase 3 assays. Gene expression profiling was used to identify the genes regulated after Tan IIA treatment and those differentially expressed among the five cell lines. Confirmation of these expression regulations was carried out using real-time quantitative PCR and ELISA. The antagonizing effect of a PXR inhibitor L-SFN on Tan IIA treatment was tested using Colony Forming Unit Assay. Results Our results revealed that Tan IIA had different cytotoxic activities on five types of leukemia cells, with the highest toxicity on U-937 cells. Tan IIA inhibited the growth of U-937 cells in a time- and dose-dependent manner. Annexin V and Caspase-3 assays showed that Tan IIA induced apoptosis in U-937 cells. Using gene expression profiling, 366 genes were found to be significantly regulated after Tan IIA treatment and differentially expressed among the five cell lines. Among these genes, CCL2 was highly expressed in untreated U-937 cells and down-regulated significantly after Tan IIA treatment in a dose-dependent manner. RT-qPCR analyses validated the expression regulation of 80% of genes. Addition of L- sulforaphane (L-SFN, an inhibitor of Pregnane × receptor (PXR significantly

  11. Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies.

    Science.gov (United States)

    Zablotskii, Vitalii; Syrovets, Tatiana; Schmidt, Zoe W; Dejneka, Alexandr; Simmet, Thomas

    2014-03-01

    The influence of spatially modulated high gradient magnetic fields on cellular functions of human THP-1 leukemia cells is studied. We demonstrate that arrays of high-gradient micrometer-sized magnets induce i) cell swelling, ii) prolonged increased ROS production, and iii) inhibit cell proliferation, and iv) elicit apoptosis of THP-1 monocytic leukemia cells in the absence of chemical or biological agents. Mathematical modeling indicates that mechanical stress exerted on the cells by high magnetic gradient forces is responsible for triggering cell swelling and formation of reactive oxygen species followed by apoptosis. We discuss physical aspects of controlling cell functions by focused magnetic gradient forces, i.e. by a noninvasive and nondestructive physical approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. [Clinical and cytological differences in adult acute lymphatic and acute undifferentiated leukemia].

    Science.gov (United States)

    Abbrederis, K; Schmalzl, F

    1976-01-01

    The usefulness for clinical purposes of the distinction of acute undifferentiated (AUL) and acute lymphocytic leukemia (ALL) is suggested by the following observations: 1. Maturation from AUL to ALL has not been observed. Transformation of ALL to AUL has been reported i.e. less of cytoplasmic polysaccharides; however this seems rather to be the effect of cytotoxic therapy and not a real change of the cytological type. 2. Significant differences among ALL and AUL can be noted as far as the therapeutic response is concerned: All of the 9 patients with ALL but only 2 out of 9 patients with AUL went into remission. The mean survival of the cases with ALL amounts to 34, that of AUL only to 4 months. Out of the patients with ALL 4 patients are still alive in persistant first remission after 77, 57, 36 and 28 months. 3. ALL occurs most frequently in young adults (mean age of 21 patients: 31.7 years): AUL is more frequent in elderly patients (Mean age of 18 patients: 57.6 years). 4. In our material ALL did never occur consequent to a typical preluekemic stage, which was followed either by myeloblastic, monocytic, erythroleukemic or undifferentiated leukemias.

  13. Chemical exposure and leukemia clusters

    International Nuclear Information System (INIS)

    Cartwright, R.A.

    1992-01-01

    This paper draws attention to the heterogeneous distribution of leukemia in childhood and in adults. The topic of cluster reports and generalized clustering is addressed. These issues are applied to what is known of the risk factor for both adult and childhood leukemia. Finally, the significance of parental occupational exposure and childhood leukemia is covered. (author). 23 refs

  14. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Gerhard Hamilton

    2014-03-01

    Full Text Available Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4 inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose-Polymerase 1 (PARP1 inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS.

  15. Membrane and Nuclear Permeabilization by Polymeric pDNA Vehicles: Efficient Method for Gene Delivery or Mechanism of Cytotoxicity?

    Science.gov (United States)

    Grandinetti, Giovanna; Smith, Adam E.; Reineke, Theresa M.

    2012-01-01

    The aim of this study is to compare the cytotoxicity mechanisms of linear PEI to two analogous polymers synthesized by our group: a hydroxyl-containing poly(L-tartaramidoamine) (T4) and a version containing an alkyl chain spacer poly(adipamidopentaethylenetetramine) (A4) by studying the cellular responses to polymer transfection. We have also synthesized analogues of T4 with different molecular weights (degrees of polymerization of 6, 12, and 43) to examine the role of molecular weight on the cytotoxicity mechanisms. Several mechanisms of polymer-induced cytotoxicity are investigated, including plasma membrane permeabilization, the formation of potentially harmful polymer degradation products during transfection including reactive oxygen species, and nuclear membrane permeabilization. We hypothesized that since cationic polymers are capable of disrupting the plasma membrane, they may also be capable of disrupting the nuclear envelope, which could be a potential mechanism of how the pDNA is delivered into the nucleus (other than nuclear envelope breakdown during mitosis). Using flow cytometry and confocal microscopy, we show that the polycations with the highest amount of protein expression and toxicity, PEI and T443, are capable of inducing nuclear membrane permeability. This finding is important for the field of nucleic acid delivery in that not only could direct nucleus permeabilization be a mechanism for pDNA nuclear import but also a potential mechanism of cytotoxicity and cell death. We also show that the production of reactive oxygen species is not a main mechanism of cytotoxicity, and that the presence or absence of hydroxyl groups as well as polymer length plays a role in polyplex size and charge in addition to protein expression efficiency and toxicity. PMID:22175236

  16. Reactive melt infiltration of copper in Al–Cr preforms produced through combustion synthesis

    International Nuclear Information System (INIS)

    Naplocha, Krzysztof; Granat, Kazimierz; Kaczmar, Jacek

    2014-01-01

    Highlights: • Determination of microstructure and phase transformation during combustion synthesis and reactive infiltration. • Squeeze casting of Cu inducing reactive infiltration of Al–Cr intermetallic porous preform. • Fabrication of unique composite material resisted to high temperature oxidation. - Abstract: Combustion synthesis of Al–Cr preforms used for infiltration and reinforcing of composite materials was developed. Compacts of powdered Al and Cr with stoichiometric ratio Al/Cr equal to 2/1 were synthesized in a microwave reactor furnished with a pyrometer for controlling phase transformations. Due to low enthalpy of the reaction, green compacts were preheated and ignition occurred together with partial melting of Al at the interface with Cr particles. The synthesis proceeded by peritectic transformations L + Al 7 Cr → L + Al 11 Cr 2 → L + Al 4 Cr, reaching maximum temperature of ca. 1000 °C. Porous structures including residual unprocessed Cr particles were soaked to homogenize them and to transform the phases into the stable intermetallic compound Al 9 Cr 4 . Reactive infiltration of the preforms with molten Cu proceeds along with interfacial diffusion of Al that, released from a preform, infiltrates into the matrix changing its composition to Cu 9 Al 4 (Cr). At the same time, the preform is decomposed and converted into a mixture of globular precipitates of Cr 52 Al 35 Cu 13 embedded in the Cu 47 Al 41 Cr 12 phase. The produced composite materials exhibit significant hardness and oxidation resistance at elevated temperatures. The protective layer is composed of oxides Al 2 O 3 and (AlCu) 2 O 3 created at parabolic constant oxidation rate (k p ) equal to 1.9 × 10 −6 g 2 m −4 s −1

  17. Sequence analysis of Leukemia DNA

    Science.gov (United States)

    Nacong, Nasria; Lusiyanti, Desy; Irawan, Muhammad. Isa

    2018-03-01

    Cancer is a very deadly disease, one of which is leukemia disease or better known as blood cancer. The cancer cell can be detected by taking DNA in laboratory test. This study focused on local alignment of leukemia and non leukemia data resulting from NCBI in the form of DNA sequences by using Smith-Waterman algorithm. SmithWaterman algorithm was invented by TF Smith and MS Waterman in 1981. These algorithms try to find as much as possible similarity of a pair of sequences, by giving a negative value to the unequal base pair (mismatch), and positive values on the same base pair (match). So that will obtain the maximum positive value as the end of the alignment, and the minimum value as the initial alignment. This study will use sequences of leukemia and 3 sequences of non leukemia.

  18. Leukemia in Nagasaki atomic bomb survivors

    Energy Technology Data Exchange (ETDEWEB)

    Brill, A B; Heyssel, R; Itoga, T; Tomonaga, M

    1960-08-01

    In the 13.5 years following the detonation of the atomic bomb, 95 cases of leukemia have been observed in the Nagasaki survivors. This increase is highly significant statistically. The increased leukemia risk apparently started 1.5 to 2.5 years following radiation exposure, and has lasted through 1958. Acute leukemias of all types and chronic granulocytic leukemia are increased, (with the possible exception of the Schilling type of acute monocytic leukemia). Males in general, and individuals in the younger ages (0 to 09), are apparently most sensitive. The risk of radiation induction of leukemia is related to the size of the dose. The shape of the curve does not differ greatly from a linear model, but is consistent with a variety of hypotheses. The data in the low dose region are too limited to be of significance in evaluating the risk of low doses of radiation. The data suggest that high radiation doses may be associated with a decrease in the latent period to leukemia induction. 43 references, 2 figures, 31 tables.

  19. The Danish National Acute Leukemia Registry

    DEFF Research Database (Denmark)

    Østgård, Lene Sofie Granfeldt; Nørgaard, Jan Maxwell; Raaschou-Jensen, Klas Kræsten

    2016-01-01

    AIM OF DATABASE: The main aim of the Danish National Acute Leukemia Registry (DNLR) was to obtain information about the epidemiology of the hematologic cancers acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and myelodysplastic syndrome (MDS). STUDY POPULATION: The registry...... was established in January 2000 by the Danish Acute Leukemia Group and has been expanded over the years. It includes adult AML patients diagnosed in Denmark since 2000, ALL patients diagnosed since 2005, and MDS patients diagnosed since 2010. The coverage of leukemia patients exceeds 99%, and the coverage of MDS...... years. To ensure this high coverage, completeness, and quality of data, linkage to the Danish Civil Registration System and the Danish National Registry of Patients, and several programmed data entry checks are used. CONCLUSION: The completeness and positive predictive values of the leukemia data have...

  20. Vorinostat and Decitabine in Treating Patients With Advanced Solid Tumors or Relapsed or Refractory Non-Hodgkin's Lymphoma, Acute Myeloid Leukemia, Acute Lymphocytic Leukemia, or Chronic Myelogenous Leukemia

    Science.gov (United States)

    2014-08-26

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Secondary Acute Myeloid Leukemia; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma

  1. Recombinant L-Asparaginase from Zymomonas mobilis: A Potential New Antileukemic Agent Produced in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Karen Einsfeldt

    Full Text Available L-asparaginase is an enzyme used as a chemotherapeutic agent, mainly for treating acute lymphoblastic leukemia. In this study, the gene of L-asparaginase from Zymomonas mobilis was cloned in pET vectors, fused to a histidine tag, and had its codons optimized. The L-asparaginase was expressed extracellularly and intracellularly (cytoplasmically in Escherichia coli in far larger quantities than obtained from the microorganism of origin, and sufficient for initial cytotoxicity tests on leukemic cells. The in silico analysis of the protein from Z. mobilis indicated the presence of a signal peptide in the sequence, as well as high identity to other sequences of L-asparaginases with antileukemic activity. The protein was expressed in a bioreactor with a complex culture medium, yielding 0.13 IU/mL extracellular L-asparaginase and 3.6 IU/mL intracellular L-asparaginase after 4 h of induction with IPTG. The cytotoxicity results suggest that recombinant L-asparaginase from Z. mobilis expressed extracellularly in E.coli has a cytotoxic and cytostatic effect on leukemic cells.

  2. Elevation of blood levels of zinc protoporphyrin by radiomimetic drugs and friend leukemia virus

    International Nuclear Information System (INIS)

    Walden, T.L.; Al-Ansari, H.M.; Farkas, W.R.; Tennessee Univ., Knoxville; Tennessee Univ., Knoxville

    1987-01-01

    Sublethal doses of whole-body irradiation induced the elevation of zinc protoporphyrin (ZPP). Experiments were conducted to determine if recovery from radiomimetic drugs also resulted in elevation of ZPP. Daily injections with hydroxyurea and other cytotoxic drugs for 10 days caused ZPP elevation and a dose of radiation too low to cause ZPP elevation by itself caused ZPP elevation when hydroxyurea was administered prior to irradiation. Friend leukemia virus also brought about an elevation of ZPP. However, not all factors that increased erythropoiesis brought about ZPP elevation. The elevated erythropoiesis in response to hypoxia and the enhanced erythropoiesis that followed administration of folic acid to folic acid-deficient mice was not accompanied by ZPP elevation. (orig.)

  3. Elevation of blood levels of zinc protoporphyrin by radiomimetic drugs and friend leukemia virus

    Energy Technology Data Exchange (ETDEWEB)

    Walden, T.L.; Al-Ansari, H.M.; Farkas, W.R.

    1987-01-01

    Sublethal doses of whole-body irradiation induced the elevation of zinc protoporphyrin (ZPP). Experiments were conducted to determine if recovery from radiomimetic drugs also resulted in elevation of ZPP. Daily injections with hydroxyurea and other cytotoxic drugs for 10 days caused ZPP elevation and a dose of radiation too low to cause ZPP elevation by itself caused ZPP elevation when hydroxyurea was administered prior to irradiation. Friend leukemia virus also brought about an elevation of ZPP. However, not all factors that increased erythropoiesis brought about ZPP elevation. The elevated erythropoiesis in response to hypoxia and the enhanced erythropoiesis that followed administration of folic acid to folic acid-deficient mice was not accompanied by ZPP elevation.

  4. Chemical Composition, Larvicidal and Cytotoxic Activities of the Essential Oils from two Bauhinia Species

    Directory of Open Access Journals (Sweden)

    Leôncio M. de Sousa

    2016-05-01

    Full Text Available The essential oils obtained by hydrodistilation from leaves of Bauhinia pulchella Benth. and Bauhinia ungulata L. were analysed by GC-FID and GC-MS. The major components of B. pulchella essential oil were identified as a -pinene (23.9%, caryophyllene oxide (22.4% and b -pinene (12.2%, while in the B. ungulata essential oil were caryophyllene oxide (23.0%, (E-caryophyllene (14.5% and a -copaene (7.2%. The essential oils were subsequently evaluated for their larvicidal and cytotoxic activities. Larval bioassay against Aedes aegypti of B. pulchella and B. ungulata essential oils showed LC 50 values of 105.9 ± 1.5 and 75.1 ± 2.8 m g/mL, respectively. The essential oils were evaluated against four human cancer cells lines: HL-60 (pro-myelocytic leukemia, MCF-7 (breast adenocarcinoma, NCI-H292 (lung carcinoma and HEP-2 ( cervical adenocarcinoma, showing IC 50 values in the range of 9.9 to 53.1 m g/mL. This is the first report on chemical composition of essential from leaves of B. pulchella and on larvicidal and cytotoxic activities of the essential oils.

  5. Improvement of Leukemia diagnose with molecular techniques; Mejoran diagnostico de leucemias con tecnicas moleculares

    Energy Technology Data Exchange (ETDEWEB)

    Campos Rudin, M E

    1997-07-01

    The objective of this study was to contribute with new techniques to the clinical diagnosis and to the monitoring of mycloid chronic leukemias in Costa Rica. The same one achieved to determine that is viable to apply radioactive and non reactive methodologies, for the molecular detection of the Philadelphia chromosome.It also found that the application of techniques of cellular biology, helps to classify better the mycloide leukemias and the chronic mycloproliferatives and miclodisplaced disorders. (S. Grainger) [Spanish] El objetivode este estudio fue el de aportar nuevas tecnicas al diagnostico clinico y monitoreo de las leucemias micloides cronicas en Costa Rica. El mismo logro determinar que es viable aplicar metodologias radioactivas y no radioactivas, para la deteccion molecular del cromosoma Filadelfia. Tambien encontro que la aplicacion de tecnicas de biologia celular, ayudan a clasificar mejor las leucemias mieloides y los desordenes cronicos micloproliferativos y myclodisplacicos. (S. Grainger)

  6. Down syndrome preleukemia and leukemia.

    Science.gov (United States)

    Maloney, Kelly W; Taub, Jeffrey W; Ravindranath, Yaddanapudi; Roberts, Irene; Vyas, Paresh

    2015-02-01

    Children with Down syndrome (DS) and acute leukemias acute have unique biological, cytogenetic, and intrinsic factors that affect their treatment and outcome. Myeloid leukemia of Down syndrome (ML-DS) is associated with high event-free survival (EFS) rates and frequently preceded by a preleukemia condition, the transient abnormal hematopoiesis (TAM) present at birth. For acute lymphoblastic leukemia (ALL), their EFS and overall survival are poorer than non-DS ALL, it is important to enroll them on therapeutic trials, including relapse trials; investigate new agents that could potentially improve their leukemia-free survival; and strive to maximize the supportive care these patients need. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Base excision repair deficiency in acute myeloid leukemia

    International Nuclear Information System (INIS)

    Scheer, N.M.

    2009-01-01

    Acute myeloid leukemia (AML) is an aggressive malignancy of the hematopoietic system arising from a transformed myeloid progenitor cell. Genomic instability is the hallmark of AML and characterized by a variety of cytogenetic and molecular abnormalities. Whereas 10% to 20% of AML cases reflect long-term sequelae of cytotoxic therapies for a primary disorder, the etiology for the majority of AMLs remains unknown. The integrity of DNA is under continuous attack from a variety of exogenous and endogenous DNA damaging agents. The majority of DNA damage is caused by constantly generated reactive oxygen species (ROS) resulting from metabolic by-products. Base excision repair (BER) is the major DNA repair mechanism dealing with DNA base lesions that are induced by oxidative stress or alkylation. In this study we investigated the BER in AML. Primary AML patients samples as well as AML cell lines were treated with hydrogen peroxide (H 2 O 2 ). DNA damage induction and repair was monitored by the alkaline comet assay. In 15/30 leukemic samples from patients with therapy-related AML, in 13/35 with de novo AML and 14/26 with AML following a myelodysplastic syndrome, significantly reduced single strand breaks (SSBs) representing BER intermediates were found. In contrast, normal SSB formation was seen in mononuclear cells of 30 healthy individuals and 30/31 purified hematopoietic stem- and progenitor cell preparations obtained from umbilical cord blood. Additionally, in 5/10 analyzed AML cell lines, no SSBs were formed upon H 2 O 2 treatment, either. Differences in intracellular ROS concentrations or apoptosis could be excluded as reason for this phenomenon. A significantly diminished cleavage capacity for 7,8-dihydro-8-oxoguanine as well as for Furan was observed in cell lines that exhibited no SSB formation. These data demonstrate for the first time that initial steps of BER are impaired in a proportion of AML cell lines and leukemic cells from patients with different forms of

  8. Downregulation of IL-17-producing T cells is associated with regulatory T cell expansion and disease progression in chronic lymphocytic leukemia.

    Science.gov (United States)

    Jadidi-Niaragh, Farhad; Ghalamfarsa, Ghasem; Memarian, Ali; Asgarian-Omran, Hossein; Razavi, Seyed Mohsen; Sarrafnejad, Abdolfattah; Shokri, Fazel

    2013-04-01

    Little is known about the immunobiology of interleukin-17 (IL-17)-producing T cells and regulatory T cells (Treg) in chronic lymphocytic leukemia (CLL). In this study, the frequencies of Th17, Tc17, and CD39(+) Treg cells were enumerated in peripheral T cells isolated from 40 CLL patients and 15 normal subjects by flow cytometry. Our results showed a lower frequency of Th17 and Tc17 cells in progressive (0.99 ± 0.12 % of total CD3(+)CD4(+) cells; 0.44 ± 0.09 % of total CD8(+) cells) compared to indolent patients (1.57 ± 0.24 %, p = 0.042; 0.82 ± 0.2 %, p = 0.09) and normal subjects (1.78 ± 0.2 %, p = 0.003; 0.71 ± 0.09 %, p = 0.04). Decrease in IL-17-producing T cells was associated with CD39(+) Treg cells expansion. Variation of IL-17-producing cells and Treg cells in indolent and progressive patients was neither associated to the expression levels of Th1- and Th2-specific transcription factors T-bet and GATA-3 nor to the frequencies of IFN-γ and IL-4-producing CD4(+) T cells in a selected number of samples. Additionally, suppressive potential of CD4(+) Treg was similar in CLL patients and normal subjects. Our data indicate that progression of CLL is associated with downregulation of IL-17-producing T cells and expansion of Treg cells, implying contribution of these subsets of T cells in the progression of CLL.

  9. Chronic lymphocytic leukemia (CLL)

    Science.gov (United States)

    ... is used for painful and enlarged lymph nodes. Blood transfusions or platelet transfusions may be required if blood ... unexplained fatigue, bruising, excessive sweating, or weight loss. Alternative ... Leukemia - chronic lymphocytic (CLL); Blood cancer - chronic lymphocytic leukemia; Bone marrow cancer - chronic ...

  10. Noninfectious virus-like particles produced by Moloney murine leukemia virus-based retrovirus packaging cells deficient in viral envelope become infectious in the presence of lipofection reagents

    Science.gov (United States)

    Sharma, Sanjai; Murai, Fukashi; Miyanohara, Atsushi; Friedmann, Theodore

    1997-01-01

    Retrovirus packaging cell lines expressing the Moloney murine leukemia virus gag and pol genes but lacking virus envelope genes produce virus-like particles constitutively, whether or not they express a transcript from an integrated retroviral provirus. In the absence of a proviral transcript, the assembled particles contain processed gag and reverse transcriptase, and particles made by cells expressing an integrated lacZ provirus also contain viral RNA. The virus-like particles from both cell types are enveloped and are secreted/budded into the extracellular space but are noninfectious. Their physicochemical properties are similar to those of mature retroviral particles. The noninfectious gag pol RNA particles can readily be made infectious by the addition of lipofection reagents to produce preparations with titers of up to 105 colony-forming units per ml. PMID:9380714

  11. Noninfectious virus-like particles produced by Moloney murine leukemia virus-based retrovirus packaging cells deficient in viral envelope become infectious in the presence of lipofection reagents.

    Science.gov (United States)

    Sharma, S; Murai, F; Miyanohara, A; Friedmann, T

    1997-09-30

    Retrovirus packaging cell lines expressing the Moloney murine leukemia virus gag and pol genes but lacking virus envelope genes produce virus-like particles constitutively, whether or not they express a transcript from an integrated retroviral provirus. In the absence of a proviral transcript, the assembled particles contain processed gag and reverse transcriptase, and particles made by cells expressing an integrated lacZ provirus also contain viral RNA. The virus-like particles from both cell types are enveloped and are secreted/budded into the extracellular space but are noninfectious. Their physicochemical properties are similar to those of mature retroviral particles. The noninfectious gag pol RNA particles can readily be made infectious by the addition of lipofection reagents to produce preparations with titers of up to 10(5) colony-forming units per ml.

  12. Leukemia in Hiroshima atomic bomb survivors

    Energy Technology Data Exchange (ETDEWEB)

    Heyssel, R; Brill, A B; Woodbury, L A; Nishimura, Edwin T; Ghose, Tarunendu; Hoshino, Takashi; Yamasaki, Mitsuru

    1959-03-01

    This report is intended to provide the basic data pertinent to the leukemia experience observed in the survivors of the Hiroshima atomic explosion. Many of the conclusions in this report are tentative. The one clear fact to emerge is that radiation increases the occurrence rate of leukemia and that the magnitude of increase is dependent on dose received. Additional observations can be made, which, while not definitive in themselves, seem to complement each other, and are corroborated by other experiences in radiation biology. From the data a linear relationship between dose and incidence of leukemia is found. The shape of the relation in the lower dose range is not known with certainty. An approximate minimum time for the appearance of leukemia following radiation is 3 years or less. The data suggest that the time of maximum risk of leukemia may be dependent on the dose of radiation received. In this group the mean latent period is found to lie in the interval between 4 and 8 years following exposure. The length of time during which the increased incidence of leukemia persists is not known. The incidence of the acute leukemias and of chronic granulocytic leukemia is increased in the exposed survivors. The chronic granulocytic variety is disproportionately increased in Japanese survivors of the atomic bomb. No effect of radiation on monocytic or chronic lymphatic leukemia incidence is noted. Aplastic anemia, polycythemia vera, and myelofibrosis have been investigated. Myelofibrosis is the only one of this group of diseases in which a suggestive relation to radiation exposure is apparent. The natural history of leukemia following radiation does not seem to differ from that of the spontaneously occurring variety. 17 references, 5 figures, 38 tables.

  13. Analysis of peroxidase-negative acute unclassifiable leukemias by monoclonal antibodies. 1. Acute myelogenous leukemia and acute myelomonocytic leukemia.

    Science.gov (United States)

    Imamura, N; Tanaka, R; Kajihara, H; Kuramoto, A

    1988-11-01

    In this study, pretreatment peripheral and/or bone marrow blasts from 12 patients with acute unclassifiable leukemia (AUL) expressing the myeloid-related cell-surface antigen (CD 11) were isolated for further analysis. Despite a lack of myeloperoxidase (MPO) activity, 1 patient's blasts contained cytoplasmic Auer rods. The circulating blasts from another patient expressed MPO while maintaining the same surface phenotype during 20 months of clinical follow-up. In addition, the blasts from 3 cases demonstrated both myelomonocytic and monocyte-specific surface antigens, whereas the remaining 9 cases completely lacked any monocyte-specific antigen detectable by monoclonal antibodies, Mo2, My4 and Leu M3 (CD 14). The first case eventually was diagnosed as acute myelomonocytic leukemia and the second as acute myelogenous leukemia by means of immunophenotypic analysis using flow cytometry (FACS IV). In addition, the presence of MPO protein was identified in the cytoplasm of blast cells from 5 patients with AUL by means of a cytoplasmic immunofluorescence test using a monoclonal antibody (MA1). Our study indicates that non-T, non-B AUL expressing OKM1 (CD 11) antigens include acute leukemias which are unequivocally identifiable as being of either myeloid or myelomonocytic origin. However, further investigations, including immunophenotypic and cytoplasmic analysis, ultrastructural cytochemistry and gene analysis with molecular probes (tests applicable to normal myeloid cells), are necessary in order to determine the actual origin of blasts and to recognize the differentiation stages of the various types of leukemic cells from patients with undifferentiated forms of leukemia.

  14. Association of leukemia with radium groundwater contamination

    International Nuclear Information System (INIS)

    Lyman, G.H.; Lyman, C.G.; Johnson, W.

    1985-01-01

    Radiation exposure, including the ingestion of radium, has been causally associated with leukemia in man. Groundwater samples from 27 counties on or near Florida phosphate lands were found to exceed 5 pCi/L total radium in 12.4% of measurements. The incidence of leukemia was greater in those counties with high levels of radium contamination (greater than 10% of the samples contaminated) than in those with low levels of contamination. Rank correlation coefficients of .56 and .45 were observed between the radium contamination level and the incidence of total leukemia and acute myeloid leukemia, respectively. The standardized incidence density ratio for those in high-contamination counties was 1.5 for total leukemia and 2.0 for acute myeloid leukemia. Further investigation is necessary, however, before a causal relationship between groundwater radium content and human leukemia can be established

  15. In Vitro Screening of Cytotoxic, Antimicrobial and Antioxidant ...

    African Journals Online (AJOL)

    Purpose: To evaluate the in vitro cytotoxic, antioxidant and antimicrobial activities of Clinacanthus nutans extracts and semi-fractions. Method: The plant was subjected to cold solvent extraction to produce petroleum ether, ethyl acetate and methanol crude extracts, followed by isolation using bioassay-guided fractionation.

  16. 42 CFR 81.24 - Guidelines for leukemia.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Guidelines for leukemia. 81.24 Section 81.24 Public... Causation § 81.24 Guidelines for leukemia. (a) For claims involving leukemia, DOL will calculate one or more probability of causation estimates from up to three of the four alternate leukemia risk models included in...

  17. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells.

    Science.gov (United States)

    Jin, Cheng-Yu; Zhu, Bang-Shang; Wang, Xue-Feng; Lu, Qing-Hua

    2008-09-01

    Nanotitanium dioxide (TiO2) is an important industrial material that is widely used as an additive in cosmetics, pharmaceuticals, and food colorants. Although the small size of the TiO2 nanoparticle is useful in various applications, the biosafety of this material needs to be evaluated. In this study, mouse fibroblast (L929) cells were used to evaluate the cytotoxicity of different concentrations (3-600 microg/mL) of homogeneous and weakly aggregated TiO2 nanoparticles in aqueous solution. The L929 cells became round and even shrank as the concentration of TiO2 nanoparticles increased. Moreover, TiO2 nanoparticle-treated cells had condensed fragmented chromatin or were directly necrosed, as observed by acridine orange (AO) staining. The transmission electron microscopy (TEM) analysis showed that in cells cultured in a medium containing 300 microg/mL TiO2, the number of lysosomes increased, and some cytoplasmic organelles were damaged. In addition, there was a significant increase in oxidative stress at higher TiO2 nanoparticle concentrations (>60 microg/mL). As the concentration of TiO2 nanoparticles increased in the culture medium, the levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) increased, while those of methyl tetrazolium cytotoxicity (MTT), glutathione (GSH), and superoxide dismutase (SOD) decreased. A possible mechanism for the cytotoxicity of TiO2 nanoparticles is also discussed.

  18. MicroRNA181a Is Overexpressed in T-Cell Leukemia/Lymphoma and Related to Chemoresistance

    Directory of Open Access Journals (Sweden)

    Zi-Xun Yan

    2015-01-01

    Full Text Available MicroRNAs (miRs play an important role in tumorogenesis and chemoresistance in lymphoid malignancies. Comparing with reactive hyperplasia, miR181a was overexpressed in 130 patients with T-cell leukemia/lymphoma, including acute T-cell lymphoblastic leukemia (n=32, T-cell lymphoblastic lymphoma (n=16, peripheral T-cell lymphoma, not otherwise specified (n=45, anaplastic large cell lymphoma (n=15, and angioimmunoblastic T-cell lymphoma (n=22. Irrespective to histological subtypes, miR181a overexpression was associated with increased AKT phosphorylation. In vitro, ectopic expression of miR181a in HEK-293T cells significantly enhanced cell proliferation, activated AKT, and conferred cell resistance to doxorubicin. Meanwhile, miR181a expression was upregulated in Jurkat cells, along with AKT activation, during exposure to chemotherapeutic agents regularly applied to T-cell leukemia/lymphoma treatment, such as doxorubicin, cyclophosphamide, cytarabine, and cisplatin. Isogenic doxorubicin-resistant Jurkat and H9 cells were subsequently developed, which also presented with miR181a overexpression and cross-resistance to cyclophosphamide and cisplatin. Meanwhile, specific inhibition of miR181a enhanced Jurkat and H9 cell sensitivity to chemotherapeutic agents, further indicating that miR181a was involved in acquired chemoresistance. Collectively, miR181a functioned as a biomarker of T-cell leukemia/lymphoma through modulation of AKT pathway. Related to tumor cell chemoresistance, miR181a could be a potential therapeutic target in treating T-cell malignancies.

  19. Cytotoxicity of South-African medicinal plants towards sensitive and multidrug-resistant cancer cells.

    Science.gov (United States)

    Saeed, Mohamed E M; Meyer, Marion; Hussein, Ahmed; Efferth, Thomas

    2016-06-20

    Traditional medicine plays a major role for primary health care worldwide. Cancer belongs to the leading disease burden in industrialized and developing countries. Successful cancer therapy is hampered by the development of resistance towards established anticancer drugs. In the present study, we investigated the cytotoxicity of 29 extracts from 26 medicinal plants of South-Africa against leukemia cell lines, most of which are used traditionally to treat cancer and related symptoms. We have investigated the plant extracts for their cytotoxic activity towards drug-sensitive parental CCRF-CEM leukemia cells and their multidrug-resistant P-glycoprotein-overexpressing subline, CEM/ADR5000 by means of the resazurin assay. A panel of 60 NCI tumor cell lines have been investigated for correlations between selected phytochemicals from medicinal plants and the expression of resistance-conferring genes (ABC-transporters, oncogenes, tumor suppressor genes). Seven extracts inhibited both cell lines (Acokanthera oppositifolia, Hypoestes aristata, Laurus nobilis, Leonotis leonurus, Plectranthus barbatus, Plectranthus ciliates, Salvia apiana). CEM/ADR5000 cells exhibited a low degree of cross-resistance (3.35-fold) towards the L. leonurus extract, while no cross-resistance was observed to other plant extracts, although CEM/ADR5000 cells were highly resistant to clinically established drugs. The log10IC50 values for two out of 14 selected phytochemicals from these plants (acovenoside A and ouabain) of 60 tumor cell lines were correlated to the expression of ABC-transporters (ABCB1, ABCB5, ABCC1, ABCG2), oncogenes (EGFR, RAS) and tumor suppressors (TP53). Sensitivity or resistance of the cell lines were not statistically associated with the expression of these genes, indicating that multidrug-resistant, refractory tumors expressing these genes may still respond to acovenoside A and ouabain. The bioactivity of South African medicinal plants may represent a basis for the development

  20. Acute childhood leukemia: Nursing care

    International Nuclear Information System (INIS)

    Zietz, Hallie A

    1997-01-01

    Modern therapy for childhood acute leukemia has provided a dramatically improved prognosis over that of just 30 years ago. In the early 1960's survival rates for acute lymphocytic leukemia (ALL) and acute myelogenous leukemia (AML) were 4% and 3%, respectively. By the 1980's survival rates had risen to 72% for all and 25% to 40% for AML. Today, a diagnosis of all carries an 80% survival rate and as high as a 90% survival rate for some low-risk subtypes. Such high cure rates depend on intense and complex, multimodal therapeutic protocols. Therefore, nursing care of the child with acute leukemia must meet the demands of complicated medical therapies and balance those with the needs of a sick child and their concerned family. An understanding of disease process and principles of medical management guide appropriate and effective nursing interventions. Leukemia is a malignant disorder of the blood and blood- forming organs (bone marrow, lymph nodes and spleen). Most believe that acute leukemia results from a malignant transformation of a single early haematopoietic stem cell that is capable of indefinite self-renewal. These immature cells of blasts do not respond to normal physiologic stimuli for differentiation and gradually become the predominant cell in the bone marrow

  1. Chromosomal abnormalities and environmental exposures in acute nonlymphocytic leukemia

    International Nuclear Information System (INIS)

    Crane, M.M.; Keating, M.J.; Trujillo, J.M.; Labarthe, D.R.

    1988-01-01

    Chromosomal abnormalities are present in bone marrow of approximately 50% of newly diagnostic acute nonlymphatic leukemia (ANLL) patients, but their etiologic significance, if any, is unclear. The frequency of environmental exposures, gathered by questionnaire from patients or relatives, was compared in 127 newly diagnosed ANLL patients with marrow abnormalities (AA) and 109 ANLL patients with cytogenetically normal marrow. These represented 73% of de novo patients treated at M. D. Anderson Hospital between 1976 and 1983. AA patients were more likely than NN patients to: report cytotoxic treatment for prior medical conditions, smoke cigarettes, drink alcoholic beverages, and work at occupations with possible exposure to mutagens. No statistically significant associations between aneuploidy and use of other tobacco, avocational exposure to chemicals or exposure to animals were present. Associations between specific abnormalities and prior cytotoxic therapy (deletion of chromosome 7), smoking (extra chromosome 8, inversion chromosome 16), and occupation at the time of diagnosis (translocation between chromosomes 8 and 21) were noted. No association between occupational exposure to benzene or ionizing radiation and the 6 most common chromosomal abnormalities in ANLL patients were noted, although these agents are known to be leukemogenic. Problems with interpreting the above associations, including the high nonresponse rate, a high proportion of surrogate respondents, and the large number of significance tests that were performed, are discussed. These results are consistent with those from previously reported series, and suggest that tumor-specific markers may be present for some exposures in this disease

  2. Interferon-β gene transfer induces a strong cytotoxic bystander effect on melanoma cells.

    Science.gov (United States)

    Rossi, Úrsula A; Gil-Cardeza, María L; Villaverde, Marcela S; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2015-05-01

    A local gene therapy scheme for the delivery of type I interferons could be an alternative for the treatment of melanoma. We evaluated the cytotoxic effects of interferon-β (IFNβ) gene lipofection on tumor cell lines derived from three human cutaneous and four canine mucosal melanomas. The cytotoxicity of human IFNβ gene lipofection resulted higher or equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) to human cells. IFNβ gene lipofection was not cytotoxic for only one canine melanoma cell line. When cultured as monolayers, three human and three canine IFNβ-lipofected melanoma cell lines displayed a remarkable bystander effect. As spheroids, the same six cell lines were sensitive to IFNβ gene transfer, two displaying a significant multicell resistance phenotype. The effects of conditioned IFNβ-lipofected canine melanoma cell culture media suggested the release of at least one soluble thermolabile cytotoxic factor that could not be detected in human melanoma cells. By using a secretion signal-free truncated human IFNβ, we showed that its intracellular expression was enough to induce cytotoxicity in two human melanoma cell lines. The lower cytoplasmatic levels of reactive oxygen species detected after intracellular IFNβ expression could be related to the resistance displayed by one human melanoma cell line. As IFNβ gene transfer was effective against most of the assayed melanomas in a way not limited by relatively low lipofection efficiencies, the clinical potential of this approach is strongly supported. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Synthesis, antimicrobial and cytotoxic activities of 5-benzylidene-2-[(pyridine-4-ylmethylenehydrazono]-thiazolidin-4-one and 2-[(pyridine-4-ylmethylene hydrazono]-thiazolidin-4-one derivatives

    Directory of Open Access Journals (Sweden)

    Danniel Delmondes Feitoza

    2012-01-01

    Full Text Available A new series of 5-benzylidene-2-[(pyridine-4-ylmethylenehydrazono]-thiazolidin-4-ones 4a-l have been synthesized. These compounds were designed by a molecular hybridization approach. 2-[(Pyridine-4-ylmethylenehydrazono]-thiazolidin-4-ones 3a-d were also obtained and used as intermediates to give the target compounds. The in vitro antimicrobial and cytotoxic activities were evaluated for both series. The intermediate 3b showed considerable antibiotic activity against B. subtilis and C. albicans. In the cytotoxic activity compounds 3b (IC50= 4.25 ± 0.36 µg/mL and 4l (IC50= 1.38 ± 0.04 µg/mL were effective for inhibition of human erythromyeloblastoid leukemia (K-562 and human lung carcinoma (NCI-H292 cell lines, respectively.

  4. Stages of Chronic Myelogenous Leukemia

    Science.gov (United States)

    ... ALL Treatment Childhood AML Treatment Research Chronic Myelogenous Leukemia Treatment (PDQ®)–Patient Version General Information About Chronic Myelogenous Leukemia Go to Health Professional Version Key Points Chronic ...

  5. Reactive oxygen species and nitric oxide signaling in bystander cells.

    Science.gov (United States)

    Jella, Kishore Kumar; Moriarty, Roisin; McClean, Brendan; Byrne, Hugh J; Lyng, Fiona M

    2018-01-01

    It is now well accepted that radiation induced bystander effects can occur in cells exposed to media from irradiated cells. The aim of this study was to follow the bystander cells in real time following addition of media from irradiated cells and to determine the effect of inhibiting these signals. A human keratinocyte cell line, HaCaT cells, was irradiated (0.005, 0.05 and 0.5 Gy) with γ irradiation, conditioned medium was harvested after one hour and added to recipient bystander cells. Reactive oxygen species, nitric oxide, Glutathione levels, caspase activation, cytotoxicity and cell viability was measured after the addition of irradiated cell conditioned media to bystander cells. Reactive oxygen species and nitric oxide levels in bystander cells treated with 0.5Gy ICCM were analysed in real time using time lapse fluorescence microscopy. The levels of reactive oxygen species were also measured in real time after the addition of extracellular signal-regulated kinase and c-Jun amino-terminal kinase pathway inhibitors. ROS and glutathione levels were observed to increase after the addition of irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). Caspase activation was found to increase 4 hours after irradiated cell conditioned media treatment (0.005, 0.05 and 0.5 Gy ICCM) and this increase was observed up to 8 hours and there after a reduction in caspase activation was observed. A decrease in cell viability was observed but no major change in cytotoxicity was found in HaCaT cells after treatment with irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). This study involved the identification of key signaling molecules such as reactive oxygen species, nitric oxide, glutathione and caspases generated in bystander cells. These results suggest a clear connection between reactive oxygen species and cell survival pathways with persistent production of reactive oxygen species and nitric oxide in bystander cells following exposure to irradiated cell

  6. Phase I-II study of lenalidomide and alemtuzumab in refractory chronic lymphocytic leukemia (CLL): effects on T cells and immune checkpoints.

    Science.gov (United States)

    Winqvist, Maria; Mozaffari, Fariba; Palma, Marzia; Eketorp Sylvan, Sandra; Hansson, Lotta; Mellstedt, Håkan; Österborg, Anders; Lundin, Jeanette

    2017-01-01

    This phase I-II study explored safety, immunomodulatory and clinical effects of lenalidomide (weeks 1-16) and alemtuzumab (weeks 5-16) in 23 patients with refractory chronic lymphocytic leukemia. Most patients had Rai stage III/IV disease and were heavily pretreated (median 4 prior therapies), and 61% had del(17p)/del(11q). Eleven of 19 evaluable patients (58%) responded, with a median response duration of 12 months (1-29+); time to progression was short in non-responders. Lenalidomide had a narrow therapeutic dose range, 2.5 mg/day was not efficient, and maximum tolerated dose was 5 mg/day. Grade 3-4 neutropenia and thrombocytopenia occurred in 84 and 55%, 30% had febrile neutropenia, and CMV-reactivation requiring valganciclovir occurred in 30% of patients. The frequency of proliferating (Ki67 + ) CD8 + T cells was increased at week 4, with further increase in both the CD4 + and CD8 + subsets (p cells increased at week 4 as the frequency of effector memory cells increased in the CD8 + subset (p cells decreased in both the CD8 + and CD4 + subsets (p regulatory T cells was reduced (p T cells decreased, and effector memory T cells increased (p T cells increased at 30-week follow-up (p T cells, including increased proliferative activity and cytotoxic potential.

  7. Chemical Composition and Anti-Inflammatory, Cytotoxic and Antioxidant Activities of Essential Oil from Leaves of Mentha piperita Grown in China.

    Science.gov (United States)

    Sun, Zhenliang; Wang, Huiyan; Wang, Jing; Zhou, Lianming; Yang, Peiming

    2014-01-01

    The chemical composition, anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita (MEO) grown in China were investigated. Using GC-MS analysis, the chemical composition of MEO was characterized, showing that it was mainly composed of menthol, menthone and menthy acetate. MEO exhibited potent anti-inflammatory activities in a croton oil-induced mouse ear edema model. It could also effectively inhibit nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The cytotoxic effect was assessed against four human cancer cells. MEO was found to be significantly active against human lung carcinoma SPC-A1, human leukemia K562 and human gastric cancer SGC-7901 cells, with an IC50 value of 10.89, 16.16 and 38.76 µg/ml, respectively. In addition, MEO had moderate antioxidant activity. The results of this study may provide an experimental basis for further systematic research, rational development and clinical utilization of peppermint resources.

  8. Sunitinib indirectly enhanced anti-tumor cytotoxicity of cytokine-induced killer cells and CD3⁺CD56⁺ subset through the co-culturing dendritic cells.

    Directory of Open Access Journals (Sweden)

    Adisak Wongkajornsilp

    Full Text Available Cytokine-induced killer (CIK cells have reached clinical trials for leukemia and solid tumors. Their anti-tumor cytotoxicity had earlier been shown to be intensified after the co-culture with dendritic cells (DCs. We observed markedly enhanced anti-tumor cytotoxicity activity of CIK cells after the co-culture with sunitinib-pretreated DCs over that of untreated DCs. This cytotoxicity was reliant upon DC modulation by sunitinib because the direct exposure of CIK cells to sunitinib had no significant effect. Sunitinib promoted Th1-inducing and pro-inflammatory phenotypes (IL-12, IFN-γ and IL-6 in DCs at the expense of Th2 inducing phenotype (IL-13 and regulatory phenotype (PD-L1, IDO. Sunitinib-treated DCs subsequently induced the upregulation of Th1 phenotypic markers (IFN-γ and T-bet and the downregulation of the Th2 signature (GATA-3 and the Th17 marker (RORC on the CD3⁺CD56⁺ subset of CIK cells. It concluded that sunitinib-pretreated DCs drove the CD3⁺CD56⁺ subset toward Th1 phenotype with increased anti-tumor cytotoxicity.

  9. Leukemia and radium groundwater contamination

    International Nuclear Information System (INIS)

    Tracy, B.L.; Letourneau, E.G.

    1986-01-01

    In the August 2, 1985, issue of JAMMA, Lyman et al claim to have shown an association between leukemia incidence in Florida and radium in groundwater supplies. Although cautious in their conclusions, the authors imply that this excess in leukemia was in fact caused by radiation. The authors believe they have not presented a convincing argument for causation. The radiation doses at these levels of exposure could account for only a tiny fraction of the leukemia excess

  10. Biological activities from extracts of endophytic fungi isolated from Viguiera arenaria and Tithonia diversifolia.

    Science.gov (United States)

    Guimarães, Denise O; Borges, Warley S; Kawano, Cristina Y; Ribeiro, Patrícia H; Goldman, Gustavo H; Nomizo, Auro; Thiemann, Otávio H; Oliva, Glaucius; Lopes, Norberto P; Pupo, Mônica T

    2008-01-01

    A total of 39 endophytic fungi have been isolated from Viguiera arenaria and Tithonia diversifolia, both collected in São Paulo State, Brazil. The isolates were identified based on their ribosomal DNA sequences. The ethyl acetate (EtOAc) extracts of all endophytic fungi were evaluated for their antimicrobial, antiparasitic and antitumoral activity. Antimicrobial screening was conducted using an agar diffusion assay against three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli and Candida albicans. Antiparasitic activity was determined by enzymatic inhibition of gGAPDH of Trypanosoma cruzi and adenine phosphorybosiltransferase (APRT) of Leishmania tarentolae. Antitumoral activity was tested against human T leukemia cells by the Mosmann colorimetric method. All extracts showed activity in at least one assay: 79.5% of the extracts were cytotoxic against leukemia cells, 5.1% of the extracts were active against S. aureus, 25.6% against E. coli and 64.1% against Candida albicans. Only one extract showed promising results in the inhibition of parasitic enzymes gGAPDH (95.0%) and three were found to inhibit APRT activity. The cytotoxic extract produced by the strain VA1 (Glomerella cingulata) was fractionated and yielded nectriapyrone and tyrosol. Nectriapyrone showed relevant cytotoxic activity against both human T leukemia and melanoma tumor cell lines.

  11. Ultrasound and MR Findings of Aleukemic Leukemia Cutis in a Patient with Complete Remission of Acute Lymphoblastic Leukemia: A Case Report

    International Nuclear Information System (INIS)

    Kim, Min Sung; Jee, Won Hee; Kim, Sun Ki; Lee, So Yeon; Lim, Gye Yeon; Park, Gyeong Sin; Lee, Seok

    2010-01-01

    Aleukemic leukemia cutis is an extremely rare condition characterized by the infiltration of leukemic cells in skin without blasts in the peripheral blood. Leukemia cutis is considered a grave prognostic sign, thus early diagnosis is important. Leukemia cutis usually occurs in patients with myeloid leukemia. To the best of our knowledge, there has been no report regarding the radiological findings of aleukemic leukemia cutis, which is probably due to the presence of the skin changes in most patients. We report the ultrasound and MR findings of aleukemic leukemia cutis, even without the skin manifestation in patients with a history of complete remission of the acute lymphoblastic leukemia following an allogeneic peripheral blood stem cell transplantation

  12. Ultrasound and MR Findings of Aleukemic Leukemia Cutis in a Patient with Complete Remission of Acute Lymphoblastic Leukemia: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Sung; Jee, Won Hee; Kim, Sun Ki; Lee, So Yeon; Lim, Gye Yeon; Park, Gyeong Sin; Lee, Seok [Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2010-12-15

    Aleukemic leukemia cutis is an extremely rare condition characterized by the infiltration of leukemic cells in skin without blasts in the peripheral blood. Leukemia cutis is considered a grave prognostic sign, thus early diagnosis is important. Leukemia cutis usually occurs in patients with myeloid leukemia. To the best of our knowledge, there has been no report regarding the radiological findings of aleukemic leukemia cutis, which is probably due to the presence of the skin changes in most patients. We report the ultrasound and MR findings of aleukemic leukemia cutis, even without the skin manifestation in patients with a history of complete remission of the acute lymphoblastic leukemia following an allogeneic peripheral blood stem cell transplantation

  13. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens.

    Science.gov (United States)

    Shanks, Robert M Q; Stella, Nicholas A; Hunt, Kristin M; Brothers, Kimberly M; Zhang, Liang; Thibodeau, Patrick H

    2015-07-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Hypoxic cytotoxicity of chlorpromazine and the modification of radiation response in E. coli B/r

    International Nuclear Information System (INIS)

    Shenoy, M.A.; Singh, B.B.

    1978-01-01

    Chlorpromazine (0.1 mM) was cytotoxic to E. coli B/r cells under hypoxic but not euoxic conditions. Under nitrogen bubbling, there was no further enhancement in cellular lethality beyond 45 min contact time. The presence of the free drug seemed necessary for the cytocidal action to be demonstrated. Hypoxic cytotoxicity increased steadily with temperature between 30 and 37 0 C. Treatment of cells with N-ethyl maleimide (0.5 mM) completely abolished the subsequent hypoxic cytotoxicity of chlorpromazine (0.1 mM). Hypoxic gamma irradiation of cells pretreated for 45 min with chlorpromazine under nitrogen bubbling gave a DMF for survival of almost twice that produced by oxygen. Irradiation under aerobic conditions of cells subjected to the same pretreatment produced only the normal oxygen effect. The results indicate that the differential cytotoxicity of chlorpromazine is due to its effect on the changes induced in the membrane-associated biochemical state of the cells under euoxic and hypoxic conditions. (U.K.)

  15. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells

    Science.gov (United States)

    Lagadinou, Eleni D.; Sach, Alexander; Callahan, Kevin; Rossi, Randall M.; Neering, Sarah J.; Minhajuddin, Mohammad; Ashton, John M.; Pei, Shanshan; Grose, Valerie; O’Dwyer, Kristen M.; Liesveld, Jane L.; Brookes, Paul S.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    Summary Most forms of chemotherapy employ mechanisms involving induction of oxidative stress, a strategy that can be effective due to the elevated oxidative state commonly observed in cancer cells. However, recent studies have shown that relative redox levels in primary tumors can be heterogeneous, suggesting that regimens dependent on differential oxidative state may not be uniformly effective. To investigate this issue in hematological malignancies, we evaluated mechanisms controlling oxidative state in primary specimens derived from acute myelogenous leukemia (AML) patients. Our studies demonstrate three striking findings. First, the majority of functionally-defined leukemia stem cells (LSCs) are characterized by relatively low levels of reactive oxygen species (termed “ROS-low”). Second, ROS-low LSCs aberrantly over-express BCL-2. Third, BCL-2 inhibition reduced oxidative phosphorylation and selectively eradicated quiescent LSCs. Based on these findings, we propose a model wherein the unique physiology of ROS-low LSCs provides an opportunity for selective targeting via disruption of BCL-2-dependent oxidative phosphorylation. PMID:23333149

  16. Acute leukemias of ambiguous lineage.

    Science.gov (United States)

    Béné, Marie C; Porwit, Anna

    2012-02-01

    The 2008 edition of the WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues recognizes a special category called "leukemias of ambiguous lineage." The vast majority of these rare leukemias are classified as mixed phenotype acute leukemia (MPAL), although acute undifferentiated leukemias and natural killer lymphoblastic leukemias are also included. The major immunophenotypic markers used by the WHO 2008 to determine the lineage for these proliferations are myeloperoxidase, CD19, and cytoplasmic CD3. However, extensive immunophenotyping is necessary to confirm that the cells indeed belong to 2 different lineages or coexpress differentiation antigens of more than 1 lineage. Specific subsets of MPAL are defined by chromosomal anomalies such as the t(9;22) Philadelphia chromosome BCR-ABL1 or involvement of the MLL gene on chromosome 11q23. Other MPAL are divided into B/myeloid NOS, T/myeloid NOS, B/T NOS, and B/T/myeloid NOS. MPAL are usually of dire prognosis, respond variably to chemotherapy of acute lymphoblastic or acute myeloblastic type, and benefit most from rapid allogeneic hematopoietic stem cell transplantation.

  17. Cell-mediated immune response to syngeneic uv induced tumors. I. The presence of tumor associated macrophages and their possible role in the in vitro generation of cytotoxic lymphocytes

    International Nuclear Information System (INIS)

    Woodward, J.G.; Daynes, R.A.

    1978-01-01

    A primary in vitro sensitization system employing a chromium release assay was utilized to investigate reactivity of murine spleen cells toward syngeneic ultraviolet (uv) light induced fibrosarcomas. These tumors are immunologically rejected in vivo when implanted into normal syngeneic mice but grow progressively when implanted into syngeneic mice that had previously been irradiated with subcarcinogenic levels of uv light. Following appropriate sensitization, spleen cells from both normal and uv irradiated mice are capable of developing cytotoxic lymphocytes in vitro against the uv induced tumors. It was subsequently discovered that in situ uv induced tumors all contained macrophages of host origin that became demonstrable only after enzymatic dissociation of the tumor tissue. These macrophages were immunologically active in vitro as their presence in the stimulator cell population was necessary to achieve an optimum anti-tumor cytotoxic response following in vitro sensitization. Anti-tumor reactivity generated by mixing spleen cells and tumor cells in the absence of tumor derived macrophages could be greatly enhanced by the addition of normal syngeneic peritoneal macrophages. When in vitro anti-tumor reactivity of spleen cells from normal and uv treated mice was compared under these conditions we again found no significant difference in the magnitude of the responses. In addition, the cytotoxic cells generated in response to uv induced tumors appeared to be highly cross reactive with respect to their killing potential

  18. Selective host range restriction of goat cells for recombinant murine leukemia virus and feline leukemia virus type A.

    OpenAIRE

    Fischinger, P J; Thiel, H J; Blevins, C S; Dunlop, N M

    1981-01-01

    We isolated a strain of normal goat fibroblasts which was uniquely selective in that it allowed the replication of xenotropic murine leukemia virus but not polytropic recombinant murine leukemia virus. In addition, feline leukemia virus type A replication was severely diminished in these goat cells, whereas feline leukemia virus type B and feline endogenous RD114-CCC viruses replicated efficiently. No other known cells exhibit this pattern of virus growth restriction. These goat cells allow t...

  19. Synthesis, antimicrobial and cytotoxic activities of 5-benzylidene-2-[(pyridine-4-ylmethylene)hydrazono]-thiazolidin-4-one and 2-[(pyridine-4-ylmethylene) hydrazono]-thiazolidin-4-one derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Feitoza, Danniel Delmondes; Alves, Antonio Jose; Lima, Jose Gildo de, E-mail: jgildolima@gmail.com [Departamento de Ciencias Farmaceuticas, Universidade Federal de Pernambuco, Recife - PE (Brazil); Araujo, Janete Magali; Aguiar, Jaciana Santos; Rodrigues, Maria do Desterro; Silva, Teresinha Goncalves; Nascimento, Silene Carneiro do; Goes, Alexandre Jose da Silva [Departamento de Antibioticos, Universidade Federal de Pernambuco, Recife - PE (Brazil)

    2012-07-01

    A new series of 5-benzylidene-2-[(pyridine-4-ylmethylene)hydrazono]-thiazolidin-4-ones 4a-l have been synthesized. These compounds were designed by a molecular hybridization approach. 2-[(Pyridine-4-ylmethylene)hydrazono]-thiazolidin-4-ones 3a-d were also obtained and used as intermediates to give the target compounds. The in vitro antimicrobial and cytotoxic activities were evaluated for both series. The intermediate 3b showed considerable antibiotic activity against B. subtilis and C. albicans. In the cytotoxic activity compounds 3b (IC{sub 50} = 4.25 +- 0.36 {mu}g/mL) and 4l (IC{sub 50} = 1.38 +- 0.04 {mu}g/mL) were effective for inhibition of human erythromyeloblastoid leukemia (K-562) and human lung carcinoma (NCI-H292) cell lines, respectively. (author)

  20. Residential mobility and childhood leukemia.

    Science.gov (United States)

    Amoon, A T; Oksuzyan, S; Crespi, C M; Arah, O A; Cockburn, M; Vergara, X; Kheifets, L

    2018-07-01

    Studies of environmental exposures and childhood leukemia studies do not usually account for residential mobility. Yet, in addition to being a potential risk factor, mobility can induce selection bias, confounding, or measurement error in such studies. Using data collected for California Powerline Study (CAPS), we attempt to disentangle the effect of mobility. We analyzed data from a population-based case-control study of childhood leukemia using cases who were born in California and diagnosed between 1988 and 2008 and birth certificate controls. We used stratified logistic regression, case-only analysis, and propensity-score adjustments to assess predictors of residential mobility between birth and diagnosis, and account for potential confounding due to residential mobility. Children who moved tended to be older, lived in housing other than single-family homes, had younger mothers and fewer siblings, and were of lower socioeconomic status. Odds ratios for leukemia among non-movers living mobility, including dwelling type, increased odds ratios for leukemia to 2.61 (95% CI: 1.76-3.86) for living mobility of childhood leukemia cases varied by several sociodemographic characteristics, but not by the distance to the nearest power line or calculated magnetic fields. Mobility appears to be an unlikely explanation for the associations observed between power lines exposure and childhood leukemia. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Lack of dependence of 5-fluorodeoxyuridine-mediated radiosensitization on cytotoxicity

    International Nuclear Information System (INIS)

    Lawrence, T.S.; Davis, M.A.; Chang, E.Y.

    1995-01-01

    It has been proposed that fluoropyrimidine-mediated cytotoxicity and radiosensitization are closely correlated. We have shown that HT29 human colon cancer cells transfected with the E. coli dUTPase gene are resistant to 5-fluorodeoxyuridine (FdUrd)-mediated cytotoxicity, presumably through more effective elimination of dUTP. We used these cells to assess the association between radiosensitization and cytotoxicity produced by FdUrd. The radiation sensitivities of the clones expressing elevated dUTPase activity (dutE clones) were similar to those of untransfected HT29 cells or HT29 cells which has been transfected with only the expression vector for the E. coli gene (con clones). We found that FdUrd produced similar increases in radiation sensitivity regardless of dUTPase activity. Levels of dUTPase in the dutE clones remained elevated during the entire period of FdUrd exposure, demonstrating that the lack of difference between dutE and Con clones was not a reflection of down-regulation of dUTPase activity by FdUrd, Flow cytometry showed that all clones progressed past the G 1 /S-phase boundary and into early S phase during FdUrd treatment. These data suggest that the mechanisms of FdUrd-mediated cytotoxicity and radiosensitization are not closely linked. These findings, combined with our previous investigations, are consistent with the hypothesis that radiosensitization occurs in cells which progress past the G 1 /S-phase boundary in the presence of FdUrd. 24 refs., 2 figs., 2 tabs

  2. Reclassification of leukemia among A-bomb survivors in Nagasaki using French-American-British (FAB) classification for acute leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Tatsuki; Tomonaga, Masao; Bennett, J.M. and others

    1988-06-01

    The concordance rate for diagnoses of atomic bomb-related cases of leukemia in Nagasaki was determined using the French-American-British (FAB) classification for acute leukemias and myelodysplastic syndromes (MDS). Two Radiation Effects Research Foundation (RERF) hematologists and one of the members (JMB) of the FAB cooperative group reviewed independently the peripheral blood and/or bone marrow smears from 193 people with leukemia or a related disorder. There was 85 % agreement in the identification of types and subtypes of acute leukemia. There was almost complete agreement for the diagnoses of non-FAB disorders (chronic myeloid leukemia (CML), adult T-cell leukemia (ATL) and others) resulting in overall concordance of 88.2 %. The present study suggest that the previously established leukemia types for about a quarter of the cases of acute leukemia and related disorders except CML should be changed. Considerable numbers of cases of ATL and MDS were involved in this series. The frequency of the former disease was not high in the high-dose irradiated group, but that of the latter was considerably high. All subtypes of AML except M3 and M6 were present in the high-dose group. The striking difference in CML incidence between Nagasaki and Hiroshima may continue to be a problem in relation to biological response to radiation exposure.

  3. Reclassification of leukemia among A-bomb survivors in Nagasaki using French-American-British (FAB) classification for acute leukemia

    International Nuclear Information System (INIS)

    Matsuo, Tatsuki; Tomonaga, Masao; Bennett, J.M.

    1988-01-01

    The concordance rate for diagnoses of atomic bomb-related cases of leukemia in Nagasaki was determined using the French-American-British (FAB) classification for acute leukemias and myelodysplastic syndromes (MDS). Two Radiation Effects Research Foundation (RERF) hematologists and one of the members (JMB) of the FAB cooperative group reviewed independently the peripheral blood and/or bone marrow smears from 193 people with leukemia or a related disorder. There was 85 % agreement in the identification of types and subtypes of acute leukemia. There was almost complete agreement for the diagnoses of non-FAB disorders (chronic myeloid leukemia (CML), adult T-cell leukemia (ATL) and others) resulting in overall concordance of 88.2 %. The present study suggest that the previously established leukemia types for about a quarter of the cases of acute leukemia and related disorders except CML should be changed. Considerable numbers of cases of ATL and MDS were involved in this series. The frequency of the former disease was not high in the high-dose irradiated group, but that of the latter was considerably high. All subtypes of AML except M3 and M6 were present in the high-dose group. The striking difference in CML incidence between Nagasaki and Hiroshima may continue to be a problem in relation to biological response to radiation exposure. (author)

  4. Cytotoxic and radioprotective effects of Podophyllum hexandrum.

    Science.gov (United States)

    Shukla, Sandeep Kumar; Chaudhary, Pankaj; Prem Kumar, Indracanti; Afrin, Farhat; Puri, Satish Chandra; Qazi, Ghulam Nabi; Sharma, Rakesh Kumar

    2006-07-01

    Podophyllum hexandrum, a herb thriving in Himalayas has already been reported to exhibit antitumor and radioprotective properties. Present study was undertaken to unravel the possible mechanism responsible for the cytotoxic and radioprotective properties of REC-2001, a fraction isolated from the rhizome of P. hexandrum using murine peritoneal macrophages and plasmid DNA as model systems. Cell death, levels of intracellular reactive oxygen species (ROS) and apoptosis were studied employing trypan blue exclusion assay, dichlorofluorescein diacetate and DNA fragmentation assay, respectively. Superoxide anions, hydroxyl radicals and DNA damage were estimated following nitroblue tetrazolium, 2-deoxyribose degradation and plasmid DNA relaxation assays, respectively. Pre-irradiation administration of REC-2001 to peritoneal macrophages in the concentration range of 25-200μg/ml significantly reduced radiation induced ROS generation, DNA damage, apoptosis and cell killing in comparison to radiation control group indicating radioprotective potential. Studies with plasmid DNA indicated the ability of REC-2001 to inhibit 20Gy induced single and double strand breaks further supporting the antioxidative potential. However, REC-2001 in a dose-dependent fashion induced cell death, ROS and DNA fragmentation indicating the cytotoxic nature. REC-2001, in presence of 100μM copper sulfate, generated significant amount of hydroxyl radicals and superoxide anions indicating ability to act as a pro-oxidant in presence of metal ions. The superoxide anion generation was found to be sensitive to metal chelators like EDTA and deferoxamine mesylate (DFR). These results suggest that the ability of REC-2001 to act as a pro-oxidant in presence of metal ions and antioxidant in presence of free radicals might be responsible for cytotoxic and radioprotective properties.

  5. Cytotoxic and genotoxic studies of essential oil from Rosa damascene Mill., Kashan, Iran.

    Science.gov (United States)

    Shokrzadeh, Mohammad; Habibi, Emran; Modanloo, Mona

    2017-08-01

    Aim Rosa damascene Mill. belongs to the family of Roseaceae and its essential oil is produced in large amounts in Iran. The wide application of rose oil has raised questions about potential adverse health effects. We have investigated cytotoxic activity and genotoxic effects of Rosa oil from Kashan, Iran. Methods The cytotoxic effect and IC50 of the essential oil on the cell lines was studied followed by MTT assay. In this assay mitochondrial oxidoreductase enzymes with reducing the tetrazolium dye MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) reflect the number of viable cells. Genotoxic effect of the oil was evaluated by micronucleus assay by evaluating produced micronuclei due to cytogenetic damage in binucleated lymphocytes. Results The results showed that essential oil significantly had cytotoxic and genotoxic effects at doses over 10µg/mL (pessential oil of Rose showed lower IC50 in cancer cell line (A549) in comparison with the normal cell line (NIH3T3). Conclusion Cytotoxic and genotoxic properties of essential oil of Rose in Kashan, Iran, are safe at a dose of 10µg/mL. Also, a good cytotoxic effect was shown and could be introduced as an anticancer compound. Further studies are needed with regard to anti-cancer effects of Rose essential oil. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  6. Cytogenetic, clinical, and cytologic characteristics of radiotherapy-related leukemias

    International Nuclear Information System (INIS)

    Philip, P.; Pedersen-Bjergaard, J.

    1988-01-01

    From 1978 to 1985, we observed eight cases of acute nonlymphocytic leukemia or preleukemia, three cases of acute lymphoblastic leukemia, and three cases of chronic myeloid leukemia in patients previously treated exclusively with radiotherapy for other tumor types. The latent period from administration of radiotherapy to development of leukemia varied between 12 and 243 months. Clonal chromosome aberrations reported previously as characteristic of acute nonlymphocytic leukemia following therapy with alkylating agents were observed in three of the eight patients with acute nonlymphocytic leukemia (5q- and -7) and in two of the three patients with acute lymphoblastic leukemia (-7 and 12p-). All three patients with radiotherapy-related chronic myeloid leukemia presented a t(9;22)(q34;q11). The results suggest that cytogenetic characteristics may reflect the etiology in radiation-induced acute leukemias, whereas radiation-related chronic myeloid leukemia does not seem to differ chromosomally from de novo cases of the disease

  7. Infection and childhood leukemia: review of evidence

    Directory of Open Access Journals (Sweden)

    Raquel da Rocha Paiva Maia

    2013-12-01

    Full Text Available OBJECTIVE : To analyze studies that evaluated the role of infections as well as indirect measures of exposure to infection in the risk of childhood leukemia, particularly acute lymphoblastic leukemia. METHODS : A search in Medline, Lilacs, and SciELO scientific publication databases initially using the descriptors “childhood leukemia” and “infection” and later searching for the words “childhood leukemia” and “maternal infection or disease” or “breastfeeding” or “daycare attendance” or “vaccination” resulted in 62 publications that met the following inclusion criteria: subject aged ≤ 15 years; specific analysis of cases diagnosed with acute lymphoblastic leukemia or total leukemia; exposure assessment of mothers’ or infants’ to infections (or proxy of infection, and risk of leukemia. RESULTS : Overall, 23 studies that assessed infections in children support the hypothesis that occurrence of infection during early childhood reduces the risk of leukemia, but there are disagreements within and between studies. The evaluation of exposure to infection by indirect measures showed evidence of reduced risk of leukemia associated mainly with daycare attendance. More than 50.0% of the 16 studies that assessed maternal exposure to infection observed increased risk of leukemia associated with episodes of influenza, pneumonia, chickenpox, herpes zoster, lower genital tract infection, skin disease, sexually transmitted diseases, Epstein-Barr virus, and Helicobacter pylori . CONCLUSIONS : Although no specific infectious agent has been identified, scientific evidence suggests that exposure to infections has some effect on childhood leukemia etiology.

  8. Thrombocytopenia in leukemia: Pathogenesis and prognosis.

    Science.gov (United States)

    Shahrabi, Saeid; Behzad, Masumeh Maleki; Jaseb, Kaveh; Saki, Najmaldin

    2018-02-20

    Leukemias, a heterogeneous group of hematological disorders, are characterized by ineffective hematopoiesis and morphologic abnormalities of hematopoietic cells. Thrombocytopenia is a common problem among leukemia types that can lead to hemorrhagic complications in patients. The purpose of this review article is to identify the conditions associated with the incidence of thrombocytopenia in leukemias. It can be stated that although translocations have been considered responsible for this complication in many studies, other factors such as bone marrow failure, genes polymorphism, a mutation in some transcription factors, and the adverse effects of treatment could be associated with pathogenesis and poor prognosis of thrombocytopenia in leukemias. Considering the importance of thrombocytopenia in leukemias, it is hoped that the recognition of risk factors increasing the incidence of this complication in leukemic patients would be useful for prevention and treatment of this disorder.

  9. [Cytotoxic effect of Vibrio cholerae non-O1 on Vero cells].

    Science.gov (United States)

    Figueroa-Arredondo, P; García-Lozano, H; Gutiérrez-Cogco, L; Valdespino-Gómez, J L

    1994-01-01

    At the present time there is still in Mexico a diarrhoeal outbreak due to Vibrio cholerae O1. In INDRE we have isolated from the same outbreak last year (jan-apr), 70 strains of Vibrio cholerae Non-O1. These were isolated from patients with a diarrhoeal illness different from cholera. Patients were of different ages and sex, and from various geographic areas. The isolated strains were confirmed by serological agglutination test with polyclonal antisera, and they neither belong to O1 serogroup or O139. We assayed all the 70 strains in Vero cells, searching for cytotoxic effect, probably attributed to cholera toxin, or any other toxin. The strains were screened by PCR for cholera toxin gene detection, and negative results were obtained. We have found only one CT-producer strain, but it was a rough one so, we are not able to affirm that is not a V. cholerae O1 serotype. Vibrio cholerae Non-O1 strains, tested in Vero cells assay, produced cytotoxic effect within 24 h. It was found that 48/70 strains (66.6%), had cytotoxic activity, showing rounding and then lysis of cells. From our results we concluded that this cytotoxic effect, is not cholera toxin related, instead we propose it could be due to an unknown virulence factor, probably a different toxin in mexican Vibrio cholerae Non-O1 strains.

  10. Cancers other than leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, G W; Kato, H [Radiation Effects Research Foundation, Hiroshima (Japan)

    1975-09-01

    Cancers which are unlikely to appear among atomic bomb survirors in excess of natural incidence include skin cancer and bone cancer, as these appear to require for their initiation doses that are incompatible with life if administered on a whole body basis. Although chronic lymphocytic leukemia continues to provide an important exception, and for many sites of cancer there is not yet evidence that radiation has increased incidence above normal levels, the data on A-bomb survivors are otherwise consistent with the hypothesis that the carcinogenic effect of ionizing radiation is general, involving all tissues. Studies of cancer among A-bomb survivors are notably limited with respect to the influence of variables other than dose, age, sex, and time. It seems highly desirable that other risk factors be studied in conjunction with radiation dose and demographic variables in an effort to detect interactions that might provide clues as to the etiology of cancer and as to the mechanisms by which ionizing radiation produces cancer. Provisional estimates suggest that the absolute risk of cancer, in terms of excess cases per 10/sup 6/ person-year rads (T65 dose) are about 1.6 for leukemia, 1.2 for thyroid, 2.1 for breast and 2.0 for lung, when estimation is based on age-ATB groups that have demonstrated these effects.

  11. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    International Nuclear Information System (INIS)

    Wang, Jiying; Rao, Qing; Wang, Min; Wei, Hui; Xing, Haiyan; Liu, Hang; Wang, Yanzhong; Tang, Kejing; Peng, Leiwen; Tian, Zheng; Wang, Jianxiang

    2009-01-01

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  12. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiying [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China); Rao, Qing, E-mail: raoqing@gmail.com [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China); Wang, Min; Wei, Hui; Xing, Haiyan; Liu, Hang; Wang, Yanzhong; Tang, Kejing; Peng, Leiwen; Tian, Zheng; Wang, Jianxiang [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China)

    2009-09-04

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  13. Chemical Composition, Biological and Cytotoxic Activities of Plant Extracts and Compounds Isolated from Ferula lutea

    Directory of Open Access Journals (Sweden)

    Mansour Znati

    2014-02-01

    Full Text Available The present work describes the phytochemical study on Ferula lutea flowers. Total phenolics and flavonoids of the n-butanol and ethyl acetate extracts were quantified (phenolics [40.68–52.29 mg gallic acid equivalent/g of dry weight], flavonoids [12.38–14.72 mg quercitin/g dry weight]. Two diastereoisomers were isolated and identified using spectroscopic techniques (1D, 2D NMR and GC-MS. The extracts and diastereoisomers were tested for antioxidant, antiacetylcholinesterase, antimicrobial, antidiabectic, cytotoxic (leukemia cell line activities and allelopathic potentialities. The strongest antioxidant activity was obtained for the ethyl acetate extract (IC50 = 12.8 ± 1.29 µg/mL. The two extracts exhibited high antidiabetic activity (54.1 and 52.1% at 40 µg/mL.

  14. Appearance and Disappearance of Chronic Myeloid Leukemia (CML) in Patient with Chronic Lymphocytic Leukemia (CLL)

    OpenAIRE

    Payandeh, Mehrdad; Sadeghi, Edris; Khodarahmi, Reza; Sadeghi, Masoud

    2014-01-01

    Chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) are the most common leukemias of the elderly (>43 year). However, the sequential occurrence of CML followed by CLL in the same patient is extremely rare. In our report, a 52-year-old female was diagnosed with CLL (type of bone marrow (BM) infiltration was nodular and interstitial) and was treated with chlorambucil. 64 months after the diagnosis of CLL, she developed CML. She was treated with imatinib (400mg/day). After a fe...

  15. Risk Groups for Childhood Acute Lymphoblastic Leukemia

    Science.gov (United States)

    ... cells in the blood at the time of diagnosis. Whether the leukemia cells began from B lymphocytes or T lymphocytes. ... How long it is between the time of diagnosis and when the leukemia comes back. Whether the leukemia comes back in ...

  16. Treatment Options for Childhood Acute Lymphoblastic Leukemia

    Science.gov (United States)

    ... cells in the blood at the time of diagnosis. Whether the leukemia cells began from B lymphocytes or T lymphocytes. ... How long it is between the time of diagnosis and when the leukemia comes back. Whether the leukemia comes back in ...

  17. General Information about Childhood Acute Lymphoblastic Leukemia

    Science.gov (United States)

    ... cells in the blood at the time of diagnosis. Whether the leukemia cells began from B lymphocytes or T lymphocytes. ... How long it is between the time of diagnosis and when the leukemia comes back. Whether the leukemia comes back in ...

  18. Magnetic microgels for drug targeting applications: Physical–chemical properties and cytotoxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Turcu, Rodica, E-mail: rodica.turcu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca (Romania); Craciunescu, Izabell [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca (Romania); Garamus, Vasil M. [Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, 21502 Geesthacht (Germany); Janko, Christina; Lyer, Stefan; Tietze, Rainer; Alexiou, Christoph [ENT-Department, Else Kröner-Fresenius Stiftung-Professorship, Section for Experimental Oncology and Nanomedicine (SEON), University Hospital Erlangen (Germany); Vekas, Ladislau, E-mail: vekas@acad-tim.tm.edu.ro [Romanian Academy-Timisoara Branch, CFATR, Laboratory of Magnetic Fluids, Mihai Viteazul Street 24, 300223 Timisoara (Romania)

    2015-04-15

    Magnetoresponsive microgels with high saturation magnetization values have been obtained by a strategy based on the miniemulsion method using high colloidal stability organic carrier ferrofluid as primary material. Hydrophobic nanoparticles Fe{sub 3}O{sub 4}/oleic acid are densely packed into well-defined spherical nanoparticle clusters coated with polymers with sizes in the range 40–350 nm. Physical–chemical characteristics of magnetic microgels were investigated by TEM, SAXS, XPS and VSM measurements with the focus on the structure–properties relationship. The impact of magnetic microgels loaded with anticancer drug mitoxantrone (MTO) on the non-adherent human T cell leukemia line Jurkat was investigated in multiparameter flow cytometry. We showed that both MTO and microgel-loaded MTO penetrate into cells and both induce apoptosis and later secondary necrosis in a time- and dose dependent manner. In contrast, microgels without MTO are not cytotoxic in the corresponding concentrations. Our results show that MTO-loaded microgels are promising structures for application in magnetic drug targeting. - Highlights: • Densely packed spherical clusters of magnetic nanoparticles were obtained. • High magnetization microgels with superparamagnetic behavior are reported. • The facile and reproducible synthesis procedure applied is easy to be up-scaled. • The toxicity tests show that magnetic microgels are not cytotoxic. • We show that mitoxantrone loaded microgels induce death of Jurkat cells.

  19. Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro

    International Nuclear Information System (INIS)

    Kawasaki, E.S.; Clark, S.S.; Coyne, M.Y.; Smith, S.D.; Champlin, R.; Witte, O.N.; McCormick, F.P.

    1988-01-01

    The Philadelphia chromosome is present in more than 95% of chronic myeloid leukemia patients and 13% of acute lymphocytic leukemia patients. The Philadelphia translocation, t(9;22), fuses the BCR and ABL genes resulting in the expression of leukemia-specific, chimeric BCR-ABL messenger RNAs. To facilitate diagnosis of these leukemias, the authors have developed a method of amplifying and detecting only the unique mRNA sequences, using an extension of the polymerase chain reaction technique. Diagnosis of chronic myeloid and acute lymphocytic leukemias by this procedure is rapid, much more sensitive than existing protocols, and independent of the presence or absence of an identifiable Philadelphia chromosome

  20. δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    De Siervi, Adriana; Vazquez, Elba S; Rezaval, Carolina; Rossetti, María V; Batlle, Alcira M del [Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Argentine National Research Council (CONICET), Department of Biological Chemistry, FCEN, University of Buenos Aires (Argentina)

    2002-01-01

    Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, δ-aminolevulinic acid (ALA) and porphobilinogen (PBG). ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations.

  1. δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    del Batlle Alcira M

    2002-03-01

    Full Text Available Abstract Background Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, δ-aminolevulinic acid (ALA and porphobilinogen (PBG. ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. Results We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations.

  2. δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines

    International Nuclear Information System (INIS)

    De Siervi, Adriana; Vazquez, Elba S; Rezaval, Carolina; Rossetti, María V; Batlle, Alcira M del

    2002-01-01

    Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, δ-aminolevulinic acid (ALA) and porphobilinogen (PBG). ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations

  3. The role of reactive oxygen species in WP 631-induced death of human ovarian cancer cells: a comparison with the effect of doxorubicin.

    Science.gov (United States)

    Rogalska, Aneta; Gajek, Arkadiusz; Szwed, Marzena; Jóźwiak, Zofia; Marczak, Agnieszka

    2011-12-01

    In the present study, we investigated the anticancer activity of WP 631, a new anthracycline analog, in weakly doxorubicin-resistant SKOV-3 ovarian cancer cells. We studied the time-course of apoptotic and necrotic events: the production of reactive oxygen species (ROS) and changes in the mitochondrial membrane potential in human ovarian cancer cells exposed to WP 631 in the presence and absence of an antioxidant, N-acetylcysteine (NAC). The effect of WP 631 was compared with the activity of doxorubicin (DOX), the best known first-generation anthracycline. Cytotoxic activity was determined by the MTT assay. The morphological changes characteristic of apoptosis and necrosis in drug-treated cells were analyzed by double staining with Hoechst 33258 and propidium iodide (PI) using fluorescence microscopy. The production of reactive oxygen species and changes in mitochondrial membrane potential were studied using specific fluorescence probes: DCFH2-DA and JC-1, respectively. The experiments showed that WP 631 was three times more cytotoxic than DOX in the tested cell line. It was found that the new anthracycline analog induced mainly apoptosis and, marginally, necrosis. Apoptotic cell death was associated with morphological changes and a decrease in mitochondrial membrane potential. In comparison to DOX, the novel bisanthracycline induced a significantly higher level of ROS and a greater drop in the membrane potential. The results provide direct evidence that the novel anthracycline WP 631 is considerably more cytotoxic to human SKOV-3 ovarian cancer cells than doxorubicin. The drug can produce ROS, which are immediately involved in the induction of apoptotic cell death. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Acute myeloid leukemia (AML) - children

    Science.gov (United States)

    Acute myeloid leukemia is a cancer of the blood and bone marrow. Bone marrow is the soft tissue inside ... develops quickly. Both adults and children can get acute myeloid leukemia ( AML ). This article is about AML in children.

  5. Induction of apoptosis by Armillaria mellea constituent armillarikin in human hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Chen YJ

    2016-08-01

    Full Text Available Yu-Jen Chen,1–4 Chien-Chih Chen,5 Huey-Lan Huang6 1Department of Medical Research, 2Department of Radiation Oncology, Mackay Memorial Hospital, 3Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, 4Institute of Pharmacology, Taipei Medical University, Taipei, 5Department of Biotechnology, HungKuang University, Taichung, 6Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan Abstract: Armillaria mellea is a honey mushroom often used in the traditional Chinese medicine “Tianma”. Currently, this medicinal mushroom is also used as a dietary supplement in numerous Western and Eastern countries. Armillarikin was isolated from A. mellea, and we previously discovered that it induced cytotoxicity in human leukemia cells. In this study, we further investigated the cytotoxicity of armillarikin against liver and intrahepatic bile duct cancer cells. Armillarikin was cytotoxic against human hepatocellular carcinoma Huh7, HA22T, and HepG2 cells based on the 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium and alamarBlue® assays. Armillarikin treatment also induced the collapse of the mitochondrial transmembrane potential of these cells. Furthermore, armillarikin-induced apoptotic cell death was demonstrated by sub-G1 chromosomal DNA formation by using flow cytometry. In addition, the apoptosis was inhibited by the pan-caspase inhibitor, Z-VAD-fmk. Immunoblotting also revealed the armillarikin-induced activation of procaspase-3, -8, and -9 and upregulation of the apoptosis- and cell cycle arrest-related phospho-histones 2 and 3, respectively. Moreover, reactive oxygen species scavengers also inhibited the armillarikin-induced apoptosis in human hepatocellular carcinoma, suggesting that reactive oxygen species formation played an important role in the armillarikin-induced apoptosis of human hepatocellular carcinoma. In

  6. Systematic in-vitro evaluation of the NCI/NIH Developmental Therapeutics Program Approved Oncology Drug Set for the identification of a candidate drug repertoire for MLL-rearranged leukemia

    Directory of Open Access Journals (Sweden)

    Hoeksema KA

    2011-09-01

    Full Text Available Kimberley A Hoeksema1, Aarthi Jayanthan1, Todd Cooper2, Lia Gore3, Tanya Trippett4, Jessica Boklan6, Robert J Arceci5, Aru Narendran11Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, AB, Canada; 2Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA; 3Center for Cancer and Blood Disorders, Children's Hospital, University of Colorado Denver, Aurora, CO, USA; 4Memorial Sloan-Kettering Cancer Center, New York, NY, USA; 5Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; 6Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, USAAbstract: Despite significant progress made in the overall cure rate, the prognosis for relapsed and refractory malignancies in children remains extremely poor. Hence, there is an urgent need for studies that enable the timely selection of appropriate agents for Phase I clinical studies. The Pediatric Oncology Experimental Therapeutics Investigators' Consortium (POETIC is systematically evaluating libraries of known and novel compounds for activity against subsets of high-risk pediatric malignancies with defined molecular aberrations for future clinical development. In this report, we describe the in-vitro activity of a diverse panel of approved oncology drugs against MLL-rearranged pediatric leukemia cell lines. Agents in the Approved Oncology Drug Set II (National Cancer Institute/National Institutes of Health Developmental Therapeutics Program were evaluated by in-vitro cytotoxicity assays in pediatric acute lymphoblastic leukemia and acute myeloid leukemia cell lines with MLL gene rearrangements. Validation studies were carried out with patient leukemia cells in culture. Comparative analysis for toxicity against nonmalignant cells was evaluated in normal bone marrow stromal cells and normal human lymphocytes. Results from this study show that 42 of the 89 agents tested have

  7. Cytotoxic sesquiterpene lactones from the aerial parts of Inula aucheriana.

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Gohari

    2015-06-01

    Full Text Available Inula aucheriana DC is a member of the family Asteraceae which is known to produce cytotoxic secondary metabolites noted as sesquiterpene lactones. In the present study, sesquiterpene lactones inuchinenolide B, 6-deoxychamissonolide (stevin and 14-acetoxy-1β,5α,7αH-4β-hydroxy-guai-9(10,11(13-dien-12,8α-olide were isolated from I. aucheriana. Inuchinenolide B and 14-acetoxy-1β,5α,7αH-4β-hydroxy-guai-9(10,11(13-dien-12,8α-olide were further evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay to demonstrate cytotoxic activity with IC50 values of (56.6, 19.0, (39.0, 11.8, and (55.7, 15.3 μg/mL against HepG-2, MCF-7 and A-549 cells, respectively. The cytotoxic activity of the two evaluated sesquiterpene lactones partly explains the cytotoxic activity that was previously observed for the extracts of Inula aucheriana. The isolated compounds could be further investigated in cancer research studies.

  8. 92R Monoclonal Antibody Inhibits Human CCR9+ Leukemia Cells Growth in NSG Mice Xenografts.

    Science.gov (United States)

    Somovilla-Crespo, Beatriz; Martín Monzón, Maria Teresa; Vela, Maria; Corraliza-Gorjón, Isabel; Santamaria, Silvia; Garcia-Sanz, Jose A; Kremer, Leonor

    2018-01-01

    CCR9 is as an interesting target for the treatment of human CCR9 + -T cell acute lymphoblastic leukemia, since its expression is limited to immature cells in the thymus, infiltrating leukocytes in the small intestine and a small fraction of mature circulating T lymphocytes. 92R, a new mouse mAb (IgG2a isotype), was raised using the A-isoform of hCCR9 as immunogen. Its initial characterization demonstrates that binds with high affinity to the CCR9 N-terminal domain, competing with the previously described 91R mAb for receptor binding. 92R inhibits human CCR9 + tumor growth in T and B-cell deficient Rag2 -/- mice. In vitro assays suggested complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity as possible in vivo mechanisms of action. Unexpectedly, 92R strongly inhibited tumor growth also in a model with compromised NK and complement activities, suggesting that other mechanisms, including phagocytosis or apoptosis, might also be playing a role on 92R-mediated tumor elimination. Taken together, these data contribute to strengthen the hypothesis of the immune system's opportunistic nature.

  9. Antioxidant and cytotoxic properties of lyophilized beer extracts on HL-60 cell line.

    Science.gov (United States)

    Tedesco, Idolo; Nappo, Annunziata; Petitto, Fabio; Iacomino, Giuseppe; Nazzaro, Filomena; Palumbo, Rosanna; Russo, Gian Luigi

    2005-01-01

    An impressive number of studies have suggested that red wine can be considered the protective beverage of choice against chronic and degenerative pathologies. Only few and controversial data are available on a potential, similar role for beer, which represents a more cost-effective, safe, and widely available beverage. Starting from the evidence that many antioxidant compounds present in red wine are also present at similar or even higher concentrations in beers, we first screened 48 commercially available beers and selected one (Mrt-HP) with very high polyphenol concentration and antioxidant activity estimated by ferric reducing antioxidant power. We demonstrated that a lyophilized preparation of Mrt-HP beer was cytotoxic with respect to a beer with low polyphenolic content (Trt-LP) when assayed on HL-60 human leukemia cell line. We measured a 60% decrease in cell viability at a polyphenol concentration of 250 microM quercetin equivalents. We also demonstrated that Mrt-HP cytotoxicity was not an artifact due to cell growth conditions because addition of Mrt-HP extracts to cell medium generated peroxide levels indistinguishable from controls. By means of cytofluorimetric analysis of pre-G1 population and caspase 3 activation, we demonstrated that Mrt-HP extracts activated apoptosis in HL-60 cell line. Finally, we found that the concentration of quercetin, resveratrol, and gallic acid in Mrt-HP was 10, 4.6, and 4.6-fold higher, respectively, than in Trt-LP, suggesting that the presence of these molecules might be responsible for the observed cytotoxicity. These data, together with the low in vivo beer toxicity reported in the literature, suggest a possible chemopreventive role for this beverage that requires further studies in animal models.

  10. Comparison of the Cytotoxic Potential of Cigarette Smoke and Electronic Cigarette Vapour Extract on Cultured Myocardial Cells

    Directory of Open Access Journals (Sweden)

    Dimitris Tsiapras

    2013-10-01

    Full Text Available Background: Electronic cigarettes (ECs have been marketed as an alternative-to-smoking habit. Besides chemical studies of the content of EC liquids or vapour, little research has been conducted on their in vitro effects. Smoking is an important risk factor for cardiovascular disease and cigarette smoke (CS has well-established cytotoxic effects on myocardial cells. The purpose of this study was to evaluate the cytotoxic potential of the vapour of 20 EC liquid samples and a “base” liquid sample (50% glycerol and 50% propylene glycol, with no nicotine or flavourings on cultured myocardial cells. Included were 4 samples produced by using cured tobacco leaves in order to extract the tobacco flavour. Methods: Cytotoxicity was tested according to the ISO 10993-5 standard. By activating an EC device at 3.7 volts (6.2 watts—all samples, including the “base” liquid and at 4.5 volts (9.2 watts—four randomly selected samples, 200 mg of liquid evaporated and was extracted in 20 mL of culture medium. Cigarette smoke (CS extract from three tobacco cigarettes was produced according to ISO 3308 method (2 s puffs of 35 mL volume, one puff every 60 s. The extracts, undiluted (100% and in four dilutions (50%, 25%, 12.5%, and 6.25%, were applied to myocardial cells (H9c2; percent-viability was measured after 24 h incubation. According to ISO 10993-5, viability of 6.25% (viability: 76.9 ± 2.0% at 6.25%, 38.2 ± 0.5% at 12.5%, 3.1 ± 0.2% at 25%, 5.2 ± 0.8% at 50%, and 3.9 ± 0.2% at 100% extract concentration. Three EC extracts (produced by tobacco leaves were cytotoxic at 100% and 50% extract concentrations (viability range: 2.2%–39.1% and 7.4%–66.9% respectively and one (“Cinnamon-Cookies” flavour was cytotoxic at 100% concentration only (viability: 64.8 ± 2.5%. Inhibitory concentration 50 was >3 times lower in CS extract compared to the worst-performing EC vapour extract. For EC extracts produced by high-voltage and energy, viability was

  11. Cytotoxicity evaluation of ceramic particles of different sizes and shapes.

    Science.gov (United States)

    Yamamoto, Akiko; Honma, Rieko; Sumita, Masae; Hanawa, Takao

    2004-02-01

    When artificial hip or knee joints are implanted in the human body, they release metallic, ceramic, and polymeric debris into the surrounding tissues. The toxicity of the released particles is of two types: chemical, caused by the released soluble ions and monomers, and mechanical, a result of mechanical stimulation produced by the insoluble particles. In this study, the cytotoxicity of particles of TiO2, Al2O3, ZrO2, Si3N4, and SiC for murine fibroblasts and macrophages were examined to evaluate just their mechanical toxicity because these particles are not expected to release soluble metal ions. Different sizes and shapes of TiO2 particles were used to evaluate the effect of size and shape on particle cytotoxicity. The results suggest that the cytotoxicity of ceramic particles does not depend on their chemical species. Cytotoxicity levels were lower than those of corresponding metal ions, indicating that the mechanical toxicity of particles is lower than the chemical toxicity of released soluble ions and monomers. The differences in size did not affect the mechanical toxicity of these particles. The dendritic particles had a higher cytotoxicity level for macrophages than did spindle and spheric particles. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 244-256, 2004

  12. Distribution of onset of leukemia among atomic bomb survivors in the leukemia registry by dose, Hiroshima and Nagasaki, 1946-75

    International Nuclear Information System (INIS)

    Ishimaru, Toranosuke; Ichimaru, Michito; Mikami, Motoko; Yamada, Yasuaki; Tomonaga, Yuu.

    1982-03-01

    The data from the RERF Leukemia Registry for the years 1946-75 were used to determine the distribution of onset of acute leukemia and chronic granulocytic leukemia among atomic bomb survivors in relation to city, dose, and age at the time of the bomb (ATB). A total of 509 confirmed leukemia cases (297 in Hiroshima and 212 in Nagasaki) have occurred among A-bomb survivors in the open populations of these cities in these years. Analysis revealed that the onset of both acute leukemia and chronic granulocytic leukemia tends to shift to earlier years with increasing dose in Hiroshima, but in Nagasaki, although the onset of both types of leukemia was earlier in the high dose group than in the low dose or control groups, the latter two groups did not differ. The distribution of onset of acute leukemia in the three dose groups also depended upon age ATB. While the distribution of onset of acute leukemia among those survivors whose age ATB was less than 30 differed significantly in the three dose classes, this tendency was not observed among those individuals whose age ATB was 30 years or more. For chronic granulocytic leukemia, the onset was shifted to earlier years in the high dose group than in the control group regardless of age ATB in Hiroshima. These findings support the pattern of leukemogenesis observed in A-bomb survivors in the Life Span Study sample, a fixed cohort, in relation to city, dose, age ATB, and years after exposure. (author)

  13. AR-42 and Decitabine in Treating Patients With Acute Myeloid Leukemia

    Science.gov (United States)

    2018-03-12

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  14. Cytotoxicity and utility of 1-indanone in the synthesis of some new heterocycles.

    Science.gov (United States)

    Hegazi, Bahira; Mohamed, Hanan Ahmed; Dawood, Kamal Mohamed; Badria, Farid Abdel-Rahem

    2010-04-01

    Benzo[d]imidazole 3 and 1,2,4-triazin-5(2H)-one 6 were prepared by the reaction of starting ethyl (3-hydroxy-1H-inden-2-yl)(oxo)-acetate 2 with o-phenylenediamine and thiosemicarbazide respectively. Reaction of 1,4-dihydro-1-phenylindeno[1,2-c]pyrazole-3-carbohydrazide 8 with phenylisothiocyanate gave thiosemicarbazide 9, and its reaction with chloroacetic acid or phenacylbromides led to the formation of thiazolidinone-4-one 10 or 1,3-thiazoles 12a, b. The reactivity of hydrazide 8 towards fluorinated aldehyde, phthalic anhydride, and hydrazonoyl chlorides 15a, b was studied to give fluorinated hydrazones, imide bis-hydrazones 13-16. The newly synthesized compounds were screened for their cytotoxic activities and compounds 6, 8, 9 and 10 were found the most potentially cytotoxic. The detailed synthesis, spectroscopic and biological data are reported.

  15. Epidemiological assessment of leukemia in Kazakhstan, 2003- 2012.

    Science.gov (United States)

    Igissinov, Nurbek; Kulmirzayeva, Dariyana; Moore, Malcolm A; Igissinov, Saginbek; Baidosova, Gulnara; Akpolatova, Gulnur; Bukeyeva, Zhanar; Omralina, Yelvira

    2014-01-01

    Cancer is a major health problem facing the entire world, and Kazakhstan is not the exception. The aim of this study was to present an epidemiological assessment of leukemia in the population of Kazakhstan during 2003-2012. This descriptive and retrospective study was based on data obtained from all oncological organizations of the whole country. Age standardized incidence rates per 100,000 population for leukemia were calculated. Totally, 6,741 new cases of leukemia were registered in Kazakhstan during the 10 year period. The mean age of patients with leukemia was 48.5. The ASRs for leukemia among men and women were 5.3 and 3.6, respectively (pKazakhstan, especially in the north of the country. The incidence of leukemia was significantly higher in males and increased with age. Determining and controlling important risk factors of leukemia may lead to decrease in its burden.

  16. Pyrimidine nucleobase radical reactivity in DNA and RNA

    Science.gov (United States)

    Greenberg, Marc M.

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  17. Leukemia and lymphoma in atomic bomb survivors

    International Nuclear Information System (INIS)

    Finch, S.C.

    1984-01-01

    Leukemia has been observed to increase with increasing radiation dose in the A-bomb survivors of Hiroshima and Nagasaki. The first radiation-related cases occurred 3 to 5 years following exposure. The peak incidence years were about 7 to 8 years following exposure and the leukemogenic effect has decreased since that time, but it may last for 40 years or longer in the most heavily exposed persons. A bimodal susceptibility pattern was observed, with peaks following exposure during childhood and after age 50. Latent periods for the development of acute leukemia were shortest in the younger exposed persons. Both acute and chronic forms of leukemia occurred in exposed persons at younger ages in life than normally is expected. The most common types of radiation-induced leukemia were acute and chronic granulocytic in adults and children, and acute lymphocytic in children. The highest radiation-related leukemia risk was for chronic granulocytic leukemia following childhood exposure

  18. Imatinib treatment induces CD5+ B lymphocytes and IgM natural antibodies with anti-leukemic reactivity in patients with chronic myelogenous leukemia.

    Directory of Open Access Journals (Sweden)

    Silvia Catellani

    Full Text Available Imatinib mesylate is a first line treatment of Chronic Myelogenous Leukemia and of a rare form of gastrointestinal stromal cancer, where the response to the drug is also linked to the immune system activation with production of antineoplastic cytokines. In this study, forty patients in the chronic phase of disease, treated with imatinib mesylate, were analyzed. Bone marrow aspirates were drawn at diagnosis, after 3, 6, 12, 18 months for haematological, cytofluorimetric, cytogenetic, biomolecular evaluation and cytokine measurement. Responder and non responder patients were defined according to the European LeukemiaNet recommendations. In responder patients (n = 32, the percentage of bone marrow CD20(+CD5(+sIgM(+ lymphocytes, and the plasma levels of IgM, were significantly higher, at 3 months and up to 9 months, than in non responders. These IgM reacted with O-linked sugars expressed by leukemic cells and could induce tumor cell apoptosis. In responder patients the stromal-derived factor-1 and the B-lymphocyte-activating factor of the tumor necrosis factor family significantly raised in the bone marrow after imatinib administration, together with the bone morphogenetic proteins-2 and -7. All patients with high number of CD20(+CD5(+sIgM(+ cells and high stromal-derived factor-1 and B lymphocyte activating factor levels, underwent complete cytogenetic and/or molecular remission by 12 months. We propose that CD20(+CD5(+sIgM(+ lymphocytes producing anti-carbohydrate antibodies with anti-tumor activity, might contribute to the response to imatinib treatment. As in multivariate analysis bone marrow CD20(+CD5(+sIgM(+ cells and stromal-derived factor-1 and B-lymphocyte-activating factor levels were significantly related to cytogenetical and molecular changes, they might contribute to the definition of the pharmacological response.

  19. [Molecular characterization of atypical chronic myeloid leukemia and chronic neutrophilic leukemia].

    Science.gov (United States)

    Senín, Alicia; Arenillas, Leonor; Martínez-Avilés, Luz; Fernández-Rodríguez, Concepción; Bellosillo, Beatriz; Florensa, Lourdes; Besses, Carles; Álvarez-Larrán, Alberto

    2015-06-08

    Atypical chronic myeloid leukemia (aCML) and chronic neutrophilic leukemia (CNL) display similar clinical and hematological characteristics. The objective of the present study was to determine the mutational status of SETBP1 and CSF3R in these diseases. The mutational status of SETBP1 and CSF3R was studied in 7 patients with aCML (n = 3), CNL (n = 1) and unclassifiable myeloproliferative neoplasms (MPN-u) (n = 3). Additionally, mutations in ASXL1, SRSF2, IDH1/2, DNMT3A, and RUNX1 were also analyzed. SETBP1 mutations (G870S and G872R) were detected in 2 patients with MPN-u, and one of them also presented mutations in SRSF2 (P95H) and ASXL1 (E635fs). The CNL case showed mutations in CSFR3 (T618I), SETBP1 (G870S) and SRSF2 (P95H). No patient classified as aCML had mutations in SETBP1 or CSF3R. One of the patients with mutations evolved to acute myeloid leukemia, while the other 2 had disease progression without transformation to overt leukemia. The knowledge of the molecular alterations involved in these rare diseases is useful in the diagnosis and may have an impact on both prognosis and therapy. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  20. Trisomy/tetrasomy 13 in seven cases of acute leukemia.

    Science.gov (United States)

    Sreekantaiah, C; Baer, M R; Morgan, S; Isaacs, J D; Miller, K B; Sandberg, A A

    1990-11-01

    We report the clinical presentation and the morphologic, histochemical, and immunophenotypic characteristics of seven patients with acute leukemia who had trisomy/tetrasomy 13 as the sole cytogenetic abnormality in their leukemia. Five patients had trisomy 13 at diagnosis of acute leukemia. All five of these patients had undifferentiated leukemias. The sixth patient, who had French-American-British (FAB) type M2 acute nonlymphocytic leukemia (ANLL), and the seventh patient with biphenotypic acute leukemia developed the trisomic clone as a new abnormality late in the course of their disease. A review of the literature revealed 28 previously reported hematologic malignancies with trisomy 13 or tetrasomy 13q as a solitary cytogenetic abnormality. Trisomy 13 appears to represent another rare but nonrandom cytogenetic abnormality in acute leukemia. In our series trisomy 13 is largely associated with acute leukemia with little myeloid or lymphoid differentiation.

  1. Anti-inflammatory, cytotoxic and antioxidant effects of methanolic ...

    African Journals Online (AJOL)

    ... 67.05μg/ml (ABTS). Methanol extract was able to inhibit inflammation by in vitro about 85-90% (HRBC stabilization method) and in vivo about 40-45% (Paw oedema method) anti-inflammatory assays compared to standard produced 50.04% at 6h period. In cytotoxicity assay (MTT assay) methanolic extract exhibited IC50 ...

  2. Modification of the cytotoxic activity of mitomycin C

    International Nuclear Information System (INIS)

    Marshall, R.S.; Rauth, A.M.

    1985-01-01

    Utilizing a system in which oxygen levels could be altered and monitored during acute drug exposures, the authors have begun to characterize the cellular and molecular damage produced by MMC in CHO cells. The cytotoxic activity of MMC decreases sharply from 0 to 0.1% oxygen in solution, while from 0.1 to 20.0% there is little change. DNA crosslinking in cells was examined under these conditions by alkaline elution and found to be directly correlated with cell killing. While hypoxia increased crosslinking, significant levels were still observed under aerobic conditions. A cell-free assay for alkylation confirmed that overall levels increase in the absence of oxygen; however, negligible alkylation was observed under aerobic conditions. It was also noted that ascorbic acid present in the exposure medium (0.284 mM) increased the aerobic cytotoxicity without altering the hypoxic cytotoxicity. The present data suggest that MMC can be activated to an alkylating species by two mechanisms, one oxygen sensitive and one oxygen insensitive and that these two mechanisms may be independently modified

  3. Antinociceptive, cytotoxic and antibacterial activities of Cleome viscosa leaves

    Directory of Open Access Journals (Sweden)

    Utpal Bose

    2011-02-01

    Full Text Available The methanol extract of the dried leaves of Cleome viscosa L., Cleomaceae, was investigated for its possible antinociceptive, cytotoxic and antibacterial activities in animal models. The extract produced significant writhing inhibition in acetic acid-induced writhing in mice at the oral doses of 250 and 500 mg/kg body weight (p<0.001 comparable to the standard drug diclofenac sodium at the dose of 25 mg/kg of body weight (p<0.001. The crude extract produced the most prominent cytotoxic activity against brine shrimp Artemia salina (LC50 28.18 μg/mL and LC90 112.20 μg/mL. The extract of C. viscosa L. exhibited significant in vitro antibacterial activity against Staphylococcus saprophyticus, Shigella sonnie, Salmonella typhi, Vibrio cholera, Streptococcus epidermidis, Shigella flexneri and Staphylococcus aureus with the zones of inhibition ranging from 10.76 to 16.34 mm. The obtained results provide a support for the use of this plant in traditional medicine and its further investigation.

  4. Central nervous system in leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Phair, J P; Anderson, R E; Namiki, Hideo

    1964-03-12

    The present report summarizes the pertinent clinical and pathologic findings in 165 cases of leukemia in atomic bomb exposed victims autopsied during the period 1949 to 1962 at ABCC in Hiroshima and Nagasaki, Japan. Significant parenchymal hemorrhage occurred most often in acute myelogenous leukemia and was markedly increased in patients dying with high terminal white blood cell counts. Possible mechanisms involved in the pathogenesis of cerebral hemorrhage in leukemia are discussed. Subarachnoid hemorrhage and subdural hematoma were not related to leukocytosis but appeared to be influenced by marked thrombocytopenia. Leukemic infiltrates of a diffuse nature involving the meninges were paradoxically increased in patients receiving adequate chemotherapy. Meningeal tumors did not show this peculiar relationship to therapy and were not found in association with lymphatic leukemia. Infections involving the central nervous system were confined to patients receiving chemotherapy including steroids. 39 references, 3 figures, 4 tables.

  5. Cytotoxic effects of air freshener biocides in lung epithelial cells.

    Science.gov (United States)

    Kwon, Jung-Taek; Lee, Mimi; Seo, Gun-Baek; Kim, Hyun-Mi; Shim, Ilseob; Lee, Doo-Hee; Kim, Taksoo; Seo, Jung Kwan; Kim, Pilje; Choi, Kyunghee

    2013-09-01

    This study evaluated the cytotoxicity of mixtures of citral (CTR) and either benzisothiazolinone (BIT, Mix-CTR-BIT) or triclosan (TCS, Mix-CTR-TCS) in human A549 lung epithelial cells. We investigated the effects of various mix ratios of these common air freshener ingredients on cell viability, cell proliferation, reactive oxygen species (ROS) generation, and DNA damage. Mix-CTR-BIT and Mix-CTR-TCS significantly decreased the viability of lung epithelial cells and inhibited cell growth in a dose-dependent manner. In addition, both mixtures increased ROS generation, compared to that observed in control cells. In particular, cell viability, growth, and morphology were affected upon increase in the proportion of BIT or TCS in the mixture. However, comet analysis showed that treatment of cells with Mix-CTR-BIT or Mix-CTR-TCS did not increase DNA damage. Taken together, these data suggested that increasing the content of biocides in air fresheners might induce cytotoxicity, and that screening these compounds using lung epithelial cells may contribute to hazard assessment.

  6. Molecular analysis of the apoptotic effects of BPA in acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Del Pozzo Giovanna

    2009-06-01

    Full Text Available Abstract Background: BPA (bisphenol A or 2,2-bis(4-hydroxy-phenolpropane is present in the manufacture of polycarbonate plastic and epoxy resins, which can be used in impact-resistant safety equipment and baby bottles, as protective coatings inside metal food containers, and as composites and sealants in dentistry. Recently, attention has focused on the estrogen-like and carcinogenic adverse effects of BPA. Thus, it is necessary to investigate the cytotoxicity and apoptosis-inducing activity of this compound. Methods: Cell cycle, apoptosis and differentiation analyses; western blots. Results: BPA is able to induce cell cycle arrest and apoptosis in three different acute myeloid leukemias. Although some granulocytic differentiation concomitantly occurred in NB4 cells upon BPA treatment, the major action was the induction of apoptosis. BPA mediated apoptosis was caspase dependent and occurred by activation of extrinsic and intrinsic cell death pathways modulating both FAS and TRAIL and by inducing BAD phosphorylation in NB4 cells. Finally, also non genomic actions such as the early decrease of both ERK and AKT phosphorylation were induced by BPA thus indicating that a complex intersection of regulations occur for the apoptotic action of BPA. Conclusion: BPA is able to induce apoptosis in leukemia cells via caspase activation and involvement of both intrinsic and extrinsic pathways of apoptosis.

  7. Treatment Option Overview (Chronic Myelogenous Leukemia)

    Science.gov (United States)

    ... ALL Treatment Childhood AML Treatment Research Chronic Myelogenous Leukemia Treatment (PDQ®)–Patient Version General Information About Chronic Myelogenous Leukemia Go to Health Professional Version Key Points Chronic ...

  8. General Information about Chronic Myelogenous Leukemia

    Science.gov (United States)

    ... ALL Treatment Childhood AML Treatment Research Chronic Myelogenous Leukemia Treatment (PDQ®)–Patient Version General Information About Chronic Myelogenous Leukemia Go to Health Professional Version Key Points Chronic ...

  9. Increased Peripheral Blood Pro-Inflammatory/Cytotoxic Lymphocytes in Children with Bronchiectasis.

    Directory of Open Access Journals (Sweden)

    G Hodge

    Full Text Available Bronchiectasis (BE in children is common in some communities including Indigenous children in Australia. Relatively little is known about the nature of systemic inflammation in these children, especially the contribution of specific pro-inflammatory and cytotoxic lymphocyte subsets: T-cells, natural killer (NK cells and NKT-like cells. We have shown that these cells produce increased cytotoxic (granzyme b and perforin and inflammatory (IFNγ and TNFα mediators in several adult chronic lung diseases and hypothesised that similar changes would be evident in children with BE.Intracellular cytotoxic mediators perforin and granzyme b and pro-inflammatory cytokines were measured in T cell subsets, NKT-like and NK cells from blood and bronchoalveolar samples from 12 children with BE and 10 aged-matched control children using flow cytometry.There was a significant increase in the percentage of CD8+ T cells and T and NKT-like subsets expressing perforin/granzyme and IFNγ and TNFα in blood in BE compared with controls. There was a further increase in the percentage of pro-inflammatory cytotoxic T cells in Indigenous compared with non-Indigenous children. There was no change in any of these mediators in BAL.Childhood bronchiectasis is associated with increased systemic pro-inflammatory/cytotoxic lymphocytes in the peripheral blood. Future studies need to examine the extent to which elevated levels of pro-inflammatory cytotoxic cells predict future co-morbidities.

  10. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells

    Science.gov (United States)

    Putzhammer, Raphaela; Doppler, Christian; Jakschitz, Thomas; Heinz, Katharina; Förste, Juliane; Danzl, Katarina; Messner, Barbara; Bernhard, David

    2016-01-01

    The present study was conducted to provide toxicological data on e-cigarette vapours of different e-cigarette brands and liquids from systems viewed as leaders in the e-cigarette market and to compare e-cigarette vapour toxicity to the toxicity of conventional strong high-nicotine cigarette smoke. Using an adapted version of a previously constructed cigarette smoke constituent sampling device, we collected the hydrophilic fraction of e-cigarette vapour and exposed human umbilical vein endothelial cells (HUVECs) to the mixture of compounds present in the vapour of 4 different single-use e-cigarettes, 6 different liquid vapours produced by the same refillable e-cigarette, and one e-cigarette with an exchangeable liquid cartridge. After incubation of cells with various concentrations and for various periods of time we analysed cell death induction, proliferation rates, the occurrence of intra-cellular reactive oxygen species, cell morphology, and we also measured e-cigarette heating coil temperatures. Overall, conventional cigarette smoke extract showed the most severe impact on endothelial cells. However, some e-cigarette vapour extracts showed high cytotoxicity, inhibition of cell proliferation, and alterations in cell morphology, which were comparable to conventional high-nicotine cigarettes. The vapours generated from different liquids using the same e-cigarette show substantial differences, pointing to the liquids as an important source for toxicity. E-cigarette vapour-mediated induction of oxidative stress was significant in one out of the 11 analysed vapours. There is a high variability in the acute cytotoxicity of e-cigarette vapours depending on the liquid and on the e-cigarettes used. Some products showed toxic effects close to a conventional high-nicotine cigarette. Liquid nicotine, menthol content, and the formation of acute intracellular reactive oxygen species do not seem to be the central elements in e-cigarette vapour toxicity. PMID:27351725

  11. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells.

    Science.gov (United States)

    Putzhammer, Raphaela; Doppler, Christian; Jakschitz, Thomas; Heinz, Katharina; Förste, Juliane; Danzl, Katarina; Messner, Barbara; Bernhard, David

    2016-01-01

    The present study was conducted to provide toxicological data on e-cigarette vapours of different e-cigarette brands and liquids from systems viewed as leaders in the e-cigarette market and to compare e-cigarette vapour toxicity to the toxicity of conventional strong high-nicotine cigarette smoke. Using an adapted version of a previously constructed cigarette smoke constituent sampling device, we collected the hydrophilic fraction of e-cigarette vapour and exposed human umbilical vein endothelial cells (HUVECs) to the mixture of compounds present in the vapour of 4 different single-use e-cigarettes, 6 different liquid vapours produced by the same refillable e-cigarette, and one e-cigarette with an exchangeable liquid cartridge. After incubation of cells with various concentrations and for various periods of time we analysed cell death induction, proliferation rates, the occurrence of intra-cellular reactive oxygen species, cell morphology, and we also measured e-cigarette heating coil temperatures. Overall, conventional cigarette smoke extract showed the most severe impact on endothelial cells. However, some e-cigarette vapour extracts showed high cytotoxicity, inhibition of cell proliferation, and alterations in cell morphology, which were comparable to conventional high-nicotine cigarettes. The vapours generated from different liquids using the same e-cigarette show substantial differences, pointing to the liquids as an important source for toxicity. E-cigarette vapour-mediated induction of oxidative stress was significant in one out of the 11 analysed vapours. There is a high variability in the acute cytotoxicity of e-cigarette vapours depending on the liquid and on the e-cigarettes used. Some products showed toxic effects close to a conventional high-nicotine cigarette. Liquid nicotine, menthol content, and the formation of acute intracellular reactive oxygen species do not seem to be the central elements in e-cigarette vapour toxicity.

  12. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Raphaela Putzhammer

    Full Text Available The present study was conducted to provide toxicological data on e-cigarette vapours of different e-cigarette brands and liquids from systems viewed as leaders in the e-cigarette market and to compare e-cigarette vapour toxicity to the toxicity of conventional strong high-nicotine cigarette smoke. Using an adapted version of a previously constructed cigarette smoke constituent sampling device, we collected the hydrophilic fraction of e-cigarette vapour and exposed human umbilical vein endothelial cells (HUVECs to the mixture of compounds present in the vapour of 4 different single-use e-cigarettes, 6 different liquid vapours produced by the same refillable e-cigarette, and one e-cigarette with an exchangeable liquid cartridge. After incubation of cells with various concentrations and for various periods of time we analysed cell death induction, proliferation rates, the occurrence of intra-cellular reactive oxygen species, cell morphology, and we also measured e-cigarette heating coil temperatures. Overall, conventional cigarette smoke extract showed the most severe impact on endothelial cells. However, some e-cigarette vapour extracts showed high cytotoxicity, inhibition of cell proliferation, and alterations in cell morphology, which were comparable to conventional high-nicotine cigarettes. The vapours generated from different liquids using the same e-cigarette show substantial differences, pointing to the liquids as an important source for toxicity. E-cigarette vapour-mediated induction of oxidative stress was significant in one out of the 11 analysed vapours. There is a high variability in the acute cytotoxicity of e-cigarette vapours depending on the liquid and on the e-cigarettes used. Some products showed toxic effects close to a conventional high-nicotine cigarette. Liquid nicotine, menthol content, and the formation of acute intracellular reactive oxygen species do not seem to be the central elements in e-cigarette vapour toxicity.

  13. Residuals in post-chemotherapy, non-depressed patients with leukemia that is in remission

    Directory of Open Access Journals (Sweden)

    Peterson K. Rachel

    2016-04-01

    Full Text Available Debate persists regarding the occurrence and etiology of neurocognitive deficits associated with the utilization of chemotherapeutic agents, commonly referred to as “chemobrain”. While some have previously attributed these features to other factors such as fatigue, emotional reactivity, etc., growing literature suggests that in fact chemotherapeutic agents may be the cause. Although research has investigated these deficits, greater investigation is warranted. The current study investigated the presence of residual neurocognitive deficits in non-depressed patients post-chemotherapy with a history of leukemia that was in remission in comparison to healthy controls. Methods: participants included 16 individuals with a history of leukemia post-chemotherapy, in remission and without depression and 48 healthy controls. Participants were assessed using the WJ-III with data from the first seven subtests entered for analysis. A multivariate analysis of variance revealed significant differences existed between groups. By way of a discriminant function analysis, subtest/domain specific discrepancies were noted. Specifically, participants with a history of leukemia who were post-chemotherapy and without depression were found to perform significantly worse on visual-auditory learning, concept formations, and sound blending than did healthy controls. Findings are seen as additional support of the idea that neurocognitive deficits do in fact occur following chemotherapy. However, they are particularly of interest as they are seen even in the absence of emotional distress and outside the active treatment phase. Additional findings of importance and clinical relevance will be discussed.

  14. Perspectives on the causes of childhood leukemia.

    Science.gov (United States)

    Wiemels, Joseph

    2012-04-05

    Acute leukemia is the most common cancer in children but the causes of the disease in the majority of cases are not known. About 80% are precursor-B cell in origin (CD19+, CD10+), and this immunophenotype has increased in incidence over the past several decades in the Western world. Part of this increase may be due to the introduction of new chemical exposures into the child's environment including parental smoking, pesticides, traffic fumes, paint and household chemicals. However, much of the increase in leukemia rates is likely linked to altered patterns of infection during early childhood development, mirroring causal pathways responsible for a similarly increased incidence of other childhood-diagnosed immune-related illnesses including allergy, asthma, and type 1 diabetes. Factors linked to childhood leukemia that are likely surrogates for immune stimulation include exposure to childcare settings, parity status and birth order, vaccination history, and population mixing. In case-control studies, acute lymphoblastic leukemia (ALL) is consistently inversely associated with greater exposure to infections, via daycare and later birth order. New evidence suggests also that children who contract leukemia may harbor a congenital defect in immune responder status, as indicated by lower levels of the immunosuppressive cytokine IL-10 at birth in children who grow up to contract leukemia, as well as higher need for clinical care for infections within the first year of life despite having lower levels of exposure to infections. One manifestation of this phenomenon may be leukemia clusters which tend to appear as a leukemia "outbreak" among populations with low herd immunity to a new infection. Critical answers to the etiology of childhood leukemia will require incorporating new tools into traditional epidemiologic approaches - including the classification of leukemia at a molecular scale, better exposure assessments at all points in a child's life, a comprehensive

  15. Genetics Home Reference: PDGFRB-associated chronic eosinophilic leukemia

    Science.gov (United States)

    ... associated chronic eosinophilic leukemia PDGFRB-associated chronic eosinophilic leukemia Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description PDGFRB -associated chronic eosinophilic leukemia is a type of cancer of blood-forming ...

  16. Leukemia -- Eosinophilic

    Science.gov (United States)

    ... social workers, and patient advocates. Cancer.Net Guide Leukemia - Eosinophilic Introduction Statistics Risk Factors Symptoms and Signs Diagnosis Stages Treatment Options About Clinical Trials Latest Research ...

  17. T Cell Receptor Vβ Staining Identifies the Malignant Clone in Adult T cell Leukemia and Reveals Killing of Leukemia Cells by Autologous CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Aileen G Rowan

    2016-11-01

    Full Text Available There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL, human T lymphotropic virus type-1 (HTLV-1, contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1 to identify monoclonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL. Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was significantly enhanced after in vitro culture, and donors with an ATL clone that expressed the HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL cells. We conclude that some patients with ATL possess functional tumour-specific CTLs which could be exploited to contribute to control of the disease.

  18. Gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency in populations of pulmonary adenocarcinoma (A549).

    Science.gov (United States)

    Coyne, Cody P; Narayanan, Lakshmi

    2017-03-01

    One molecular-based approach that increases potency and reduces dose-limited sequela is the implementation of selective 'targeted' delivery strategies for conventional small molecular weight chemotherapeutic agents. Descriptions of the molecular design and organic chemistry reactions that are applicable for synthesis of covalent gemcitabine-monophosphate immunochemotherapeutics have to date not been reported. The covalent immunopharmaceutical, gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R] was synthesized by reacting gemcitabine with a carbodiimide reagent to form a gemcitabine carbodiimide phosphate ester intermediate which was subsequently reacted with imidazole to create amine-reactive gemcitabine-(5'-phosphorylimidazolide) intermediate. Monoclonal anti-IGF-1R immunoglobulin was combined with gemcitabine-(5'-phosphorylimidazolide) resulting in the synthetic formation of gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R]. The gemcitabine molar incorporation index for gemcitabine-(5'-phosphoramidate)-[anti-IGF-R1] was 2.67:1. Cytotoxicity Analysis - dramatic increases in antineoplastic cytotoxicity were observed at and between the gemcitabine-equivalent concentrations of 10 -9  M and 10 -7  M where lethal cancer cell death increased from 0.0% to a 93.1% maximum (100.% to 6.93% residual survival), respectively. Advantages of the organic chemistry reactions in the multistage synthesis scheme for gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R] include their capacity to achieve high chemotherapeutic molar incorporation ratios; option of producing an amine-reactive chemotherapeutic intermediate that can be preserved for future synthesis applications; and non-dedicated organic chemistry reaction scheme that allows substitutions of either or both therapeutic moieties, and molecular delivery platforms. © 2016 The Authors Chemical Biology & Drug Design Published by John Wiley & Sons Ltd.

  19. Cytotoxic and mutagenic effects of specific carcinogen-DNA adducts in diploid human fibroblasts

    International Nuclear Information System (INIS)

    McCormick, J.J.; Maher, V.M.

    1985-01-01

    A comparison of the cytotoxicity and mutagenicity of a series of carcinogens in normal diploid human fibroblasts and in cells deficient in one or more DNA repair processes has provided insight into the specific DNA adduct(s) responsible for these biological effects. The carcinogens tested include ultraviolet radiation; reactive derivatives of structurally related aromatic amides; metabolites of benzo(a)pyrene; the simple alkylating agents N-methyl-N'-nitro-N-nitrosoguanidine and N-ethyl-N-nitrosourea; and aflatoxin B 1 dichloride, a model for the reactive 2,3-epoxide of aflatoxin B 1 . Exponentially growing cells were exposed to agents and assayed for mutations and cell killing. Cells deficient in repair of particular DNA adducts or lesions proved more sensitive to the agent causing those lesions than did normally repairing cells. Many of the carcinogens were compared for their mutagenic and/or cytotoxic effect, not only as a function of dose administered, but also as a function of the initial number of adducts or photoproducts induced in DNA and the number remaining at critical times posttreatment. The results demonstrated a high correlation between the number of DNA lesions remaining unexcised at the time the DNA was replicated and frequency of mutations induced. Comparative studies of the frequency of UV-induced transformation of normal and repair-deficient cells showed this also to be true for transformation

  20. Extramedullary leukemia in children presenting with proptosis

    Directory of Open Access Journals (Sweden)

    Naik Milind

    2009-01-01

    Full Text Available Abstract Background We highlight the orbital manifestations of acute myeloid leukemia and the role of peripheral blood smear in the diagnosis of these cases. A total of 12 patients who presented with proptosis and were subsequently diagnosed to have acute myeloid leukemia based on incision biopsy or peripheral blood smear were included in the study. Results A retrospective review of all cases of acute myeloid leukemia presenting to the Orbital clinic was performed. The age at presentation, gender, presenting features, duration of symptoms and fundus features were noted. In addition the temporal relationship of the orbital disease to the diagnosis of leukemia, laterality, location of the orbital mass, imaging features and the diagnostic tools used to diagnose leukemia were noted. The median age at presentation was 6 years. The male: female ratio was 0.7:1. None of these patients had been diagnosed earlier as having acute myeloid leukemia. The presenting features included proptosis in all patients, orbital mass in 5 (41.7%, visual symptoms in 2 (16.7% and subconjunctival hemorrhage in one patient (8.3%. A diagnosis of acute myeloid leukemia was established by incision biopsy in 4 patients, subsequently confirmed by peripheral blood smear testing and bone marrow biopsy in 2 patients which revealed the presence of systemic involvement. Imprint smears of the biopsy identified blasts in 2 of 4 cases. In 8 patients presenting with ocular manifestations, diagnosis was established by peripheral blood smear examination alone which revealed a diagnosis of acute myeloid leukemia. Conclusion A peripheral blood smear should be performed in all cases of sudden onset proptosis or an orbital mass in children and young adults along with an orbital biopsy. It can always be complemented with a bone marrow biopsy especially in cases of aleukemic leukemia or when the blood smear is inconclusive.

  1. Pharmacogenetics in Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Cheok, Meyling H.; Pottier, Nicolas; Kager, Leo

    2009-01-01

    Progress in the treatment of acute leukemia in children has been remarkable, from a disease being lethal four decades ago to current cure rates exceeding 80%. This exemplary progress is largely due to the optimization of existing treatment modalities rather than the discovery of new antileukemic agents. However, despite these high cure rates, the annual number of children whose leukemia relapses after their initial therapy remains greater than that of new cases of most types of childhood cancers. The aim of pharmacogenetics is to develop strategies to personalize treatment and tailor therapy to individual patients, with the goal of optimizing efficacy and safety through better understanding of human genome variability and its influence on drug response. In this review, we summarize recent pharmacogenomic studies related to the treatment of pediatric acute lymphoblastic leukemia. These studies illustrate the promise of pharmacogenomics to further advance the treatment of human cancers, with childhood leukemia serving as a paradigm. PMID:19100367

  2. Appearance and Disappearance of Chronic Myeloid Leukemia (CML) in Patient with Chronic Lymphocytic Leukemia (CLL).

    Science.gov (United States)

    Payandeh, Mehrdad; Sadeghi, Edris; Khodarahmi, Reza; Sadeghi, Masoud

    2014-10-01

    Chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) are the most common leukemias of the elderly (>43 year). However, the sequential occurrence of CML followed by CLL in the same patient is extremely rare. In our report, a 52-year-old female was diagnosed with CLL (type of bone marrow (BM) infiltration was nodular and interstitial) and was treated with chlorambucil. 64 months after the diagnosis of CLL, she developed CML. She was treated with imatinib (400mg/day). After a few months, signs of CML were disappeared and CLL became dominant. This is first reported case.

  3. Study of ultrasonic imagine of spleen in patients with leukemia

    International Nuclear Information System (INIS)

    Zheng Hui; Zhou Chunyan; Jiang Ju; Luo Liying; Huang Yanhong

    2011-01-01

    To investigate spleen ultrasonic imagine in patients with leukemia and to provide basis information for preventing and treat disease,the spleens imaging of 158 patients with leukemia were detected by B mode ultrasonicgraphy and the data of clinical medical examination were analyzed.The results showed that the spleens' ultrasonic imagine of patients with leukemia were not related to the degree of anemia.The ultrasonic imagines of spleen in patients with chronic leukemia were different to the other kinds of leukemia.The ultrasonic imagine of spleens in leukemia patients are related to types and development of leukemia.The B-ultrasound screening should be used to help clinical diagnosis and treatment of patients with leukemia. (authors)

  4. Pay-as-bid based reactive power market

    International Nuclear Information System (INIS)

    Amjady, N.; Rabiee, A.; Shayanfar, H.A.

    2010-01-01

    In energy market clearing, the offers are stacked in increasing order and the offer that intersects demand curve, determines the market clearing price (MCP). In reactive power market, the location of reactive power compensator is so important. A low cost reactive producer may not essentially be favorable if it is far from the consumer. Likewise, a high cost local reactive compensator at a heavily loaded demand center of network could be inevitably an alternative required to produce reactive power to maintain the integrity of power system. Given the background, this paper presents a day-ahead reactive power market based on pay-as-bid (PAB) mechanism. Generators expected payment function (EPF) is used to construct a bidding framework. Then, total payment function (TPF) of generators is used as the objective function of optimal power flow (OPF) problem to clear the PAB based market. The CIGRE-32 bus test system is used to examine the effectiveness of the proposed reactive power market.

  5. Pay-as-bid based reactive power market

    Energy Technology Data Exchange (ETDEWEB)

    Amjady, N. [Department of Electrical Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Rabiee, A., E-mail: Rabiee@iust.ac.i [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2010-02-15

    In energy market clearing, the offers are stacked in increasing order and the offer that intersects demand curve, determines the market clearing price (MCP). In reactive power market, the location of reactive power compensator is so important. A low cost reactive producer may not essentially be favorable if it is far from the consumer. Likewise, a high cost local reactive compensator at a heavily loaded demand center of network could be inevitably an alternative required to produce reactive power to maintain the integrity of power system. Given the background, this paper presents a day-ahead reactive power market based on pay-as-bid (PAB) mechanism. Generators expected payment function (EPF) is used to construct a bidding framework. Then, total payment function (TPF) of generators is used as the objective function of optimal power flow (OPF) problem to clear the PAB based market. The CIGRE-32 bus test system is used to examine the effectiveness of the proposed reactive power market.

  6. Interleukin-6 and interleukin-1 production in acute leukemia with monocytoid differentiation

    NARCIS (Netherlands)

    van der Schoot, C. E.; Jansen, P.; Poorter, M.; Wester, M. R.; von dem Borne, A. E.; Aarden, L. A.; van Oers, R. H.

    1989-01-01

    Several authors have reported the in vitro production of colony-stimulating factors (CSF) and interleukin-1 (IL-1) by the neoplastic cells from patients with acute myeloid leukemia (AML). Using a sensitive bioassay for IL-6, the capacity of the leukemic cells of 30 patients with AML to produce IL-6

  7. Pathogenesis and treatment of leukemia: an Asian perspective.

    Science.gov (United States)

    Kwong, Yok-Lam

    2012-03-01

    Leukemias occur worldwide, but there are important geographic differences in incidences. Three leukemias with special Asian perspectives, acute promyelocytic leukemia (APL), T-cell large granular lymphocyte (T-LGL) leukemia and NK-cell leukemia. In APL, China has made contributions in discovering the efficacy of all-trans retinoic acid (ATRA) and arsenic trioxide. Some APL patients are potentially curable after treatment with ATRA or arsenic trioxide as a single agent. Combined treatment of APL with ATRA and arsenic trioxide induces remission with deeper molecular response. An oral formulation of arsenic trioxide is available, making outpatient treatment feasible. Future regimens for APL should examine how ATRA and arsenic trioxide can be optimally combined with other synergistic drugs. Asian patients with T-LGL leukemia present more frequently with pure red cell aplasia, but less frequently with neutropenia, recurrent infection, splenomegaly and rheumatoid arthritis as compared with Western patients. These differences have potential effects on treatment and disease pathogenesis. NK-cell leukemia is rapidly fatal and occurs almost exclusively in Asian and South American patients. Conventional anthracycline-based chemotherapy designed for B-cell lymphomas do not work in NK-cell leukemias. Novel therapeutic approaches targeting cellular signaling pathways or preferentially upregulated genes are needed to improve outcome.

  8. Melatonin Cytotoxicity Is Associated to Warburg Effect Inhibition in Ewing Sarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Ana M Sanchez-Sanchez

    Full Text Available Melatonin kills or inhibits the proliferation of different cancer cell types, and this is associated with an increase or a decrease in reactive oxygen species, respectively. Intracellular oxidants originate mainly from oxidative metabolism, and cancer cells frequently show alterations in this metabolic pathway, such as the Warburg effect (aerobic glycolysis. Thus, we hypothesized that melatonin could also regulate differentially oxidative metabolism in cells where it is cytotoxic (Ewing sarcoma cells and in cells where it inhibits proliferation (chondrosarcoma cells. Ewing sarcoma cells but not chondrosarcoma cells showed a metabolic profile consistent with aerobic glycolysis, i.e. increased glucose uptake, LDH activity, lactate production and HIF-1α activation. Melatonin reversed Ewing sarcoma metabolic profile and this effect was associated with its cytotoxicity. The differential regulation of metabolism by melatonin could explain why the hormone is harmless for a wide spectrum of normal and only a few tumoral cells, while it kills specific tumor cell types.

  9. Acute leukemia in early childhood

    Directory of Open Access Journals (Sweden)

    M. Emerenciano

    2007-06-01

    Full Text Available Acute leukemia in early childhood is biologically and clinically distinct. The particular characteristics of this malignancy diagnosed during the first months of life have provided remarkable insights into the etiology of the disease. The pro-B, CD10 negative immunophenotype is typically found in infant acute leukemia, and the most common genetic alterations are the rearrangements of the MLL gene. In addition, the TEL/AML1 fusion gene is most frequently found in children older than 24 months. A molecular study on a Brazilian cohort (age range 0-23 months has detected TEL/AML1+ve (N = 9, E2A/PBX1+ve (N = 4, PML/RARA+ve (N = 4, and AML1/ETO+ve (N = 2 cases. Undoubtedly, the great majority of genetic events occurring in these patients arise prenatally. The environmental exposure to damaging agents that give rise to genetic changes prenatally may be accurately determined in infants since the window of exposure is limited and known. Several studies have shown maternal exposures that may give rise to leukemogenic changes. The Brazilian Collaborative Study Group of Infant Acute Leukemia has found that mothers exposed to dipyrone, pesticides and hormones had an increased chance to give birth to babies with infant acute leukemia [OR = 1.48 (95%CI = 1.05-2.07, OR = 2.27 (95%CI = 1.56-3.31 and OR = 9.08 (95%CI = 2.95-27.96], respectively. This review aims to summarize recent clues that have facilitated the elucidation of the biology of early childhood leukemias, with emphasis on infant acute leukemia in the Brazilian population.

  10. A Rapid Culture Technique Produces Functional Dendritic-Like Cells from Human Acute Myeloid Leukemia Cell Lines

    Directory of Open Access Journals (Sweden)

    Jian Ning

    2011-01-01

    Full Text Available Most anti-cancer immunotherapeutic strategies involving dendritic cells (DC as vaccines rely upon the adoptive transfer of DC loaded with exogenous tumour-peptides. This study utilized human acute myeloid leukemia (AML cells as progenitors from which functional dendritic-like antigen presenting cells (DLC were generated, that constitutively express tumour antigens for recognition by CD8+ T cells. DLC were generated from AML cell lines KG-1 and MUTZ-3 using rapid culture techniques and appropriate cytokines. DLC were evaluated for their cell-surface phenotype, antigen uptake and ability to stimulate allogeneic responder cell proliferation, and production of IFN-γ; compared with DC derived from normal human PBMC donors. KG-1 and MUTZ-3 DLC increased expression of CD80, CD83, CD86, and HLA-DR, and MUTZ-3 DLC downregulated CD14 and expressed CD1a. Importantly, both KG-1 and MUTZ-3-derived DLC promoted proliferation of allogeneic responder cells more efficiently than unmodified cells; neither cells incorporated FITC-labeled dextran, but both stimulated IFN-γ production from responding allogeneic CD8+ T cells. Control DC produced from PBMC using the FastDC culture also expressed high levels of critical cell surface ligands and demonstrated good APC function. This paper indicates that functional DLC can be cultured from the AML cell lines KG-1 and MUTZ-3, and FastDC culture generates functional KG-1 DLC.

  11. Cytotoxicity and Glycan-Binding Properties of an 18 kDa Lectin Isolated from the Marine Sponge Halichondria okadai

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ozeki

    2012-04-01

    Full Text Available A divalent cation-independent lectin—HOL-18, with cytotoxic activity against leukemia cells, was purified from a demosponge, Halichondria okadai. HOL-18 is a 72 kDa tetrameric lectin that consists of four non-covalently bonded 18 kDa subunits. Hemagglutination activity of the lectin was strongly inhibited by chitotriose (GlcNAcβ1-4GlcNAcβ1-4GlcNAc, fetuin and mucins from porcine stomach and bovine submaxillary gland. Lectin activity was stable at pH 4–12 and temperatures lower than 60 °C. Frontal affinity chromatography with 16 types of pyridylaminated oligosaccharides indicated that the lectin had an affinity for N-linked complex-type and sphingolipid-type oligosaccharides with N-acetylated hexosamines and neuramic acid at the non-reducing termini. The lectin killed Jurkat leukemia T cells and K562 erythroleukemia cells in a dose- and carbohydrate-dependent manner.

  12. Production of feline leukemia inhibitory factor with biological activity in Escherichia coli.

    Science.gov (United States)

    Kanegi, R; Hatoya, S; Tsujimoto, Y; Takenaka, S; Nishimura, T; Wijewardana, V; Sugiura, K; Takahashi, M; Kawate, N; Tamada, H; Inaba, T

    2016-07-15

    Leukemia inhibitory factor (LIF) is a cytokine which is essential for oocyte and embryo development, embryonic stem cell, and induced pluripotent stem cell maintenance. Leukemia inhibitory factor improves the maturation of oocytes in the human and the mouse. However, feline LIF (fLIF) cloning and effects on oocytes during IVM have not been reported. Thus, we cloned complete cDNA of fLIF and examined its biological activity and effects on oocytes during IVM in the domestic cat. The aminoacid sequence of fLIF revealed a homology of 81% or 92% with that of mouse or human. The fLIF produced by pCold TF DNA in Escherichia coli was readily soluble and after purification showed bioactivity in maintaining the undifferentiated state of mouse embryonic stem cells and enhancing the proliferation of human erythrocyte leukemia cells. Furthermore, 10- and 100-ng/mL fLIF induced cumulus expansion with or without FSH and EGF (P Feline LIF will further improve reproduction and stem cell research in the feline family. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Molecular characterization of neoplastic and normal "sister" lymphoblastoid B-cell lines from chronic lymphocytic leukemia

    DEFF Research Database (Denmark)

    Lanemo Myhrinder, Anna; Hellqvist, Eva; Bergh, Ann-Charlotte

    2013-01-01

    Chronic lymphocytic leukemia (CLL) B-cells resemble self-renewing CD5 + B-cells carrying auto/xeno-antigen-reactive B-cell receptors (BCRs) and multiple innate pattern-recognition receptors, such as Toll-like receptors and scavenger receptors. Integration of signals from BCRs with multiple surface...... a comprehensive genotypic and phenotypic characterization of available CLL and normal B-cell-derived lymphoblastoid cell lines (LCLs) from the same individuals (n = 17). Authenticity and verification studies of CLL-patient origin were done by IGHV sequencing, fluorescence in situ hybridization (FISH) and DNA...

  14. Graft-versus-Leukemia Effect Following Hematopoietic Stem Cell Transplantation for Leukemia

    Directory of Open Access Journals (Sweden)

    Anne M. Dickinson

    2017-06-01

    Full Text Available The success of hematopoietic stem cell transplantation (HSCT lies with the ability of the engrafting immune system to remove residual leukemia cells via a graft-versus-leukemia effect (GvL, caused either spontaneously post-HSCT or via donor lymphocyte infusion. GvL effects can also be initiated by allogenic mismatched natural killer cells, antigen-specific T cells, and activated dendritic cells of leukemic origin. The history and further application of this GvL effect and the main mechanisms will be discussed and reviewed in this chapter.

  15. Impaired B cell immunity in acute myeloid leukemia patients after chemotherapy.

    Science.gov (United States)

    Goswami, Meghali; Prince, Gabrielle; Biancotto, Angelique; Moir, Susan; Kardava, Lela; Santich, Brian H; Cheung, Foo; Kotliarov, Yuri; Chen, Jinguo; Shi, Rongye; Zhou, Huizhi; Golding, Hana; Manischewitz, Jody; King, Lisa; Kunz, Lauren M; Noonan, Kimberly; Borrello, Ivan M; Smith, B Douglas; Hourigan, Christopher S

    2017-07-10

    Changes in adaptive immune cells after chemotherapy in adult acute myeloid leukemia (AML) may have implications for the success of immunotherapy. This study was designed to determine the functional capacity of the immune system in adult patients with AML who have completed chemotherapy and are potential candidates for immunotherapy. We used the response to seasonal influenza vaccination as a surrogate for the robustness of the immune system in 10 AML patients in a complete remission post-chemotherapy and performed genetic, phenotypic, and functional characterization of adaptive immune cell subsets. Only 2 patients generated protective titers in response to vaccination, and a majority of patients had abnormal frequencies of transitional and memory B-cells. B-cell receptor sequencing showed a B-cell repertoire with little evidence of somatic hypermutation in most patients. Conversely, frequencies of T-cell populations were similar to those seen in healthy controls, and cytotoxic T-cells demonstrated antigen-specific activity after vaccination. Effector T-cells had increased PD-1 expression in AML patients least removed from chemotherapy. Our results suggest that while some aspects of cellular immunity recover quickly, humoral immunity is incompletely reconstituted in the year following intensive cytotoxic chemotherapy for AML. The observed B-cell abnormalities may explain the poor response to vaccination often seen in AML patients after chemotherapy. Furthermore, the uncoupled recovery of B-cell and T-cell immunity and increased PD-1 expression shortly after chemotherapy might have implications for the success of several modalities of immunotherapy.

  16. Reactive Power from Distributed Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye

    2006-12-15

    Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)

  17. Reactive Power from Distributed Energy

    International Nuclear Information System (INIS)

    Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye

    2006-01-01

    Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)

  18. In vitro cytotoxicity testing of Ubiquicidin 29-41-99mTc

    International Nuclear Information System (INIS)

    Ocampo, Ivette Z.; Okazaki, Kayo; Dias, Luis Alberto Pereira; Higa, Olga Z.; Silva, Fabiana M. da; Vieira, Daniel P.; Passos, Priscila; Esteves-Pedro, Natalia M.

    2015-01-01

    The work carried out cytotoxicity tests using a radiopharmaceutical compound produced at IPEN/CNEN-SP to certify its safety through in vitro cytotoxicity tests. Since 2009, the Brazilian regulatory agency (ANVISA) requires that such tests have to be carried out following good laboratory practices (GLP) and in according to the OECD (Organisation for Economic Co-operation and Development) guidelines in order to certify its safety for medical use. Those guidelines comprises series of technical recommendations performed to assure quality of experiments. The study chose Ubiquicidin 29-41, an antimicrobial peptide used to discriminate bacterial infection foci from inflammatory sites. Amounts of UBI 29-41 were conjugated or not to 99m Tc and diluted to equivalent concentrations of 10, 100 and 1000% of the maximum dose (or activity) administered in adults. Possible cytotoxic effects were evaluated in comparison to untreated controls as well as positive and negative damage controls. Both full (radioactive) radiopharmaceuticals, as their precursors (only molecules without conjugation to isotopes) showed no significant cytotoxic effect (cytotoxicity ≤ 10%). The study was conducted for the first time in the country comprising preclinical testing of this radiopharmaceutical in accordance with internationally accepted quality parameters, ensuring the safety of its use and enabling inclusion in the pharmaceutical regulatory agenda. (author)

  19. Effects of the Absorption Behaviour of ZnO Nanoparticles on Cytotoxicity Measurements

    Directory of Open Access Journals (Sweden)

    Nigar Najim

    2014-01-01

    Full Text Available ZnO absorbs certain wavelengths of light and this behavior is more pronounced for nanoparticles of ZnO. As many toxicity measurements rely on measuring light transmission in cell lines, it is essential to determine how far this light absorption influences experimental toxicity measurements. The main objective was to study the ZnO absorption and how this influenced the cytotoxicity measurements. The cytotoxicity of differently sized ZnO nanoparticles in normal and cancer cell lines derived from lung tissue (Hs888Lu, neuron-phenotypic cells (SH-SY5Y, neuroblastoma (SH-SY5Y, human histiocytic lymphoma (U937, and lung cancer (A549 was investigated. Our results demonstrate that the presence of ZnO affected the cytotoxicity measurements due to the absorption characteristic of ZnO nanoparticles. The data revealed that the ZnO nanoparticles with an average particle size of around 85.7 nm and 190 nm showed cytotoxicity towards U937, SH-SY5Y, differentiated SH-SY5Y, and Hs888Lu cell lines. No effect on the A549 cells was observed. It was also found that the cytotoxicity of ZnO was particle size, concentration, and time dependent. These studies are the first to quantify the influence of ZnO nanoparticles on cytotoxicity assays. Corrections for absorption effects were carried out which gave an accurate estimation of the concentrations that produce the cytotoxic effects.

  20. [Occurrence of associated tumours in chronic lymphocytic leukemia].

    Science.gov (United States)

    Szerafin, László; Jakó, János; Varju, Lóránt

    2016-10-01

    Chronic lymphocytic leukemia is one of the most common hematologic malignancy. The aim of the authors was to investigate the characteristics of malignancies associated with chronic lymphocytic leukemia in patients diagnozed between 2000 and 2015. Data of patients with chronic lymphocytic leukemia who had other associated tumours were analysed using the Leukemia/Lymphoma Registry of the Szabolcs-Szatmár-Bereg County, Hungary and patient records. Between January 1, 2000 and December 31, 2015, 526 patients with chronic lymphocytic leukemia were diagnosed. 95 patients of the 526 patients (18.06%) were diagnosed as having associated other tumours. In 48/95 patients (50.5%) the first diagnosed tumour was chronic lymphocytic leukemia, in 23/95 patients (24.2%) the first recognized malignancy was the associated tumour, whereas in 24/95 patients (25.3%) synchron tumours were diagnosed. The number of patients with more than one associated tumour was 10/95 (10.5%). The total number of tumours was 107. The incidence of chronic lymphoid leukemia increased in the period between 2000 and 2015 as compared to the period between 1983 and 1999 (3.19 vs 5.65/100 000 person/year). The occurrence of associated malignancies increased as well (8.06% vs 18.06%). In addition to the most common tumours (colorectal, breast, lung, prostate), skin squamous cell carcinoma (17/95 patients; 17.9%) and melanoma (6/95 patients; 6.3%) also frequently occurred. The second malignancies were most frequently discovered after the diagnosis of chronic lymphocytic leukemia and synchron tumours accounting for 78.5% (84/107) of all associated tumours. The incidence of second malignancies decreased 10 years after the diagnosis of chronic lymphocytic leukemia. The possible reasons for the high frequency of other tumours associated with chronic lymphocytic leukemia are elderly age of patients, immunsuppressed state and, presumably, chemotherapy of patients with chronic lymphocytic leukemia. During the follow up