WorldWideScience

Sample records for producing gaseous ionization

  1. Scintillation and ionization yields produced by α-particles in high-density gaseous xenon

    International Nuclear Information System (INIS)

    Kusano, H.; Ishikawa, T.; Lopes, J.A.M.; Miyajima, M.; Shibamura, E.; Hasebe, N.

    2012-01-01

    The average numbers of scintillation photons and liberated electrons produced by 5.49-MeV α-particles were measured in high-density gaseous xenon. The density range is 0.12–1.32 g/cm 3 for scintillation measurements at zero electric field, and 0.12–1.03 g/cm 3 for the scintillation and ionization measurements under various electric fields. The density dependence of scintillation yield at zero electric field was observed. The W s -value, which is defined as the average energy expended per photon, increases with density and becomes almost constant in the density range above 1.0 g/cm 3 . Anti-correlations between average numbers of scintillation photons and liberated electrons were found to vary with density. It was also found that the total number of scintillation photons and liberated electrons decreases with increasing density. Several possible reasons for the variation in scintillation and ionization yields with density are discussed.

  2. Ionization and scintillation of nuclear recoils in gaseous xenon

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J., E-mail: jrenner@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Gehman, V.M.; Goldschmidt, A.; Matis, H.S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C.A.B.; Shuman, D. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Álvarez, V. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Borges, F.I.G. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Cárcel, S. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Castel, J.; Cebrián, S. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cervera, A. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Conde, C.A.N. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); and others

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  3. Detection systems for high energy particle producing gaseous ionization

    International Nuclear Information System (INIS)

    Duran, I.; Martinez, L.

    1985-01-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Mueller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures are discussed, most relevant devices are reported. (author)

  4. Detection systems for high energy particle producing gaseous ionization

    International Nuclear Information System (INIS)

    Martinez, L.; Duran, I.

    1985-01-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Muller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures, are discussed, most relevant devices are reported along 90 pages with 98 references. (Author) 98 refs

  5. Resonance-enhanced two-photon ionization of ions by Lyman alpha radiation in gaseous nebulae.

    Science.gov (United States)

    Johansson, S; Letokhov, V

    2001-01-26

    One of the mysteries of nebulae in the vicinity of bright stars is the appearance of bright emission spectral lines of ions, which imply fairly high excitation temperatures. We suggest that an ion formation mechanism, based on resonance-enhanced two-photon ionization (RETPI) by intense H Lyman alpha radiation (wavelength of 1215 angstroms) trapped inside optically thick nebulae, can produce these spectral lines. The rate of such an ionization process is high enough for rarefied gaseous media where the recombination rate of the ions formed can be 10(-6) to 10(-8) per second for an electron density of 10(3) to 10(5) per cubic centimeter in the nebula. Under such conditions, the photo-ions formed may subsequently undergo further RETPI, catalyzed by intense He i and He ii radiation, which also gets enhanced in optically thick nebulae that contain enough helium.

  6. Gaseous nebulae

    International Nuclear Information System (INIS)

    Williams, R.E.

    1976-01-01

    Gaseous nebulae are large, tenuous clouds of ionized gas that are associated with hot stars and that emit visible light because of the energy that they receive from the ultraviolet radiation of the stars. Examples include H II regions, planetary nebulae, and nova/supernova remnants. The emphasis is on the physical processes that occur in gaseous nebulae as opposed to a study of the objects themselves. The introduction discusses thermodynamic vs. steady-state equilibrium and excitation conditions in a dilute radiation field. Subsequent sections take up important atomic processes in gaseous nebulae (particle--particle collision rates, radiative interaction rates, cross sections), the ionization equilibrium (sizes of H II regions, ionization of the heavier elements), kinetic temperature and energy balance (heating of the electrons, cooling of the electrons), and the spectra of gaseous nebulae (line fluxes in nebulae). 7 figures, 5 tables

  7. Method of producing gaseous products using a downflow reactor

    Science.gov (United States)

    Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

    2014-09-16

    Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

  8. Gaseous anion chemistry. Hydrogen-deuterium exchange in mono- and dialcohol alkoxide ions: ionization reactions in dialcohols

    International Nuclear Information System (INIS)

    Lloyd, J.R.; Agosta, W.C.; Field, F.H.

    1980-01-01

    The subject of this work is H-D exchange in certain gaseous anions using D 2 as the exchanging agent. The anions involved are produced from ethylene glycol, 1,3-propanediol, 1,4-butanediol, ethanol, 1-propanol, and 1-butanol. Spectra and postulated ionization reactions for these mono- and dialcohols are given. Hydrogen-deuterium exchange occurs in the (M - 1) - and (2M - 1) - ions of ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The amount of exchange occurring is 3-8 times greater in (2M - 1) - than in (M - 1) - . The amount of H-D exchange occurring in ethanol, 1-propanol, and 1-butanol is small or zero in the (2M - 1) - ions and in the (M - 1) - ion for 1-butanol [the only (M - 1) - ion which could be examined experimentally]. The amount of exchange occurring in the (2M - 1) - and (M - 1) - ions from ethylene glycol is not affected by the total pressure or composition of the reaction mixture in the ionization chamber of the mass spectrometer. A novel hydrogen-bridging mechanism is suggested to account for the observed exchange occurring in the dialcohols

  9. Research and development of a gaseous detector PIM (parallel ionization multiplier) dedicated to particle tracking under high hadron rates

    International Nuclear Information System (INIS)

    Beucher, J.

    2007-10-01

    PIM (Parallel Ionization Multiplier) is a multi-stage micro-pattern gaseous detector using micro-meshes technology. This new device, based on Micromegas (micro-mesh gaseous structure) detector principle of operation, offers good characteristics for minimum ionizing particles track detection. However, this kind of detectors placed in hadron environment suffers discharges which degrade sensibly the detection efficiency and account for hazard to the front-end electronics. In order to minimize these strong events, it is convenient to perform charges multiplication by several successive steps. Within the framework of a European hadron physics project we have investigated the multi-stage PIM detector for high hadrons flux application. For this part of research and development, a systematic study for many geometrical configurations of a two amplification stages separated with a transfer space operated with the gaseous mixture Ne + 10% CO 2 has been performed. Beam tests realised with high energy hadrons at CERN facility have given that discharges probability could be strongly reduced with a suitable PIM device. A discharges rate lower to 10 9 by incident hadron and a spatial resolution of 51 μm have been measured at the beginning efficiency plateau (>96 %) operating point. (author)

  10. Measurements of gaseous multiplication coefficient in pure isobutane

    International Nuclear Information System (INIS)

    Lima, Iara Batista de

    2010-01-01

    In this work it is presented measurements of gaseous multiplication coefficient (α) in pure isobutane obtained with a parallel plate chamber, protected against discharges by one electrode (anode) of high resistivity glass (ρ = 2 x 10 12 Ω.cm). The method applied was the Pulsed Townsend, where the primary ionization is produced through the incidence of a nitrogen laser beam onto a metallic electrode (cathode). The electric currents measured with the chamber operating in both ionization and avalanche regimes were used to calculate the gaseous multiplication coefficient by the solution of the Townsend equation for uniform electric fields. The validation of the technique was provided by the measurements of gaseous multiplication coefficient in pure nitrogen, a widely studied gas, which has well-established data in literature. The α coefficients in isobutane were measured as a function of the reduced electric field in the range of 139Td up to 208Td. The obtained values were compared with those simulated by Imonte software (version 4.5) and the only experimental results available in the literature, recently obtained in our group. This comparison showed that the results are concordant within the experimental errors. (author)

  11. High resolution structuring of emitter tips for the gaseous field ionization source

    International Nuclear Information System (INIS)

    Kubby, J.A.; Siegel, B.M.

    1986-01-01

    Extraction of a stable, high brightness ion beam from an apertured field ion emitter surface requires microfabrication procedures to sculpture the surface topography on both microscopic (100 --1000 nm) and near atomic (10 --100 nm) length scales. Structuring on a near atomic scale is required to confine and stabilize the ion beam by local enhancement of the surface electrostatic field and to orient that emission on the optical axis. Control of the emitter contour on a microscopic scale is required for manipulating the supply of neutral molecules to the ionization site and also affects beam stability. We have developed a method using ion milling for configuring surface contour on microscopic and near atomic length scales which utilizes the morphological changes occurring at ion bombarded surfaces as a result of erosion by sputtering. A SEM study of the microscopic emitter topographical development is compared to computer simulations of the kinematical wave equation which depicts the erosion process. In this way, prediction of configuration on a length scale large compared to the ion penetration depth has been established. TEM observations show the surface development on the length scale of ion penetration depth. Preliminary results using this microfabricated emitter in a gaseous field ion source to produce a hydrogen ion beam with high angular beam confinement are given. Requirements for surface topography that are essential to obtain stable high brightness ion beams are discussed

  12. Testing an ionization chamber with gaseous samples and measurements of the (n, alpha) reaction cross sections

    CERN Document Server

    Gledenov, Yu M; Salatskii, V I; Sedyshev, P V; Andrzejewski, J; Szalanski, P

    1999-01-01

    A new ionization chamber with gaseous samples (GIC) has been designed and tested on the thermal and resonance neutron beams of FLNP's neutron sources. The exposed gas volume serves as a target for neutrons. The obtained thermal cross sections for the sup 1 sup 7 O(n, alpha) sup 1 sup 4 C, sup 2 sup 1 Ne(n, alpha) sup 1 sup 8 O and sup 3 sup 6 Ar(n, alpha) sup 3 sup 3 S reactions are (233+-12) mb, (0.18+-0.09) mb and (5.43+-0.27) mb, respectively. These measurements have been performed on a pure beam of thermal neutrons from the high flux reactor IBR-2; and they demonstrated high efficiency and reliability of the method. Compared to samples on substrates, the application of gaseous samples makes the beam background essentially lower, and what is more important, the background component is totally absent due to the absence of Li and B microimpurities in gaseous samples while they do present in the samples on substrates. The method is also applicable to measurements with resonance neutrons. The recovery capabili...

  13. (n, {alpha}) cross section measurement of light nuclei using gridded ionization chamber and gaseous sample

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Yamazaki, Tetsuro; Sato, Jun; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan)

    1998-03-01

    We have developed a measuring method of (n, {alpha}) cross section by using gaseous sample in a gridded ionization chamber. In this study, we measured the {sup 12}C(n, {alpha}{sub 0}) and the {sup 16}O(n, {alpha}{sub 0}), (n, {alpha}{sub 123}) cross sections for En=11.5 and 12.8 MeV neutrons. We also deduced the {sup 12}C(n, x{alpha}) spectrum and analyzed the data by a kinematic calculation combined with the reaction data of the {sup 12}C(n, n`3{alpha}). (author)

  14. Detection systems for high energy particle producing gaseous ionization; Sistemas de deteccion de particulas de alta energia mediante ionizacion gaseosa

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, L; Duran, I

    1985-07-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Muller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures, are discussed, most relevant devices are reported along 90 pages with 98 references. (Author) 98 refs.

  15. A novel method for producing multiple ionization of noble gas

    International Nuclear Information System (INIS)

    Wang Li; Li Haiyang; Dai Dongxu; Bai Jiling; Lu Richang

    1997-01-01

    We introduce a novel method for producing multiple ionization of He, Ne, Ar, Kr and Xe. A nanosecond pulsed electron beam with large number density, which could be energy-controlled, was produced by incidence a focused 308 nm laser beam onto a stainless steel grid. On Time-of-Flight Mass Spectrometer, using this electron beam, we obtained multiple ionization of noble gas He, Ne, Ar and Xe. Time of fight mass spectra of these ions were given out. These ions were supposed to be produced by step by step ionization of the gas atoms by electron beam impact. This method may be used as a ideal soft ionizing point ion source in Time of Flight Mass Spectrometer

  16. (n,{alpha}) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)

  17. Explosives vapour identification in ion mobility spectrometry using a tunable laser ionization source: a comparison with conventional 63Ni ionization

    International Nuclear Information System (INIS)

    Clark, A.; Deas, R.M.; Kosmidis, C.; Ledingham, K.W.D.; Marshall, A.; Singhal, R.P.

    1995-01-01

    Laser multiphoton ionization (MPI) is used to produce ions from explosive vapours at atmospheric pressure in air for analysis by ion mobility spectrometry (IMS). In the positive ion mode of detection, NO + ions, generated directly by multiphoton dissociation/ionization of the explosive compounds, show strong variation with laser wavelength. This provides a means of identifying the presence of nitro-containing compounds. Moreover, electrons formed in the MPI of gaseous components in the air carrier stream, primarily O 2 , are transferred via neutral molecular oxygen (O 2 ) to trace explosive vapour, forming negative ions which give rise to characteristic and identifiable ion mobility spectra. Further, negative ion mobility spectra of several explosive vapours are presented using conventional 63 Ni ionization and are compared qualitatively with the laser ionization approach. (author)

  18. Detector for gaseous nuclear fission products

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Kubo, Katsumi.

    1979-01-01

    Purpose: To facilitate the fabrication of a precipitator type detector, as well as improve the reliability. Constitution: Gas to be measured flown in an anode is stored in a gas processing system. By applying a voltage between the anode and the cathode, if positively charged Rb or Cs which is the daughter products of gaseous fission products are present in the gas to be measured, the daughter products are successively deposited electrostatically to the cathode. The daughter products issue beta-rays and gamma-rays to ionize the argon gas at the anode, whereby ionizing current flows between both of the electrodes. Pulses are generated from the ionizing current, and presence or absence, as well as the amount of the gaseous fission products are determined by the value recorded for the number of the pulses to thereby detect failures in the nuclear fuel elements. After the completion of the detection, the inside of the anode is evacuated and the cathode is heated to evaporate and discharge the daughter products externally. This eliminates the effects of the former detection to the succeeding detection. (Moriyama, K.)

  19. Ionization mechanism of cesium plasma produced by irradiation of dye laser

    International Nuclear Information System (INIS)

    Yamada, Jun; Shibata, Kohji; Uchida, Yoshiyuki; Hioki, Yoshiaki; Sahashi, Toshio.

    1992-01-01

    When a cesium vapor was irradiated by a dye laser which was tuned to the cesium atomic transition line, the number of charged particles produced by the laser radiation was observed. Several sharp peaks in the number of charged particles were observed, which corresponded to the atomic transition where the lower level was the 6P excited atom. The ionization mechanism of the laser-produced cesium plasma has been discussed. An initial electron is produced by laser absorptions of the cesium dimer. When the cesium density is high, many 6P excited atoms are excited by electron collisions. The 6P excited atom further absorbs the laser photon and is ionized through the higher-energy state. As the cesium vapor pressure increases, the resonance effect becomes observable. The 6P excited atom plays dominant role in the ionization mechanism of the laser-produced cesium plasma. (author)

  20. Research and development of a gaseous detector PIM (parallel ionization multiplier) dedicated to particle tracking under high hadron rates; Recherche et developpement d'un detecteur gazeux PIM (Parallel Ionization Multiplier) pour la trajectographie de particules sous un haut flux de hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Beucher, J

    2007-10-15

    PIM (Parallel Ionization Multiplier) is a multi-stage micro-pattern gaseous detector using micro-meshes technology. This new device, based on Micromegas (micro-mesh gaseous structure) detector principle of operation, offers good characteristics for minimum ionizing particles track detection. However, this kind of detectors placed in hadron environment suffers discharges which degrade sensibly the detection efficiency and account for hazard to the front-end electronics. In order to minimize these strong events, it is convenient to perform charges multiplication by several successive steps. Within the framework of a European hadron physics project we have investigated the multi-stage PIM detector for high hadrons flux application. For this part of research and development, a systematic study for many geometrical configurations of a two amplification stages separated with a transfer space operated with the gaseous mixture Ne + 10% CO{sub 2} has been performed. Beam tests realised with high energy hadrons at CERN facility have given that discharges probability could be strongly reduced with a suitable PIM device. A discharges rate lower to 10{sup 9} by incident hadron and a spatial resolution of 51 {mu}m have been measured at the beginning efficiency plateau (>96 %) operating point. (author)

  1. Suitability of tunneling ionization produced plasmas for the plasma beat wave accelerator

    International Nuclear Information System (INIS)

    Leeman, W.P.; Clayton, C.E.; Marsh, K.A.; Dyson, A.; Joshi, C.

    1991-01-01

    Tunneling ionization can be thought of as the high intensity, low frequency limit of multi-photon ionization (MPI). Extremely uniform plasmas were produced by the latter process at Rutherford lab for beat wave excitation experiments using a 0.5 μm laser. Plasmas with 100% ionization were produced with densities exceeding 10 17 cm -3 . The experiment uses a CO 2 laser (I max ∼ 5 x 10 14 W/cm 2 ) which allows the formation of plasmas via the tunneling process. For the experiments the authors need plasmas with densities in the range of 5 to 10 x 10 16 cm -3 . Using Thomson scattering as a diagnostic they have explored the density and temperature regime of tunneling ionization produced plasmas. They find that plasmas with densities up to 10 16 cm -3 can indeed be produced and that these plasmas are hot. Beyond this density strong refraction of laser radiation occurs due to the radial profile of the plasma. Implications of this work to the Beat Wave Accelerator program will be discussed

  2. Measurements of gaseous multiplication coefficient in pure isobutane; Medidas do coeficiente de multiplicacao gasosa no isobutano puro

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Iara Batista de

    2010-07-01

    In this work it is presented measurements of gaseous multiplication coefficient ({alpha}) in pure isobutane obtained with a parallel plate chamber, protected against discharges by one electrode (anode) of high resistivity glass ({rho} = 2 x 10{sup 12}{Omega}.cm). The method applied was the Pulsed Townsend, where the primary ionization is produced through the incidence of a nitrogen laser beam onto a metallic electrode (cathode). The electric currents measured with the chamber operating in both ionization and avalanche regimes were used to calculate the gaseous multiplication coefficient by the solution of the Townsend equation for uniform electric fields. The validation of the technique was provided by the measurements of gaseous multiplication coefficient in pure nitrogen, a widely studied gas, which has well-established data in literature. The {alpha} coefficients in isobutane were measured as a function of the reduced electric field in the range of 139Td up to 208Td. The obtained values were compared with those simulated by Imonte software (version 4.5) and the only experimental results available in the literature, recently obtained in our group. This comparison showed that the results are concordant within the experimental errors. (author)

  3. Method for producing bonded nonwoven fabrics using ionizing radiation

    International Nuclear Information System (INIS)

    Drelich, A.H.; Oney, D.G.

    1979-01-01

    A method is described for producing a resin-bonded nonwoven fabric. The preparation involves forming a fibrous web annealing it and compressing it to provide fiber to fiber contact. A polymerizable binder is applied to the fibrous web which is then treated by ionizing radiation to produce the material. 9 figures, 3 drawing

  4. New packaging design for fresh produce with effective distribution of antimicrobial gaseous chlorine dioxide

    Science.gov (United States)

    In the last decade, the potential use of chlorine dioxide (ClO2) as an antimicrobial agent for vapor-phase decontamination to extend the shelf-life of fresh produce has been widely studied. Most of the works focused on the dose of gaseous ClO2 for particular food product and/or specific microorganis...

  5. Ionization cell for sensing and measuring gaseous impurities

    International Nuclear Information System (INIS)

    Castelman, B.W.

    1978-01-01

    An improved gas ionization cell is described with compensation for variations in flow rate of the gas and variations in radioactive source intensity. A gas sample is directed past a source of ionizing radiation and through a recombination region to an ion collection screen, where output current is monitored to give an indication of trace gases or vapors present in the gas under surveillance. Compensation for changes in gas flow rate and source intensity is provided by taking a portion of the gas subjected to the ionizing radiation and directing that portion of the gas through a channel by-passing the recombination region of the cell and past a pair of conductive probes. The first probe of the pair is biased at a predetermined voltage, while electric current is monitored at the second probe spaced downstream from the first probe. The current generated at the second probe, which is for all practical purposes a function of only the rate of gas flow and the source intensity, provides the compensation signal for the ionization cell. 4 claims, 8 figures

  6. Resonance Raman Spectroscopy of Free Radicals Produced by Ionizing Radiation

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter

    1984-01-01

    Applications of time-resolved resonance Raman spectroscopy to the study of short-lived free radicals produced by ionizing radiation are briefly reviewed. Potential advantages and limitations of this technique are discussed in the light of given examples. The reduction of p-nitrobenzylchloride and......Applications of time-resolved resonance Raman spectroscopy to the study of short-lived free radicals produced by ionizing radiation are briefly reviewed. Potential advantages and limitations of this technique are discussed in the light of given examples. The reduction of p......-nitrobenzylchloride and subsequent formation of the p-nitrobenzyl radical and the reaction of p-nitrotoluene with O– are studied by resonance Raman and optical absorption spectroscopy....

  7. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    Science.gov (United States)

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  8. Electron emission induced by atomic collisions in gaseous targets and solids

    International Nuclear Information System (INIS)

    Meckbach, W.

    1988-01-01

    In this work, it is considered only the process of single collision with gaseous targets. The possible inelastic processes are: excitation and ionization of both, target and incident beam. The attention was concentrated to the processes of direct ionization which may give rise to electron emission. (A.C.A.S.) [pt

  9. Time-Dependent Photoionization of Gaseous Nebulae: The Pure Hydrogen Case

    Science.gov (United States)

    Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, Timothy R.

    2013-01-01

    We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full timedependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionizationthermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IFthermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal frontsIFs and equilibration times.

  10. Electron impact phenomena and the properties of gaseous ions

    CERN Document Server

    Field, F H; Massey, H S W; Brueckner, Keith A

    1970-01-01

    Electron Impact Phenomena and the Properties of Gaseous Ions, Revised Edition deals with data pertaining to electron impact and to molecular gaseous ionic phenomena. This book discusses electron impact phenomena in gases at low pressure that involve low-energy electrons, which result in ion formation. The text also describes the use of mass spectrometers in electron impact studies and the degree of accuracy obtained when measuring electron impact energies. This book also reviews relatively low speed electrons and the transitions that result in the ionization of the atomic system. This text the

  11. Multiple ionization produced in Yb due to N-,Si- and Ti-ion impact

    International Nuclear Information System (INIS)

    Verma, P.

    2000-01-01

    Heavy ion induced inner shell ionization produces multiple vacancies in the outer shells (M, N etc.) simultaneous to vacancies in the inner-shells (viz. L-shell), which in turn create a very complicated electronic configuration. Three projectiles N 2+,3+ , Si 7+,8+ and Ti 10+,11+ ion beams having a range of 0.3 to 3.5 MeV/u were bombarded on a thin rare earth target of Yb. The recorded L X-ray spectra of Yb have been analyzed in the light of multiple ionization produced due to the heavy ion impact. The outer-shell vacancies acting as spectator vacancies cause a shift in the energy of the various L X-ray diagram lines. A comparison of the shifts in the energies of the various L X-ray transitions of Yb due to the impact of these projectiles, from standard values and that due to proton impact along with the deviation of the intensity ratios from single hole branching ratios, reveal a dependence of multiple ionization on the projectile atomic number (Z) and energy. A further comparison of the degree of multiple ionization produced in Yb, evident by the number of spectator vacancies produced due to the impact of projectiles with 7≤Z≤22 and overlapping MeV/u range lead to explicit conclusions regarding the probability of multiple vacancy production in outer shells simultaneous to a single L-shell vacancy for such projectile target combinations. (orig.)

  12. Ionization for reducing particulate matter emissions from poultry houses

    NARCIS (Netherlands)

    Cambra-López, M.; Winkel, A.; Harn, van J.; Ogink, N.W.M.; Aarnink, A.J.A.

    2009-01-01

    We evaluated the effect of ionization in reducing particulate and gaseous emissions in broiler houses and its effect on particle size distribution. Furthermore, we evaluated the performance of the tested ionization system and its influence on bird performance. The experiment was done during two

  13. Time-resolved spectroscopy of nonequilibrium ionization in laser-produced plasmas

    International Nuclear Information System (INIS)

    Marjoribanks, R.S.

    1988-01-01

    The highly transient ionization characteristic of laser-produced plasmas at high energy densities has been investigated experimentally, using x-ray spectroscopy with time resolution of less than 20 ps. Spectroscopic diagnostics of plasma density and temperature were used, including line ratios, line profile broadening and continuum emission, to characterize the plasma conditions without relying immediately on ionization modeling. The experimentally measured plasma parameters were used as independent variables, driving an ionization code, as a test of ionization modeling, divorced from hydrodynamic calculations. Several state-of-the-art streak spectrographs, each recording a fiducial of the laser peak along with the time-resolved spectrum, characterized the laser heating of thin signature layers of different atomic numbers imbedded in plastic targets. A novel design of crystal spectrograph, with a conically curved crystal, was developed. Coupled with a streak camera, it provided high resolution (λ/ΔΛ > 1000) and a collection efficiency roughly 20-50 times that of planar crystal spectrographs, affording improved spectra for quantitative reduction and greater sensitivity for the diagnosis of weak emitters. Experimental results were compared to hydrocode and ionization code simulations, with poor agreement. The conclusions question the appropriateness of describing electron velocity distributions by a temperature parameter during the time of laser illumination and emphasis the importance of characterizing the distribution more generally

  14. Aerosol ionization gas analyzer for continious detection of toxic compounds in industrial gaseous effluents

    International Nuclear Information System (INIS)

    Groze, Kh.; Dering, Kh.; Gleizberg, F.

    1979-01-01

    In is noted that the problem of the environment protection as well as protection of the personnel at their working places against influence of harmful substances in air, demands continious measuring of an increasing number of harmful substances with provision of high sensitivity and accuracy of measurements. The demands are listed to the gas analyzers developed for these purposes: flexibility towards solution of different problems of measurement; great number of the substances to be measured; acceptable threshold of determination of different substances concentration in air and small measurement error; simplicity of maintanance and technical service and high reliability in exploitation; economy of fabrication and application. The data are given for the aerosol ionization gas analyzer which, in many cases, met the requirements listed. In the gas analyzer described, the analysed substance is converted for measuring its concentration into an aerosol by means of the aerosol generator, especially designed for this substance or group of substances. The produced aerosol is introduced into an ionization chamber with build-in radiation source and caused decrease of the ionization current in it. According to the decrease of the ionization current, concentration of the harmful substance in air is determined. Characteristics and possibilities of the gas analyzer exploitation are given and discussed on the base of the results of determination of some harmful substances concentrations in air in the laboratory conditions and in the real conditions of industrial production and in the health protection system [ru

  15. Ionization and scintillation signals produced by relativistic La ions in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, H J; Doke, T; Hitachi, H; Kikuchi, J; Lindstrom, P J; Masuda, K; Shibamura, E; Nagamiya, S

    1987-04-15

    We have observed simultaneously the ionization and scintillation signals produced by relativistic La ions in liquid argon. The two signals are highly correlated and the sums of these signals are constant with the standard deviation of 1.2% over the range of the electric field from 0 to 7.5 kV/cm. The ratio of the sum signals expressed in unit of the number of species to the value N/sub i/ + N/sub ex/ is close to unity where N/sub i/ and N/sub ex/ are the numbers of ion pairs and excitons, respectively, produced by La ions in liquid argon. The pulse height resolution of the sum of the signals is better than that of ionization or scintillation alone. Almost no quenching is found in the scintillation signal from relativistic La ions when compared to signals from lighter ions.

  16. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  17. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min; Zhang, Xuming

    2017-01-01

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  18. Group velocity measurement from the propagation of the ionization front in a surface-wave-produced plasma

    International Nuclear Information System (INIS)

    Cotrino, J.; Gamero, A.; Sola, A.; Lao, C.

    1989-01-01

    During the first instant, previous to steady-state in a surface-wave-produced plasma, an ionization front advance front the launcher to the plasma column end. The velocity of the ionization front is much slower than the group velocity of the surface wave, this give a reflection of the incident signal on the moving ionization front. In this paper, the authors use this effect to calculate the surface wave group velocity

  19. Gaseous radioactive waste processing system

    International Nuclear Information System (INIS)

    Onizawa, Hideo.

    1976-01-01

    Object: To prevent explosion of hydrogen gas within gaseous radioactive waste by removing the hydrogen gas by means of a hydrogen absorber. Structure: A coolant extracted from a reactor cooling system is sprayed by nozzle into a gaseous phase (hydrogen) portion within a tank, thus causing slipping of radioactive rare gas. The gaseous radioactive waste rich in hydrogen, which is purged in the tank, is forced by a waste gas compressor into a hydrogen occlusion device. The hydrogen occlusion device is filled with hydrogen occluding agents such as Mg, Mg-Ni alloy, V-Nb alloy, La-Ni alloy and so forth, and hydrogen in the waste gas is removed through reaction to produce hydrogen metal. The gaseous radioactive waste, which is deprived of hydrogen and reduced in volume, is stored in an attenuation tank. The hydrogen stored in the hydrogen absorber is released and used again as purge gas. (Horiuchi, T.)

  20. Physicochemical processes occurring under action of ionizing radiation in sarcophagus

    International Nuclear Information System (INIS)

    Azarov, S.I.; Pshenichny, V.A.; Vilenskaya, L.N.; Korchevnaya, O.V.; Martseniuk, L.S.

    1998-01-01

    The result of analysis of environment ionization process inside Sarcophagus owing to alpha-, beta- and gamma-radiation processes with forming of ions. It is shown that as a result of ionization and physicochemical transformations gaseous mixtures, which are dangerous for personnel's health and can influence upon general technical safety of Sarcophagus, can release into atmosphere

  1. The reflection of an electromagnetic wave from the self-produced plasma

    International Nuclear Information System (INIS)

    Mirzaie, M.; Shokri, B.; Rukhadze, A. A.

    2010-01-01

    The dynamic behavior of a high power microwave beam propagating through a gaseous medium, which is ionized in the wave field is investigated. By solving the wave equation, the reflection index of the produced plasma is obtained. It is shown that the cut off condition is different from that of the steady state approximation. The reflection index is less than unity when the plasma density reaches the critical value estimated in the steady state approximation. So, the wave can still propagate through the plasma. By comparing the reflection indexes in the presence and absence of the time delay of the ionization process at different points of the medium, it is shown that it becomes unity much later in the first case. Therefore, the wave propagation takes much more time and consequently the medium is ionized much more.

  2. On electromagnetic wave propagation through a plasma sheath produced by a moving ionization source

    International Nuclear Information System (INIS)

    Semenova, V.I.

    1977-01-01

    Features of the interaction of electromagnetic waves are considered with a nonstationary plasma layer of a finite thickness, produced in an immovable gas by a movable ionization source. It is shown that a static magnetic field excited on the ionization front in build-up of electrons produced in the incident wave field reemits the energy to the electromagnetic wave during the plasma relaxation caused by recombination processes. As a result the electromagnetic wave of a finite amplitude may propagate behind the nonstationary layer of an ''opaque'' (ωsub(p)sup(2)>>ωsub(urc)sup((0))sup(2)) plasma as distinct from the layer of a movable stationary plasma with the same parameters

  3. Device for solidification of gaseous wastes

    International Nuclear Information System (INIS)

    Shimada, Masayuki; Kamei, Hisashi.

    1979-01-01

    Purpose: To provide the subject device wherein gaseous wastes such as krypton 85 and the like are ionized and accelerated to be injected into solid targets and stored therein, thereby removing the redischarge of gas and making it possible to treat a large quantity of said gas. Constitution: Krypton gas is ionized and accelerated to high energy by an accelerator, and then introduced into an ion injection chamber. In the ion injection chamber a band-shaped target is delivered from a first take-up roll, and krypton ions are injected to said target. Thereafter, other band-shaped target delivered from a second take-up roll is brought into contact with the target in which krypton ions have been injected, and both targets are taken up together while compressing these targets. In this way, even when injected energy is small, the injected gas is not redischarged and can be continuously treated. (Kamimura, M.)

  4. Physics of Fresh Produce Safety: Role of Diffusion and Tissue Reaction in Sanitization of Leafy Green Vegetables with Liquid and Gaseous Ozone-Based Sanitizers.

    Science.gov (United States)

    Shynkaryk, Mykola V; Pyatkovskyy, Taras; Mohamed, Hussein M; Yousef, Ahmed E; Sastry, Sudhir K

    2015-12-01

    Produce safety has received much recent attention, with the emphasis being largely on discovery of how microbes invade produce. However, the sanitization operation deserves more attention than it has received. The ability of a sanitizer to reach the site of pathogens is a fundamental prerequisite for efficacy. This work addresses the transport processes of ozone (gaseous and liquid) sanitizer for decontamination of leafy greens. The liquid sanitizer was ineffective against Escherichia coli K-12 in situations where air bubbles may be trapped within cavities. A model was developed for diffusion of sanitizer into the interior of produce. The reaction rate of ozone with the surface of a lettuce leaf was determined experimentally and was used in a numerical simulation to evaluate ozone concentrations within the produce and to determine the time required to reach different locations. For aqueous ozone, the penetration depth was limited to several millimeters by ozone self-decomposition due to the significant time required for diffusion. In contrast, gaseous sanitizer was able to reach a depth of 100 mm in several minutes without depletion in the absence of reaction with surfaces. However, when the ozone gas reacted with the produce surface, gas concentration was significantly affected. Simulation data were validated experimentally by measuring ozone concentrations at the bottom of a cylinder made of lettuce leaf. The microbiological test confirmed the relationship between ozone transport, its self-decomposition, reaction with surrounding materials, and the degree of inactivation of E. coli K-12. Our study shows that decontamination of fresh produce, through direct contact with the sanitizer, is more feasible with gaseous than with aqueous sanitizers. Therefore, sanitization during a high-speed washing process is effective only for decontaminating the wash water.

  5. Ionization and scintillation produced by relativistic Au, He and H ions in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Shibamura, E; Masuda, K; Crawford, H J; Engelage, J M; Doke, T; Hitachi, A; Kikuchi, J; Flores, I; Lindstrom, P J; Ogura, K

    1987-10-15

    We have measured ionization and scintillation produced by relativistic ions of Au, He and H in liquid argon. The sum of ionization signal and scintillation signal per unit energy deposition is the same for He and H ions, which is also the same as that for relativistic Ne, Fe and La ions previously measured. We have found that quenching occurs when liquid argon is irradiated by relativistic Au ions and that the sum per unit energy deposition for the Au ions is 70-76% of that for the other ions mentioned above.

  6. Dissociation dynamics of anionic and excited neutral fragments of gaseous SiCl4 following Cl 2p and Si 2p core-level excitations

    International Nuclear Information System (INIS)

    Chen, J M; Lu, K T; Lee, J M; Chou, T L; Chen, H C; Chen, S A; Haw, S C; Chen, T H

    2008-01-01

    The state-selective dissociation dynamics for anionic and excited neutral fragments of gaseous SiCl 4 following Cl 2p and Si 2p core-level excitations were characterized by combining measurements of the photon-induced anionic dissociation, x-ray absorption and UV/visible dispersed fluorescence. The transitions of core electrons to high Rydberg states/doubly excited states in the vicinity of both Si 2p and Cl 2p ionization thresholds of gaseous SiCl 4 lead to a remarkably enhanced production of anionic, Si - and Cl - , fragments and excited neutral atomic, Si*, fragments. This enhancement via core-level excitation near the ionization threshold of gaseous SiCl 4 is explained in terms of the contributions from the Auger decay of doubly excited states, shake-modified resonant Auger decay, or/and post-collision interaction. These complementary results provide insight into the state-selective anionic and excited neutral fragmentation of gaseous molecules via core-level excitation.

  7. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte

    Science.gov (United States)

    Banerjee, Shibdas; Mazumdar, Shyamalava

    2012-01-01

    The Electrospray Ionization (ESI) is a soft ionization technique extensively used for production of gas phase ions (without fragmentation) of thermally labile large supramolecules. In the present review we have described the development of Electrospray Ionization mass spectrometry (ESI-MS) during the last 25 years in the study of various properties of different types of biological molecules. There have been extensive studies on the mechanism of formation of charged gaseous species by the ESI. Several groups have investigated the origin and implications of the multiple charge states of proteins observed in the ESI-mass spectra of the proteins. The charged analytes produced by ESI can be fragmented by activating them in the gas-phase, and thus tandem mass spectrometry has been developed, which provides very important insights on the structural properties of the molecule. The review will highlight recent developments and emerging directions in this fascinating area of research. PMID:22611397

  8. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte.

    Science.gov (United States)

    Banerjee, Shibdas; Mazumdar, Shyamalava

    2012-01-01

    The Electrospray Ionization (ESI) is a soft ionization technique extensively used for production of gas phase ions (without fragmentation) of thermally labile large supramolecules. In the present review we have described the development of Electrospray Ionization mass spectrometry (ESI-MS) during the last 25 years in the study of various properties of different types of biological molecules. There have been extensive studies on the mechanism of formation of charged gaseous species by the ESI. Several groups have investigated the origin and implications of the multiple charge states of proteins observed in the ESI-mass spectra of the proteins. The charged analytes produced by ESI can be fragmented by activating them in the gas-phase, and thus tandem mass spectrometry has been developed, which provides very important insights on the structural properties of the molecule. The review will highlight recent developments and emerging directions in this fascinating area of research.

  9. Radioactivity in gaseous waste discharged from the separations facilities during 1978

    International Nuclear Information System (INIS)

    Anderson, J.D.; Poremba, B.E.

    1979-01-01

    This document is issued quarterly for the purpose of summarizing the radioactive gaseous wastes that are discharged from the facilities of the Rockwell Hanford Operations. Data on alpha and beta emissions during 1978 are presented where relevant to the gaseous effluent. Emission data are not included on gaseous wastes produced within the 200 Areas by other Hanford contractors

  10. Multiple ionization of atoms by ion impact

    International Nuclear Information System (INIS)

    DuBois, R.D.

    1988-01-01

    In order to model the energy deposition of fast ions as they slow down in gaseous media, information about the ionization occurring in collisions between ions and target atoms/molecules is required. Our measurements of doubly differential electron emission cross sections provide detailed information about the ionization process but do not provide any information about the final states of the target. They also do not distinguish between the emission of one or more target electrons in a single collision. It is important to know the relative importance of multiple-, with respect to single-, target ionization in order to accurately model the energy deposition. To date, multiple ionization of He, Ne, Ar, Kr, and Xe targets has been studied. Primarily, H and He ions were used, although some data for heavier ions (C,N and O) have also been obtained

  11. Simple method for identifying doubly ionized uranium (U III) produced in a hollow-cathode discharge

    International Nuclear Information System (INIS)

    Piyakis, K.N.; Gagne, J.M.

    1988-01-01

    We have studied by emission spectroscopy the spectral properties of doubly ionized uranium, produced in a vapor generator of hollow-cathode design, as a function of the nature of a pure fill gas (helium, neon, argon, krypton, xenon) and its pressure. The spectral intensity is found to increase with increasing ionization potential of the discharge buffer gas, except in the case of helium. Based on our preliminary results, a simple and practical method for the positive identification of the complex U III spectrum is suggested

  12. Studies of gaseous multiplication coefficient in isobutane using a resistive plate chamber

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Pontificia Univ. Catolica de Sao Paulo (PUC/SP), SP (Brazil); Lima, Iara B.; Vivaldini, Tulio C. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept. de fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas

    2009-07-01

    Full text: Due to the increasing demands concerning High Energy Physics, Nuclear Medicine and other Nuclear Applications about gaseous detectors operating in high electric fields, many efforts have been done about the choice of filling gases that fulfill these requirements. In this context, the electron transport parameters in gases, as the gaseous multiplication coefficient, play an important role not only for detector design but also for simulation and modeling of discharges, allowing the validation of electron impact cross-sections. In the present work the preliminary measurements of gaseous multiplication coefficient, as function of the reduced electric field (from 36V/cm.Torr until 93V/cm.Torr), for isobutane are presented. Among several filling gases, isobutane is widely used in resistive plate chambers RPCs, and other gaseous detectors, due to its timing properties. Although its characteristics, there is a lack of swarm parameters data in literature for this gas, mainly at high electric fields. The experimental method used is based on the Pulsed Townsend technique, which follows from Townsend equation solution for a uniform electric field. Considering the ratio between the current (I), measured in avalanche mode, and the primary ionization current (I{sub 0}), the effective multiplication coefficient can be determined, since alpha = d{sup -1}ln(I/I{sub 0}), where d is the gap between the electrodes. In our configuration, the experimental setup consists of two parallel plates enclosure in a stainless steel chamber at gas flow regime. The anode, is made of a high resistivity (2.10{sup 12}{omega}.cm) glass (3mm thick and 14mm diameter), while the cathode is of aluminium (40mm diameter). Primary electrons are produced by irradiating the cathode with a nitrogen laser (LTB MNL200-LD) and are accelerated toward the anode by means of a high voltage power supply (Bertan 225-30). In order to validate the technique and to analyze effects of non-uniformity, results for

  13. Microbial production of gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hideo

    1987-10-20

    Microbial production of ethylene, isobutane and a saturated gaseous hydrocarbon mixture was described. Microbial ethylene production was studied with Penicillium digitatum IFO 9372 and a novel pathway of the ethylene biosynthesis through alpha-ketoglutarate was proposed. Rhodotorula minuta IFO 1102 was selected for the microbial production of isobutane and the interesting actions of L-leucine and L-phenylalanine for the isobutane production were found. It was finally presented about the microbial production of a saturated gaseous hydrocarbon mixture with Rhizopus japonicus IFO 4758 was described. A gas mixture was produced through a chemical reaction of SH compounds and some cellular component such as squalene under aerobic conditions. (4 figs, 7 tabs, 41 refs)

  14. Cellulose gels produced in room temperature ionic liquids by ionizing radiation

    International Nuclear Information System (INIS)

    Kimura, Atsushi; Nagasawa, Naotsugu; Taguchi, Mitsumasa

    2014-01-01

    Cellulose-based gels were produced in room temperature ionic liquids (RTILs) by ionizing radiation. Cellulose was dissolved at the initial concentration of 20 wt% in 1-ethyl-3-methylimidazolium (EMI)-acetate or N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium (DEMA)-formate with a water content of 18 wt%, and irradiated with γ-rays under aerated condition to produce new cellulose gels. The gel fractions of the cellulose gels obtained in EMI-acetate and DEMA-formate at a dose of 10 kGy were 13% and 19%, respectively. The formation of gel fractions was found to depend on the initial concentration of cellulose, water content, and irradiation temperature. The obtained gel readily absorbed water, methanol, ethanol, dichloromethane, N,N-dimethylacetamide, and RTILs. - Highlights: • Cellulose gels were produced in room temperature ionic liquids (RTILs). • Water plays a crucial role in the cross-linking reaction. • Cellulose gels swollen with RTILs show good electronic conductivity (3.0 mS cm −1 )

  15. The Mass and Absorption Columns of Galactic Gaseous Halos

    Science.gov (United States)

    Qu, Zhijie; Bregman, Joel N.

    2018-01-01

    The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the required detection limit for the future observations and missions.

  16. Lung Cancer Mortality among Uranium Gaseous Diffusion Plant Workers: A Cohort Study 1952–2004

    Directory of Open Access Journals (Sweden)

    LW Figgs

    2013-07-01

    Full Text Available Background: 9%–15% of all lung cancers are attributable to occupational exposures. Reports are disparate regarding elevated lung cancer mortality risk among workers employed at uranium gaseous diffusion plants. Objective: To investigate whether external radiation exposure is associated with lung cancer mortality risk among uranium gaseous diffusion workers. Methods: A cohort of 6820 nuclear industry workers employed from 1952 to 2003 at the Paducah uranium gaseous diffusion plant (PGDP was assembled. A job-specific exposure matrix (JEM was used to determine likely toxic metal exposure categories. In addition, radiation film badge dosimeters were used to monitor cumulative external ionizing radiation exposure. International Classification for Disease (ICD codes 9 and 10 were used to identify 147 lung cancer deaths. Logistic and proportional hazards regression were used to estimate lung cancer mortality risk. Results: Lung cancer mortality risk was elevated among workers who experienced external radiation >3.5 mrem and employment duration >12 years. Conclusion: Employees of uranium gaseous diffusion plants carry a higher risk of lung cancer mortality; the mortality is associated with increased radiation exposure and duration of employment.

  17. Radiation monitoring in a synchrotron light source facility using magnetically levitated electrode ionization chambers

    International Nuclear Information System (INIS)

    Ichiki, Hirofumi; Kawaguchi, Toshirou; Utsunomiya, Yoshitomo; Ishibashi, Kenji; Ikeda, Nobuo; Korenaga, Kazuhito

    2009-01-01

    We developed a highly accurate differential-type automatic radiation dosimeter to measure very low radiation doses. The dosimeter had two ionization chambers, each of which had a magnetically levitated electrode and it was operated in a repetitive-time integration mode. We first installed the differential-type automatic radiation dosimeter with MALICs at a high-energy electron accelerator facility (Kyushu Synchrotron Light Research Center Facility) and measured the background and ionizing radiations in the facility as well as the gaseous radiation in air. In the background dose measurements, the accuracy of the repetitive-time integration-type dosimeter was three times better than that of a commercial ionization chamber. When the radiation dose increased momentarily at the electron injection from the linac to the operating storage ring, the dosimeter with repetitive-time integral mode gave a successful response to the actual dose variation. The gaseous radiation dose in the facility was at the same level as that in Fukuoka City. We confirmed that the dosimeter with magnetically levitated electrode ionization chambers was usable in the accelerator facility, in spite of its limited response when operated in the repetitive-time integration mode. (author)

  18. TWO CHANNELS OF SELF-ORGANIZATION OF IONIZED GASEOUS MEDIA

    Directory of Open Access Journals (Sweden)

    Benedict Oprescu

    2013-12-01

    Full Text Available The appearance is pointed out, experimentally, of a complex electric charge structure, within an ionized gas, relatively homogeneous at first, under the influence of a number of external constraints. Two different mechanisms of self-organization are presented: the former implying, essentially, long-range interactions, and the latter implying, essentially, short-range quantum interactions. The phenomenological scenarios are presented, which underlie the two mechanisms of self-organization, as well as the broader theoretical frame, currently accepted, concerning the generation of complexity in the material media that are far from the state of thermodynamic equilibrium.

  19. Secondary processes in gaseous boron accompanying the cascade decay of the 1s-vacancy

    International Nuclear Information System (INIS)

    Bruehl, S.; Kochur, A.G.

    2009-01-01

    We employ the Monte-Carlo technique to simulate the processes in gaseous boron initiated by 1s-photoionization of boron atoms. The processes of excitations/ionizations of atoms by photons and electrons emitted by the neighboring decaying atoms are considered. It is found that the medium effect becomes noticeable at atomic densities of about 2.5·10 20 m -3 . (authors)

  20. Gaseous and particulate composition of fresh and aged emissions of diesel, RME and CNG buses using Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Psichoudaki, Magda; Le Breton, Michael; Hallquist, Mattias; Watne, Ågot; Hallquist, Asa

    2016-04-01

    . A Time-of-Flight Chemical Ionization Mass Spectrometer (ToF-CIMS) was employed to monitor the concentration of different organic species present in the fresh and aged emissions. This instrument is capable of identifying the molecular formulas of species in the gas phase. The FIGAERO inlet, also enabled the characterisation of the particle phase, as particles were simultaneously collected on a filter, from which they could then be thermally desorbed and detected. Acetate (negative) ionization was utilised to allow high sensitivity measurements of organic acids, aldehydes, ketones, diols and halogenated species. The H2O, O3 and NOx concentrations inside the PAM flow reactor were monitored, and an organic tracer for OH exposure was also continuously measured. The concentrations of dominant species in both fresh and aged gaseous and particulate bus emissions from the different fuel types will be presented as well as their emission factors, calculated from concurrent CO2 measurements.

  1. Inter- and intra-annular proton exchange in gaseous benzylbenzenium ions (protonated diphenylmethane)

    OpenAIRE

    Kuck, Dietmar; Bäther, Wolfgang

    1986-01-01

    Two distinct proton exchange reactions occur in metastable gaseous benzylbenzenium ions, generated by isobutane chemical ionization of diphenylmethane and four deuterium-labelled analogues. Whereas the proton ring-walk at the benzenium moiety is fast giving rise to a completely random intraannular proton exchange, the interannular proton exchange is surprisingly slow and competes with the elimination of benzene. A kinetic isotope effect of kH/kD= 5 has been determined for the interannular pro...

  2. Star-Formation in Free-Floating Evaporating Gaseous Globules

    Science.gov (United States)

    Sahai, Raghvendra

    2017-08-01

    We propose to study the stellar embryos in select members of a newly recognized class of Free-floating Evaporating Gaseous Globules (frEGGS) embedded in HII regions and having head-tail shapes. We discovered two of these in the Cygnus massive star-forming region (MSFR) with HST, including one of the most prominent members of this class (IRAS20324). Subsequent archival searches of Spitzer imaging of MSFRs has allowed us to build a statistical sample of frEGGs. Our molecular-line observations show the presence of dense molecular cores with total gas masses of (0.5-few) Msun in these objects, and our radio continuum images and Halpha images (from the IPHAS survey) reveal bright photo-ionized peripheries around these objects. We hypothesize that frEGGs are density concentrations originating in giant molecular clouds, that, when subject to the sculpting and compression by strong winds and UV radiation from massive stars, become active star-forming cores. For the 4 frEGGs with HST or near-IR AO images showing young stars and bipolar cavities produced by their jets or collimated outflows, the symmetry axis points roughly toward the external ionizing star or star cluster - exciting new evidence for our overpressure-induced star formation hypothesis. We propose to test this hypothesis by imaging 24 frEGGs in two nearby MSFRs that represent different radiation-dominated environments. Using ACS imaging with filters F606W, F814W, & F658N (Ha+[NII]), we will search for jets and outflow-excavated cavities, investigate the stellar nurseries inside frEGGs, and determine whether the globules are generally forming multiple star systems or small clusters, as in IRAS20324.

  3. A random walk approach to the diffusion of positrons in gaseous media

    International Nuclear Information System (INIS)

    Girardi-Schappo, M.; Tenfen, W.; Arretche, F.

    2013-01-01

    In this work, we present a random walk model to study the positron diffusion in gaseous media. The positron-atom interaction is described through positron-target cross sections. The main idea is to obtain how much energy a positron transfer to the environment atoms, through ionizations and electronic excitations until its annihilation, taking the ratio between each energetically available collision channel to the total one as the probability for each process to occur. As a first application, we studied how the positron diffuse in gases of helium, neon, argon and their mixtures. To characterize the positron dynamics in each system, we calculated the radiation profile generated from the annihilation, their diffusion profiles and the most probable distances for excitation and ionization. (authors)

  4. Low-dose mutation-response relationships in Tradescantia; principles and comparison to mutagenesis following low-dose gaseous chemical mutagen exposure

    International Nuclear Information System (INIS)

    Nauman, C.H.; Sparrow, A.H.; Underbrink, A.G.; Schairer, L.A.

    1976-01-01

    Inflorescences of several clones of Tradescantia heterozygous for flower color have been treated with ionizing radiation and with the gaseous form of several known or suspected chemical mutagens. Pink somatic mutations were subsequently scored in the stamen hair cells of mature flowers and dose-/exposure-response curves constructed. Results indicate clearly that there is no evidence for a threshold for mutation response following x or neutron irradiation. Results so far obtained for gaseous chemical mutagens are less clear, but also suggest that there is no threshold for mutation response

  5. Fragmentation of cluster ions produced by electron impact ionization

    International Nuclear Information System (INIS)

    Parajuli, R.

    2001-12-01

    By studying fragmentation of dimer and cluster ions produced by electron impact ionization of a neutral cluster beam, it is possible to elucidate structure, stability and energetics of these species and the dynamics of the corresponding decay reactions. Fragmentation of carbon cluster ions formed from C 6 0 fullerenes, rare gas cluster ions and dimer ions and simple molecular cluster ions (oxygen and nitrogen) and dimer ions have been studied in this thesis using a high resolution two sector field mass spectrometer of reversed geometry and a NIER type electron impact ion source. Spontaneous decay reactions of triply and quadruply charged C 4 0 z + and C 4 1 z + cluster ions which are formed from C 6 0 fullerenes by electron impact ionization have been analyzed. A new but very weak decay reaction for the even-sized carbon clusters ions is observed, namely loss of C 3 . The odd-sized clusters ions preferentially decay by loss of carbon atoms and, to a lesser degree, trimers. A weak signal due to C 2 loss is observed for C 4 1 3 + ion. These decay channels are discussed in terms of the geometric structure of these metastable, relatively cold cluster ions. Measurements on metastable fragmentation of mass selected rare gas cluster ions (Ne, Ar, Kr) which are produced by electron impact ionization of a neutral rare gas cluster beam have been carried out. From the shape of the fragment ion peaks (MIKE scan technique) information about the distribution of kinetic energy that is released in the decay reaction can be deduced. In this study, the peak shape observed for cluster ions with sizes larger than five is Gaussian and thus from the peak width the mean kinetic energy release of the corresponding decay reactions can be calculated. Using finite heat bath theory, the binding energies of the decaying cluster ions are calculated from these data and have been compared to data in the literature where available. In addition to the decay reactions of cluster ions the metastable

  6. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1975-01-01

    Gaseous isotopes are separated from a mixture in a vertically elongated chamber by subjecting the mixture to a nonuniform transverse electric field. Dielectrophoretic separation of the isotopes is effected, producing a transverse temperature gradient in the chamber, thereby enhancing the separation by convective countercurrent flow. In the example given, the process and apparatus are applied to the production of heavy water from steam

  7. Engineering design of the Aries-IV gaseous divertor

    International Nuclear Information System (INIS)

    Hasan, M.Z.; Najmabadi, F.; Sharafat, S.

    1994-01-01

    ARIES-IV is a conceptual, D-T burning, steady-state tokamak fusion reactor producing 1000 MWe net. It operates in the second plasma stability regime. The structural material is SiC composite and the primary coolant is helium at 10MPa base pressure. ARIES-IV uses double-null divertors for particle control. Total thermal power recovered from the divertors is 425MW, which is 16% of the total reactor thermal power. Among the desirable goals of divertor design were to avoid the use of tungsten and to use the same structural material and primary coolant as in the blanket design. In order to reduce peak heat flux, the innovative gaseous divertor has been used in ARIES-IV. A gaseous divertor reduces peak heat flux by increasing the surface area and by distributing particle and radiation energy more uniformly. Another benefit of gaseous divertor is the reduction of plasma temperature in the divertor chamber, so that material erosion due to sputtering, can be diminished. This makes the use of low-Z material possible in a gaseous divertor

  8. Comparative effects of ionizing radiation and two gaseous chemical mutagens on somatic mutation induction in one mutable and two non-mutable clones of Tradescantia

    International Nuclear Information System (INIS)

    Nauman, C.H.; Sparrow, A.H.; Schairer, L.A.

    1976-01-01

    The X-ray dose responses of mutable clone 0106 of Tradescantia (mutable for blue to pink), and its parent clone 02 have been determined for pink and colorless mutations in stamen hair cells, and are compared to the previously determined X-ray response for pink mutations of a third unrelated clone, clone 4430 (hybrid of T. subacaulis and T. hirsutiflora). X-ray response curves are compared to the response curves of the same three clones after exposure to the gaseous phase of the alkylating agent ethyl methanesulfate (EMS) and the fumigant and gasoline additive 1,2-dibromoethane (DBE). X-irradiation induces a pink mutation rate in mutable clone 0106 that is significantly higher than that of the nearly identical pink mutation rates in clones 02 and 4430. However, the colorless mutation rates of clones 02 and 0106 are not significantly different from one another. In clones 02 and 0106, pink mutations occur more frequently than colorless mutations at lower doses, but colorless dose-response curves saturate at higher doses than do those for pink mutations. Exposure-response curves for EMS and DBE have characteristics similar to those of X-ray response curves: exponential rise followed by an area of saturation. However, it was found that the relative sensitivities of the three clones to the gaseous mutagens and to ionizing radiation do not parallel one another. Where clones 02 and 4430 are equally sensitive to X-rays, at equal mutagen concentration clone 4430 is 6-7 times more sensitive to EMS and 7-9 times more sensitive to DBE than is clone 02. Mutable clone 0106 shows intermediate sensitivities to both EMS and DBE

  9. He I lambda 584 in quasars and gaseous nebulae

    International Nuclear Information System (INIS)

    Ferland, G.J.

    1980-01-01

    The He I Lα lambda 584 transfer problem for gaseous nebulae is investigated. Realistic photo-ionization models of quasar clouds and planetary nebulae are combined with the Monte Carlo line transfer technique to determine both the efficiency of destruction of lambda 584 by photo-ionization of hydrogen and the mean number of scatterings undergone before destruction. It is found that large fractions (approximately > 90 per cent) of the lambda 584 photons are destroyed before escaping in all cases considered. Nonetheless, the He I lambda lambda 584, 626 doublet should be present in high redshift quasars with an observed equivalent width of approximately 1 A. Detection of this doublet would provide the only clear indication of the presence or absence of a low density narrow line region for objects in which optical forbidden lines have been redshifted beyond the optical window. The strength of the He I 2 1 S-2 1 P 2.0 μm line is predicted to be approximately 4 times stronger than is actually observed in the planetary nebulae NGC 7027. This suggests that dust is embedded in the ionized gas and causes additional destruction of lambda 584. Finally, the calculations show that photo-ionization model calculations can safely assume nearly complete on-the-spot destruction of lambda 584. The common assumption that the He I singlets are formed in case B conditions is examined in an appendix. (author)

  10. Development of a new corona discharge based ion source for high resolution time-of-flight chemical ionization mass spectrometer to measure gaseous H2SO4 and aerosol sulfate

    Science.gov (United States)

    Zheng, Jun; Yang, Dongsen; Ma, Yan; Chen, Mindong; Cheng, Jin; Li, Shizheng; Wang, Ming

    2015-10-01

    A new corona discharge (CD) based ion source was developed for a commercial high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) (Aerodyne Research Inc.) to measure both gaseous sulfuric acid (H2SO4) and aerosol sulfate after thermal desorption. Nitrate core ions (NO3-) were used as reagent ions and were generated by a negative discharge in zero air followed by addition of excess nitrogen dioxide (NO2) to convert primary ions and hydroxyl radicals (OH) into NO3- ions and nitric acid (HNO3). The CD-HRToF-CIMS showed no detectable interference from hundreds parts per billion by volume (ppbv) of sulfur dioxide (SO2). Unlike the atmospheric pressure ionization (API) ToF-CIMS, the CD ion source was integrated onto the ion-molecule reaction (IMR) chamber and which made it possible to measure aerosol sulfate by coupling to a filter inlet for gases and aerosols (FIGAERO). Moreover, compared with a quadrupole-based mass spectrometer, the desired HSO4- signal was detected by its exact mass of m/z 96.960, which was well resolved from the potential interferences of HCO3-ṡ(H2O)2 (m/z 97.014) and O-ṡH2OṡHNO3 (m/z 97.002). In this work, using laboratory-generated standards the CD-HRToF-CIMS was demonstrated to be able to detect as low as 3.1 × 105 molecules cm-3 gaseous H2SO4 and 0.5 μg m-3 ammonium sulfate based on 10-s integration time and two times of the baseline noise. The CD ion source had the advantages of low cost and a simple but robust structure. Since the system was non-radioactive and did not require corrosive HNO3 gas, it can be readily field deployed. The CD-HRToF-CIMS can be a powerful tool for both field and laboratory studies of aerosol formation mechanism and the chemical processes that were critical to understand the evolution of aerosols in the atmosphere.

  11. Energetics of the formation and reactions of gaseous ions. Annual progress report for the period September, 16, 1981 to September 15, 1982

    International Nuclear Information System (INIS)

    Meisels, G.G.

    1982-09-01

    Research is reported in these areas: range and linear ionization rates of low energy electrons; ion fragmentation from noninterconverting states; competition between isomerization and fragmentation of gaseous ions; precise thermodynamic measurements of gas phase ionic equilibria; and instrumental analyses and developments

  12. Development of gaseous photomultiplier

    International Nuclear Information System (INIS)

    Tokanai, F.; Sumiyoshi, T.; Sugiyama, H.; Okada, T.

    2014-01-01

    We have been developing gaseous photomultiplier tubes (PMTs) with alkali photocathode combined with micropattern gas detectors (MPGDs). The potential advantage of the gaseous PMT is that it can achieve a very large effective area with adequate position and timing resolutions. In addition, it will be easily operated under a very high magnetic field, compared with the conventional vacuum-based PMT. To evaluate the gaseous PMTs filled with Ne and Ar based gas mixture, we have developed gaseous PMTs with an alkali photocathode combined with MPGDs such as a glass capillary plate, GEM, and Micromegas detector. We describe the recent development of the gaseous PMTs, particularly the production of the photocathode, gas gain, ion and photon feedbacks, quantum efficiency, and the characteristics in the magnetic field environment. (author)

  13. Automatic control system for measuring currents produced by ionization chambers

    International Nuclear Information System (INIS)

    Brancaccio, Franco

    2002-01-01

    Ionization Chambers in current mode operation are usually used in Nuclear Metrology. Activity measurements are quickly performed by Ionization Chambers, with very good precision. For this purpose measurements of very low ionization currents, carried out by high quality instrumentation, are required. Usually, electrometers perform the current integration method under command of signals from an automation system, in order to reduce the measurement uncertainties. Among the measurement systems at the Laboratorio de Metrologia Nuclear (LMN) of IPEN, there are two ionization chamber systems. In the present work, an automation system developed for current integration measurements is described. This automation system is composed by software (graphic interface and control) and an electronic module connected to a microcomputer, by means of a commercial data acquisition card. Several test measurements were performed in order to determine the intrinsic uncertainty, linearity and stability of the system. Using calibrated radioactive solutions, the IG12/A20 chamber calibration factors for 18 F and 153 Sm were obtained, making possible to determine activities of these radionuclides. (author)

  14. Photo-triggering and secondary electron produced ionization in electric discharge ArF* excimer lasers

    Science.gov (United States)

    Xiong, Zhongmin; Kushner, Mark J.

    2011-10-01

    Electric discharge excimer lasers are sustained in multi-atmosphere attaching gas mixtures that are typically preionized to enable a reproducible, uniform glow, which maximizes optical quality and gain. This preionization is often accomplished using UV light produced by a corona discharge within the plasma cavity. To quantify the relationship between corona discharge properties and those of the laser discharge, the triggering of electron avalanche by preionizing UV light in an electric discharge-pumped ArF* excimer laser was numerically investigated using a two-dimensional model. The preionizing UV fluxes were generated by a corona-bar discharge driven by the same voltage pulse as the main discharge sustained in a multi-atmospheric Ne/Ar/Xe/F2 gas mixture. The resulting peak photo-electron density in the inter-electrode spacing is around 108 cm-3, and its distribution is biased toward the UV source. The preionization density increases with increasing dielectric constant and capacitance of the corona bar. The symmetry and uniformity of the discharge are, however, improved significantly once the main avalanche develops. In addition to bulk electron impact ionization, the ionization generated by sheath accelerated secondary electrons was found to be important in sustaining the discharge current at experimentally observed values. At peak current, the magnitude of the ionization by sheath accelerated electrons is comparable to that from bulk electron impact in the vicinity of the cathode.

  15. Gaseous poison injection device

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Sugisaki, Toshihiko; Inada, Ikuo.

    1983-01-01

    Purpose: To rapidly control the chain reaction due to thermal neutrons in a reactor core by using gaseous poisons as back-up means for control rod drives. Constitution: Gaseous poisons having a large neutron absorption cross section are used as back-up means for control rod drives. Upon failure of control rod insertion, the gaseous poisons are injected into the lower portion of the reactor core to control the reactor power. As the gaseous poisons, vapors at a high temperature and a higher pressure than that of the coolants in the reactor core are injected to control the reactor power due to the void effects. Since the gaseous poisons thus employed rapidly reach the reactor core and form gas bubbles therein, the deccelerating effect of the thermal neutrons is decreased to reduce the chain reaction. (Moriyama, K.)

  16. Specific primary ionization induced by minimum ionizing electrons in CH4, C2H6, C3H8, i-C4H10, Ar, DME,TEA and TMAE

    International Nuclear Information System (INIS)

    Melamud, G.; Breskin, A.; Chechik, R.; Pansky, A.

    1992-10-01

    Specific primary ionization induced by minimum ionizing electrons has been measured in several gases and vapors. Charges deposited by β-electrons in a low pressure gas, were collected, amplified by a multistep gaseous electron multiplier and counted. The high counting efficiency of the multiplier provided results of systematically higher values as compared to existing data. The respective values of the specific primary ionization in CH 4 C 2 H 6 , C 3 H 8 ,i-C 4 H 10 , Argon, Dimethylether, Triethylamine and Tetrakis(dimethylamino) ethylene are: 0.034, 0.065, 0.095, 0.12, 0.03, 0.082, 0.0195 and 0.370 clusters/cm*Torr. We present the experimental method and discuss the results and their accuracy. (authors)

  17. Process and system for removing sulfur from sulfur-containing gaseous streams

    Science.gov (United States)

    Basu, Arunabha; Meyer, Howard S.; Lynn, Scott; Leppin, Dennis; Wangerow, James R.

    2012-08-14

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  18. Inhalation gases or gaseous mediators as neuroprotectants for cerebral ischaemia.

    Science.gov (United States)

    Sutherland, Brad A; Harrison, Joanne C; Nair, Shiva M; Sammut, Ivan A

    2013-01-01

    Ischaemic stroke is one of the leading causes of morbidity and mortality worldwide. While recombinant tissue plasminogen activator can be administered to produce thrombolysis and restore blood flow to the ischaemic brain, therapeutic benefit is only achieved in a fraction of the subset of patients eligible for fibrinolytic intervention. Neuroprotective therapies attempting to restrict the extent of brain injury following cerebral ischaemia have not been successfully translated into the clinic despite overwhelming pre-clinical evidence of neuroprotection. Therefore, an adequate treatment for the majority of acute ischaemic stroke patients remains elusive. In the stroke literature, the use of therapeutic gases has received relatively little attention. Gases such as hyperbaric and normobaric oxygen, xenon, hydrogen, helium and argon all possess biological effects that have shown to be neuroprotective in pre-clinical models of ischaemic stroke. There are significant advantages to using gases including their relative abundance, low cost and feasibility for administration, all of which make them ideal candidates for a translational therapy for stroke. In addition, modulating cellular gaseous mediators including nitric oxide, carbon monoxide, and hydrogen sulphide may be an attractive option for ischaemic stroke therapy. Inhalation of these gaseous mediators can also produce neuroprotection, but this strategy remains to be confirmed as a viable therapy for ischaemic stroke. This review highlights the neuroprotective potential of therapeutic gas therapy and modulation of gaseous mediators for ischaemic stroke. The therapeutic advantages of gaseous therapy offer new promising directions in breaking the translational barrier for ischaemic stroke.

  19. Nuclear waste disposal utilizing a gaseous core reactor

    Science.gov (United States)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  20. Characterization of gaseous detectors at the CERN Gamma Irradiation Facility: GEM performance in presence of high background radiation

    CERN Document Server

    AUTHOR|(CDS)2097588

    Muon detection is an efficient tool to recognize interesting physics events over the high background rate expected at the Large Hadron Collider (LHC) at CERN. The muon systems of the LHC experiments are based on gaseous ionization detectors. In view of the High-Luminosity LHC (HL-LHC) upgrade program, the increasing of background radiation could affect the gaseous detector performance, especially decreasing the efficiency and shortening the lifetime through ageing processes. The effects of charge multiplication, materials and gas composition on the ageing of gaseous detectors have been studied for decades, but the future upgrade of LHC requires additional studies on this topic. At the CERN Gamma Irradiation Facility (GIF++), a radioactive source of cesium-137 with an activity of 14 TBq is used to reproduce reasonably well the expected background radiation at HL-LHC. A muon beam has been made available to study detector performance. The characterization of the beam trigger will be discussed in the present w...

  1. Theory of electron degradation and yields of initial molecular species produced by ionizing radiation

    International Nuclear Information System (INIS)

    Inokuti, M.; Dillon, M.A.; Kimura, M.

    1987-01-01

    Ionizing radiations generate in matter a large number of energetic electrons, which in turn collide with molecules in matter, produce ions and excited states, and thereby degrade in energy. The description of the consequences of many collision processes to the electrons and to matter is the goal of the electron degradation theory. They summarize the current understanding of this topic, which is important as a basis of radiation chemistry and biology. In addition, they present an initial report of their new work, namely, a generalization of the Spencer-Fano theory to time-dependent cases

  2. GEM - A novel gaseous particle detector

    CERN Document Server

    Meinschad, T

    2005-01-01

    The work carried out within the framework of this Ph.D. deals with the construction of gaseous prototype detectors using Gas Electron Multiplier electrodes for the amplification of charges released by ionizing particles. The Gas Electron Multiplier (GEM) is a thin metal-clad polymer foil, etched with a high density of narrow holes, typically 50-100mm-2. On the application of a potential difference between the conductive top and bottom sides each hole acts as independent proportional counter. This new fast device permits to reach large amplification factors at high rates with a strong photon and ion-mediated feedback suppression due to the avalanche confinement in the GEM-holes. Here, in particular studies have been performed, which should prove, that the GEM-technology is applicable for an efficient measurement of single Cherenkov photons. These UV-photons can be detected in different ways. An elegant solution to develop large area RICH-detectors is to evaporate a pad-segmented readout-cathode of a multi-wire...

  3. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. V. ALFVÉN IONIZATION

    International Nuclear Information System (INIS)

    Stark, C. R.; Helling, Ch.; Rimmer, P. B.; Diver, D. A.

    2013-01-01

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbor localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfvén ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization (≥10 –7 ) that they constitute plasmas. We outline the criteria required for Alfvén ionization and demonstrate its applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs, and M dwarfs with both solar and sub-solar metallicities. We find that Alfvén ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization of 10 –6 -1 can be obtained as a result of Alfvén ionization. Observable consequences include continuum bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g., He, Mg, H 2 , or CO lines). Forbidden lines are also expected from the metastable population. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models. The occurrence of Alfvén ionization may also be applicable to other astrophysical environments such as protoplanetary disks

  4. Distribution of gaseous and particulate organic composition during dark α-pinene ozonolysis

    Directory of Open Access Journals (Sweden)

    A. R. Rickard

    2010-03-01

    Full Text Available Secondary Organic Aerosol (SOA affects atmospheric composition, air quality and radiative transfer, however major difficulties are encountered in the development of reliable models for SOA formation. Constraints on processes involved in SOA formation can be obtained by interpreting the speciation and evolution of organics in the gaseous and condensed phase simultaneously. In this study we investigate SOA formation from dark α-pinene ozonolysis with particular emphasis upon the mass distribution of gaseous and particulate organic species. A detailed model for SOA formation is compared with the results from experiments performed in the EUropean PHOtoREactor (EUPHORE simulation chamber, including on-line gas-phase composition obtained from Chemical-Ionization-Reaction Time-Of-Flight Mass-Spectrometry measurements, and off-line analysis of SOA samples performed by Ion Trap Mass Spectrometry and Liquid Chromatography. The temporal profile of SOA mass concentration is relatively well reproduced by the model. Sensitivity analysis highlights the importance of the choice of vapour pressure estimation method, and the potential influence of condensed phase chemistry. Comparisons of the simulated gaseous- and condensed-phase mass distributions with those observed show a generally good agreement. The simulated speciation has been used to (i propose a chemical structure for the principal gaseous semi-volatile organic compounds and condensed monomer organic species, (ii provide evidence for the occurrence of recently suggested radical isomerisation channels not included in the basic model, and (iii explore the possible contribution of a range of accretion reactions occurring in the condensed phase. We find that oligomer formation through esterification reactions gives the best agreement between the observed and simulated mass spectra.

  5. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    Science.gov (United States)

    Jujasz, Albert J.; Burkhart, James A.; Greenberg, Ralph

    1988-01-01

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  6. Application of pulsed power and power modulation to the non-thermal plasma treatment of hazardous gaseous wastes

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1992-10-01

    Acid rain, global warming, ozone depletion, and smog are preeminent environmental problems facing the world today. Non-thermal plasma techniques offer an innovative approach to the cost-effective solution of these problems. Many potential applications of non-thermal plasmas to air pollution control have already been demonstrated. The use of pulsed power and power modulation is essential to the successful implementation of non-thermal plasma techniques. This paper provides an overview of the most recent developments in non-thermal plasma systems that have been applied to gaseous waste treatment. In the non-thermal plasma approach, the nonequilibrium properties of the plasma are fully exploited. These plasmas are characterized by high electron temperatures, while the gas remains at near ambient temperature and pressure. The energy is directed preferentially to the undesirable components, which are often present in very small concentrations. These techniques utilize the dissociation and ionization of the background gas to produce radicals which, in turn, decompose the toxic compounds. The key to success in the non-thermal plasma approach is to produce a discharge in which the majority of the electrical energy goes into the production of energetic electrons, rather than into gas heating. For example, in a typical application to flue gas cleanup, these electrons produce radicals, such as O and OH, through the dissociation or ionization of molecules such as H 2 O or O 2 . The radicals diffuse through the gas and preferentially oxidize the nitrogen oxides and sulfur oxides to form acids that can then be easily neutralized to form non-toxic, easily-collectible (and commercially salable) compounds. Non-thermal plasmas can be created in essentially two different ways: by electron-beam irradiation, and by electrical discharges

  7. Novel mass spectrometric instrument for gaseous and particulate characterization and monitoring. Quarterly report, April 1, 1994--June 30, 1994

    International Nuclear Information System (INIS)

    Coggiola, M.J.

    1994-07-01

    Purpose of the instrument is for real-time (<1 min), ppB analysis of gaseous/particulate pollutants (VOCs, PAHs, heavy metals, transuranics) from DOE waste cleanup. It will consist of an isokinetic sampler, a pressure transition and sampling region for parallel analyses, two small mass spectrometers (one for organic analysis using field ionization, one [ion trap] for particulates using pyrolysis and electron-impact ionization), and a personal computer. A dimethylsilicone membrane will be used for the organic vapors. A forward-backward coincidence method will be used in the laser scattering particle detector. The instrument will be easily transportable to DOE waste sites, such as waste storage tanks

  8. Increased ionization rate in laser enrichment

    International Nuclear Information System (INIS)

    Janes, G.S.; Pike, G.T.

    1977-01-01

    A system employing multiple, upper excitation levels in a technique for isotopically selective ionization to improve the ionization efficiency is described. Laser radiation is employed to excite particles with isotopic selectivity. Excitation is produced to a plurality of excited states below the ionization level with the result of increasing the number of available excited particles for ionization and thereby increasing the ionization cross section for improved system efficiency

  9. Gaseous Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    aseous Matter focuses on the many important discoveries that led to the scientific interpretation of matter in the gaseous state. This new, full-color resource describes the basic characteristics and properties of several important gases, including air, hydrogen, helium, oxygen, and nitrogen. The nature and scope of the science of fluids is discussed in great detail, highlighting the most important scientific principles upon which the field is based. Chapters include:. Gaseous Matter An Initial Perspective. Physical Characteristics of Gases. The Rise of the Science of Gases. Kinetic Theory of

  10. The acute effects of ionizing radiation on DNA synthesis and the development of antibody-producing cells

    International Nuclear Information System (INIS)

    Harris, G.; Olsen, I.; Cramp, W.A.

    1981-01-01

    Ionizing radiation inhibited the development of specific haemolysin-producing cells (PFC) and depressed the incorporation of ( 3 H) thymidine by rabbit spleen explants responding to SRC in the culture medium. In contrast to these effects, the rates of incorporation of precursors for protein and RNA synthesis were much less affected. The depression of ( 3 H) thymidine incorporation was found to result from a quantitative reduction of new DNA synthesis, without any change in the proportion of labelled cells, at any time after irradiation. The DNA synthesis occurring in these cells preparing to develop antibody-producing capacity was thus radio-sensitive, but the exact nature of the defect resulting from exposure to radiation requires further study. (orig.)

  11. Charge Transfer Properties Through Graphene for Applications in Gaseous Detectors

    CERN Document Server

    Franchino, S.; Hall-Wilton, R.; Jackman, R.B.; Muller, H.; Nguyen, T.T.; de Oliveira, R.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.; van Stenis, M.; Streli, C.; Thuiner, P.; Veenhof, R.

    2016-07-11

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2x2cm$^2$, grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.

  12. Biological effect produced by ionizing radiations on occupational workers in Carlos Andrade Marin Hospital

    International Nuclear Information System (INIS)

    Arias Pullaguari, Ines Yolanda

    2003-01-01

    The objective of this study was to establish the biological effects on occupational workers. In this study, have made a bibliographic review of the changes on skin of 217 professionals; between 21 and 70 years radiologists, X-ray technicians, radioisotope workers, nurses and others, which were exposed to ionizing radiation, in the departments of Diagnosis and Treatment of the Hospital Carlos Andrade Marin of the Quito city. From this universe 133 workers were excluded of the analysis. From the totality of lesions produced on the skin; the depilation constituted 40.18%, hyper pigmentation 19.34%, hypo pigmentation 9 %, capillary fragility 13.39%, erythema 13.39%, alopecia 5.37%. From the totality of lesions produced in blood: the leukopenia constituted 20.23% between all workers. The percentage method was used for statical calculation. A bibliographic update is done and the most relevant clinical aspects are reviewed. (The author)

  13. Chemical effects produced by the ionizing radiation in the mercury beating heart reaction

    International Nuclear Information System (INIS)

    Castillo-Rojas, S.; Burillo, G.; Gonzalez-Chavez, J.L.; Vicente, L.

    2002-01-01

    Complete text of publication follows. In a recent paper we have shown the existence of complex modes of oscillation in the study of the extinction dynamics of the mercury beating heart reaction. It was proposed that one of the species responsible for the oscillatory movements of this reaction is the mercury(I), in anyone in their forms, either free or molecular. the formation of Hg 2 2+ from γ irradiation of 60 Co to the system Hg 0 /H 2 SO 4 (6M) allowed to elucidate the probable mechanism of reaction. The objective of this work is to study how the ionizing radiation affects the dynamics of extinction of this reaction, which is related with the existence of certain chemical species. The study was carried out in 2 ways: a) Method I: H 2 SO 4 (6M) was first irradiated and to the irradiated solution the Hg 0 was added and b) Method II: the system Hg 0 /H 2 SO 4 (6M) was irradiated. The different irradiated systems were put into reaction with Fe 0 to investigate if there were differences between the two irradiated systems and how the complex modes of oscillation of the reaction were affected. The quantity of Hg 2 2+ produced by method I is bigger than in method II. This is explained because the majority species produced by radiolysis of H 2 SO 4 are sulfate radical and H 2 O 2 that act as oxidizer agents and their potential values allow to suppose that these substances react with Hg 0 to produce Hg 2 2+ . On the other hand, by method II mercury clusters (Hg 4 3+ ) are formed as was reported by Sukhov and Ershov in pulse radiolysis of aqueous Hg 2 2+ solutions. We assume that the formation of these mercury clusters has to be observed with the decrease of the Hg 2 2+ concentration when one makes the radiolysis by method II. In general, the preliminary studies allow establishing that the ionizing radiation does not affect the extinction dynamics but it increases the half-life of this reaction

  14. Display of charged ionizing particles

    International Nuclear Information System (INIS)

    Cano S, D.; Ortiz A, M. D.; Amarillas S, L. E.; Vega C, H. R.

    2017-10-01

    The human being is exposed to sources of ionizing and non-ionizing radiation, both of natural or anthropogenic origin. None of these, except non-ionizing such as visible light and infrared radiation, can be detected by the sense of sight and touch respectively. The sun emits charged particles with speeds close to the light that interact with the atoms of the gases present in the atmosphere, producing nuclear reactions that in turn produce other particles that reach the surface of the Earth and reach the living beings. On Earth there are natural radioisotopes that, when they disintegrate, emit ionizing radiation that contributes to the dose we receive. A very old system that allows the visualization of the trajectories of the charged ionizing particles is the Fog Chamber that uses a saturated steam that when crossed by particles with mass and charge, as alpha and beta particles produce condensation centers along its path leaves a trace that can be seen. The objective of this work was to build a fog chamber using easily accessible materials. To measure the functioning of the fog chamber, cosmic rays were measured, as well as a source of natural metal uranium. The fog chamber allowed seeing the presence of traces in alcohol vapor that are produced in a random way. Introducing the uranium foil inside the fog chamber, traces of alpha particles whose energy varies from 4 to 5 MeV were observed. (Author)

  15. Ionizing radiation processing and its potential in advancing biorefining and nanocellulose composite materials manufacturing.

    Science.gov (United States)

    Postek, Michael T; Poster, Dianne L; Vládar, András E; Driscoll, Mark S; LaVerne, Jay A; Tsinas, Zois; Al-Sheikhly, Mohamad I

    2018-02-01

    Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. Through utilization of a biorefinery concept, nanocellulose can be produced in large volumes from wood at relatively low cost via ionizing radiation processing. Ionizing radiation causes significant break down of the polysaccharide and leads to the production of potentially useful gaseous products such as H 2 and CO. The application of radiation processing to the production of nanocellulose from woody and non-wood sources, such as field grasses, bio-refining byproducts, industrial pulp waste, and agricultural surplus materials remains an open field, ripe for innovation and application. Elucidating the mechanisms of the radiolytic decomposition of cellulose and the mass generation of nanocellulose by radiation processing is key to tapping into this source of nanocelluose for the growth of nanocellulostic-product development. More importantly, understanding the structural break-up of the cell walls as a function of radiation exposure is a key goal and only through careful, detailed characterization and dimensional metrology can this be achieved at the level of detail that is needed to further the growth of large scale radiation processing of plant materials. This work is resulting from strong collaborations between NIST and its academic partners who are pursuing the unique demonstration of applied ionizing radiation processing to plant materials as well as the development of manufacturing metrology for novel nanomaterials.

  16. Ionizing radiation processing and its potential in advancing biorefining and nanocellulose composite materials manufacturing

    Science.gov (United States)

    Postek, Michael T.; Poster, Dianne L.; Vládar, András E.; Driscoll, Mark S.; LaVerne, Jay A.; Tsinas, Zois; Al-Sheikhly, Mohamad I.

    2018-02-01

    Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. Through utilization of a biorefinery concept, nanocellulose can be produced in large volumes from wood at relatively low cost via ionizing radiation processing. Ionizing radiation causes significant break down of the polysaccharide and leads to the production of potentially useful gaseous products such as H2 and CO. The application of radiation processing to the production of nanocellulose from woody and non-wood sources, such as field grasses, bio-refining by-products, industrial pulp waste, and agricultural surplus materials remains an open field, ripe for innovation and application. Elucidating the mechanisms of the radiolytic decomposition of cellulose and the mass generation of nanocellulose by radiation processing is key to tapping into this source of nanocelluose for the growth of nanocellulostic-product development. More importantly, understanding the structural break-up of the cell walls as a function of radiation exposure is a key goal and only through careful, detailed characterization and dimensional metrology can this be achieved at the level of detail that is needed to further the growth of large scale radiation processing of plant materials. This work is resulting from strong collaborations between NIST and its academic partners who are pursuing the unique demonstration of applied ionizing radiation processing to plant materials as well as the development of manufacturing metrology for novel nanomaterials.

  17. Production of 41Ar and 79Kr gaseous radiotracers for industrial applications

    International Nuclear Information System (INIS)

    Yelgaonkar, V.N.; Jagadeesan, K.C.; Shivarudrappa, V.; Sharma, V.K.; Chitra, S.

    2007-01-01

    Radiotracers are extensively used in many industries for trouble shooting and optimization of process parameters leading to considerable savings in time and huge economic benefits. In chemical and petrochemical industries different gases and vapours flowing in the conversion reactors play a major role in the final production. Gaseous radiotracers are ideal to study hydrodynamics of gas phases in process vessels. 41 Ar and 79 Kr are the preferred gaseous radiotracers for such studies. Owing to the increase in demand from Indian industries for gas phase radiotracers, efforts have been made to produce 41 Ar and 79 Kr indigenously by irradiation of 40 Ar and enriched 78 Kr gaseous targets in research reactors. Prequalification of the containers used, safety aspects concerning accidental rupture and mandatory tests necessary for irradiation of gaseous targets in the reactors have been studied. The paper describes some of the important safety aspects involved and the results of trial irradiations on the production of 41 Ar and 79 Kr radiotracers. Standardization of suitable assay protocols for their regular production and supply for applications in industries is also described. (author)

  18. Chemical and physical factors which control the substitution reactions of direct fission-produced iodine with gaseous methane and the methyl halides

    International Nuclear Information System (INIS)

    Kikuchi, M.; Church, L.B.

    1976-01-01

    The factors controlling the hydrogen and halogen substitution reactions resulting from direct fission-produced iodine isotopes (*I) with gaseous methane and methyl halides were investigated. The chemical reaction probabilities, corrected for any secondary decomposition, were compared as a function of various chemical and physical parameters. These include carbon-halogen bond strength, halogen electronegativity, volume and cross sectional area of the substituted and neighboring atoms. On the basis of this analysis, it is concluded that *I-for-X (where X = H, F, Cl, Br and I) substitution reactions are controlled by the cross sectional area of the X atom. The *I-for-H substitution probability is reduced in proportion to the volume of X, suggesting that steric interference is the dominant factor influencing the reaction probability. (orig.) [de

  19. First successful ionization of Lr (Z = 103) by a surface-ionization technique

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tetsuya K., E-mail: sato.tetsuya@jaea.go.jp; Sato, Nozomi; Asai, Masato; Tsukada, Kazuaki; Toyoshima, Atsushi; Ooe, Kazuhiro; Miyashita, Sunao; Schädel, Matthias [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kaneya, Yusuke; Nagame, Yuichiro [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512 (Japan); Osa, Akihiko [Department of Research Reactor and Tandem Accelerator, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Ichikawa, Shin-ichi [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Stora, Thierry [ISOLDE, CERN, CH-1211 Geneva 23 (Switzerland); Kratz, Jens Volker [Institut für Kernchemie, Universität Mainz, D-55099 Mainz (Germany)

    2013-02-15

    We have developed a surface ionization ion-source as part of the JAEA-ISOL (Isotope Separator On-Line) setup, which is coupled to a He/CdI{sub 2} gas-jet transport system to determine the first ionization potential of the heaviest actinide lawrencium (Lr, Z = 103). The new ion-source is an improved version of the previous source that provided good ionization efficiencies for lanthanides. An additional filament was newly installed to give better control over its operation. We report, here, on the development of the new gas-jet coupled surface ion-source and on the first successful ionization and mass separation of 27-s {sup 256}Lr produced in the {sup 249}Cf + {sup 11}B reaction.

  20. Supersonic propagation of ionization waves in an underdense, laser-produced plasma

    International Nuclear Information System (INIS)

    Constantin, C.; Back, C.A.; Fournier, K.B.; Gregori, G.; Landen, O.L.; Glenzer, S.H.; Dewald, E.L.; Miller, M.C.

    2005-01-01

    A laser-driven supersonic ionization wave propagating through a millimeter-scale plasma of subcritical density up to 2-3 keV electron temperatures was observed. Propagation velocities initially ten times the sound speed were measured by means of time-resolved x-ray imaging diagnostics. The measured ionization wave trajectory is modeled analytically and by a two-dimensional radiation-hydrodynamics code. The comparison to the modeling suggests that nonlocal heat transport effects may contribute to the attenuation of the heat-wave propagation

  1. Laser-induced ionization of Na vapor

    International Nuclear Information System (INIS)

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na 2 + ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na 2 molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na 2 D 1 PIμ Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na 2 + ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na 2 + through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na 2 molecules

  2. Progress on Beam-Plasma Effect Simulations in Muon Ionization Cooling Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James [IIT, Chicago; Snopok, Pavel [Fermilab

    2017-05-01

    New computational tools are essential for accurate modeling and simulation of the next generation of muon-based accelerators. One of the crucial physics processes specific to muon accelerators that has not yet been simulated in detail is beam-induced plasma effect in liquid, solid, and gaseous absorbers. We report here on the progress of developing the required simulation tools and applying them to study the properties of plasma and its effects on the beam in muon ionization cooling channels.

  3. Gaseous waste processing facility

    International Nuclear Information System (INIS)

    Konno, Masanobu; Uchiyama, Yoshio; Suzuki, Kunihiko; Kimura, Masahiro; Kawabe, Ken-ichi.

    1992-01-01

    Gaseous waste recombiners 'A' and 'B' are connected in series and three-way valves are disposed at the upstream and the downstream of the recombiners A and B, and bypass lines are disposed to the recombiners A and B, respectively. An opening/closing controller for the three-way valves is interlocked with a hydrogen densitometer disposed to a hydrogen injection line. Hydrogen gas and oxygen gas generated by radiolysis in the reactor are extracted from a main condenser and caused to flow into a gaseous waste processing system. Gaseous wastes are introduced together with overheated steams to the recombiner A upon injection of hydrogen. Both of the bypass lines of the recombiners A and B are closed, and recombining reaction for the increased hydrogen gas is processed by the recombiners A and B connected in series. In an operation mode not conducting hydrogen injection, it is passed through the bypass line of the recombiner A and processed by the recombiner B. With such procedures, the increase of gaseous wastes due to hydrogen injection can be coped with existent facilities. (I.N.)

  4. Novel mass spectrometric instrument for gaseous and particulate characterization and monitoring

    International Nuclear Information System (INIS)

    Coggiola, M.J.

    1993-04-01

    Under contract DE-AC21-92MC29116, SRI International will develop a unique new instrument that will be capable of providing real-time (< l minute), quantitative, chemical characterization of gaseous and particulate pollutants generated from DOE waste cleanup activities. The instrument will be capable of detecting and identifying volatile organic compounds, polynuclear aromatic hydrocarbons, heavy metals, and transuranic species released during waste cleanup activities. The instrument will be unique in its ability to detect and quantify in real-time these diverse pollutants in both vapor and particulate form. The instrument to be developed under this program will consist of several major components: (1) an isokinetic sampler capable of operating over a wide range of temperatures (up to 500 K) and flow rates; (2) a high pressure to low pressure transition and sampling region that efficiently separates particles from vapor-phase components for separate, parallel analyses; (3) two small mass spectrometers, one optimized for organic analysis using a unique field ionization source and one optimized for particulate characterization using thermal pyrolysis and electron-impact ionization (EI); and (4) a powerful personal computer for control and data acquisition

  5. Review of experimental cross sections for K-shell ionization by light ions

    International Nuclear Information System (INIS)

    Paul, H.; Muhr, J.

    1986-01-01

    We review experimental K-shell ionization cross sections using a data file containing about 7800 total X-ray or Auger production cross sections taken from the literature for which Z 1 /Z 2 1 and Z 2 are the atomic numbers of projectile and target. We compare various recent collections of K-shell fluorescence yields ω, and we use Krause's tables to convert the data to ionization cross sections. For every projectile, we normalize these data using the theoretical cross section due to Brandt and Lapicki (ECPSSR). We show them plotted versus log xi (where xi is the scaled projectile velocity) in the appendix, and we average them in equal intervals Δ log xi. A statistical criterion is used to exclude references with discrepant data. We find that the average normalized cross section anti s is mostly close to unity (i.e., ECPSSR describes the data well), but that there are also significant deviations at certain values of xi. For almost all projectiles, anti s decreases below unity for log xi 2 for small and for large log xi. We approximate anti s by analytical functions of log xi and thus produce ''reference'' cross sections for selected proton energies and targets. For heavier projectiles (and also for protons on light targets), additional systematic deviations develop: a maximum of anti s around log xi=-0.6 and a minimum around log xi=-0.3. Above log xi=-0.1, the influence of multiple ionization and of electron capture by the projectile becomes noticeable with increasing Z 1 . X-ray cross sections for light solid or gaseous targets (Z 2 2 >5). (orig.)

  6. Producing deuterium-enriched products

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing an enriched deuterium product from a gaseous feed stream of mixed hydrogen and deuterium, comprises: (a) combining the feed stream with gaseous bromine to form a mixture of the feed stream and bromine and exposing the mixture to an electrical discharge effective to form deuterium bromide and hydrogen bromide with a ratio of D/H greater than the ratio of D/H in the feed stream; and (b) separating at least a portion of the hydrogen bromide and deuterium bromide from the mixture. (author)

  7. Determination of the influence of asymmetry of the electric field distribution in gaseous proportional counters on their signal amplitude

    International Nuclear Information System (INIS)

    Jagusztyn, W.

    1976-01-01

    A method is described of establishing the influence of the asymmetry of the electric field distribution in gaseous proportional counters on the amplitude of their voltage signal. A numerical evaluation of this effect demands performing calculations of the electric field in the vicinity of the anode. Using the described method of numerical solution of the Laplace equation in polar coordinates with logarythmically scaled radial dimension, it is possible to achieve the required accuracy. In the calculations of differences in amplitudes of voltage signals, for chosen trajektories of electrons liberated in the process of primary ionization, changes in the gaseous amplification factors and drift velocities of positive ions are taken into account. Experimental results prove the validity of presented theory. The results obtained are accurate enough to be applied to the design of proportional counters of non-cylindrical geometries. (author)

  8. Mass spectrometric study of thermodynamic properties of gaseous lead tellurates. Estimation of formation enthalpies of gaseous lead polonates

    Energy Technology Data Exchange (ETDEWEB)

    Shugurov, S.M., E-mail: s.shugurov@spbu.ru; Panin, A.I.; Lopatin, S.I.; Emelyanova, K.A.

    2016-10-15

    Gaseous reactions involving lead oxides, tellurium oxide and lead tellurates were studied by the Knudsen effusion mass spectrometry. Equilibrium constants and reaction enthalpies were evaluated. Structures, molecular parameters and thermodynamic functions of gaseous PbTeO{sub 3} and Pb{sub 2}TeO{sub 4} were calculated by quantum chemistry methods. The formation enthalpies Δ{sub f}H{sup 0} (298.15) = −294 ± 13 for gaseous PbTeO{sub 3} and Δ{sub f}H{sup 0} (298.15) = −499 ± 12 for gaseous Pb{sub 2}TeO{sub 4} were obtained. On the base of these results the formation enthalpies of gaseous PbPoO{sub 3} and Pb{sub 2}PoO{sub 4} were estimated as −249 ± 34 and −478 ± 38, respectively. - Highlights: • Gaseous lead tellurates PbTeO{sub 3}, Pb{sub 2}TeO{sub 4} were discovered. • Their thermodynamic properties were studied using both high temperature mass spectrometry and quantum chemistry computations. • The obtained data allows to predict the formation enthalpies of gaseous lead polonates PbPoO{sub 3}, Pb{sub 2}PoO{sub 4}.

  9. Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization.

    Science.gov (United States)

    Talaty, Nari; Takáts, Zoltán; Cooks, R Graham

    2005-12-01

    Desorption electrospray ionization (DESI) mass spectrometry is applied to the in situ detection of alkaloids in the tissue of poison hemlock (Conium maculatum), jimsonweed (Datura stramonium) and deadly nightshade (Atropa belladonna). The experiment is carried out by electrospraying micro-droplets of solvent onto native or freshly-cut plant tissue surfaces. No sample preparation is required and the mass spectra are recorded under ambient conditions, in times of a few seconds. The impact of the sprayed droplets on the surface produces gaseous ions from organic compounds originally present in the plant tissue. The effects of operating parameters, including the electrospray high voltage, heated capillary temperature, the solvent infusion rate and the carrier gas pressure on analytical performance are evaluated and optimized. Different types of plant material are analyzed including seeds, stems, leaves, roots and flowers. All the previously reported alkaloids have been detected in C. maculatum, while fifteen out of nineteen known alkaloids for D. stramonium and the principal alkaloids of A. belladonna were also identified. All identifications were confirmed by tandem mass spectrometry. Results obtained show similar mass spectra, number of alkaloids, and signal intensities to those obtained when extraction and separation processes are performed prior to mass spectrometric analysis. Evidence is provided that DESI ionization occurs by both a gas-phase ionization process and by a droplet pick-up mechanism. Quantitative precision of DESI is compared with conventional electrospray ionization mass spectrometry (after sample workup) and the RSD values for the same set of 25 dicotyledonous C. maculatum seeds (one half of each seed analyzed by ESI and the other by DESI) are 9.8% and 5.2%, respectively.

  10. 7th International Symposium on Gaseous Dielectrics

    CERN Document Server

    James, David

    1994-01-01

    The Seventh International Symposium on Gaseous Dielectrics was held in Knoxville, Tennessee, U. S. A. , on April 24-28, 1994. The symposium continued the interdisciplinary character and comprehensive approach of the preceding six symposia. Gaseous DielecIries VII is a detailed record of the symposium proceedings. It covers recent advances and developments in a wide range of basic, applied and industrial areas of gaseous dielectrics. It is hoped that Gaseous DielecIries VII will aid future research and development in, and encourage wider industrial use of, gaseous dielectrics. The Organizing Committee of the Seventh International Symposium on Gaseous Dielectrics consisted of G. Addis (U. S. A. ), L. G. Christophorou (U. S. A. ), F. Y. Chu (Canada), A. H. Cookson (U. S. A. ), O. Farish (U. K. ), I. Gallimberti (Italy) , A. Garscadden (U. S. A. ), D. R. James (U. S. A. ), E. Marode (France), T. Nitta (Japan), W. Pfeiffer (Germany), Y. Qiu (China), I. Sauers (U. S. A. ), R. J. Van Brunt (U. S. A. ), and W. Zaengl...

  11. Behavioral and physiological changes produced by a supralethal dose of ionizing radiation: evidence for hormone-influenced sex differences in the rat

    International Nuclear Information System (INIS)

    Mickley, G.A.

    1980-01-01

    A sufficiently large and rapid dose of ionizing radiation produces an immediate but transient behavioral incapacitation. Acute hypotension often accompanies the disorder. Although the etiology of this syndrome is unclear, it has been suggested that an increase in histamine excretion contributes to it. Since histamine is known to interact with the endocrine system and since estrogens have been shown to prolong the life of animals exposed to potentially lethal doses of radiation, it was also hypothesized that females might be relatively less affected by an acute, large dose of ionizing radiation. Male and female rats were trained on an avoidance task, irradiated, and then retested. Females showed a less severe decrement after radiation exposure than males. Likewise, females did not suffer the severe hypotension normally associated with male radiogenic early transient incapacitation (ETI); rather, an acute hypertension was produced in females. A second series of experiments revealed that differences in male and female radiation response were eliminated by gonadectomy. Systemic estradiol injection produced strikingly feminine (i.e., superior) postirradiation avoidance responses as well as hypertension in neutered rats. Testosterone injections had no effect on either measure. Central nervous system alterations have been correlated with the ETI. Therefore, final experiments sought a possible central locus of the action of estradiol. It was found that exposure of the nucleus peopticus medialis to estrogens produces postirradiation benefits in avoidance performance and blood pressure similar to those seen after systemic estradiol treatments. Nucleus amygdaloideus medialis implants produced no such benefits

  12. Additive Manufacturing Materials Study for Gaseous Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Steer, C.A.; Durose, A.; Boakes, J. [AWE Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

    2015-07-01

    Additive manufacturing (AM) techniques may lead to improvements in many areas of radiation detector construction; notably the rapid manufacturing time allows for a reduced time between prototype iterations. The additive nature of the technique results in a granular microstructure which may be permeable to ingress by atmospheric gases and make it unsuitable for gaseous radiation detector development. In this study we consider the application of AM to the construction of enclosures and frames for wire-based gaseous radiation tracking detectors. We have focussed on oxygen impurity ingress as a measure of the permeability of the enclosure, and the gas charging and discharging curves of several simplistic enclosure shapes are reported. A prototype wire-frame is also presented to examine structural strength and positional accuracy of an AM produced frame. We lastly discuss the implications of this study for AM based radiation detection technology as a diagnostic tool for incident response scenarios, such as the interrogation of a suspect radiation-emitting package. (authors)

  13. Additive Manufacturing Materials Study for Gaseous Radiation Detection

    International Nuclear Information System (INIS)

    Steer, C.A.; Durose, A.; Boakes, J.

    2015-01-01

    Additive manufacturing (AM) techniques may lead to improvements in many areas of radiation detector construction; notably the rapid manufacturing time allows for a reduced time between prototype iterations. The additive nature of the technique results in a granular microstructure which may be permeable to ingress by atmospheric gases and make it unsuitable for gaseous radiation detector development. In this study we consider the application of AM to the construction of enclosures and frames for wire-based gaseous radiation tracking detectors. We have focussed on oxygen impurity ingress as a measure of the permeability of the enclosure, and the gas charging and discharging curves of several simplistic enclosure shapes are reported. A prototype wire-frame is also presented to examine structural strength and positional accuracy of an AM produced frame. We lastly discuss the implications of this study for AM based radiation detection technology as a diagnostic tool for incident response scenarios, such as the interrogation of a suspect radiation-emitting package. (authors)

  14. Ionizing radiation post-curing of objects produced by stereolithography and other methods

    Science.gov (United States)

    Howell, David H.; Eberle, Claude C.; Janke, Christopher J.

    2000-01-01

    An object comprised of a curable material and formed by stereolithography or another three-dimensional prototyping method, in which the object has undergone initial curing, is subjected to post-curing by ionizing radiation, such as an electron beam having a predetermined beam output energy, which is applied in a predetermined dosage and at a predetermined dose rate. The post-cured object exhibits a property profile which is superior to that which existed prior to the ionizing radiation post-curing.

  15. Gas-phase reaction rate constants for atmospheric pressure ionization in ion-mobility spectrometry

    International Nuclear Information System (INIS)

    Vandiver, V.J.

    1987-01-01

    Ion-mobility spectrometry (IMS) is an instrumental technique in which gaseous ions are formed from neutral molecules by proton and charge transfer from reactant ions through collisional ionization. An abbreviated rate theory has been proposed for atmospheric pressure ionization (API) in IMS, but supporting experimental measurements have not been reported. The objectives of this thesis were (1) assessment of existing API rate theory using positive and negative product ions in IMS, (2) measurement of API equilibria and kinetics for binary mixtures, and (3) investigating of cross-ionizations with multiple-product ions in API reactions. Although IMS measurements and predictions from rate theory were comparable, shapes and slopes of response curves for both proton transfer and electron capture were not described exactly by existing theory. In particular, terms that are needed for calculation of absolute rate constants were unsuitable in the existing theory. These included recombination coefficients,initial number of reactant ions, and opposing ion densities

  16. The conditions of gaseous fuels development

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Face to the actual situation of petrol and gas oil in France, the situation of gaseous fuels appears to be rather modest. However, the aim of gaseous fuels is not to totally supersede the liquid fuels. Such a situation would imply a complete overturn which has not been seriously considered yet. This short paper describes the essential conditions to promote the wider use of gaseous fuels: the intervention of public authorities to adopt a more advantageous tax policy in agreement with the ''Clean Air''law project, a suitable distribution network for gaseous fuels, a choice of vehicles consistent with the urban demand, the development of transformation kits of quality and of dual-fuel vehicles by the car manufacturers. (J.S.)

  17. Position-sensitive gaseous photomultipliers research and applications

    CERN Document Server

    Francke, Tom; Peskov, Vladimir

    2016-01-01

    Gaseous photomultipliers are defined as gas-filled devices capable of recording single ultraviolet (UV) and visible photons with high position resolution. Used in a variety of research areas, these detectors can be paired with computers to treat and store imaging information of UV-light. Position-Sensitive Gaseous Photomultipliers: Research and Applications explores the advancement of gaseous detectors as applied for single photon detection. Emphasizing emerging perspectives and new ways to apply gaseous detectors across research fields, this research-based publication is an essential reference source for engineers, physicists, graduate-level students, and researchers.

  18. Ionizing and non-ionizing radiations

    International Nuclear Information System (INIS)

    1994-01-01

    The monograph is a small manual to get a knowledge of ionizing and non-ionizing radiations. The main chapters are: - Electromagnetic radiations - Ionizing and non-ionizing radiations - Non-ionizing electromagnetic radiations - Ionizing electromagnetic radiation - Other ionizing radiations - Ionizing radiation effects - The Nuclear Safety Conseil

  19. Electronic system for the automation of current measurements produced by ionization chambers

    International Nuclear Information System (INIS)

    Brancaccio, Franco; Dias, Mauro da Silva

    2002-01-01

    Ionization Chambers in current mode operation are usually used in Nuclear Metrology in the determination of radionuclide activity. For this purpose measurements of very low ionization currents, in the range of 10 -8 to 10 -14 A, are required. Usually, electrometers perform the current integration method under command of signals from an automation system, in order to reduce the measurement uncertainties. In the present work, an automation system, developed for current integration measurements at the Laboratorio de Metrologia Nuclear (LMN) of Instituto de Pesquisas Energeticas e Nucleares (IPEN), is described. This automation system is composed by software (graphic interface and control) and an electronic module connected to a microcomputer, by means of a commercial data acquisition card CAD12/32 (LYNX Tecnologia Eletronica Ltda.). Measurements, using an electrometer Keithley 616 (Keithley Instruments, Inc) and an ionization chamber IG12/A20 (20 th Century Electronics Ltd.), were performed in order to check the system and for validating the project. (author)

  20. Influences of packaging design on antimicrobial effects of gaseous chlorine dioxide

    Science.gov (United States)

    Chlorine dioxide (ClO2) gas is an effective surface disinfectant, for it has the ability to reach and inactivate bacterial cells in biofilms which are attached to inaccessible sites on produce surfaces. One of the most promising applications of gaseous ClO2 is to be included in the headspace of foo...

  1. Supersonic Ionization Wave Driven by Radiation Transport in a Short-Pulse Laser-Produced Plasma

    International Nuclear Information System (INIS)

    Ditmire, T.; Gumbrell, E.T.; Smith, R.A.; Mountford, L.; Hutchinson, M.H.

    1996-01-01

    Through the use of an ultrashort (2ps) optical probe, we have time resolved the propagation of an ionization wave into solid fused silica. This ionization wave results when a plasma is created by the intense irradiation of a solid target with a 2ps laser pulse. We find that the velocity of the ionization wave is consistent with radiation driven thermal transport, exceeding the velocity expected from simple electron thermal conduction by nearly an order of magnitude. copyright 1996 The American Physical Society

  2. Production of highly ionized recoil ions in heavy ion impact

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Be, S.H.; Shibata, H.; Kase, M.; Kambara, T.; Kumagai, H.; Kohno, I.

    1985-01-01

    The production mechanisms of highly ionized recoil ions in energetic, highly charged heavy ion impact are compared with those in photon and electron impact. In addition to the innershell ionization processes which are important in photon and electron impact, the electron transfer processes are found to play a key role in heavy ion impact. In molecular targets are also observed highly ionized monoatomic ions which are believed to be produced through production of highly ionized molecular ions followed by prompt dissociation. The observed N 6+ ions produced in 1.05MeV/amu Ar 12+ ions on N 2 molecules are produced through, for example, N 2 12+ *→N 6+ +N 6+ process. (author)

  3. Acid-base thermochemistry of gaseous aliphatic α-aminoacids.

    Science.gov (United States)

    Bouchoux, Guy; Huang, Sihua; Inda, Bhawani Singh

    2011-01-14

    Acid-base thermochemistry of isolated aliphatic amino acids (denoted AAA): glycine, alanine, valine, leucine, isoleucine and proline has been examined theoretically by quantum chemical computations at the G3MP2B3 level. Conformational analysis on neutral, protonated and deprotonated species has been used to identify the lowest energy conformers and to estimate the population of conformers expected to be present at thermal equilibrium at 298 K. Comparison of the G3MP2B3 theoretical proton affinities, PA, and ΔH(acid) with experimental results is shown to be correct if experimental thermochemistry is re-evaluated and adapted to the most recent acidity-basicity scales. From this point of view, a set of evaluated proton affinities of 887, 902, 915, 916, 919 and 941 kJ mol(-1), and a set of evaluated ΔH(acid) of 1433, 1430, 1423, 1423, 1422 and 1426 kJ mol(-1), is proposed for glycine, alanine, valine, leucine, isoleucine and proline, respectively. Correlations with structural parameters (Taft's σ(α) polarizability parameter and molecular size) suggest that polarizability of the side chain is the major origin of the increase in PA and decrease in ΔH(acid) along the homologous series glycine, alanine, valine and leucine/isoleucine. Heats of formation of gaseous species AAA, AAAH(+) and [AAA-H](-) were computed at the G3MP2B3 level. The present study provides previously unavailable Δ(f)H°(298) for the ionized species AAAH(+) and [AAA-H](-). Comparison with Benson's estimate, and correlation with molecular size, show that several experimental Δ(f)H°(298) values of neutral or gaseous AAA might be erroneous.

  4. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    Science.gov (United States)

    Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; De Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620

  5. III. Penning ionization, associative ionization and chemi-ionization processes

    International Nuclear Information System (INIS)

    Cermak, V.

    1975-01-01

    Physical mechanisms of three important ionization processes in a cold plasma and the methods of their experimental study are discussed. An apparatus for the investigation of the Penning ionization using ionization processes of long lived metastable rare gas atoms is described. Methods of determining interaction energies and ionization rates from the measured energy spectra of the originating electrons are described and illustrated by several examples. Typical associative ionization processes are listed and the ionization rates are compared with those of the Penning ionization. Interactions with short-lived excited particles and the transfer of excitation without ionization are discussed. (J.U.)

  6. Features of single and double ionization processes induced by few cycle laser pulses

    International Nuclear Information System (INIS)

    Starace, A.F.

    2005-01-01

    Full text: The advent of laser pulses with attosecond pulse lengths ushers in the regime of few cycle laser pulse interactions with atoms and ions, including the interesting cases of single and half cycle laser pulses. In this talk I will present results of recent studies of single electron ionization/detachment and double electron ionization/detachment produced by a few cycle laser pulse. For the former case, we shall demonstrate that the ionized/detached electron momentum distribution reflects the interference of electron probability wave packets produced by each half cycle of a single cycle pulse. Also, that the ionized/detached electron momentum distribution uniquely characterizes the phase of the single cycle laser pulse within the laser pulse envelope. Regarding double ionization/detachment, our numerical experiments have shown that single cycle and double half cycle pulses produce different electron angular distributions. Some double ionization features that are present only in the single cycle case can only have been produced by electron impact ionization during rescattering of an initially ionized electron and thus represent a sensitive measure of the rescattering process. Refs. 2 (author)

  7. Treatment of Radioactive Gaseous Waste

    International Nuclear Information System (INIS)

    2014-07-01

    Radioactive waste, with widely varying characteristics, is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. The waste needs to be treated and conditioned as necessary to provide waste forms acceptable for safe storage and disposal. Although radioactive gaseous radioactive waste does not constitute the main waste flow stream at nuclear fuel cycle and radioactive waste processing facilities, it represents a major source for potential direct environmental impact. Effective control and management of gaseous waste in both normal and accidental conditions is therefore one of the main issues of nuclear fuel cycle and waste processing facility design and operation. One of the duties of an operator is to take measures to avoid or to optimize the generation and management of radioactive waste to minimize the overall environmental impact. This includes ensuring that gaseous and liquid radioactive releases to the environment are within authorized limits, and that doses to the public and the effects on the environment are reduced to levels that are as low as reasonably achievable. Responsibilities of the regulatory body include the removal of radioactive materials within authorized practices from any further regulatory control — known as clearance — and the control of discharges — releases of gaseous radioactive material that originate from regulated nuclear facilities during normal operation to the environment within authorized limits. These issues, and others, are addressed in IAEA Safety Standards Series Nos RS-G-1.7, WS-G-2.3 and NS-G-3.2. Special systems should be designed and constructed to ensure proper isolation of areas within nuclear facilities that contain gaseous radioactive substances. Such systems consist of two basic subsystems. The first subsystem is for the supply of clean air to the facility, and the second subsystem is for the collection, cleanup and

  8. Linking the gaseous and the condensed phases of matter: The slow electron and its interactions

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1993-01-01

    The interfacing of the gaseous and the condensed phases of matter as effected by interphase and cluster studies on the behavior of key reactions involving slow electrons either as reacting initial particles or as products of the reactions themselves is discussed. Emphasis is placed on the measurement of both the cross sections and the energetics involved, although most of the available information to date is on the latter. The discussion is selectively focussed on electron scattering (especially the role of negative ion states in gases, clusters, and dense matter), ionization, electron attachment and photodetachment. The dominant role of the electric polarization of the medium is emphasized

  9. Separation of tritium from gaseous and aqueous effluent systems

    International Nuclear Information System (INIS)

    Kobisk, E.H.

    1977-01-01

    Removal or reduction of tritium content in a wide variety of effluent streams has been extensively studied in the United States. This paper specifically reviews three processes involving tritium separation in the gaseous phase and the aqueous phase. Diffusion through a selective Pd-25Ag alloy membrane at temperatures up to 600 0 C and at pressures up to 700 kg/cm 2 has resulted in successful separation of hydrogen-deuterium mixtures with an associated separation factor of 1.65 (and gives a calculated separation factor for hydrogen-tritium mixtures of 2.0). Use of a single palladium bipolar membrane in an electrolysis system has been found to yield a hydrogen-deuterium separation factor of 4 and a hydrogen-tritium factor of 6 to 11 without the production of gaseous hydrogen. Finally, countercurrent catalytic exchange between tritium-containing hydrogen gas and water has yielded a separation factor of 6.3. The specific advantages of each of these systems will be discussed in terms of their potential applications. In all cases, further investigations are necessary to scale the systems to handle large quantities of feed material in a continuous mode and to minimize energy requirements. Such separative systems must necessarily be cascaded to yield gaseous or aqueous product streams suitable for recycling to the tritium producing systems, for storage or for discharge to the environment. (orig./HP) [de

  10. Auger transitions in singly and multiply ionized atoms

    International Nuclear Information System (INIS)

    Mehlhorn, W.

    1978-01-01

    Some recent progress in Auger and autoionizing electron spectrometry of free metal atoms and of multiply ionized atoms is reviewed. The differences which arise between the spectra of atoms in the gaseous and the solid state are due to solid state effects. This will be shown for Cd as an example. The super Coster-Kronig transitions 3p-3d 2 (hole notation) and Coster-Kronig transitions 3p-3d 4s have been measured and compared with free-atom calculations for free Zn atoms. The experimental width GAMMA(3p)=(2.1+-0.2)eV found for the free atom agrees with the value obtained for solid Zn but is considerably smaller than the theoretical value for the free atom. Autoionizing spectra of Na following an L-shell excitation or ionization by different particles are compared and discussed. The nonisotropic angular distribution of electrons from the transition 2p 5 3s 2 2 Psub(3/2)→2p 6 +e - is compared with theoretical calculations. Two examples for Auger spectrometry of multiply ionized atoms are given: (1) excitation of neon target atoms by light and heavy ions, and (2) excitation of projectile ions Be + and B + in single gas collisions with CH 4 . A strong alignment of the excited atoms has also been found here

  11. Ionization chamber

    International Nuclear Information System (INIS)

    1977-01-01

    An improved ionization chamber type X-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is placed next to the anode and is maintained at a voltage intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting towards the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  12. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1976-01-01

    This invention relates to a process for the separation of gaseous isotopes by electrophoresis assisted by convective countercurrent flow and to an apparatus for use in the process. The invention is especially applicable to heavy water separation from steam; however, it is to be understood that the invention is broadly applicable to the separation of gaseous isotopes having different dipole moments and/or different molecular weights. (author)

  13. Evaluation of aluminum capsules according to ISO 9978 to irradiation of gaseous samples in nuclear reactor

    International Nuclear Information System (INIS)

    Costa, Osvaldo L. da.; Tiezzi, Rodrigo; Souza, Daiane C.B.; Feher, Anselmo; Moura, Joao A.; Souza, Carla D.; Moura, Eduardo S.; Oliveira, Henrique B.; Zeituni, Carlos A.; Rostelato, Maria Elisa C.M.

    2015-01-01

    Gas irradiation in research nuclear reactors is an important way to produce radionuclides. Although some nuclear reactors centers offer this type of service, there are few publications about capsules to irradiation of gaseous samples. This paper describes a method to fabricate and evaluate aluminum capsules to irradiate gaseous samples in nuclear reactor. A semi-circular slotted die from a hydraulic press head was modified to seal aluminum tubes. The aluminum capsules were subjected to leak detection tests, which demonstrated the accordance with standard ISO 9978. (author)

  14. Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field

    Science.gov (United States)

    Chen, Hsiao-Wen; Johnson, Sean D.; Zahedy, Fakhri S.; Rauch, Michael; Mulchaey, John S.

    2017-06-01

    Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition to gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.

  15. Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsiao-Wen; Zahedy, Fakhri S. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States); Johnson, Sean D. [Department of Astrophysics, Princeton University, Princeton, NJ (United States); Rauch, Michael; Mulchaey, John S., E-mail: hchen@oddjob.uchicago.edu [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2017-06-20

    Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition to gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.

  16. Hydrogen and Gaseous Fuel Safety and Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  17. Method of separating tritium contained in gaseous wastes

    International Nuclear Information System (INIS)

    Hashimoto, Yasuo; Oozono, Hideaki.

    1981-01-01

    Purpose: To decrease tritium concentration in gaseous wastes to less than the allowable level by removing tritium in gaseous wastes generated upon combustion of radioactive wastes by using a plurality of heat exchangers. Method: Gaseous wastes at high temperature generated upon combustion of radioactive wastes in an incinerator are removed with radioactive solid substances through filters, cooled down to a temperature below 10 0 C by the passage through first and second heat exchangers and decreased with tritium content to less than the allowable concentration by the gaseous wastes at low temperature from the second heat exhcanger. The gaseous wastes at low temperature are used as the cooling medium for the first heat exchanger. They are heat exchanged at the upstream of the second heat exchanger with the cooling water from the third heat exchanger and cooled at the downstream by the cooling water cooled by the cooling medium. The gaseous wastes at low temperature thus cooled below 10 0 C are heated to about 350 0 C in the first heat exchanger and discharged. (Moriyama, K.)

  18. Circuitry for use with an ionizing-radiation detector

    International Nuclear Information System (INIS)

    Marshall, J.H. III; Harrington, T.M.

    1976-01-01

    An improved system of circuitry for use in combination with an ionizing-radiation detector over a wide range of radiation levels includes a current-to-frequency converter together with a digital data processor for respectively producing and measuring a pulse repetition frequency which is proportional to the output current of the ionizing-radiation detector, a dc-to-dc converter for providing closely regulated operating voltages from a rechargeable battery and a bias supply for providing high voltage to the ionization chamber. The ionizing-radiation detector operating as a part of this system produces a signal responsive to the level of ionizing radiation in the vicinity of the detector, and this signal is converted into a pulse frequency which will vary in direct proportion to such level of ionizing-radiation. The data processor, by counting the number of pulses from the converter over a selected integration interval, provides a digital indication of radiation dose rate, and by accumulating the total of all such pulses provides a digital indication of total integrated dose. Ordinary frequency-to-voltage conversion devices or digital display techniques can be used as a means for providing audible and visible indications of dose and dose-rate levels

  19. Gaseous fuel reactors for power systems

    Science.gov (United States)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  20. Research priorities in bioconversion of municipal solid waste to produce chemicals, liquid and gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J. [BABA Ltd., Reading (United Kingdom)

    1988-09-01

    Areas for future research on the bioconversion of municipal solid wastes are highlighted in order to optimise the potential use of this resource to make chemical, liquid and gaseous fuels. Despite widespread research, a biological understanding of bioconversion technologies, including landfill gas, composting and anaerobic digestion, has yet to be established. Specifically, work on the development and growth of microorganisms in uncontrolled systems and the detailed biochemistry of purified strains needs to be undertaken. The microbial breakdown of xenobiotics to clean up polluted sites, and as an alternative to incineration of toxic organic wastes, is viewed as a desirable outcome of such an understanding. (UK)

  1. Mevva ion source operated in purely gaseous mode

    International Nuclear Information System (INIS)

    Yushkov, G.Y.; MacGill, R.A.; Brown, I. G.

    2003-01-01

    We have operated a vacuum arc ion source in such a way as to form beams of purely gaseous ions. The vacuum arc configuration that is conventionally used to produce intense beams of metal ions was altered so as to form gaseous ion beams, with only minimal changes to the external circuitry and no changes at all internally to the ion source. In our experiments we formed beams from oxygen (O + and O 2 + ), nitrogen (N + and N 2 + ), argon (Ar + ) and carbon dioxide (C + , CO 2 + , O + and O 2 + ) at extraction voltage of 2 to 50 kV. We used a pulsed mode of operation, with beam pulses approximately 50 milliseconds long and repetition rate 10 pulses per second, for a duty cycle of about 50%. Downstream ion beam current as measured by a 5 cm diameter Faraday cup was typically 0.5 mA pulse or about 250 (micro)A time averaged. This time averaged beam current is very similar to that obtained for metal ions when the source is operated in the usual vacuum arc mode. Here we describe the modifications made to the source and the results of our investigations

  2. Gaseous phase heat capacity of benzoic acid

    NARCIS (Netherlands)

    Santos, L.M.N.B.F.; Alves da Rocha, M.A.; Gomes, L.R.; Schröder, B.; Coutinho, J.A.P.

    2010-01-01

    The gaseous phase heat capacity of benzoic acid (BA) was proven using the experimental technique called the "in vacuum sublimation/vaporization Calvet microcalorimetry drop method". To overcome known experimental shortfalls, the gaseous phase heat capacity of BA monomer was estimated by ab initio

  3. Gaseous diffusion -- the enrichment workhorse

    International Nuclear Information System (INIS)

    Shoemaker, J.E. Jr.

    1984-01-01

    Construction of the first large-scale gaseous diffusion facility was started as part of the Manhattan Project in Oak Ridge, Tennessee, in 1943. This facility, code named ''K-25,'' began operation in January 1945 and was fully on stream by September 1945. Four additional process buildings were later added in Oak Ridge as the demand for enriched uranium escalated. New gaseous diffusion plants were constructed at Paducah, Kentucky, and Portsmouth, Ohio, during this period. The three gaseous diffusion plants were the ''workhorses'' which provided the entire enriched uranium demand for the United States during the 1950s and 1960s. As the demand for enriched uranium for military purposes decreased during the early 1960s, power to the diffusion plants was curtailed to reduce production. During the 1960s, as plans for the nuclear power industry were formulated, the role of the diffusion plants gradually changed from providing highly-enriched uranium for the military to providing low-enriched uranium for power reactors

  4. Biomedical applications of ionizing radiation

    International Nuclear Information System (INIS)

    Rosiak, J.M.; Pietrzak, M.

    1997-01-01

    Application of ionizing radiation for sterilization of medical devices, hygienization of cosmetics products as well as formation of biomaterials have been discussed. The advantages of radiation sterilization over the conventional methods have been indicated. The properties of modern biomaterials, hydrogels as well as some ways of their formation and modification under action of ionizing radiation were presented. Some commercial biomaterials of this kind produced in accordance with original Polish methods by means of radiation technique have been pointed out. (author)

  5. Ionization steps and phase-space metamorphoses in the pulsed microwave ionization of highly excited hydrogen atoms

    International Nuclear Information System (INIS)

    Bayfield, J.E.; Luie, S.Y.; Perotti, L.C.; Skrzypkowski, M.P.

    1996-01-01

    As the peak electric field of the microwave pulse is increased, steps in the classical microwave ionization probability of the highly excited hydrogen atom are produced by phase-space metamorphosis. They arise from new layers of Kolmogorov-Arnold-Moser (KAM) islands being exposed as KAM surfaces are destroyed. Both quantum numerical calculations and laboratory experiments exhibit the ionization steps, showing that such metamorphoses influence pulsed semiclassical systems. copyright 1996 The American Physical Society

  6. Gridded ionization chamber

    International Nuclear Information System (INIS)

    Houston, J.M.

    1977-01-01

    An improved ionization chamber type x-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is disposed adjacent the anode and is maintained at a voltsge intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting toward the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  7. Photoresist removal using gaseous sulfur trioxide cleaning technology

    Science.gov (United States)

    Del Puppo, Helene; Bocian, Paul B.; Waleh, Ahmad

    1999-06-01

    A novel cleaning method for removing photoresists and organic polymers from semiconductor wafers is described. This non-plasma method uses anhydrous sulfur trioxide gas in a two-step process, during which, the substrate is first exposed to SO3 vapor at relatively low temperatures and then is rinsed with de-ionized water. The process is radically different from conventional plasma-ashing methods in that the photoresist is not etched or removed during the exposure to SO3. Rather, the removal of the modified photoresist takes place during the subsequent DI-water rinse step. The SO3 process completely removes photoresist and polymer residues in many post-etch applications. Additional advantages of the process are absence of halogen gases and elimination of the need for other solvents and wet chemicals. The process also enjoys a very low cost of ownership and has minimal environmental impact. The SEM and SIMS surface analysis results are presented to show the effectiveness of gaseous SO3 process after polysilicon, metal an oxide etch applications. The effects of both chlorine- and fluorine-based plasma chemistries on resist removal are described.

  8. Contact ionization ion source

    International Nuclear Information System (INIS)

    Hashmi, N.; Van Der Houven Van Oordt, A.J.

    1975-01-01

    An ion source in which an apertured or foraminous electrode having a multiplicity of openings is spaced from one or more active surfaces of an ionisation electrode, the active surfaces comprising a material capable of ionising by contact ionization a substance to be ionized supplied during operation to the active surface or surfaces comprises means for producing during operation a magnetic field which enables a stable plasma to be formed in the space between the active surface or surfaces and the apertured electrode, the field strength of the magnetic field being preferably in the range between 2 and 8 kilogauss. (U.S.)

  9. The Gaseous State. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P1.

    Science.gov (United States)

    Inner London Education Authority (England).

    This unit on the gaseous state is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one deals with the distinctive characteristics of gases, then considers the gas laws, in particular the ideal gas equation and its applications. Level two concentrates on…

  10. Retention of gaseous isotopes

    International Nuclear Information System (INIS)

    Yarbro, O.O.; Mailen, J.C.; Stephenson, M.J.

    1977-01-01

    Retention of gaseous fission products during fuel reprocessing has, in the past, been limited to a modest retention of 131 I when processing fuels decayed less than about 180 days. The projected rapid growth of the nuclear power industry along with a desire to minimize environmental effects is leading to the reassessment of requirements for retention of gaseous fission products, including 131 I, 129 I, 85 Kr, 3 H, and 14 C. Starting in the late 1960s, a significant part of the LMFBR reprocessing development program has been devoted to understanding the behavior of gaseous fission products in plant process and effluent streams and the development of advanced systems for their removal. Systems for iodine control include methods for evolving up to 99% of the iodine from dissolver solutions to minimize its introduction and distribution throughout downstream equipment. An aqueous scrubbing system (Iodox) using 20 M HNO 3 as the scrubbing media effectively removes all significant iodine forms from off-gas streams while handling the kilogram quantities of iodine present in head-end and dissolver off-gas streams. Silver zeolite is very effective for removing iodine forms at low concentration from the larger-volume plant off-gas streams. Removal of iodine from plant liquid effluents by solid sorbents either prior to or following final vaporization appears feasible. Krypton is effectively released during dissolution and can be removed from the relatively small volume head-end and dissolver off-gas stream. Two methods appear applicable for removal and concentration of krypton: (1) selective absorption in fluorocarbons, and (2) cryogenic absorption in liquid nitrogen. The fluorocarbon absorption process appears to be rather tolerant of the normal contaminants (H 2 O, CO 2 , NOsub(x), and organics) present in typical reprocessing plant off-gas whereas the cryogenic system requires an extensive feed gas pretreatment system. Retention of tritium in a reprocessing plant is

  11. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S. G.; Roberts, G. W.

    1980-01-01

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst

  12. Discovery of Low-ionization Envelopes in the Planetary Nebula NGC 5189: Spatially-resolved Diagnostics from HST Observations

    Science.gov (United States)

    Danehkar, Ashkbiz; Karovska, Margarita; Maksym, Walter Peter; Montez, Rodolfo

    2018-01-01

    The planetary nebula NGC 5189 shows one of the most spectacular morphological structures among planetary nebulae with [WR]-type central stars. Using high-angular resolution HST/WFC3 imaging, we discovered inner, low-ionization structures within a region of 0.3 parsec × 0.2 parsec around the central binary system. We used Hα, [O III], and [S II] emission line images to construct line-ratio diagnostic maps, which allowed us to spatially resolve two distinct low-ionization envelopes within the inner, ionized gaseous environment, extending over a distance of 0.15 pc from the central binary. Both the low-ionization envelopes appear to be expanding along a NE to SW symmetric axis. The SW envelope appears smaller than its NE counterpart. Our diagnostic maps show that highly-ionized gas surrounds these low-ionization envelopes, which also include filamentary and clumpy structures. These envelopes could be a result of a powerful outburst from the central interacting binary, when one of the companions (now a [WR] star) was in its AGB evolutionary stage, with a strong mass-loss generating dense circumstellar shells. Dense material ejected from the progenitor AGB star is likely heated up as it propagates along a symmetric axis into the previously expelled low-density material. Our new diagnostic methodology is a powerful tool for high-angular resolution mapping of low-ionization structures in other planetary nebulae with complex structures possibly caused by past outbursts from their progenitors.

  13. Trace emissions from gaseous combustion

    Energy Technology Data Exchange (ETDEWEB)

    Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States)

    2000-07-01

    The U.S. Clean Air Act (CAA) was amended in 1990 to include the development of maximum achievable control technology (MACT) emission standards for hazardous air pollutants (HAPs) for certain stationary sources by November 2000. MACT emissions standards would affect process heaters and industrial boilers since combustion processes are a potential source for many air toxins. The author noted that one of the problems with MACT is the lack of a clear solid scientific footing which is needed to develop environmentally responsible regulations. In order to amend some of these deficiencies, a 4-year, $7 million research project on the origin and fate of trace emissions in the external combustion of gaseous hydrocarbons was undertaken in a collaborative effort between government, universities and industry. This collaborative project entitled the Petroleum Environmental Research Forum (PERF) Project 92-19 produced basic information and phenomenological understanding in two important areas, one basic and one applied. The specific objectives of the project were to measure emissions while operating different full-scale burners under various operating conditions and then to analyze the emission data to identify which operating conditions lead to low air toxic emissions. Another objective was to develop new chemical kinetic mechanisms and predictive models for the formation of air toxic species which would explain the origin and fate of these species in process heaters and industrial boilers. It was determined that a flame is a very effective reactor and that trace emissions from a typical gas-fired industry burner are very small. An unexpected finding was that trace emissions are not affected by hydrocarbon gaseous fuel composition, nor by the use of ultra low nitrous oxide burners. 2 refs., 8 figs.

  14. Heat-pipe effect on the transport of gaseous radionuclides released from a nuclear waste container

    International Nuclear Information System (INIS)

    Zhou, W.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1990-11-01

    When an unsaturated porous medium is subjected to a temperature gradient and the temperature is sufficiently high, vadose water is heated and vaporizes. Vapor flows under its pressure gradient towards colder regions where it condenses. Vaporization and condensation produce a liquid saturation gradient, creating a capillary pressure gradient inside the porous medium. Condensate flows towards the hot end under the influence of a capillary pressure gradient. This is a heat pipe in an unsaturated porous medium. We study analytically the transport of gaseous species released from a spent-fuel waste package, as affected by a time-dependent heat pipe in an unsaturated rock. For parameter values typical of a potential repository in partially saturated fractured tuff at Yucca Mountain, we found that a heat pipe develops shortly after waste is buried, and the heat-pipe's spatial extent is time-dependent. Water vapor movements produced by the heat pipe can significantly affect the migration of gaseous radionuclides. 12 refs., 6 figs., 1 tab

  15. Embrittlement of the alloy U 7.5 Nb 2.5 Zr by gaseous oxygen and hydrogen

    International Nuclear Information System (INIS)

    Lepoutre, D.; Nomine, A.M.; Miannay, D.

    1981-04-01

    Embrittlement of the alloy uranium 7.5 niobium 2.5 zirconium in gaseous oxygen and hydrogen versus stress intensity, temperature and pressure is studied using rupture mechanics. Cracking speed is determined. In oxygen, only cracks are produced and embrittlement is due to oxidation. In hydrogen at high pressure an hydride is formed and at low pressure cracks are produced but the mechanism is not identified [fr

  16. EVALUATION OF GASEOUS EMISSIONS FROM THE RĂDĂUŢI MUNICIPAL LANDFILL

    Directory of Open Access Journals (Sweden)

    Marinela PETRESCU

    2011-03-01

    Full Text Available Our study presents the evaluation of gaseous emissions generated by a non-compliant municipal landfill after its closure (municipal landfill Rădăuţi. To this end we measured and interpreted the characteristics of gaseous emissions captured in two monitoring boreholes made on the deposit surface (F1 and F2. The main components of landfill gas are CH4 and CO2, and in lower proportions O2, N2 and nitrogen oxides, and also traces of H2S and CO. Their concentrations were measured using a portable gas analyzer GA type 2000Plus, which recorded simultaneously temperature and pressure data of the landfill gas. The high concentration of about 60% CH4 and approximately 39% CO2 in the landfill gas captured in two different areas (F1 and F2 shows the polluting character of those emissions with a direct impact on the environmental component "air", due to the greenhouse effect produced by those two components. Moreover, the characteristics of the measured gaseous emissions (a CH4 content above 50%, a 2-3 l / h flow rate indicates they have significant energy potential and represent a possible source of renewable energy.

  17. The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2014-11-01

    A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M + 77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI.

  18. Propagation of ionizing waves in glow discharge

    International Nuclear Information System (INIS)

    Suzuki, T.

    1977-01-01

    Ionizing waves were produced along the positive column of a glow discharge in air by applying an impulse voltage to an electrode at one end of the column. Five photomultipliers and three current-sensing coils were used to observe how the waves were affected by the rise time and the magnitude of the applied impulses and by the electron density in the positive column of the glow discharge. It is shown that the speed of the ionizing waves increases with the slope of the applied impulses and with the preexisting electron density. The electron density is augmented about 100--200 times due to the buildup of ionization at the front of the waves. The theory was developed to explain the property of ionizing waves

  19. Analysis of solvent dyes in refined petroleum products by electrospray ionization mass spectrometry

    Science.gov (United States)

    Rostad, C.E.

    2010-01-01

    Solvent dyes are used to color refined petroleum products to enable differentiation between gasoline, diesel, and jet fuels. Analysis for these dyes in the hydrocarbon product is difficult due to their very low concentrations in such a complex matrix. Flow injection analysis/electrospray ionization/mass spectrometry in both negative and positive mode was used to optimize ionization of ten typical solvent dyes. Samples of hydrocarbon product were analyzed under similar conditions. Positive electrospray ionization produced very complex spectra, which were not suitably specific for targeting only the dyes. Negative electrospray ionization produced simple spectra because aliphatic and aromatic moieties were not ionized. This enabled screening for a target dye in samples of hydrocarbon product from a spill.

  20. Display of charged ionizing particles; Visualizacion de particulas cargadas ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    Cano S, D.; Ortiz A, M. D.; Amarillas S, L. E.; Vega C, H. R., E-mail: qfbcano@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico)

    2017-10-15

    The human being is exposed to sources of ionizing and non-ionizing radiation, both of natural or anthropogenic origin. None of these, except non-ionizing such as visible light and infrared radiation, can be detected by the sense of sight and touch respectively. The sun emits charged particles with speeds close to the light that interact with the atoms of the gases present in the atmosphere, producing nuclear reactions that in turn produce other particles that reach the surface of the Earth and reach the living beings. On Earth there are natural radioisotopes that, when they disintegrate, emit ionizing radiation that contributes to the dose we receive. A very old system that allows the visualization of the trajectories of the charged ionizing particles is the Fog Chamber that uses a saturated steam that when crossed by particles with mass and charge, as alpha and beta particles produce condensation centers along its path leaves a trace that can be seen. The objective of this work was to build a fog chamber using easily accessible materials. To measure the functioning of the fog chamber, cosmic rays were measured, as well as a source of natural metal uranium. The fog chamber allowed seeing the presence of traces in alcohol vapor that are produced in a random way. Introducing the uranium foil inside the fog chamber, traces of alpha particles whose energy varies from 4 to 5 MeV were observed. (Author)

  1. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

    Science.gov (United States)

    Cai, Shengbing; Zhang, Yong; Duan, Zhemin

    2012-12-01

    We report the nanofabrication of a sulfur dioxide (SO2) sensor with a tripolar on-chip microelectrode utilizing a film of single-walled carbon nanotubes (SWCNTs) as the field ionization cathode, where the ion flow current and the partial discharge current generated by the field ionization process of gaseous molecules can be gauged to gas species and concentration. The variation of the sensitivity is less than 4% for all of the tested devices, and the sensor has selectivity against gases such as He, NO2, CO, H2, SO2 and O2. Further, the sensor response presents well-defined and reproducible linear behavior with regard to concentration in the range investigated and a detection limitation of tripolar on-chip microelectrode with SWCNTs as a cathode exhibits an impressive performance with respect to stability and anti-oxidation behavior, which are significantly better than had been possible before in the traditional bipolar sensor under explicit circumstances at room temperature.

  2. A link between solar events and congenital malformations: Is ionizing radiation enough to explain it?

    Science.gov (United States)

    Overholt, Andrew C.; Melott, Adrian L.; Atri, Dimitra

    2015-03-01

    Cosmic rays are known to cause biological effects directly and through ionizing radiation produced by their secondaries. These effects have been detected in airline crews and other specific cases where members of the population are exposed to above average secondary fluxes. Recent work has found a correlation between solar particle events and congenital malformations. In this work we use the results of computational simulations to approximate the ionizing radiation from such events as well as longer-term increases in cosmic ray flux. We find that the amounts of ionizing radiation produced by these events are insufficient to produce congenital malformations under the current paradigm regarding muon ionizing radiation. We believe that further work is needed to determine the correct ionizing radiation contribution of cosmogenic muons. We suggest that more extensive measurements of muon radiation effects may show a larger contribution to ionizing radiation dose than currently assumed.

  3. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S.G.; Roberts, G.W.

    1977-01-01

    A process is described for exchanging isotopes (particularly tritium) between water and gaseous hydrogen. Isotope depleted gaseous hydrogen and water containing a hydrogen isotope are introduced into the vapour phase in a first reaction area. The steam and gaseous hydrogen are brought into contact with a supported metal catalyst in this area in a parallel flow at a temperature range of around 225 and 300 0 C. An effluent flow comprising a mixture of isotope enriched gaseous hydrogen and depleted steam is evacuated from this area and the steam condensed into liquid water [fr

  4. Absorbing method of iodine in radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Fukutome, Yutaka; Mifuji, Hiroshi; Ito, Sakae.

    1983-01-01

    Purpose: To maintain an iodine adsorbing efficiency at a high level by keeping the adsorbing atmosphere to more than a predetermined temperature to thereby suppress the degradation and the activity reduction in zeolite. Method: Adsorption and desorption-regeneration of gaseous wastes are performed in parallel by heating gaseous wastes in a heater and switchingly supplying the same to adsorption columns by way of valve operation. Processed gases are cooled in a cooler and desorbed gases are supplied to an after-treatment device to eliminate or recover iodine 131. In the adsorption column, iodine in gaseous wastes is adsorbed to remove by using zeolite, wherein the adsorbing atmosphere is kept at a temperature higher than 40 0 C. This can prevent the formation of an aqueous HNO 3 solution from NO 2 and H 2 O contained in the gaseous wastes and prevent the degradation of the zeolite adsorption layer. (Kawakami, Y.)

  5. Wear characterization of a tool steel surface modified by melting and gaseous alloying

    International Nuclear Information System (INIS)

    Rizvi, S.A.

    1999-01-01

    Hot forging dies are subjected to laborious service conditions and so there is a need to explore means of improving die life to increase productivity and quality of forgings. Surface modification in order to produce wear resistant surface is an attractive method as it precludes the need to use expensive and highly alloyed steels. In this study, a novel, inexpensive surface modification technique is used to improve the tri biological properties of an H13 tool steel. Surface melting was achieved using a tungsten heat source and gaseous alloying produced under a shield of argon, carbon dioxide, carbon dioxide-argon mixture and nitrogen gases. The change in wear behaviour was compared through micro-hardness indentation measurements and using a dry sliding pin-on-plate wear testing machine. This study shows superior wear behaviour of the modified surfaces when compared to the untreated surfaces. The increase in wear resistance is attributed to the formation of carbides when surfaces are melted under a carbon dioxide shield. However, in the case of nitrogen and argon gaseous alloying, an increase in wear resistance can be attributed to an increase in surface hardness which in turn effects surface deformation behaviour. (author)

  6. Gaseous Electronics Tables, Atoms, and Molecules

    CERN Document Server

    Raju, Gorur Govinda

    2011-01-01

    With the constant emergence of new research and application possibilities, gaseous electronics is more important than ever in disciplines including engineering (electrical, power, mechanical, electronics, and environmental), physics, and electronics. The first resource of its kind, Gaseous Electronics: Tables, Atoms, and Molecules fulfills the author's vision of a stand-alone reference to condense 100 years of research on electron-neutral collision data into one easily searchable volume. It presents most--if not all--of the properly classified experimental results that scientists, researchers,

  7. Regime for a Self-ionizing Raman Laser Amplifier

    International Nuclear Information System (INIS)

    Clark, D.S.; Fisch, N.J.

    2001-01-01

    Backward Raman amplification and compression at high power might occur if a long pumping laser pulse is passed through a plasma to interact resonantly with a counter-propagating short seed pulse [V.M. Malkin, et al., Phys. Rev. Lett. 82 (1999) 4448-4451]. One critical issue, however, is that the pump may be unacceptably depleted due to spontaneous Raman backscatter from intrinsic fluctuations in the amplifying plasma medium prior to its useful interaction with the seed. Premature backscatter may be avoided, however, by employing a gaseous medium with pump intensities too low to ionize the medium, and using the intense seed to produce the plasma by rapid photoionization as it is being amplified [V.M. Malkin, et al., Phys. Plasmas (2001)]. In addition to allowing that only rather low power pumps be used, photoionization introduces a damping of the short pulse which must be overcome by the Raman growth rate for net amplification to occur. The parameter space of gas densities, laser wavelengths, and laser intensities is surveyed to identify favorable regimes for this effect. Output laser intensities of 10(superscript ''17'') W/cm(superscript ''2'') for 0.5 mm radiation are found to be feasible for such a scheme using a pump of 10(superscript ''13'') W/cm(superscript ''2'') and an initial seed of 5 x 10(superscript ''14'') W/cm(superscript ''2'') over an amplification length of 5.6 cm in hydrogen gas

  8. Precision tracking with a single gaseous pixel detector

    NARCIS (Netherlands)

    Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N.P.; de Jong, P.; Kluit, R.

    2015-01-01

    The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips.

  9. Electrical pulse burnout of transistors in intense ionizing radiation

    International Nuclear Information System (INIS)

    Hartman, E.F.; Evans, D.C.

    1975-01-01

    Tests examining possible synergistic effects of electrical pulses and ionizing radiation on transistors were performed and energy/power thresholds for transistor burnout determined. The effect of ionizing radiation on burnout thresholds was found to be minimal, indicating that electrical pulse testing in the absence of radiation produces burnout-threshold results which are applicable to IEMP studies. The conditions of ionized transistor junctions and radiation induced current surges at semiconductor device terminals are inherent in IEMP studies of electrical circuits

  10. Lattice Boltzmann method for weakly ionized isothermal plasmas

    International Nuclear Information System (INIS)

    Li Huayu; Ki, Hyungson

    2007-01-01

    In this paper, a lattice Boltzmann method (LBM) for weakly ionized isothermal plasmas is presented by introducing a rescaling scheme for the Boltzmann transport equation. Without using this rescaling, we found that the nondimensional relaxation time used in the LBM is too large and the LBM does not produce physically realistic results. The developed model was applied to the electrostatic wave problem and the diffusion process of singly ionized helium plasmas with a 1-3% degree of ionization under an electric field. The obtained results agree well with theoretical values

  11. Spectroscopy of highly ionized atoms

    International Nuclear Information System (INIS)

    Livingston, A.E.

    1987-01-01

    The atomic structure and decay characteristics of excited states in multiply ionized atoms represent a fertile testing ground for atomic calculations ranging from accurate ab initio theory for few-electron systems to practical semi-empirical approaches for many-electron species. Excitation of fast ions by thin foils generally produces the highest ionization stages for heavy ions in laboratory sources. The associated characteristics of spectroscopic purity and high time resolution provide unique capabilities for studying the atomic properties of highly-ionized atoms. This report is limited to a brief discussion of three classes of atomic systems that are experiencing current theoretical and experimental interest: precision structure of helium-like ions, fine structure of doubly-excited states, and lifetimes of metastable states. Specific measurements in each of these types of systems are mentioned, with emphasis on the relation to studies involving slow, highly-charged ions

  12. Entrapment process of radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Gagneraud, Francis; Gagneraud, Michel.

    1981-01-01

    Process for collecting chemically inert gaseous radioactive waste in melted substances, whereby the gaseous waste is injected under pressure in a molten substance to its saturation point followed by fast cooling. This substance is constituted of glass, ceramics, metallurgical drosses and slag masses in fusion. Its cooling is carried out by quenching by means of running water or a gas fluid, or by casting into vessels with great thermal inertia such as cast iron or similar, before recovery and confinement in receptacles for storage [fr

  13. The effect of stellar feedback on a Milky Way-like galaxy and its gaseous halo

    NARCIS (Netherlands)

    Marasco, Antonino; Debattista, Victor P.; Fraternali, Filippo; van der Hulst, Thijs; Wadsley, James; Quinn, Thomas; Roškar, Rok

    We present the study of a set of N-body+smoothed particle hydrodynamics simulations of a Milky Way-like system produced by the radiative cooling of hot gas embedded in a dark matter halo. The galaxy and its gaseous halo evolve for 10 Gyr in isolation, which allows us to study how internal processes

  14. Behaviour of radioiodine in gaseous effluents

    International Nuclear Information System (INIS)

    Barry, P.J.

    1968-01-01

    Because of the different chemical forms in which radioiodine occurs in the gaseous state, it is important when designing efficient filters to know the chemical forms which may be present in the effluent gases when various operations are being carried out and to know the effect of different gaseous environments on the filtration efficiency. To obtain this information it is necessary to have available reliable means of characterizing different chemical forms and to sample gaseous effluents when these operations are being carried out. This paper describes the use for identifying molecular iodine of metallic screens in a multi-component sampling pack in different gaseous environments. Using multi-component sampling packs, the fractionation of iodine nuclides between different chemical forms was measured in the effluent gases escaping from an in-pile test loop in which the fuel was deliberately ruptured by restricting the flow of coolant. Sequential samples were taken for six hours after the rupture and it was possible to follow during this period the individual behaviours of 13 '1I, 133 I and 135 I. Simultaneous samples were also obtained of the noble gases in the effluent gas stream and of the iodine nuclides in the loop coolant. Similar experiments have been carried out with a view to characterizing the different chemical behaviour of radioiodine as it is released from a variety of operations in the nuclear industry including the cutting of fuel sections in metallurgical examination caves and an incinerator. (author)

  15. Production of Biodiesel from Candlenut Oil Using a Two-step Co-solvent Method and Evaluation of Its Gaseous Emissions.

    Science.gov (United States)

    Pham, Lan Ngoc; Luu, Boi Van; Phuoc, Hung Duong; Le, Hanh Ngoc Thi; Truong, Hoa Thi; Luu, Phuong Duc; Furuta, Masakazu; Imamura, Kiyoshi; Maeda, Yasuaki

    2018-05-01

    Candlenut oil (CNO) is a potentially new feedstock for biodiesel (BDF) production. In this paper, a two-step co-solvent method for BDF production from CNO was examined. Firstly, esterification of free fatty acids (FFAs) (7 wt%) present in CNO was carried out using a co-solvent of acetonitrile (30 wt%) and H 2 SO 4 as a catalyst. The content of FFAs was reduced to 0.8 wt% in 1 h at 65°C. Subsequent transesterification of the crude oil produced was carried out using a co-solvent of acetone (20 wt%) and 1 wt% potassium hydroxide (KOH). Ester content of 99.3% was obtained at 40°C in 45 min. The water content in BDF was 0.023% upon purification using vacuum distillation at 5 kPa. The components of CNO BDF were characterized using a Fourier-transform infrared spectrometry and gas chromatography-flame ionization detector. The physicochemical properties of BDF satisfied the ASTM D6751-02 standard. The gaseous exhaust emissions from the diesel engine upon combustion of the BDF blends (B0-B100) with petrodiesel were examined. The emissions of carbon monoxide and hydrocarbons were clearly lower, but that of nitrogen oxides was higher in comparison to those from petro-diesel.

  16. Neutron accelerator tube having improved ionization section

    International Nuclear Information System (INIS)

    Givens, W.W.

    1982-01-01

    A neutron accelerator tube is described having a target section, an ionization section, and a replenisher section for supplying accelerator gas to the ionization section. The ionization section is located between the target and the replenisher section and includes an ionization chamber adapted to receive accelerator gas from the replenisher section. The ionization section further includes spaced cathodes having opposed active surfaces exposed to the interior of the ionization chamber. An anode is located intermediate the cathodes whereby in response to an applied positive voltage, electrons created by field emission are transmitted between the opposed active surfaces of the cathodes and produce the emission of secondary electrons. The active surface of at least one of the cathodes is formulated of a material having a secondary electron emission factor of at least one cathode member located in the tube adjacent to th replenisher section may have a protuberant portion extending axially into the ionization chamber. The other cathode spaced from the first cathode member in the direction of the target has an aperture therein along the axis of the protuberant portion. An annular magnet extends around the exterior of the ionization chamber and envelops the anode member. Means are provided to establish a high permeability magnetic flux path extending outwardly from the opposed poles from the magnet to the active surfaces of the cathode members

  17. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1977-09-01

    Volume 2 is comprised of appendices: Portsmouth Gaseous Diffusion Plant Existing Facilities; Ecology; Civic Involvement; Social Analysis; Population Projections; Toxicity of Air Pollutants to Biota at Portsmouth Gaseous Diffusion Plant; and Assessment of Noise Effects of an Add-On to the Portsmouth Gaseous Diffusion Plant

  18. Gaseous emissions from coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Stockpiled coal undergoes atmospheric oxidation and desorption processes during open air storage. These processes release gases to the environment which may effect health and safety by their toxicity and flammability. In extreme cases, this could lead to a fire. This report discusses gaseous emissions from coal stockpiles. It covers gas emission mechanisms, and gas sampling and testing methods, before examining in more detail the principal gases that have been emitted. It concludes that there is limited research in this area and more data are needed to evaluate the risks of gaseous emissions. Some methods used to prevent coal self-heating and spontaneous combustion can be applied to reduce emissions from coal stockpiles.

  19. Studies on the propagation of relativistic plasma waves in high density plasmas produced by hypersonic ionizing shock waves

    International Nuclear Information System (INIS)

    Williams, R.L.; Johnson, J.A. III

    1993-01-01

    The feasibility of using an ionizing shock wave to produce high density plasmas suitable for the propagation large amplitude relativistic plasma waves is being investigated. A 20 kv arc driven shock tube of coaxial geometry produces a hypersonic shock wave (10 p > 10 17 cm -3 ). The shock can be made to reflect off the end of the tube, collide with its wake, and thus increase the plasma density further. After reflecting, the plasma is at rest. The shock speed is measured using piezoelectric pressure probes and the ion density is measured using laser induced fluorescence (LIF) techniques on argon 488.0 nm and 422.8 nm lines. The future plans are to excite large amplitude relativistic plasma waves in this plasma by either injecting a short pulse laser (Laser Wake Field Scheme), two beating lasers (Plasma Beat Wave Scheme), or a short bunch of relativistic electrons (Plasma Wake Field Scheme). Results of recent computational and theoretical studies, as well as initial experimental measurements on the plasma using LIF, are reported. Implications for the application of high density plasmas produced in this way to such novel schemes as the plasma wave accelerator, photon accelerator, plasma wave undulator, and also plasma lens, are discussed. The effect of plasma turbulence is also discussed

  20. Attachment to a mass spectrometer for studying the processes of semiconductor compound deposition from a gaseous phase

    International Nuclear Information System (INIS)

    Belousov, V.I.; Zhuravlev, G.I.; Popenko, N.I.; Novozhilov, A.F.; Matveev, I.V.; Murav'ev, V.V.

    1984-01-01

    An attachment to the mass spectrometer for studying the processes of semiconductor compounds deposition from a gaseous phase at the pressure of 1x10 5 Pa and the temperature of 400-1300 K is described. The attachment consists of the Neer ion source with ionization section cooled upto the temperature of liquid nitrogen, a two-zone vacuum furnace, and a quartz epitaxy reactor of the horzontal type.The attachment is equipped with the systems of process gas distribution in 5 flows and temperature stabilization. The rate of mass spectrum recording constitutes 2 mass/s at the resolution being equal to 1000 at the 10% level. The sensitivity at the steam-gas mixture components partial pressure determination constitutes 1x10 -4 Pa

  1. Ionization of nitrogen cluster beam

    International Nuclear Information System (INIS)

    Yano, Katsuki; Be, S.H.; Enjoji, Hiroshi; Okamoto, Kosuke

    1975-01-01

    A nitrogen cluster beam (neutral particle intensity of 28.6 mAsub(eq)) is ionized by electron collisions in a Bayard-Alpert gauge type ionizer. The extraction efficiency of about 65% is obtained at an electron current of 10 mA with an energy of 50 eV. The mean cluster size produced at a pressure of 663 Torr and temperature of 77.3 K is 2x10 5 molecules per cluster. By the Coulomb repulsion force, multiply ionized cluster ions are broken up into smaller fragments and the cluster ion size reduces to one-fourth at an electron current of 15 mA. Mean neutral cluster sizes depend strongly on the initial degree of saturation PHI 0 and are 2x10 5 , 7x10 4 and 3x10 4 molecules per cluster at PHI 0 's of 0.87, 0.66 and 0.39, respectively. (auth.)

  2. Survival of Salmonella Typhimurium on soybean sprouts after treatment with gaseous chlorine dioxide and biocontrol Pseudomonas bacteria

    Science.gov (United States)

    Control of Salmonella Typhimurium on sprouts and minimally processed produce is crucial for food and consumer safety. The aim of this research was to assess natural microflora populations on soybean and evaluate the effects of gaseous chlorine dioxide (ClO2) and biocontrol Pseudomonas on the surviva...

  3. Letter Report on 500 nA Pulsed Current from Field Ionization Source

    International Nuclear Information System (INIS)

    Ellsworth, Jennifer L.

    2013-01-01

    We recently produced a milestone 500 nA of pulsed current using 40 Ir field ionizer electrodes in our ion source. In conclusion, we have produced the milestone pulsed current of 500 nA using 40 electrochemically etched iridium tips in a field ionization source. The pulsed current output is repeatable and scales as expected with gas fill pressure and bias voltage. We expect these current will be sufficient to produce neutral yields of 1 · 10 7 DT n/s.

  4. Growth of graphene films from non-gaseous carbon sources

    Science.gov (United States)

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  5. Gaseous isotope correlation technique for safeguards at reprocessing facilities

    International Nuclear Information System (INIS)

    Ohkubo, Michiaki.

    1988-03-01

    The isotope correlation technique based on gaseous stable fission products can be used as a means of verifying the input measurement to fuel reprocessing plants. This paper reviews the theoretical background of the gaseous fission product isotope correlation technique. The correlations considered are those between burnup and various isotopic ratios of Kr and Xe nuclides. The feasibility of gaseous ICT application to Pu input accountancy of reprocessing facilities is also discussed. The technique offers the possibility of in situ measurement verification by the inspector. (author). 16 refs, 7 figs

  6. Flux and polarization signals of spatially inhomogeneous gaseous exoplanets

    NARCIS (Netherlands)

    Karalidi, T.; Stam, D.M.; Guirado, D.

    2013-01-01

    Aims. We present numerically calculated, disk-integrated, spectropolarimetric signals of starlight that is reflected by vertically and horizontally inhomogeneous gaseous exoplanets. We include various spatial features that are present on Solar System’s gaseous planets: belts and zones, cyclonic

  7. Memory in Nonlinear Ionization of Transparent Solids

    International Nuclear Information System (INIS)

    Rajeev, P. P.; Simova, E.; Hnatovsky, C.; Taylor, R. S.; Rayner, D. M.; Corkum, P. B.; Gertsvolf, M.; Bhardwaj, V. R.

    2006-01-01

    We demonstrate a shot-to-shot reduction in the threshold laser intensity for ionization of bulk glasses illuminated by intense femtosecond pulses. For SiO 2 the threshold change serves as positive feedback reenforcing the process that produced it. This constitutes a memory in nonlinear ionization of the material. The threshold change saturates with the number of pulses incident at a given spot. Irrespective of the pulse energy, the magnitude of the saturated threshold change is constant (∼20%). However, the number of shots required to reach saturation does depend on the pulse energy. Recognition of a memory in ionization is vital to understand multishot optical or electrical breakdown phenomena in dielectrics

  8. Acceleration of electrons and supplementary ionization during parametrical plasma heating

    International Nuclear Information System (INIS)

    Grach, S.M.; Mityakov, N.A.; Trakhtengerts, V.Yu.; AN SSSR, Gor'kij. Inst. Prikladnoj Fiziki)

    1986-01-01

    Acceleration of electrons by plasma waves in partially ionized plasma is considered with provision for the effects of turbulent scattering and formation of secondary electrons, which are produced in the process of electron shock ionization. It is shown that the avalanche density growth of electrons accelerated up to 1-2 ionization potential (instability) takes place beginning from some critical density of plasma waves. Density of fast electrons is found out along with plasma wave energy density at the stage of instability saturation. Additional concentration of a background plasma, which manifests itself due to ionization, is evaluated

  9. Down syndrome and ionizing radiation.

    Science.gov (United States)

    Verger, P

    1997-12-01

    This review examines the epidemiologic and experimental studies into the possible role ionizing radiation might play in Down Syndrome (trisomy 21). It is prompted by a report of a temporal cluster of cases of this chromosomal disorder observed in West Berlin exactly 9 mo after the radioactive cloud from Chernobyl passed. In approximately 90% of cases, Down Syndrome is due to the nondisjunction of chromosome 21, most often in the oocyte, which may be exposed to ionizing radiation during two separate periods: before the completion of the first meiosis or around the time of ovulation. Most epidemiologic studies into trisomies and exposure to ionizing radiation examine only the first period; the Chernobyl cluster is related to the second. Analysis of these epidemiologic results indicates that the possibility that ionizing radiation might be a risk factor in Down Syndrome cannot be excluded. The experimental results, although sometimes contradictory, demonstrate that irradiation may induce nondisjunction in oogenesis and spermatogenesis; they cannot, however, be easily extrapolated to humans. The weaknesses of epidemiologic studies into the risk factors for Down Syndrome at birth (especially the failure to take into account the trisomy cases leading to spontaneous abortion) are discussed. We envisage the utility and feasibility of new studies, in particular among women exposed to prolonged or repeated artificially-produced ionizing radiation.

  10. An intense polarized beam by a laser ionization injection

    International Nuclear Information System (INIS)

    Ohmori, Chihiro; Hiramatsu, Shigenori; Nakamura, Takeshi.

    1990-12-01

    Accumulation of protons and polarized protons by photo-ionization injection are described. This method consists of (1)producing the neutral hydrogen beam by Lorentz stripping, (2)excitation of the neutral hydrogen beam with a laser, and (3)ionization of the hydrogen beam in the 2P excited state with another laser. When the laser for the excitation is circularly polarized, we can get a polarized proton beam. An ionization efficiency of 98% and a polarization of 80% can be expected by an intense laser beam from a FEL(Free Electron Laser). (author)

  11. Electron beam irradiation of poly(perfluoro ethers): Identification of gaseous products as a result of main chain scission

    International Nuclear Information System (INIS)

    Pacansky, J.; Waltman, R.J.

    1991-01-01

    Several poly(perfluoro ethers) are exposed to electron beams to study the mechanism for main chain scission. Electron beam exposures were performed with the viscous poly(perfluoro ethers) under argon gas, and also at 9 K under vacuum, to determine mechanistic details for the chemical degradation. Here the authors report that, after main chain scission of the bulk poly(perfluoro ethers), sample weight loss is observed concomitant with evolution of gaseous products. Since this suggests that some unzipping of the polymer chain occurs, the products were identified and, most importantly, the efficiency for their formation was determined in terms of G values, and compared to known G values for main chain scission. The results show that COF 2 is the major gaseous product produced from unbranched ethers while CF 4 and COF 2 are the major products from branched polymers. The gaseous products were also exposed to the high-energy electron beam and the G values for decomposition are given

  12. Relative effectiveness of ionizing radiations in relation to LET and the influence of oxygen

    International Nuclear Information System (INIS)

    Barendsen, G.W.

    1966-01-01

    For the investigation of the mechanism by which effects of ionizing radiations in living cells are initiated an important consideration is the comparison of responses caused by radiations which differ with regard to their ionization density. Many biological effects of ionizing radiations on living cells and organisms are produced more efficiently by radiations with a high as compared with a low linear energy transfer (LET). The assumption has generally been made that the nature and yield of ionizations and excitations produced by ionizing particles in biological material depend only to a relatively small extent on the charge and energy of the particles. Consequently differences in effectiveness per unit dose between various radiations must be due to differences in the spatial distributions of the ionizations produced in the irradiated objects. he high relative effectiveness of densely as compared with sparsely ionizing radiations, observed for various biological systems, implies that interaction occurs between primary effects of ionizations, e. g. chemical changes of various molecules produced close together, and that this interaction is required for, or at least enhances, the production of biological damage. As discussed previously by Pollard, Howard-Flanders and Brustad for inactivation of enzymes and reproductive death of bacteria and yeast cells, investigations of the relation between the relative biological effectiveness (RBE) and LET may provide information about the number of ionizations which are required and the dimensions of the value in which the effects must be produced to initiate the sequence of biophysical, biochemical and biological changes which finally results in the observed effect, e.g. death of a cell. This type of analysis has also been applied to data obtained from irradiations of cultured human cells with α-particles and deuterons of different energies (Barendsen). An important characteristic of any interpretation of radiobiological

  13. Uranium enrichment by the gaseous diffusion process

    International Nuclear Information System (INIS)

    Petit, J.F.

    1977-01-01

    After a brief description of the process and technology (principle, stage constitution, cascade constitution, and description of a plant), the author gives the history of gaseous diffusion and describes the existing facilities. Among the different enrichment processes contemplated in the USA during and after the last world war, gaseous diffusion has been the only one to be developed industrially on a wide scale in the USA, then in the UK, in the USSR and in France. The large existing capacities in the USA provided the country with a good starting base for the development of a light-water nuclear power plant programme, the success of which led to a shortfall in production means. France and the USA, possessing the necessary know-how, have been able to undertake the realization of two industrial programmes: the CIP-CUP programme in the USA and the Eurodif project in France. Current plans still call for the construction of several plants by 1990. Can the gaseous diffusion process meet this challenge. Technically, there is no doubt about it. Economically, this process is mainly characterized by large energy consumption and the necessity to build large plants. This leads to a large investment, at least for the first plant. Other processes have been developed with a view to reducing both energy and capital needs. However, in spite of continuous studies and technological progress, no process has yet proved competitive. Large increments in capacities are still expected to come from gaseous diffusion, and several projects taking into account the improvements in flexibility, automatization, reliability and reduced investment, are analysed in the paper. Combining new facilities with existing plants has already proved to be of great interest. This situation explains why gaseous diffusion is being further investigated and new processes are being studied. (author)

  14. Targeted and non-targeted effects of ionizing radiation

    Directory of Open Access Journals (Sweden)

    Omar Desouky

    2015-04-01

    Full Text Available For a long time it was generally accepted that effects of ionizing radiation such as cell death, chromosomal aberrations, DNA damage, mutagenesis, and carcinogenesis result from direct ionization of cell structures, particularly DNA, or from indirect damage through reactive oxygen species produced by radiolysis of water, and these biological effects were attributed to irreparable or misrepaired DNA damage in cells directly hit by radiation. Using linear non-threshold model (LNT, possible risks from exposure to low dose ionizing radiation (below 100 mSv are estimated by extrapolating from data obtained after exposure to higher doses of radiation. This model has been challenged by numerous observations, in which cells that were not directly traversed by the ionizing radiation exhibited responses similar to those of the directly irradiated cells. Therefore, it is nowadays accepted that the detrimental effects of ionizing radiation are not restricted only in the irradiated cells, but also to non-irradiated bystander or even distant cells manifesting various biological effects.

  15. Neutron accelerator tube having improved ionization section

    International Nuclear Information System (INIS)

    Givens, W.W.

    1981-01-01

    A neutron accelerator tube having a target section, an ionization section, and a replenisher section for supplying accelerator gas to the ionization section. The ionization section is located between the target and the replenisher section and includes an ionization chamber adapted to receive accelerator gas from the replenisher section. The ionization section further includes spaced cathodes having opposed active surfaces exposed to the interior of the ionization chamber. An anode is located intermediate the cathodes whereby in response to an applied positive voltage, electrons created by field emmission are transmitted between the opposed active surfaces of the cathodes and produce the emission of secondary electrons. The active surface of at least one of the cathodes is formulated of a material having a secondary electron emission factor of at least 2. One cathode member located in the tube adjacent to the replenisher section may have a protuberant portion extending axially into the ioization chamber. The other cathode spaced from the first cathode member in the direction of the target has an aperture therein along the axis of the protuberant portion. An annular magnet extends around the exterior of the ionization chamber and envelops the anode member. Means are provided to establish a high permeability magnetic flux path extending outwardly from the opposed poles from the magnet to the active surfaces of the cathode members

  16. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

    International Nuclear Information System (INIS)

    Cai, Shengbing; Zhang, Yong; Duan, Zhemin

    2012-01-01

    We report the nanofabrication of a sulfur dioxide (SO 2 ) sensor with a tripolar on-chip microelectrode utilizing a film of single-walled carbon nanotubes (SWCNTs) as the field ionization cathode, where the ion flow current and the partial discharge current generated by the field ionization process of gaseous molecules can be gauged to gas species and concentration. The variation of the sensitivity is less than 4% for all of the tested devices, and the sensor has selectivity against gases such as He, NO 2 , CO, H 2 , SO 2 and O 2 . Further, the sensor response presents well-defined and reproducible linear behavior with regard to concentration in the range investigated and a detection limitation of <∼0.5 ppm for SO 2 . More importantly, a tripolar on-chip microelectrode with SWCNTs as a cathode exhibits an impressive performance with respect to stability and anti-oxidation behavior, which are significantly better than had been possible before in the traditional bipolar sensor under explicit circumstances at room temperature. (paper)

  17. Absorption of gaseous iodine by water droplets

    International Nuclear Information System (INIS)

    Albert, M.F.

    1985-07-01

    A new model has been developed for predicting the rate at which gaseous molecular iodine is absorbed by water sprays. The model is a quasi-steady state mass transfer model that includes the iodine hydrolysis reactions. The parameters of the model are spray drop size, initial concentration of the gas and liquid phases, temperature, pressure, buffered or unbuffered spray solution, spray flow rate, containment diameter and drop fall height. The results of the model were studied under many values of these parameters. Plots of concentration of iodine species in the drop versus time have been produced by varying the initial gas phase concentration of molecular iodine over the range of 1 x 10 -5 moles/liter to 1 x 10 -10 moles/liter and a drop size of 1000 microns. Results from the model are compared to results available from Containment Systems Experiments at Pacific Northwest Laboratory. The difference between the model predictions and the experimental data ranges from -120.5% to 68.0% with the closest agreement 7.7%. The new spray model is also compared to previously existing spray models. At high concentrations of gaseous molecular iodine, the new spray model is considered to be less accurate but at low concentrations, the new model predicts results that are closer to the experimental data than the model called the realistic model from WASH-1329. Inclusion of the iodine hydrolysis reaction is shown to be a feature important to a model intended for determining the removal of molecular iodine over a wide range of conditions

  18. Generation of gaseous tritium standards

    International Nuclear Information System (INIS)

    Hohorst, F.A.

    1994-09-01

    The determination of aqueous and non-aqueous tritium in gaseous samples is one type of determination often requested of radioanalytical laboratories. This determination can be made by introducing the sample as a gas into a sampling train containing two silica gel beds separated by.a catalytic oxidizer bed. The first bed traps tritiated water. The sample then passes into and through the oxidizer bed where non-aqueous tritium containing species are oxidized to water and other products of combustion. The second silica gel bed then traps the newly formed tritiated water. Subsequently, silica gel is removed to plastic bottles, deionized water is added, and the mixture is permitted to equilibrate. The tritium content of the equilibrium mixture is then determined by conventional liquid scintillation counting (LSC). For many years, the moisture content of inert, gaseous samples has been determined using monitors which quantitatively electrolyze the moisture present after that moisture has been absorbed by phosphorous pentoxide or other absorbents. The electrochemical reaction is quantitative and definitive, and the energy consumed during electrolysis forms the basis of the continuous display of the moisture present. This report discusses the experimental evaluation of such a monitor as the basis for a technique for conversion of small quantities of SRMs of tritiated water ( 3 HOH) into gaseous tritium standards ( 3 HH)

  19. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    Science.gov (United States)

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-06

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.

  20. Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons.

    Science.gov (United States)

    Jin, Chunfen; Viidanoja, Jyrki; Li, Mingzhe; Zhang, Yuyang; Ikonen, Elias; Root, Andrew; Romanczyk, Mark; Manheim, Jeremy; Dziekonski, Eric; Kenttämaa, Hilkka I

    2016-11-01

    Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] + ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.

  1. Alkali suppression within laser ion-source cavities and time structure of the laser ionized ion-bunches

    CERN Document Server

    Lettry, Jacques; Köster, U; Georg, U; Jonsson, O; Marzari, S; Fedosseev, V

    2003-01-01

    The chemical selectivity of the target and ion-source production system is an asset for Radioactive Ion-Beam (RIB) facilities equipped with mass separators. Ionization via laser induced multiple resonant steps Ionization has such selectivity. However, the selectivity of the ISOLDE Resonant Ionization Laser Ion-Source (RILIS), where ionization takes place within high temperature refractory metal cavities, suffers from unwanted surface ionization of low ionization potential alkalis. In order to reduce this type of isobaric contaminant, surface ionization within the target vessel was used. On-line measurements of the efficiency of this method is reported, suppression factors of alkalis up to an order of magnitude were measured as a function of their ionization potential. The time distribution of the ion bunches produced with the RILIS was measured for a variety of elements and high temperature cavity materials. While all ions are produced within a few nanoseconds, the ion bunch sometimes spreads over more than 1...

  2. Detoxification of snake venom using ionizing radiation

    International Nuclear Information System (INIS)

    Rogero, J.R.; Nascimento, N.

    1995-01-01

    It is generally recognized that energy absorbed by ionizing radiation (gamma rays) can inactivate biological material in tow ways. A direct effects occurs when the primary event, i.e., ionization, is produced in the molecule itself. This is the case when a compound is irradiated in dry state. When a compound is irradiated in a solution, the indirect effect joins the direct. Since water is the most abundant constituent of biological material, it is important to consider the species produced by excitation and ionization of water itself, and the reaction of these species with the target molecules of biological importance. This indirect effect results from the reactions among the studied molecules and the products of radiation interaction with water or other solvents. Highly reactive compounds, the so-called free radicals, which are formed many reactions among themselves, with the dissolved gas, and with other molecules in the solution. With water, the excitation is less important than ionization which is followed within picosecond by the formation of free hydroxyl radicals and hydrated electrons. Alexander and Hamilton showed that irradiation of proteins has revealed damage to aminoacid side chains, production of new groups, splitting of peptide bonds and formation of intramolecular and intermolecular cross-links. With these results it would be possible to use ionizing radiation to change those proteins molecules in order to improve some of their properties according to the necessity. On the other hand, it is recognized that venoms in general are poorly immunogenic, yet fairly toxic. This cause problems because serotherapy is the treatment of choice in snakebite envenomations, and horse antivenom availability is dependent upon. (author)

  3. Targeted and non-targeted effects of ionizing radiation

    OpenAIRE

    Omar Desouky; Nan Ding; Guangming Zhou

    2015-01-01

    For a long time it was generally accepted that effects of ionizing radiation such as cell death, chromosomal aberrations, DNA damage, mutagenesis, and carcinogenesis result from direct ionization of cell structures, particularly DNA, or from indirect damage through reactive oxygen species produced by radiolysis of water, and these biological effects were attributed to irreparable or misrepaired DNA damage in cells directly hit by radiation. Using linear non-threshold model (LNT), possible ris...

  4. New Croatian Act on Ionizing Radiation Protection

    International Nuclear Information System (INIS)

    Grgic, S.

    1998-01-01

    According to the new Croatian Act on ionizing radiation protection which is in a final stage of genesis, Ministry of Health of the Republic of Croatia is the governmental body responsible for all aspects relating sources of ionizing radiation in Croatia: practices, licenses, users, transport, in medicine and industry as well, workers with sources of ionizing radiation, emergency preparedness in radiological accidents, storage of radioactive wastes, x-ray machines and other machines producing ionizing radiation and radioactive materials in the environment. Ministry of Health is responsible to the Government of the Republic of Croatia, closely collaborating with the Croatian Radiation Protection Institute, health institution for the performance of scientific and investigation activities in the field of radiation protection. Ministry of Health is also working together with the Croatian Institute for the Occupational Health. More emphasis has been laid on recent discussion among the world leading radiation protection experts on justification of the last recommendations of the ICRP 60 publication. (author)

  5. Pulsed discharges produced by high-power surface waves

    Science.gov (United States)

    Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.

    1996-02-01

    The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.

  6. Numerical Study on Blast Wave Propagation Driven by Unsteady Ionization Plasma

    International Nuclear Information System (INIS)

    Ogino, Yousuke; Sawada, Keisuke; Ohnishi, Naofumi

    2008-01-01

    Understanding the dynamics of laser-produced plasma is essential for increasing the available thrust and energy conversion efficiency from a pulsed laser to a blast wave in a gas-driven laser-propulsion system. The performance of a gas-driven laser-propulsion system depends heavily on the laser-driven blast wave dynamics as well as on the ionizing and/or recombining plasma state that sustains the blast wave. In this study, we therefore develop a numerical simulation code for a laser-driven blast wave coupled with time-dependent rate equations to explore the formation of unsteady ionizing plasma produced by laser irradiation. We will also examine the various properties of blast waves and unsteady ionizing plasma for different laser input energies

  7. Novel mass spectrometric instrument for gaseous and particulate characterization and monitoring

    International Nuclear Information System (INIS)

    Coggiola, M.J.

    1994-02-01

    SRI International will develop a unique new instrument that will be capable of providing real-time (<1 minute), quantitative, chemical characterization of gaseous and particulate pollutants generated from DOE waste cleanup activities. The instrument will be capable of detecting and identifying volatile organic compounds, polynuclear aromatic hydrocarbons, heavy metals, and transuranic species released during waste cleanup activities. The instrument will be unique in its ability to detect and quantify in real-time these diverse pollutants in both vapor and particulate form. The instrument to be developed under this program will consist of several major components: (1) an isokinetic sampler capable of operating over a wide range of temperatures (up to 500 K) and flow rates; (2) a high pressure to low pressure transition and sampling region that efficiently separates particles from vapor-phase components for separate, parallel analyses; (3) two small mass spectrometers, one optimized for organic analysis using a unique field ionization source and one optimized for particulate characterization using thermal pyrolysis and electron-impact ionization (EI); and (4) a powerful personal computer for control and data acquisition. Initially, the instrument will be developed for targeted use in conjunction with the K-1435 Toxic Substances Control Act (TSCA) incinerator at the Oak Ridge National Laboratory K-25 site. Ultimately, the instrument will be designed to operate in the field at any cleanup site, located close to the stack or process vent, providing the plant operations personnel with real-time information and alarm capabilities. In addition, this instrument will be very broadly applicable for cleanup or sampling, for example, any time contaminated soil is moved or disturbed

  8. Characteristics of a Dry Fog Ionizer

    International Nuclear Information System (INIS)

    Murata, Y; Kudo, Y; Yonezawa, M

    2008-01-01

    The newly developed 'Dry Fog Ionizer' generates charged dry fog. The dry fog consists of very fine water droplets 8μm in mean diameter. This system consists of a dry fog nozzle (H.Ikeuchi and Co., LTD.), a ring electrode for induction charging (50mm outside diameter, and 10mm thick) in front of the nozzle, and a fan for dissipating charged dry fog. The ring electrode is DC or AC-biased and fine droplets ejected from the nozzle are electrified by induction charging. The particle size of the charged water droplets are reduced through evaporation during the transporting process by air flow, and completely evaporate approximately 2m from the nozzle under normal atmospheric conditions (25 deg. C, 60%R.H.) leaving high density ions. Using this system, high density ionic space charge can be realized in a remote spot from the ionizer. By this principle, the Dry Fog Ionizer shows strong charge-eliminating ability in the region away from the ionizer. When a dc bias of 5kV was applied to a ring electrode with the rate of water flow from the nozzle being 21/h, an ionic space-charge density of 1200nC /m 3 was able to be obtained at a distance 2m away from the ionizer, which was 10 2 times the value produced by an ordinary corona-type ionizer with an air blower.

  9. Legal provisions governing gaseous effluents radiological monitoring

    International Nuclear Information System (INIS)

    Winkelmann, I.

    1985-01-01

    This contribution explains the main provisions governing radiological monitoring of gaseous effluents from LWR type nuclear power plants. KTA rule 1503.1 defines the measuring methods and tasks to be fulfilled by reactor operators in order to safeguard due monitoring and accounting of radioactive substances in the plants' gaseous effluents. The routine measurements are checked by a supervisory programme by an independent expert. The routine controls include analysis of filter samples, comparative measurement of radioactive noble gases, interlaboratory comparisons, and comparative evaluation of measured values. (DG) [de

  10. Gaseous waste processing device in nuclear power plant

    International Nuclear Information System (INIS)

    Takechi, Eisuke; Matsutoshi, Makoto.

    1978-01-01

    Purpose: To arrange the units of waste processing devices in a number one more than the number thereof required for a plurality of reactors, and to make it usable commonly as a preliminary waste processing device thereby to effectively use all the gaseous waste processing devices. Constitution: A gaseous waste processing device is constituted by an exhaust gas extractor, a first processing device, a second processing device and the like, which are all connected in series. Upon this occasion, devices from the exhaust gas extractor to the first processing device and valves, which are provided in each of reactors, are arranged in series, on one hand, but valves at the downstream side join one another by one pipeline, and are connected to a stack through a total gaseous waste processing device, on another. (Yoshihara, H.)

  11. Release of gaseous tritium during reprocessing

    International Nuclear Information System (INIS)

    Bruecher, H.; Hartmann, K.

    1983-01-01

    About 50% of the tritium put through an LWR reprocessing plant is obtained as tritium-bearing water, HTO. Gaseous tritium, HT has a radiotoxicity which is by 4 orders of magnitude lower than that of HTO. A possibility for the removal of HTO could therefore be its conversion into the gas phase with subsequent emission of the HT into the atmosphere. However, model computations which are, in part, supported by experimental data reveal that the radiation exposure caused by HT release is only by about one order of magnitude below that caused by HTO. This is being attributed to the relatively quick reoxidation of HT by soil bacteria. Two alternatives for producing HT from HTO (electrolysis; voloxidation with subsequent electrolysis) are presented and compared with the reference process of deep-well injection of HTO. The authors come to the conclusion that tritium removal by HT release into the atmosphere cannot be recommended at present under either radiological or economic aspects. (orig.) [de

  12. Development of Combustion Tube for Gaseous, Liquid, and Solid Fuels to Study Flame Acceleration and DDT

    Science.gov (United States)

    Graziano, Tyler J.

    An experimental combustion tube of 20 ft. in length and 10.25 in. in internal diameter was designed and fabricated in order to perform combustion tests to study deflagration rates, flame acceleration, and the possibility of DDT. The experiment was designed to allow gaseous, liquid, or solid fuels, or any combination of the three to produce a homogenous fuel/air mixture within the tube. Combustion tests were initiated with a hydrogen/oxygen torch igniter and the resulting flame behavior was measured with high frequency ion probes and pressure transducers. Tests were performed with a variety of gaseous and liquid fuels in an unobstructed tube with a closed ignition end and open muzzle. The flame performance with the gaseous fuels is loosely correlated with the expansion ratio, while there is a stronger correlation with the laminar flame speed. The strongest correlation to flame performance is the run-up distance scaling factor. This trend was not observed with the liquid fuels. The reason for this is likely due to incomplete evaporation of the liquid fuel droplets resulting in a partially unburned mixture, effectively altering the intended equivalence ratio. Results suggest that the simple theory for run-up distance and flame acceleration must be modified to more accurately predict the behavior of gaseous fuels. Also, it is likely that more complex spray combustion modeling is required to accurately predict the flame behavior for liquid fuels.

  13. A comparative study on the transdermal penetration effect of gaseous and aqueous plasma reactive species

    Science.gov (United States)

    Liu, Xin; Gan, Lu; Ma, Mingyu; Zhang, Song; Liu, Jingjing; Chen, Hongxiang; Liu, Dawei; Lu, Xinpei

    2018-02-01

    To improve the depth of plasma active species in the skin, it is very important to develop skin disease treatment using plasma. In this article, an air plasma source was used to work directly with the skin of a mouse. A tortuous pathway, hair follicles, electroporation and a microneedle do not aid the transdermal delivery of gaseous plasma active species, therefore these gaseous plasma active species cannot penetrate mouse skin with a thickness of ~0.75 mm. The plasma activated water (PAW) produced by the air plasma source was used to study the transdermal penetration of the aqueous plasma activated species. This aqueous plasma activated species can penetrate the skin through hair follicles, intercellular and transcellular routes. The pH of the PAW did not affect the penetration efficiency of the aqueous plasma active species.

  14. Attachment of gaseous fission products to aerosols

    International Nuclear Information System (INIS)

    Skyrme, G.

    1985-01-01

    Accidents may occur in which the integrity of fuel cladding is breached and volatile fission products are released to the containment atmosphere. In order to assess the magnitude of the subsequent radiological hazard it is necessary to know the transport behaviour of such fission products. It is frequently assumed that the fission products remain in the gaseous phase. There is a possibility, however, that they may attach themselves to particles and hence substantially modify their transport properties. This paper provides a theoretical assessment of the conditions under which gaseous fission products may be attached to aerosol particles. Specific topics discussed are: the mass transfer of a gaseous fission product to an isolated aerosol particle in an infinite medium; the rate at which the concentration of fission products in the gas phase diminishes within a container as a result of deposition on a population of particles; and the distribution of deposited fission product between different particle sizes in a log-normal distribution. It is shown that, for a given mass, small particles are more efficient for fission product attachment, and that only small concentrations of such particles may be necessary to achieve rapid attachment. Conditions under which gaseous fission products are not attached to particles are also considered, viz, the competing processes of deposition onto the containment walls and onto aerosol particles, and the possibility of the removal of aerosols from the containment by various deposition processes, or agglomeration, before attachment takes place. (author)

  15. Comparison of Electrospray Ionization and Atmospheric Chemical Ionization Coupled with the Liquid Chromatography-Tandem Mass Spectrometry for the Analysis of Cholesteryl Esters

    Directory of Open Access Journals (Sweden)

    Hae-Rim Lee

    2015-01-01

    Full Text Available The approach of two different ionization techniques including electrospray ionization (ESI and atmospheric pressure chemical ionization (APCI coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS was tested for the analysis of cholesteryl esters (CEs. The retention time (RT, signal intensity, protonated ion, and product ion of CEs were compared between ESI and APCI. RT of CEs from both ionizations decreased with increasing double bonds, while it increased with longer carbon chain length. The ESI process generated strong signal intensity of precursor ions corresponding to [M+Na]+ and [M+NH4]+ regardless of the number of carbon chains and double bonds in CEs. On the other hand, the APCI process produced a protonated ion of CEs [M+H]+ with a weak signal intensity, and it is selectively sensitive to detect precursor ions of CEs with unsaturated fatty acids. The ESI technique proved to be effective in ionizing more kinds of CEs than the APCI technique.

  16. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    Science.gov (United States)

    Ghate, M.R.; Yang, R.T.

    1985-10-03

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

  17. Monitoring of tritium

    Science.gov (United States)

    Corbett, James A.; Meacham, Sterling A.

    1981-01-01

    The fluid from a breeder nuclear reactor, which may be the sodium cooling fluid or the helium reactor-cover-gas, or the helium coolant of a gas-cooled reactor passes over the portion of the enclosure of a gaseous discharge device which is permeable to hydrogen and its isotopes. The tritium diffused into the discharge device is radioactive producing beta rays which ionize the gas (argon) in the discharge device. The tritium is monitored by measuring the ionization current produced when the sodium phase and the gas phase of the hydrogen isotopes within the enclosure are in equilibrium.

  18. Stark-shift induced resonances in multiphoton ionization

    International Nuclear Information System (INIS)

    Potvliege, R M; Vuci, Svetlana

    2006-01-01

    The resonance enhancements marking the ATI spectrum of argon are discussed in the light of a recently compiled map of the quasienergies of this atom. Many of the dressed excited states of interest shift nonponderomotively in complicated ways, but keep an ionization width narrow enough to produce sharp substructures of both low and high ATI peaks through Stark-shift induced resonances. The most prominent enhancement observed in the high-order ATI peaks originates from ionization from the dressed ground state perturbed by the influence of neighbouring resonant dressed states

  19. Secondary incinerator for radioactive gaseous waste

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Masuda, Takashi.

    1997-01-01

    A vessel incorporated with packings, in which at least either of the packings and the vessel is put to induction-heating by high frequency induction coils, is disposed in a flow channel of radioactive gaseous wastes exhausted from a radioactive waste incinerator. The packings include metals such as stainless pipes and electroconductive ceramics such as C-SiC ceramics. Since only electricity is used as an energy source, in the secondary incinerator for the radioactive gaseous wastes, it can be installed in a cell safely. In addition, if ceramics are used, there is no worry of deterioration of the incinerator due to organic materials, and essential functions are not lowered. (T.M.)

  20. Gaseous detectors for energy dispersive X-ray fluorescence analysis

    Science.gov (United States)

    Veloso, J. F. C. A.; Silva, A. L. M.

    2018-01-01

    The energy resolution capability of gaseous detectors is being used in the last years to perform studies on the detection of characteristic X-ray lines emitted by elements when excited by external radiation sources. One of the most successful techniques is the Energy Dispersive X-ray Fluorescence (EDXRF) analysis. Recent developments in the new generation of micropatterned gaseous detectors (MPGDs), triggered the possibility not only of recording the photon energy, but also of providing position information, extending their application to EDXRF imaging. The relevant features and strategies to be applied in gaseous detectors in order to better fit the requirements for EDXRF imaging will be reviewed and discussed, and some application examples will be presented.

  1. Astrophysics of gaseous nebulae and active galactic nuclei

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1989-01-01

    A graduate-level text and reference book on gaseous nebulae and the emission regions in Seyfert galaxies, quasars, and other types of active galactic nuclei (AGN) is presented. The topics discussed include: photoionization equilibrium, thermal equilibrium, calculation of emitted spectrum, comparison of theory with observations, internal dynamics of gaseous nebulae, interstellar dust, regions in the galactic context, planetary nebulae, nova and supernova remnants, diagnostics and physics of AGN, observational results on AGN

  2. Relativistic electron acceleration in focused laser fields after above-threshold ionization

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2003-01-01

    Electrons produced as a result of above-threshold ionization of high-Z atoms can be accelerated by currently producible laser pulses up to GeV energies, as shown recently by Hu and Starace [Phys. Rev. Lett. 88, 245003 (2002)]. To describe electron acceleration by general focused laser fields, we employ an analytical model based on a Hamiltonian, fully relativistic, ponderomotive approach. Though the above-threshold ionization represents an abrupt process compared to laser oscillations, the ponderomotive approach can still adequately predict the resulting energy gain if the proper initial conditions are introduced for the particle drift following the ionization event. Analytical expressions for electron energy gain are derived and the applicability conditions of the ponderomotive formulation are studied both analytically and numerically. The theoretical predictions are supported by numerical computations

  3. Effects of ionizing radiation upon natural populations and ecosystems. Final report

    International Nuclear Information System (INIS)

    McCormick, J.F.

    1976-01-01

    Accomplishments throughout a 10-year period summarized include: a study of the effects of radiation from a γ source on the ecology of the El Verde rain forest in Puerto Rico, with emphasis on the role of secondary succession in the recovery of forest ecosystems following irradiation; the effects of light and temperature on gaseous exchange in trees using 14 CO 2 as a tracer in Palcourea; the nature of the sensitivity of pine trees to ionizing radiation and the possible synergistic effects of elevated ozone levels on radiosensitivity; the combined effects of radioactive and thermal effluents on plant communities of a swamp hardwood forest; and the development of a new conceptual approach to the evaluation of environmental quality, with emphasis on ecological perspectives in land use planning

  4. Analysis of sample composition using resonant ionization and time-of-flight techniques

    International Nuclear Information System (INIS)

    Cruz, A. de la; Ortiz, M.; Campos, J.

    1995-01-01

    This paper describes the setting up of a linear time-of-flight mass spectrometer that uses a tunable laser to produce resonant ionization of atoms and molecules in a pulsed supersonic beam. The ability of this kind of systems to produce time resolved signals for each species present in the sample allows quantitative analysis of its composition. By using a tunable laser beam of high spectral resolution to produce ionization, studies based on the structure of the photoionization spectra obtained are possible. In the present work several isotopic species of ordinary and deuterated benzene have been studied. Special care has been dedicated to the influence of the presence of a 13C in the ring. In this way values for spectroscopic constants and isotopic shifts have been obtained. Another system based in a homemade proportional counter has been designed and used is an auxiliary system. The results obtained with it are independent of these mentioned above and compatible with them. This system is of great utility for laser wavelength tuning to produce ionization in the mass spectrometer. (Author) 98 refs

  5. Analysis of sample composition using resonant ionization and time-of-flight techniques

    International Nuclear Information System (INIS)

    Luz, A. de la; Ortiz, M.; Campos, J.

    1995-01-01

    This paper describes the setting up of a linear time-of-flight mass spectrometer that uses a tunable laser to produce resonant ionization of atoms and molecules in a pulsed supersonic beam. The ability of this kind of systems to produce time resolved signals for each species present in the samples allows quantitative analysis of its composition. By using a tunable laser beam of high spectral resolution to produce ionization, studies based on the structure of the photoionization spectra obtained are possible. In the present work several isotopic species of ordinary and deuterated benzene have been studies. special care has been dedicated to the influence of the presence of a ''13 C in the ring. In this way values for spectroscopic constants and isotopic shifts have been obtained. Another system based in a homemade proportional counter has been designed and used as an auxiliary system. The results obtained with it are independent of these mentioned above and compatible with them. This system is of great utility for laser wavelength tuning to produce ionization in the mass spectrometer

  6. Thermionic detector with multiple layered ionization source

    International Nuclear Information System (INIS)

    Patterson, P. L.

    1985-01-01

    Method and apparatus for analyzing specific chemical substances in a gaseous environment comprises a thermionic source formed of multiple layers of ceramic material composition, an electrical current instrumentality for heating the thermionic source to operating temperatures in the range of 100 0 C. to 1000 0 C., an instrumentality for exposing the surface of the thermionic source to contact with the specific chemical substances for the purpose of forming gas phase ionization of the substances by a process of electrical charge emission from the surface, a collector electrode disposed adjacent to the thermiomic source, an instrumentality for biasing the thermionic source at an electrical potential which causes the gas phase ions to move toward the collector, and an instrumentality for measuring the ion current arriving at the collector. The thermionic source is constructed of a metallic heater element molded inside a sub-layer of hardened ceramic cement material impregnated with a metallic compound additive which is non-corrosive to the heater element during operation. The sub-layer is further covered by a surface-layer formed of hardened ceramic cement material impregnated with an alkali metal compound in a manner that eliminates corrosive contact of the alkali compounds with the heater element. The sub-layer further protects the heater element from contact with gas environments which may be corrosive. The specific ionization of different chemical substances is varied over a wide range by changing the composition and temperature of the thermionic source, and by changing the composition of the gas environment

  7. Resonance Ionization Mass Spectrometry (RIMS): applications in spectroscopy and chemical dynamics

    International Nuclear Information System (INIS)

    Naik, P.D.; Kumar, Awadhesh; Upadhyaya, Hari; Bajaj, P.N.

    2009-01-01

    Resonance ionization is a photophysical process wherein electromagnetic radiation is used to ionize atoms, molecules, transient species, etc., by exciting them through their quantum states. The number of photons required to ionize depends on the species being investigated and energy of the photon. Once a charged particle is produced, it is easy to detect it with high efficiency. With the advent of narrow band high power pulsed and cw tunable dye lasers, it has blossomed into a powerful spectroscopic and analytical technique, commonly known as resonance ionization spectroscopy (RIS)/resonance enhanced multiphoton ionization (REMPI). The alliance of resonance ionization with mass spectrometry has grown into a still more powerful technique, known as resonance ionization mass spectrometry (RIMS), which has made significant contributions in a variety of frontier areas of research and development, such as spectroscopy, chemical dynamics, analytical chemistry, cluster science, surface science, radiochemistry, nuclear physics, biology, environmental science, material science, etc. In this article, we shall describe the application of resonance ionization mass spectrometry to spectroscopy of uranium and chemical dynamics of polyatomic molecules

  8. Free radical production by high energy shock waves--comparison with ionizing irradiation.

    Science.gov (United States)

    Morgan, T R; Laudone, V P; Heston, W D; Zeitz, L; Fair, W R

    1988-01-01

    Fricke chemical dosimetry is used as an indirect measure of the free radical production of ionizing irradiation. We adapted the Fricke ferrous sulfate radiation dosimeter to examine the chemical effects of high energy shock waves. Significant free radical production was documented. The reaction was dose dependent, predictably increased by acoustic impedance, but curvilinear. A thousand shocks at 18 kilovolts induced the same free radical oxidation as 1100 rad cobalt-60 gamma ionizing irradiation, increasing to 2900 rad in the presence of an air-fluid zone of acoustic impedance. The biological effect of these free radicals was compared to that of cobalt-60 ionizing irradiation by measuring the affect on Chinese hamster cells by clonogenic assay. While cobalt-60 irradiation produced a marked decrease in clonogenic survivors, little effect was noted with high energy shock waves. This suggested that the chemical effects produced by shock waves were either absent or attenuated in the cells, or were inherently less toxic than those of ionizing irradiation.

  9. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 2. Appendices. [Appendices only

    Energy Technology Data Exchange (ETDEWEB)

    Liverman, James L.

    1977-09-01

    Volume 2 is comprised of appendices: Portsmouth Gaseous Diffusion Plant Existing Facilities; Ecology; Civic Involvement; Social Analysis; Population Projections; Toxicity of Air Pollutants to Biota at Portsmouth Gaseous Diffusion Plant; and Assessment of Noise Effects of an Add-On to the Portsmouth Gaseous Diffusion Plant. (LK)

  10. Some aspects of numerical analysis of turbulent gaseous and spray combustion

    International Nuclear Information System (INIS)

    Takagi, T.

    1991-01-01

    In this paper numerical calculations and analysis on turbulent non-premixed gaseous and spray combustion are reviewed. Attentions were paid to the turbulent flow and combustion modeling applicable to predicting the flow, mixing and combustion of gaseous fuels and sprays. Some of the computed results of turbulent gaseous non-premixed (diffusion) flames with and without swirl and transient spray combustion were compared with experimental ones to understand the processes in the flame and to assure how the computations predict the experiments

  11. Laser-enhanced ionization spectroscopy around the ionization limit

    International Nuclear Information System (INIS)

    Axner, O.; Berglind, T.; Sjoestroem, S.

    1986-01-01

    Laser-induced photoionization and Laser-Enhanced collision Ionization (LEI) of Na, Tl, and Li in flames are detected by measuring the production of charges following a laser excitation. The ionization signal is investigated for excitations of the atoms from lower lying states both to Rydberg states close to the ionization limit, as well as to continuum states, i.e. the process of collision ionization is compared with that of photoionization. The qualitative behaviour of the ionization signal when scanning across the ionization limit is studied. It is shown that the ionization signal has a smooth behaviour when passing from bound states into continuum states. The laser-induced photoionization signal strength of atoms in flames is both calculated and measured and a good agreement is obtained. A calculation of wavelength dependent photoionization signal strengths for a number of elements is also presented. Photoionization is used to determine flame- and geometry-dependent parameters. An implication of photoionization in connection with LEI spectrometry for trace element analysis is that there will be a significant increase in background noise if the sample contains high concentrations of easily photoionizing elements and short wavelength light is used. (orig.)

  12. Gaseous diffusion system

    International Nuclear Information System (INIS)

    Garrett, G.A.; Shacter, J.

    1978-01-01

    A gaseous diffusion system is described comprising a plurality of diffusers connected in cascade to form a series of stages, each of the diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof

  13. Detection of atmospheric gaseous amines and amides by a high-resolution time-of-flight chemical ionization mass spectrometer with protonated ethanol reagent ions

    Directory of Open Access Journals (Sweden)

    L. Yao

    2016-11-01

    Full Text Available Amines and amides are important atmospheric organic-nitrogen compounds but high time resolution, highly sensitive, and simultaneous ambient measurements of these species are rather sparse. Here, we present the development of a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS method, utilizing protonated ethanol as reagent ions to simultaneously detect atmospheric gaseous amines (C1 to C6 and amides (C1 to C6. This method possesses sensitivities of 5.6–19.4 Hz pptv−1 for amines and 3.8–38.0 Hz pptv−1 for amides under total reagent ion signals of  ∼  0.32 MHz. Meanwhile, the detection limits were 0.10–0.50 pptv for amines and 0.29–1.95 pptv for amides at 3σ of the background signal for a 1 min integration time. Controlled characterization in the laboratory indicates that relative humidity has significant influences on the detection of amines and amides, whereas the presence of organics has no obvious effects. Ambient measurements of amines and amides utilizing this method were conducted from 25 July to 25 August 2015 in urban Shanghai, China. While the concentrations of amines ranged from a few parts per trillion by volume to hundreds of parts per trillion by volume, concentrations of amides varied from tens of parts per trillion by volume to a few parts per billion by volume. Among the C1- to C6-amines, the C2-amines were the dominant species with concentrations up to 130 pptv. For amides, the C3-amides (up to 8.7 ppb were the most abundant species. The diurnal and backward trajectory analysis profiles of amides suggest that in addition to the secondary formation of amides in the atmosphere, industrial emissions could be important sources of amides in urban Shanghai. During the campaign, photo-oxidation of amines and amides might be a main loss pathway for them in daytime, and wet deposition was also an important sink.

  14. Elsevier R&D on a new type of micropattern gaseous detector: The Fast Timing Micropattern detector

    CERN Document Server

    Abbaneo, D; Abbrescia, M; Abi Akl, M; Aboamer, O; Acosta, D; Ahmad, A; Ahmed, W; Aleksandrov, A; Altieri, P; Asawatangtrakuldee, C; Aspell, P; Assran, Y; Awan, I; Bally, S; Ban, Y; Banerjee, S; Barashko, V; Barria, P; Bencze, G; Beni, N; Benussi, L; Bhopatkar, V; Bianco, S; Bos, J; Bouhali, O; Braghieri, A; Braibant, S; Buontempo, S; Calabria, C; Caponero, M; Caputo, C; Cassese, F; Castaneda, A; Cauwenbergh, S; Cavallo, F R; Celik, A; Choi, M; Choi, S; Christiansen, J; Cimmino, A; Colafranceschi, S; Colaleo, A; Conde Garcia, A; Czellar, S; Dabrowski, M M; De Lentdecker, G; Oliveira, R De; De Robertis, G; Dildick, S; Dorney, B; Endroczi, G; Errico, F; Fallavollita, F; Fenyvesi, A; Ferry, S; Furic, I; Giacomelli, P; Gilmore, J; Golovtsov, V; Guiducci, L; Guilloux, F; Gutierrez, A; Hadjiiska, R M; Hauser, J; Hoepfner, K; Hohlmann, M; Hoorani, H; Iaydjiev, P; Jeng, Y G; Kamon, T; Karchin, P; Korytov, A; Krutelyov, S; Kumar, A; Kim, H; Lee, J; Lenzi, T; Litov, L; Loddo, F; Madorsky, A; Maerschalk, T; Maggi, M; Magnani, A; Mal, P K; Mandal, K; Marchioro, A; Marinov, A; Majumdar, N; Merlin, J A; Mitselmakher, G; Mohanty, A K; Mohapatra, A; Molnar, J; Muhammad, S; Mukhopadhyay, S; Naimuddin, M; Nuzzo, S; Oliveri, E; Pant, L M; Paolucci, P; Park, I; Passeggio, G; Pavlov, B; Philipps, B; Piccolo, D; Postema, H; Puig Baranac, A; Radi, A; Radogna, R; Raffone, G; Ranieri, A; Rashevski, G; Ressegotti, M; Riccardi, C; Rodozov, M; Rodrigues, A; Ropelewski, L; RoyChowdhury, S; Ryu, G; Ryu, M S; Safonov, A; Salva, S; Saviano, G; Sharma, A; Sharma, A; Sharma, R; Shah, A H; Shopova, M; Sturdy, J; Sultanov, G; Swain, S K; Szillasi, Z; Talvitie, J; Tatarinov, A; Tuuva, T; Tytgat, M; Vai, I; Van Stenis, M; Venditti, R; Verhagen, E; Verwilligen, P; Vitulo, P; Volkov, S; Vorobyev, A; Wang, D; Wang, M; Yang, U; Yang, Y; Yonamine, R; Zaganidis, N; Zenoni, F; Zhang, A

    2017-01-01

    Micropattern gaseous detectors (MPGD) underwent significant upgrades in recent years, introducing resistive materials to build compact spark-protected devices. Exploiting this technology further, various features such as space and time resolution, rate capability, sensitive area, operational stability and radiation hardness can be improved. This contribution introduces a new type of MPGD, namely the Fast Timing Micropattern (FTM) detector, utilizing a fully resistive WELL structure. It consists of a stack of several coupled layers where drift and WELL multiplication stages alternate in the structure, yielding a significant improvement in timing properties due to competing ionization processes in the different drift regions. Two FTM prototypes have been developed so far. The first one is uWELL-like, where multiplication takes place in the holes of a kapton foil covered on both sides with resistive material. The second one has a resistive Micromegas-like structure, with multiplication developing in a region del...

  15. [Ionizing and non-ionizing radiation (comparative risk estimations)].

    Science.gov (United States)

    Grigor'ev, Iu G

    2012-01-01

    The population has widely used mobile communication for already more than 15 years. It is important to note that the use of mobile communication has sharply changed the conditions of daily exposure of the population to EME We expose our brain daily for the first time in the entire civilization. The mobile phone is an open and uncontrollable source of electromagnetic radiation. The comparative risk estimation for the population of ionizing and non-ionizing radiation was carried out taking into account the real conditions of influence. Comparison of risks for the population of ionizing and non-ionizing radiation leads us to a conclusion that EMF RF exposure in conditions of wide use of mobile communication is potentially more harmful than ionizing radiation influence.

  16. Monitoring and removal of gaseous carbon-14 species

    International Nuclear Information System (INIS)

    Kabat, M.J.

    1979-01-01

    A simple and efficient method was developed for the monitoring of low level carbon-14 in nuclear power station areas and gaseous effluent. Gaseous carbon compounds (hydrocarbons and CO) are catalytically oxidized to CO 2 , which is then absorbed on solid Ca(OH) 2 at elevated temperatures. The 14 C collected is quantitatively liberated by thermal decomposition of CaCO 3 as CO 2 , which is either measured directly by flow-through detectors or absorbed in alkali hydroxide followed by liquid scintillation counting. The method can also be used for the removal of gaseous 14 C. The Ca 14 CO 3 can be immobilized in concrete for long term disposal. Ca(OH) 2 is an inexpensive absorber. It is selective for CO 2 and has high capacity and efficiency for its absorption and retention. A theoretical evaluation of thee optium conditions for CO 2 absorption and liberation is discussed and experimental investigations are described. There is good agreement between theoretical predictions and experimental findings

  17. Control of technetium at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Saraceno, A.J.

    1981-01-01

    Technetium-99 entered the gaseous diffusion complex as a volatile impurity in recycled uranium that was fed to the Paducah Gaseous Diffusion Plant. Subsequently, it entered the Oak Ridge and Portsmouth cascades as an impurity in Paducah product feed. Most of the technetium was adsorbed on cascade equipment in increasingly high concentrations as it moved up the cascade. Since the low energy beta radiation produced by technetium cannot penetrate cascade equipment, it presents no significant hazard to workers as long as it remains inside of equipment. However, when equipment that contains high concentrations of technetium is opened for maintenance or change-out, precautions are taken to ensure worker safety. Traps containing activated alumina are used at the plant vent streams to limit radioactive emissions as far as possible. Annual vent stream emissions have been well below DOE limits. To allow continued compliance, other potential trapping agents have been tested. Several that limit emissions more effectively than activated alumina have been found. Other traps containing magnesium fluoride are used in the upper cascade to reduce the technetium concentration. Waste solutions from decontamination can also contain technetium. These solutions must either be stored for controlled discharge or treated to remove the technetium. To allow the latter, an ion exchange facility is being installed for operation by the end of FY-1982. Liquid discharges at Portsmouth have usually been less than 5% of the DOE imposed limits

  18. Dielectric barrier discharges applied for soft ionization and their mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Sebastian; Klute, Felix David; Schütz, Alexander; Franzke, Joachim, E-mail: joachim.franzke@isas.de

    2017-01-25

    Dielectric barrier discharges are used for analytical applications as dissociative source for optical emission spectrometry and for ambient-ionization techniques. In the range of ambient-ionization techniques it has attracted much attention in fields like food safety, biological analysis, mass spectrometry for reaction monitoring and imaging forensic identification. In this review some examples are given for the application as desorption/ionization source as well as for the sole application as ionization source with different sample introductions. It will be shown that the detection might depend on the certain distance of the plasma in reference to the sample or the kind of discharge which might be produced by different shapes of the applied high voltage. Some attempts of characterization are presented. A more detailed characterization of the dielectric barrier discharge realized with two ring electrodes, each separately covered with a dielectric layer, is described. - Highlights: • Dielectric barrier discharge applied as desorption/ionization source. • Dielectric barrier discharge applied solely as ionization source. • Different geometries in order to maintain soft ionization. • Characterization of the LTP probe. • Dielectric barrier discharges with two dielectric barriers (ring-ring shape).

  19. Hydrogenic ionization model for mixtures in non-LTE plasmas

    International Nuclear Information System (INIS)

    Djaoui, A.

    1999-01-01

    The Hydrogenic Ionization Model for Mixtures (HIMM) is a non-Local Thermodynamic Equilibrium (non-LTE), time-dependent ionization model for laser-produced plasmas containing mixtures of elements (species). In this version, both collisional and radiative rates are taken into account. An ionization distribution for each species which is consistent with the ambient electron density is obtained by use of an iterative procedure in a single calculation for all species. Energy levels for each shell having a given principal quantum number and for each ion stage of each species in the mixture are calculated using screening constants. Steady-state non-LTE as well as LTE solutions are also provided. The non-LTE rate equations converge to the LTE solution at sufficiently high densities or as the radiation temperature approaches the electron temperature. The model is particularly useful at low temperatures where convergence problems are usually encountered in our previous models. We apply our model to typical situation in x-ray laser research, laser-produced plasmas and inertial confinement fusion. Our results compare well with previously published results for a selenium plasma. (author)

  20. Laser-Excited Luminescent Tracers for Planar Concentration Measurements in Gaseous Jets

    Science.gov (United States)

    Lozano, Antonio

    Tracers currently used in planar laser-induced fluorescence concentration measurements are not ideal for some experimental conditions, e.g., non-reacting turbulent gaseous flows at standard temperature and pressure. In this work, a number of chemicals have been evaluated, through consideration of their physical and photophysical properties, for use as luminescent concentration markers in turbulent gaseous flows. Two selected substances, biacetyl and acetone, have been studied in more detail. Acetone PLIF concentration images have been acquired in a non-reacting air jet, and the results have been compared to similar images obtained seeding with biacetyl. Acetone has proven to be a superior tracer when imaging fluorescence emission. Acetone has also been used as a fuel marker in hydrogen and methane diffusion flames. This single -laser technique enables simultaneous recording of the acetone and OH fluorescence emissions, as well as Mie scattering from ambient air dust particles. Acetone-sensitized, collisionally-induced biacetyl phosphorescence has been used to visualize molecular mixing in gaseous flows. Initial attempts to produce quantitative results with this method through simultaneous imaging of acetone fluorescence and collisionally-induced biacetyl emission, are described. Using laser-induced biacetyl phosphorescence imaging, a data set of cross-cut concentration images has been acquired in a nitrogen coflowing jet (Re = 5,000). The images have been statistically analyzed. Very simple models of the instantaneous concentration profile have been compared to the experimental data. Of all the tested models, a paraboloid has resulted to be the best approximation to the instantaneous 2-D profile. Finally, an experiment to study jet mixing in crossflow using acetone PLIF imaging has been designed. The flow facility has been constructed, and preliminary images obtained with a high quantum efficiency, thinned CCD detector have revealed the presence of jet structures

  1. Cyclotron production of radioactive gas from gaseous targets: inhomogeneity of the target activity - optimum flow rate of the carrier gas - cross sections

    International Nuclear Information System (INIS)

    Peters, J.-M.; Fiore, G. del; Quaglia, L.; Depresseux, J.-C.; Bartsch, P.

    1979-01-01

    When short-lived radioactive gases are produced by cyclotron-irradiated gaseous targets, the yield of activity, at the site of delivery, depends on the flow rate in the gas-carrying line. The authors improve a preliminarily published previous single model by the introduction of a supplementary hypothesis which takes into account the inhomogeneity of the activity in the gaseous target. By substituting the NTP volume of the gas in the irradiation cell Vsub(c) by a visible volume Vsub(a) depending on the flow rate and expressed by Vsub(a) = Vsub(infinity) +(V 0 - Vsub(infinity))exp(-kDsub(p)), they derive the following general expression for the optimum flow rate D which gives a maximum yield of production. D 2 -bD-bc-D 2 akexp(-kD)-abexp(-kD) = 0, a=lambda(V 0 -Vsub(infinity)), b = lambdaVsub(r), c = lambdaVsub(infinity), lambda = the decay constant of the radionuclide produced,Vsub(r) the inner volume of the gas-carrying line. The unknown parameters Vsub(r), Vsub(a), V 0 , Vsub(infinity), and k can be determined experimentally. The authors also suggest a new method for the determination of experimental cross sections with their gaseous target. (Auth.)

  2. Methods for Creation and Detection of Ultra-Strong Artificial Ionization in the Upper Atmosphere (Invited)

    Science.gov (United States)

    Bernhardt, P. A.; Siefring, C. L.; Briczinski, S. J.; Kendall, E. A.; Watkins, B. J.; Bristow, W. A.; Michell, R.

    2013-12-01

    The High Frequency Active Auroral Research Program (HAARP) transmitter in Alaska has been used to produce localized regions of artificial ionization at altitudes between 150 and 250 km. High power radio waves tuned near harmonics of the electron gyro frequency were discovered by Todd Pederson of the Air Force Research Laboratory to produce ionosonde traces that looked like artificial ionization layers below the natural F-region. The initial regions of artificial ionization (AI) were not stable but had moved down in altitude over a period of 15 minutes. Recently, artificial ionization has been produced by the 2nd, 3rd, 4th and 6th harmonics transmissions by the HAARP. In march 2013, the artificial ionization clouds were sustained for more the 5 hours using HAARP tuned to the 4 fce at the full power of 3.6 Mega-Watts with a twisted-beam antenna pattern. Frequency selection with narrow-band sweeps and antenna pattern shaping has been employed for optimal generation of AI. Recent research at HAARP has produced the longest lived and denser artificial ionization clouds using HF transmissions at the harmonics of the electron cyclotron frequency and ring-shaped radio beams tailored to prevent the descent of the clouds. Detection of artificial ionization employs (1) ionosonde echoes, (2) coherent backscatter from the Kodiak SuperDARN radar, (3) enhanced ion and plasma line echoes from the HAARP MUIR radar at 400 MHz, (4) high resolution optical image from ground sites, and (5) unique stimulated electromagnetic emissions, and (6) strong UHF and L-Band scintillation induced into trans-ionospheric signals from satellite radio beacons. Future HAARP experiments will determine the uses of long-sustained AI for enhanced HF communications.

  3. Study of the behavior of high activity waste produced during the regeneration of fast reactor fuel elements by the gaseous fluoride method

    International Nuclear Information System (INIS)

    Kiriolovich, A.P.; Dem'yanovich, M.A.; Lavrinovich, Yu.G.; Skiba, O.V.; Gazizov, R.K.; Vorobey, M.P.

    The composition and certain physicochemical and radiation properties of waste obtained from reprocessing BOR-60 fuel by the gaseous fluoride method were studied on an experimental stand. It was found that from 80 to 85 percent of the total activity is concentrated in the fluorination cakes. From thermographic analysis, measurement of radiation-induced gas evolution and composition of the gaseous phase, it is concluded that the waste must be canned. Compatibility of carbon steel, austenitic steel, and nickel with low-activity fluoride cakes was studied. It is shown that the corrosion of these materials increases with temperature and moisture content of the medium. In the first stage of waste disposal, hermetic storage in special containers of stainless steel or nickel is recommended. From their corrosion resistance in low-activity fluoride cakes, the wall temperatures of containers made of St. 3 should not exceed 100 0 C, Kh18N10T 230 0 C, and nickel 300 0 C. Later, after cooling and a decrease in the γ activity of the waste (10 to 15 years), they can be reprocessed to recover valuable components (Am, Cm, etc.) and then buried. 5 tables

  4. Dynamical instability of a charged gaseous cylinder

    Science.gov (United States)

    Sharif, M.; Mumtaz, Saadia

    2017-10-01

    In this paper, we discuss dynamical instability of a charged dissipative cylinder under radial oscillations. For this purpose, we follow the Eulerian and Lagrangian approaches to evaluate linearized perturbed equation of motion. We formulate perturbed pressure in terms of adiabatic index by applying the conservation of baryon numbers. A variational principle is established to determine characteristic frequencies of oscillation which define stability criteria for a gaseous cylinder. We compute the ranges of radii as well as adiabatic index for both charged and uncharged cases in Newtonian and post-Newtonian limits. We conclude that dynamical instability occurs in the presence of charge if the gaseous cylinder contracts to the radius R*.

  5. Characterization of process holdup material at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Boyd, D.E.; Miller, R.R.

    1986-01-01

    The cascade material balance area at the Portsmouth Gaseous Diffusion Plant is characterized by continuous, large, in-process inventories of gaseous uranium hexafluoride (UF 6 ) and very large inputs and outputs of UF 6 over a complete range of 235 U enrichments. Monthly inventories are conducted to quantify the in-place material, but the inventory techniques are blind to material not in the gas phase. Material is removed from the gas phase by any one of four mechanisms: (1) freeze-outs which are the solidification of UF 6 , (2) inleakage of wet air which produces solid uranium oxyfluorides, (3) consumption of uranium through UF 6 reaction with internal metal surfaces, and (4) adsorption of UF 6 on internal surfaces. This presentation describes efforts to better characterize and, where possible, to eliminate or reduce the effects of these mechanisms on material accountability. Freeze-outs and wet air deposits occur under absormal operating conditions, and techniques are available to prevent, detect and reverse them. Consumption and adsorption occur under normal operating conditions and are more complex to manage, however, computer models have been developed to quantify monthly the net effects due to consumption and adsorption. These models have shown that consumption and adsorption effects on inventory differences are significant

  6. CANCER RISKS ATTRIBUTABLE TO LOW DOSES OF IONIZING RADIATION - ASSESSING WHAT WE REALLY KNOW?

    Science.gov (United States)

    Cancer Risks Attributable to Low Doses of Ionizing Radiation - What Do We Really Know?AbstractHigh doses of ionizing radiation clearly produce deleterious consequences in humans including, but not exclusively, cancer induction. At very low radiation doses the situatio...

  7. Raffinate treatment at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Acox, T.A.

    1983-01-01

    Raffinate solutions, which contain uranium, technetium, nitrates, and lesser amounts of heavy metals, are produced in the decontamination and uranium recovery operations at the Portsmouth Gaseous Diffusion Plant. These solutions are presently being placed in temporary storage until three treatment facilities are constructed which will produce an environmentally acceptable effluent from the raffinate. These facilities are: (1) The Heavy Metals Precipitation Facility; (2) The Technetium Ion Exchange Facility; and (3) The Biodenitrification Pilot Plant. When the facilities are completed, the raffinate will be treated in 500 gallon batches. The first treatment is the heavy metals precipitation by caustic addition and filtering. The effluent proceeds to the ion exchange columns where the technetium is removed by adsorption onto a strongly basic, anion exchange resin which has been converted to the hydroxyl form. Following ion exchange, the solution is transported to the biodenitrification pilot plant. The biodenitrification column is a fluidized-bed using bacteria-laden coal particles as the denitrifying media. The resulting effluent should meet the limits established by the US EPA for all metals and nitrate. Technetium will be 98+% removed and the uranium concentration will be less than one milligram per liter. 13 references

  8. High-order multiphoton ionization photoelectron spectroscopy of NO

    International Nuclear Information System (INIS)

    Carman, H.S. Jr.; Compton, R.N.

    1987-01-01

    Photoelectron energy angular distributions of NO following three different high-order multiphoton ionization (MPI) schemes have been measured. The 3 + 3 resonantly enhanced multiphoton ionization (REMPI) via the A 2 Σ + (v=O) level yielded a distribution of electron energies corresponding to all accessible vibrational levels (v + =O-6) of the nascent ion. Angular distributions of electrons corresponding to v + =O and v + =3 were significantly different. The 3 + 2 REMPI via the A 2 Σ + (v=1) level produced only one low-energy electron peak (v + =1). Nonresonant MPI at 532 nm yielded a distribution of electron energies corresponding to both four- and five-photon ionization. Prominent peaks in the five-photon photoelectron spectrum (PES) suggest contributions from near-resonant states at the three-photon level. 4 refs., 3 figs

  9. Ionization effects in electronic inner-shells of ionized atoms

    International Nuclear Information System (INIS)

    Shchornak, G.

    1983-01-01

    A review of the atomic physics of ionization atoms has been presented. Interaction and structure effects in atomic shells, correlated to the occurrence of vacancies in several subshells of the atom have been considered. The methods of calculations of atomic states and wave functions have been reviewed. The energy shift of characteristic X-rays is discussed as a function of the ionization stage of the atom. The influence of inner and outer-shell vacancies on the energy of the X-rays is shown in detail. The influence of chemical effects on the parameters of X-rays is also taken into account. Further on, the change of transition probabilities in radiative and non-radiative transitions by changing stage of ionization is discussed; and among them the leading part of Auger and Coster-Kronig transitions by the arearrangement of the atomic states is shown. The influence of non-radiative electronic transitions on ionization cross-sections for multiple ionization is discussed. Using these results, ionization cross-sections for direct and indirect processes for several ionization stages are given

  10. Ghost peaks observed after atmospheric pressure matrix-assisted laser desorption/ionization experiments may disclose new ionization mechanism of matrix-assisted hypersonic velocity impact ionization.

    Science.gov (United States)

    Moskovets, Eugene

    2015-08-30

    Understanding the mechanisms of matrix-assisted laser desorption/ionization (MALDI) promises improvements in the sensitivity and specificity of many established applications in the field of mass spectrometry. This paper reports a serendipitous observation of a significant ion yield in a post-ionization experiment conducted after the sample had been removed from a standard atmospheric pressure (AP)-MALDI source. This post-ionization is interpreted in terms of collisions of microparticles moving with a hypersonic velocity into a solid surface. Calculations show that the thermal energy released during such collisions is close to that absorbed by the top matrix layer in traditional MALDI. The microparticles, containing both the matrix and analytes, could be detached from a film produced inside the inlet capillary during the sample ablation and accelerated by the flow rushing through the capillary. These observations contribute some new perspective to ion formation in both laser and laser-less matrix-assisted ionization. An AP-MALDI ion source hyphenated with a three-stage high-pressure ion funnel system was utilized for peptide mass analysis. After the laser had been turned off and the MALDI sample removed, ions were detected during a gradual reduction of the background pressure in the first funnel. The constant-rate pressure reduction led to the reproducible appearance of different singly and doubly charged peptide peaks in mass spectra taken a few seconds after the end of the MALDI analysis of a dried-droplet spot. The ion yield as well as the mass range of ions observed with a significant delay after a completion of the primary MALDI analysis depended primarily on the background pressure inside the first funnel. The production of ions in this post-ionization step was exclusively observed during the pressure drop. A lower matrix background and significant increase in relative yield of double-protonated ions are reported. The observations were partially consistent

  11. Air pollution with gaseous emissions and methods for their removal

    International Nuclear Information System (INIS)

    Vassilev, Venceslav; Boycheva, Sylvia; Fidancevska, Emilija

    2009-01-01

    Information concerning gaseous pollutants generated in the atmosphere, as a result of fuel incineration processes in thermal power and industrial plants, was summarized. The main methods and technologies for flue gases purification from the most ecologically hazardous pollutants are comparatively discussed. Keywords: gaseous pollutants, aerosols, flue gas purification systems and technologies, air ecology control

  12. Gaseous radioiodine transport in the air-forage-cow-milk system

    International Nuclear Information System (INIS)

    Black, S.C.; Douglas, R.L.; Barth, D.S.

    1976-04-01

    To study the transport of 131 I in the air-forage-cow milk system, a gaseous form of 131 I was released over a field of growing alfalfa which also contained some baled hay and dairy cows in pens. Some of the alfalfa was converted to hay and fed to cows, and some was used as green chop for other cows and goats. The results of this experiment suggest that the deposition velocity of gaseous iodine is much less than that for iodine bound to particulates; that cows ingesting hay secrete a higher percentage of 131 I in milk than cows ingesting green chop; that gaseous forms do not penetrate hay bales to any great extent; that the gaseous form is transferred to milk in a manner similar to particulate forms; that ingestion of contaminated forage results in 80 times as much 131 I transfer to milk as does inhalation exposure to the same cloud; and that goats transfer 131 I from forage to milk more efficiently than do dairy cows

  13. Detection and measurement of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    All detection or measurement of radiation rests in the possibility of recognizing the interactions of radiation with matter. When radiation passes through any kind of material medium, all or a portion of its energy is transferred to this medium. This transferred energy produces an effect in the medium. In principle, the detection of radiation is based on the appearance and the observation of this effect. In theory, all of the effects produced by radiation may be used in detecting it: in practice, the effects most commonly employed are: (1) ionization of gases (gas detectors), or of some chemical substance which is transformed by radiation (photographic or chemical dosimeters); (2) excitations in scintillators or semiconductors (scintillation counters, semiconductor counters); (3) creation of structural defects through the passage of radiation (transparent thermoluminescent and radioluminescent detectors); and (4) raising of the temperature (calorimeters). This study evaluates in detail, instruments based on the ionization of gases and the production of luminescence. In addition, the authors summarize instruments which depend on other forms of interaction, used in radiation medicine and hygiene (radiology, nuclear medicine)

  14. Photochemistry of limonene secondary organic aerosol studied with chemical ionization mass spectrometry

    Science.gov (United States)

    Pan, Xiang

    Limonene is one of the most abundant monoterpenes in the atmosphere. Limonene easily reacts with gas-phase oxidants in air such as NO3, ozone and OH. Secondary organic aerosol (SOA) is formed when low vapor pressure products condense into particles. Chemicals in SOA particles can undergo further reactions with oxidants and with solar radiation that significantly change SOA composition over the course of several days. The goal of this work was to characterize radiation induced reaction in SOA. To perform experiments, we have designed and constructed an Atmospheric Pressure Chemical Ionization Mass Spectrometer (APCIMS) coupled to a photochemical cell containing SOA samples. In APCIMS, (H2O)nH 3O+ clusters are generated in a 63Ni source and react with gaseous organic analytes. Most organic chemicals are not fragmented by the ionization process. We have focused our attention on limonene SOA prepared in two different ways. The first type of SOA is produced by oxidation of limonene by ozone; and the second type of SOA is formed by the NO3-induced oxidation of limonene. They model the SOA formed under daytime and nighttime conditions, respectively. Ozone initiated oxidation is the most important chemical sink for limonene both indoors, where it is used for cleaning purposes, and outdoors. Terpenes are primarily oxidized by reactions with NO3 at night time. We generated limonene SOA under different ozone and limonene concentrations. The resulting SOA samples were exposed to wavelength-tunable radiation in the UV-Visible range between 270 nm and 630 nm. The results show that the photodegradation rates strongly depend on radiation wavelengths. Gas phase photodegradation products such as acetone, formaldehyde, acetaldehyde, and acetic acid were shown to have different production rates for SOA formed in different concentration conditions. Even for SOA prepared under the lowest concentrations, the SOA photodegradation was efficient. The conclusion is that exposure of SOA to

  15. The effect of gaseous ammonia on cobalt perrhenate

    International Nuclear Information System (INIS)

    Maslov, L.P.; Men'shikov, O.D.; Borisov, V.V.; Sorokin, S.I.; Krutovertsev, S.A.; Kharkevich, S.I.; Ivanova, O.M.

    1994-01-01

    The influence of humid air ammonia mixture on crystal pentahydrate of cobalt(2) perrhenate has been studied by the methods of PES, IR spectroscopy thermal analysis and electrophysical measurements. It is shown that with an increase in ammonia content in gaseous phase cobalt perrhenate successively transforms into diaquodiammine-, tetrammine- and μ-dioxo-bis-(tetrammine) derivatives of cobalt. Reversibility of dioxocomplex formation and a correlation between the change in electrophysical properties of crystal sample and change in ammonia content in gaseous phase are pointed out. 16 refs.; 4 figs.; 1 tab

  16. Test of active coal capacity for retaining gaseous effluents contaminated by 131 I

    International Nuclear Information System (INIS)

    Campeanu, Catalina; Cruceru, Madalina; Neacsu, Elena

    1999-01-01

    The aim of this paper is to test the retaining capacity of the active coal of the filters for gaseous effluents contaminated by 131 I. The active coal filters are design for equipping ventilation installations of nuclear plants in which radioactive iodine and combination of it were produced and handled. Such active coal filters are provided also to sorbonnes for radiochemical and physical handling of radioactive iodine. Testing the retaining capacity of active coal for filters is an obvious step, particularly, when the material was stored long time after preparation

  17. National Gas Survey. Synthesized gaseous hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The supply-Technical Advisory Task Force-Synthesized Gaseous Hydrocarbon Fuels considered coal, hydrocarbon liquids, oil shales, tar sands, and bioconvertible materials as potential feedstocks for gaseous fuels. Current status of process technology for each feedstock was reviewed, economic evaluations including sensitivity analysis were made, and constraints for establishment of a synthesized gaseous hydrocarbon fuels industry considered. Process technology is presently available to manufacture gaseous hydrocarbon fuels from each of the feedstocks. In 1975 there were eleven liquid feedstock SNG plants in the United States having a capacity of 1.1 billion SCFD. There can be no contribution of SNG before 1982 from plants using feedstocks other than liquids because there are no plants in operation or under construction as of 1977. Costs for SNG are higher than current regulated prices for U.S. natural gas. Because of large reserves, coal is a prime feedstock candidate although there are major constraints in the area of coal leases, mining and water permits, and others. Commercial technology is available and several new gasification processes are under development. Oil shale is also a feedstock in large supply and commercial process technology is available. There are siting and permit constraints, and water availability may limit the ultimate size of an oil shale processing industry. Under projected conditions, bioconvertible materials are not expected to support the production of large quantities of pipeline quality gas during the next decade. Production of low or medium Btu gas from municipal solid wastes can be expected to be developed in urban areas in conjunction with savings in disposal costs. In the economic evaluations presented, the most significant factor for liquid feedstock plants is the anticipated cost of feedstock and fuel. The economic viability of plants using other feedstocks is primarily dependent upon capital requirements.

  18. Angular correlation of the N+ ions produced in the dissociative double ionization of nitrogen

    International Nuclear Information System (INIS)

    Ezell, R.L.; Edwards, A.K.; Wood, R.M.

    1984-01-01

    The double ionization of N 2 by He + projectiles was studied by measuring the angular correlation between the two N + ions emitted in the dissociation of N 2+ 2 molecular ions. If there were no recoil velocity imposed on the N 2+ 2 ion in the initial ionizing collision, and thermal effects were neglected, the pair of N + ions would have equal and opposite velocity vectors in the laboratory frame of reference. Measuring the coincidence yield of pairs of N + ions as a function of the angle between their velocity vectors permits an estimate to be made of the component of momentum transferred to the N 2+ 2 parent ions in the beam direction. The results presented in this report show the recoil velocity to be considerably less than the mean thermal velocity of N 2 molecules at room temperature. We also report mesurements of the relative cross section for N + production from N 2+ 2 as a function of the orientation of the N 2 target molecules relative to the projectile beam axis

  19. A Population Study of Gaseous Exoplanets

    Science.gov (United States)

    Tsiaras, A.; Waldmann, I. P.; Zingales, T.; Rocchetto, M.; Morello, G.; Damiano, M.; Karpouzas, K.; Tinetti, G.; McKemmish, L. K.; Tennyson, J.; Yurchenko, S. N.

    2018-04-01

    We present here the analysis of 30 gaseous extrasolar planets, with temperatures between 600 and 2400 K and radii between 0.35 and 1.9 R Jup. The quality of the HST/WFC3 spatially scanned data combined with our specialized analysis tools allow us to study the largest and most self-consistent sample of exoplanetary transmission spectra to date and examine the collective behavior of warm and hot gaseous planets rather than isolated case studies. We define a new metric, the Atmospheric Detectability Index (ADI) to evaluate the statistical significance of an atmospheric detection and find statistically significant atmospheres in around 16 planets out of the 30 analyzed. For most of the Jupiters in our sample, we find the detectability of their atmospheres to be dependent on the planetary radius but not on the planetary mass. This indicates that planetary gravity plays a secondary role in the state of gaseous planetary atmospheres. We detect the presence of water vapour in all of the statistically detectable atmospheres, and we cannot rule out its presence in the atmospheres of the others. In addition, TiO and/or VO signatures are detected with 4σ confidence in WASP-76 b, and they are most likely present in WASP-121 b. We find no correlation between expected signal-to-noise and atmospheric detectability for most targets. This has important implications for future large-scale surveys.

  20. Purifying hydrocarbons in the gaseous stage

    Energy Technology Data Exchange (ETDEWEB)

    1937-02-01

    Gaseous tar oils are subjected, at temperatures of 320 to 380/sup 0/C, to the action of a mixture of activated carbon mixed with powdered metal which removes the sulfur contamination from the substance to be purified.

  1. Guided ionization waves: Theory and experiments

    International Nuclear Information System (INIS)

    Lu, X.; Naidis, G.V.; Laroussi, M.; Ostrikov, K.

    2014-01-01

    This review focuses on one of the fundamental phenomena that occur upon application of sufficiently strong electric fields to gases, namely the formation and propagation of ionization waves–streamers. The dynamics of streamers is controlled by strongly nonlinear coupling, in localized streamer tip regions, between enhanced (due to charge separation) electric field and ionization and transport of charged species in the enhanced field. Streamers appear in nature (as initial stages of sparks and lightning, as huge structures—sprites above thunderclouds), and are also found in numerous technological applications of electrical discharges. Here we discuss the fundamental physics of the guided streamer-like structures—plasma bullets which are produced in cold atmospheric-pressure plasma jets. Plasma bullets are guided ionization waves moving in a thin column of a jet of plasma forming gases (e.g., He or Ar) expanding into ambient air. In contrast to streamers in a free (unbounded) space that propagate in a stochastic manner and often branch, guided ionization waves are repetitive and highly-reproducible and propagate along the same path—the jet axis. This property of guided streamers, in comparison with streamers in a free space, enables many advanced time-resolved experimental studies of ionization waves with nanosecond precision. In particular, experimental studies on manipulation of streamers by external electric fields and streamer interactions are critically examined. This review also introduces the basic theories and recent advances on the experimental and computational studies of guided streamers, in particular related to the propagation dynamics of ionization waves and the various parameters of relevance to plasma streamers. This knowledge is very useful to optimize the efficacy of applications of plasma streamer discharges in various fields ranging from health care and medicine to materials science and nanotechnology

  2. Monitoring of released radioactive gaseous and liquid effluent at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Oka, M.; Keta, S.; Nagai, S.; Kano, M.; Ishihara, N.; Moriyama, T.; Ogaki, K.; Noda, K.

    2009-01-01

    Rokkasho Reprocessing Plant (RRP) Rokkasho Reprocessing Plant started its active tests with spent fuel at the end of March 2006. When spent fuels are sheared and dissolved, radioactive gaseous effluent and radioactive liquid effluent such as krypton-85, tritium, etc. are released into the environment. In order to limit the public dose as low as reasonably achievable in an efficient way, RRP removes radioactive material by evaporation, rinsing, filtering, etc., and then releases it through the main stack and the sea discharge pipeline that allow to make dispersion and dilution very efficiently. Also, concerning the radioactive gaseous and liquid effluent to be released into the environment, the target values of annual release have been defined in the Safety Rule based on the estimated annual release evaluated at the safety review of RRP. By monitoring the radioactive material in gaseous exhaust and liquid effluent RRP controls it not to exceed the target values. RRP reprocessed 430 tUpr of spent fuel during Active Test (March 2006 to October 2008). In this report, we report about: The outline of gaseous and liquid effluent monitoring. The amount of radioactive gaseous and liquid effluent during the active test. The performance of removal of radioactive materials in gaseous and liquid effluents. The impact on the public from radioactive effluents during the active test. (author)

  3. Critical ionization velocity as a mechanism for producing Titan's plasma tail

    International Nuclear Information System (INIS)

    Galeev, A.A.; Khabibrakhmanov, I.KH.

    1984-01-01

    The phenomenon of a critical ionization velocity may explain the anomalous interaction between the magnetospheric plasma corotating with Saturn and the atmosphere of Titan. Although the dominant role will be played by the lower-hybrid instability due to the counterstreaming of the magnetospehric plasma and newly formed atmospheric ions, charge-separation effects caused by the very large Larmor radius of the new nitrogen ions also may trigger instability. The kinetic energy of the newly formed ions will be conveyed to the electrons by plasma waves generated in the counterflow, thereby exciting the atmospheric atoms to emit radiation. The limiting plasma density and electron temperature in Titan's plasma tail and the frequency spectrum of the waves that develop are determined and compared against the Voyager measurements. 11 references

  4. Evolution of the legislation concerning the professional diseases considered as produced by ionized radiation

    International Nuclear Information System (INIS)

    Hebert, J.

    2004-01-01

    After having remind the history and structure of the classical French system of compensation of occupational diseases, conditions put to insert such of these diseases induced by ionizing radiations are studied, before to conclude by an exam of solutions that a new system introduced by an act of 27 of January 1993 could offer in some situations. (author)

  5. Neutral Atom Diffusion in a Partially Ionized Prominence Plasma

    Science.gov (United States)

    Gilbert, Holly

    2010-01-01

    The support of solar prominences is normally described in terms of a magnetic force on the prominence plasma that balances the solar gravitational force. Because the prominence plasma is only partially ionized. it is necessary to consider in addition the support of the neutral component of the prominence plasma. This support is accomplished through a frictional interaction between the neutral and ionized components of the plasma, and its efficacy depends strongly on the degree of ionization of the plasma. More specifically, the frictional force is proportional to the relative flow of neutral and ion species, and for a sufficiently weakly ionized plasma, this flow must be relatively large to produce a frictional force that balances gravity. A large relative flow, of course, implies significant draining of neutral particles from the prominence. We evaluate the importance of this draining effect for a hydrogen-helium plasma, and consider the observational evidence for cross-field diffusion of neutral prominence material,

  6. Gaseous Electron Multiplier (GEM) Detectors

    Science.gov (United States)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  7. The origins of the metrology of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Paschoa, Anselmo S. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Fisica]. E-mail: aspas@itaipu.vdg.fis.puc-rio.br

    2000-07-01

    Metrology of ionizing radiation started soon after the discovery of radioactivity. However, the modern metrology of ionizing radiation can be considered a by product of the Manhattan Project. When this mammoth effort to produce the first nuclear weapons was initiated, little was known about some of the properties of natural elements, though the phenomenon of natural radioactivity was already known for almost half a century. Less was known about the radioactive materials involved in that project. The amount of those materials which had to be handled were higher than any amount of {sup 226} Ra and {sup 228} Ra ever used thus far. The first atomic piles produced concentration levels of radioactivity much higher than any level known before. There was then a threat not only for the health of hundred of technicians and scientists, but also for thousands of workers. The secrecy involving that project would not allow much to be told about the radioactive hazards. There was, however, the need to protect workers and the public in General against unnecessary exposures to ionizing radiation. The origin of the standards used in radiological protection from pre-world war II and their remarkable evolution during and immediately after this war will be discussed in the paper. (author)

  8. The origins of the metrology of ionizing radiation

    International Nuclear Information System (INIS)

    Paschoa, Anselmo S.

    2000-01-01

    Metrology of ionizing radiation started soon after the discovery of radioactivity. However, the modern metrology of ionizing radiation can be considered a by product of the Manhattan Project. When this mammoth effort to produce the first nuclear weapons was initiated, little was known about some of the properties of natural elements, though the phenomenon of natural radioactivity was already known for almost half a century. Less was known about the radioactive materials involved in that project. The amount of those materials which had to be handled were higher than any amount of 226 Ra and 228 Ra ever used thus far. The first atomic piles produced concentration levels of radioactivity much higher than any level known before. There was then a threat not only for the health of hundred of technicians and scientists, but also for thousands of workers. The secrecy involving that project would not allow much to be told about the radioactive hazards. There was, however, the need to protect workers and the public in General against unnecessary exposures to ionizing radiation. The origin of the standards used in radiological protection from pre-world war II and their remarkable evolution during and immediately after this war will be discussed in the paper. (author)

  9. Treatment of Plants with Gaseous Ethylene and Gaseous Inhibitors of Ethylene Action.

    Science.gov (United States)

    Tucker, Mark L; Kim, Joonyup; Wen, Chi-Kuang

    2017-01-01

    The gaseous nature of ethylene affects not only its role in plant biology but also how you treat plants with the hormone. In many ways, it simplifies the treatment problem. Other hormones have to be made up in solution and applied to some part of the plant hoping the hormone will be taken up into the plant and translocated throughout the plant at the desired concentration. Because all plant cells are connected by an intercellular gas space the ethylene concentration you treat with is relatively quickly reached throughout the plant. In some instances, like mature fruit, treatment with ethylene initiates autocatalytic synthesis of ethylene. However, in most experiments, the exogenous ethylene concentration is saturating, usually >1 μL L -1 , and the synthesis of additional ethylene is inconsequential. Also facilitating ethylene research compared with other hormones is that there are inhibitors of ethylene action 1-MCP (1-methylcyclopropene) and 2,5-NBD (2,5-norbornadiene) that are also gases wherein you can achieve nearly 100% inhibition of ethylene action quickly and with few side effects. Inhibitors for other plant hormones are applied as a solution and their transport and concentration at the desired site is not always known and difficult to measure. Here, our focus is on how to treat plants and plant parts with the ethylene gas and the gaseous inhibitors of ethylene action.

  10. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China.

    Science.gov (United States)

    Fan, Changhua; Li, Bo; Xiong, Zhengqin

    2018-01-15

    Nitrification inhibitors, a promising tool for reducing nitrous oxide (N 2 O) losses and promoting nitrogen use efficiency by slowing nitrification, have gained extensive attention worldwide. However, there have been few attempts to explore the broad responses of multiple reactive gaseous nitrogen emissions of N 2 O, nitric oxide (NO) and ammonia (NH 3 ) and vegetable yield to nitrification inhibitor applications across intensive vegetable soils in China. A greenhouse pot experiment with five consecutive vegetable crops was performed to assess the efficacies of two nitrification inhibitors, namely, nitrapyrin and dicyandiamide on reactive gaseous nitrogen emissions, vegetable yield and reactive gaseous nitrogen intensity in four typical vegetable soils representing the intensive vegetable cropping systems across mainland China: an Acrisol from Hunan Province, an Anthrosol from Shanxi Province, a Cambisol from Shandong Province and a Phaeozem from Heilongjiang Province. The results showed soil type had significant influences on reactive gaseous nitrogen intensity, with reactive gaseous nitrogen emissions and yield mainly driven by soil factors: pH, nitrate, C:N ratio, cation exchange capacity and microbial biomass carbon. The highest reactive gaseous nitrogen emissions and reactive gaseous nitrogen intensity were in Acrisol while the highest vegetable yield occurred in Phaeozem. Nitrification inhibitor applications decreased N 2 O and NO emissions by 1.8-61.0% and 0.8-79.5%, respectively, but promoted NH 3 volatilization by 3.2-44.6% across all soils. Furthermore, significant positive correlations were observed between inhibited N 2 O+NO and stimulated NH 3 emissions with nitrification inhibitor additions across all soils, indicating that reduced nitrification posed the threat of NH 3 losses. Additionally, reactive gaseous nitrogen intensity was significantly reduced in the Anthrosol and Cambisol due to the reduced reactive gaseous nitrogen emissions and increased

  11. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates

    International Nuclear Information System (INIS)

    Lee, Yuan-Pern

    2015-01-01

    The Criegee intermediates, carbonyl oxides proposed by Criegee in 1949 as key intermediates in the ozonolysis of alkenes, play important roles in many aspects of atmospheric chemistry. Because direct detection of these gaseous intermediates was unavailable until recently, previous understanding of their reactions, derived from indirect experimental evidence, had great uncertainties. Recent laboratory detection of the simplest Criegee intermediate CH 2 OO and some larger members, produced from ultraviolet irradiation of corresponding diiodoalkanes in O 2 , with various methods such as photoionization, ultraviolet absorption, infrared absorption, and microwave spectroscopy opens a new door to improved understanding of the roles of these Criegee intermediates. Their structures and spectral parameters have been characterized; their significant zwitterionic nature is hence confirmed. CH 2 OO, along with other products, has also been detected directly with microwave spectroscopy in gaseous ozonolysis reactions of ethene. The detailed kinetics of the source reaction, CH 2 I + O 2 , which is critical to laboratory studies of CH 2 OO, are now understood satisfactorily. The kinetic investigations using direct detection identified some important atmospheric reactions, including reactions with NO 2 , SO 2 , water dimer, carboxylic acids, and carbonyl compounds. Efforts toward the characterization of larger Criegee intermediates and the investigation of related reactions are in progress. Some reactions of CH 3 CHOO are found to depend on conformation. This perspective examines progress toward the direct spectral characterization of Criegee intermediates and investigations of the associated reaction kinetics, and indicates some unresolved problems and prospective challenges for this exciting field of research

  12. Evaluation of a digital optical ionizing radiation particle track detector

    International Nuclear Information System (INIS)

    Hunter, S.R.

    1987-06-01

    An ionizing radiation particle track detector is outlined which can, in principle, determine the three-dimensional spatial distribution of all the secondary electrons produced by the passage of ionizing radiation through a low-pressure (0.1 to 10 kPa) gas. The electrons in the particle track are excited by the presence of a high-frequency AC electric field, and two digital cameras image the optical radiation produced in electronic excitation collisions of the surroundings gas by the electrons. The specific requirements of the detector for neutron dosimetry and microdosimetry are outlined (i.e., operating conditions of the digital cameras, high voltage fields, gas mixtures, etc.) along with an estimate of the resolution and sensitivity achievable with this technique. The proposed detector is shown to compare favorable with other methods for obtaining the details of the track structure, particularly in the quality of the information obtainable about the particle track and the comparative simplicity and adaptability of the detector for measuring the secondary electron track structure for many forms of ionizing radiation over a wide range of energies

  13. Transmission environmental scanning electron microscope with scintillation gaseous detection device

    International Nuclear Information System (INIS)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-01-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. - Highlights: • Novel scanning transmission electron microscopy (STEM) with an environmental scanning electron microscope (ESEM) called TESEM. • Use of the gaseous detection device (GDD) in scintillation mode that allows high resolution bright and dark field imaging in the TESEM. • Novel approach towards a unification of both vacuum and environmental conditions in both bulk/surface and transmission mode of electron microscopy

  14. An introduction to technetium in the gaseous diffusion cascades

    International Nuclear Information System (INIS)

    Simmons, D.W.

    1996-09-01

    The radioisotope technetium-99 ( 99 Tc) was introduced into the gaseous diffusion plants (GDP) as a contaminant in uranium that had been reprocessed from spent nuclear reactor fuel. 99 Tc is a product of the nuclear fission of uranium-235 ( 235 U). The significantly higher emitted radioactivity of 99 Tc generates concern in the enrichment complex and warrants increased attention (1) to the control of all site emissions, (2) to worker exposures and contamination control when process equipment requires disassembly and decontamination, and (3) to product purity when the enriched uranium hexafluoride (UF 6 ) product is marketed to the private sector. A total of 101,268 metric tons of RU (∼96% of the total) was fed at the Paducah Gaseous Diffusion Plant (PGDP) between FY1953 and FY1976. An additional 5600 metric tons of RU from the government reactors were fed at the Oak Ridge Gaseous Diffusion Plant (ORGDP), plus an approximate 500 tons of foreign reactor returns. Only a small amount of RU was fed directly at the Portsmouth Gaseous Diffusion Plant (PORTS). The slightly enriched PGDP product was then fed to either the ORGDP or PORTS cascades for final enrichment. Bailey estimated in 1988 that of the 606 kg of Tc received at PGDP from RU, 121 kg was subsequently re-fed to ORGDP and 85 kg re-fed to PORTS

  15. Formation of molecules in interstellar clouds from singly and multiply ionized atoms

    International Nuclear Information System (INIS)

    Langer, W.D.; and NASA, Institute for Space Studies, Goddard Space Flight Center, New York)

    1978-01-01

    Soft X-ray and cosmic rays produce multiply ionized atoms which may initiate molecule production in interstellar clouds. This molecule production can occur via ion-molecule reactions with H 2 , either directly from the multiply ionized atom (e.g.,C ++ + H 2 →CH + + H + ), or indirectly from the singly ionized atoms (e.g., N + + H 2 →NH + + H) that are formed from the recombination or charge transfer of the highly ionized atom (e.g., N ++ + e→N + + hv). We investigate the contribution of these reactions to the abundances of carbon-, nitrogen-, and oxygen-bearing molecules in isobaric models of diffuse clouds. In the presence of the average flux estimated for the diffuse soft X-ray background, multiply ionized atoms contribute only minimally (a few percent) to carbon-bearing molecules such as CH. In the neighborhood of diffuse structures or discrete sources, however, where the X-ray flux is enhanced, multiple ionization is considerably more important for molecule production

  16. Fluorination of uranium compounds by gaseous bromine trifluoride and a bromine-fluorine mixture

    International Nuclear Information System (INIS)

    Sakurai, Tsutomu

    1976-03-01

    This report summarizes the studies of fluorination of uranium compounds by gaseous BrF 3 and a Br 2 -F 2 mixture, which were carried out in Fluorine Chemistry Laboratory of JAERI in connection with the reprocessing method of nuclear fuels. Although thermodynamically more stable than F 2 , BrF 3 has higher reactivity at relatively low temperatures: fluorination of uranium compounds can be carried out at 100 0 -- 200 0 C by using gaseous BrF 3 . This fluorination temperature is lower than those of F 2 , BrF 5 , ClF and SF 4 , and close to that of ClF 3 . The usage of BrF 3 has however the drawbacks that it requires additional devices to heat the corrosive liquid and to remove Br 2 produced as a byproduct. In order to eliminate the difficulties indicated, a new method of fluorination was developed - the use of a Br 2 -F 2 mixture. Addition of small amounts of Br 2 to the fluorine flow (about 6% in relation to the fluorine concentration) gives marked effects on the rate of fluorination. (auth.)

  17. Organization of inspection of radioactive wastes by the public health services

    International Nuclear Information System (INIS)

    Pellerin, P.; Gahinet, M.E.

    1983-01-01

    The liquid and gaseous radio-active wastes produced by nuclear plants are subjected to regulations and strict control by the administration for Public Health. The regulations and the procedures and arrangements which they prescribe are described. The main aspects of the role played by the Central service for protection against ionizing radiation (SCPRI) are presented [fr

  18. Stress corrosion in gaseous environment

    International Nuclear Information System (INIS)

    Miannay, Dominique.

    1980-06-01

    The combined influences of a stress and a gaseous environment on materials can lead to brittleness and to unexpected delayed failure by stress corrosion cracking, fatigue cracking and creep. The most important parameters affering the material, the environment, the chemical reaction and the stress are emphasized and experimental works are described. Some trends for further research are given [fr

  19. Indirect processes in electron impact ionization of Kr24+ and Kr25+

    International Nuclear Information System (INIS)

    Chen, M.H.; Reed, K.J.

    1992-09-01

    Electron-impact ionization cross sections have been calculated for magnesiumlike Kr 24+ and sodiumlike Kr 25+ . Electron-impact ionization is an important atomic process in hot dense plasmas. It can affect the ionization balance, electron temperature, electron density, and level population in the plasma. In the past decade, theoretical and experimental studies have revealed that indirect processes can make significant contributions to the cross sections for electron impact ionization of positive ions. The most important indirect process is excitation of an inner-shell electron followed by Auger emission. Higher-order processes such as resonant excitation followed by sequential double Auger emission, can also contribute significantly. The contributions of excitation-autoionization and resonant excitation double autoionization (REDA) were included, in addition to the cross sections for direct ionization of a 3s electron. The calculations were carried out using the relativistic distorted wave methods and the multiconfiguration Dirac-Fock model. For Kr 25+ , the total cross section is about 5 times the direct ionization cross section. For the Kr 24+ , the indirect contribution is about 2.5 times the direct ionization cross section. The REDA process produces many strong resonances and contributes about 20% to the average ionization cross section

  20. Ring magnetron ionizer

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1986-01-01

    A ring magnetron D - charge exchange ionizer has been built and tested. An H - current of 500 μA was extracted with an estimated H 0 density in the ionizer of 10 12 cm -3 . This exceeds the performance of ionizers presently in use on polarized H - sources. The ionizer will soon be tested with a polarized atomic beam

  1. Spectroscopic investigation of the charge dynamics of heavy ions penetrating solid and gaseous targets

    International Nuclear Information System (INIS)

    Korostiy, S.

    2007-01-01

    This thesis presents the study of the slowing down process of fast heavy ions inside matter. In the framework of this research, the influence of the target density on the stopping process is investigated. Experiments on the interaction of 48 Ca 6+ - 48 Ca 10+ and 26 Mg 5+ ion beams with initial energies of 11.4 MeV/u and 5.9 MeV/u with solid and gaseous targets have been carried out. A novel diagnostic method, X-ray spectroscopy of K-shell projectile radiation, is used to determine the ion charge state in relation to its velocity during the penetration of fast heavy ions inside the stopping material. A spatially resolved analysis of the projectile and target radiation in solids is achieved for the first time. The application of low-density silica aerogels as stopping media provided a stretching of the ion stopping length by 20 - 100 times in comparison with solid quartz. The Doppler Effect observed on the projectile K-shell spectra is used to calculate the ion velocity in dependence on the ion penetration depth in the target material. A comparative analysis of K α spectra of fast heavy ions is performed in solid (silica aerogels) and gaseous targets (Ar and Ne gases) at the same ion energy. It is shown that the dominant role of collisions in dense matter leads to an increase of the effective ionization cross section at high ion velocity and suppression of the electron capture to the projectile ion excited states at low ion velocity. As a result, an increase of the ion charge state in dense matter is observed. The experimentally detected effects are interpreted with numerical calculations of the projectile population kinetics, which are in good agreement with measurements. (orig.)

  2. Spectroscopic investigation of the charge dynamics of heavy ions penetrating solid and gaseous targets

    Energy Technology Data Exchange (ETDEWEB)

    Korostiy, S

    2007-01-15

    This thesis presents the study of the slowing down process of fast heavy ions inside matter. In the framework of this research, the influence of the target density on the stopping process is investigated. Experiments on the interaction of {sup 48}Ca{sup 6+}-{sup 48}Ca{sup 10+} and {sup 26}Mg{sup 5+} ion beams with initial energies of 11.4 MeV/u and 5.9 MeV/u with solid and gaseous targets have been carried out. A novel diagnostic method, X-ray spectroscopy of K-shell projectile radiation, is used to determine the ion charge state in relation to its velocity during the penetration of fast heavy ions inside the stopping material. A spatially resolved analysis of the projectile and target radiation in solids is achieved for the first time. The application of low-density silica aerogels as stopping media provided a stretching of the ion stopping length by 20 - 100 times in comparison with solid quartz. The Doppler Effect observed on the projectile K-shell spectra is used to calculate the ion velocity in dependence on the ion penetration depth in the target material. A comparative analysis of K{sub {alpha}} spectra of fast heavy ions is performed in solid (silica aerogels) and gaseous targets (Ar and Ne gases) at the same ion energy. It is shown that the dominant role of collisions in dense matter leads to an increase of the effective ionization cross section at high ion velocity and suppression of the electron capture to the projectile ion excited states at low ion velocity. As a result, an increase of the ion charge state in dense matter is observed. The experimentally detected effects are interpreted with numerical calculations of the projectile population kinetics, which are in good agreement with measurements. (orig.)

  3. Migration from Gasoline to Gaseous Fuel for Small-scale Electricity Generation Systems

    Directory of Open Access Journals (Sweden)

    Sukandar Sukandar

    2013-03-01

    Full Text Available This paper describes a study that gives a consideration to change fuel source for electricity generator from gasoline to combustible gas. A gaseous fuel conversion technology is presented and its performance is compared with gasoline. In the experiment, two types of load were tested, resistive and resistive-inductive. By using both fuels mostly the power factor (Cos ? of resistive-inductive load variations were greater than 0.8, and they had slight difference on operational voltage. The drawback of using gaseous fuel is the frequency of the electricity might be up to 10 Hz deviated from the standard frequency (i.e. 50 Hz. In the lab scale experiment, the gasoline consumption increased proportionally with the load increase, while using gaseous fuel the consumption of gas equal for two different load value in the range of 50% maximum load, which is 100 gram per 15 minutes operation. Therefore, the use of gaseous generation system should have average power twice than the required load. The main advantage using gaseous fuel (liquefied petroleum gas or biogas compared to gasoline is a cleaner emitted gas after combustion.

  4. The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin; Chiavassa, Thierry; Danger, Grégoire, E-mail: gregoire.danger@univ-amu.fr [Aix-Marseille Université, PIIM UMR-CNRS 7345, F-13397 Marseille (France)

    2017-09-10

    In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH{sub 3}OH), binary (H{sub 2}O:CH{sub 3}OH, CH{sub 3}OH:NH{sub 3}), and ternary ice analogs (H{sub 2}O:CH{sub 3}OH:NH{sub 3}) were VUV-processed and warmed. The evolution of volatile organic compounds in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.

  5. Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis

    International Nuclear Information System (INIS)

    Huang, Yu-Fong; Chiueh, Pei-Te; Kuan, Wen-Hui; Lo, Shang-Lien

    2015-01-01

    Agricultural residues are abundant resources to produce renewable energy and valuable chemicals. This study focused on the effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis of agricultural residues. When agricultural residues were under microwave radiation within 10 min, the maximum temperatures of approximately 320, 420, and 530 °C were achieved at the microwave power levels of 300, 400, and 500 W, respectively. Gas yield increased with increasing microwave power level, whereas solid and liquid yields decreased. Besides, gaseous products with higher H 2 content and higher calorific values can be obtained at higher microwave power levels. In addition to microwave power level, lignocellulosic composition was also an important factor. H 2 and CO 2 yields increased with increasing hemicellulose content, whereas CH 4 and CO yields increased with increasing cellulose content. Four empirical equations were derived to present the contributions of lignocellulosic materials to the yields of gaseous components. - Highlights: • About 530 °C was reached within 10 min at a microwave power level of 500 W. • Gas yield increased with increasing microwave power level. • A high correlation between hemicellulose content and either H 2 or CO 2 yield. • A high correlation between cellulose content and either CH 4 or CO yield. • Empirical equations depict contribution of lignocellulosic content to gas yield

  6. A magnetically levitated electrode ionization chamber of the noncontact measurement type

    International Nuclear Information System (INIS)

    Kawaguchi, Toshiro; Yoshimura, Atsushi

    2002-01-01

    A new type of ionization chamber with levitated electrode has been developed. In this ionization chamber, an ion-collection electrode levitates in the air without getting any physical support from the insulator. The electrode is charged by an electrostatic charger without physical contact. The charge of the electrode is read out at a Faraday cage periodically at a given time interval without physical contact. Because its electrode levitates, the ionization chamber produces no background current caused by leaks or piezo current. In addition, as the charging of its electrode and the read-out of its charge are carried out without physical contact, no irregular charge or contact potential difference due to the chattering between electrode and contact point occurs. Through experiments, it was found that this ionization chamber was able to measure the γ-ray dose such as the environmental radiation with a high degree of sensitivity. The minimum detectable value of ionization current when accumulated for 1 h is about 1.3x10 -17 A

  7. A magnetically levitated electrode ionization chamber of the noncontact measurement type

    CERN Document Server

    Kawaguchi, T

    2002-01-01

    A new type of ionization chamber with levitated electrode has been developed. In this ionization chamber, an ion-collection electrode levitates in the air without getting any physical support from the insulator. The electrode is charged by an electrostatic charger without physical contact. The charge of the electrode is read out at a Faraday cage periodically at a given time interval without physical contact. Because its electrode levitates, the ionization chamber produces no background current caused by leaks or piezo current. In addition, as the charging of its electrode and the read-out of its charge are carried out without physical contact, no irregular charge or contact potential difference due to the chattering between electrode and contact point occurs. Through experiments, it was found that this ionization chamber was able to measure the gamma-ray dose such as the environmental radiation with a high degree of sensitivity. The minimum detectable value of ionization current when accumulated for 1 h is a...

  8. Ionization of cloud and intercloud hydrogen by O and B stars

    International Nuclear Information System (INIS)

    Elmergreen, B.G.

    1975-01-01

    Lyman continuum radiation from OB stars may be the primary source of ionization of interstellar hydrogen. Eighty percent of Lyman continuum photons produced by these stars comes from a very small number of 05 and 06 stars, however, and if this radiation is ionized to interstellar hydrogen with the high degree of uniformity indicated by pulsar dispersion measures or by the diffuse background of Hα emission, then each 05 or 06 star must be able to maintain an H II region over a distance of several hundred parsecs. The cloudy structure of interstellar space prevents such long range ionization, however, and a large fraction of the stellar Lyman continuum photons will be converted to Balmer photons in the high-density ionized surfaces of the exposed clouds. Two questions concerning this cloudy obscuration naturally arise: what will be the consequences of a cloud's exposure to Lyman continuum radiation, and to what extent can low-density, intercloud hydrogen be ionized in the obscured regions. These questions are considered

  9. Radar measurements of the latitudinal variation of auroral ionization

    International Nuclear Information System (INIS)

    Vondrak, R.R.; Baron, M.J.

    1976-01-01

    The Chatanika, Alaska, incoherent scatter radar has been used to measure the spatial variation of auroral ionization. A two-dimensional (altitude, latitude) cross-sectional map of electron densities in the ionosphere is produced by scanning in the geomagnetic meridian plane. The altitutde variation of ionization is used to infer the differential energy distribution of the incident auroral electrons. The latitudinal variation of this energy distribution and the total energy input are obtained by use of the meridian-scanning technique. Examples are shown of observations made during an active aurora

  10. Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring.

    Science.gov (United States)

    Kudo, Hiroyuki; Suzuki, Yuki; Gessei, Tomoko; Takahashi, Daishi; Arakawa, Takahiro; Mitsubayashi, Kohji

    2010-10-15

    An ultrahigh-sensitive fiber-optic biochemical gas sensor (bio-sniffer) for continuous monitoring of indoor formaldehyde was constructed and tested. The bio-sniffer measures gaseous formaldehyde as fluorescence of nicotinamide adenine dinucleotide (NADH), which is the product of formaldehyde dehydrogenase (FALDH) reaction. The bio-sniffer device was constructed by attaching a flow cell with a FALDH immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode (UV-LED) with peak emission of 335 nm as an excitation light source. The excitation light was introduced to an optical fiber probe, and fluorescence emission of neighboring NADH, which was produced by applying formaldehyde vapor to the FALDH membrane, was concentrically measured with a photomultiplier tube. Assessment of the bio-sniffer was carried out using a standard gas generator. Response, calibration range and selectivity to other chemical substances were investigated. Circulating phosphate buffer, which contained NAD+, available for continuous monitoring of formaldehyde vapor. The calibration range of the bio-sniffer was 2.5 ppb to 10 ppm, which covers the guideline value of the World Health Organization (80 ppb). High selectivity to other gaseous substances due to specific activity of FALDH was also confirmed. Considering its high sensitivity, a possible application of the bio-sniffer is continuous indoor formaldehyde monitoring to provide healthy residential atmosphere. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Modulation of the Inflammatory Response by Ionizing Radiation and the Possible Role of Curcumin

    International Nuclear Information System (INIS)

    Hegazy, M.El.A.

    2009-01-01

    The increasing use of radiation and the recent incidents of massive radiation exposure give an importance to study possible radiation hazards. Radiation-induced cell changes may result in death of the organism, death of the cells, modulation of physiological activity, or cancers that have no features distinguishing them from those induced by other types of cell injury (Valko et al., 2004). Electromagnetic radiation is divided into non-ionizing and ionizing radiation according to the energy required to eject electrons from molecules (Bessonov, 2006). Ionizing radiation, which may exhibit the properties of both waves and particles, has sufficient energy to produce ionization in matter. The ionizing radiation that exhibits corpuscular properties include alpha and beta particles, while those that behave more like waves of energy include x-rays and gamma-rays (γ-rays) (Bessonov, 2006). Radiation exposure comes from many sources and may be directly or indirectly ionizing. Directly ionizing radiation carries an electric charge that directly interacts, by electrostatic attraction or repulsion, with atoms in the tissue or the exposed medium. On the other hand, indirectly ionizing radiation is not electrically charged but results in production of charged particles by which its energy is absorbed (Metting et al., 1988). One of the characteristics of charged particles produced directly or indirectly is the linear energy transfer (LET), the energy loss per unit of distance traveled, usually expressed in kilo-electron volts (keV) per micrometer (μm). The LET, depending on the velocity and charge of the particles, may vary from about 0.2 to more than 1000 keV/μm (Table (1)). Radiation interacts with matter by direct and indirect processes to form ion pairs, some of which may be free radicals. These ion pairs rapidly interact with themselves and other surrounding molecules to produce free radicals. Both the indirect and direct activities of ionizing radiation lead to molecular

  12. Localization of an O-glycosylated site in the recombinant barley alpha-amylase 1 produced in yeast and correction of the amino acid sequence using matrix-assisted laser desorption/ionization mass spectrometry of peptide mixtures

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Søgaard, M; Svensson, B

    1994-01-01

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of peptide mixtures was used to characterize recombinant barley alpha-amylase 1, produced in yeast. Three peptide mixtures were generated by cleavage with CNBr, digestion with endoproteinase Lys-C and Asp-N, respectively...

  13. Contribution to Quality of Air Traffic Due to Reduction of Gaseous Emissions

    Directory of Open Access Journals (Sweden)

    Melichar Kopas

    2011-12-01

    Full Text Available There are described basic principles of jet engine construction and operation in the presented paper, taking into consideration question of gaseous emissions produced in exhaust gases of turbojet engines. The innovative aircraft jet engines are the most important power units of modern planes nowadays and therefore it is necessary to analyse their environmental impacts, with regard to quality of living environment. This paper integrates technical and environmental factors of up-to-date jet engines. It demonstrates an important fact that modern airplanes equipped by sophisticated turbo-jet engines are environment friendly with regard to reduced amount of pollutants in their exhaust gases.

  14. Structure of positive streamers inside gaseous bubbles immersed in liquids

    International Nuclear Information System (INIS)

    Babaeva, Natalia Yu; Kushner, Mark J

    2009-01-01

    Electric discharges and streamers in liquids typically proceed through vapour phase channels produced by the streamer or in gaseous bubbles. The bubbles can originate by enthalpy changes produced by the discharge or can be artificially injected into the liquid. Experiments on streamers in bubbles immersed in liquids have shown that the discharge propagates either along the surface of the bubble or through the volume of the bubble as in conventional streamer propagation in air. In this paper we report on results of a computational investigation of streamer propagation through bubbles immersed in liquids. We found that the dielectric constant of the liquid in large part determines the path the streamer takes. Streamers in bubbles immersed in a liquid with a high permittivity preferentially propagate along the surface of the bubble. Liquids with low permittivity can result in the streamer propagating along the axis of the bubble. The permittivity at which this transition occurs is a function of the applied voltage, size of the bubble and the conductivity of the liquid. (fast track communication)

  15. Laser optically pumped by laser-produced plasma

    International Nuclear Information System (INIS)

    Silfvast, W.T.; Wood, O.R. II.

    1975-01-01

    Laser solids, liquids and gases are pumped by a new technique in which the output from an efficient molecular laser, such as a CO 2 laser, ionizes a medium, such as xenon, into a generally cylindrical plasma volume, in proximity to the pumped laser body. Breakdown yields a visible and ultraviolet-radiation-emitting plasma in that volume to pump the laser body. The spectral radiance of the plasma is significantly higher than that produced by a dc-discharge-heated plasma at nearly all wavelengths in the plasma spectrum. The risetime of radiation from the laser-produced plasma can also be significantly shorter than that of a dc heated plasma. A further advantage resides in the fact that in some applications the attenuating walls needed by flashlamps may be eliminated with the result that laser threshold is more readily reached. Traveling wave excitation may be provided by oblique incidence of the pumping laser beam through the ionizable medium to create sequential ionization of portions of that medium along the length of the pumped laser body. (auth)

  16. Update on bio-refining and nanocellulose composite materials manufacturing

    Science.gov (United States)

    Postek, Michael T.; Poster, Dianne L.

    2017-08-01

    Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. One of the factors limiting the potential of nanocellulose and the vast array of potential new products is the ability to produce high-volume quantities of this nano-material. However, recent research has demonstrated that nanocellulose can be efficently produced in large volumes from wood at relatively low cost by the incorporation of ionizing radiation in the process stream. Ionizing radiation causes significant break down of the polysaccharides and leads to the production of potentially useful gaseous products such as H2 and CO. Ionizing radiation processing remains an open field, ripe for innovation and application. This presentation will review the strong collaboration between the National Institute of Standards and Technology (NIST) and its academic partners pursuing the demonstration of applied ionizing radiation processing to plant materials for the manufacturing and characterization of novel nanomaterials.

  17. Surface-ionization field mass-spectrometry studies of nonequilibrium surface ionization

    International Nuclear Information System (INIS)

    Blashenkov, Nikolai M; Lavrent'ev, Gennadii Ya

    2007-01-01

    The ionization of polyatomic molecules on tungsten and tungsten oxide surfaces is considered for quasiequilibrium or essentially nonequilibrium conditions (in the latter case, the term nonequilibrium surface ionization is used for adsorbate ionization). Heterogeneous reactions are supposed to proceed through monomolecular decay of polyatomic molecules or fragments of multimolecular complexes. The nonequilibrium nature of these reactions is established. The dependences of the current density of disordered ions on the surface temperature, electric field strength, and ionized particle energy distribution are obtained in analytical form. Heterogeneous dissociation energies, the ionization potentials of radicals, and the magnitude of reaction departure from equilibrium are determined from experimental data, as are energy exchange times between reaction products and surfaces, the number of molecules in molecular complexes, and the number of effective degrees of freedom in molecules and complexes. In collecting the data a new technique relying on surface-ionization field mass-spectrometry was applied. (instruments and methods of investigation)

  18. Nonproliferation and safeguarding via ionization detection

    International Nuclear Information System (INIS)

    Koster, J.E.; Johnson, J.P.; Steadman, P.

    1995-01-01

    A significant signature of the presence of special nuclear material (SNM) is ionizing radiation. SNM naturally decays with the emission of alpha particles, gamma rays, and neutrons. Detecting and monitoring these emissions is an important capability for international safeguards. A new detection method collects the ions produced by such radiation in ambient air. Alpha particles in particular are specific to heavy nuclei but have very short range. The ions produced by an alpha, however, can be transported tens of meters to an ion detector. These new monitors are rugged, very sensitive, respond in real time, and in most cases are quite portable

  19. Sevoflurane improves gaseous exchange and exerts protective ...

    African Journals Online (AJOL)

    Sevoflurane improves gaseous exchange and exerts protective effects in ... Lung water content and cell count were estimated by standard protocols. ... It reversed LPS-induced oxidative stress, as demonstrated by increase in total antioxidant ...

  20. Laser desorption/ionization mass spectrometry of lipids using etched silver substrates.

    Science.gov (United States)

    Schnapp, Andreas; Niehoff, Ann-Christin; Koch, Annika; Dreisewerd, Klaus

    2016-07-15

    Silver-assisted laser desorption/ionization mass spectrometry can be used for the analysis of small molecules. For example, adduct formation with silver cations enables the molecular analysis of long-chain hydrocarbons, which are difficult to ionize via conventional matrix-assisted laser desorption ionization (MALDI). Here we used highly porous silver foils, produced by etching with nitric acid, as sample substrates for LDI mass spectrometry. As model system for the analysis of complex lipid mixtures, cuticular extracts of fruit flies (Drosophila melanogaster) and worker bees (Apis mellifera) were investigated. The mass spectra obtained by spotting extract onto the etched silver substrates demonstrate the sensitive detection of numerous lipid classes such as long-chain saturated and unsaturated hydrocarbons, fatty acyl alcohols, wax esters, and triacylglycerols. MS imaging of cuticular surfaces with a lateral resolution of a few tens of micrometers became possible after blotting, i.e., after transferring lipids by physical contact with the substrate. The examples of pheromone-producing male hindwings of the squinting bush brown butterfly (Bicyclus anynana) and a fingermark are shown. Because the substrates are also easy to produce, they provide a viable alternative to colloidal silver nanoparticles and other so far described silver substrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Radioactive beams produced by the ISOL method: development for laser ionization and for surface ionization; Faisceaux exotiques par methode ISOL: developpements pour l'ionisation par laser et l'ionisation de surface

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Faouzi

    2004-10-01

    The works were carried out in the framework of the research program PARRNe (production of radioactive neutron-rich nuclei). This program aims to determine optimal conditions to produce intense beams of neutron-rich isotopes. This thesis treats multiple technical aspects related to the production of separate radioactive isotopes in line (ISOL). It deals mainly with the development of the target-source unit which is the key element for projects such as SPIRAL-2 or EURISOL.The first part presents the various methods using fission as production mode and compares them: fission induced by thermal neutrons, induced by fast neutrons and photofission. The experiment carried out at CERN validated the interest of the photofission as a promising production mode of radioactive ions. That is why the institute of nuclear physics of Orsay decided to build a linear electron accelerator at the Tandem d'Orsay (ALTO).The second part of this thesis deals with the development of uranium targets. The X-rays diffraction and Scanning Electron Microscopy have been used as analysis techniques. They allowed to determine the chemical and structural characteristics of uranium carbide targets as function of various heating temperatures. After the production, the process of ionization has been studied. Two types of ion source have been worked out: the first one is a surface ion source and the second one is a source based on resonant ionization by laser. These two types of sources will be used for the ALTO project. (author)

  2. Atmospheric Gaseous Plasma with Large Dimensions

    Science.gov (United States)

    Korenev, Sergey

    2012-10-01

    The forming of atmospheric plasma with large dimensions using electrical discharge typically uses the Dielectric Barrier Discharge (DBD). The study of atmospheric DBD was shown some problems related to homogeneous volume plasma. The volume of this plasma determines by cross section and gas gap between electrode and dielectric. The using of electron beam for volume ionization of air molecules by CW relativistic electron beams was shown the high efficiency of this process [1, 2]. The main advantage of this approach consists in the ionization of gas molecules by electrons in longitudinal direction determines by their kinetic energy. A novel method for forming of atmospheric homogeneous plasma with large volume dimensions using ionization of gas molecules by pulsed non-relativistic electron beams is presented in the paper. The results of computer modeling for delivered doses of electron beams in gases and ionization are discussed. The structure of experimental bench with plasma diagnostics is considered. The preliminary results of forming atmospheric plasma with ionization gas molecules by pulsed nanosecond non-relativistic electron beam are given. The analysis of potential applications for atmospheric volume plasma is presented. Reference: [1] S. Korenev. ``The ionization of air by scanning relativistic high power CW electron beam,'' 2002 IEEE International Conference on Plasma Science. May 2002, Alberta, Canada. [2] S. Korenev, I. Korenev. ``The propagation of high power CW scanning electron beam in air.'' BEAMS 2002: 14th International Conference on High-Power Particle Beams, Albuquerque, New Mexico (USA), June 2002, AIP Conference Proceedings Vol. 650(1), pp. 373-376. December 17.

  3. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    Science.gov (United States)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Basic processes and trends in gaseous detectors

    CERN Multimedia

    1999-01-01

    Almost a century after the invention of the proportional counter, a large research effort is still devoted to better understand the basic properties of gaseous detectors, and to improve their performances and reliability, particularly in view of use at the high radiation levels expected at LHC. In the first part of the lectures, after a brief introduction on underlying physical phenomena, I will review modern sophisticated computational tools, as well as some classic "back of the envelope" analytical methods, available today for estimating the general performances of gaseous detectors. In the second part, I will analyze in more detail problems specific to the use of detectors at high rates (space charge, discharges, aging), and describe the recent development of powerful and perhaps more reliable devices, particularly in the field of position-sensitive micro-pattern detectors.

  5. Method and apparatus for generating and utilizing a compound plasma configuration

    International Nuclear Information System (INIS)

    Koloc, P.M.

    1977-01-01

    A method and apparatus for generating and utilizing a compound plasma configuration is disclosed. The plasma configuration includes a central toroidal plasma with electrical currents surrounded by a generally ellipsoidal mantle of ionized particles or electrically conducting matter. The preferred methods of forming this compound plasma configuration include the steps of forming a helical ionized path in a gaseous medium and simultaneously discharging a high potential through the ionized path to produce a helical or heliform current which collapses on itself to produce a toroidal current, or generating a toroidal plasmoid, supplying magnetic energy to the plasmoid, and applying fluid pressure external to the plasmoid. The apparatus of the present invention includes a pressure chamber wherein the compound plasma configuration can be isolated or compressed by fluid or other forms of mechanical or magnetic pressure. 47 claims, 10 figures

  6. UV and ionizing radiations induced DNA damage, differences and similarities

    Science.gov (United States)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  7. Ionizing radiation calculations and comparisons with LDEF data

    Science.gov (United States)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W., Jr.

    1992-01-01

    In conjunction with the analysis of LDEF ionizing radiation dosimetry data, a calculational program is in progress to aid in data interpretation and to assess the accuracy of current radiation models for future mission applications. To estimate the ionizing radiation environment at the LDEF dosimeter locations, scoping calculations for a simplified (one dimensional) LDEF mass model were made of the primary and secondary radiations produced as a function of shielding thickness due to trapped proton, galactic proton, and atmospheric (neutron and proton cosmic ray albedo) exposures. Preliminary comparisons of predictions with LDEF induced radioactivity and dose measurements were made to test a recently developed model of trapped proton anisotropy.

  8. Rapid monitoring of gaseous fission products in BWRs using a portable spectrometer

    International Nuclear Information System (INIS)

    Yeh, Wei-Wen; Lee, Cheng-Jong; Chen, Chen-Yi; Chung, Chien

    1996-01-01

    Rapid, quantitative determination of gaseous radionuclides is the most difficult task in the field of environmental monitoring for radiation. Although the identification of each gaseous radionuclide is relatively straightforward using its decayed gamma ray as an index, the quantitative measurement is hampered by the time-consuming sample collection procedures, in particular for the radioactive noble gaseous fission products of krypton and xenon. In this work, a field gamma-ray spectrometer consisting of a high-purity germanium detector, portable multichannel anlayzer, and a notebook computer was used to conduct rapid scanning of radioactive krypton and xenon in the air around a nuclear facility

  9. Biofuels and Bioproducts from Wet and Gaseous Waste Streams: Challenges and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-01-09

    This report draws together activities related to wet and gaseous waste feedstocks into a single document. It enables an amplified focus on feedstocks in the relevant technology and potential markets category. Also, this report helps to inform and support ongoing wet and gaseous resource recovery activities in the Bioenergy Technologies Office (BETO) and in the broader federal space. Historically, the office has identified wet and gaseous waste feedstocks as potentially advantageous, but has not pursued them with a sustained focus. This document seeks to position these waste streams appropriately alongside more traditional feedstocks in BETO efforts.

  10. The development of gaseous detectors with solid photocathodes for low temperature applications

    CERN Document Server

    Periale, L.; Iacobaeus, C.; Francke, T.; Lund-Jensen, B.; Pavlopoulos, N.; Picchi, P.; Pietropaolo, F.

    2004-01-01

    There are several applications and fundamental research areas which require the detection of VUV light at cryogenic temperatures. For these applications we have developed and successfully tested special designs of gaseous detectors with solid photocathodes able to operate at low temperatures: sealed gaseous detectors with MgF2 windows and windowless detectors. We have experimentally demonstrated, that both primary and secondary (due to the avalanche multiplication inside liquids) scintillation lights could be recorded by photosensitive gaseous detectors. The results of this work may allow one to significantly improve the operation of some noble liquid gas TPCs.

  11. Review of microfluidic cell culture devices for the control of gaseous microenvironments in vitro

    Science.gov (United States)

    Wu, H.-M.; Lee, T.-A.; Ko, P.-L.; Chiang, H.-J.; Peng, C.-C.; Tung, Y.-C.

    2018-04-01

    Gaseous microenvironments play important roles in various biological activities in vivo. However, it is challenging to precisely control gaseous microenvironments in vitro for cell culture due to the high diffusivity nature of gases. In recent years, microfluidics has paved the way for the development of new types of cell culture devices capable of manipulating cellular microenvironments, and provides a powerful tool for in vitro cell studies. This paper reviews recent developments of microfluidic cell culture devices for the control of gaseous microenvironments, and discusses the advantages and limitations of current devices. We conclude with suggestions for the future development of microfluidic cell culture devices for the control of gaseous microenvironments.

  12. Evaluation of the use of activated carbon for the filtration of gaseous effluents generated in the production of the radiopharmaceutical FDG-18F

    International Nuclear Information System (INIS)

    Cunha, R.S.; Goulart, A.S.; Flores, M.R.; Saibt, M.

    2017-01-01

    Gaseous rejects generated in the production of FDG- 18 F are produced mainly during the irradiation of the enriched water (H2O 18 ) within the niobium / target body at the cyclotron accelerator and during the process of FDG- 18 F synthesis in the synthesizer modules within the cell hot. In order to reduce the levels of gaseous effluents emitted, activated carbon filters are used in the exhaust system. These have the ability to adsorb the 18 F gaseous molecules generated in the synthesis. This work aims to quantify the efficiency of the activated carbon filters in relation to the dose rate before and after the passage of the gases through the filtration system. To quantify the values in the exhaust system, two radiation detectors were used, in the equivalent dose rate mode in μSv/h. To evaluate the values obtained, graphs of the levels before and after the filtration system were generated. These graphs were compared to each other, relating the values found. The generated graphs showed a high efficiency in the filtration of gaseous effluents. Several dose rate peaks are presented in the exhaust system during FDG- 18 F synthesis, however after the passage of the gases through the filters these peaks become values very close to the Background values

  13. Production of jet fuel range paraffins by low temperature polymerization of gaseous light olefins using ionic liquid

    International Nuclear Information System (INIS)

    Jiang, Peiwen; Wu, Xiaoping; Zhu, Lijuan; Jin, Feng; Liu, Junxu; Xia, Tongyan; Wang, Tiejun; Li, Quanxin

    2016-01-01

    Graphical abstract: A novel catalytic transformation of light olefins into jet fuel range iso-paraffins by the low-temperature olefin polymerizations under atmospheric conditions. - Highlights: • A novel transformation of light olefins to jet fuel range paraffins was demonstrated. • The synthetic fuels can be produced by atmospheric olefin polymerizations. • C 8 –C 15 iso-paraffins from light olefins was achieved with a selectivity of 80.6%. - Abstract: This work demonstrated a novel catalytic transformation of gaseous olefins into jet fuel range iso-paraffins by the low-temperature olefin polymerizations under atmospheric conditions. The production of the desired C 8 –C 15 iso-paraffins with the selectivity of 80.6 C mol% was achieved by the room-temperature polymerizations of gaseous light olefins using the [BMIM] Al 2 Cl 7 ionic liquid. The influences of the reaction conditions on the olefinic polymerizations were investigated in detail. The properties of hydrocarbons in the synthetic fuels were determined by the GC–MS analyses combined with 1 H NMR, and 13 C NMR analyses. The formation of C 8 –C 15 hydrocarbons from gaseous light olefins was illustrated by the identified products and the functional groups. This transformation potentially provides a useful avenue for the production of the most important components of iso-paraffins required in jet fuels.

  14. Analysis of the X-ray spectra emitted by laser-produced plasma of highly ionized lanthanum and praseodymium in the 8. 4 to 12. 0 A wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Zigler, A [Racah Inst. of Physics, Hebrew Univ., Jerusalem (Israel); Mandelbaum, P [Racah Inst. of Physics, Hebrew Univ., Jerusalem (Israel); Schwob, J L [Racah Inst. of Physics, Hebrew Univ., Jerusalem (Israel); Mitnik, D [Racah Inst. of Physics, Hebrew Univ., Jerusalem (Israel)

    1994-06-01

    A detailed analysis of the X-ray spectra emitted by laser produced plasma of lanthanum (8.5-12.5 A) and praseodymium (8.4-11.3 A) is given, using ab-initio calculations with the HULLAC relativistic code. Resonance 3d-nf (n 4, 5, 6) and 3p-4s, 4d transitions of the La XXX and Pr XXXII Ni I-like ions and neighbouring ionization states (La XXVIII to La XXXVI, Pr XXX to Pr XXXVI) have been identified. (orig.).

  15. EURODIF company - Tricastin gaseous diffusion plant. Requests following the safety re-evaluation of the facility after 20 years of operation

    International Nuclear Information System (INIS)

    2000-01-01

    This decision from the French authority of nuclear safety (ASN) concerns the safety reevaluation of the EURODIF plant ('Georges Besse plant') of the Tricastin site at Pierrelatte (France) which uses the gaseous diffusion process to separate the uranium isotopes. Since the last safety reevaluation in 1988, several points have been improved: reduction of the frequency and importance of uranium hexafluoride leaks (control of the pitting corrosion in the exchangers), no incident linked with exo-thermal reactions or explosions, a mastery of the exposure to ionizing radiations etc.. On the other hand, several points need improvement: the prevention of criticality risks, the earthquake resistance of some structures, and the integration of some accident scenarios (aircraft crash, UF 6 leak) in the emergency plan to avoid the fast release of toxic materials in the environment. These points are detailed in the document. (J.S.)

  16. Automated sampling and control of gaseous simulations

    KAUST Repository

    Huang, Ruoguan; Keyser, John

    2013-01-01

    In this work, we describe a method that automates the sampling and control of gaseous fluid simulations. Several recent approaches have provided techniques for artists to generate high-resolution simulations based on a low-resolution simulation

  17. Health consequences of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Dalci, D.; Dorter, G.; Guclu, I.

    2004-01-01

    The increasing use of ionizing radiations all over the world induces an ever increasing interest of the professionals as well as of the whole society in health protection and the risk due to these practices. Shortly after its discovery, it was recognized that ionizing radiation can have adverse health effects and knowledge of its detrimental effects has accumulated. The fact that ionizing radiation produces biological damage has been known for many years. The biological effects of ionizing radiation for radiation protection considerations are grouped into two categories: The deterministic and the stochastic ones. Deterministic radiation effects can be clinically diagnosed in the exposed individual and occur when above a certain 'threshold' an appropriately high dose is absorbed in the tissues and organs to cause the death of a large number of cells and consequently to impair tissue or organ functions early after exposure. A clinically observable biological effect (Acute Radiation Syndromes, ARS) that occurs days to months after an acute radiation dose. ARS is a complex of acute injury manifestations that occur after a sufficiently large portion of a person's body is exposed to a high dose of ionizing radiation. Such irradiation initially injures all organs to some extent, but the timing and extent of the injury manifestations depend upon the type, rate, and dose of radiation received. Stochastic radiation effects are the chronic effects of radiation result from relatively low exposure levels delivered over long periods of time. These are sort of effects that might result from occupational exposure, or to the background exposure levels (includes radioactive pollution). Such late effects might be the development of malignant (cancerous) disease and of the hereditary consequences. These effects may be observed many years after the radiation exposure. There is a latent period between the initial radiation exposure and the development of the biological effect. In this

  18. A compact high resolution electrospray ionization ion mobility spectrometer.

    Science.gov (United States)

    Reinecke, T; Kirk, A T; Ahrens, A; Raddatz, C-R; Thoben, C; Zimmermann, S

    2016-04-01

    Electrospray is a commonly used ionization method for the analysis of liquids. An electrospray is a dispersed nebular of charged droplets produced under the influence of a strong electrical field. Subsequently, ions are produced in a complex process initiated by evaporation of neutral solvent molecules from these droplets. We coupled an electrospray ionization source to our previously described high resolution ion mobility spectrometer with 75 mm drift tube length and a drift voltage of 5 kV. When using a tritium source for chemical gas phase ionization, a resolving power of R=100 was reported for this setup. We replaced the tritium source and the field switching shutter by an electrospray needle, a desolvation region with variable length and a three-grid shutter for injecting ions into the drift region. Preliminary measurements with tetraalkylammonium halides show that the current configuration with the electrospray ionization source maintains the resolving power of R=100. In this work, we present the characterization of our setup. One major advantage of our setup is that the desolvation region can be heated separately from the drift region so that the temperature in the drift region stays at room temperature even up to desolvation region temperatures of 100 °C. We perform parametric studies for the investigation of the influence of temperature on solvent evaporation with different ratios of water and methanol in the solvent for different analyte substances. Furthermore, the setup is operated in negative mode and spectra of bentazon with different solvents are presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Electron beam gaseous pollutants treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1999-01-01

    Emission of gaseous pollutants, mostly during combustion of fossil fuels, creates a threat to the environment. New, economical technologies are needed for flue gas treatment. A physico-chemical basis of the process using electron beam for the simultaneous removal of sulfur and nitrogen oxides and volatile organic compounds are presented in this report. Development of the process and its upscaling has been discussed. (author)

  20. Method of producing encapsulated thermonuclear fuel particles

    International Nuclear Information System (INIS)

    Smith, W.H.; Taylor, W.L.; Turner, H.L.

    1976-01-01

    A method of producing a fuel particle is disclosed, which comprises forming hollow spheroids which have a mass number greater than 50, immersing said spheroids while under the presence of pressure and heat in a gaseous atmosphere containing an isotope, such as deuterium and tritium, so as to diffuse the gas into the spheroid and thereafter cooling said spheroids up to about 77 0 Kelvin to about 4 0 Kelvin. 4 Claims, 3 Drawing Figures

  1. Development of resonance-enhanced multiphoton ionization system

    International Nuclear Information System (INIS)

    Naik, P.D.; Upadhyaya, Hari P.; Kumar, Awadhesh; Bajaj, P.N.; Sinha, A.K.; Bhatt, S.; Gupta, M.D.P.

    2009-05-01

    Radiation and Photochemistry Division has developed a Molecular Beam-Resonance Enhanced Multiphoton Ionization-Time-of-Flight spectrometer, a highly sensitive and selective analytical detection system, for investigation of photodissociation dynamics of isolated molecules. In this system, the molecular beam is intersected in the extraction region of a Wiley-McLaren type Time-of-Flight mass spectrometer by the photolysis laser beam, propagating perpendicular to both the molecular beams and the Time-of-Flight tube. The probe (ionization) laser beam counter propagating to the photolysis beam, ionizes the stable products and the radicals produced on photodissociation. The important features of the system, namely, the resolution and the detection limit, have been determined from the studies of aniline molecular beam, generated by seeding 1% aniline in helium. For the present configuration, using one metre long flight tube, the resolution has been found to be about 400, and detection limit is better than 106 species per cm 3 . The integrity of the set-up is obtained from the photodissociation dynamics studies of bromoform. (author)

  2. Assessment of health risks from exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Beebe, G.W.

    1982-01-01

    Rapid development in the assessment of health risks from exposure to ionizing radiation has produced an impressive array of risk differentials of presumed biologic significance. In the human data these differentials involve: (1) the variety of cancer, especially its size; (2) host factors, especially age; (3) time following exposure; (4) magnitude of dose; and (5) type of radiation. From experimental work we may presume that dose-rate also plays a role, especially for sparsely ionizing radiation. Current research is extending the scope of differentials with respect to these and other variables, including cell type and concomitant environmental risk factors, and testing dose-response models suggested by experimental and theoretical work. As facts to be explained, differentials in risk may lead to hypotheses to be explored experimentally and improve our understanding of how ionizing radiation causes cancer. 74 references

  3. Design, construction and characterization of special ionization chambers for X radiation beams monitoring

    International Nuclear Information System (INIS)

    Yoshizumi, Maira Tiemi

    2010-01-01

    X radiation equipment may show fluctuations in the radiation beam intensity, as they are connected to the power net. These intensity variations can, in turn, modify the air kerma rate produced by this radiation beam. In a calibration laboratory, where radiation detectors (from clinics and hospital services) are calibrated, variations in the radiation beam intensity may cause an error in the absorbed dose determination. The monitor ionization chambers are used to verify the radiation beam intensity constancy, and to provide a correction for possible fluctuations. In this work, monitor ionization chambers for X radiation beams were designed, assembled and characterized. The developed ionization chambers have an innovative design, ring-shaped, with aluminium or graphite electrodes. These ring-shaped ionization chambers have the advantage of not interfering in the direct radiation beams. A double-volume ionization chamber with graphite electrodes was also developed. This ionization chamber is similar to the commercial monitor ionization chamber used in the Calibration Laboratory of the Instituto de Pesquisas Energeticas e Nucleares. All developed ionization chambers were tested in several standardized radiation beams and their performances were compared with those of commercial ionization chambers. The results show that two of the four ionization chambers developed showed performance comparable to that of the commercial ionization chambers tested. Besides presenting good results, the ionization chambers were designed and manufactured using low cost materials, which are easily found on the Brazilian market. (author)

  4. Equation of state of partially-ionized dense plasmas

    International Nuclear Information System (INIS)

    Rogers, F.J.

    1989-01-01

    This paper describes methods for calculating the equation of state of partially-ionized dense plasmas. The term dense plasma is used rather than strongly coupled plasma, since it is possible that at plasma conditions such that only a few levels can be observed spectroscopically the plasma coupling parameters are not large. Due mainly to their importance in theoretical astrophysics, the properties of partially ionized plasmas have been of interest for a long while. More recently, this interest has intensified due to the development of methods for producing partially ionized plasmas in the laboratory. This has opened up large programs of experimental investigation and of practical application. In this paper we consider detailed statistical mechanical methods that explicitly treat the distribution over ionic species and their energy level structure. These detailed approaches are generally characterized as being in the ''chemical picture'' when a free energy expression is minimized or in the ''physical picture'' when the starting point is the grand canonical ensemble. 52 refs., 2 tabs

  5. Ionizing radiations in food industry

    International Nuclear Information System (INIS)

    Adamo, M.; Tata, A.

    1999-01-01

    Foodstuffs treatment by ionization is able to produce both a shelf-life extension and/or a food borne diseases control through the pathogenic population reduction/elimination. The main process goal is to ensure the hygienic quality and the wholesomeness of products to be marketed, in order to limit food borne diseases originated mainly through the cross contamination process. In fact several products may contain pathogenic agents or bacteria (e.g. Salmonella and Campylbacter in poultry meat), whose associated pathologies are world-wide increasing. At present, over 40 countries provide clearances for the treatment of about 45 different types of foodstuffs and in over 20 of them the ionizing process is already industrially utilized for spices, poultry, shrimps and vegetables. As it refers to process economic aspects, market researches have shown cost figures ranging from few tens to some hundreds Lit/kg, depending on the dose to products. The costs are competitive with alternative treatments, beyond the recovery of economic productivity reduction caused by food borne diseases

  6. Paducah Gaseous Diffusion Plant environmental report for 1992

    Energy Technology Data Exchange (ETDEWEB)

    Horak, C.M. [ed.] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1993-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Environmental Report for 1992, is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population. The Paducah Gaseous Diffusion Plant (PGDP) overall goal for environmental management is to protect the environment and PGDP`s neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, reduce the generation of waste, and minimize hazardous waste by substitution of materials.

  7. Paducah Gaseous Diffusion Plant environmental report for 1992

    International Nuclear Information System (INIS)

    Horak, C.M.

    1993-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Environmental Report for 1992, is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population. The Paducah Gaseous Diffusion Plant (PGDP) overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, reduce the generation of waste, and minimize hazardous waste by substitution of materials

  8. Extruder system and method for treatment of a gaseous medium

    Energy Technology Data Exchange (ETDEWEB)

    Silvi, Norberto; Perry, Robert James; Singh, Surinder Prabhjot; Balch, Gary Stephen; Westendorf, Tiffany Elizabeth Pinard

    2016-04-05

    A system for treatment of a gaseous medium, comprises an extruder having a barrel. The extruder further comprises a first inlet port, a second inlet port, and a plurality of outlet ports coupled to the barrel. The first inlet port is configured for feeding a lean sorbent, the second inlet port is configured for feeding a gaseous medium, and the plurality of outlet ports are configured for releasing a plurality of components removed from the gaseous medium. Further, the extruder comprises a plurality of helical elements coupled to a plurality of kneading elements, mounted on a shaft, and disposed within the barrel. The barrel and the plurality of helical and kneading elements together form an absorption unit and a desorption unit. The first and second inlet ports are formed in the absorption unit and the plurality of outlet ports are formed in the absorption and desorption units.

  9. Characteristics and applications of small, portable gaseous air pollution monitors.

    Science.gov (United States)

    McKercher, Grant R; Salmond, Jennifer A; Vanos, Jennifer K

    2017-04-01

    Traditional approaches for measuring air quality based on fixed measurements are inadequate for personal exposure monitoring. To combat this issue, the use of small, portable gas-sensing air pollution monitoring technologies is increasing, with researchers and individuals employing portable and mobile methods to obtain more spatially and temporally representative air pollution data. However, many commercially available options are built for various applications and based on different technologies, assumptions, and limitations. A review of the monitor characteristics of small, gaseous monitors is missing from current scientific literature. A state-of-the-art review of small, portable monitors that measure ambient gaseous outdoor pollutants was developed to address broad trends during the last 5-10 years, and to help future experimenters interested in studying gaseous air pollutants choose monitors appropriate for their application and sampling needs. Trends in small, portable gaseous air pollution monitor uses and technologies were first identified and discussed in a review of literature. Next, searches of online databases were performed for articles containing specific information related to performance, characteristics, and use of such monitors that measure one or more of three criteria gaseous air pollutants: ozone, nitrogen dioxide, and carbon monoxide. All data were summarized into reference tables for comparison between applications, physical features, sensing capabilities, and costs of the devices. Recent portable monitoring trends are strongly related to associated applications and audiences. Fundamental research requires monitors with the best individual performance, and thus the highest cost technology. Monitor networking favors real-time capabilities and moderate cost for greater reproduction. Citizen science and crowdsourcing applications allow for lower-cost components; however important strengths and limitations for each application must be addressed

  10. Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact

    CERN Document Server

    Chaudhry, Afzal

    2011-01-01

    Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact, by Afzal Chaudhry and Hans Kleinpoppen, describes in detail the measurements of the partial and total doubly differential cross sections for the multiple-ionization of rare gas atoms by electron impact. These measurements show, among other trends, the role of Auger transitions in the production of multiply ionized atoms in the region where the incident electron energy is sufficient to produce inner shell ionization. Other processes like Coster-Kronig transitions and shake off also contribute towards increasing the charge of the ions. As discussed in the book, an incident electron having energy of 6 keV, for example, in a collision with xenon atom can remove up to nine electrons! The measurements of doubly differential cross sections for the dissociative and non-dissociative ionization of hydrogen, sulfur dioxide and sulfur hexa fluoride molecular gases are also explored. The results of the measurements for the sulfur dioxide mole...

  11. A Study of the r-Process Path Nuclides,$^{137,138,139}$Sb using the Enhanced Selectivity of Resonance Ionization Laser Ionization

    CERN Multimedia

    Walters, W

    2002-01-01

    The particular features of the r-process abundances with 100 < A < 150 have demonstrated the close connection between knowledge of nuclear structure and decay along the r-process path and the astrophysical environement in which these elements are produced. Key to this connection has been the measurement of data for nuclides (mostly even-N nuclides) that lie in the actual r-process path. Such data are of direct use in r-process calculations and they also serve to refine and test the predictive power of nuclear models where little or no data now exist. In this experiment we seek to use the newly developed ionization scheme for the Resonance Ionization Laser Ion Source (RILIS) to achieve selective ionization of neutron-rich antimony isotopes in order to measure the decay properties of r-process path nuclides $^{137,138,139}$Sb. These properties include the half-lives, delayed neutron branches, and daughter $\\gamma$-rays. The new nuclear structure data for the daughter Te nuclides is also of considerable in...

  12. Resonances above the ionization threshold in positron-hydrogen scattering

    International Nuclear Information System (INIS)

    Kernoghan, A.A.; Walters, H.R.J.; McAlinden, M.T.

    1994-01-01

    Resonances appearing above the ionization threshold in coupled-state calculations of positron-atom scattering are discussed. Calculations in the six state approximation Ps(1s, 2s, 2p) + H(1s, 2s, 2p), which show such resonance structure, are compared with a more extensive 18-state approximation Ps(1s, 2s, 3s, 4s, 2p, 3p, 4p, 3d, 4d) + H(1s, 2s, 3s, 4s, 2p, 3p, 4p, 3d, 4d) in which channels other than 1s, 2s and 2p are represented by pseudostates. The results strongly indicate that the above ionization threshold resonances observed in the six-state approximation, and in other small basis set calculations, are not real. It is suggested that they are a consequence of the neglect, or inadequate representation in other approximations, of ionization channels. In the six-state approximation the positronium component of the system wavefunction attempts to represent the missing ionization channels but in so doing produces unreal resonances above the ionization threshold. More generally it is suggested that, in coupled-state calculations of positron-atom scattering, the atom part of the system wavefunction will try to compensate for defects in the positronium component and vice versa. When the defects are serious, for example, the omission of important ionization channels, unusual spurious behaviour is to be expected. (Author)

  13. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    International Nuclear Information System (INIS)

    Bundy, R.D.; Munday, E.B.

    1991-01-01

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF 6 gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF 6 -handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D ampersand D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D ampersand D, as will the other UF 6 -handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF 6 . These reagents include ClF 3 , F 2 , and other compounds. The scope of D ampersand D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs

  14. Ionization

    International Nuclear Information System (INIS)

    2002-01-01

    This document reprints the text of the French by-law from January 8, 2002 relative to the approval and to the controls and verifications of facilities devoted to the ionizing of food products for human beings and animals. The by-law imposes the operators of such facilities to perform measurements and dosimetric verifications all along the ionization process. (J.S.)

  15. Compact deuterium-tritium neutron generator using a novel field ionization source

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth, J. L., E-mail: ellsworth7@llnl.gov; Falabella, S.; Sanchez, J.; Tang, V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Wang, H. [Department of Computer Science, Stanford University, Stanford, California 94305 (United States)

    2014-11-21

    Active interrogation using neutrons is an effective method for detecting shielded nuclear material. A lightweight, lunch-box-sized, battery-operated neutron source would enable new concepts of operation in the field. We have developed at-scale components for a highly portable, completely self-contained, pulsed Deuterium-Tritium (DT) neutron source producing 14 MeV neutrons with average yields of 10{sup 7} n/s. A gated, field ionization ion source using etched electrodes has been developed that produces pulsed ion currents up to 500 nA. A compact Cockcroft-Walton high voltage source is used to accelerate deuterons into a metal hydride target for neutron production. The results of full scale DT tests using the field ionization source are presented.

  16. Removing Gaseous NH3 Using Biochar as an Adsorbent

    Directory of Open Access Journals (Sweden)

    Kyoung S. Ro

    2015-09-01

    Full Text Available Ammonia is a major fugitive gas emitted from livestock operations and fertilization production. This study tested the potential of various biochars in removing gaseous ammonia via adsorption processes. Gaseous ammonia adsorption capacities of various biochars made from wood shaving and chicken litter with different thermal conditions and activation techniques were determined using laboratory adsorption column tests. Ammonia adsorption capacities of non-activated biochars ranged from 0.15 to 5.09 mg·N/g, which were comparable to that of other commercial activated carbon and natural zeolite. There were no significant differences in ammonia adsorption capacities of steam activated and non-activated biochars even if the surface areas of the steam activated biochars were about two orders of magnitude greater than that of non-activated biochars. In contrast, phosphoric acid activation greatly increased the biochar ammonia adsorption capacity. This suggests that the surface area of biochar did not readily control gaseous NH3 adsorption. Ammonia adsorption capacities were more or less linearly increased with acidic oxygen surface groups of non-activated and steam-activated biochars. Phosphoric acid bound to the acid activated biochars is suspected to contribute to the exceptionally high ammonia adsorption capacity. The sorption capacities of virgin and water-washed biochar samples were not different, suggesting the potential to regenerate spent biochar simply with water instead of energy- and capital-intensive steam. The results of this study suggest that non-activated biochars can successfully replace commercial activated carbon in removing gaseous ammonia and the removal efficiency will greatly increase if the biochars are activated with phosphoric acid.

  17. Alloy nanoparticle synthesis using ionizing radiation

    Science.gov (United States)

    Nenoff, Tina M [Sandia Park, NM; Powers, Dana A [Albuquerque, NM; Zhang, Zhenyuan [Durham, NC

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  18. Ionizing radiation

    International Nuclear Information System (INIS)

    Kruger, J.

    1989-01-01

    Ionizing radiation results in biological damage that differs from other hazardous substances and is highly dangerous to man. Ionizing radiation cannot be perceived by man's sense organs and the biological damage cannot be detected immediately afterwards (except in very high doses). Every human being is exposed to low doses of radiation. The structure of the atom; sources of ionizing radiation; radiation units; biological effects; norms for radiation protection; and the national control in South Africa are discussed. 1 fig., 5 refs

  19. Selective Gaseous Extraction: Research, Development and Training for Isotope Production, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bertch, Timothy C, [General Atomics

    2014-03-31

    General Atomics and the University of Missouri Research Reactor (MURR) completed research and development of selective gaseous extraction of fission products from irradiated fuel, which included training and education of MURR students. The process used porous fuel and after irradiation flowed product gases through the fuel to selectively removed desired fission products with the primary goal of demonstrating the removal of rhodium 105. High removal rates for the ruthenium/rhodium (Ru/Rh), tellurium/iodine (Te/I) and molybdenum/technetium (Mo/Tc) series were demonstrated. The success of this research provides for the reuse of the target for further production, significantly reducing the production of actinide wastes relative to processes that dissolve the target. This effort was conducted under DOE funding (DE-SC0007772). General Atomics objective of the project was to conduct R&D on alternative methods to produce a number of radioactive isotopes currently needed for medical and industry applications to include rhodium-105 and other useful isotopes. Selective gaseous extraction was shown to be effective at removing radioisotopes of the ruthenium/rhodium, tellurium/iodine and molybdenum/technetium decay chains while having trace to no quantities of other fission products or actinides. This adds a new, credible method to the area of certain commercial isotope production beyond current techniques, while providing significant potential reduction of process wastes. Waste reduction, along with reduced processing time/cost provides for superior economic feasibility which may allow domestic production under full cost recovery practices. This provides the potential for improved access to domestically produced isotopes for medical diagnostics and treatment at reduced cost, providing for the public good.

  20. Ionizing radiation and a wood-based biorefinery

    International Nuclear Information System (INIS)

    Driscoll, Mark S.; Stipanovic, Arthur J.; Cheng, Kun; Barber, Vincent A.; Manning, Mellony; Smith, Jennifer L.; Sundar, Smith

    2014-01-01

    Woody biomass is widely available around the world. Cellulose is the major structural component of woody biomass and is the most abundant polymer synthesized by nature, with hemicellulose and lignin being second and third. Despite this great abundance, woody biomass has seen limited application outside of the paper and lumber industries. Its use as a feedstock for fuels and chemicals has been limited because of its highly crystalline structure, inaccessible morphology, and limited solubility (recalcitrance). Any economic use of woody biomass for the production of fuels and chemicals requires a “pretreatment” process to enhance the accessibility of the biomass to enzymes and/or chemical reagents. Electron beams (EB), X-rays, and gamma rays produce ions in a material which can then initiate chemical reactions and cleavage of chemical bonds. Such ionizing radiation predominantly scissions and degrades or depolymerizes both cellulose and hemicelluloses, less is known about its effects on lignin. This paper discusses how ionizing radiation can be used to make a wood-based biorefinery more environmentally friendly and profitable for its operators. - Highlights: • Ionizing radiation reduces the crystallinity of cellulose. • Ionizing radiation reduces cellulose's degree of polymerization. • The amount and rate of enzymatic hydrolysis of lignocellulosic materials, including wood, are increased with increasing radiation dose. • Wood and other lignocellulosic materials have the potential to be a renewable material for the production of chemicals and fuels

  1. Increased ionization supports growth of aerosols into cloud condensation nuclei

    DEFF Research Database (Denmark)

    Svensmark, H.; Enghoff, M. B.; Shaviv, N. J.

    2017-01-01

    Ions produced by cosmic rays have been thought to influence aerosols and clouds. In this study, the effect of ionization on the growth of aerosols into cloud condensation nuclei is investigated theoretically and experimentally. We show that the mass-flux of small ions can constitute an important...... and find good agreement with theory. Ion-induced condensation should be of importance not just in Earth’s present day atmosphere for the growth of aerosols into cloud condensation nuclei under pristine marine conditions, but also under elevated atmospheric ionization caused by increased supernova activity....

  2. Average energy expended per ion pair, exciton enhanced ionization (Jesse effect), electron drift velocity, average electron energy and scintillation in rare gas liquids

    International Nuclear Information System (INIS)

    Doke, T.; Hitachi, A.; Hoshi, Y.; Masuda, K.; Hamada, T.

    1977-01-01

    Precise measurements of W-values, the average energy expended per electron-hole pair in liquid Ar and Xe, were made by the electron-pulse method, and that in liquid Kr by the steady conduction current method. The results showed that the W-values were clearly smaller than those in gaseous Ar, Xe and Kr as predicted by Doke. The results can be explained by the conduction bands which exist in these rare gas liquids as well as in the solid state. The enhanced ionization yield was observed for Xe-doped liquid Ar, and it was attributed to the ionizing excitation transfer process from Ar excitons to doped Xe. This is very similar to the Jesse effect in the gas phase. The saturated value of the enhanced ionization was in good agreement with the theoretical value, and it provides strong evidence for the existence of the exciton states in liquid Ar. Fano factors in liquid Ar, Kr, Xe and Xe-doped liquid Ar have been estimated from the Fano Formula, and they were smaller than those in the gas phase. The drift velocity of electrons in liquid Ar, liquid Ar-gas mixtures and liquid Xe have been measured with gridded ionization chambers. The average electron energy in liquid Ar has been measured. The electron-induced scintillations of liquid Xe and Ar have been studied. (Kato, T.)

  3. Electron ionization and the Compton effect in double ionization of helium

    International Nuclear Information System (INIS)

    Samson, J.

    1994-01-01

    The author discusses ionization phenomena in helium, both photoionization and electron ionization. In particular he compares double ionization cross sections with total cross sections, as a function of electron energy, and photon energy. Data is discussed over the energy range up to 10 keV

  4. Plasma-assisted catalytic ionization using porous nickel plate

    International Nuclear Information System (INIS)

    Oohara, W.; Maeda, T.; Higuchi, T.

    2011-01-01

    Hydrogen atomic pair ions, i.e., H + and H - ions, are produced by plasma-assisted catalytic ionization using a porous nickel plate. Positive ions in a hydrogen plasma generated by dc arc discharge are irradiated to the porous plate, and pair ions are produced from the back of the irradiation plane. It becomes clear that the production quantity of pair ions mainly depends on the irradiation current of positive ions and the irradiation energy affects the production efficiency of H - ions.

  5. Global evaluation and calibration of a passive air sampler for gaseous mercury

    Science.gov (United States)

    McLagan, David S.; Mitchell, Carl P. J.; Steffen, Alexandra; Hung, Hayley; Shin, Cecilia; Stupple, Geoff W.; Olson, Mark L.; Luke, Winston T.; Kelley, Paul; Howard, Dean; Edwards, Grant C.; Nelson, Peter F.; Xiao, Hang; Sheu, Guey-Rong; Dreyer, Annekatrin; Huang, Haiyong; Hussain, Batual Abdul; Lei, Ying D.; Tavshunsky, Ilana; Wania, Frank

    2018-04-01

    Passive air samplers (PASs) for gaseous mercury (Hg) were deployed for time periods between 1 month and 1 year at 20 sites across the globe with continuous atmospheric Hg monitoring using active Tekran instruments. The purpose was to evaluate the accuracy of the PAS vis-à-vis the industry standard active instruments and to determine a sampling rate (SR; the volume of air stripped of gaseous Hg per unit of time) that is applicable across a wide range of conditions. The sites spanned a wide range of latitudes, altitudes, meteorological conditions, and gaseous Hg concentrations. Precision, based on 378 replicated deployments performed by numerous personnel at multiple sites, is 3.6 ± 3.0 %1, confirming the PAS's excellent reproducibility and ease of use. Using a SR previously determined at a single site, gaseous Hg concentrations derived from the globally distributed PASs deviate from Tekran-based concentrations by 14.2 ± 10 %. A recalibration using the entire new data set yields a slightly higher SR of 0.1354 ± 0.016 m3 day-1. When concentrations are derived from the PAS using this revised SR the difference between concentrations from active and passive sampling is reduced to 8.8 ± 7.5 %. At the mean gaseous Hg concentration across the study sites of 1.54 ng m-3, this represents an ability to resolve concentrations to within 0.13 ng m-3. Adjusting the sampling rate to deployment specific temperatures and wind speeds does not decrease the difference in active-passive concentration further (8.7 ± 5.7 %), but reduces its variability by leading to better agreement in Hg concentrations measured at sites with very high and very low temperatures and very high wind speeds. This value (8.7 ± 5.7 %) represents a conservative assessment of the overall uncertainty of the PAS due to inherent uncertainties of the Tekran instruments. Going forward, the recalibrated SR adjusted for temperature and wind speed should be used, especially if conditions are highly variable or

  6. Process for producing furan from furfural aldehyde

    Science.gov (United States)

    Diebold, J.P.; Evans, R.J.

    1987-04-06

    A process of producing furan and derivatives thereof as disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  7. Process for producing furan from furfural aldehyde

    Science.gov (United States)

    Diebold, James P.; Evans, Robert J.

    1988-01-01

    A process of producing furan and derivatives thereof is disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  8. Novel gaseous detectors for medical imaging

    International Nuclear Information System (INIS)

    Danielsson, M.; Fonte, P.; Francke, T.; Iacobaeus, C.; Ostling, J.; Peskov, V.

    2004-01-01

    We have developed and successfully tested prototypes of two new types of gaseous detectors for medical imaging purposes. The first one is called the Electronic Portal Imaging Device (EPID). It is oriented on monitoring and the precise alignment of the therapeutic cancer treatment beam (pulsed gamma radiation) with respect to the patient's tumor position. The latest will be determined from an X-ray image of the patient obtained in the time intervals between the gamma pulses. The detector is based on a 'sandwich' of hole-type gaseous detectors (GEM and glass microcapillary plates) with metallic gamma and X-ray converters coated with CsI layers. The second detector is an X-ray image scanner oriented on mammography and other radiographic applications. It is based on specially developed by us high rate RPCs that are able to operate at rates of 10 5 Hz/mm 2 with a position resolution better than 50 μm at 1 atm. The quality of the images obtained with the latest version of this device were in most cases more superior than those obtained from commercially available detectors

  9. INTERSTELLAR METASTABLE HELIUM ABSORPTION AS A PROBE OF THE COSMIC-RAY IONIZATION RATE

    International Nuclear Information System (INIS)

    Indriolo, Nick; McCall, Benjamin J.; Hobbs, L. M.; Hinkle, K. H.

    2009-01-01

    The ionization rate of interstellar material by cosmic rays has been a major source of controversy, with different estimates varying by three orders of magnitude. Observational constraints of this rate have all depended on analyzing the chemistry of various molecules that are produced following cosmic-ray ionization, and in many cases these analyses contain significant uncertainties. Even in the simplest case (H + 3 ), the derived ionization rate depends on an (uncertain) estimate of the absorption path length. In this paper, we examine the feasibility of inferring the cosmic-ray ionization rate using the 10830 A absorption line of metastable helium. Observations through the diffuse clouds toward HD 183143 are presented, but yield only an upper limit on the metastable helium column density. A thorough investigation of He + chemistry reveals that only a small fraction of He + will recombine into the triplet state and populate the metastable level. In addition, excitation to the triplet manifold of helium by secondary electrons must be accounted for as it is the dominant mechanism which produces He* in some environments. Incorporating these various formation and destruction pathways, we derive new equations for the steady state abundance of metastable helium. Using these equations in concert with our observations, we find ζ He -15 s -1 , an upper limit about 5 times larger than the ionization rate previously inferred for this sight line using H + 3 . While observations of interstellar He* are extremely difficult at present, and the background chemistry is not nearly as simple as previously thought, potential future observations of metastable helium would provide an independent check on the cosmic-ray ionization rate derived from H + 3 in diffuse molecular clouds, and, perhaps more importantly, allow the first direct measurements of the ionization rate in diffuse atomic clouds.

  10. Ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A safe and reliable apparatus for detecting products of combustion and aerosols in the atmosphere was developed which uses a beta source. It is easy to adjust for optimum performance. The ionization detector comprises a double chamber; one of the chambers is the basic sensing chamber. The sensing chamber is ported to both the secondary chambers to account for slow ambient changes in the atmosphere outside of the chamber. The voltages from the ionization chamber are adjusted with electrodes in each chamber. The ionization chamber contains baffles to direct the air to be sensed as well as an electrostatic screen. A unique electronic circuit provides an inexpensive and reliable means for detecting the signal change which occurs in the ionization chamber. The decision level of the alarm circuit can be adjusted to allow for any desired sensitivity. (D.N.)

  11. Internuclear Separation Dependent Ionization of the Valence Orbitals of I2 by Strong Laser Fields

    Science.gov (United States)

    Chen, H.; Tagliamonti, V.; Gibson, G. N.

    2012-11-01

    Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σg2πu4πg4σu0. We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σg) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.

  12. Bond rearrangement caused by sudden single and multiple ionization of water molecules

    International Nuclear Information System (INIS)

    Ben-Itzhak, I.; Sayler, A. Max; Leonard, M.; Maseberg, J.W.; Hathiramani, D.; Wells, E.; Smith, M.A.; Xia, Jiangfan; Wang, Pengqian; Carnes, K.D.; Esry, B.D.

    2005-01-01

    Bond rearrangement, namely the dissociation of water into H 2 + +O q+ following ionization by fast proton and highly charged ion impact, was investigated. Single ionization by fast proton impact exhibits a strong isotopic effect, the dissociation of H 2 O + ->H 2 + +O being about twice as likely as D 2 O + ->D 2 + +O, with HDO + ->HD + +O in between. This suggests that the bond rearrangement does not happen during the slow dissociation, but rather during the very fast ionization, and thus H 2 + should also be produced when the water molecule is multiply ionized. We observed that the H 2 + +O + and H 2 + +O 2+ production in 1MeV/amu F 7+ +H 2 O collisions are 0.209+/-0.006% and 0.0665+/-0.003%, respectively, of the main double-ionization dissociation product, H 2 O 2+ ->H + +OH + . This ratio is similar to the triple to double ionization ratio in similar collisions with atomic targets thus suggesting that the bond-rearrangement fraction out of each ionization level is approximately constant. Similar dissociation channels in the heavier water isotopes, which are expected to be smaller, are under study. Finally, the fragmentation of HDO exhibits very strong isotopic preference for breaking the OH bond over the OD bond

  13. On-line measurement of gaseous iodine species during a PWR severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Haykal, I.; Doizi, D. [CEA, DEN, Departement de Physico-chimie, 91191 Gif sur Yvette Cedex, (France); Perrin, A. [CNRS-University of Paris Est and Paris 7, Laboratoire Inter-Universitaire des Systemes Atmospheriques, 94010 Creteil, (France); Vincent, B. [University of Burgundy, Laboratoire de physique, CNRS UMR 5027, 9, Avenue Alain Savary, BP 47870, F-21078 Dijon Cedex, (France); Manceron, L. [Synchrotron SOLEIL, L' Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex, (France); Mejean, G. [University of Joseph Fourier in Grenoble, Laboratoire de Spectrometrie Physique-CNRS UMR 5588, 38402 Saint Martin d' Heres, (France); Ducros, G. [CEA Cadarache, CEA, DEN, Departement d' Etudes des Combustibles, 13108 Saint-Paul-lez-Durance cedex, (France)

    2015-07-01

    A long-range remote sensing of severe accidents in nuclear power plants can be obtained by monitoring the online emission of volatile fission products such as xenon, krypton, caesium and iodine. The nuclear accident in Fukushima was ranked at level 7 of the International Nuclear Event Scale by the NISA (Nuclear and Industrial Safety Agency) according to the importance of the radionuclide release and the off-site impact. Among volatile fission products, iodine species are of high concern, since they can be released under aerosols as well as gaseous forms. Four years after the Fukushima accident, the aerosol/gaseous partition is still not clear. Since the iodine gaseous forms are less efficiently trapped by the Filtered Containment Venting Systems than aerosol forms, it is of crucial importance to monitor them on-line during a nuclear accident, in order to improve the source term assessment in such a situation. Therefore, we propose to detect and quantify these iodine gaseous forms by the use of highly sensitive optical methods. (authors)

  14. Radiolytical oxidation of gaseous iodine by beta radiation

    International Nuclear Information System (INIS)

    Kaerkelae, Teemu; Auvinen, Ari; Kekki, Tommi; Kotiluoto, Petri; Lyyraenen, Jussi; Jokiniemi, Jorma

    2015-01-01

    Iodine is one of the most radiotoxic fission product released from fuel during a severe nuclear power plant accident. Within the containment building, iodine compounds can react e.g. on the painted surfaces and form gaseous organic iodides. In this study, it was found out that gaseous methyl iodide (CH 3 I) is oxidised when exposed to beta radiation in an oxygen containing atmosphere. As a result, nucleation of aerosol particles takes place and the formation of iodine oxide particles is suggested. These particles are highly hygroscopic. They take up water from the air humidity and iodine oxides dissolve within the droplets. In order to mitigate the possible source term, it is of interest to understand the effect of beta radiation on the speciation of iodine.

  15. Radiolytical oxidation of gaseous iodine by beta radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaerkelae, Teemu; Auvinen, Ari; Kekki, Tommi; Kotiluoto, Petri; Lyyraenen, Jussi [VTT Technical Research Centre of Finland, Espoo (Finland); Jokiniemi, Jorma [VTT Technical Research Centre of Finland, Espoo (Finland); Eastern Finland Univ., Kuopio (Finland)

    2015-07-01

    Iodine is one of the most radiotoxic fission product released from fuel during a severe nuclear power plant accident. Within the containment building, iodine compounds can react e.g. on the painted surfaces and form gaseous organic iodides. In this study, it was found out that gaseous methyl iodide (CH{sub 3}I) is oxidised when exposed to beta radiation in an oxygen containing atmosphere. As a result, nucleation of aerosol particles takes place and the formation of iodine oxide particles is suggested. These particles are highly hygroscopic. They take up water from the air humidity and iodine oxides dissolve within the droplets. In order to mitigate the possible source term, it is of interest to understand the effect of beta radiation on the speciation of iodine.

  16. A new design of the gaseous imaging detector: Micro Pixel Chamber

    CERN Document Server

    Ochi, A; Koishi, S; Tanimori, T; Nagae, T; Nakamura, M

    2001-01-01

    The novel gaseous detector 'Micro Pixel Chamber (Micro PIC)' has been developed for X-ray, gamma-ray and charged particle imaging. This detector consists of double sided printing circuit board (PCB). The stable operation of Micro PIC is realized by thick substrate and wide anode strips. One of the most outstanding feature is the process of production and the cost. The base technology of producing Micro PIC is same as producing PCB, then detector with large detection area (more than 10 cmx10 cm) can be made by present technology. Our first tests were performed using a 3 cmx3 cm detection area with a readout of 0.4 mm pitch. The gas gain and stability were measured in these tests. The gas gain of 10 sup 4 was obtained using argon ethane (8:2) gas mixture. Also, there was no discharge between anodes and cathodes in the gain of 10 sup 3 during two days of continuous operation. Although some discharges occurred in the higher gain (approximately 10 sup 4), no critical damage on the detector was found.

  17. Investigation of concept of efficient short wavelength laser. Final technical report, April 1, 1977-July 31, 1979

    International Nuclear Information System (INIS)

    Piper, L.G.; Krech, R.H.; Pugh, E.; Taylor, R.L.

    1979-01-01

    The feasibility of producing an efficient, short wavelength, storage laser for ICF driven applications by making use of certain state-specific reactions of exoergic azide compounds has been investigated. The ultraviolet (approx. 300 nm) photolysis of gaseous ClN 3 produced prompt emission in the red, which was attributed to the efficient formation of ClN(b 1 Σ + ) with subsequent ClN(X reverse arrow b) fluorescence. Based on these results, a small-scale laser demonstration experiment was constructed using short duration Xe flash lamps as the photolytic source. The results of this latter experiment were negative. The most plausible explanation was that the flash lamps provided sufficient far-uv radiation to dissociate and/or ionize the ClN(b) produced in the primary photolytic step. In parallel, limited experiments were performed on the rapid pyrolysis of a solid, ionic azide, NaN 3 , to produce gaseous N 3 radicals and subsequent production of triplet N 2 molecules

  18. Review Ionizing Radiation In The Environment

    International Nuclear Information System (INIS)

    Hassan, K.M.

    2007-01-01

    Our environment is pervaded by ionizing radiation of natural origin including terrestrial radionuclides and extra-terrestrial sources but man's activities can increase radiation levels by acting on natural sources or by producing artificial radionuclides. The energy released by radionuclides can be measured. The amount of energy generated in our bodies from the radioactive decay of within- body radionuclides is called internal dose. External dose results from gamma rays emitted by terrestrial sources such as the ground, building materials and from extraterrestrial sources. The major contributors to human exposure are radon and its daughters in the air that we breathe. Ionizing radiation can penetrate into matter and thus, causing damage by interacting with the atoms and molecules of the medium. If the medium is living tissue, damage to cells can take place. Very large doses of radiation will result in serious tissue, damage that may lead to death of the organism. Lower doses may also be harmful and do not cause the immediate damage of high doses but instead act to increase the likelihood of developing cancer. So, exposure to ionizing radiation can have health consequences, which is why we are concerned about and, to a large extent, is why this review paper was written. Exposure to ionizing radiation should be kept as minimum as practically possible. People are advised to monitor the concentrations of radon in their houses. In addition, the levels of radionuclides in drinking water should also be monitored in accordance with the guidelines used in the USA

  19. Investigation of the Hall MHD channel operating with the ionized instable plasma of inert gases

    International Nuclear Information System (INIS)

    Vasi'leva, R.V.; D'yakova, E.A.; Erofeev, A.V.; Zuev, A.D.; Lapushkina, T.A.; Markhotok, A.A.

    1997-01-01

    Possibility of applying ionization-instable plasma of pure inert gases as perspective working substance for closed-cycle MHD generators is studied. The experiment was produced in the model of the disk Hall MHD channel. The ionized gas flux was produced in a shock tube. Xenon was used as a working substance. Gas pressure, flux velocity, electron concentration and temperature, azimuthal current density, potential distribution in the channel and near-electrode voltage drop values were measured in the experiment. Volt-ampere characteristics were taken by various indices of magnetic field and load resistance

  20. Evaluation of various planar gaseous detectors with CsI photocathodes for the detection of primary scintillation light from noble gases

    CERN Document Server

    Periale, L; Carlson, P J; Francke, T; Iacobaeus, C; Pavlopoulos, P; Pietropaolo, F; Sokolova, T

    2003-01-01

    Noble gases and liquids are excellent scintillators and this opens a unique opportunity to directly detect the primary scintillation light produced in these media by photons or particles. This signal can be used for several purposes, for example as a start signal for TPCs or for particles identification. Usually photomultipliers (PMs) are used for the detection of the scintillation light. In our previous work we have demonstrated that costly PMs could be replaced by gaseous detectors with CsI photocathodes . Such detectors have the same quantum efficiency as the best PMs but at the same time are cheap, simple and have high position and time resolutions. The aim of this work is to evaluate various planar type gaseous detectors with CsI photocahodes in order to choose the best one for the detection of the primary scintillation light from noble gases and liquids.

  1. Detection of gaseous fission products in water - a method of monitoring fuel sheathing failures

    Energy Technology Data Exchange (ETDEWEB)

    Tunnicliffe, P. R.; Whittier, A. C.

    1959-05-15

    The gaseous activities stripped from samples of effluent coolant from the NRU fuel elements tested in the central thimble of the NRX reactor (NRU loop) and from the NRX main effluent have been investigated. The activities obtained from the NRU loop can be attributed to gaseous fission products only. Design data have been obtained for a 'Gaseous Fission Product Monitor' to be installed for use with the NRU reactor. It is expected that this monitor will have high sensitivity to activity indicative of an incipient fuel element sheath failure. No qualitative determination of the various gaseous activities obtained from the NRX effluent has been made. A strong component of 25 {+-}1 seconds half-life is not consistent with O-19. Limited information concerning sheath failures in NRX was obtained. Of six failures observed in parallel with the installed delayed neutron monitors, three of these gave pre-warnings and in each case the gaseous fission product monitor showed a substantially greater sensitivity. An experiment in which small samples of uranium, inserted into the NRX reactor, could be exposed at will to a stream of water showed the behaviour of the two types of monitors to be similar. However, a number of signals were detected only by the gaseous fission product monitor. These can be attributed to its sensitivity to relatively long lived fission products. (author)

  2. Effect of Chromatin Structure on the Extent and Distribution of DNA Double Strand Breaks Produced by Ionizing Radiation; Comparative Study of hESC and Differentiated Cells Lines.

    Science.gov (United States)

    Venkatesh, Priyanka; Panyutin, Irina V; Remeeva, Evgenia; Neumann, Ronald D; Panyutin, Igor G

    2016-01-02

    Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here, we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC, heterochromatin is confined to distinct regions, while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives, normal human fibroblasts; and one cancer cell line. At the same time, the number of DNA repair foci were not statistically different among these cells. We showed that in hESC, DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells, and to a lesser extent in IMR90 normal fibroblasts, but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC.

  3. Ionizing radiation in environment

    International Nuclear Information System (INIS)

    Jandl, J.; Petr, I.

    1988-01-01

    The basic terms are explained such as the atom, radioactivity, nuclear reaction, interaction of ionizing radiation with matter, etc. The basic dosimetric variables and units and properties of radionuclides and ionizing radiation are given. Natural and artificial sources of ionizing radiation are discussed with regard to the environment and the propagation and migration of radionuclides is described in the environment to man. The impact is explained of ionizing radiation on the cell and the somatic and genetic effects of radiation on man are outlined. Attention is devoted to protection against ionizing radiation and to radiation limits, also to the detection, dosimetry and monitoring of ionizing radiation in the environment. (M.D.). 92 figs., 40 tabs. 74 refs

  4. Radiatively-driven winds: model improvements, ionization balance and the infared spectrum

    International Nuclear Information System (INIS)

    Castor, J.I.

    1979-01-01

    Recent improvements to theoretical stellar wind models and the results of empirical modelling of the ionization balance and the infrared continuum are discussed. The model of a wind driven by radiation pressure in spectral lines is improved by accounting for overlap of the driving lines, dependence of ionization balance on density, and stellar rotation. These effects produce a softer velocity law than that given by Castor, Abbott and Klein (1975). The ionization balance in zeta Puppis is shown to agree with that estimated for an optically thick wind at a gas temperature of 60,000 K. The ionization model is not unique. The infrared continuum of zeta Pup measured by Barlow and Cohen is fitted to a cool model with a linear rise of velocity with radius; this fit is also not unique. It is concluded that one should try to find a model that fits several kinds of evidence simultaneously. (Auth.)

  5. Effects of radiation and impurities on gaseous iodine behavior in a containment vessel

    International Nuclear Information System (INIS)

    Takahashi, Masato; Watanabe, Atsushi; Hashimoto, Takashi

    2000-01-01

    In order to estimate the effect of impurities and radiation on gaseous iodine behavior in containment vessel, NUPEC has improved IMPAIR-3 code developed by PSI. Several modifications on the iodine oxidation by radiolysis and the production of nitric acid, the existence of boric acid, and the reaction of silver particle with iodine were newly added in evaluating the effect of radiolysis and impurities. pH change resulting from presence of boric acid, nitric acid production by radiolysis of air, and sodium hydroxide addition by AM operation, was also considered. The code verification for pH change was performed using the RTF experimental results. Additionally, the effects of boric acid and silver impurities on gaseous iodine behavior were evaluated by the sensitivity analysis. As a result, the experimental results of iodine concentration transient under pH change were well simulated. The following results were also obtained from the sensitive analysis. The gaseous iodine behavior was not affected by the existence of boric acid. In the case of silver existence in liquid phase, the gaseous iodine concentration rapidly decreased because a large amount of iodine changed into AgI species in liquid phase. The restraint effect of silver on gaseous iodine, production was larger than that of pH change. (author)

  6. The experimental effect of artificial air ionizer (negative and positive on some hematological parameters at Wistar rats

    Directory of Open Access Journals (Sweden)

    Simionca Iuri

    2011-02-01

    Full Text Available The air near the ground, where the most organisms live, is characterized by physical-chemical and biological properties.All these factors (e.g. temperature, humidity, air ionization, etc perform certains roles and any quantitative and qualitative change, beyond certain limits, are felt on the body in one form or another.From the physical factors of the air, the electrical power includes, in turn, electrical conductivity, electric field, electrical potential gradient, thunderstorms, air ionization, atmospherical which manifests itself differently in beautiful weather (low cloud, little wind, no precipitation or the disturbed weather (storm.The most common electricity of beautiful weather, is characterized by a multitude of meanings with has direct or indirect effects on the living world, favorable or unfavorable, perceptible or not, depending on the intensity, duration or frequency of manifestation of that power factor.A special place of these biometeorological factors is occupied by the category natural air ionization. The first observations on the existence of gaseous ions in air have been made since the early twentieth century `30 (German physicist Panthenier Ladenburg and French, thorough research and then resumed after the 50s of various collective (including French physicist J. Bricard, University of Paris. They have highlighted the link between low ion content in the air and micropopulation atmosphere and that lack almost daily a minimum amount of negative ions of oxygen from small places of daily activities constitute a cause of a inevitable occurrence of disorders, often severe, health status.

  7. Ground-Level Ozone Following Astrophysical Ionizing Radiation Events: An Additional Biological Hazard?

    Science.gov (United States)

    Thomas, Brian C; Goracke, Byron D

    2016-01-01

    Astrophysical ionizing radiation events such as supernovae, gamma-ray bursts, and solar proton events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in solar UV radiation at Earth's surface and in the upper levels of the ocean. Other work has also considered the potential impact of nitric acid rainout, concluding that no significant threat is likely. Not yet studied to date is the potential impact of ozone produced in the lower atmosphere following an ionizing radiation event. Ozone is a known irritant to organisms on land and in water and therefore may be a significant additional hazard. Using previously completed atmospheric chemistry modeling, we examined the amount of ozone produced in the lower atmosphere for the case of a gamma-ray burst and found that the values are too small to pose a significant additional threat to the biosphere. These results may be extended to other ionizing radiation events, including supernovae and extreme solar proton events.

  8. Cross-Field Current Instabilities in Thin Ionization Layers and the Enhanced Aurora

    International Nuclear Information System (INIS)

    Johnson, Jay R.; Okuda, Hideo

    2008-01-01

    Nearly half of the time, auroral displays exhibit thin, bright layers known as 'enhanced aurora'. There is a substantial body of evidence that connects these displays with thin, dense, heavy ion layers in the E-region. Based on the spectral characteristics of the enhanced layers, it is believed that they result when wave-particle interaction heats ambient electrons to energies at or just above the 17 eV ionization energy of N2. While there are several possible instabilities that could produce suprathermal electrons in thin layers, there has been no clear theoretical investigation which examines in detail how wave instabilities in the thin ionization layers could develop and produce the suprathermal electrons. We examine instabilities which would occur in thin, dense, heavy ion layers using extensive analytical analysis combined with particle simulations. We analyze a cross field current instability that is found to be strongly unstable in the heavy ion layers. Electrostatic simulations show that substantial heating of the ambient electrons occurs with energization at or above the N2 ionization energy.

  9. Rare earths in iron and steelmaking and gaseous desulphurisation

    International Nuclear Information System (INIS)

    Kay, D.A.R.; Subramanian, S.V.; Meng, V.; Kumar, R.V.

    1985-01-01

    Rare earth (RE) additions, either as mischmetal or rare earth silicide, are used in many ladle treatment processes in modern ferrous metallurgy. In ironmaking they provide the basis for the control of graphite morphology in cast irons and in steelmaking additions are made to aluminum-killed steels for desulphurisation and the control of inclusion composition and morphology. Rare earth oxides may also be used in the desulphurisation of medium calorific value gaseous fuels and stack gases. In this paper, Ce-S-O and La-S-O phase stability diagrams are used to determine the role of the rare earths in the external processing of iron and steel, and gaseous desulphurisation

  10. Gas phase decontamination of gaseous diffusion process equipment

    International Nuclear Information System (INIS)

    Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.

    1994-01-01

    D ampersand D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D ampersand D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly

  11. Effectiveness of gaseous and intravenous inductions on children′s anxiety and distress during extraction of teeth under general anesthesia

    Directory of Open Access Journals (Sweden)

    Giath Gazal

    2015-01-01

    Full Text Available Context: Anxiety and distress regarding dental treatment is a major issue for dental patients and can be exaggerated in pediatric dental patients. Aims: The aim was to investigate how different methods of induction for general anesthesia affect children′s distress for dental procedures such as extraction of teeth. Subjects and Methods: This was an observational clinical study conducted at Manchester University Dental Hospital. The induction of anesthesia in children was achieved with either intravenous (I.V. or a gaseous induction. The Modified Child Smiley Faces Scales were completed for children at various times intervals. Statistical Analysis Used: There were statistically significant differences between the mean distress scores for the I.V. and inhalation groups (P values from independent t-test: P < 0.001 was applied. Results: In gaseous induction group, the number of children who scored severe and very severe distress was greater than those who were in I.V. group. Gaseous induction was used for 23 children. Preoperatively, 56.5% children were in very severe distress, 17.4% in severe distress, 13% in moderate distress, 8.7% in mild distress and only one (4.3% showed no distress. For I.V. induction, 11.2% children were in very severe distress, 9% in severe distress, and 9.6% in moderate distress, 24.2% in mild distress and 46.1% showed no distress. Conclusions: Gaseous induction anesthesia for extractions of teeth does produce high levels of distress than I.V. induction in children for dental extractions. There was no significant difference between both induction methods in terms of distress levels at the time of recovery and 15 min postoperatively.

  12. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  13. Two new sources of reactive gaseous mercury in the free troposphere

    OpenAIRE

    H. Timonen; J. L. Ambrose; D. A. Jaffe

    2012-01-01

    Mercury (Hg) is a neurotoxin that bioaccumulates in the food chain. Mercury is emitted to the atmosphere primarily in its elemental form, which has a long lifetime allowing global transport. It is known that atmospheric oxidation of gaseous elemental mercury (GEM) generates reactive gaseous mercury (RGM) which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystems. However, the primary GEM oxidants, and the sources and chemical ...

  14. Liquid and Gaseous Waste Operations Department Annual Operating Report, CY 1993

    International Nuclear Information System (INIS)

    Maddox, J.J.; Scott, C.B.

    1994-02-01

    This report summarizes the activities of the waste management operations section of the liquid and gaseous waste operations department at ORNL for 1993. The process waste, liquid low-level waste, gaseous waste systems activities are reported, as well as the low-level waste solidification project. Upgrade activities is the various waste processing and treatment systems are summarized. A maintenance activity overview is provided, and program management, training, and other miscellaneous activities are covered

  15. Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations

    Energy Technology Data Exchange (ETDEWEB)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2016-07-28

    Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structure that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.

  16. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    International Nuclear Information System (INIS)

    Stoyanov, D G

    2007-01-01

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained

  17. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-08-15

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.

  18. Global evaluation and calibration of a passive air sampler for gaseous mercury

    Directory of Open Access Journals (Sweden)

    D. S. McLagan

    2018-04-01

    Full Text Available Passive air samplers (PASs for gaseous mercury (Hg were deployed for time periods between 1 month and 1 year at 20 sites across the globe with continuous atmospheric Hg monitoring using active Tekran instruments. The purpose was to evaluate the accuracy of the PAS vis-à-vis the industry standard active instruments and to determine a sampling rate (SR; the volume of air stripped of gaseous Hg per unit of time that is applicable across a wide range of conditions. The sites spanned a wide range of latitudes, altitudes, meteorological conditions, and gaseous Hg concentrations. Precision, based on 378 replicated deployments performed by numerous personnel at multiple sites, is 3.6 ± 3.0 %1, confirming the PAS's excellent reproducibility and ease of use. Using a SR previously determined at a single site, gaseous Hg concentrations derived from the globally distributed PASs deviate from Tekran-based concentrations by 14.2 ± 10 %. A recalibration using the entire new data set yields a slightly higher SR of 0.1354 ± 0.016 m3 day−1. When concentrations are derived from the PAS using this revised SR the difference between concentrations from active and passive sampling is reduced to 8.8 ± 7.5 %. At the mean gaseous Hg concentration across the study sites of 1.54 ng m−3, this represents an ability to resolve concentrations to within 0.13 ng m−3. Adjusting the sampling rate to deployment specific temperatures and wind speeds does not decrease the difference in active–passive concentration further (8.7 ± 5.7 %, but reduces its variability by leading to better agreement in Hg concentrations measured at sites with very high and very low temperatures and very high wind speeds. This value (8.7 ± 5.7 % represents a conservative assessment of the overall uncertainty of the PAS due to inherent uncertainties of the Tekran instruments. Going forward, the recalibrated SR adjusted for temperature and wind speed

  19. Two-dimensional kinetic analysis on the ionization waves in a low current discharge

    International Nuclear Information System (INIS)

    Yamazaki, Tsutomu; Fujii, Masaharu; Noda, Shozou; Miura, Kousuke; Imazu, Shingo.

    1982-01-01

    In the research on the ionization waves produced in the positive column in a low pressure discharge, theoretical analyses have been made since long ago using mainly the fluid theory. However, the experimental properties that cannot be explained with the fluid theory have been found lately. For example, it has been shown experimentally that the product of longitudinal electric field E and the wavelength lambda of ionization waves becomes some specific values depending on the kinds of gas as one of the characteristics of the ionization waves produced in the positive column plasma in rare gas glow discharge, but these specific values of E-lambda cannot be explained with the fluid theory. In this paper, the perturbation component of electron energy distribution function accompanying ionization waves was derived from a two-dimensional Boltzmann equation which takes the radial non-uniformity into account, to consider the E-lambda values of ionization waves from the relative equation between electron density and the perturbation component of an electric field. The following results were obtained. The relative equation between electron density and the perturbation component of an electric field, which cannot be derived from the fluid theory, was able to be obtained; the values of E-lambda product agreed with the experimental results better than one-dimensional analysis; The steeper the shape of radial potential distribution, the more likely the resonance occurrence and the larger the E-lambda product; and so forth. (Wakatsuki, Y.)

  20. Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge

    Energy Technology Data Exchange (ETDEWEB)

    Blazy, V., E-mail: vincent.blazy@irstea.fr [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Guardia, A. de, E-mail: amaury.de-guardia@irstea.fr [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Benoist, J.C; Daumoin, M. [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Lemasle, M.; Wolbert, D. [Laboratoire Sciences Chimiques de Rennes - équipe Chimie et Ingénierie des Procédés, UMR 6226 CNRS, ENSCR, Avenue du Général Leclerc, 35700 Rennes (France); Barrington, S., E-mail: suzellebarrington@sympatico.ca [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Concordia University, Department of Building, Civil and Environmental Engineering, 1455 de Maisonneuve, Montréal, QC H3G 1M8 (Canada)

    2014-07-15

    Highlights: • The gaseous emissions produced by various composting process conditions were characterized and quantified. • Nine compounds were potentially odorous: TMA, NH{sub 3}, 2-pentanone, 1-propanol-2-methyl, acetophenone and sulphur forms. • The tested composting process conditions reduced odour emissions by a factor of 5–10. • A reduction of 10{sup 5} to 10{sup 6} is required to reach an odour threshold limit at peak event emissions. • Both aeration rate and bulking agent had the most impact on reducing odour emissions. - Abstract: Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and

  1. Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge

    International Nuclear Information System (INIS)

    Blazy, V.; Guardia, A. de; Benoist, J.C; Daumoin, M.; Lemasle, M.; Wolbert, D.; Barrington, S.

    2014-01-01

    Highlights: • The gaseous emissions produced by various composting process conditions were characterized and quantified. • Nine compounds were potentially odorous: TMA, NH 3 , 2-pentanone, 1-propanol-2-methyl, acetophenone and sulphur forms. • The tested composting process conditions reduced odour emissions by a factor of 5–10. • A reduction of 10 5 to 10 6 is required to reach an odour threshold limit at peak event emissions. • Both aeration rate and bulking agent had the most impact on reducing odour emissions. - Abstract: Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and bulking agent

  2. Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF6) in the diffusion cascade

    International Nuclear Information System (INIS)

    Huffer, J.E.

    1997-04-01

    This paper determines the nuclear safety of gaseous UF 6 in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF 6 in plant operations

  3. Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine

    International Nuclear Information System (INIS)

    Ryu, Kyunghyun; Zacharakis-Jutz, George E.; Kong, Song-Charng

    2014-01-01

    Highlights: • This is the very first study in utilizing direct injection of gaseous ammonia in an SI engine. • Engine combustion using direct injection of gaseous ammonia is proven feasible. • Energy efficiency using ammonia is comparable to that using gasoline. • CO emissions are decreased but emissions of NOx and HC are increased when ammonia is used. - Abstract: The effects of direct injection of gaseous ammonia on the combustion characteristics and exhaust emissions of a spark-ignition engine were investigated. Port-injection gasoline was used to enhance the burning of ammonia that was directly injected into the engine cylinder. Appropriate direct injection strategies were developed to allow ammonia to be used in spark-ignition engines without sacrifice of volumetric efficiency. Experimental results show that with gasoline providing the baseline power of 0.6 kW, total engine power could increase to 2.7 kW when the injection timing of ammonia was advanced to 370 BTDC with injection duration of 22 ms. Engine performance with use of gasoline–ammonia was compared to that with gasoline alone. For operations using gasoline–ammonia, with baseline power from gasoline at 0.6 kW the appropriate ammonia injection timing was found to range from 320 to 370 BTDC for producing 1.5–2.7 kW. The peak pressures were slightly lower than those using gasoline alone because of the lower flame of ammonia, resulting in reduction of cylinder pressure. The brake specific energy consumption (BSEC) with gasoline–ammonia was very similar to that with gasoline alone. Ammonia direct injection caused slight reductions of BSCO for all the loads studied but significantly increased BSHC because of the reduced combustion temperature of ammonia combustion. The use of ammonia resulted in increased NOx emissions because of formation of fuel NOx. Ammonia slip was also detected in the engine exhaust because of incomplete combustion

  4. Double ionization of nitrogen molecules in orthogonal two-color femtosecond laser fields

    Science.gov (United States)

    Song, Qiying; Li, Hui; Wang, Junping; Lu, Peifen; Gong, Xiaochun; Ji, Qinying; Lin, Kang; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian

    2018-04-01

    Double ionization of nitrogen molecules in orthogonally polarized two-color femtosecond laser fields is investigated by varying the relative intensity between the fundamental wave (FW) and its second harmonic (SH) components. The yield ratios of the double ionization channels, i.e., the non-dissociative {{{{N}}}2}2+ and Coulomb exploded (N+, N+), to the singly charged N2 + channel exhibit distinct dependences on the relative strength between the FW and SH fields. As the intensity ratio of SH to FW increases, the yield ratio of (N+, N+)/N2 + gradually increases, while the ratio of {{{{N}}}2}2+/N2 + first descends and then increases constituting a valley shape which is similar to the behavior of Ar2+/Ar+ observed in the same experimental condition. Based on the classical trajectory simulations, we found that the different characteristics of the two doubly ionized channels stem from two mechanisms, i.e., the {{{{N}}}2}2+ is mostly accessed by the (e, 2e) impact ionization while the recollision-induced excitation with subsequent ionization plays an important role in producing the (N+, N+) channel.

  5. Nutritive value of wheat straw treated with gaseous or liquid ammonia trough nylon bag and in vitro gas production techniques

    Directory of Open Access Journals (Sweden)

    Samad Sadeghi

    2016-04-01

    Full Text Available Introduction Feed shortage is the most important characteristic of Iranian animal industry. Increased costs of livestock production have caused the Iranian producers to reduce feed costs mainly by inclusion low quality crop residues into ruminants diets. It is estimated that around 20 million tons wheat straw produced in Iran every year. Both the digestibility and crude protein content of wheat straw are typically low. Since 1900, a wide variety of chemical treatments have been tested for their potential to improve the feeding value of wheat straw. Upgrading of wheat straw by ammoniation has been known for a long time, but application of this method of wheat straw treatment has received the least attention in the area (Khorasan Province, Iran. Therefore, the object of the present study was to evaluate the effect of gaseous and liquid ammonia on nutritive value of wheat straw through in vitro techniques. Material and Methods One kg dry wheat straw was placed into the plastic cylinders with dimension of 1 m (diameter and 1.8 m (height and 0.8 mm (thickness. Gaseous and liquid commercial ammonia was injected or added to the wrapped straw at the rate of 2, 4 and 6 percent. The treatment time was 1 month at room temperature (20-25 ºC. At the end of treatment period the cylinders were opened and the ammoniated straw exposed to the air for 4 days. The treated straws were sampled for the subsequent analyses. Dry matter degradability of the samples was done by using nylon bags (10x20 cm with pore size of 40 micron. About 2 g ground samples (2 mm were placed into the nylon bags and incubated in rumen of 4 permanently fistulated steers for 3, 6, 12, 24, 36, 48, 72, 96 and 120 hrs. The experimental steers were fed by the ordinary diet containing 65% forage and 35% concentrate twice daily. The Menke and Steingass method was followed for the in vitro gas production method. Result and discussion Crude protein (CP content of the treated wheat straw samples

  6. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D., E-mail: ppatel54@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2017-02-20

    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H i (H α and H β ), He i, Ca ii, and Fe ii. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ∼10{sup −10}( R {sub *}/ R ){sup 3} g cm{sup −3} in the equatorial plane of a 25 R {sub *} (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the H α -emitting portion of the inner gaseous disk of ∼10{sup −9} M {sub *}. We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium.

  7. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    International Nuclear Information System (INIS)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D.

    2017-01-01

    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H i (H α and H β ), He i, Ca ii, and Fe ii. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ∼10 −10 ( R * / R ) 3 g cm −3 in the equatorial plane of a 25 R * (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the H α -emitting portion of the inner gaseous disk of ∼10 −9 M * . We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium.

  8. Investigation of the role of the calvin cycle and C1 metabolism during HCHO metabolism in gaseous HCHO-treated petunia under light and dark conditions using 13C-NMR.

    Science.gov (United States)

    Sun, Huiqun; Zhang, Wei; Tang, Lijuan; Han, Shuang; Wang, Xinjia; Zhou, Shengen; Li, Kunzhi; Chen, Limei

    2015-01-01

    It has been shown that formaldehyde (HCHO) absorbed by plants can be assimilated through the Calvin cycle or C1 metabolism. Our previous study indicated that Petunia hybrida could effectively eliminate HCHO from HCHO-polluted air. To understand the roles of C1 metabolism and the Calvin cycle during HCHO metabolism and detoxification in petunia plants treated with gaseous H(13)CHO under light and dark conditions. Aseptically grown petunia plants were treated with gaseous H(13)CHO under dark and light conditions. The metabolites generated from HCHO detoxification in petunia were investigated using (13)C-NMR. [2-(13)C]glycine (Gly) was generated via C1 metabolism and [U-(13)C]glucose (Gluc) was produced through the Calvin cycle simultaneously in petunia treated with low-level gaseous H(13)CHO under light conditions. Generation of [2-(13)C]Gly decreased whereas [U-(13) C]Gluc and [U-(13)C]fructose (Fruc) production increased greatly under high-level gaseous H(13)CHO stress in the light. In contrast, [U-(13)C]Gluc and [U-(13)C] Fruc production decreased greatly and [2-(13)C]Gly generation increased significantly under low-level and high-level gaseous H(13)CHO stress in the dark. C1 metabolism and the Calvin cycle contributed differently to HCHO metabolism and detoxification in gaseous H(13CHO-treated petunia plants. As the level of gaseous HCHO increased, the role of C1 metabolism decreased and the role of the Calvin cycle increased under light conditions. However, opposite changes were observed in petunia plants under dark conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Cytotoxic Effects of Ionizing Radiation and Chlorpyrifos on White Rats

    International Nuclear Information System (INIS)

    El-Bahkery, A.M.L.H.

    2014-01-01

    The hazard of accidental exposure to ionizing radiation (IR) and/or neurotoxic insecticides like the organophosphorus insecticide chlorpyrifos (CPF) represent series health problem for human. In the present work, the cytotoxic effects of ionizing radiation and chlorpyrifos on rats were studied where animals were under glutathione (GSH) depletion. Animals were pre-treated with single dose of Buthionine Sulfoximine (BSO) (200 mg/kg body weight, by oral intubation), then treated with high dose of CPF (30 mg/kg body weight) and or exposure to IR (single dose of 6 Gy whole body gamma ray) one hour after BSO treatment. Another groups of animals pertreated with N-acetyl cystiene (NAC) one hour before treated with CPF and/or IR. After 24 hours blood sample, liver and brain were taken and used for estimate the GSH level and the activities of glutathione-stransferase (GST), glutathione reductase (GR), acetyl cholinesterase (AChE), carboxyl esterase (CE), paraoxonase (PON) and arylesterase (AE). Also, native PAGE electrophoresis was undertaken for separating the CE and PON isozymes in plasma, liver and brain. The results indicated that CPF produced no change in GSH level. Whereas, treatment with either BSO or IR, produced decrease in GSH level. NAC restored GSH level near the control level in all treated groups CPF had no effect on GST activity and pretreatment with either BSO or NAC increased GST activity in CPF treated groups. Also, exposure to IR had no effect on GST activity. Whereas, IR in combination with CPF and/or NAC and/or BSO produced inhibition in plasma GST activity and increased liver GST activity. In addition, both CPF and IR had no effect on the activity of GR. Whereas, pre-treatment with either BSO or NAC produced inhibition in plasma and liver GR activity in CPF treated groups. No change had observed in the IR exposed groups. Treatment with CPF inhibited AChE activity in plasma, liver and brain. Whereas, exposure to IR inhibited AChE activity in brain only

  10. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  11. Respiratory system. Part 2: Gaseous exchange.

    Science.gov (United States)

    McLafferty, Ella; Johnstone, Carolyn; Hendry, Charles; Farley, Alistair

    This article, which isthe last in the life sciences series and the second of two articles on the respiratory system, describes gaseous exchange in the lungs, transport of oxygen and carbon dioxide, and internal and external respiration. The article concludes with a brief consideration of two conditions that affect gas exchange and transport: carbon monoxide poisoning and chronic obstructive pulmonary disease.

  12. Characteristics of light reflected from a dense ionization wave with a tunable velocity.

    Science.gov (United States)

    Zhidkov, A; Esirkepov, T; Fujii, T; Nemoto, K; Koga, J; Bulanov, S V

    2009-11-20

    An optically dense ionization wave (IW) produced by two femtosecond (approximately 10/30 fs) laser pulses focused cylindrically and crossing each other may become an efficient coherent x-ray converter in accordance with the Semenova-Lampe theory. The resulting velocity of a quasiplane IW in the vicinity of pulse intersection changes with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing a tuning of the wavelength of x rays and their bunching. The x-ray spectra after scattering of a lower frequency and long coherent light pulse change from the monochromatic to high order harmoniclike with the duration of the ionizing pulses.

  13. Photosensitive Gaseous Detectors for Cryogenic Temperature Applications

    CERN Document Server

    Periale, L; Iacobaeus, C; Lund-Jensen, B; Picchi, P; Pietropaolo, F

    2007-01-01

    There are several proposals and projects today for building LXe Time Projection Chambers (TPCs) for dark matter search. An important element of these TPCs are the photomultipliers operating either inside LXe or in vapors above the liquid. We have recently demonstrated that photosensitive gaseous detectors (wire type and hole-type) can operate perfectly well until temperatures of LN2. In this paper results of systematic studies of operation of the photosensitive version of these detectors (combined with reflective or semi-transparent CsI photocathodes) in the temperature interval of 300-150 K are presented. In particular, it was demonstrated that both sealed and flushed by a gas detectors could operate at a quite stable fashion in a year/time scale. Obtained results, in particular the long-term stability of photosensitive gaseous detectors, strongly indicate that they can be cheap and simple alternatives to photomultipliers or avalanche solid-state detectors in LXe TPC applications.

  14. Trends and new developments in gaseous detectors

    CERN Document Server

    AUTHOR|(CDS)2069485

    2004-01-01

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hadron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have p...

  15. Ionization chambers

    International Nuclear Information System (INIS)

    Boag, J.W.

    1987-01-01

    Although a variety of solid-state and chemical methods for measuring radiation dose have been developed in recent decades and calorimetry can now provide an absolute standard of reference, ionization dosimetry retains its position as the most widely used, most convenient, and, in most situations, most accurate method of measuring either exposure or absorbed dose. The ionization chamber itself is the central element in this system of dosimetry. In this chapter the principles governing the construction and operation of ionization chambers of various types are examined. Since the ionization chambers now in general use are nearly all of commercial manufacture, the emphasis is on operating characteristics and interpretation of measurements rather than on details of construction, although some knowledge of the latter is often required when applying necessary corrections to the measured quantities. Examples are given of the construction of typical chambers designed for particular purposes, and the methods of calibrating them are discussed

  16. Hydrogenating gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nicolardot, P L.F.

    1930-08-06

    Gaseous hydrocarbons obtained by the destructive distillation of carbonaceous materials are simultaneously desulfurized and hydrogenated by passing them at 350 to 500/sup 0/C, mixed with carbon monoxide and water vapor over lime mixed with metallic oxides present in sufficient amount to absorb the carbon dioxide as it is formed. Oxides of iron, copper, silver, cobalt, and metals of the rare earths may be used and are mixed with the lime to form a filling material of small pieces filling the reaction vessel which may have walls metallized with copper and zinc dust. The products are condensed and fixed with absorbents, e.g. oils, activated carbon, silica gels. The metallic masses may be regenerated by a hot air stream and by heating in inert gases.

  17. Balance and behavior of gaseous radionuclides released during initial PWR fuel reprocessing operations

    International Nuclear Information System (INIS)

    Leudet, A.; Miquel, P.; Goumondy, P.J.; Charrier, G.

    1982-08-01

    Five fuel pins, taken from a PWR fuel assembly with 32000 MWD/t burn-up were chopped and dissolved in leak-proof equipment designed for accurate determination of the composition and quantity of gaseous elements released in these operations. Analytical methods were specially developped to determine directly the noble gases, tritium and gaseous carbon compounds in the gas phase. Volatile iodine was kept as close as possible to the source by cold traps, then transferred to a caustic solution for quantitative analysis. The quantities and activities of gaseous fission products thus determined were compared with predicted values obtained through computation. Very good agreement was generally observed

  18. Balance and behavior of gaseous radionuclides released during initial PWR fuel reprocessing operations

    International Nuclear Information System (INIS)

    Leudet, A.; Miquel, P.; Goumondy, P.J.; Charrier, G.

    1983-01-01

    Five fuel pins, taken from a PWR fuel assembly with 32,000 MwD/t burn-up were chopped and dissolved in leak-proof equipment designed for accurate determination of the composition and quantity of gaseous elements released in these operations. Analytical methods were specially developed to determine directly the noble gases, tritium and gaseous carbon compounds in the gas phase. Volatile iodine was kept as close as possible to the source by cold traps, then transferred to a caustic solution for quantitative analysis. The quantities and activities of gaseous fission products thus determined were compared with predicted values obtained through computation. Very good agreement was generally observed

  19. Turbulence enhancement by ultrasonically induced gaseous cavitation in the CO2 saturated water

    International Nuclear Information System (INIS)

    Lee, Seung Youp; Choi, Young Don

    2002-01-01

    Recent primary concern for the design of high performance heat exchanger and highly integrated electronic equipment is to develop an active and creative technologies which enhance the heat transfer without obstructing the coolant flows. In this study, we found through the LDV measurement that the gaseous cavitation induced by ultrasonic vibration applied to the CO 2 saturated water in the square cross-sectioned straight duct flow enhances the turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation does. We also found that gaseous cavitation can enhance effectively the turbulent heat transfer between the heating surfaces and coolants by destructing the viscous sublayer

  20. A gaseous scintillation counter filled with He3 for neutron spectrometry

    International Nuclear Information System (INIS)

    Baldin, S.A.; Matveev, V.V.

    1962-01-01

    The paper describes a gas plant and gaseous scintillation counter, and gives the results of experiments on the recording and spectrometry of neutron beams using a gaseous scintillation counter filled with a mixture of 10% xenene and 90% helium-3 at an overall pressure of 20 ata. Data are given on the design of the gas plant, which makes it possible to operate the counter continuously over long periods of time, as well as providing the required gas mixtures at overall pressures of up to 60 atm and ensuring constant freedom of the gas from contamination. In addition, the paper presents the results of research on the counter's energy resolution and linearity at different energy levels and indicates its efficiency in gamma fields of intensity up to 3 r/h; the possibility of extending the working energy-range of gaseous scintillation counters filled with helium-3 is also considered. (author) [fr

  1. Bio deterioration management in implementing cultural resources ionizing radiations

    International Nuclear Information System (INIS)

    Ritacco, Miguel

    2012-01-01

    Insects can attack various organic products including those make cultural objects such as furniture, books, yarn, etc.. There are different procedures to disinfect, but the application of radiation ionizing radiation (60Co) has advantages over others because the low doses employed affecting this insects not produce undesirable changes in objects (author)

  2. The ionizing treatment of food

    International Nuclear Information System (INIS)

    1998-01-01

    This book of proceedings contains the talks given by the members of the Society of chemical experts of France (SECF) and by various specialists of the ionizing treatment during the scientific days of September 25-26, 1997. The aim of this meeting was to reconsider the effects of ionization from a scientific point of view and apart from the polemics generated by this domain. The following topics were discussed successively: source and characterization of a ionizing treatment, biological effects of ionization on food and the expected consequences, the ionizing treatment and the reduction of the vitamin C content of fruits and vegetables, is it safe to eat irradiated food?, the organoleptic modifications of food after ionization, quality assurance of dosimetry measurements in an industrial installation of food ionization, the French and European regulations in food ionization, the detection of irradiated foodstuffs, processed food and complex lipid matrices, sterilization of dishes for immuno-depressed patients using ionization. (J.S.)

  3. Sensitivity of dual fuel engine combustion and knocking limits to gaseous fuel composition

    Energy Technology Data Exchange (ETDEWEB)

    Selim, M.Y.E. [United Arab Emirates University, Al-Ain (United Arab Emirates). Dept. of Mechanical Engineering

    2004-02-01

    Combustion noise, knock and ignition limits data are measured and presented for a dual fuel engine running on dual fuels of Diesel and three gaseous fuels separately. The gaseous fuels used are liquefied petroleum gas, pure methane and compressed natural gas mixture. The maximum pressure rise rate during combustion is presented as a measure of combustion noise, and the knocking and ignition limits are presented as torque output at the onset of knocking and ignition failure. Experimental investigation on the dual fuel engine revealed the noise generated from combustion, knocking and ignition limits for all gases at different design and operating conditions. A Ricardo E6 Diesel version engine is converted to run on dual fuel of Diesel and the tested gaseous fuel and is used throughout the work. The engine is fully computerized, and the cylinder pressure data, crank angle data and engine operating variables are stored in a PC for off line analysis. The effects of engine speeds, loads, pilot injection angle, pilot fuel quantity and compression ratio on combustion noise, knocking torque, thermal efficiency and maximum pressure are examined for the dual engine running on the three gaseous fuels separately. The combustion noise, knocking and ignition limits are found to relate to the type of gaseous fuels and to the engine design and operating parameters. (author)

  4. Sensitivity of dual fuel engine combustion and knocking limits to gaseous fuel composition

    International Nuclear Information System (INIS)

    Selim, Mohamed Y.E.

    2004-01-01

    Combustion noise, knock and ignition limits data are measured and presented for a dual fuel engine running on dual fuels of Diesel and three gaseous fuels separately. The gaseous fuels used are liquefied petroleum gas, pure methane and compressed natural gas mixture. The maximum pressure rise rate during combustion is presented as a measure of combustion noise, and the knocking and ignition limits are presented as torque output at the onset of knocking and ignition failure. Experimental investigation on the dual fuel engine revealed the noise generated from combustion, knocking and ignition limits for all gases at different design and operating conditions. A Ricardo E6 Diesel version engine is converted to run on dual fuel of Diesel and the tested gaseous fuel and is used throughout the work. The engine is fully computerized, and the cylinder pressure data, crank angle data and engine operating variables are stored in a PC for off line analysis. The effects of engine speeds, loads, pilot injection angle, pilot fuel quantity and compression ratio on combustion noise, knocking torque, thermal efficiency and maximum pressure are examined for the dual engine running on the three gaseous fuels separately. The combustion noise, knocking and ignition limits are found to relate to the type of gaseous fuels and to the engine design and operating parameters

  5. Carbon-14 labelling of biomolecules induced by 14CO ionized gas

    International Nuclear Information System (INIS)

    Lier, J.E. van; Sanche, L.

    1979-01-01

    Ionized 14 CO gas provides a rapid method for producing 14 C-labelled biomolecules. The apparatus consists of a high vacuum system in which a small amount of 14 CO is ionized by electron impact. The resulting species drift towards a target where they interact with the molecule of interest to produce 14 C-labelled compounds. Since the reaction time is only 2 minutes, the method is particularly promising for producing tracer biomolecules with short-lived 11 C at high specific activities. The applicability of the method to various classes of compounds of biological importance, including steroids, alkaloids, prostaglandins, nucleosides, amino acids and proteins has been studied. All compounds treated gave rise to 14 C addition and degradation products. Furthermore, for some compounds, chromatographic analysis in multiple systems followed by derivatization and crystallization to constant specific activity, indicated that carbon exchange may occur to produce the labelled, but otherwise unaltered substrate in yields of the order of 10-100 mCi/mol. More conclusive proof of radiochemical identity must await production of larger quantities of material and rigorous purification including at least two different chromatographic techniques. (author)

  6. The chemical basis of DNA damage by the direct pathway of ionizing radiation

    International Nuclear Information System (INIS)

    Sharma, Kiran Kumar K.

    2013-01-01

    Free radicals in living system has been implicated as playing a major role in the etiology of variety of diseases. The mechanism of free radicals in vivo involves predominantly the reaction with the DNA, producing different types of damage to the DNA. These lesions induced to the DNA could lead to mutation and even cell death. Radiolysis techniques, which uses ionizing radiation has proven to be one of the most advanced and excellent tool for studying the free radical reaction mechanisms as it can produce a host of well characterized free radicals. The effects of ionizing radiation on DNA have been studied for many years. Ionizing radiation interacts with DNA in vivo by two pathways, direct and indirect. The indirect accounts for 50-60% while the direct effect accounts for 40-50%. The chemical mechanism of the former reaction arising mainly from the reactive species produced by radiolysis of water has been extensively studied, however with respect to the later pathway, which creates holes and electrons to the DNA molecule using DNA films and crystals is an active area of research as both the pathways plays important roles in DNA damage in vivo particularly in chromosomal DNA which are tightly bound with histones and compartmentalized

  7. Laser ionization and dissociation of hydrogen

    International Nuclear Information System (INIS)

    Buck, J.D.

    1987-01-01

    Experiments undertaken to further characterize the spectroscopic and photophysical properties of some important excited singlet states of molecular hydrogen and its deuterium isotopes are described. Attention was centered on high vibrational levels of the B, C, and B' states within about 1000 cm -1 of the second dissociation limit. A double-resonance excitation scheme was needed to access levels with a large average bond distance from the ground state. Two-photon absorption of tunable uv-laser radiation-pumped ground-state hydrogen molecules into selected rovibronic levels of the metastable EF double-minimum electronic state. A second tunable near-IR probe laser was scanned to generate ions by resonant multiphoton ionization, where the resonant levels were provided by B, C, B', and other levels near the dissociation limit. New information was obtained regarding line shapes and intensities. Time-of-flight ion mass selection permitted observation of additional excitation channels with dissociation superimposed on the ionization process to produce protons

  8. Distribution of xenon between gaseous and liquid CO2

    International Nuclear Information System (INIS)

    Ackley, R.D.; Notz, K.J.

    1976-10-01

    The distribution of xenon at low concentrations between gaseous and liquid CO 2 was measured over essentially the entire liquid range of CO 2 . These measurements involved using a collimated radiation-detection cell to determine the relative quantities of 133 Xe-traced xenon in the separate phases contained in a vertical cylinder under isothermal conditions. The results are expressed in terms of a distribution ratio (mole fraction of xenon in the gaseous phase divided by mole fraction of xenon in the liquid phase) which decreased from 7.53 at -54.8 0 C to 1.10 at 30.5 0 C. These data were used to calculate various other solubility-related quantities

  9. HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Desch, Steven J. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Turner, Neal J. [Jet Propulsion Laboratory, Mail Stop 169-506, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2015-10-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters.

  10. HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Desch, Steven J.; Turner, Neal J.

    2015-01-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters

  11. 'Saddle-point' ionization

    International Nuclear Information System (INIS)

    Gay, T.J.; Hale, E.B.; Irby, V.D.; Olson, R.E.; Missouri Univ., Rolla; Berry, H.G.

    1988-01-01

    We have studied the ionization of rare gases by protons at intermediate energies, i.e., energies at which the velocities of the proton and the target-gas valence electrons are comparable. A significant channel for electron production in the forward direction is shown to be 'saddle-point' ionization, in which electrons are stranded on or near the saddle-point of electric potential between the receding projectile and the ionized target. Such electrons yield characteristic energy spectra, and contribute significantly to forward-electron-production cross sections. Classical trajectory Monte Carlo calculations are found to provide qualitative agreement with our measurements and the earlier measurements of Rudd and coworkers, and reproduce, in detail, the features of the general ionization spectra. (orig.)

  12. Container for gaseous samples for irradiation at accelerators

    International Nuclear Information System (INIS)

    Kupsch, H.; Riemenschneider, J.; Leonhardt, J.

    1985-01-01

    The invention concerns a container for gaseous samples for the irradiation at accelerators especially to generate short-lived radioisotopes. The container is also suitable for storage and transport of the target gas and can be multiply reused

  13. Heating and ionization in MHD shock waves propagating into partially ionized plasma

    International Nuclear Information System (INIS)

    Bighel, L.; Collins, A.R.; Cramer, N.F.; Watson-Munro, C.N.

    1975-09-01

    A model of the structure of MHD switch-on shocks propagating in a partially ionized plasma, in which the primary dissipation mechanism is friction between ions and neutrals, is here compared favourably with experimental results. Four degrees of upstream ionization were studied, ranging from almost complete to very small ionization. (author)

  14. Heating and ionization in MHD shock wave propagating into partially ionized plasma

    International Nuclear Information System (INIS)

    Bighel, L.; Collins, A.R.; Cramer, N.F.; Watson-Munro, C.N.

    1975-09-01

    A model of the structure of MHD switch-on shocks propagating in a partially ionized plasma, in which the primary dissipation mechanism is friction between ions and neutrals, is here compared favourably with experimental results. Four degrees of upstream ionization were studied, ranging from almost complete to very small ionization. (author)

  15. Five-photon ionization of atomic hydrogen at wavelengths around the threshold for four-photon ionization

    International Nuclear Information System (INIS)

    Gontier, Y.; Trahin, M.; Wolff-Rottke, B.; Rottke, H.; Welge, K.H.; Feldmann, D.

    1992-01-01

    Theoretical and experimental studies show the strong influence of the three-photon nearly resonant 2p state on four- and five-photon ionization of atomic hydrogen near the threshold for four-photon ionization. Changes in five-photon ionization occur when the four-photon ionization channel opens. The angular distributions of photoelectrons from five-photon ionization of H are studied at five wavelengths which cover the range from four-photon resonance with high-lying Rydberg states (n≥10) to direct four-photon ionization into the continuum. The role of resonances in this ionization process is discussed. A fair agreement is found in comparing experimental and theoretical results

  16. Equipment for handling ionization chamber

    International Nuclear Information System (INIS)

    Altmann, J.

    1988-01-01

    The device consists of an ionization channel with an ionization chamber, of a support ring, axial and radial bearings, a sleeve, a screw gear and an electric motor. The ionization chamber is freely placed on the bottom of the ionization channel. The bottom part of the channel deviates from the vertical axis. The support ring propped against the axial bearing in the sleeve is firmly fixed to the top part of the ionization channel. The sleeve is fixed to the reactor lid. Its bottom part is provided with a recess for the radial bearing which is propped against a screw wheel firmly connected to the ionization channel. In measuring neutron flux, the screw wheel is rotated by the motor, thus rotating the whole ionization channel such that the ionization chamber is displaced into the reactor core.(J.B.). 1 fig

  17. Safety aspects of the design of a PWR gaseous radwaste treatment system using hydrogen recombiners

    International Nuclear Information System (INIS)

    Glibert, R.; Nuyt, G.; Herin, S.; Fossion, P.

    1978-01-01

    PWR Gaseous radwaste treatment system is essential for the reduction of impact on environment of the nuclear power plants. Decay tank system has been used for the retention of the radioactive gaseous fission products generated in the primary coolant. The use of a system combining decay tanks and hydrogen recombiner units is described in this paper. Accent is put on the safety aspects of this gaseous radwaste treatment facilitystudied by BN for a Belgian Power Plant. (author)

  18. Foodstuffs preservation by ionization

    International Nuclear Information System (INIS)

    1991-12-01

    This document contains all the papers presented at the meeting on foodstuffs preservation by ionization. These papers deal especially with the food ionization process, its development and the view of the food industry on ionization. Refs and figs (F.M.)

  19. Measurement of the Portsmouth Gaseous Diffusion Plant criticality accident alarm

    International Nuclear Information System (INIS)

    Tayloe, R.W. Jr.; McGinnis, B.

    1990-01-01

    Measurements of the Portsmouth Gaseous Diffusion Plant's nuclear criticality accident radiation alarm signal response time, sound wave frequency, and sound volume levels were made to demonstrate compliance with ANSI/ANS-8.3-1986. A steady-state alarm signal is produced within one-half second of obtaining a two-out-of-three detector trip. The fundamental alarm sound wave frequency is 440 hertz. The sound volume levels are greater than 10 decibels above background and ranged from 100 to 125 A-weighted decibels. The requirements of the standard were met; however the recommended maximum sound volume level of 115 dBA was exceeded. Emergency procedures require immediate evacuation upon initiation of a facility's radiation alarm. Comparison with standards for allowable time of exposure at different noise levels indicate that the elevated noise level at this location does not represent an occupational injury hazard. 8 refs., 5 figs

  20. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  1. Ambient ionization mass spectrometry: A tutorial

    International Nuclear Information System (INIS)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu; Shiea, Jentaie

    2011-01-01

    Highlights: → Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. → We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. → The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  2. Ionization Collection in Detectors of the Cryogenic Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, Arran T.J. [Univ. of California, Berkeley, CA (United States)

    2016-01-01

    Determining the composition of dark matter is at the forefront of modern scientific research. There is compelling evidence for the existence of vast quantities of dark matter throughout the universe, however it has so-far eluded all direct detection efforts and its identity remains a mystery. Weakly interacting massive particles (WIMPs) are a favored dark matter candidate and have been the primary focus of direct detection for several decades. The Cryogenic Dark Matter Search (CDMS) has developed the Z-dependent Ionization and Phonon (ZIP) detector to search for such particles. Typically made from germanium, these detectors are capable of distinguishing between electromagnetic background and a putative WIMP signal through the simultaneous measurement of ionization and phonons produced by scattering events. CDMS has operated several arrays of these detectors at the Soudan Underground Laboratory (Soudan, MN, USA) resulting in many competitive (often world-leading) WIMP exclusion limits. This dissertation focuses on ionization collection in these detectors under the sub-Kelvin, low electric field, and high crystal purity conditions unique to CDMS. The design and performance of a fully cryogenic HEMT-based amplifier capable of achieving the SuperCDMS SNOLAB ionization energy resolution goal of 100 eVee is presented. The experimental apparatus which has been used to record electron and hole properties under CDMS conditions is described. Measurements of charge transport, trapping, and impact ionization as a function of electric field in two CDMS detectors are shown, and the ionization collection efficiency is determined. The data is used to predict the error in the nuclear recoil energy scale under both CDMSlite and iZIP operating modes. A two species, two state model is developed to describe how ionization collection and space charge generation in CDMS detectors are controlled by the presence of “overcharged” D- donor and A+ acceptor impurity states. The thermal

  3. Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines. A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B.B. [Centre for Energy, Indian Institute of Technology, Guwahati 781039 (India); Sahoo, N.; Saha, U.K. [Department of Mechanical Engineering, Indian Institute of Technology, Guwahati 781039 (India)

    2009-08-15

    Petroleum resources are finite and, therefore, search for their alternative non-petroleum fuels for internal combustion engines is continuing all over the world. Moreover gases emitted by petroleum fuel driven vehicles have an adverse effect on the environment and human health. There is universal acceptance of the need to reduce such emissions. Towards this, scientists have proposed various solutions for diesel engines, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines, which use conventional diesel fuel and gaseous fuel, are referred to as 'dual-fuel engines'. Natural gas and bio-derived gas appear more attractive alternative fuels for dual-fuel engines in view of their friendly environmental nature. In the gas-fumigated dual-fuel engine, the primary fuel is mixed outside the cylinder before it is inducted into the cylinder. A pilot quantity of liquid fuel is injected towards the end of the compression stroke to initiate combustion. When considering a gaseous fuel for use in existing diesel engines, a number of issues which include, the effects of engine operating and design parameters, and type of gaseous fuel, on the performance of the dual-fuel engines, are important. This paper reviews the research on above issues carried out by various scientists in different diesel engines. This paper touches upon performance, combustion and emission characteristics of dual-fuel engines which use natural gas, biogas, producer gas, methane, liquefied petroleum gas, propane, etc. as gaseous fuel. It reveals that 'dual-fuel concept' is a promising technique for controlling both NO{sub x} and soot emissions even on existing diesel engine. But, HC, CO emissions and 'bsfc' are higher for part load gas diesel engine operations. Thermal efficiency of dual-fuel engines improve either with increased engine speed, or with advanced injection timings, or with increased amount of pilot fuel. The ignition

  4. Comparison of gaseous exhaust indices of the F109 turbofan using three different blends of petroleum-based Jet-A and camelina-based Jet-A

    Science.gov (United States)

    Kozak, Brian John

    This research project focused on the collection and comparison of gaseous exhaust emissions of the F109 turbofan engine using petroleum-based Jet-A and two different blends of camelina-based Jet-A. Simulated landing and takeoff cycles were used to collect gaseous exhaust emissions. Unburned hydrocarbon (HC), nitrogen oxide (NOx), and carbon moNOxide (CO) exhaust indices (EIm) were calculated using ICAO Annex 16 Volume II formulae. Statistical analyses were performed on the Elm data. There was no significant difference in HC EIm and CO EI m among the three fuels at takeoff thrust. There were significant differences among the fuels for NOx EIm. 50% Jet-A 50% camelina produced the highest NOx EIm, then 75% Jet-A 25% camelina and finally Jet-A. At climb thrust, both blends of camelina fuel produced higher NOx EIm but no difference in CO EIm and HC EIm as Jet-A. At approach thrust, both blends of camelina fuel produced higher NOx EIm, lower CO EIm, and no difference in HC EIm as Jet-A. At idle thrust, there was no significant difference among the fuels for NOx EIm. There were significant differences among the fuels for HC EIm. Jet-A and 50% Jet-A 50% both produced higher HC EIm as 75% Jet-A 25% camelina. There were significant differences among the fuels for CO EI m. Jet-A produced the highest CO EIm, then 75% Jet-A 25% camelina and finally 50% Jet-A 50% camelina.

  5. Handling of UF6 in U.S. gaseous diffusion plants

    International Nuclear Information System (INIS)

    Legeay, A.J.

    1978-01-01

    A comprehensive systems analysis of UF 6 handling has been made in the three U.S. gaseous diffusion plants and has resulted in a significant impact on the equipment design and the operating procedures of these facilities. The equipment, facilities, and industrial practices in UF 6 handling operations as they existed in the early 1970's are reviewed with particular emphasis placed on the changes which have been implemented. The changes were applied to the systems and operating methods which evolved from the design, startup, and operation of the Oak Ridge Gaseous Diffusion Plant in 1945

  6. A new method for measuring the response time of the high pressure ionization chamber

    International Nuclear Information System (INIS)

    Wang, Zhentao; Shen, Yixiong; An, Jigang

    2012-01-01

    Time response is an important performance characteristic for gas-pressurized ionization chambers. To study the time response, it is especially crucial to measure the ion drift time in high pressure ionization chambers. In this paper, a new approach is proposed to study the ion drift time in high pressure ionization chambers. It is carried out with a short-pulsed X-ray source and a high-speed digitizer. The ion drift time in the chamber is then determined from the digitized data. By measuring the ion drift time of a 15 atm xenon testing chamber, the method has been proven to be effective in the time response studies of ionization chambers. - Highlights: ► A method for measuring response time of high pressure ionization chamber is proposed. ► A pulsed X-ray producer and a digital oscilloscope are used in the method. ► The response time of a 15 atm Xenon testing ionization chamber has been measured. ► The method has been proved to be simple, feasible and effective.

  7. Technological aspects of gaseous pixel detectors fabrication

    NARCIS (Netherlands)

    Blanco Carballo, V.M.; Salm, Cora; Smits, Sander M.; Schmitz, Jurriaan; Melai, J.; Chefdeville, M.A.; van der Graaf, H.

    2007-01-01

    Integrated gaseous pixel detectors consisting of a metal punctured foil suspended in the order of 50μm over a pixel readout chip by means by SU-8 insulating pillars have been fabricated. SU-8 is used as sacrificial layer but metallization over uncrosslinked SU-8 presents adhesion and stress

  8. Fungi detoxification study from pistachio by non-ionizing irradiation

    International Nuclear Information System (INIS)

    Ghafourian, H.; Sadighzadeh, A; Dabbagh, R.

    1998-01-01

    4,6 and 10 minutes of microwaves exposure provides and effective and relatively rapid sterilization for different purposes in medicine and food industries for example sterilization of materials which have been contaminated with Aspergillus flavus (Pcc-5004) and Aspergillus parasiticus (Pcc-5018) which are producer of Aflatoxin especially on pistachios and other dried fruits. Microwaves exposure induces a morphological modification of the cells and germicidal effects of ultrasonic waves has been attributed to gaseous cavitation. There was a significant reduction in fungal growth compared with those under the control which decreased growth with increased microwave and ultrasound exposure time

  9. Ionization of food products

    International Nuclear Information System (INIS)

    Vasseur, J.P.

    1991-01-01

    After general remarks on foods preservation, on international works and on ionization future prospects, main irradiation sources are described. Recalls on radioactivity, on radiation-matter interaction, on toxicology of ionized foods and on ionized foods detection are given. Ionization applications to various products are reviewed, especially in: - Poultry meat - Fishing products - Fresh fruits and vegetables - Dry fruits and vegetables - spices, tea, infusion - prepacked products... An evaluation of economics and sociocultural impacts is presented in connection with recent experiments [fr

  10. Paducah Gaseous Diffusion Plant Environmental report for 1990

    Energy Technology Data Exchange (ETDEWEB)

    Counce-Brown, D. (ed.)

    1991-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Site Environmental Report for 1990, is published annually. It reflects the results of a comprehensive, year-round program to monitor the impact of operations at Paducah Gaseous Diffusion Plant (PGDP) on the area's groundwater and surface waters, soil, air quality, vegetation, and wildlife. In addition, an assessment of the effect of PGDP effluents on the resident human population is made. PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the formation of waste, and to minimize hazardous waste by substitution of materials.

  11. A Comparison of Alternating Current and Direct Current Electrospray Ionization for Mass Spectrometry

    Science.gov (United States)

    Sarver, Scott A.; Chetwani, Nishant; Dovichi, Norman J.; Go, David B.; Gartner, Carlos A.

    2014-04-01

    A series of studies comparing the performance of alternating current electrospray ionization (AC ESI) mass spectrometry (MS) and direct current electrospray ionization (DC ESI) MS have been conducted, exploring the absolute signal intensity and signal-to-background ratios produced by both methods using caffeine and a model peptide as targets. Because the high-voltage AC signal was more susceptible to generating gas discharges, the operating voltage range of AC ESI was significantly smaller than that for DC ESI, such that the absolute signal intensities produced by DC ESI at peak voltages were one to two orders of magnitude greater than those for AC ESI. Using an electronegative nebulizing gas, sulfur hexafluoride (SF6), instead of nitrogen (N2) increased the operating range of AC ESI by ~50 %, but did not appreciably improve signal intensities. While DC ESI generated far greater signal intensities, both ionization methods produced comparable signal-to-background noise, with AC ESI spectra appearing qualitatively cleaner. A quantitative calibration analysis was performed for two analytes, caffeine and the peptide MRFA. AC ESI utilizing SF6 outperforms all other techniques for the detection of MRFA, producing chromatographic limits of detection nearly one order of magnitude lower than that of DC ESI utilizing N2, and one-half that of DC ESI utilizing SF6. However, DC ESI outperforms AC ESI for the analysis of caffeine, indicating that improvements in spectral quality may benefit certain compounds or classes of compounds, on an individual basis.

  12. Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoesen, S.D.

    2003-09-09

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

  13. Chemical data on ionizing and non-ionizing angiographic contrast materials

    International Nuclear Information System (INIS)

    Bonati, F.

    1980-01-01

    The cardiovascular effects of ionizing and non-ionizing contrast media are compared in experimental animals and in isolated heart preparations. The following parameters were recorded: peripheric arterial diastolic pressure, heart rate, duration of asystolic period, respiratory rate, contractility of the myocardium (dp/dt, LVSP, Vsub(max), EDV, ESV, SV). The observed changes are mainly due to the higher osmotic activity of the contrast media, as similar alterations were recorded after the injection of hyperosmotic glucose solution. It is concluded that administration of non-ionizing contrast media results in significantly less cardiovascular side effects. (L.E.)

  14. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl

    OpenAIRE

    Ruiz-Gonz?lez, Mario Xavier; Czirj?k, G?bor ?rp?d; Genevaux, Pierre; M?ller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-01-01

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different ? radiation doses ranging from 0.46 to 3.96 kGy to test whether ch...

  15. Hazards of ionizing radiations for human beings and environment with respect to nuclear facilities

    International Nuclear Information System (INIS)

    Huebner, Felix; Jung, Jennifer Jana; Schultmann, Frank

    2017-01-01

    Worldwide, nuclear fission is used to produce electricity. On the one hand, the low emission of CO_2 is often mentioned as an advantage of this technology. On the other hand, warnings about the dangers of nuclear fission are mentioned. Consequently, an overview about the dangers of ionizing radiation to human beings as well as animals and the environment is important. However, the focus will be on possible health effects for humans with regards to nuclear power plants. In nuclear power plants, both natural types of radiation and artificially produced radiation occur. During normal operation, it is possible that small quantities of this ionizing radiation are released to the environment. In case of nuclear disasters or faults during decommissioning and dismantling processes the consequences of thereby emitted quantities can be even more severe. Reference nuclides vary by reactor type, operating stage and respective incident. At the beginning, different types of radiation and their characteristics and effects on the affected organism are explained. Sensitive organs are emphasized in this context. The individual risk is determined by numerous factors and therefore cannot be predicted. Based on scientific studies and medical publications the hazards of ionizing radiation are compiled. Effects of high exposure of ionizing radiation are well-investigated. Scientists are still divided over the connection between several diseases and the exposure to low doses of ionizing radiation. For this reason, the positions of different international organizations are critically contrasted in this study.

  16. Handheld low-temperature plasma probe for portable "point-and-shoot" ambient ionization mass spectrometry.

    Science.gov (United States)

    Wiley, Joshua S; Shelley, Jacob T; Cooks, R Graham

    2013-07-16

    We describe a handheld, wireless low-temperature plasma (LTP) ambient ionization source and its performance on a benchtop and a miniature mass spectrometer. The source, which is inexpensive to build and operate, is battery-powered and utilizes miniature helium cylinders or air as the discharge gas. Comparison of a conventional, large-scale LTP source against the handheld LTP source, which uses less helium and power than the large-scale version, revealed that the handheld source had similar or slightly better analytical performance. Another advantage of the handheld LTP source is the ability to quickly interrogate a gaseous, liquid, or solid sample without requiring any setup time. A small, 7.4-V Li-polymer battery is able to sustain plasma for 2 h continuously, while the miniature helium cylinder supplies gas flow for approximately 8 continuous hours. Long-distance ion transfer was achieved for distances up to 1 m.

  17. Differential and total cross sections for the ionization of water molecule by electron impact

    International Nuclear Information System (INIS)

    Houamer, S.; Dal Cappello, C.; Mansouri, A.

    2007-01-01

    A theoretical approach is presented to calculate multiply differential and total cross sections of the ionization of H 2 O molecule in the vapour phase. The wave function of the target is described by molecular orbitals consisting of a linear combination of slater type atomic orbitals centered on the heaviest atom which is the oxygen atom in this case. The calculations are carried out in the first Born approximation where the projectile is described by a plane wave while the ejected electron is described by a coulomb wave taking into account its interaction with the residual ion. The spherical average over the Euler solid angle due to the randomly oriented gaseous target molecule is carried out analytically using the rotation matrix properties. The differential and total cross sections are thus evaluated without any special difficulty and compared with experiments and distorted wave calculations. Fair agreements are observed

  18. Ionizing radiations

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    This is an update about the radiological monitoring in base nuclear installations. A departmental order of the 23. march 1999 (J.O.28. april, p.6309) determines the enabling rules by the Office of Protection against Ionizing Radiations of person having at one's disposal the results with names of individual exposure of workers put through ionizing radiations. (N.C.)

  19. Charge amplitude distribution of the Gossip gaseous pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Carballo, V.M. [Twente University, Enschede (Netherlands); Chefdeville, M. [NIKHEF, P.B. 41882, 1009DB Amsterdam (Netherlands); Colas, P.; Giomataris, Y. [Saclay, Gif-sur-Yvette (France); Graaf, H. van der; Gromov, V. [NIKHEF, P.B. 41882, 1009DB Amsterdam (Netherlands); Hartjes, F. [NIKHEF, P.B. 41882, 1009DB Amsterdam (Netherlands)], E-mail: F.Hartjes@nikhef.nl; Kluit, R.; Koffeman, E. [NIKHEF, P.B. 41882, 1009DB Amsterdam (Netherlands); Salm, C.; Schmitz, J.; Smits, S.M. [Twente University, Enschede (Netherlands); Timmermans, J.; Visschers, J.L. [NIKHEF, P.B. 41882, 1009DB Amsterdam (Netherlands)

    2007-12-11

    The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few primary electron/ion pairs are created by the traversing particle. To get a detectable signal, the electrons drift towards a perforated metal foil (Micromegas) whereafter they are multiplied in a gas avalanche to provide a detectable signal. The gas avalanche occurs in the high field between the Micromegas and the pixel readout chip (ROC). Compared to a silicon pixel detector, Gossip features a low material budget and a low cooling power. An experiment using X-rays has indicated a possible high radiation tolerance exceeding 10{sup 16} hadrons/cm{sup 2}. The amplified charge signal has a broad amplitude distribution due to the limited statistics of the primary ionization and the statistical variation of the gas amplification. Therefore, some degree of inefficiency is inevitable. This study presents experimental results on the charge amplitude distribution for CO{sub 2}/DME (dimethyl-ether) and Ar/iC{sub 4}H{sub 10} mixtures. The measured curves were fitted with the outcome of a theoretical model. In the model, the physical Landau distribution is approximated by a Poisson distribution that is convoluted with the variation of the gas gain and the electronic noise. The value for the fraction of pedestal events is used for a direct calculation of the cluster density. For some gases, the measured cluster density is considerably lower than given in literature.

  20. Charge amplitude distribution of the Gossip gaseous pixel detector

    Science.gov (United States)

    Blanco Carballo, V. M.; Chefdeville, M.; Colas, P.; Giomataris, Y.; van der Graaf, H.; Gromov, V.; Hartjes, F.; Kluit, R.; Koffeman, E.; Salm, C.; Schmitz, J.; Smits, S. M.; Timmermans, J.; Visschers, J. L.

    2007-12-01

    The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few primary electron/ion pairs are created by the traversing particle. To get a detectable signal, the electrons drift towards a perforated metal foil (Micromegas) whereafter they are multiplied in a gas avalanche to provide a detectable signal. The gas avalanche occurs in the high field between the Micromegas and the pixel readout chip (ROC). Compared to a silicon pixel detector, Gossip features a low material budget and a low cooling power. An experiment using X-rays has indicated a possible high radiation tolerance exceeding 10 16 hadrons/cm 2. The amplified charge signal has a broad amplitude distribution due to the limited statistics of the primary ionization and the statistical variation of the gas amplification. Therefore, some degree of inefficiency is inevitable. This study presents experimental results on the charge amplitude distribution for CO 2/DME (dimethyl-ether) and Ar/iC 4H 10 mixtures. The measured curves were fitted with the outcome of a theoretical model. In the model, the physical Landau distribution is approximated by a Poisson distribution that is convoluted with the variation of the gas gain and the electronic noise. The value for the fraction of pedestal events is used for a direct calculation of the cluster density. For some gases, the measured cluster density is considerably lower than given in literature.

  1. Charge amplitude distribution of the Gossip gaseous pixel detector

    International Nuclear Information System (INIS)

    Blanco Carballo, V.M.; Chefdeville, M.; Colas, P.; Giomataris, Y.; Graaf, H. van der; Gromov, V.; Hartjes, F.; Kluit, R.; Koffeman, E.; Salm, C.; Schmitz, J.; Smits, S.M.; Timmermans, J.; Visschers, J.L.

    2007-01-01

    The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few primary electron/ion pairs are created by the traversing particle. To get a detectable signal, the electrons drift towards a perforated metal foil (Micromegas) whereafter they are multiplied in a gas avalanche to provide a detectable signal. The gas avalanche occurs in the high field between the Micromegas and the pixel readout chip (ROC). Compared to a silicon pixel detector, Gossip features a low material budget and a low cooling power. An experiment using X-rays has indicated a possible high radiation tolerance exceeding 10 16 hadrons/cm 2 . The amplified charge signal has a broad amplitude distribution due to the limited statistics of the primary ionization and the statistical variation of the gas amplification. Therefore, some degree of inefficiency is inevitable. This study presents experimental results on the charge amplitude distribution for CO 2 /DME (dimethyl-ether) and Ar/iC 4 H 10 mixtures. The measured curves were fitted with the outcome of a theoretical model. In the model, the physical Landau distribution is approximated by a Poisson distribution that is convoluted with the variation of the gas gain and the electronic noise. The value for the fraction of pedestal events is used for a direct calculation of the cluster density. For some gases, the measured cluster density is considerably lower than given in literature

  2. Liquid and Gaseous Waste Operations Department annual operating report CY 1996

    International Nuclear Information System (INIS)

    Maddox, J.J.; Scott, C.B.

    1997-03-01

    This annual report summarizes operating activities dealing with the process waste system, the liquid low-level waste system, and the gaseous waste system. It also describes upgrade activities dealing with the process and liquid low-level waste systems, the cathodic protection system, a stack ventilation system, and configuration control. Maintenance activities are described dealing with nonradiological wastewater treatment plant, process waste treatment plant and collection system, liquid low-level waste system, and gaseous waste system. Miscellaneous activities include training, audits/reviews/tours, and environmental restoration support

  3. Ionization by ion impact at grazing incidence on insulator surface

    CERN Document Server

    Martiarena, M L

    2003-01-01

    We have calculated the energy distribution of electrons produced by ionization of the ionic crystal electrons in grazing fast ion-insulator surface collision. The ionized electrons originate in the 2p F sup - orbital. We observe that the binary peak appears as a double change in the slope of the spectra, in the high energy region. The form of the peak is determined by the initial electron distribution and its position will be affected by the binding energy of the 2p F sup - electron in the crystal. This BEP in insulator surfaces will appear slightly shifted to the low energy side with respect the ion-atom one.

  4. Atmospheric Ionizing Radiation (AIR) ER-2 Preflight Analysis

    Science.gov (United States)

    Tai, Hsiang; Wilson, John W.; Maiden, D. L.

    1998-01-01

    Atmospheric ionizing radiation (AIR) produces chemically active radicals in biological tissues that alter the cell function or result in cell death. The AIR ER-2 flight measurements will enable scientists to study the radiation risk associated with the high-altitude operation of a commercial supersonic transport. The ER-2 radiation measurement flights will follow predetermined, carefully chosen courses to provide an appropriate database matrix which will enable the evaluation of predictive modeling techniques. Explicit scientific results such as dose rate, dose equivalent rate, magnetic cutoff, neutron flux, and air ionization rate associated with those flights are predicted by using the AIR model. Through these flight experiments, we will further increase our knowledge and understanding of the AIR environment and our ability to assess the risk from the associated hazard.

  5. Contribution to the study of gaseous molecular iodine washout by natural rains

    International Nuclear Information System (INIS)

    Fournier-Bidoz, V.

    1991-01-01

    This study is part of researches about nuclear accident prediction consequences on the environment. It concerns transfering of molecular gaseous iodine into liquids and especially precipitation scavenging below the cloud (washout). Bibliographic data directly concerned with this study (iodine's aqueous chemistry, aqueous to gaseous phases transfer) and also with its global frame-work (atmospheric release from a nuclear reactor in accidental situation and the behaviour of atmospheric iodine) are presented. Several experimental approaches have been performed in laboratory and on field. An aqueous to gaseous phase transfer simulator allowed us to isolate parameters involved in absorption and desorption of the halogen. Field experiments permit to quantify dry deposition on different solutions and to get a better insight of the phenomenon. Extrapolation of the whole results to precipitation scavenging of gaseous iodine I 2 by natural rains suggests that the process is an irreversible one. Washout rate values acquired during rainy experiments with molecular iodine emission or in a laboratory rainfall simulator agree with literatures data relative to irreversibility. However and even if reversibility was efficient it was not possible to clearly exhibit it according to experimental conditions. Moreover, the analytical iodine method which leads to a good experimental study has been presented

  6. Effects of ionizing radiation upon natural populations and ecosystems. Final report. [Ecological perspectives in land use planning

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J.F.

    1976-01-01

    Accomplishments throughout a 10-year period summarized include: a study of the effects of radiation from a ..gamma.. source on the ecology of the El Verde rain forest in Puerto Rico, with emphasis on the role of secondary succession in the recovery of forest ecosystems following irradiation; the effects of light and temperature on gaseous exchange in trees using /sup 14/CO/sub 2/ as a tracer in Palcourea; the nature of the sensitivity of pine trees to ionizing radiation and the possible synergistic effects of elevated ozone levels on radiosensitivity; the combined effects of radioactive and thermal effluents on plant communities of a swamp hardwood forest; and the development of a new conceptual approach to the evaluation of environmental quality, with emphasis on ecological perspectives in land use planning. (CH)

  7. Use of ionizing radiation for preservation of food and feed products

    International Nuclear Information System (INIS)

    Josephson, E.S.; Brynjolfsson, A.; Wierbicki, E.

    1975-01-01

    Exposing food to ionizing radiation can contribute to closing the worldwide food deficit by reducing food spoilage losses, by making available more food of higher nutritional quality (animal protein food) to more people, and by keeping prices down by reducing losses. Because ionizing radiation kills disease-causing organisms, it can reduce the incidence of food-borne diseases. It also reduces our dependence upon some of the chemical additives, such as nitrites and nitrates, now being questioned by health authorities to control food spoilage and food-borne diseases. The three basic types of ionizing radiation used for processing of food are electrons (10 MeV maximum energy), X-rays (5 MeV maximum energy) produced by electrons in an X-ray target, and gamma rays from 60 Co and 137 Cs. Electrons, X-rays, and gamma rays cause ionization in the food by either the primary electrons or by the secondary electrons resulting from gamma or X-ray interactions in the food with little rise in temperature and little total chemical change. The ionized and activated molecules form unstable secondary products that kill the organisms. Another effect is to slow down post-harvest growth and maturation in some fruits and vegetables

  8. 2 π gaseous flux proportional detector

    International Nuclear Information System (INIS)

    Guevara, E.A.; Costello, E.D.; Di Carlo, R.O.

    1986-01-01

    A counting system has been developed in order to measure carbon-14 samples obtained in the course of a study of a plasmapheresis treatment for diabetic children. The system is based on the use of a 2π gaseous flux proportional detector especially designed for the stated purpose. The detector is described and experiment results are given, determining the characteristic parameters which set up the working conditions. (Author) [es

  9. Flame Atmospheric Pressure Chemical Ionization Coupled with Negative Electrospray Ionization Mass Spectrometry for Ion Molecule Reactions.

    Science.gov (United States)

    Cheng, Sy-Chyi; Bhat, Suhail Muzaffar; Shiea, Jentaie

    2017-07-01

    Flame atmospheric pressure chemical ionization (FAPCI) combined with negative electrospray ionization (ESI) mass spectrometry was developed to detect the ion/molecule reactions (IMRs) products between nitric acid (HNO 3 ) and negatively charged amino acid, angiotensin I (AI) and angiotensin II (AII), and insulin ions. Nitrate and HNO 3 -nitrate ions were detected in the oxyacetylene flame, suggesting that a large quantity of nitric acid (HNO 3 ) was produced in the flame. The HNO 3 and negatively charged analyte ions produced by a negative ESI source were delivered into each arm of a Y-shaped stainless steel tube where they merged and reacted. The products were subsequently characterized with an ion trap mass analyzer attached to the exit of the Y-tube. HNO 3 showed the strongest affinity to histidine and formed (M histidine -H+HNO 3 ) - complex ions, whereas some amino acids did not react with HNO 3 at all. Reactions between HNO 3 and histidine residues in AI and AII resulted in the formation of dominant [M AI -H+(HNO 3 )] - and [M AII -H+(HNO 3 )] - ions. Results from analyses of AAs and insulin indicated that HNO 3 could not only react with basic amino acid residues, but also with disulfide bonds to form [M-3H+(HNO 3 ) n ] 3- complex ions. This approach is useful for obtaining information about the number of basic amino acid residues and disulfide bonds in peptides and proteins. Graphical Abstract ᅟ.

  10. THE IMPLICATIONS OF A HIGH COSMIC-RAY IONIZATION RATE IN DIFFUSE INTERSTELLAR CLOUDS

    International Nuclear Information System (INIS)

    Indriolo, Nick; Fields, Brian D.; McCall, Benjamin J.

    2009-01-01

    Diffuse interstellar clouds show large abundances of H + 3 which can only be maintained by a high ionization rate of H 2 . Cosmic rays are the dominant ionization mechanism in this environment, so the large ionization rate implies a high cosmic-ray flux, and a large amount of energy residing in cosmic rays. In this paper, we find that the standard propagated cosmic-ray spectrum predicts an ionization rate much lower than that inferred from H + 3 . Low-energy (∼10 MeV) cosmic rays are the most efficient at ionizing hydrogen, but cannot be directly detected; consequently, an otherwise unobservable enhancement of the low-energy cosmic-ray flux offers a plausible explanation for the H + 3 results. Beyond ionization, cosmic rays also interact with the interstellar medium by spalling atomic nuclei and exciting atomic nuclear states. These processes produce the light elements Li, Be, and B, as well as gamma-ray lines. To test the consequences of an enhanced low-energy cosmic-ray flux, we adopt two physically motivated cosmic-ray spectra which by construction reproduce the ionization rate inferred in diffuse clouds, and investigate the implications of these spectra on dense cloud ionization rates, light-element abundances, gamma-ray fluxes, and energetics. One spectrum proposed here provides an explanation for the high ionization rate seen in diffuse clouds while still appearing to be broadly consistent with other observables, but the shape of this spectrum suggests that supernovae remnants may not be the predominant accelerators of low-energy cosmic rays.

  11. A gaseous measurement system for carbon-14 dioxide and carbon-14 methane: An analytical methodology to be applied in the evaluation of the carbon-14 dioxide and carbon-14 methane produced via microbial activity in volcanic tuff

    International Nuclear Information System (INIS)

    Dolan, M.M.

    1987-01-01

    The objectives of this study were to develop a gaseous measurement system for the carbon-14 dioxide and carbon-14 methane produced via microbial activity or geochemical action on leachate in tuff; to determine the trapping efficiency of the system for carbon-14 dioxide; to determine the trapping efficiency of the system for carbon-14 methane; to apply the experimentally determined factors regarding the system's trapping efficiency for carbon-14 dioxide and carbon-14 methane to a trapping algorithm to determine the activity of the carbon-14 dioxide and carbon-14 methane in a mixed sample; to determine the minimum detectable activity of the measurement process in picocuries per liter; and to determine the lower limit or detection of the measurement process in counts per minute

  12. Electret ionization chamber: a new method for detection and dosimetry of thermal neutrons

    International Nuclear Information System (INIS)

    Ghilardi, A.J.P.

    1988-01-01

    An electret ionization chamber with boron coated walls is presented as a new method for detecting thermal neutrons. The efficiency of electret ionization chambers with different wall materials for the external electrode was inferred from the results. Detection of slow neutrons with discrimination against the detection of γ-rays and energetic neutrons was shown to depend on the selection of these materials. The charge stability over a long period of time and the charge decay owing to natural radiation were also studied. Numerical analysis was developed by the use of a micro-computer PC-XT. Both the experimental and numerical results show that the sensitivity of the electret ionization chamber for detection of thermal neutrons is comparable with that of the BF 3 ionization chamber and that new technologies for deposition of the boron layer will produce higher efficiency detectors. (author). 102 refs, 32 fig, 10 tabs

  13. Salient features in the preparation of gaseous tritium filled luminous light sources

    International Nuclear Information System (INIS)

    Mathew, K.M.; Ravi, S.; Subramanian, T.K.; Ananthakrishnan, M.

    2003-01-01

    Beta radiation emanating from gaseous tritium in close proximity with copper activated zinc sulphide phosphor provides self sustained light sources and these sources are used for nocturnal illumination of liquid crystal display in digital watches and clocks, product advertisements, exit signs etc. We report herein the preparation of low specific radioactivity gaseous tritium (29.5 Ci/m mole; 1.09 TBq/m mole) filled light sources and its effect on light output. (author)

  14. The ionization effects from nuclear explosions in high-altitude and their effect to radio propagation

    International Nuclear Information System (INIS)

    Guan Rongsheng; Li Qin

    1997-01-01

    A high-altitude nuclear explosions releases large quantities of energetic particles and electromagnetic radiation capable of producing ionization in the atmosphere. These particles and rays radiation character in the atmosphere are discussed. Ionizations due to explosion X rays, γ rays, neutrons and β particles are considered separately. The time-space distribution of additional electron density is computed and its nature is analyzed. The effects of explosion-induced ionization on the absorption of radio wave is considered and the dependence of the absorption on explosion characteristics, distance from the earth's atmosphere, and frequency of the radio wave is determined

  15. Proton-therapy and hadron-therapy ionization chambers

    International Nuclear Information System (INIS)

    Boissonnat, Guillaume

    2015-01-01

    In the framework of the ARCHADE project (Advanced Resource Center for Hadron-therapy in Europe), a research project in Carbone ion beam therapy and clinical Proton-therapy, this work investigates the beam monitoring and dosimetry aspects of ion beam therapy. The main goal, here, is to understand the operating mode of air ionization chambers, the detectors used for such applications. This study starts at a very fundamental level as the involved physical and chemical parameters of air were measured in various electric field conditions with dedicated setups and used to produce a simulation tools aiming at reproducing the operating response in high intensity PBS (Pencil Beam Scanning) coming from IBA's (Ion Beam Applications) next generation of proton beam accelerators. In addition, an ionization chamber-based dosimetry equipment was developed, DOSION III, for radiobiology studies conducted at GANIL under the supervision of the CIMAP laboratory. (author)

  16. Analytical and numerical study of a gaseous plasma dipole in the UHF frequency band

    NARCIS (Netherlands)

    Melazzi, Davide; Lancellotti, Vito; Capobianco, Antonio Daniele

    2017-01-01

    Gaseous plasma antennas are appealing in applications in which reconfigurability is desired, because the radiation properties can be changed by tuning the plasma parameters. In this paper, an analytical and numerical analysis of a gaseous plasma dipole that works in the 0.3-3 GHz frequency range is

  17. Sensitivity of gaseous xenon ionisation chambers (1961)

    International Nuclear Information System (INIS)

    Schuhl, C.

    1960-01-01

    It seems advantageous to fill an ionization chamber with xenon gas when this chamber is used for measuring a low intensity and high energy electron or positron beam, or monitoring a gamma beam. In the study of 5 to 50 MeV electrons, xenon allows for the ionization chamber yield, an improvement of a factor 4,5. (author) [fr

  18. Biological effects of low-level ionizing and non-ionizing radiation

    International Nuclear Information System (INIS)

    Upton, A.C.

    1986-01-01

    Early in this century it was recognized that large doses of ionizing radiation could injure almost any tissue in the body, but small doses were generally thought to be harmless. By the middle of the century however it came to be suspected that even the smallest doses of ionizing radiation to the gonads might increase the risk of hereditary disease in subsequently-conceived offspring. Since then the hypothesis that carcinogenic and teratogenic effects also have no threshold has been adopted for purposes of radiological protection. It is estimated nevertheless that the risks that may be associated with natural background levels of ionizing irradiation are too small to be detectable. Hence validation of such risk estimates will depend on further elucidation of the dose-effect relationships and mechanisms of the effects in question, through studies at higher dose levels. In contrast to the situation with ionizing radiation, exposure to natural background levels of ultraviolet radiation has been implicated definitively in the etiology of skin cancers in fair-skinned individuals. Persons with inherited effects in DNA repair capacity are particularly susceptible. Non-ionizing radiations of other types can also affect health at high dose levels, but whether they can cause injury at low levels of exposure is not known

  19. Dynamics of ionizing shock waves on adiabatic motions of gases

    International Nuclear Information System (INIS)

    Zorev, N.N.; Sklizkov, G.V.; Shikanov, A.S.

    1982-01-01

    Results are presented of an experimental investigation of free (adiabatic) motion of a spherical ionizing wave in deuterium produced by an expanding laser plasma. It is shown that the discrepancy between the free movement of shock waves (which lead to total ionization of the gas) and the Sedov-Taylor model of a spontaneous point explosion is not related to variations in the adiabat exponent γ and the motion occurs for a constant γ=5/3. The effect is ascribed to the influence of the shock wave front structure on the dynamics of its propagation. An analytic expression for the motion of symmetric ionizing shock waves is found which has an accuracy of better than 1%. As a result the adiabat exponent was determined experimentally. A method for determining the energy of a shock wave on the basis of its dynamics of motion is developed which has an accuracy of approximately 5% [ru

  20. SURFACE LAYER ACCRETION IN CONVENTIONAL AND TRANSITIONAL DISKS DRIVEN BY FAR-ULTRAVIOLET IONIZATION

    International Nuclear Information System (INIS)

    Perez-Becker, Daniel; Chiang, Eugene

    2011-01-01

    Whether protoplanetary disks accrete at observationally significant rates by the magnetorotational instability (MRI) depends on how well ionized they are. Disk surface layers ionized by stellar X-rays are susceptible to charge neutralization by small condensates, ranging from ∼0.01 μm sized grains to angstrom-sized polycyclic aromatic hydrocarbons (PAHs). Ion densities in X-ray-irradiated surfaces are so low that ambipolar diffusion weakens the MRI. Here we show that ionization by stellar far-ultraviolet (FUV) radiation enables full-blown MRI turbulence in disk surface layers. Far-UV ionization of atomic carbon and sulfur produces a plasma so dense that it is immune to ion recombination on grains and PAHs. The FUV-ionized layer, of thickness 0.01-0.1 g cm -2 , behaves in the ideal magnetohydrodynamic limit and can accrete at observationally significant rates at radii ∼> 1-10 AU. Surface layer accretion driven by FUV ionization can reproduce the trend of increasing accretion rate with increasing hole size seen in transitional disks. At radii ∼<1-10 AU, FUV-ionized surface layers cannot sustain the accretion rates generated at larger distance, and unless turbulent mixing of plasma can thicken the MRI-active layer, an additional means of transport is needed. In the case of transitional disks, it could be provided by planets.

  1. Characteristics of light reflected from a dense ionization wave with a tunable velocity

    OpenAIRE

    Zhidkov, A.; Esirkepov, T.; Fujii, T.; Nemoto, K.; Koga, J.; Bulanov, S. V.

    2009-01-01

    An optically-dense ionization wave (IW) produced by two femtosecond laser pulses focused cylindrically and crossing each other is shown to be an efficient coherent x-ray converter. The resulting velocity of a quasi-plane IW in the vicinity of pulse intersection increases with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing an easy tuning the wavelength of x-rays. The x-ray spectra of a converted, lower frequency coherent light change from the monoc...

  2. Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF{sub 6}) in the diffusion cascade

    Energy Technology Data Exchange (ETDEWEB)

    Huffer, J.E. [Parallax, Inc., Atlanta, GA (United States)

    1997-04-01

    This paper determines the nuclear safety of gaseous UF{sub 6} in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF{sub 6} in plant operations..

  3. Detection of minimum-ionizing particles in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Kaplan, S.N.; Fujieda, I.; Perez-Mendez, V.; Qureshi, S.; Ward, W.; Street, R.A.

    1987-09-01

    Based on previously-reported results of the successful detection of alpha particles and 1- and 2-MeV protons with hydrogenated amorphous silicon (a-Si : H) diodes, detection of a single minimum-ionizing particle will require a total sensitive thickness of approximately 100 to 150 μm, either in the form of a single thick diode, or as a stack of several thinner diodes. Signal saturation at high dE/dx makes it necessary to simulate minimum ionization in order to evaluate present detectors. Two techniques, using pulsed infrared light, and pulsed x-rays, give single-pulse signals large enough for direct measurements. A third, using beta rays, requires multiple-transit signal averaging to produce signals measurable above noise. Signal amplitudes from the a-Si : H limit at 60% of the signal size from Si crystals extrapolated to the same thickness. This is consistent with an a-Si : H radiation ionization energy, W = 6 eV/electron-hole pair. Beta-ray signals are observed at the expected amplitude

  4. Measurement of the Portsmouth Gaseous Diffusion Plant criticality accident alarm

    International Nuclear Information System (INIS)

    Tayloe, R.W. Jr.; D'Aquila, D.M.; McGinnis, R.B.

    1991-01-01

    The nuclear criticality accident radiation alarm system installed at the Portsmouth Gaseous Diffusion Plant was tested extensively at critical facilities located at the Los Alamos National Laboratory. The ability of the neutron scintillator radiation detection units to respond to a minimum accident of concern as defined in Standard ANSI/ANS-83.-1986 was demonstrated. Detector placement and the established trip point are based on shielding calculations performed by the Oak Ridge National Laboratory and criticality specialists at the Portsmouth plant. Based on these experiments and calculations, a detector trip point of 5 mrad/h in air is used. Any credible criticality accident is expected to produce neutron radiation fields >5 mrad/h in air at one or more radiation alarm locations. Each radiation alarm location has a cluster of three detectors that employs a two-out-of-three alarm logic. Earlier work focused on testing the alarm logic latching circuitry. This work was directed toward measurements involving the actual audible alarm signal delivered

  5. Design of the free-air ionization chamber, FAC-IR-150, for X-ray dosimetry

    Science.gov (United States)

    Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein

    2018-03-01

    The primary standard for X-ray dosimetry is based on the free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) designed the free-air ionization chamber, FAC-IR-150, for low and medium energy X-ray dosimetry. The purpose of this work is the study of the free-air ionization chamber characteristics and the design of the FAC-IR-150. The FAC-IR-150 dosimeter has two parallel plates, a high voltage plate and a collector plate. A guard electrode surrounds the collector and is separated by an air gap. A group of guard strips is used between up and down electrodes to produce a uniform electric field in all the ion chamber volume. This design involves introducing the correction factors and determining the exact dimensions of the ionization chamber by using Monte Carlo simulation.

  6. Predicting Ionization Rates from SEP and Solar Wind Proton Precipitation into the Martian Atmosphere

    Science.gov (United States)

    Jolitz, R.; Dong, C.; Lee, C. O.; Curry, S.; Lillis, R. J.; Brain, D.; Halekas, J. S.; Larson, D. E.; Bougher, S. W.; Jakosky, B. M.

    2017-12-01

    Precipitating energetic particles ionize planetary atmospheres and increase total electron content. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutrals and pass through the magnetosheath, while SEPs are sufficiently energetic to cross the magnetosheath unchanged. In this study we will present predicted ionization rates and resulting electron densities produced by solar wind and SEP proton ionization during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare ionization by SEP and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help to quantify how the ionosphere responds to extreme solar events during solar minimum.

  7. Simulation study of the ionizing front in the critical ionization velocity phenomenon

    International Nuclear Information System (INIS)

    Machida, S.; Goertz, C.K.; Lu, G.

    1988-01-01

    Simulations of the Critical Ionization Velocity (CIV) for a neutral gas cloud moving across the static magnetic field are made. We treat a low-β plasma and use a 2-1/2 D electrostatic code linked with our Plasma and Neutral Interaction Code (PANIC). Our study is focused on the understanding of the interface between the neutral gas cloud and the surrounding plasma where the strong interaction takes place. We assume the existence of some hot electrons in the ambient plasma to provide a seed ionization for CIV. When the ionization starts a sheath-like structure is formed at the surface of the neutral gas (Ionizing Front). In that region the crossfield component of the electric field causes the electron to E x B drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron mass ratio. Thus the kinetic energy of the drifting electrons can be large enough for electron impact ionization. In addition a diamagnetic drift of the electron occurs due to the number density and temperature inhomogeneity in the ionization front. These drift currents excite the lower-hybrid waves with the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in electron heating and additional ionization. The overall structure is studied by developing a simple analytic model as well as making simulation runs. (author)

  8. Dark Matter Detection Using Helium Evaporation and Field Ionization.

    Science.gov (United States)

    Maris, Humphrey J; Seidel, George M; Stein, Derek

    2017-11-03

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1  MeV/c^{2}.

  9. Dark Matter Detection Using Helium Evaporation and Field Ionization

    Science.gov (United States)

    Maris, Humphrey J.; Seidel, George M.; Stein, Derek

    2017-11-01

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .

  10. Monitoring gaseous CO2 and ethanol above champagne glasses: flute versus coupe, and the role of temperature.

    Directory of Open Access Journals (Sweden)

    Gérard Liger-Belair

    Full Text Available In champagne tasting, gaseous CO(2 and volatile organic compounds progressively invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. Simultaneous quantification of gaseous CO(2 and ethanol was monitored through micro-gas chromatography (μGC, all along the first 15 minutes following pouring, depending on whether a volume of 100 mL of champagne was served into a flute or into a coupe. The concentration of gaseous CO(2 was found to be significantly higher above the flute than above the coupe. Moreover, a recently developed gaseous CO(2 visualization technique based on infrared imaging was performed, thus confirming this tendency. The influence of champagne temperature was also tested. As could have been expected, lowering the temperature of champagne was found to decrease ethanol vapor concentrations in the headspace of a glass. Nevertheless, and quite surprisingly, this temperature decrease had no impact on the level of gaseous CO(2 found above the glass. Those results were discussed on the basis of a multiparameter model which describes fluxes of gaseous CO(2 escaping the liquid phase into the form of bubbles.

  11. Monitoring gaseous CO2 and ethanol above champagne glasses: flute versus coupe, and the role of temperature.

    Science.gov (United States)

    Liger-Belair, Gérard; Bourget, Marielle; Pron, Hervé; Polidori, Guillaume; Cilindre, Clara

    2012-01-01

    In champagne tasting, gaseous CO(2) and volatile organic compounds progressively invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. Simultaneous quantification of gaseous CO(2) and ethanol was monitored through micro-gas chromatography (μGC), all along the first 15 minutes following pouring, depending on whether a volume of 100 mL of champagne was served into a flute or into a coupe. The concentration of gaseous CO(2) was found to be significantly higher above the flute than above the coupe. Moreover, a recently developed gaseous CO(2) visualization technique based on infrared imaging was performed, thus confirming this tendency. The influence of champagne temperature was also tested. As could have been expected, lowering the temperature of champagne was found to decrease ethanol vapor concentrations in the headspace of a glass. Nevertheless, and quite surprisingly, this temperature decrease had no impact on the level of gaseous CO(2) found above the glass. Those results were discussed on the basis of a multiparameter model which describes fluxes of gaseous CO(2) escaping the liquid phase into the form of bubbles.

  12. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    International Nuclear Information System (INIS)

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Gil, A; Gómez-Cadenas, J J; Borges, F I G; Conde, C A N; Fernandes, L M P; Freitas, E D C; Cebrián, S; Dafni, T; Gómez, H; Egorov, M; Gehman, V M; Goldschmidt, A; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.

  13. Effects of radiation damage to TMP [tetramethylpentane], TMS [tetramethylsilane] and liquid argon solutions

    International Nuclear Information System (INIS)

    Holroyd, R.

    1988-01-01

    The effects of exposure of calorimeter liquids like tetramethylsilane (TMS), 2,2,4,4-tetramethylpentane (TMP) and liquid argon solutions to the large doses of ionizing radiation expected in the SCC environment is examined. Like other organic liquids TMS and TMP are decomposed by radiation to various products; thus, we must consider the effects these products may have on the calorimeter operation. Questions considered include how will radiation effect electron drift velocity and lifetime? Will gaseous products produce significant pressure buildup? Are dose rate effects significant? Do we expect different effects from neutrons compared to minimum ionizing radiation? 16 refs., 5 figs., 3 tabs

  14. Introduction to ionizing radiation physics

    International Nuclear Information System (INIS)

    Musilek, L.

    1979-01-01

    Basic properties are described of the atom, atomic nucleus and of ionizing radiation particles; nuclear reactions, ionizing radiation sources and ionizing radiation interaction with matter are explained. (J.P.)

  15. Non-ionizing radiation protection training manual for radiation control. Lectures, demonstrations, laboratories and tours on the course on non-ionizing radiations. Final report

    International Nuclear Information System (INIS)

    Morgan, K.Z.; Burkhart, R.L.

    1976-03-01

    In late 1974, consultation with the National Training Coordination Committee of the Conference of Radiation Control Program Directors determined that State personnel needed training in order to fulfill their responsibility with respect to the growing number of non-ionizing radiation sources. A contract was awarded to the Georgia Institute of Technology to develop materials for a training program on non-ionizing radiation protection, pilot test these materials in a two-week presentation for Federal, State, and local government health personnel, and revise the materials as needed to produce a self-contained training manual. The materials were pilot-tested in March 1976, and then revised to provide the final manual. The course consists of three parts (1) general discussions of basic principles, properties, propagation and behavior of all types of non-ionizing radiations (2) an indepth study of all types and applications of coherent (laser) radiations, and (3) a study of ultraviolet, infrared, microwave, r.f., longwave and mechanical radiations as they may be used to have applications in hospitals and other medical institutions

  16. Collisional ionization

    International Nuclear Information System (INIS)

    Arnaud, M.

    1985-07-01

    In low density, thin plasmas (such as stellar coronae, interstellar medium, intracluster medium) the ionization process is governed by collision between electrons and ions in their ground state. In view of the recent improvements we thought an updating of ionization rates was really needed. The work is based on both experimental data and theoretical works and give separate estimates for the direct and autoionization rates

  17. Solid–gaseous phase transformation of elemental contaminants during the gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ying; Ameh, Abiba [Centre for Bioenergy & Resource Management, School of Energy, Environment & Agrifood, Cranfield University, Cranfield MK43 0AL (United Kingdom); Lei, Mei [Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Duan, Lunbo [Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Longhurst, Philip, E-mail: P.J.Longhurst@cranfield.ac.uk [Centre for Bioenergy & Resource Management, School of Energy, Environment & Agrifood, Cranfield University, Cranfield MK43 0AL (United Kingdom)

    2016-09-01

    Disposal of plant biomass removed from heavy metal contaminated land via gasification achieves significant volume reduction and can recover energy. However, these biomass often contain high concentrations of heavy metals leading to hot-corrosion of gasification facilities and toxic gaseous emissions. Therefore, it is of significant interest to gain a further understanding of the solid–gas phase transition of metal(loid)s during gasification. Detailed elemental analyses (C, H, O, N and key metal/metalloid elements) were performed on five plant species collected from a contaminated site. Using multi-phase equilibria modelling software (MTDATA), the analytical data allows modelling of the solid/gas transformation of metal(loid)s during gasification. Thermodynamic modelling based on chemical equilibrium calculations was carried out in this study to predict the fate of metal(loid) elements during typical gasification conditions and to show how these are influenced by metal(loid) composition in the biomass and operational conditions. As, Cd, Zn and Pb tend to transform to their gaseous forms at relatively low temperatures (< 1000 °C). Ni, Cu, Mn and Co converts to gaseous forms within the typical gasification temperature range of 1000–1200 °C. Whereas Cr, Al, Fe and Mg remain in solid phase at higher temperatures (> 1200 °C). Simulation of pressurised gasification conditions shows that higher pressures increase the temperature at which solid-to-gaseous phase transformations takes place. - Highlights: • Disposal of plants removed from metal contaminated land raises environmental concerns • Plant samples collected from a contaminated site are shown to contain heavy metals. • Gasification is suitable for plant disposal and its emission is modelled by MTDATA. • As, Cd, Zn and Pb are found in gaseous emissions at a low process temperature. • High pressure gasification can reduce heavy metal elements in process emission.

  18. Inverted end-Hall-type low-energy high-current gaseous ion source

    International Nuclear Information System (INIS)

    Oks, E. M.; Vizir, A. V.; Shandrikov, M. V.; Yushkov, G. Yu.; Grishin, D. M.; Anders, A.; Baldwin, D. A.

    2008-01-01

    A novel approach to low-energy, high-current, gaseous ion beam generation was explored and an ion source based on this technique has been developed. The source utilizes a dc high-current (up to 20 A) gaseous discharge with electron injection into the region of ion generation. Compared to the conventional end-Hall ion source, the locations of the discharge anode and cathode are inverted: the cathode is placed inside the source and the anode outside, and correspondingly, the discharge current is in the opposite direction. The discharge operates in a diverging axial magnetic field, similar to the end-Hall source. Electron generation and injection is accomplished by using an additional arc discharge with a ''cold'' (filamentless) hollow cathode. Low plasma contamination is achieved by using a low discharge voltage (avoidance of sputtering), as well as by a special geometric configuration of the emitter discharge electrodes, thereby filtering (removing) the erosion products stemming from the emitter cathode. The device produces a dc ion flow with energy below 20 eV and current up to 2.5 A onto a collector of 500 cm 2 at 25 cm from the source edge, at a pressure ≥0.02 Pa and gas flow rate ≥14 SCCM. The ion energy spread is 2 to 3 eV (rms). The source is characterized by high reliability, low maintenance, and long lifetime. The beam contains less than 0.1% of metallic ions. The specific electric energy consumption is 400 eV per ion registered at the collector. The source operates with noble gases, nitrogen, oxygen, and hydrocarbons. Utilizing biasing, it can be used for plasma sputtering, etching, and other ion technologies

  19. The application of ionizers in domestic refrigerators for reduction in airborne and surface bacteria.

    Science.gov (United States)

    Kampmann, Y; Klingshirn, A; Kloft, K; Kreyenschmidt, J

    2009-12-01

    To investigate the antimicrobial effect of ionization on bacteria in household refrigerators. Ionizer prototypes were tested with respect to their technical requirements and their ability to reduce surface and airborne contamination in household refrigerators. Ion and ozone production of the tested prototypes were measured online by an ion meter and an ozone analyser. The produced negative air ion (NAI) and ozone amounts were between 1.2 and 3.7 x 10(6) NAI cm(-3) and 11 and 19 ppb O(3), respectively. To test the influence of ionization on surface contamination, different materials like plastic, glass and nutrient agar for simulation of food were inoculated with bacterial suspensions. The reduction rate was dependent on surface properties. The effect on airborne bacteria was tested by nebulization of Bacillus subtilis- suspension (containing spores) aerosols in refrigerators with and without an ionizer. A clear reduction in air contamination because of ionization was measured. The antimicrobial effect is dependent on several factors, such as surface construction and airflow patterns within the refrigerator. Ionization seems to be an effective method for reduction in surface and airborne bacteria. This study is an initiation for a new consumer tool to decontaminate domestic refrigerators.

  20. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  1. The mechanism for the primary biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Byakov, Vsevolod M; Stepanov, Sergei V

    2006-01-01

    The primary biological response of living organisms to the passage of fast charged particles is traditionally believed to be dominated by the chemical reactions of the radical products from the radiolysis of cellular water (OH, H, e aq - , O 2 - , H 2 O 2 ) and by the bioradicals that they produce (and which can also result from the direct electronic activation of biomolecules). This understanding has provided insight into how ionizing radiations affect biological systems and, most importantly, what radioprotection and radiosensibilizing effects are produced by chemical compounds introduced into an organism. However, a number of key radiobiological facts remain unexplained by the current theory, stimulating a search for other biologically active factors that may be triggered by radiation. This review examines a fact that is usually ignored in discussing the biological impact of ionizing radiation: the local increase in acidity in the water solution along the track of a charged particle. The acidity in the track is very different from its value for cellular water in a living organism. Biological processes are well-known to be highly sensitive to changes in the environmental acidity. It seems that the biological impact of ionizing radiations is dominated not by the water radiolysis products (mostly radicals) listed above but particles of a different nature, hydroxonium ions H 3 O + , where the term hydroxonium refer to protonated water molecules. This modification of the mechanism of primary radiobiological effects is in good agreement with experimental data. In particular, the extremal dependence of the relative biological efficiency (RBE) of radiations on their ionizing energy losses is accounted for in quantitative terms, as is the increase in the RBE in the relativistic energy range. (reviews of topical problems)

  2. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA

    International Nuclear Information System (INIS)

    Goodhead, D.T.

    1994-01-01

    Ionizing radiations produce many hundreds of different simple chemical products in DNA and also multitudes of possible clustered combinations. The simple products, including single-strand breaks, tend to correlate poorly with biological effectiveness. Even for initial double-strand breaks, as a broad class, there is apparently little or no increase in yield with increasing ionization density, in contrast with the large rise in relative biological effectiveness for cellular effects. Track structure analysis has revealed that clustered DNA damage of severity greater than simple double-strand breaks is likely to occur at biologically relevant frequencies with all ionizing radiations. Studies are in progress to describe in more detail the chemical nature of these clustered lesions and to consider the implications for cellular repair. (author)

  3. Development of a spatially uniform fast ionization wave in a large-volume discharge

    International Nuclear Information System (INIS)

    Zatsepin, D.V.; Starikovskaya, S.M.; Starikovskii, A.Yu.

    1998-01-01

    A study is made of a high-voltage nanosecond breakdown in the form of a fast ionization wave produced in a large-volume (401) discharge chamber. The propagation speed of the wave front and the integral energy deposition in a plasma are measured for various regimes of the air discharge at pressures of 10 -2 -4 Torr. A high degree of both the spatial uniformity of the discharge and the reproducibility of the discharge parameters is obtained. The possibility of the development of a fast ionization wave in an electrodeless system is demonstrated. A transition of the breakdown occurring in the form of a fast ionization wave into the streamer breakdown is observed. It is shown that such discharges are promising for technological applications

  4. Drawing a different picture with pencil lead as matrix-assisted laser desorption/ionization matrix for fullerene derivatives.

    Science.gov (United States)

    Nye, Leanne C; Hungerbühler, Hartmut; Drewello, Thomas

    2018-02-01

    Inspired by reports on the use of pencil lead as a matrix-assisted laser desorption/ionization matrix, paving the way towards matrix-free matrix-assisted laser desorption/ionization, the present investigation evaluates its usage with organic fullerene derivatives. Currently, this class of compounds is best analysed using the electron transfer matrix trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB), which was employed as the standard here. The suitability of pencil lead was additionally compared to direct (i.e. no matrix) laser desorption/ionization-mass spectrometry. The use of (DCTB) was identified as the by far gentler method, producing spectra with abundant molecular ion signals and much reduced fragmentation. Analytically, pencil lead was found to be ineffective as a matrix, however, appears to be an extremely easy and inexpensive method for producing sodium and potassium adducts.

  5. Characterization of a Distributed Plasma Ionization Source (DPIS) for Ion Mobility Spectrometry and Mass Spectrometry

    International Nuclear Information System (INIS)

    Waltman, Melanie J.; Dwivedi, Prabha; Hill, Herbert; Blanchard, William C.; Ewing, Robert G.

    2008-01-01

    A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry and ion mobility spectrometry. The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions depending on the polarity of the applied potential. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H2O)nH+ with (H2O)2H+ as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO3-, NO3-, NO2-, O3- and O2- of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and environmental pollutants were selected to evaluate the new ionization source. The source was operated continuously for several months and although deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions. The results indicated that the DPIS may have a longer operating life than a conventional corona discharge.

  6. Direct Laser Ablation and Ionization of Solids for Chemical Analysis by Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Holt, J K; Nelson, E J; Klunder, G L [Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2007-04-15

    A laser ablation/ionization mass spectrometer system is described for the direct chemical analysis of solids. An Nd:YAG laser is used for ablation and ionization of the sample in a quadrupole ion trap operated in an ion-storage (IS) mode that is coupled with a reflectron time-of-flight mass spectrometer (TOF-MS). Single pulse experiments have demonstrated simultaneous detection of up to 14 elements present in glasses in the ppm range. However, detection of the components has produced non-stoichiometric results due to difference in ionization potentials and fractionation effects. Time-of-flight secondary ionization mass spectrometry (TOF-SIMS) was used to spatially map elemental species on the surface and provide further evidence of fractionation effects. Resolution (m/{delta}m) of 1500 and detection limits of approximately 10 pg have been achieved with a single laser pulse. The system configuration and related operating principles for accurately measuring low concentrations of isotopes are described.

  7. Effects of ionizing radiation of electrical properites of refractory insulators

    International Nuclear Information System (INIS)

    van Lint, V.A.J.; Bunch, J.M.

    1975-01-01

    The Los Alamos Reference Theta Pinch Reactor (RTPR) requires on the first wall an electrical insulator which will withstand transient high voltage at high temperature 10 sec after severe neutron and ionizing irradiation. Few measurements of electrical parameters for heavily disordered refractory insulators have been reported; estimates are made as to whether breakdown strength or conductivity will be degraded by the irradiation. The approach treats separately short-term ionization effects (free and trapped electrons and holes) and long-term gross damage effects (transmutation products and various lattice defects). The following processes could produce unacceptable conduction across the first wall insulator: (a) delayed electronic conductivity 10 sec after the prompt ionization by bremsstrahlung; (b) prompt electronic conductivity from delayed ionization; (c) electronic breakdown; (d) electronic or ionic conductivity due to thermal motion in the disordered material, possibly leading to thermal breakdown. Worst-case calculations based on lower limits to recombination coefficients limit process (a) to sigma much less than 5 x 10 -14 mho/cm. Data on ionization-induced conductivity in insulators predict for process (b) sigma much less than 10 -8 mho/cm. Electronic breakdown generally occurs at fields well above the 10 5 V/cm required for RTPR. Thermal breakdown is negligible due to the short voltage pulse. Ionic and electronic conduction must be studied theoretically and experimentally in the type of highly disordered materials that result from neutron irradiation of the first wall

  8. Research on solubility characteristics of gaseous methyl iodide

    International Nuclear Information System (INIS)

    Zhou Yanmin; Sun Zhongning; Gu Haifeng; Wang Junlong

    2014-01-01

    With the deionized water as the absorbent, the solubility characteristics of the gaseous methyl iodide were studied under different temperature and pressure conditions, using a dynamic measuring method. The results show that within the range of experiment parameters, namely temperature is below 80℃ and pressure is lower than 0.3 MPa, the physical dissolution process of gaseous methyl iodide in water obeys Henry's law. The solubility coefficient under different temperature and pressure conditions was calculated based on the measurement results. Further research indicates that at atmospheric pressure, the solubility coefficient of methyl iodide in water decreases exponentially with the increase of temperature. While the pressure changes from 0.1 MPa to 0.3 MPa with equal interval, the solubility coefficient also increases linearly. The variation of the solubility coefficient with temperature under different pressure conditions all decreases exponentially. An equation is given to calculate the solubility coefficient of methyl iodide under different pressure and temperature conditions. (authors)

  9. Multiorbital effects in strong-field ionization and dissociation of aligned polar molecules CH3I and CH3Br

    Science.gov (United States)

    Luo, Sizuo; Zhou, Shushan; Hu, Wenhui; Li, Xiaokai; Ma, Pan; Yu, Jiaqi; Zhu, Ruihan; Wang, Chuncheng; Liu, Fuchun; Yan, Bing; Liu, Aihua; Yang, Yujun; Guo, Fuming; Ding, Dajun

    2017-12-01

    Controlling the molecular axis offers additional ways to study molecular ionization and dissociation in strong laser fields. We measure the ionization and dissociation yields of aligned polar CH3X (X =I , Br) molecules in a linearly polarized femtosecond laser field. The current data show that maximum ionization occurs when the laser polarization is perpendicular to the molecular C -X axis, and dissociation prefers to occur at the laser polarization parallel to the C -X axis. The observed angular distributions suggest that the parent ions are generated by ionization from the HOMO. The angular distribution of fragment ions indicates that dissociation occurs mainly from an ionic excited state produced by ionization from the HOMO-1.

  10. Ionization radiations - basis, risks and benefits

    International Nuclear Information System (INIS)

    Bodart, F.

    1991-01-01

    An attempt is made to discuss the use of ionizing radiations in an impartial way. Ionizing radiation is potentially harmfull; excessive doses have a devastating effect on living cells. However, there is no direct, conclusive evidence of human disability, either in the form of cancer or genetic anomalies, arising as a consequence of low-level doses of x- or gamma-rays of about 0.01 Gray (1 rad) the entire dose range involved in medical radiography or in nuclear industry. Statements appearing in the press that a certain number of excess cancers will be produced are estimates, based maybe on plausible assumptions, but estimates nevertheless; they are not measured quantities or established facts. A balanced view of radiation must include appreciation of the substantial benefits which result from their use in both medicine and industry. The risks are small and hard to demonstrate, and it is instructive to make a comparison with the other hazards occuring continually in an industrialized society, such as driving a motorcar or smoking cigarettes. (Author)

  11. Hydrodynamic optical-field-ionized plasma channels

    Science.gov (United States)

    Shalloo, R. J.; Arran, C.; Corner, L.; Holloway, J.; Jonnerby, J.; Walczak, R.; Milchberg, H. M.; Hooker, S. M.

    2018-05-01

    We present experiments and numerical simulations which demonstrate that fully ionized, low-density plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization. Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200 mm long plasma channels with axial densities of order ne(0 ) =1 ×1017cm-3 and lowest-order modes of spot size WM≈40 μ m . These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimeter of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with 1.5 ×1017cm-3≲ne(0 ) ≲1 ×1018cm-3 and 61 μ m ≳WM≳33 μ m . Low-density plasma channels of this type would appear to be well suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.

  12. Ionization chamber

    International Nuclear Information System (INIS)

    Jilbert, P.H.

    1975-01-01

    The invention concerns ionization chambers with particular reference to air-equivalent ionization chambers. In order to ensure that similar chambers have similar sensitivities and responses the surface of the chamber bounding the active volume carries a conducting material, which may be a colloidal graphite, arranged in the form of lines so that the area of the conducting material occupies only a small proportion of the area of said surface. (U.S.)

  13. ASSESSMENT OF THE MOISTURE EFFECT ON GASEOUS PRODUCTS OF SELF-HEATING OF WOOD CHIPS

    Directory of Open Access Journals (Sweden)

    Hana VĚŽNÍKOVÁ

    2017-12-01

    Full Text Available Biofuels are stored in large quantities and may be susceptible to self-ignition. The possible methods of indication of temperature increase include the analysis of the gaseous products of heating where concentrations of certain gases may increase with increasing temperature. Gas release is also affected by the moisture of the material given that the moisture level changes surface accessibility for oxygen on the one side and serves as a catalyst of the oxidation reactions on the other. The present project analysed the effect of temperature and moisture on gaseous products of heating of wood chips, one of frequently used biofuels, with the aim to determine a suitable gaseous indicator of beginning self-ignition.

  14. Plasma production via field ionization

    Directory of Open Access Journals (Sweden)

    C. L. O’Connell

    2006-10-01

    Full Text Available Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch, or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam’s bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  15. Device for taking gaseous samples from irradiated fuel elements

    International Nuclear Information System (INIS)

    Lengacker, B.

    1983-01-01

    The described device allows to take gaseous samples from irradiated fuel elements. It is connected with a gas analyzer and a pressure gage, so that in opening the fuel can the internal pressure can be determined

  16. Ionization mechanisms in capillary supercritical fluid chromatography-chemical ionization mass spectrometry

    NARCIS (Netherlands)

    Houben, R.J.; Leclercq, P.A.; Cramers, C.A.M.G.

    1991-01-01

    Ionization mechanisms have been studied for supercritical fluid chromatography (SFC) with mass spectrometric (MS) detection. One of the problems associated with SFC-MS is the interference of mobile phase constituents in the ionization process, which complicates the interpretation of the resulting

  17. Tooth-germ damage by ionizing radiation

    International Nuclear Information System (INIS)

    Sobkowiak, E.M.; Beetke, E.; Bienengraeber, V.; Held, M.; Kittner, K.H.

    1977-01-01

    Experiments on animals (four-week-old dogs) were conducted in an investigation made to study the possibility of dose-dependent tooth-germ damage produced by ionizing radiation. The individual doses were 50 R and 200 R, respectively, and they were administered once to three times at weekly intervals. Hyperemia and edemata could be observed on tooth-germ pulps from 150 R onward. Both of these conditions became more acute as the radiation dose increased (from 150 R to 600 R). Possible damage to both the dentin and enamel is pointed out. (author)

  18. An investigation of electronic states of some molecules and molecular cations using mass analyzed threshold ionization and photoinduced Rydberg ionization spectroscopy

    Science.gov (United States)

    Hofstein, Jason David

    1999-11-01

    Mass analyzed threshold ionization (MATI) experiments have enabled mapping of the n-dependent Rydberg state survival probability for a series of molecules. Utilizing vacuum and extreme ultraviolet (VUV/XUV) photons, one photon Rydberg manifold spectra of argon, hydrogen chloride, nitrogen, benzene, and oxygen were produced, and the prospects of photoinduced Rydberg ionization (PIRI) experiments examined. It was found that the widths of Rydberg manifolds for the molecules studied are quite different. Hydrogen chloride and nitrogen have the narrowest manifold width, followed by benzene, and then oxygen. These varying widths are most strongly correlated with the angular momentum (i.e., quantum defect) of the initially prepared Rydberg orbital. PIRI experiments required the use of a static cell, rather than a molecular jet assembly, for the more efficient production of higher amounts of VUV/XUV radiation, and hence more Rydberg signal needed to observe PIRI. Armed with the ability to produce tunable VUV/XUV radiation, and to determine the feasibility of a PIRI experiment, the MATI and fragment PIRI spectra of trans-1,3-butadiene (BD) were recorded. The MATI spectrum is vibrationally resolved and was analyzed with the help of ab initio calculations and other published results. The fragment PIRI spectrum of the Aproduction of C3H3+ dominates, but at higher photon energies, C2H4 + is also produced. The production of each fragment showed a definite PIRI wavelength dependence.

  19. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl.

    Science.gov (United States)

    Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-03-15

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations.

  20. Fast Breakdown as Coronal/Ionization Waves?

    Science.gov (United States)

    Krehbiel, P. R.; Petersen, D.; da Silva, C. L.

    2017-12-01

    Studies of high-power narrow bipolar events (NBEs) have shown they are produced by a newly-recognized breakdown process called fast positive breakdown (FPB, Rison et al., 2016, doi:10.1038/ncomms10721). The breakdown was inferred to be produced by a system of positive streamers that propagate at high speed ( ˜3-6 x 107 m/s) due to occurring in a localized region of strong electric field. The polarity of the breakdown was determined from broadband interferometer (INTF) observations of the propagation direction of its VHF radiation, which was downward into the main negative charge region of a normally-electrified storm. Subsequent INTF observations being conducted in at Kennedy Space Center in Florida have shown a much greater incidence of NBEs than in New Mexico. Among the larger dataset have been clear-cut instances of some NBEs being produced by upward breakdown that would be of negative polarity. The speed and behavior of the negative breakdown is the same as that of the fast positive, leading to it being termed fast negative breakdown (FNB). The similarity (not too mention its occurrence) is surprising, given the fact that negative streamers and breakdown develops much differently than that of positive breakdown. The question is how this happens. In this study, we compare fast breakdown characteristics to well-known streamer properties as inferred from laboratory experiments and theoretical analysis. Additionally, we begin to explore the possibility that both polarities of fast breakdown are produced by what may be called coronal or ionization waves, in which the enhanced electric field produced by streamer or coronal breakdown of either polarity propagates away from the advancing front at the speed of light into a medium that is in a metastable condition of being at the threshold of hydrometeor-mediated corona onset or other ionization processes. The wave would develop at a faster speed than the streamer breakdown that gives rise to it, and thus would be