WorldWideScience

Sample records for producing fuel grade

  1. Directions and prospects of using low grade process fuel to produce alumina

    Directory of Open Access Journals (Sweden)

    О. А. Дубовиков

    2016-08-01

    Full Text Available Power consumption across the globe is constantly increasing for a variety of reasons: growing population, industrialization and fast economic growth. The most widespread gaseous fuel – natural gas – has the low production cost. It is 2-3 times cheaper than liquid fuel production and 6-12 times cheaper than coal production. When natural gas is transported to distances from 1.5 to 2.5 thousand km by the pipeline, its cost with account of transportation is 1.5-2 times less than the cost of coal and the fuel storage facilities are not needed. Plants powered by natural gas have the higher efficiency as compared to the plants operating on other types of fuel. They are easier and cheaper to maintain and are relatively simple in automation, thus enhancing safety and improving the production process flow, do not require complicated fuel feeding or ash handling systems. Gas is combusted with a minimum amount of polluting emissions, which adds to better sanitary conditions and environment protection. But due to depletion of major energy resources many experts see the future of the global energy industry in opportunities associated with the use of solid energy carriers. From the environmental perspective solid fuel gasification is a preferred technology. The use of synthetic gas was first offered and then put to mass scale by English mechanical engineer William Murdoch. He discovered a possibility to use gas for illumination by destructive distillation of bituminous coal. After invention of the gas burner by Robert Bunsen, the illumination gas began to be used as a household fuel. The invention of an industrial gas generator by Siemens brothers made it possible to produce a cheaper generator gas which became a fuel for industrial furnaces. As the calorific value of generator gas produced through gasification is relatively low compared to natural gas, the Mining University studied possibilities to use different types of low grade process fuel at the

  2. Methods of producing transportation fuel

    Science.gov (United States)

    Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Cherrillo, Ralph Anthony [Houston, TX; Bauldreay, Joanna M [Chester, GB

    2011-12-27

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  3. Producing liquid fuels from biomass

    Science.gov (United States)

    Solantausta, Yrjo; Gust, Steven

    The aim of this survey was to compare, on techno-economic criteria, alternatives of producing liquid fuels from indigenous raw materials in Finland. Another aim was to compare methods under development and prepare a proposal for steering research related to this field. Process concepts were prepared for a number of alternatives, as well as analogous balances and production and investment cost assessments for these balances. Carbon dioxide emissions of the alternatives and the price of CO2 reduction were also studied. All the alternatives for producing liquid fuels from indigenous raw materials are utmost unprofitable. There are great differences between the alternatives. While the production cost of ethanol is 6 to 9 times higher than the market value of the product, the equivalent ratio for substitute fuel oil produced from peat by pyrolysis is 3 to 4. However, it should be borne in mind that the technical uncertainties related to the alternatives are of different magnitude. Production of ethanol from barley is of commercial technology, while biomass pyrolysis is still under development. If the aim is to reach smaller carbon dioxide emissions by using liquid biofuels, the most favorable alternative is pyrolysis oil produced from wood. Fuels produced from cultivated biomass are more expensive ways of reducing CO2 emissions. Their potential of reducing CO2 emissions in Finland is insignificant. Integration of liquid fuel production to some other production line is more profitable.

  4. Fuel consumption and emission on fuel mixer low-grade bioethanol fuelled motorcycle

    Directory of Open Access Journals (Sweden)

    Abikusna Setia

    2017-01-01

    Full Text Available Bioethanol is currently used as an alternative fuel for gasoline substitute (fossil fuel because it can reduce the dependence on fossil fuel and also emissions produced by fossil fuel which are CO2, HO, NOx. Bioethanol is usually used as a fuel mixed with gasoline with certain comparison. In Indonesia, the usage is still rare. Bioethanol that is commonly used is bioethanol anhydrous 99.5%. In the previous studies, bioethanol was distilled from low to high grade to produce ethanol anhydrous. But the result is only able to reach 95% or ethanol hydrous. This study is objected to design a simple mechanism in the mixing of bioethanol hydrous with the gasoline using a fuel mixer mechanism. By this mechanism, the fuel consumption and the resulting emissions from combustion engine can be analyzed. The fuel blend composition is prepared as E5, E10, and E15/E20, the result of fuel consumption and emission will be compared with pure gasoline. The using of bioethanol hydrous as a fuel mixture was tended to produce more stable bioethanol fuel consumption. However, the utilization of the mixture was found able to reduce the exhaust emissions (CO, HC, and NOx.

  5. Method of producing nuclear fuels

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Suzuki, Tokuyuki; Oomura, Hiroshi.

    1985-01-01

    Purpose: To fabricate a nuclear fuel assembly with uniform enrichment degree, in the blanket of a hybrid reactor. Constitution: A vessel charged with powderous source materials is conveyed by a conveying gas through a material charge/discharge tube to the inside of the blanket. Then, plasmas are formed in the inner space of the blanket so as to enrich the source materials by the irradiation of neutrons. After the average degree of enrichment reaches a predetermined level, the material vessel is discharged by the conveying gas onto a conveyor. The powder materials are separated from the source-material vessel and then charged into a source-material hopper. The mixed material of a uniform enrichment degree is supplied to a fuel-assembly-fabrication device. FP gases resulted after the enrichment are effectively separated and removed through an FP gas pipe. (Horiuchi, T.)

  6. CANDU reactors with reactor grade plutonium/thorium carbide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Suemer [Atilim Univ., Ankara (Turkey). Faculty of Engineering; Khan, Mohammed Javed; Ahmed, Rizwan [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); Gazi Univ., Ankara (Turkey). Faculty of Technology

    2011-08-15

    Reactor grade (RG) plutonium, accumulated as nuclear waste of commercial reactors can be re-utilized in CANDU reactors. TRISO type fuel can withstand very high fuel burn ups. On the other hand, carbide fuel would have higher neutronic and thermal performance than oxide fuel. In the present work, RG-PuC/ThC TRISO fuels particles are imbedded body-centered cubic (BCC) in a graphite matrix with a volume fraction of 60%. The fuel compacts conform to the dimensions of sintered CANDU fuel compacts are inserted in 37 zircolay rods to build the fuel zone of a bundle. Investigations have been conducted on a conventional CANDU reactor based on GENTILLYII design with 380 fuel bundles in the core. Three mixed fuel composition have been selected for numerical calculation; (1) 10% RG-PuC + 90% ThC; (2) 30% RG-PuC + 70% ThC; (3) 50% RG-PuC + 50% ThC. Initial reactor criticality values for the modes (1), (2) and (3) are calculated as k{sub {infinity}}{sub ,0} = 1.4848, 1.5756 and 1.627, respectively. Corresponding operation lifetimes are {proportional_to} 2.7, 8.4, and 15 years and with burn ups of {proportional_to} 72 000, 222 000 and 366 000 MW.d/tonne, respectively. Higher initial plutonium charge leads to higher burn ups and longer operation periods. In the course of reactor operation, most of the plutonium will be incinerated. At the end of life, remnants of plutonium isotopes would survive; and few amounts of uranium, americium and curium isotopes would be produced. (orig.)

  7. Process of producing a fuel, etc

    Energy Technology Data Exchange (ETDEWEB)

    1924-12-01

    This invention has for its object a process of producing fuels by separating a light oil from primary tar, characterized by a succession of operations comprising preliminary removal of phenols from the oils, removing sulfur completely by the application of suitable catalysts and an agent to fix the free sulfur as hydrogen sulfide; finally, washing to remove ethylenes, pyridines, and impurities from the treatment.

  8. Process for producing nuclear reactor fuel oxides

    International Nuclear Information System (INIS)

    Goenrich, H.; Druckenbrodt, W.G.

    1981-01-01

    The waste gases of the calcination process furnace in the AVC or AV/PuC process (manufacture of nuclear reactor fuel dioxides) are returned to the furnace in a closed circuit. The NH 3 produced replaces the hydrogen which would otherwise be required for reduction in this process. (orig.) [de

  9. Preliminary evaluation of fuel oil produced from pyrolysis of waste ...

    African Journals Online (AJOL)

    It could be refined further to produce domestic kerosene and gasoline. The physical and structural properties of the fuel oil produced compared favorably with that of Aviation fuel JP-4 (a wide-cut US Air force fuel). Presently African countries are importing aviation fuels. The fuel oil produced from the pyrolysis of waste water ...

  10. Method of producing granulated ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1976-01-01

    For the production of granulated ceramic nuclear fuels with a grain size spectrum as narrow as possible it is proposed to suspend the nuclear fuel powder in a non-aqueous solvent with small content of hydrogen (e.g. chloridized hydrocarbons) while adding a binding agent and then dry it by means of rays. As binding agent polybutyl methane acrylate in dibutyl phthalate is proposed. The method is described by the example of UO 2 -powder in trichloroethylene. The dry granulated material is produced in one working step. (UWI) [de

  11. Romania, producer and consumer of nuclear fuel

    International Nuclear Information System (INIS)

    Iuhas, Tiberius

    1998-01-01

    A historical sketch of the activity of Romanian Rare Metals Enterprises is presented stressing the valorization of rare metals like: - radioactive metals, uranium and thorium; - dispersed rare metals, molybdenum, monazite; - heavy and refractory metals, titanium and zirconium; rare earths, lanthanides and yttrics. The beginning and developing of research in the nuclear field is in closed relation to the existence on the domestic territory of important uranium ores the mining of which begun early in 1954. The exploitation of Baita-Bihor orebody was followed by that at Ciudanovita, Natra and Dobrei ores in Caras-Severin county. Concomitantly with the ore mining, geological research was developed covering vast areas of country's surface and using advanced investigation tools suitable for increasing depths. The next step in the nuclear fuel program was made by building a uranium concentrate (as ammonium or sodium diuranate) plant. Two purification units for processing the uranium concentrate to sintered uranium dioxide powder were completed and commissioned at Feldioara in 1986. The quality of the uranium dioxide product meets the quality standards requirements for CANDU type nuclear fuel as certified in 1994. Currently, part of the fuel load of Cernavoda reactor is fuel element clusters produced by Nuclear Fuel Plant at Pitesti of sintered powder processed at Feldioara. A list of strategic objectives of the Uranium National Company is presented among which: - maintaining the uranium mining and milling activities in close relation with the fuel requirements of Cernavoda NPP; continuing geological research in promising zones, to find new uranium orebodies, easy to mill cost effectively; decreasing the environmental impact in the geological research areas, in mining and transport affected areas and in the processing plants. The fuel demand of current operation of Cernavoda NPP Unit 1 as well as of future Unit 2 after commissioning are and will be satisfied by the

  12. Method of producing encapsulated thermonuclear fuel particles

    International Nuclear Information System (INIS)

    Smith, W.H.; Taylor, W.L.; Turner, H.L.

    1976-01-01

    A method of producing a fuel particle is disclosed, which comprises forming hollow spheroids which have a mass number greater than 50, immersing said spheroids while under the presence of pressure and heat in a gaseous atmosphere containing an isotope, such as deuterium and tritium, so as to diffuse the gas into the spheroid and thereafter cooling said spheroids up to about 77 0 Kelvin to about 4 0 Kelvin. 4 Claims, 3 Drawing Figures

  13. Code Analyses Supporting PIE of Weapons-Grade MOX Fuel

    International Nuclear Information System (INIS)

    Ott, Larry J.; Bevard, Bruce Balkcom; Spellman, Donald J.; McCoy, Kevin

    2010-01-01

    The U.S. Department of energy has decided to dispose of a portion of the nation's surplus weapons-grade plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating the fuel in commercial power reactors. Four lead test assemblies (LTAs) were manufactured with weapons-grade mixed oxide (WG-MOX) fuel and irradiated in the Catawba Nuclear Station Unit 1, to a maximum fuel rod burnup of ∼47.3 GWd/MTHM. As part of the fuel qualification process, five rods with varying burnups and initial plutonium contents were selected from one assembly and shipped to the Oak Ridge National Laboratory (ORNL) for hot cell examination. ORNL has provided analytical support for the post-irradiation examination (PIE) of these rods via extensive fuel performance modeling which has aided in instrument settings and PIE data interpretation. The results of these fuel performance simulations are compared in this paper with available PIE data.

  14. Autothermal gasification of low-grade fuels in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    A.A. Belyaev [Scientific Center for Comprehensive Processing of Solid Combustible Minerals (IGI), Moscow (Russian Federation). Institute of Combustible Minerals Federal State Unitary Enterprise

    2009-01-15

    Autothermal gasification of high-ash flotation wastes of Grade Zh Kuzbass coal and low-ash fuel in a suspended-spouted (fluidized) bed at atmospheric pressure is investigated, and a comparison is presented of experimental results that indicate that the ash content of fuels has only slight influence on the generator gas heating value.

  15. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    De Hosson, J. T. M.; Ocelik, V.; Chandra, T; Torralba, JM; Sakai, T

    2003-01-01

    In this keynote paper two examples will be present of functionally graded materials produced with high power Nd:YAG lasers. In particular the conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of A18Si and Ti6Al4V alloys are presented. The formation of

  16. The mineralogy of bauxite for producing smelter-grade alumina

    Science.gov (United States)

    Authier-Martin, M.; Forte, G.; Ostap, S.; See, J.

    2001-12-01

    Aluminum-producing companies rely on low-cost, high-purity, smelter-grade alumina (aluminum oxide), and alumina production utilizes the bulk of bauxites mined world-wide. The mineralogy of the bauxites has a significant impact on the operation of the Bayer process for alumina production. Typically, the Bayer process produces smelter-grade alumina of 99.5% Al2O3, starting from bauxite containing 30% to 60% Al2O3. The main objective of the Bayer process is to extract the maximum amount of aluminum from the bauxite at as high an aluminate concentration in solution as possible, while limiting any troublesome side reactions. Only with a better understanding of the chemistry of the mineral species and a strict control of the operating/processing conditions can the Bayer process produce efficiently, a low cost, high-quality alumina with minimum detrimental environmental impact.

  17. The advanced neutron source three-element-core fuel grading

    International Nuclear Information System (INIS)

    Gehin, J.C.

    1995-01-01

    The proposed Advanced Neutron Source (ANS) pre-conceptual design consists of a two-element 330 MW f nuclear reactor fueled with highly-enriched uranium and is cooled, moderated, and reflected with heavy water. Recently, the ANS design has been changed to a three-element configuration in order to permit a reduction of the enrichment, if required, while maintaining or improving the thermal-hydraulic margins. The core consists of three annular fuel elements composed of involute-shaped fuel plates. Each fuel plate has a thickness of 1.27 mm and consists of a fuel meat region Of U 3 Si 2 -Al (50% enriched in one case that was proposed) and an aluminum filler region between aluminum cladding. The individual plates are separated by a 1.27 mm coolant channel. The three element core has a fuel loading of 31 kg of 235 U which is sufficient for a 17-day fuel cycle. The goal in obtaining a new fuel grading is to maximize important temperature margins. The limits imposed axe: (1) Limit the temperature drop over the cladding oxide layer to less than 119 degrees C to avoid oxide spallation. (2) Limit the fuel centerline temperature to less than 400 degrees C to avoid fuel damage. (3) Limit the cladding wall temperature to less than the coolant. incipient-boiling temperature to avoid coolant boiling. Other thermal hydraulic conditions, such as critical heat flux, are also considered

  18. Method of dry distillation of low-grade fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hellsing, G H; Wengstrom, R O.A.

    1920-05-20

    A method of dry distillation of low-grade fuels is characterized by having the process take place in a furnace that is charged alternately by partly cooled, red-hot, and fresh raw materials. The patent has one more claim.

  19. Method and apparatus for producing food grade carbon dioxide

    International Nuclear Information System (INIS)

    Nobles, J.E.; Swenson, L.K.

    1984-01-01

    A method is disclosed of producing food grade carbon dioxide from an impure carbon dioxide source stream containing contaminants which may include light and heavy hydrocarbons (at least C 1 to C 3 ) and light sulfur compounds such as hydrogen sulfide and carbonyl sulfide as well as heavier sulfur constituents in the nature of mercaptans (RSH) and/or organic mono and disulfides (RSR and RSSR). Nitrogen, water and/or oxygen may also be present in varying amounts in the impure feed stream. The feed gas is first rectified with liquid carbon dioxide condensed from a part of the feed stream to remove heavy hydrocarbons and heavy sulfur compounds, then passed through an absorber to effect removal of the light sulfur compounds, next subjected to an oxidizing atmosphere capable of converting all of the C 2 hydrocarbons and optionally a part of the methane to carbon oxides and water, chilled to condense the water in the remaining gas stream without formation of hydrates, liquefied for ease of handling and storage and finally stripped to remove residual contaminants such as methane, carbon monoxide and nitrogen to produce the final food grade carbon dioxide product

  20. Modernization of RTC for fabrication of MOX fuel, Vibropac fuel pins and BN-600 FA with weapon grade plutonium

    International Nuclear Information System (INIS)

    Grachyov, A.F.; Kalygin, V.V.; Skiba, O.V.; Mayorshin, A. A.; Bychkov, A.V.; Kisly, V.A.; Ovsyannikov, Y.F.; Bobrov, D.A.; Mamontov, S.I.; Tsyganov, A.N.; Churutkin, E.I.; Davydov, P.I.; Samosenko, E.A; Shalak, A.R.; Ojima, Hisao

    2004-01-01

    Since mid 70's RIAR has been performing activities on plutonium involvement in fuel cycle. These activities are considered a stage within the framework of the closed fuel cycle development. Developed at RIAR fuel cycle is based on two technologies: 'dry' process of fuel reprocessing and vibro-packing method for fuel pin fabrication. Due to the available scientific capabilities and a gained experience in operating the technological facilities (ORYOL, SIC) for plutonium (various grade) blending into fuel for fast reactors, RIAR is a participant of the activities aimed at solving these tasks. Under international program RIAR with financial support of JNC (Japan) is modernizing the facility for granulated fuel production, vibro-pac fuel pins and FA fabrication to provide the BN-600 'hybrid' core. In order to provide 'hybrid' core it is necessary to produce (per year): - 1775 kg of granulated MOX-fuel, 6500 fuel pins, 50 fuel assemblies. Potential output of the facility under construction is as follows: - 1800 kg of granulated MOX-fuel per year, 40 fuel pins per shift, 200 FAs for the BN-600 reactor per year. Taking into account domestic and foreign experience in MOX-fuel production, different options were discussed of the equipment layouts in the available premises of chemical technological division of RIAR: - in the shielded manipulator boxes, in the existing hot cells. During construction of the facility in the building under operation the following requirements should be met: - facility must meet all standards and regulations set for nuclear facilities, installation work at the facility must not influence other production programs implemented in the building, engineering supply lines of the facility must be connected to the existing service lines of the building, cost of the activities must not exceed amount of JNC funding. The paper presents results of comparison between two options of the process equipment layout: in boxes and hot cells. This equipment is intended

  1. Process to produce homogenized reactor fuels

    International Nuclear Information System (INIS)

    Hart, P.E.; Daniel, J.L.; Brite, D.W.

    1980-01-01

    The fuels consist of a mixture of PuO 2 and UO 2 . In order to increase the homogeneity of mechanically mixed fuels the pellets are sintered in a hydrogen atmosphere with a sufficiently low oxygen potential. This results in a reduction of Pu +4 to Pu +3 . By the reduction process water vapor is obtained increasing the pressure within the PuO 2 particles and causing PuO 2 to be pressed into the uranium oxide structure. (DG) [de

  2. Machine grading of lumber : practical concerns for lumber producers

    Science.gov (United States)

    William L. Galligan; Kent A. McDonald

    2000-01-01

    Machine lumber grading has been applied in commercial operations in North America since 1963, and research has shown that machine grading can improve the efficient use of wood. However, industry has been reluctant to apply research findings without clear evidence that the change from visual to machine grading will be a profitable one. For instance, mill managers need...

  3. Process and device to produce fuel briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Caroe, C J

    1980-10-23

    A two-stage process for the production of briquettes consisting essentially of cellulose (sawdust, peanut shells) is proposed. The fuel material (in case with additives) is molded by high pressure to pellets of the size of a few centimeters. The pellets are mixed with flammable binding agents like paraffin, wax, polyethylene etc. and molded at a lower pressure or extruded in a second step. A suited molding device is described. The wax content could be lowered with respect to known processes.

  4. From Russian weapons grade plutonium to MOX fuel

    International Nuclear Information System (INIS)

    Braehler, G.; Kudriavtsev, E.G.; Seyve, C.

    1997-01-01

    The April 1996, G7 Moscow Summit on nuclear matters provided a political framework for one of the most current significant challenges: ensuring a consistent answer to the weapons grade fissile material disposition issue resulting from the disarmament effort engaged by both the USA and Russia. International technical assessments have showed that the transformation of Weapons grade Plutonium in MOX fuel is a very efficient, safe, non proliferant and economically effective solution. In this regard, COGEMA and SIEMENS, have set up a consistent technical program properly addressing incineration of weapons grade plutonium in MOX fuels. The leading point of this program would be the construction of a Weapons grade Plutonium dedicated MOX fabrication plant in Russia. Such a plant would be based on the COGEMA-SIEMENS industrial capabilities and experience. This facility would be operated by MINATOM which is the partner for COGEMA-SIEMENS. MINATOM is in charge of coordination of the activity of the Russian research and construction institutes. The project take in account international standards for non-proliferation, safety and waste management. France and Germany officials reasserted this position during their last bilateral summits held in Fribourg in February and in Dijon in June 1996. MINATOM and the whole Russian nuclear community have already expressed their interest to cooperate with COGEMA-SIEMENS in the MOX field. This follows governmental-level agreements signed in 1992 by French, German and Russian officials. For years, Russia has been dealing with research and development on MOX fabrication and utilization. So, the COGEMA-SIEMENS MOX proposal gives a realistic answer to the management of weapons grade plutonium with regard to the technical, industrial, cost and schedule factors. (author)

  5. Attempt to produce silicide fuel elements in Indonesia

    International Nuclear Information System (INIS)

    Soentono, S.; Suripto, A.

    1991-01-01

    After the successful experiment to produce U 3 Si 2 powder and U 3 Si 2 -Al fuel plates using depleted U and Si of semiconductor quality, silicide fuel was synthesized using x -Al available at the Fuel Element Production Installation (FEPI) at Serpong, Indonesia. Two full-size U 3 Si 2 -Al fuel elements, having similar specifications to the ones of U 3 O 8 -Al for the RSG-GAS (formerly known as MPR-30), have been produced at the FEPI. All quality controls required have been imposed to the feeds, intermediate, as well as final products throughout the production processes of the two fuel elements. The current results show that these fuel elements are qualified from fabrication point of view, therefore it is expected that they will be permitted to be tested in the RSG-GAS, sometime by the end of 1989, for normal (∝50%) and above normal burn-up. (orig.)

  6. Preliminary evaluation of fuel oil produced from pyrolysis of low ...

    African Journals Online (AJOL)

    MICHAEL

    The wax content decreases as temperature increases .The highest quantity ... polyethylene are generated . The producers of ... increase in the volume of waste generated daily by its usage in .... aviation industry and other domestic fuel users.

  7. Fossil fuel produced radioactivities and their effect on foodchains

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K [New South Wales Univ., Kensington (Australia). Dept. of Applied Mathematics

    1980-10-01

    The environmental impact of radioactivities produced from fossil fuel burning is not necessarily small compared with that of nuclear energy. The effect of these radioactivities on the foodchain through seafoods is discussed.

  8. Agricultural residues as fuel for producer gas generation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeglund, C

    1981-01-01

    This paper reports on results from a series of tests with four different types of agricultural residues as fuel for producer gas generation. The fuels are coconut shells, coconut husks, pelletized wheat-straw and pressed sugar cane. The tests were made with a 73 Hp (50 kW) agricultural tractor diesel engine equipped with a standard gasifier developed for wood chips in Sweden, and run on a testbed at the Swedish National Machinery Testing Institute. The engine was operated on approximately 10% diesel oil and 90% producer gas. The gas composition, its calorific value and temperature, the pressure drop and the engine power were monitored. Detailed elementary analysis of the fuel and gas were carried out. Observations were also made regarding the important aspects of bridging and slagging in the gasifier. The tests confirmed that coconut shells make an excellent fuel for producer gas generation. After 8 hours of running no problems with slags and bridging were experienced. Coconut husks showed no bridging but some slag formation. The gasifier operated satisfactorily for this fuel. Pelletized wheat straw and pressed sugar cane appeared unsuitable as fuel in the unmodified test gasifier (Type F 300) due to slag formation. It is important to note, however, that the present test results are not optimal for any of the fuels used, the gasifier being designed for wood-chips and not for the test-fuels used. Tests using approximately modified gasifiers are planned for the future.

  9. Electronuclear fissile fuel production. Linear accelerator fuel regenerator and producer LAFR and LAFP

    International Nuclear Information System (INIS)

    Steinberg, M.; Powell, J.R.; Takahashi, H.; Grand, P.; Kouts, H.J.C.

    1978-04-01

    A linear accelerator fuel generator is proposed to enrich naturally occurring fertile U-238 or thorium 232 with fissile Pu-239 or U-233 for use in LWR power reactors. High energy proton beams in the range of 1 to 3 GeV energy are made to impinge on a centrally located dispersed liquid lead target producing spallation neutrons which are then absorbed by a surrounding assembly of fabricated LWR fuel elements. The accelerator-target design is reviewed and a typical fuel cycle system and economic analysis is presented. One 300 MW beam (300 ma-1 GeV) linear accelerator fuel regenerator can provide fuel for 3 to 1000 MW(e) LWR power reactors over its 30-year lifetime. There is a significant saving in natural uranium requirement which is a factor of 4.5 over the present LWR fuel requirement assuming the restraint of no fissile fuel recovery by reprocessing. A modest increase (approximately 10%) in fuel cycle and power production cost is incurred over the present LWR fuel cycle cost. The linear accelerator fuel regenerator and producer assures a long-term supply of fuel for the LWR power economy even with the restraint of the non-proliferation policy of no reprocessing. It can also supply hot-denatured thorium U-233 fuel operating in a secured reprocessing fuel center

  10. Ni-YSZ graded coatings produced by dipping

    International Nuclear Information System (INIS)

    Ferrari, B.; Moreno, R.

    2004-01-01

    A new colloidal processing route for the shaping of a graded Ni-YSZ composite for applications in SOFC devices is described. A Ni foil is coated by Ni/YSZ layers by dipping in aqueous suspensions with an organic binder. Behind the metal-ceramic layers introduced to improve adhesion, an outer thin layer of nanosized YSZ is formed by electrophoretic deposition. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  11. LEU fuel element produced by the Egyptian fuel manufacturing pilot plant

    International Nuclear Information System (INIS)

    Zidan, W.I.

    2000-01-01

    The Egyptian Fuel Manufacturing Pilot Plant, FMPP, is a Material Testing Reactor type (MTR) fuel element facility, for producing the specified fuel elements required for the Egyptian Second Research Reactor, ETRR-2. The plant uses uranium hexafluoride (UF 6 , 19.75% U 235 by wt) as a raw material which is processed through a series of the manufacturing, inspection and test plan to produce the final specified fuel elements. Radiological safety aspects during design, construction, operation, and all reasonably accepted steps should be taken to prevent or reduce the chance of accidents occurrence. (author)

  12. Core fueling to produce peaked density profiles in large tokamaks

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; McGuire, K.M.; Schmidt, G.L.; Zweben, S.J.

    1994-06-01

    Peaking the density profile increases the usable bootstrap current and the average fusion power density; this could reduce the current drive power and increase the net output of power producing tokamaks. The use of neutral beams and pellet injection to produce peaked density profiles is assessed. We show that with radially ''hollow'' diffusivity profiles (and no particle pinch) moderately peaked density profiles can be produced by particle source profiles which are peaked off-axis. The fueling penetration requirements can therefore be relaxed and this greatly improves the feasibility of generating peaked density profiles in large tokamaks. In particular, neutral beam fueling does not require MeV particle energy. Even with beam voltages of ∼200 keV, however, exceptionally good particle confinement, τ p much-gt τ E is required to achieve net electrical power generation. In system with no power production requirement (e.g., neutron sources) neutral beam fueling should be capable of producing peaked density profiles in devices as large as ITER. Fueling systems with low energy cost per particle (such as cryogenic pellet injection) must be used in power producing tokamaks when τ p ∼ τ E . Simulations with pellet injection speeds of 7 km/sec show the peaking factor, n eo /left-angle n e right-angle, approaching 2

  13. Nuclear fuel assembly with improved spectral shift-producing rods

    International Nuclear Information System (INIS)

    Ferrari, H.M.

    1987-01-01

    This patent describes a nuclear reactor having fuel assemblies and a moderator-coolant liquid flowing through the fuel assemblies, each fuel assembly including an organized array of nuclear fuel rods wherein the moderator-coolant liquid flows along the fuel rods, at least one improved spectral shift-producing rod disposed among the fuel rods. The spectra shift-producing rod consists of: (a) an elongated hollow hermetically-sealed tubular member; (b) a weakened region formed in a portion of the member, the portion being subject to rupture at a given level of internal pressure; and (c) burnable poison material contained in the member which generates gas in the member as operation of the reactor proceeds normally, the material being soluble in the moderator-coolant liquid when brought into contact therewith; (d) the given level of internal pressure being less than the maximum level of internal pressure normally expected to be generated within the member by the poison material by normal operation of the reactor

  14. Process for producing a fuel suitable for degassing from refuse

    Energy Technology Data Exchange (ETDEWEB)

    Sulzberger, J

    1975-11-20

    Utilization of the heat energy of refuse in waste incineration plants is time-consuming and expensive due to high investment and operation costs. The inventor recommends to process the refuse to a sterile, handy and storable fuel. For this propose the refuse should be crushed, kneaded and pressed. The briquettes produced in this way should be dried.

  15. Microbially influenced corrosion communities associated with fuel-grade ethanol environments.

    Science.gov (United States)

    Williamson, Charles H D; Jain, Luke A; Mishra, Brajendra; Olson, David L; Spear, John R

    2015-08-01

    Microbially influenced corrosion (MIC) is a costly problem that impacts hydrocarbon production and processing equipment, water distribution systems, ships, railcars, and other types of metallic infrastructure. In particular, MIC is known to cause considerable damage to hydrocarbon fuel infrastructure including production, transportation, and storage systems, often times with catastrophic environmental contamination results. As the production and use of alternative fuels such as fuel-grade ethanol (FGE) increase, it is important to consider MIC of engineered materials exposed to these "newer fuels" as they enter existing infrastructure. Reports of suspected MIC in systems handling FGE and water prompted an investigation of the microbial diversity associated with these environments. Small subunit ribosomal RNA gene pyrosequencing surveys indicate that acetic-acid-producing bacteria (Acetobacter spp. and Gluconacetobacter spp.) are prevalent in environments exposed to FGE and water. Other microbes previously implicated in corrosion, such as sulfate-reducing bacteria and methanogens, were also identified. In addition, acetic-acid-producing microbes and sulfate-reducing microbes were cultivated from sampled environments containing FGE and water. Results indicate that complex microbial communities form in these FGE environments and could cause significant MIC-related damage that may be difficult to control. How to better manage these microbial communities will be a defining aspect of improving mitigation of global infrastructure corrosion.

  16. Performance Study of Dual Fuel Engine Using Producer Gas as Secondary Fuel

    Directory of Open Access Journals (Sweden)

    Deepika Shaw

    2016-06-01

    Full Text Available In the present paper, development of producer gas fuelled 4 stroke diesel engine has been investigated. Producer gas from biomass has been examined and successfully operated with 4 stroke diesel engine. The effects of higher and lower loads were investigated on the dual fuel mode. The experimental investigations revealed that at lower loads dual fuel operation with producer gas shows lower efficiency due to lower combustion rate cause by low calorific value of the producer gas. Beyond 40% load the brake thermal efficiency of dual fuel operation improved due to faster combustion rate of producer gas and higher level of premixing. It can be observed that at lower load and 20% opening of producer gas the gaseous fuel substitution found to be 56% whereas at 100% opening of producer gas it reaches 78% substitution. The CO2 emission increased at high producer gas opening and high load because at 100% producer gas maximum atoms of carbons were there and at high load condition the diesel use increased. At 80% load and producer gas varying from 20% to 100. Power output was almost comparable to diesel power with marginal higher efficiency. Producer gas is one such technology which is environmentally benign and holds large promise for future.

  17. Fuel characteristics pertinent to the design of aircraft fuel systems, Supplement I : additional information on MIL-F-7914(AER) grade JP-5 fuel and several fuel oils

    Science.gov (United States)

    Barnett, Henry C; Hibbard, Robert R

    1953-01-01

    Since the release of the first NACA publication on fuel characteristics pertinent to the design of aircraft fuel systems (NACA-RM-E53A21), additional information has become available on MIL-F7914(AER) grade JP-5 fuel and several of the current grades of fuel oils. In order to make this information available to fuel-system designers as quickly as possible, the present report has been prepared as a supplement to NACA-RM-E53A21. Although JP-5 fuel is of greater interest in current fuel-system problems than the fuel oils, the available data are not as extensive. It is believed, however, that the limited data on JP-5 are sufficient to indicate the variations in stocks that the designer must consider under a given fuel specification. The methods used in the preparation and extrapolation of data presented in the tables and figures of this supplement are the same as those used in NACA-RM-E53A21.

  18. Producing Liquid Fuels from Coal: Prospects and Policy Issues

    Science.gov (United States)

    2008-01-01

    fraction of the weight of a plant. Most of the material in plants is cellulose , hemicellulose, or lignin . None of these substances is amenable to the...conventional fuel involved in producing the biomass. This is especially the case for non-food-crop biomass, such as corn stover, switchgrass, prairie...conversion of cellulosic materials, starches, or sugars to alcohols. Coal-to-Liquids Technologies 39 Unfortunately, annual variations in weather

  19. Thermophysical properties of the products of low-grade fuels thermal recycling

    Directory of Open Access Journals (Sweden)

    Tabakaev Roman B.

    2015-01-01

    Full Text Available The relevance of the work is caused by reorientation of the modern power engineering to use of local low grade fuel resources. Some types of low grade fuels (peat, brown coal, sapropel, wood chips are considered in this work. Thermotechnical characteristics of the investigated fuels and products of their thermal recycling are determined. Thermal recycling process is accompanied by release of fuel dissociation heat (0.33-3.69 MJ/kg. The results of thermal low grade fuel recycling are solid carbonaceous product (semi-coke with a calorific value higher in 1.5-7 times than the value of natural fuels; pyrolysis resin with calorific value 29.4-36.8 MJ/kg; combustible gas with calorific value 15.16-19.06 MJ/m3.

  20. A light hydrocarbon fuel processor producing high-purity hydrogen

    Science.gov (United States)

    Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan

    thermal efficiency is better than 67% operating at full load. This fuel processor has been integrated with a 5-kW fuel cell producing electricity and hot water.

  1. Fuel characteristics and trace gases produced through biomass burning

    Directory of Open Access Journals (Sweden)

    BAMBANG HERO SAHARJO

    2010-01-01

    Full Text Available Saharjo BH, Sudo S, Yonemura S, Tsuruta H (2010 Fuel characteristics and trace gases produced through biomass burning. Biodiversitas 11: 40-45. Indonesian 1997/1998 forest fires resulted in forest destruction totally 10 million ha with cost damaged about US$ 10 billion, where more than 1 Gt CO2 has been released during the fire episode and elevating Indonesia to one of the largest polluters of carbon in the world where 22% of world’s carbon dioxide produced. It has been found that 80-90% of the fire comes from estate crops and industrial forest plantation area belongs to the companies which using fire illegally for the land preparation. Because using fire is cheap, easy and quick and also support the companies purpose in achieving yearly planted area target. Forest management and land use practices in Sumatra and Kalimantan have evolved very rapidly over the past three decades. Poor logging practices resulted in large amounts of waste will left in the forest, greatly elevating fire hazard. Failure by the government and concessionaires to protect logged forests and close old logging roads led to and invasion of the forest by agricultural settlers whose land clearances practices increased the risk of fire. Several field experiments had been done in order to know the quality and the quantity of trace produced during biomass burning in peat grass, peat soil and alang-alang grassland located in South Sumatra, Indonesia. Result of research show that different characteristics of fuel burned will have the different level also in trace gasses produced. Peat grass with higher fuel load burned produce more trace gasses compared to alang-alang grassland and peat soil.

  2. Low grade bioethanol for fuel mixing on gasoline engine using distillation process

    Science.gov (United States)

    Abikusna, Setia; Sugiarto, Bambang; Suntoro, Dedi; Azami

    2017-03-01

    Utilization of renewable energy in Indonesia is still low, compared to 34% oil, 20% coal and 20% gas, utilization of energy sources for water 3%, geothermal 1%, 2% biofuels, and biomass 20%. Whereas renewable energy sources dwindling due to the increasing consumption of gasoline as a fuel. It makes us have to look for alternative renewable energy, one of which is bio ethanol. Several studies on the use of ethanol was done to the researchers. Our studies using low grade bio ethanol which begins with the disitillation independently utilize flue gas heat at compact distillator, produces high grade bio ethanol and ready to be mixed with gasoline. Stages of our study is the compact distillator design of the motor dynamic continued with good performance and emission testing and ethanol distilled. Some improvement is made is through the flue gas heat control mechanism in compact distillator using gate valve, at low, medium, and high speed engine. Compact distillator used is kind of a batch distillation column. Column design process using the shortcut method, then carried the tray design to determine the overall geometry. The distillation is done by comparing the separator with a tray of different distances. As well as by varying the volume of the feed and ethanol levels that will feed distilled. In this study, we analyzed the mixing of ethanol through variation between main jet and pilot jet in the carburetor separately interchangeably with gasoline. And finally mixing mechanism bio ethanol with gasoline improved with fuel mixer for performance.

  3. The bio refinery; producing feed and fuel from grain.

    Science.gov (United States)

    Scholey, D V; Burton, E J; Williams, P E V

    2016-04-15

    It is both possible and practicable to produce feed and fuel from grain. Using the value of grain to produce renewable energy for transport, while using the remaining protein content of the grain as a valuable protein source for livestock and for fish, can be seen as a complimentary and optimal use of all the grain constituents. Consideration must be given to maximise the value of the yeast components, as substantial yeast is generated during the fermentation of the grain starch to produce ethanol. Yeast is a nutritionally rich feed ingredient, with potential for use both as feed protein and as a feed supplement with possible immunity and gut health enhancing properties. Bioprocessing, with the consequent economies of scale, is a process whereby the value of grain can be optimised in a way that is traditional, natural and sustainable for primarily producing protein and oil for feed with a co-product ethanol as a renewable fuel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Characteristics of sustainable bio-solid fuel produced from sewage sludge as a conventional fuel substitute

    International Nuclear Information System (INIS)

    Jung, Bongjin; Nam, Wonjun; Lee, Na-Yeon; Kim, Kyung-Hoon

    2010-01-01

    Safely final disposal of sewage sludge which is being increased every year has already become serious problems. As one of the promising technologies to solve this problem, thermal drying method has been attracting wide attention due to energy recovery from sewage sludge. This paper describes several characteristics of sustainable bio-solid fuel, as a conventional fuel substitute, produced from sewage sludge drying and granulation plant having the treatment capacity of 10 ton/ day. This plant has been successfully operated many times and is now designing for scale-up. Average moisture content of twelve kinds of bio-solid fuels produced from the plant normally less than 10 wt% and average shape of them is mainly composed of granular type having a diameter of 2-8 mm for easy handling and transportation to the final market destinations. Average higher heating value, which is one of the important properties to estimate the possibility of available energy, of bio-solid fuels is about 3800 kcal/ kg as dry basis. So they can be utilized to supply energy in the coal power plant and cement kiln etc. as a conventional fuel substitute for a beneficial reuse. Characteristics including proximate analysis, ultimate analysis, contents of heavy metals, wettability etc. of bio-solid fuels have been also analyzed for the environmentally safe re utilization. (author)

  5. Acid leaching of coal: to produce clean fuels from Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Seferinoglu, Meryem [Mineral Research and Exploration Directorate (Turkey)], email: meryem_seferinoglu66@yahoo.com; Duzenli, Derya [Ankara Central Laboratory (Turkey)

    2011-07-01

    With the increasing concerns about the environment, energy producers and governments are looking at developing clean energy sources. However, Turkey has limited clean energy resources and is using low grade coal which has high sulphur content as an alternative energy source. The aim of this paper is to study the possibility of generating clean fuel from Edirne Lignite and to get a better understanding of chemical mechanisms involved in coal leaching with hydrofluoric acid (HF) solutions. Leaching was conducted on Edirne Lignite with HF solution at ambient temperature and the effects of parameters such as reaction time and concentration of acid solutions on the process were evaluated. The optimum conditions were found and it was shown that ash levels can be reduced from 28.9% to 10.5% and the calorific value increased by 500kcal/kg with the HF leaching method. This study demonstrated that the production of clean fuel from high sulphur lignite is possible.

  6. Management of super-grade plutonium in spent nuclear fuel

    International Nuclear Information System (INIS)

    McFarlane, H. F.; Benedict, R. W.

    2000-01-01

    This paper examines the security and safeguards implications of potential management options for DOE's sodium-bonded blanket fuel from the EBR-II and the Fermi-1 fast reactors. The EBR-II fuel appears to be unsuitable for the packaging alternative because of DOE's current safeguards requirements for plutonium. Emerging DOE requirements, National Academy of Sciences recommendations, draft waste acceptance requirements for Yucca Mountain and IAEA requirements for similar fuel also emphasize the importance of safeguards in spent fuel management. Electrometallurgical treatment would be acceptable for both fuel types. Meeting the known requirements for safeguards and security could potentially add more than $200M in cost to the packaging option for the EBR-II fuel

  7. Thermophysical properties of composite fuel based on T grade coal (Alardinskoe deposit) and timber industry wastes

    Science.gov (United States)

    Yankovsky, S. A.; Tolokolnikov, A. A.; Gubin, V. E.; Slyusarskiy, K. V.; Zenkov, A. V.

    2017-09-01

    Results of experimental studies of composite fuel thermal decomposition processes based on T grade coal (Alardinskoe deposit) and timber industry wastes (fine wood) are presented. C, H, N, S weight percentage of each component of composite fuel was determined experimentally. It has been established that with an increase in wood concentration up to 50% in composite fuel, its energy characteristics decrease by less than 3.6%, while the yield of fly ash is 39.7%. An effective composite fuel composition has been defined as 50%/50%. Results of performed experimental studies suggest that it is possible to use composite fuels based on coal and wood at thermal power plants.

  8. Feasibility study of fuel grade ethanol plant for Alcohol Fuels of Mississippi, Inc. , Vicksburg, Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The results are presented of a feasibility study performed to determine the technical and economic viability of constructing an alcohol plant utilizing the N.Y.U. continuous acid hydrolysis process to convert wood wastes to fuel grade alcohol. The following is a summary of the results: (1) The proposed site in the Vicksburg Industrial Foundation Corporation Industrial Park is adequate from all standpoints, for all plant capacities envisioned. (2) Local hardwood sawmills can provide adequate feedstock for the facility. The price per dry ton varies between $5 and $15. (3) Sale of fuel ethanol would be made primarily through local distributors and an adequate market exists for the plant output. (4) With minor modifications to the preparation facilities, other waste cellulose materials can also be utilized. (5) There are no anticipated major environmental, health, safety or socioeconomic risks related to the construction and operation of the proposed facility. (6) The discounted cash flow and rate of return analysis indicated that the smallest capacity unit which should be built is the 16 million gallon per year plant, utilizing cogeneration. This facility has a 3.24 year payback. (7) The 25 million gallon per year plant utilizing cogeneration is an extremely attractive venture, with a zero interest break-even point of 1.87 years, and with a discounted rate of return of 73.6%. (8) While the smaller plant capacities are unattractive from a budgetary viewpoint, a prudent policy would dictate that a one million gallon per year plant be built first, as a demonstration facility. This volume contains process flowsheets and maps of the proposed site.

  9. Improved moulding material for addition to nuclear fuel particles to produce nuclear fuel elements

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1976-01-01

    A suggestion is made to improve the moulding materials used to produce carbon-contained nuclear fuel particles by a coke-reducing added substance. The nuclear fuel particles are meant for the formation of fuel elements for gas-cooled high-temperature nuclear reactors. The moulding materials are above all for the formation of coated particles which are burnt in situ in nuclear fuel element chambers out of 'green' nuclear fuel bodies. The added substance improves the shape stability of the particles forming and prevents a stiding or bridge formation between the particles or with the surrounding walls. The following are named as added substances: 1) Polystyrene and styrene-butadiene-Co polymers (mol. wt. between 5oo and 1,000,000), 2) aromatic compounds (mol. wt. 75 to 300), 3) saturated hydrocarbon polymers (mol. wt. 5,000 to 1,000,000). Additional release agents further improve the properties in the same direction (e.g. alcohols, fatty acids, amines). (orig.) [de

  10. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    Measurement Methods for Assessing Contaminant Levels in Captured CO2 Streams; (3) An Assessment of Current Commercial Scale Fisher-Tropsch (F-T) Technologies for the Conversion of Syngas to Fuels; (4) An Overview of CO2 Capture Technologies from Various Industrial Sources; and (5) Lifecycle Analysis for the Capture and Conversion of CO2 to Synthetic Diesel Fuel. Commercial scale Sunexus CO2 Solar Reformer plant designs, proposed in this report, should be able to utilize waste CO2 from a wide variety of industrial sources to produce a directly usable synthetic diesel fuel that replaces petroleum derived fuel, thus improving the United States energy security while also sequestering CO2. Our material balance model shows that every 5.0 lbs of CO2 is transformed using solar energy into 6.26 lbs (1.0 U.S. gallon) of diesel fuel and into by-products, which includes water. Details are provided in the mass and energy model in this report.

  11. Progress in researches on MOX fuel pellet producing technology in China

    International Nuclear Information System (INIS)

    Hu Xiaodan

    2010-01-01

    Being the key section of nuclear-fuel cycle, the producing technology of MOX(UO 2 -PuO 2 ) fuel had driven to maturity in France, England, Russia, Belgium, etc. MOX fuel had been applied in FBR and LWR successfully in those countries. With the rapidly developing of nuclear-generated power, the MOX fuel for FBR and LWR was active demanded in China. However, the producing technology of MOX fuel developed slowly. During the period of 'the seventh five year's project', MOX fuel pellet was produced by mechanically mixed method and oxalate deposited method, respectively. Parts of cool performance of MOX fuel pellet produced by oxalate deposited method reached the qualification of fuel for FBR. During the period of 'the ninth five year's project' and 'the tenth five year's project', the technical route of producing MOX fuel was determined, and the test line of producing MOX fuel was built preliminarily. In the same time, the producing technology and analyzing technology of MOX fuel pellet by mechanically mixed was studied roundly, and the representative analogue pellet(UO 2 -CeO 2 ) was produced. That settled the supporting technology for the commercial process and research of MOX fuel rod and MOX fuel module. (authors)

  12. Noise in attractor networks in the brain produced by graded firing rate representations

    OpenAIRE

    Webb, Tristan J.; Rolls, Edmund T; Deco, Gustavo; Feng, Jianfeng

    2011-01-01

    Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate\\ud probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as\\ud decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given\\ud mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribut...

  13. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Newly produced airplanes: Fuel tank... Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This... Series 767 Series (b) Any fuel tank meeting all of the criteria stated in paragraphs (b)(1), (b)(2) and...

  14. Below Grade Assessment of Spent Nuclear Fuel Cask Transport Route

    International Nuclear Information System (INIS)

    CHENAULT, D.M.

    1999-01-01

    The report provides an assessment of the route for the SNF Fuel transport system from the K Basins to the CVDF and to the CSB. Results include the identification of any underground structures or utilities traveled over by the transport, the overburden depths for all locations identified, evaluation of the loading conditions, and determination of the effects of the loads on the structures and utilities

  15. Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering

    International Nuclear Information System (INIS)

    Chung, Haseung; Das, Suman

    2008-01-01

    Selective laser sintering (SLS), a layered manufacturing-based freeform fabrication approach was explored for constructing three-dimensional structures in functionally graded polymer nanocomposites. Here, we report on the processing and properties of functionally graded polymer nanocomposites of Nylon-11 filled with 0-10% by volume of 15 nm fumed silica nanoparticles. SLS processing parameters for the different compositions were developed by design of experiments (DOE). The densities and micro/nanostructures of the nanocomposites were examined by optical microscopy and transmission electron microscopy (TEM). The tensile and compressive properties for each composition were then tested. These properties exhibit a nonlinear variation as a function of filler volume fraction. Finally, two component designs exhibiting a one-dimensional polymer nanocomposite material gradient were fabricated. The results indicate that particulate-filled functionally graded polymer nanocomposites exhibiting a one-dimensional composition gradient can be successfully processed by SLS to produce three-dimensional components with spatially varying mechanical properties

  16. Synthesis of zeolite from rice husk ash waste of brick industries as hydrophobic adsorbent for fuel grade ethanol purification

    Science.gov (United States)

    Purnomo, A.; Alhanif, M.; Khotimah, C.; Zuhra, UA; Putri, BR; Kumoro, AC

    2017-11-01

    A lot of researchers have devoted on ethanol utilization as renewable energy to substitute petroleum based gasoline. When ethanol is being used as a new fuel candidate, it should have at least of 99.5% purity. Usually produced via sugar fermentation process, further purification of ethanol from other components in fermentation broth to obtain its fuel grade is a crucial step. The purpose of this research is to produce synthetic zeolite as hydrophobic adsorbent from rice husk ash for ethanol-water separation and to investigate the influence of weight, adsorption time and initial ethanol concentration on zeolite adsorption capacity. This research consisted of rice husk silica extraction, preparation of hydrophobic zeolite adsorbent, physical characterization using SEM, EDX and adsorption test for an ethanol-water solution. Zeolite with highest adsorption capacity was obtained with 15: 1 alumina silica composition. The best adsorption condition was achieved when 4-gram hydrophobic zeolite applied for adsorption of 100 mL of 10% (v/v) ethanol-water solution for 120 minutes, which resulted in ethanol with 98.93% (v/v) purity. The hydrophobic zeolite from rice husk ash is a potential candidate as an efficient adsorbent to purify raw ethanol into fuel grade ethanol. Implementation of this new adsorbent for ethanol production in commercial scale may reduce the energy consumption of that usually used for the distillation processes.

  17. Combustion performance and emission analysis of diesel engine fuelled with water-in-diesel emulsion fuel made from low-grade diesel fuel

    International Nuclear Information System (INIS)

    Ithnin, Ahmad Muhsin; Ahmad, Mohamad Azrin; Bakar, Muhammad Aiman Abu; Rajoo, Srithar; Yahya, Wira Jazair

    2015-01-01

    Highlights: • Effect of using emulsified fuel made from low-grade fuel in engine are investigated. • Specific fuel consumption of the engine is reduced overall for all types of W/D. • Comparable maximum in-cylinder pressure and pressure rise rate compared to D2. • NOx and PM are found to be reduced for all types of W/D. • CO and CO 2 emissions increase compared to D2 at low load and high load. - Abstract: In the present research, an experiment is designed and conducted to investigate the effect of W/D originating from low-grade diesel fuel (D2) on the combustion performance and emission characteristics of a direct injection diesel engine under varying engine loads (25–100%) and constant engine speed (3000 rpm). Four types of W/D are tested, which consist of different water percentages (5%, 10%, 15% and 20%), with constant 2% of surfactant and labelled as E5, E10, E15 and E20, respectively. The specific fuel consumption (SFC) of the engine when using each type of W/D is found to be reduced overall. This is observed when the total amount of diesel fuel in the emulsion is compared with that of neat D2. E20 shows a comparable maximum in-cylinder pressure and pressure rise rate (PRR) compared to D2 in all load conditions. In addition, it produces the highest maximum rate of heat release (MHRR) in almost every load compared to D2 and other W/Ds. NOx and PM are found to be reduced for all types of W/D. The carbon monoxide (CO) and carbon dioxide (CO 2 ) emissions increase compared to D2 at low load and high load, respectively. Overall, it is observed that the formation of W/D from low-grade diesel is an appropriate alternative fuel method that can bring about greener exhaust emissions and fuel savings without deteriorating engine performance

  18. DoD use of Domestically-Produced Alternative Fuels and Alternative Fuel Vehicles

    Science.gov (United States)

    2014-04-10

    85 $21,927 Electric $171 Hydrogen $3 Liquefied Natural Gas (LNG) $4 Liquefied Petroleum Gas ( LPG ) $14 Total $25,053 Data source: GSA’s FAST Data...919 407 5,802 GAS PH 13 77 94 10 10 204 HYD DE 5 5 LNG BI 1 1 LPG BI 47 47 LPG DE 1 1 Conventional DSL DE 867 16,174 16,028 5,698 2,508 41,275...includes information on the status of: (1) use and potential use of domestically-produced alternative fuels including but not limited to, natural gas

  19. Nuclear fuel element, and method of producing same

    International Nuclear Information System (INIS)

    Armijo, J.S.; Esch, E.L.

    1986-01-01

    This invention relates to an improvement in nuclear fuel elements having a composite container comprising a cladding sheath provided with a protective barrier of zirconium metal covering the inner surface of the sheath, rendering such fuel elements more resistant to hydrogen accumulation in service. The invention specifically comprises removing substantially all zirconium metal of the barrier layer from the part of the sheath surrounding and defining the plenum region. Thus the protective barrier of zirconium metal covers only the inner surface of the fuel container in the area immediately embracing the fissionable fuel material

  20. RANCANG BANGUN ALAT DEHYDRATOR BIOETANOL UNTUK MENGHASILKAN FUEL GRADE ETHANOL (FGE

    Directory of Open Access Journals (Sweden)

    Rochmad Winarso

    2015-11-01

    Full Text Available ABSTRAK Bioethanol merupakan salah satu bahan bakar alternatif dengan sumber bahan baru yang dapat diperbarui. Bioethanol dapat menjadi bahan bakar alternatif bila mempunyai konsentrasi lebih dari 99% yang dikenal dengan nama Fuel Grade Ethanol. Proses pembuatan Fuel Grade Ethanol menggunakan metode pemisahan lanjut diantaranya adalah dengan metode distilasi azeotrop, pervorasi membran, dan adsorbsi. Tujuan dari penelitian ini adalah melakukan pengujian mesin dehydrator bioethanol yang bekerja dengan metode absorbsi. Mesin dehydrator ini menggunakan zeolit syntetis dengan ukuran 3 A yang sebelumnya telah dikembangkan. Pengembangan ini dilakukan melalui tiga tahapan, yaitu: (1 Tahap perancangan (desain alat dehydrator biorthanol; (2 Tahap pembuatan alat dehydrator berdasarkan spesifikasi yang telah ditetapkan ; (3 Pengujian alat dehydrator yang berorientasi hasil yaitu bioetanol minimal berkadar sekitar 99%. Mesin destilator bioetanol yang telah dikembangkan mempunya spesifikasi sebagai berikut: dimensi tangki bahan baku tingginya adalah 250 mm dengan diameter 300 mm, Bagian tabung I terbuat dari pipa stainless steel dengan diameter 100 mm dan tinggi 600 mm. Tebal dari pipa tersebut adalah 2 mm. Tabung II terbuat dari stainless steel yang mempunyai diamater 100 mm dan tinggi 300 mm dengan ketebalan 2 mm. Kondensor berdiameter 100 mm dan tinggi 600 mm. Hasil penelitian ini menunjukkan bahwa mesin yang sudah dikembangkan ini mampu menghasilkan Fuel Grade Ethanol dengan kadar lebih dari 99%. Kata kunci: dehydrator, bioethanol, fuel grade ethanol, bahan bakar alternatif.

  1. Prospects for production of synthetic liquid fuel from low-grade coal

    Directory of Open Access Journals (Sweden)

    Shevyrev Sergei

    2015-01-01

    Full Text Available In the paper, we compare the energy costs of steam and steam-oxygen gasification technologies for production of synthetic liquid fuel. Results of mathematic simulation and experimental studies on gasification of low-grade coal are presented.

  2. Modeling of solid oxide fuel cells with particle size and porosity grading in anode electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.; Flesner, R.; Kim, G.Y.; Chandra, A. [Department of Mechanical Engineering, Iowa State University, Ames, Iowa (United States)

    2012-02-15

    Solid oxide fuel cells (SOFCs) have the potential to meet the critical energy needs of our modern civilization and minimize the adverse environmental impacts from excessive energy consumption. They are highly efficient, clean, and can run on variety of fuel gases. However, little investigative focus has been put on optimal power output based on electrode microstructure. In this work, a complete electrode polarization model of SOFCs has been developed and utilized to analyze the performance of functionally graded anode with different particle size and porosity profiles. The model helps to understand the implications of varying the electrode microstructure from the polarization standpoint. The work identified conditions when grading can improve the cell performance and showed that grading is not always beneficial or necessary. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Application of fluidized bed combustor for use of low grade and waste fuels in power plants

    International Nuclear Information System (INIS)

    Wert, D.A.

    1993-01-01

    In a span of less that 15 years, CFB combustion technology has progressed from a concept to a demonstrated capability of providing clean, reliable energy from low-cost, low-grade fuels. In fact, one of the major advantages of CFB technology is its ability to burn fuels with high moisture, high ash and high sulfur levels, allowing the users the option of using inexpensive open-quotes opportunityclose quotes fuels. CFB technology has demonstrated reliable operation while burning low-grade, easily available fuels which other combustion technologies, preclude or cannot easily accommodate (such as peat, waste coals, sludges, municipal wastes and lignite). The CFB units can be designed to burn a wide range of different fuels, alone or in combination. This capability allows the user to take advantage of various fuel supplies to lower operating costs while still complying with ever increasing environmental regulations. This paper will review the evolution and experience of CFB technology and discuss the operating history of the first culm-fired (anthracite mine tailings) power plant. The development of opportunity-fueled power plants has been associated with the establishment of the Independent Power Industry in the United States. Traditional utilities have relied on premium fuels (oil, natural gas, coal and nuclear) due to availability and the ability to pass fuel costs through to consumers. With the development of privatized power plants, more emphasis has been placed on fixing fuel costs over the life of the plant to minimize investor risk. An analogy can be drawn between the growth of the Independent Power Industry in the United States over the last ten years with the need for capacity in many Developing Countries today

  4. Noise in attractor networks in the brain produced by graded firing rate representations.

    Directory of Open Access Journals (Sweden)

    Tristan J Webb

    Full Text Available Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribution that is usually investigated. In integrate-and-fire simulations of an attractor decision-making network, we show that the noise is indeed greater for a given sparseness of the representation for graded, exponential, than for binary firing rate distributions. The greater noise was measured by faster escaping times from the spontaneous firing rate state when the decision cues are applied, and this corresponds to faster decision or reaction times. The greater noise was also evident as less stability of the spontaneous firing state before the decision cues are applied. The implication is that spiking-related noise will continue to be a factor that influences processes such as decision-making, signal detection, short-term memory, and memory recall even with the quite large networks found in the cerebral cortex. In these networks there are several thousand recurrent collateral synapses onto each neuron. The greater noise with graded firing rate distributions has the advantage that it can increase the speed of operation of cortical circuitry.

  5. Burnup simulations of different fuel grades using the MCNPX Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Asah-Opoku Fiifi

    2014-01-01

    Full Text Available Global energy problems range from the increasing cost of fuel to the unequal distribution of energy resources and the potential climate change resulting from the burning of fossil fuels. A sustainable nuclear energy would augment the current world energy supply and serve as a reliable future energy source. This research focuses on Monte Carlo simulations of pressurized water reactor systems. Three different fuel grades - mixed oxide fuel (MOX, uranium oxide fuel (UOX, and commercially enriched uranium or uranium metal (CEU - are used in this simulation and their impact on the effective multiplication factor (Keff and, hence, criticality and total radioactivity of the reactor core after fuel burnup analyzed. The effect of different clad materials on Keff is also studied. Burnup calculation results indicate a buildup of plutonium isotopes in UOX and CEU, as opposed to a decline in plutonium radioisotopes for MOX fuel burnup time. For MOX fuel, a decrease of 31.9% of the fissile plutonium isotope is observed, while for UOX and CEU, fissile plutonium isotopes increased by 82.3% and 83.8%, respectively. Keff results show zircaloy as a much more effective clad material in comparison to zirconium and stainless steel.

  6. Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673601 (India)

    2008-09-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas-air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation. (author)

  7. Some aspects of a technology of processing weapons grade plutonium to nuclear fuel

    International Nuclear Information System (INIS)

    Bibilashvili, Y.; Glagovsky, E.M.; Zakharkin, B.S.; Orlov, V.K.; Reshetnikov, F.G.; Rogozkin, B.G.; Soloni-N, M.I.

    2000-01-01

    The concept by Russia to use fissile weapons-grade materials, which are being recovered from nuclear pits in the process of disarmament, is based on an assessment of weapons-grade plutonium as an important energy source intended for use in nuclear power plants. However, in the path of involving plutonium excessive from the purposes of national safety into industrial power engineering there are a lot of problems, from which effectiveness and terms of its disposition are being dependent upon. Those problems have political, economical, financial and environmental character. This report outlines several technology problems of processing weapons-grade metallic plutonium into MOX-fuel for reactors based on thermal and fast neutrons, in particular, the issue of conversion of the metal into dioxide from the viewpoint of fabrication of pelletized MOX-fuel. The processing of metallic weapons-grade plutonium into nuclear fuel is a rather complicated and multi-stage process, every stage of which is its own production. Some of the stages are absent in production of MOX-fuel, for instance the stage of the conversion, i.e. transferring of metallic plutonium into dioxide of the ceramic quality. At this stage of plutonium utilization some tasks must be resolved as follows: I. As a result of the conversion, a material purified from ballast and radiogenic admixtures has to be obtained. This one will be applied to fabricate pelletized MOX-fuel going from morphological, physico-mechanical and technological properties. II. It is well known that metallic gallium, which is used as an alloying addition in weapons-grade plutonium, actively reacts with multiple metals. Therefore, an important issue is to study the effect of gallium on the technology of MOX-fuel production, quality of the pellets, as well as the interaction of gallium oxide with zirconium and steel shells of fuel elements depending upon the content of gallium in the fuel. The rate of the interaction of gallium oxide

  8. Method to produce fuel element blocks for HTR reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1977-01-01

    The patent claim relates to one partial step of the multi-stage pressing process in the production of fuel elements. A binder resin with a softening point at least 15 0 C but preferably 25-40 0 C above the melting point of the lubricant is proposed. The pressed block is expelled from the forging die in the temperature interval between the melting point of the lubricant and the softening point of the binder resin. The purpose of the invention is that the pressed fuel element blocks are expelled from the machine tool without damage at a pressure low enough to protect the mechanical integrity of the coated fuel particles or fertile particles. (UA) [de

  9. The Outlook for Low-Grade Fuels in Tomsk Region: Research Experience at Tomsk Polytechnic University

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2016-01-01

    Full Text Available The urgency of the discussed issue is caused by the need to substitute in the regional fuel-energy balances imported energy resources with local low-grade fuels. The main aim of the study is to estimate thermal properties of local fuels in Tomsk region and evaluate its energy use viability. The methods used in the study were based standard GOST 52911-2008, 11022-95 and 6382-2001, by means of a bomb calorimeter ABK-1 and Vario micro cube analyzer. The mineral ash of researched fuels was studied agreeing with GOST 10538-87. The results state the fact that discussed low-grade fuels of Tomsk region in the unprepared form are not able to replace imported coal in regional energy balance, because of the high moisture and ash content values. A promosing direction of a low-temperature fue processing is a catalytic converter, which allows receiving hydrogen-enriched syngas from the initial solid raw.

  10. Integrating Wind And Solar With Hydrogen Producing Fuel Cells

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The often proposed solution for the fluctuating wind energy supply is the conversion of the surplus of wind energy into hydrogen by means of electrolysis. In this paper a patented alternative is proposed consisting of the integration of wind turbines with internal reforming fuel-cells, capable of

  11. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO(2).

    Science.gov (United States)

    van der Giesen, Coen; Kleijn, René; Kramer, Gert Jan

    2014-06-17

    Within the context of carbon dioxide (CO2) utilization there is an increasing interest in using CO2 as a resource to produce sustainable liquid hydrocarbon fuels. When these fuels are produced by solely using solar energy they are labeled as solar fuels. In the recent discourse on solar fuels intuitive arguments are used to support the prospects of these fuels. This paper takes a quantitative approach to investigate some of the claims made in this discussion. We analyze the life cycle performance of various classes of solar fuel processes using different primary energy and CO2 sources. We compare their efficacy with respect to carbon mitigation with ubiquitous fossil-based fuels and conclude that producing liquid hydrocarbon fuels starting from CO2 by using existing technologies requires much more energy than existing fuels. An improvement in life cycle CO2 emissions is only found when solar energy and atmospheric CO2 are used. Producing fuels from CO2 is a very long-term niche at best, not the panacea suggested in the recent public discourse.

  12. Method to produce carbon-cladded nuclear fuel particles

    International Nuclear Information System (INIS)

    Sturge, D.W.; Meaden, G.W.

    1978-01-01

    In the method charges of micro-spherules of fuel element are designed to have two carbon layers, whereby a one aims to achieve a uniform granulation (standard measurement). Two drums are used for this purpose connected behind one another. The micro-spherules coated with the first layer (phenolformaldehyde resin coated graphite particles) leave the first drum and enter the second one. Following the coating with a second layer, the micro-spherules are introduced into a grain size separator. The spherules that are too small are directly recycled into the second drum and those ones that are too large are recycled into the first drum after removing the graphite layers. The method may also be applied to metal cladded particles to manufacture cermet fuels. (RW) [de

  13. Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real-World Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lopp, Sean; Wood, Eric; Duran, Adam

    2015-10-13

    Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grade in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.

  14. Possibilities for recycling of weapon-grade uranium and plutonium and its peaceful use as reactor fuel

    International Nuclear Information System (INIS)

    Floeter, W.

    2000-01-01

    At present 90% of the energy production is based on fossil fuels. Since March 1999, however, the peaceful use of weapon-grade uranium as reactor fuel is being discussed politically. Partners of this discussion is a group of some private western companies on one side and a state-owned company of the Russian Federation (GUS) on the other. Main topic of the deal besides the winning of electrical energy is the useful disposal of the surplus on weapon-grade material of both leading nations. According to the deal, about 160,000 t of Russian uranium, expressed as natural uranium U 3 O 8 , would be processed during the next 15 years. Proven processes would be applied. Those methods are being already used in Russian facilities at low capacity rates. There are shortages in the production of low enriched uranium (LEU), because of the low capacity rates in the old facilities. The capacity should be increased by a factor of ten, but there is not enough money available in Russia for financing the remodeling of the plants. Financing should therefore probably be provided by the western clients of this deal. The limited amount of uranium produced could be furnised to the uranium market without major difficulties for the present suppliers of natural uranium. The discussions regarding the security of the details of the deal - however - are not yet finalized. (orig.) [de

  15. Producing synthetic solid fuel from Kansk-Achinsk coal

    Energy Technology Data Exchange (ETDEWEB)

    Zverev, D.P.; Krichko, A.A.; Smirnova, T.S.; Markina, T.I.

    1981-01-01

    Studies were conducted by the Soviet Institute of Fossil Fuels in order to develop a technology and equipment configuration for thermal processing of coals using gas heat carriers in swirl chambers. Characteristics of the starting Irsha-Borodinskii coal and those of the products of thermal processing at 290-600 C are given. Testing the method showed that the products of high-speed thermal processing (thermocoal, semicoke, drier products) can be used as raw materials in hydrogenation, combustion, gasification, thermal benefication, briquetting and a series of other processes in metallurgy. (10 refs.) (In Russian)

  16. Hydropyrolysis of biomass to produce liquid hydrocarbon fuels. Final report. Biomass Alternative-Fuels Program

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, R K; Bodle, W W; Yuen, P C

    1982-10-01

    The ojective of the study is to provide a process design and cost estimates for a biomass hydropyrolysis plant and to establish its economic viability for commercial applications. A plant site, size, product slate, and the most probable feedstock or combination of feedstocks were determined. A base case design was made by adapting IGT's HYFLEX process to Hawaiian biomass feedstocks. The HYFLEX process was developed by IGT to produce liquid and/or gaseous fuels from carbonaceous materials. The essence of the process is the simultaneous extraction of valuable oil and gaseous products from cellulosic biomass feedstocks without forming a heavy hard-to-handle tar. By controlling rection time and temperature, the product slate can be varied according to feedstock and market demand. An optimum design and a final assessment of the applicability of the HYFLEX process to the conversion of Hawaiian biomass was made. In order to determine what feedstocks could be available in Hawaii to meet the demands of the proposed hydropyrolysis plant, various biomass sources were studied. These included sugarcane and pineapple wastes, indigenous and cultivated trees and indigenous and cultivated shrubs and grasses.

  17. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.F.

    1996-03-01

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  18. Simulation study of a PEM fuel cell system fed by hydrogen produced by partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ozdogan, S [Marmara University, Faculty of Engineering, Istanbul (Turkey); Ersoz, A; Olgun, H [TUBITAK Marmara Research Center, Energy Systems and Environmental Research Institute, Kocaeli (Turkey)

    2003-09-01

    Within the frame of sustainable development, efficient and clean, if possible zero emission energy production technologies are of utmost importance in various sectors such as utilities, industry, households and transportation. Low-temperature fuel cell systems are suitable for powering transportation systems such as automobiles and trucks in an efficient and low-emitting manner. Proton exchange membrane (PEM) fuel cell systems constitute the most promising low temperature fuel cell option being developed globally. PEM fuel cells generate electric power from air and hydrogen or from a hydrogen rich gas via electrochemical reactions. Water and waste heat are the only by-products of PEM fuel cells. There is great interest in converting current hydrocarbon based common transportation fuels such as gasoline and diesel into hydrogen rich gases acceptable by PEM fuel cells. Hydrogen rich gases can be produced from conventional transportation fuels via various reforming technologies. Steam reforming, partial oxidation and auto-thermal reforming are the three major reforming technologies. In this paper, we discuss the results of a simulation study for a PEM fuel cell with partial oxidation. The Aspen HYSYS 3.1 code has been used for simulation purposes. Two liquid hydrocarbon fuels have been selected to investigate the effect of average molecular weights of hydrocarbons, on the fuel processing efficiency. The overall system efficiency depends on the fuel preparation and fuel cell efficiencies as well as on the heat integration within the system. It is desired to investigate the overall system efficiencies for net electrical power production at 100 kW considering bigger scale transport applications. Results indicate that fuel properties, fuel preparation system operating parameters and PEM fuel cell polarization curve characteristics all affect the overall system efficiency. (authors)

  19. Guidance on Biogas used to Produce CNG or LNG under the Renewable Fuel Standard Program

    Science.gov (United States)

    Provides EPA’s interpretation of biogas quality and RIN generation requirements that apply to renewable fuel production pathways involving the injection into a commercial pipeline of biogas for use in producing renewable CNG or renewable LNG.

  20. Performance and emission comparison of a supercharged dual-fuel engine fueled by producer gases with varying hydrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Mohon Roy, Murari [Rajshahi University of Engineering and Technology (JSPS Research Fellow, Okayama University), Tsushima-Naka 3, Okayama 700-8530 (Japan); Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Tomita, Eiji; Kawahara, Nobuyuki; Harada, Yuji [Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Sakane, Atsushi (Mitsui Engineering and Shipbuilding Co. Ltd., 6-4 Tsukiji 5-chome, Chuo-ku, Tokyo)

    2009-09-15

    This study investigated the effect of hydrogen content in producer gas on the performance and exhaust emissions of a supercharged producer gas-diesel dual-fuel engine. Two types of producer gases were used in this study, one with low hydrogen content (H{sub 2} = 13.7%) and the other with high hydrogen content (H{sub 2} = 20%). The engine was tested for use as a co-generation engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant injection pressure and injection quantity for different fuel-air equivalence ratios and at various injection timings. The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion. Better combustion, engine performance, and exhaust emissions (except NO{sub x}) were obtained with the high H{sub 2}-content producer gas than with the low H{sub 2}-content producer gas, especially under leaner conditions. Moreover, a broader window of fuel-air equivalence ratio was found with highest thermal efficiencies for the high H{sub 2}-content producer gas. (author)

  1. Relation of fuel rod service parameters and design requirements to produced fuel rod and their components

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.

    1999-01-01

    Based on the presented material it is possible to state that there is a very close link between the fuel operational parameters and the requirements for its design and production process. The required performance and life-time of a fuel rod can be only assured by the correctly selected design and process solutions. The economical aspect of this problem is significantly depend on the commercial feasibility of a particular selected solution with the provision of an automated and comparative by inexpensive production of a fuel rod and its components. The operational conditions are also important for the life time of the fuel rods. If there are no special measures for the mitigation of the certain operation conditions the leakage of fuel elements can take place before the planned time. (authors)

  2. Electrochemically Produced Graphene for Microporous Layers in Fuel Cells.

    Science.gov (United States)

    Najafabadi, Amin Taheri; Leeuwner, Magrieta J; Wilkinson, David P; Gyenge, Előd L

    2016-07-07

    The microporous layer (MPL) is a key cathodic component in proton exchange membrane fuel cells owing to its beneficial influence on two-phase mass transfer. However, its performance is highly dependent on material properties such as morphology, porous structure, and electrical resistance. To improve water management and performance, electrochemically exfoliated graphene (EGN) microsheets are considered as an alternative to the conventional carbon black (CB) MPLs. The EGN-based MPLs decrease the kinetic overpotential and the Ohmic potential loss, whereas the addition of CB to form a composite EGN+CB MPL improves the mass-transport limiting current density drastically. This is reflected by increases of approximately 30 and 70 % in peak power densities at 100 % relative humidity (RH) compared with those for CB- and EGN-only MPLs, respectively. The composite EGN+CB MPL also retains the superior performance at a cathode RH of 20 %, whereas the CB MPL shows significant performance loss. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Experience in producing LEU fuel elements for the RSG-GAS

    International Nuclear Information System (INIS)

    Suripto, A.; Soentono, S.

    1991-01-01

    To achieve a self-reliance in the operation of the 30 MW Multipurpose Research Reactor at Serpong (the RSG-GAS), a fuel element production facility has been constructed nearby. The main task of the facility is to produce MTR type fuel and control elements containing U 3 O 8 -Al dispersion LEU fuel for the RSG-GAS. The hot commissioning activity has started in early 1988 after completion of the cold commissioning using depleted uranium in 1987, marking the beginning of the real production activity. This paper briefly describes the main features of the fuel production facility, the production experience gained so far, and its current production activity. (orig.)

  4. Modulated diesel fuel injection strategy for efficient-clean utilization of low-grade biogas

    International Nuclear Information System (INIS)

    Wang, Xiaole; Qian, Yong; Zhou, Qiyan; Lu, Xingcai

    2016-01-01

    Highlights: • Influences of direct injection strategy on biogas RCCI mode are researched. • Excessive early pilot injection timing leads to the retard of combustion. • Overall indicated thermal efficiency of low-grade biogas can be higher than 40%. • Pilot injection timing has strong influence on particle size distribution. • Composition of biogas has a great influence on the gas emissions. - Abstract: Recently, as a kind of renewable fuel, low-grade biogas has been researched to apply in internal combustion engine. In this paper, an experimental study was conducted to study the influence of injection strategies on the efficient utilization of low-grade biogas in Reactivity Controlled Compression Ignition (RCCI) mode with port fuel injection of biogas and in-cylinder direct injection of diesel based on a modified electronic controlled high-pressure directly injected compression ignition engine. Considered the high proportion of inert gas in biogas, a four-components simulated gas (H_2:CO:CH_4:N_2 = 5:40:5:50 vol%) has been selected as test fuels to simulate biogas. The effects of several injection control parameters such as pilot injection timing, main injection timing, common rail pressure and pilot injection ratio on the combustion and emissions are analyzed in detail. The research demonstrates that the main injection timing can effectively control the combustion phase and excessive early pilot injection timing leads to retard of combustion. CO emissions are relatively high due to homogenous charge of biogas. NOx and smoke emissions can be effectively controlled. In RCCI mode, the indicated thermal efficiency of biogas/diesel can reach 40%.

  5. Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Franzese, Oscar [ORNL; Davidson, Diane [ORNL

    2011-11-01

    In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel

  6. Performance of commercially produced mixed-oxide fuels in EBR-II

    International Nuclear Information System (INIS)

    Hales, J.W.; Lawrence, L.A.

    1980-11-01

    Commercially produced fuels for the Fast Flux Test Facility (FFTF) were irradiated in EBR-II under conditions of high cladding temperature (approx. 700 0 C) and low power (approx. 200 W/cm) to verify that manufacturing processes did not introduce variables which significantly affect general fuel performance. Four interim examinations and a terminal examination were completed to a peak burnup of 5.2 at. % to provide irradiation data pertaining to fuel restructuring and dimensional stability at low fuel temperature, fuel-cladding reactions at high cladding temperature and general fuel behavior. The examinations indicate completely satisfactory irradiation performance for low heat rates and high cladding temperatures to 5.2 at. % burnup

  7. Feasibility of Technologies to Produce Coal-Based Fuels with Equal or Lower Greenhouse Gas Emissions than Petroleum Fuels

    Science.gov (United States)

    2014-12-22

    in operating pipeline compressors), and a negligible amount from coal; just under five percent was produced from biomass—mostly in the form of corn ...as is commonly reported for soy- and corn -based biofuels), and/or if biofuel production results in land use change causing deforestation (as has...produced via F-T synthesis are already approved for incorporation into commercial and military fuels, but other pathways (e.g., pyrolysis ) would

  8. Rotary kiln and batch pyrolysis of waste tire to produce gasoline and diesel like fuels

    International Nuclear Information System (INIS)

    Ayanoğlu, Abdulkadir; Yumrutaş, Recep

    2016-01-01

    Highlights: • Waste Tire Oil (WTO) is produced from waste tire at rotary kiln reactor. • Physical and chemical properties of WTO and fuel samples are analyzed. • Gasoline like fuel (GLF) and diesel like fuel (DLF) are produced from the WTO-10 wt% CaO mixture at fixed bed reactor. • Physical and chemical properties of the GLF and DLF are compared with the standard fuels. - Abstract: In this study, waste tire is pyrolyzed in a rotary kiln reactor to obtain more gas, light liquid, heavy liquid, wax products, and less carbon black at their maximum yields as, 20%, 12%, 25%, 8% and 35% of the total weight (4 tones), respectively. Then, the heavy and light oils are reacted with additives such as natural zeolite (NZ) and lime (CaO) at different mass ratio as 2, 6, and 10 wt%, respectively, in the batch reactor to produce liquids similar to standard petroleum fuels. The heavy and light oils mixture samples are distillated to observe their optimum graphics which are similar to gasoline and diesel like fuel. Consequently, the best results are obtained from the CaO sample with 10 wt% in comparison to the ones from the gasoline and diesel fuels. The 10 wt% CaO light liquid mixture resembles to gasoline named as gasoline like fuel (GLF) and the 10 wt% CaO heavy liquid mixture is similar to diesel called as diesel like fuel (DLF). The chemical and physical features of the waste tire, light oil, heavy oil, GLF, and DLF are analyzed by TG (thermogravimetric)/dTG (derivative thermogravimetric), proximate, ultimate, higher heating value (HHV), fourier transform-infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET), sulfur, density, viscosity, gas chromatography–mass spectroscopy (GC–MS), flash point, moisture, and distillation tests. The test results are turned out to be very close to the standard petroleum fuel.

  9. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from an...

  10. Bioleaching of a low grade sphalerite concentrate produced from flotation tailings

    Directory of Open Access Journals (Sweden)

    Javad Mehrabani

    2016-12-01

    Full Text Available In this research work, the zinc extraction was investigated, using bioleaching process from a low grade zinc concentrate which was produced from the accumulated flotation tailings. Zinc content was initially upgraded to 11.97% by flotation process. Bioleaching experiments were designed and carried out by a mixed culture of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirilium ferrooxidans, as well as a mixed moderate thermophile bacteria in the shake flasks. Effect of two types bacteria, indigenous bacteria accompany by concentrate sample, and added mixture of bacteria were evaluated. The term of indigenous bacteria refers to the bacteria which initially exist in the natural concentrate sample. The results showed that more than 87% and 94% of Zn was dissolved in the bioleaching condition of mesophile and moderate thermophile bacteria, respectively. Comparing bioleaching and leaching tests indicated that mesophile bacteria improved Zn extraction 36%, in which contribution of concentrate indigenous bacteria (test condition of non-inoculation and added mesophile mixed bacteria were equal to 34% and 66% of that improvement, respectively. In addition, moderate thermophile bacteria improved sphalerite leaching up to 38% in which contribution of concentrate indigenous bacteria and added moderate bacteria were about 50% separately.

  11. Bioleaching of a low grade sphalerite concentrate produced from tailings flotation

    International Nuclear Information System (INIS)

    Mehrabani, J. V.; Shafaei, S. Z.; Noaparast, M.; Mousavi, S. M.

    2016-01-01

    In this research, the zinc extraction from a low grade zinc concentrate produced from the accumulated flotation tailings was investigated using the bio leaching process. Zinc content was initially upgraded to 11.97% through flotation process. Bio leaching experiments were designed and carried out by a mixed culture of Acidithiobacillus ferro oxidans, Acidithiobacillus thio oxidans, Leptospirilium ferro oxidans, as well as a mixed moderate thermophile bacteria in the shake flasks. The effect of two bacteria types, the indigenous bacteria accompanied by concentrate sample and added mixture of bacteria, were evaluated. The term of indigenous bacteria refers to the bacteria which initially exists in the natural concentrate sample. The results showed that more than 87% and 94% of Zn was dissolved in the bio leaching condition of mesophile and moderate thermophile bacteria, respectively. Comparing the bio leaching and leaching tests indicate that mesophile bacteria improves the Zn extraction by 36%, in which the contribution of concentrate indigenous bacteria (test condition of non-inoculation) and added mesophile mixed bacteria were equal to 34% and 66%, respectively. In addition, moderate thermophile bacteria improves the sphalerite leaching up to 38% in which contribution of the concentrate indigenous bacteria and added moderate thermophile bacteria were about 50% separately.

  12. Mimas, a mature and flexible process to convert the stockpiles of separated civil and weapon grade plutonium into MOX fuel for use in LWR's

    International Nuclear Information System (INIS)

    Vandergheynst, A.; Vanderborck, Y.

    2001-01-01

    The BELGONUCLEAIRE Dessel MOX fabrication plant started operation in 1973. The first ten years have laid down the bases for all the modifications and improvements in the field of fuel fabrication and quality control process and technology, waste management, safety and safeguards. In 1984, BELGONUCLEAIRE developed the MIMAS fabrication process and has used it on industrial scale to make MOX fuel complying with the most stringent fuel vendor specifications. From 1986 to 2000, more than 25 t Pu have been processed into more than 450 tHM of MIMAS fuel delivered in five countries. The MOX fuel produced has been demonstrated to reach at least the same performance as the UO 2 fuel used simultaneously in the same reactors. The BELGONUCLEAIRE MIMAS MOX fuel fabrication process was selected by COGEMA in the late 80(tm)s for its MELOX and its Cadarache plants. In 1999, the MIMAS process was chosen by the US DOE for the new MOX fabrication plant to be built in Savannah (SC-USA) to ''demilitarize'' 25,6 tons of weapon grade plutonium originating from nuclear war- heads. Recently MIMAS was selected by Japan for its domestic MOX plant to be built in Rokkasho-mura. (author)

  13. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    OpenAIRE

    Kurevija, Tomislav; Kukulj, Nenad; Rajković, Damir

    2007-01-01

    Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned...

  14. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Peterson, P.F.; Ott, L.

    2004-01-01

    Conventional world oil production is expected to peak within a decade. Shortfalls in production of liquid fuels (gasoline, diesel, and jet fuel) from conventional oil sources are expected to be offset by increased production of fuels from heavy oils and tar sands that are primarily located in the Western Hemisphere (Canada, Venezuela, the United States, and Mexico). Simultaneously, there is a renewed interest in liquid fuels from biomass, such as alcohol; but, biomass production requires fertilizer. Massive quantities of hydrogen (H2) are required (1) to convert heavy oils and tar sands to liquid fuels and (2) to produce fertilizer for production of biomass that can be converted to liquid fuels. If these liquid fuels are to be used while simultaneously minimizing greenhouse emissions, nonfossil methods for the production of H2 are required. Nuclear energy can be used to produce H2. The most efficient methods to produce H2 from nuclear energy involve thermochemical cycles in which high-temperature heat (700 to 850 C) and water are converted to H2 and oxygen. The peak nuclear reactor fuel and coolant temperatures must be significantly higher than the chemical process temperatures to transport heat from the reactor core to an intermediate heat transfer loop and from the intermediate heat transfer loop to the chemical plant. The reactor temperatures required for H2 production are at the limits of practical engineering materials. A new high-temperature reactor concept is being developed for H2 and electricity production: the Advanced High-Temperature Reactor (AHTR). The fuel is a graphite-matrix, coated-particle fuel, the same type that is used in modular high-temperature gas-cooled reactors (MHTGRs). The coolant is a clean molten fluoride salt with a boiling point near 1400 C. The use of a liquid coolant, rather than helium, reduces peak reactor fuel and coolant temperatures 100 to 200 C relative to those of a MHTGR. Liquids are better heat transfer fluids than gases

  15. Molybdenum-99-producing 37-element fuel bundle neutronically and thermal-hydraulically equivalent to a standard CANDU fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Nichita, E., E-mail: Eleodor.Nichita@uoit.ca; Haroon, J., E-mail: Jawad.Haroon@uoit.ca

    2016-10-15

    Highlights: • A 37-element fuel bundle modified for {sup 99}Mo production in CANDU reactors is presented. • The modified bundle is neutronically and thermal-hydraulically equivalent to the standard bundle. • The modified bundle satisfies all safety criteria satisfied by the standard bundle. - Abstract: {sup 99m}Tc, the most commonly used radioisotope in diagnostic nuclear medicine, results from the radioactive decay of {sup 99}Mo which is currently being produced at various research reactors around the globe. In this study, the potential use of CANDU power reactors for the production of {sup 99}Mo is investigated. A modified 37-element fuel bundle, suitable for the production of {sup 99}Mo in existing CANDU-type reactors is proposed. The new bundle is specifically designed to be neutronically and thermal-hydraulically equivalent to the standard 37-element CANDU fuel bundle in normal, steady-state operation and, at the same time, be able to produce significant quantities of {sup 99}Mo when irradiated in a CANDU reactor. The proposed bundle design uses fuel pins consisting of a depleted-uranium centre surrounded by a thin layer of low-enriched uranium. The new molybdenum-producing bundle is analyzed using the lattice transport code DRAGON and the diffusion code DONJON. The proposed design is shown to produce 4081 six-day Curies of {sup 99}Mo activity per bundle when irradiated in the peak-power channel of a CANDU core, while maintaining the necessary reactivity and power rating limits. The calculated {sup 99}Mo yield corresponds to approximately one third of the world weekly demand. A production rate of ∼3 bundles per week can meet the global demand of {sup 99}Mo.

  16. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2007-12-01

    Full Text Available Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned regarding production of synthetic diesel fuel, known as GTL (Gas To Liquid. Most of the future GTL plants are planned in oil exporting countries, such are Qatar and Nigeria, where natural gas as by-product of oil production is being flared, losing in that way precious energy and profit. In that way, otherwise flared natural gas, will be transformed into synthetic diesel fuel which can be directly used in all modern diesel engines. Furthermore, fossil fuel transportation and distribution technology grid can be used without any significant changes. According to lower emissions of harmful gasses during combustion than fossil diesel, this fuel could in the future play a significant part of EU efforts to reach 23% of alternative fuel share till 2020., which are now mostly relied on biodiesel, LPG (liquefied petroleum gas and CNG (compressed natural gas.

  17. USAGE OF METHYL ESTER PRODUCED FROM WASTE GRAPE AND MN ADDITIVE AS ALTERNATIVE DIESEL FUEL

    Directory of Open Access Journals (Sweden)

    Hanbey Hazar

    2017-06-01

    Full Text Available In this study, methyl ester was produced from waste grape pulp sources. The produced methyl ester was mixed with diesel in different proportions, and was tested for engine performance and emission. It was found that with increasing biodiesel content, the specific fuel consumption and exhaust temperature have increased partially, while the CO, HC and smoke emissions decreased significantly. Additionally, in the scope of this study, dodecanol, propylene glycol and Mn based additives were added to fuel B50 to improve the emission and engine performance values. With the presence of additives, an increase in the exhaust temperature was observed, while a decrease in the specific fuel consumption, CO, HC, and smoke emissions were detected.

  18. The market for fuel pellets produced from biomass and waste in the Netherlands

    International Nuclear Information System (INIS)

    Koppejan, J.; Meulman, P.D.M.

    2001-12-01

    Several initiatives are currently being developed in the Netherlands for the production of fuel pellets from waste and biomass. This report presents an overview of the current producers and (potential) users of these pellets in the Netherlands. It also outlines the Dutch and European policies and legislations concerned. Furthermore, important barriers to market development of fuel pellets are defined and future expectations are summarized. The study covers fuel pellets made from different feedstock, varying from clean biomass to waste with traces of contaminants. In each project, pellets are produced that are unique as to their product specifications, as they are usually designed for a single application. It is therefore impossible to generalize characteristics and end use. 27 refs

  19. The environmental performance of three alcohol fuel plants producers of small, medium and big scale

    International Nuclear Information System (INIS)

    Borrero, Manuel Antonio Valdes; Pereira, Jose Tomaz Vieira; Miranda, Evaristo Eduardo de

    1999-01-01

    The article discusses the following issues of alcohol fuel plants producers: sizing; performance; natural resources; environmental aspects; and electric power generation. The environmental performance concept is introduced and a performance evaluation methodology are presented and applied. The results are also presented and criticized

  20. Developing an energy efficient steam reforming process to produce hydrogen from sulfur-containing fuels

    Science.gov (United States)

    Simson, Amanda

    Hydrogen powered fuel cells have the potential to produce electricity with higher efficiency and lower emissions than conventional combustion technology. In order to realize the benefits of a hydrogen fuel cell an efficient method to produce hydrogen is needed. Currently, over 90% of hydrogen is produced from the steam reforming of natural gas. However, for many applications including fuel cell vehicles, the use of a liquid fuel rather than natural gas is desirable. This work investigates the feasibility of producing hydrogen efficiently by steam reforming E85 (85% ethanol/15% gasoline), a commercially available sulfur-containing transportation fuel. A Rh-Pt/SiO2-ZrO2 catalyst has demonstrated good activity for the E85 steam reforming reaction. An industrial steam reforming process is often run less efficiently, with more water and at higher temperatures, in order to prevent catalyst deactivation. Therefore, it is desirable to develop a process that can operate without catalyst deactivation at more energy efficient conditions. In this study, the steam reforming of a sulfur-containing fuel (E85) was studied at near stoichiometric steam/carbon ratios and at 650C, conditions at which catalyst deactivation is normally measured. At these conditions the catalyst was found to be stable steam reforming a sulfur-free E85. However, the addition of low concentrations of sulfur significantly deactivated the catalyst. The presence of sulfur in the fuel caused catalyst deactivation by promoting ethylene which generates surface carbon species (coke) that mask catalytic sites. The amount of coke increased during time on stream and became increasingly graphitic. However, the deactivation due to both sulfur adsorption and coke formation was reversible with air treatment at 650°C. However, regenerations were found to reduce the catalyst life. Air regenerations produce exotherms on the catalyst surface that cause structural changes to the catalyst. During regenerations the

  1. Automation for Crushing and Screening Equipment to Produce Graded Paving Crushed Stone

    Science.gov (United States)

    Tikhonov, Anatoly; Velichkin, Vladimir

    2017-10-01

    This paper offers analysis of factors related to production and storage of graded crushed stone, which adversely impact the service life and wear resistance of asphalt-concrete motor road pavements. The paper describes external and technology-related parameters that may cause changes of the preset ratio in graded crushed stone. Control factors are described that ensure the formulated fraction ratio in crushed stone by controlling the operation mode of the crushing and screening equipment. The paper also contains an ACS flow chart for crushing and screening equipment engaged in continuous closed-cycle two-stage technology. Performance of the ACS to maintain the preset fractionated crushed stone ratio has been confirmed with a mathematical model.

  2. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization.

    Science.gov (United States)

    Park, Ki Young; Lee, Kwanyong; Kim, Daegi

    2018-06-01

    The aim of this work was to study the characterized hydrochar of algal biomass to produce solid fuel though hydrothermal carbonization. Hydrothermal carbonization conducted at temperatures ranging from 180 to 270 °C with a 60 min reaction improved the upgrading of the fuel properties and the dewatering of wet-basis biomasses such as algae. The carbon content, carbon recovery, energy recovery, and atomic C/O and C/H ratios in all the hydrochars in this study were improved. These characteristic changes in hydrochar from algal biomass are similar to the coalification reactions due to dehydration and decarboxylation with an increase in the hydrothermal reaction temperature. The results of this study indicate that hydrothermal carbonization can be used as an effective means of generating highly energy-efficient renewable fuel resources using algal biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Monte Carlo assessment of the dose rates produced by spent fuel from CANDU reactors

    International Nuclear Information System (INIS)

    Pantazi, Doina; Mateescu, Silvia; Stanciu, Marcela

    2003-01-01

    One of the technical measures considered for biological protection is radiation shielding. The implementation process of a spent fuel intermediate storage system at Cernavoda NPP includes an evolution in computation methods related to shielding evaluation: from using simpler computer codes, like MicroShield and QAD, to systems of codes, like SCALE (which contains few independent modules) and the multipurpose and multi-particles transport code MCNP, based on Monte Carlo method. The Monte Carlo assessment of the dose rates produced by CANDU type spent fuel, during its handling for the intermediate storage, is the main objective of this paper. The work had two main features: -establishing of geometrical models according to description mode used in code MCNP, capable to account for the specific characteristics of CANDU nuclear fuel; - confirming the correctness of proposed models, by comparing MCNP results and the related results obtained with other computer codes for shielding evaluation and dose rates calculations. (authors)

  4. Properties of residual marine fuel produced by thermolysis from polypropylene waste

    Directory of Open Access Journals (Sweden)

    Linas Miknius

    2015-06-01

    Full Text Available Thermal degradation of waste plastics with the aim of producing liquid fuel is one of the alternative solutions to landfill disposal or incineration. The paper describes thermal conversion of polypropylene waste and analysis of produced liquid fuel that would satisfy ISO 8217-2012 requirements for a residual marine fuel. Single pass batch thermolysis processes were conducted at different own vapour pressures (20-80 barg that determined process temperature, residence time of intermediates what resulted in different yields of the liquid product. Obtained products were stabilized by rectification to achieve required standard flash point. Gas chromatography and 1H NMR spectrometry show aliphatic nature of the liquid product where majority of the compounds are isoalkanes and isoalkenes. Only lightest fractions boiling up to a temperature of 72 oC have significant amount of n-pentane. Distribution of aromatic hydrocarbons is not even along the boiling range. The fractions boiling at a temperature of 128 oC and 160 oC have the highest content of monocyclic arenes – 3.16 % and 4.09 % respectively. The obtained final liquid residual product meets all but one requirements of ISO 8217-2012 for residual marine fuels.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6105

  5. 77 FR 8254 - Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS...

    Science.gov (United States)

    2012-02-14

    ... Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...

  6. 77 FR 19663 - Notice of Data Availability Concerning Renewable Fuels Produced from Palm Oil Under the RFS...

    Science.gov (United States)

    2012-04-02

    ... Concerning Renewable Fuels Produced from Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced from Palm Oil under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...

  7. Producing fuel alcohol by extractive distillation: Simulating the process with glycerol

    OpenAIRE

    Ana María Uyazán; Iván Dario Gil; Jaime Aguilar; Gerardo Rodríguez Niño; Luis A Caicedo Mesa

    2006-01-01

    Downstream separation processes in biotechnology form part of the stages having most impact on a product’s final cost. The tendency throughout the world today is to replace fossil fuels with those having a renewable origin such as ethanol; this, in turn, produces a demand for the same and the need for optimising fermentation, treating vinazas and dehydration processes. The present work approaches the problem of dehydration through simulating azeotropic ethanol extractive distillation using gl...

  8. Process of producing fuels from slates or bituminous shales. [distillation at incandescent heat

    Energy Technology Data Exchange (ETDEWEB)

    Huppenbauer, M

    1902-07-31

    A process of producing a fuel from slates or bituminous shales by saturating or impregnating them after preliminary distillation with the vapors of tars, resins, oils, etc., is given. The process is characterized by the bituminous shale being submitted in the form of fragments to distillation at incandescent heat to make the shale porous and able to absorb the vapors of the substances already mentioned.

  9. Thermal Cracking of Jatropha Oil with Hydrogen to Produce Bio-Fuel Oil

    Directory of Open Access Journals (Sweden)

    Yi-Yu Wang

    2016-11-01

    Full Text Available This study used thermal cracking with hydrogen (HTC to produce bio-fuel oil (BFO from jatropha oil (JO and to improve its quality. We conducted HTC with different hydrogen pressures (PH2; 0–2.07 MPa or 0–300 psig, retention times (tr; 40–780 min, and set temperatures (TC; 623–683 K. By applying HTC, the oil molecules can be hydrogenated and broken down into smaller molecules. The acid value (AV, iodine value, kinematic viscosity (KV, density, and heating value (HV of the BFO produced were measured and compared with the prevailing standards for oil to assess its suitability as a substitute for fossil fuels or biofuels. The results indicate that an increase in PH2 tends to increase the AV and KV while decreasing the HV of the BFO. The BFO yield (YBFO increases with PH2 and tr. The above properties decrease with increasing TC. Upon HTC at 0.69 MPa (100 psig H2 pressure, 60 min time, and 683 K temperature, the YBFO was found to be 86 wt%. The resulting BFO possesses simulated distillation characteristics superior to those of boat oil and heavy oil while being similar to those of diesel oil. The BFO contains 15.48% light naphtha, 35.73% heavy naphtha, 21.79% light gas oil, and 27% heavy gas oil and vacuum residue. These constituents can be further refined to produce gasoline, diesel, lubricants, and other fuel products.

  10. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from...... on filters and a sorbent was used for collection of vapour phase aromatic compounds. The filters and sorbent were analysed for polycyclic aromatic hydrocarbons (PAH) formed during combustion. The measurements showed that there was no significant increase in particulate PAH emissions due to the tar compounds...

  11. Experimental investigation of solid oxide fuel cells using biomass gasification producer gases

    Energy Technology Data Exchange (ETDEWEB)

    Norheim, Arnstein

    2005-07-01

    The main objective of this thesis is theoretical and experimental investigations related to utilisation of biomass gasification producer gases as fuel for Solid Oxide Fuel Cells (SOFC). Initial fundamental steps towards a future system of combined heat and power production based on biomass gasification and SOFC are performed and include: 1) Theoretical modeling of the composition of biomass gasification producer gases. 2) Experimental investigation of SOFC performance using biomass gasification producer gas as fuel. 3) Experimental investigation of SOFC performance using biomass gasification producer gas containing high sulphur concentration. The modeling of the composition of gasifier producer gas was performed using the program FactSage. The main objective was to investigate the amount and speciation of trace species in the producer gases as several parameters were varied. Thus, the composition at thermodynamic equilibrium of sulphur, chlorine, potassium, sodium and compounds of these were established. This was done for varying content of the trace species in the biomass material at different temperatures and fuel utilisation i.e. varying oxygen content in the producer gas. The temperature interval investigated was in the range of normal SOFC operation. It was found that sulphur is expected to be found as H2S irrespective of temperature and amount of sulphur. Only at very high fuel utilisation some S02 is formed. Important potassium containing compounds in the gas are gaseous KOH and K. When chlorine is present, the amount of KOH and K will decrease due to the formation of KCI. The level of sodium investigated here was low, but some Na, NaOH and NaCl is expected to be formed. Below a certain temperature, condensation of alkali rich carbonates may occur. The temperature at which condensation begins is mainly depending on the amount of potassium present; the condensation temperature increases with increasing potassium content. In the first experimental work

  12. 40 CFR 80.530 - Under what conditions can 500 ppm motor vehicle diesel fuel be produced or imported after May 31...

    Science.gov (United States)

    2010-07-01

    ... motor vehicle diesel fuel be produced or imported after May 31, 2006? 80.530 Section 80.530 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.530 Under what conditions can 500 ppm motor vehicle diesel...

  13. Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation

    Science.gov (United States)

    Tedder, Daniel W.

    1985-05-14

    Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.

  14. Generation of Food-Grade Lactococcal Starters Which Produce the Lantibiotics Lacticin 3147 and Lacticin 481

    Science.gov (United States)

    O'Sullivan, Lisa; Ryan, Maire P.; Ross, R. Paul; Hill, Colin

    2003-01-01

    Transconjugant lactococcal starters which produce both lantibiotics lacticin 3147 and lacticin 481 were generated via conjugation of large bacteriocin-encoding plasmids. A representative of one of the resultant strains proved more effective at killing Lactobacillus fermentum and inhibiting the growth of Listeria monocytogenes LO28H than either of the single bacteriocin-producing parental strains, demonstrating the potential of these transconjugants as protection cultures for food safety applications. PMID:12788782

  15. Corrosion and wear behavior of functionally graded Al2024/SiC composites produced by hot pressing and consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Fatih; Canakci, Aykut, E-mail: aykut@ktu.edu.tr; Varol, Temel; Ozkaya, Serdar

    2015-09-25

    Highlights: • Functionally graded Al2024/SiC composites were produced by hot pressing. • Effect of the number of graded layers was investigated on the corrosion behavior. • Functionally graded composites has the most corrosion resistant than composites. • Wear mechanisms of Al2024/SiC composites were explained. - Abstract: Functionally graded Al2024/SiC composites (FGMs) with varying percentage of SiC (30–60%) were produced by hot pressing and consolidation method. The effects of SiC content and number of layers of Al2024/SiC FGMs on the corrosion and wear behaviors were investigated. The microstructures of these composites were characterized by a scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). The corrosion performances of composites were evaluated by potentiodynamic polarization scans in 3.5% NaCl solution. Corrosion experiments shows that corrosion rate (1109 mpy) of two layered FGMs which containing 50 wt.% SiC were much higher than Al2024 matrix (2569 mpy) and Al2024/50 wt.% SiC composite (2201 mpy). Mechanical properties of these composites were evaluated by microhardness measurements and ball-on-disk wear tests. As the applied load change from 15 to 20 N, the wear rates of the Al2024 increased significantly and wear mechanism transformed from mild to severe wear regime. It has been shown that Al2024/40 wt.% SiC composite has lower wear rate where adhesive and abrasive wear mechanisms play a major role.

  16. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell.

    Science.gov (United States)

    Li, Winton; Bonakdarpour, Arman; Gyenge, Előd; Wilkinson, David P

    2013-11-01

    The industrial anthraquinone auto-oxidation process produces most of the world's supply of hydrogen peroxide. For applications that require small amounts of H2 O2 or have economically difficult transportation means, an alternate, on-site H2 O2 production method is needed. Advanced drinking water purification technologies use neutral-pH H2 O2 in combination with UV treatment to reach the desired water purity targets. To produce neutral H2 O2 on-site and on-demand for drinking water purification, the electroreduction of oxygen at the cathode of a proton exchange membrane (PEM) fuel cell operated in either electrolysis (power consuming) or fuel cell (power generating) mode could be a possible solution. The work presented here focuses on the H2 /O2 fuel cell mode to produce H2 O2 . The fuel cell reactor is operated with a continuous flow of carrier water through the cathode to remove the product H2 O2 . The impact of the cobalt-carbon composite cathode catalyst loading, Teflon content in the cathode gas diffusion layer, and cathode carrier water flowrate on the production of H2 O2 are examined. H2 O2 production rates of up to 200 μmol h(-1)  cmgeometric (-2) are achieved using a continuous flow of carrier water operating at 30 % current efficiency. Operation times of more than 24 h have shown consistent H2 O2 and power production, with no degradation of the cobalt catalyst. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Laboratory studies on the dissolution and solvent extraction of yellow cake to produce nuclear grade ammonium diuranate

    International Nuclear Information System (INIS)

    Bernido, C.C.; Pabelonia, C.A.; Balagtas, G.C.; Ubanan, E.

    1984-10-01

    Yellow cake or uranium concentrate, the semi-refined product from the processing of uranium-bearing ores in uranium mills has to undergo further processing and purification to nuclear grade specifications prior to conversion to uranium dioxide, the chemical form in which uranium is found in the fuel elements of many nuclear power reactor types, including the Philippines' PNPP-1. This paper presents the results of the studies conducted to obtain the optimum operating conditions for the first two steps in the processing of yellow cake to achieve nuclear grade purity, namely, (a) the dissolution of yellow cake in nitric acid, and (b) the separation of uranium from other impurities by solvent extraction using 20% Tri-butyl-Phosphate (TBP) in kerosene as the organic phase. The parameters studied for the dissolution step are acid molarity, temperature, and time; the optimum conditions obtained were: 4M HNO 3 , 100degC, and one hour, respectively. For the solvent extraction step, the following parameters were studied: aqueous to organic ratio, mixing time, and number of extraction stages; the optimum results obtained were O:A=4:1, three minutes mixing time, and three extraction stages, respectively. (author)

  18. Technical Appraisal of Continuous Destilator Type as Alternative Fuel Producer from Basic Materials of Arak Bali

    Directory of Open Access Journals (Sweden)

    Sukadana -

    2012-11-01

    Full Text Available Arrack Bali which is produced from traditional process has low quality (<40%. With controlling of operational variable such as evaporation temperature, will improve arrack Bali quality. Arrack Bali with quality more than 80 % has octane number more than 108,6, higher then petroleum octane number (80 until 90, easy burning and evaporation, very good to be alternative fuel to engine. In order to product height quality any operational variables like temperature, step, and sprayer models should be noticed. This experiment is to obtain operational variables of distillatory to product arrack Bali as an alternative fuel and it is tested in motor cycle engine at speed and compression ratio variables toward performance like emission. The higher evaporation temperature is the higher capacity of product to be obtained, on the other hand, the lower quality to be reached. Generally, comparing with petroleum, arrack Bali yields lower emission.

  19. Performance of nickel-based oxygen carrier produced using renewable fuel aloe vera

    Science.gov (United States)

    Afandi, NF; Devaraj, D.; Manap, A.; Ibrahim, N.

    2017-04-01

    Consuming and burning of fuel mainly fossil fuel has gradually increased in this upcoming era due to high-energy demand and causes the global warming. One of the most effective ways to reduce the greenhouse gases is by capturing carbon dioxide (CO2) during the combustion process. Chemical looping combustion (CLC) is one of the most effective methods to capture the CO2 without the need of an energy intensive air separation unit. This method uses oxygen carrier to provide O2 that can react with fuel to form CO2 and H2O. This research focuses on synthesizing NiO/NiAl2O4 as an oxygen carrier due to its properties that can withstand high temperature during CLC application. The NiO/NiAl2O4 powder was synthesized using solution combustion method with plant extract renewable fuel, aloe vera as the fuel. In order to optimize the performance of the particles that can be used in CLC application, various calcination temperatures were varied at 600°C, 800°C, 1050°C and 1300°C. The phase and morphology of obtained powders were characterized using X-ray diffraction (XRD) and Field Emission Microscopy (FESEM) respectively together with the powder elements. In CLC application, high reactivity can be achieved by using smaller particle size of oxygen carrier. This research succeeded in producing nano-structured powder with high crystalline structure at temperature 1050°C which is suitable to be used in CLC application.

  20. Evaluation of simulated-LOCA tests that produced large fuel cladding ballooning

    International Nuclear Information System (INIS)

    Powers, D.A.; Meyer, R.O.

    1979-02-01

    A description is given of the NRC review and evaluation of simulated-LOCA tests that produced large axially extended ballooing in Zircaloy fuel cladding. Technical summaries are presented on the likelihood of the transient that was used in the tests, the effects of temperature variations on strain localization, and the results of other similar experiments. It is concluded that (a) the large axially extended deformations were an artifact of the experimental technique, (b) current NRC licensing positions are not invalidated by this new information, and (c) no new research programs are needed to study this phenomenon

  1. System and process for producing fuel with a methane thermochemical cycle

    Science.gov (United States)

    Diver, Richard B.

    2015-12-15

    A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.

  2. Design of an extrusion screw and solid fuel produced from coconut shell

    Directory of Open Access Journals (Sweden)

    Madhiyanon, T

    2006-03-01

    Full Text Available The objectives were to design an extrusion screw to produce biomass solid fuel in a cold extrusion process, and investigate the effects of molasses used as a selected adhesive on the physical properties of extruded products. The material employed consisted of crushed coconut shell char and coconut fiber char mixed at a ratio of 40:60. The ratios of molasses in the mixture were 10:100, 15:100 and 20:100 (by weight and the extrusion die angles were 1.0, 1.1, 1.2, and 1.3 degrees gradation per experiment. The experimental results showed that the newly designed screw could function properly in the output range 0.75-0.90 kg/min, which is close to the design value. Regarding the molasses's effect on solid fuel properties, increasing the share of molasses was positive for both output and strength of the resulting briquettes, whereas the results of increasing die angle showed decreases in both output and strength. The compressive strength varied between 2.49-2.87 MPa in all circumstances, which was considerably higher than acceptable industrial level. Furthermore, the extruded solid fuel showed excellent resistance to impact force. Regarding energy consumption, the amount of electrical energy used in the extrusion process was insignificant, ranging between 0.040-0.079 kWh/kg.

  3. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    Science.gov (United States)

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  4. 40 CFR 80.620 - What are the additional requirements for diesel fuel or distillates produced by foreign...

    Science.gov (United States)

    2010-07-01

    ... audits of the foreign refinery. (i) Inspections and audits may be either announced in advance by EPA, or... diesel fuel or distillate was produced, assurance that the diesel fuel or distillate remained segregated...: (i) Be approved in advance by EPA, based on a demonstration of ability to perform the procedures...

  5. Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H2 /N2 Fuel Cell.

    Science.gov (United States)

    Milton, Ross D; Cai, Rong; Abdellaoui, Sofiene; Leech, Dónal; De Lacey, Antonio L; Pita, Marcos; Minteer, Shelley D

    2017-03-01

    Nitrogenases are the only enzymes known to reduce molecular nitrogen (N 2 ) to ammonia (NH 3 ). By using methyl viologen (N,N'-dimethyl-4,4'-bipyridinium) to shuttle electrons to nitrogenase, N 2 reduction to NH 3 can be mediated at an electrode surface. The coupling of this nitrogenase cathode with a bioanode that utilizes the enzyme hydrogenase to oxidize molecular hydrogen (H 2 ) results in an enzymatic fuel cell (EFC) that is able to produce NH 3 from H 2 and N 2 while simultaneously producing an electrical current. To demonstrate this, a charge of 60 mC was passed across H 2  /N 2 EFCs, which resulted in the formation of 286 nmol NH 3  mg -1 MoFe protein, corresponding to a Faradaic efficiency of 26.4 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Economics of producing hydrogen as transportation fuel using offshore wind energy systems

    International Nuclear Information System (INIS)

    Mathur, Jyotirmay; Agarwal, Nalin; Swaroop, Rakesh; Shah, Nikhar

    2008-01-01

    Over the past few years, hydrogen has been recognized as a suitable substitute for present vehicular fuels. This paper covers the economic analysis of one of the most promising hydrogen production methods-using wind energy for producing hydrogen through electrolysis of seawater-with a concentration on the Indian transport sector. The analysis provides insights about several questions such as the advantages of offshore plants over coastal installations, economics of large wind-machine clusters, and comparison of cost of producing hydrogen with competing gasoline. Robustness of results has been checked by developing several scenarios such as fast/slow learning rates for wind systems for determining future trends. Results of this analysis show that use of hydrogen for transportation is not likely to be attractive before 2012, and that too with considerable learning in wind, electrolyzer and hydrogen storage technology

  7. Multi-unit Inertial Fusion Energy (IFE) plants producing hydrogen fuel

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-12-01

    A quantitative energy pathway comparison is made between a modern oil refinery and genetic fusion hydrogen plant supporting hybrid-electric cars powered by gasoline and hydrogen-optimized internal combustion engines, respectively, both meeting President Clinton's goal for advanced car goal of 80 mpg gasoline equivalent. The comparison shows that a fusion electric plant producing hydrogen by water electrolysis at 80% efficiency must have an electric capacity of 10 GWe to support as many hydrogen-powered hybrid cars as one modern 200,000 bbl/day-capacity oil refinery could support in gasoline-powered hybrid cars. A 10 GWe fusion electric plant capital cost is limited to 12.5 B$ to produce electricity at 2.3 cents/kWehr, and hydrogen production by electrolysis at 8 $/GJ, for equal consumer fuel cost per passenger mile as in the oil-gasoline-hybrid pathway

  8. Methods of refining natural oils, and methods of producing fuel compositions

    Science.gov (United States)

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  9. Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae

    International Nuclear Information System (INIS)

    Lobato, Justo; González del Campo, Araceli; Fernández, Francisco J.; Cañizares, Pablo; Rodrigo, Manuel A.

    2013-01-01

    Highlights: • An algae cathode of a MFC has been used without artificial mediators or catalysts. • To perform a lagooning wastewater treatment coupled with energy-producing MFC. • The producing electricity operates under day/night irradiation cycles, is shown. - Abstract: The paper focused on the start-up and performance characterisation of a new type of microbial fuel cell (MFC), in which an algae culture was seeded in the cathodic chamber to produce the oxygen required to complete the electrochemical reactions of the MFC, thus circumventing the need for a mechanical aerator. The system did not use mediators or high cost catalysts and it can be started-up easily using a straightforward three-stage procedure. The start-up consists of the separate production of the electricity-producing microorganisms and the algae cultures (stage I), replacement of the mechanical aeration system by the algae culture (stage II) and a change in the light dosage from a continuous input to a dynamic day/night profile. The MFC was operated under a regime of 12 h light and 12 h dark and was also operated in batch and continuous substrate-feeding modes. The same cell voltage was achieved when the cathode compartment was operated with air supplied by aerators, which means that this configuration can perform as well as the traditional one. The results also show the influence of both the organic load and light irradiation on electricity production and demonstrate that this type MFC is a robust and promising technology that can be considered as a first approach to perform a lagooning wastewater treatment with microbial fuel cells

  10. Generation of clinical grade dendritic cells with capacity to produce biologically active IL-12p70

    Directory of Open Access Journals (Sweden)

    Bigalke Iris

    2007-04-01

    Full Text Available Abstract Background For optimal T cell activation it is desirable that dendritic cells (DCs display peptides within MHC molecules as signal 1, costimulatory molecules as signal 2 and, in addition, produce IL-12p70 as signal 3. IL-12p70 polarizes T cell responses towards CD4+ T helper 1 cells, which then support the development of CD8+ cytotoxic T lymphocytes. We therefore developed new maturation cocktails allowing DCs to produce biologically active IL-12p70 for large-scale cancer vaccine development. Methods After elutriation of leukapheresis products in a closed bag system, enriched monocytes were cultured with GM-CSF and IL-4 for six days to generate immature DCs that were then matured with cocktails, containing cytokines, interferon-gamma, prostaglandin E2, and a ligand for Toll-like receptor 8, with or without poly (I:C. Results Mature DCs expressed appropriate maturation markers and the lymph node homing chemokine receptor, CCR7. They retained full maturity after culture for two days without maturation cocktails and following cryopreservation. TLR ligand stimulation induced DCs capable of secreting IL-12p70 in primary cultures and after one day of coculture with CD40L-expressing fibroblasts, mimicking an encounter with T cells. DCs matured with our new cocktails containing TLR8 ligand, with or without poly (I:C, induced alloresponses and stimulated virus-specific T cells after peptide-pulsing. DCs matured in cocktails containing TLR8 ligand without poly (I:C could also be loaded with RNA as a source of antigen, whereas DCs matured in cocktails containing poly (I:C were unable to express proteins following RNA transfer by electroporation. Conclusion Our new maturation cocktails allowed easy DC harvesting, stable maturation and substantial recoveries of mature DCs after cryopreservation. Our procedure for generating DCs is easily adaptable for GMP-compliance and yields IL-12p70-secreting DCs suitable for development of cancer vaccines using

  11. Scenarios for multi-unit inertial fusion energy plants producing hydrogen fuel

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-12-01

    This work describes: (a) the motivation for considering fusion in general, and Inertial Fusion Energy (IFE) in particular, to produce hydrogen fuel powering low-emission vehicles; (b) the general requirements for any fusion electric plant to produce hydrogen by water electrolysis at costs competitive with present consumer gasoline fuel costs per passenger mile, for advanced car architectures meeting President Clinton's 80 mpg advanced car goal, and (c) a comparative economic analysis for the potential cost of electricity (CoE) and corresponding cost of hydrogen (CoH) from a variety of multi-unit IFE plants with one to eight target chambers sharing a common driver and target fab facility. Cases with either heavy-ion or diode-pumped, solid-state laser drivers are considered, with ''conventional'' indirect drive target gains versus ''advanced, e.g. Fast Ignitor'' direct drive gain assumptions, and with conventional steam balance-of-plant (BoP) versus advanced MHD plus steam combined cycle BoP, to contrast the potential economics under ''conventional'' and ''advanced'' IFE assumptions, respectively

  12. Fabrication and Characterization of Graded Anodes for Anode-Supported Solid Oxide Fuel Cells by Tape Casting and Lamination

    DEFF Research Database (Denmark)

    Beltran-Lopez, J.F.; Laguna-Bercero, M.A.; Gurauskis, Jonas

    2014-01-01

    Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting and laminat......Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting...... and lamination will be described. Flexural strength of the reduced cermets measured using three-point bending configuration is 468±37MPa. The graded anode supports are characterized by scanning electron microscope observations, mercury porosimetry intrusion, and resistivity measurements, showing an adequate...... of tapes at room temperature without using plasticizers. This is made by the combination of two different binders with varying Tg (glass transition temperature) which resulted in plastic deformation at room temperature. Those results indicate that the proposed process is a cost-effective method...

  13. In pile programme of first valutation of UO2 + PuO2 fuel produced by a new process (GSP)

    International Nuclear Information System (INIS)

    Caracchin, R.; Lanchi, M.; Marinucci, G.; Nobili, A.; Dupont, G.; Galtier, J.

    1982-01-01

    The main scope of the ENEA-AGN-CEA programme collaboration is a first valutation of fuel elements produced by GSP method. This valuation will be done by in reactor experiment which enable to compare the performance of GSP and 'standard' FBR fuels. The composition is done by means of theree experimental device: P3, Lugel and Digel. The P3 device gives a direct measurement during irradiation of fuel central temperature, power and integral conductivity. The Lugel device measures fuel stack axial variations and Digel device gives the diameter variations of the pin and PCMI

  14. Investigation on the performance and emission parameters of dual fuel diesel engine with mixture combination of hydrogen and producer gas as secondary fuel

    Directory of Open Access Journals (Sweden)

    A. E. Dhole

    2016-06-01

    Full Text Available This study presents experimental investigation in to the effects of using mixture of producer gas and hydrogen in five different proportions as a secondary fuel with diesel as pilot fuel at wide range of load conditions in dual fuel operation of a 4 cylinder turbocharged and intercooled 62.5 kW gen-set diesel engine at constant speed of 1500 RPM. Secondary fuel Substitution is in different percentage of diesel at each load. To generate producer gas, the rice husk was used as source in the downdraft gasifier. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. It was found that of all the combinations tested, mixture combination of PG:H2=(60:40% is the most suited one at which the brake thermal efficiency is in good comparison to that of diesel operation. Decreased NOx emissions and increased CO emissions were observed for dual fuel mode for all the fuel combinations compared to diesel fuel operation.

  15. Response of range grasses to water produced from in situ fossil fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Q D; Moore, T S; Sexton, J C

    1984-11-01

    In situ-produced waters collected while retorting oil shale and tar sands to produce oil, and coal to produce gas, were tested for their effects on plant growth. Basin wildrye (Elymus cinereus), western wheatgrass (Agropyron smithii) 'Rosana', alkali sacaton (Sporobolus airoides), bluebunch wheatgrass (Agropyron spicatum) and Nuttall alkaligrass (Puccinellia airoides) were utilized. Root weight, shoot weight, total dry weight, leaf area and root/shoot weight ratios were determined. All experiments were conducted under greenhouse conditions using hydroponic techniques and horticultural grade perlite for plant support. Measurements were collected after a 10-week growth period. Results show that differences in plant growth can be monitored using dry biomass, leaf area and root to shoot ratio measurements when plants are subjected to retort waters. Plant species reaction to a water may be different. Generally, alkali sacaton, basin wildrye and western wheatgrass are least susceptible to toxicity by the majority of retort waters tested. Bluebunch wheatgrass is most susceptible. Waters from different retort procedures vary in toxicity to different plant species.

  16. Generation of low-Btu fuel gas from agricultural residues experiments with a laboratory scale gas producer

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R O

    1977-01-01

    Two successive laboratory-scale, downdraft gas producers were fabricated and tested. Agricultural and food processing residues including walnut shells, corn cobs, tree prunings, and cotton gin waste, were converted to a low Btu producer gas. The performance of 2 spark ignition engines, when running on producer gas, was highly satisfactory. The ability of the producer to maintain a continuous supply of good quality gas was determined largely by firebox configuration. Fuel handling and fuel flow control problems tended to be specific to individual types of residues. During each test run, air input, firebox temperature, fuel consumption rate, and pressure differential across the producer were monitored. An overall conversion efficiency of 65% was achieved.

  17. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  18. Characterisation of ashes produced by co-combustion of recovered fuels and peat

    Energy Technology Data Exchange (ETDEWEB)

    Frankenhaeuser, M. [Borealis Polymers Oy, Porvoo (Finland)

    1997-10-01

    The current project focuses on eventual changes in ash characteristics during co-combustion of refuse derived fuel with coal, peat, wood or bark, which could lead to slagging, fouling and corrosion in the boiler. Ashes were produced at fluidised bed (FB) combustion conditions in the 15 kW reactor at VTT Energy, Jyvaeskylae, the fly ash captured by the cyclone was further analysed by XRF at Outokumpu Geotechnical Laboratory, Outokumpu. The sintering behaviour of these ashes was investigated using a test procedure developed at the Combustion Chemistry Research Group at Aabo Akademi University. The current extended programme includes a Danish refuse-derived fuel (RDF), co-combusted with bark/coal (5 tests) and wood/coal (2 tests), a RF from Jyvaskyla (2 tests with peat/coal) and de-inking sludges co- combusted at full-scale with wood waste or paper mill sludge (4 ashes provided by IVO Power). Ash pellets were thermally treated in nitrogen in order to avoid residual carbon combustion. The results obtained show no sintering tendencies below 600 deg C, significant changes in sintering are seen with pellets treated at 1000 deg C. Ash from 100 % RDF combustion does not sinter, 25 % RDF co-combustion with wood and peat, respectively, gives an insignificant effect. The most severe sintering occurs during co-combustion of RDF with bark. Contrary to the earlier hypothesis a 25 % coal addition seems to have a negative effect on all fuel blends. Analysis of the sintering results versus ash chemical composition shows, that (again), in general, an increased level of alkali chlorides and sulphates gives increased sintering. Finally, some results on sintering tendency measurements on ashes from full-scale CFB co-combustion of deinking sludge with wood waste and paper mill sludge are given. This shows that these ashes show very little, if any, sintering tendency, which can be explained from ash chemistry

  19. An economic parametric analysis of the synthetic fuel produced by a fusion-fission complex

    International Nuclear Information System (INIS)

    Tai, A.S.; Krakowski, R.A.

    1980-01-01

    A simple analytic model is used to examine economic constraints of a fusion-fission complex in which a portion of a thermal energy is used for producing synthetic fuel (synfuel). Since the values of many quantities are not well-known, a parametric analysis has been carried out for testing the sensitivity of the synfuel production cost in relation to crucial economic and technological quantities (investment costs of hybrid and synfuel plants, energy multiplication of the fission blanket, recirculating power fraction of the fusion driver, etc.). In addition, a minimum synfuel selling price has been evaluated, from which the fission-fusion-synfuel complex brings about a higher economic benefit than does the fusion-fission hybrid entirely devoted to fissile-fuel and electricity generation. This paper describes the energy flow diagram of fusion-fission synfuel concept, express the revenue-to-cost formulation and the breakeven synfuel selling price. The synfuel production cost given by the model is evaluated within a range of values of crucial parameters. Assuming an electric cost of 2.7 cents/kWh, an annual investment cost per energy unit of 4.2 to 6 $/FJ for the fusion-fission complex and 1.5 to 3 $/GJ for the synfuel plant, the synfuel production cost lies between 6.5 and 8.5 $/GJ. These production costs can compete with those evaluated for other processes. The study points out a potential use of the fusion-fission hybrid reactor for other than fissile-fuel and electricity generation. (orig.) [de

  20. Potential for producing bio-fuel in the Amazon deforested areas

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ricardo Cunha da [Banco Nacional de Desenvolvimento Economico e Social (BNDES), Rio de Janeiro, RJ (Brazil)

    2004-05-01

    This paper analyzes the possibility of producing bio-fuel in the Amazon degraded lands. The aim here is to combine environmental concerns with an improvement of local people well-being. Firstly, a historical analysis is conducted in order to figure out the major deforestation driving forces in Amazon and to help to arrive at a feasible energy choice. Secondly, the geographical area is chosen. It is the spatial boundaries of Carajas Iron Ore Program in the southeastern Amazon where most of the deforestation has taken place in the last few decades. For this specific context, palm oil is chosen as a technological energy alternative due to its social production structure, its environmental benefits and its productivity . A quantified analysis is realized in terms of income generation (2000-3000 US dollars/family/yr), job creation (200,000-300,000 families settled), land required and restored (2-3.2 million ha), and carbon emission from fossil fuel avoided (13.1 Mt C). Some recommendations related to institutional and economic barriers are proposed in order to encourage the technology penetration in the market. (Author)

  1. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels.

    Science.gov (United States)

    Qiao, Jinli; Liu, Yuyu; Hong, Feng; Zhang, Jiujun

    2014-01-21

    This paper reviews recent progress made in identifying electrocatalysts for carbon dioxide (CO2) reduction to produce low-carbon fuels, including CO, HCOOH/HCOO(-), CH2O, CH4, H2C2O4/HC2O4(-), C2H4, CH3OH, CH3CH2OH and others. The electrocatalysts are classified into several categories, including metals, metal alloys, metal oxides, metal complexes, polymers/clusters, enzymes and organic molecules. The catalyts' activity, product selectivity, Faradaic efficiency, catalytic stability and reduction mechanisms during CO2 electroreduction have received detailed treatment. In particular, we review the effects of electrode potential, solution-electrolyte type and composition, temperature, pressure, and other conditions on these catalyst properties. The challenges in achieving highly active and stable CO2 reduction electrocatalysts are analyzed, and several research directions for practical applications are proposed, with the aim of mitigating performance degradation, overcoming additional challenges, and facilitating research and development in this area.

  2. Characterisation of ashes produced by co-combustion of recovered fuels and peat

    Energy Technology Data Exchange (ETDEWEB)

    Frankenhaeuser, M.; Zevenhoven, R. [Borealis Polymers Oy, Porvoo (Finland); Skrifvars, B.J. [Aabo Akademi, Turku (Finland); Orjala, M. [VTT Energy, Espoo (Finland); Peltola, K. [Foster Wheeler Energy (Finland)

    1996-12-01

    Source separation of combustible materials from household or municipal solid waste yields a raw material for the production of Packaging Derived Fuel (PDF). This fuel can substitute the traditional fuels in heat and power generation and is also called recycled fuel. Co-combustion of these types of fuels with coal has been studied in several LIEKKI-projects and the results have been both technically and environmentally favourable. (author)

  3. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants.

    Science.gov (United States)

    Manitchotpisit, Pennapa; Bischoff, Kenneth M; Price, Neil P J; Leathers, Timothy D

    2013-05-01

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Four bacterial strains, designated as ALT3A, ALT3B, ALT17, and MR1, produced inhibitory effects on growth of LAB. Sequencing of rRNA identified these strains as species of Bacillus subtilis (ALT3A and ALT3B) and B. cereus (ALT17 and MR1). Cell mass from colonies and agar samples from inhibition zones were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The spectra of ALT3A and ALT3B showed a strong signal at m/z 1,060, similar in mass to the surfactin family of antimicrobial lipopeptides. ALT3A and ALT3B were analyzed by zymogram analysis using SDS-PAGE gels placed on agar plates inoculated with LAB. Cell lysates possessed an inhibitory protein of less than 10 kDa, consistent with the production of an antibacterial lipopeptide. Mass spectra of ALT17 and MR1 had notable signals at m/z 908 and 930 in the whole cell extracts and at m/z 687 in agar, but these masses do not correlate with those of previously reported antibacterial lipopeptides, and no antibacterial activity was detected by zymogram. The antibacterial activities produced by these strains may have application in the fuel ethanol industry as an alternative to antibiotics for prevention and control of bacterial contamination.

  4. Microscopic Fuel Particles Produced by Self-Assembly of Actinide Nanoclusters on Carbon Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Na, Chongzheng [Univ. of Notre Dame, IN (United States)

    2016-10-17

    Many consider further development of nuclear power to be essential for sustained development of society; however, the fuel forms currently used are expensive to recycle. In this project, we sought to create the knowledge and knowhow that are needed to produce nanocomposite materials by directly depositing uranium nanoclusters on networks of carbon-­ based nanomaterials. The objectives of the proposed work were to (1) determine the control of uranium nanocluster surface chemistry on nanocomposite formation, (2) determine the control of carbon nanomaterial surface chemistry on nanocomposite formation, and (3) develop protocols for synthesizing uranium-­carbon nanomaterials. After examining a wide variety of synthetic methods, we show that synthesizing graphene-­supported UO2 nanocrystals in polar ethylene glycol compounds by polyol reduction under boiling reflux can enable the use of an inexpensive graphene precursor graphene oxide in the production of uranium-carbon nanocomposites in a one-­pot process. We further show that triethylene glycol is the most suitable solvent for producing nanometer-­sized UO2 crystals compared to monoethylene glycol, diethylene glycol, and polyethylene glycol. Graphene-­supported UO2 nanocrystals synthesized with triethylene glycol show evidence of heteroepitaxy, which can be beneficial for facilitating heat transfer in nuclear fuel particles. Furthermore, we show that graphene-supported UO2 nanocrystals synthesized by polyol reduction can be readily stored in alcohols, preventing oxidation from the prevalent oxygen in air. Together, these methods provide a facile approach for preparing and storing graphene-supported UO nanocrystals for further investigation and development under ambient conditions.

  5. Characterization of biomass producer gas as fuel for stationary gas engines in combined heat and power production

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2008-01-01

    The aim of this project has been the characterization of biomass producer gas as a fuel for stationary gas engines in heat and power production. More than 3200 hours of gas engine operation, with producer gas as fuel, has been conducted at the biomass gasification combined heat and power (CHP...... different measuring methods. Likewise, no particles were detected in the gas. Considerable amounts of NH3 were measured in the produced gas.An analysis of engine operation at varying load has been carried out. Standard emissions, load and efficiency have been measured at varying operating conditions ranging...... from 50% to 90% load. Biomass producer gas is an excellent lean burn engine fuel: Operation of a natural aspirated engine has been achieved for 1.2...

  6. Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel

    Directory of Open Access Journals (Sweden)

    Mohammed EL_Kassaby

    2013-03-01

    Full Text Available Wasted cooking oil from restaurants was used to produce neat (pure biodiesel through transesterification, and then used to prepare biodiesel/diesel blends. The effect of blending ratio and compression ratio on a diesel engine performance has been investigated. Emission and combustion characteristics was studded when the engine operated using the different blends (B10, B20, B30, and B50 and normal diesel fuel (B0 as well as when varying the compression ratio from 14 to 16 to 18. The result shows that the engine torque for all blends increases as the compression ratio increases. The bsfc for all blends decreases as the compression ratio increases and at all compression ratios bsfc remains higher for the higher blends as the biodiesel percent increase. The change of compression ratio from 14 to 18 resulted in, 18.39%, 27.48%, 18.5%, and 19.82% increase in brake thermal efficiency in case of B10, B20, B30, and B50 respectively. On an average, the CO2 emission increased by 14.28%, the HC emission reduced by 52%, CO emission reduced by 37.5% and NOx emission increased by 36.84% when compression ratio was increased from 14 to 18. In spite of the slightly higher viscosity and lower volatility of biodiesel, the ignition delay seems to be lower for biodiesel than for diesel. On average, the delay period decreased by 13.95% when compression ratio was increased from 14 to 18. From this study, increasing the compression ratio had more benefits with biodiesel than that with pure diesel.

  7. Influence and role of ethanol minor constituents of fuel grade ethanol on corrosion behavior of carbon steel

    International Nuclear Information System (INIS)

    Samusawa, Itaru; Shiotani, Kazuhiko

    2015-01-01

    Highlights: • The pitting factors of the minor contents of ethanol are acetic acid, Cl and H 2 O. • Formic acid in ethanol promotes general corrosion. • The H 2 O content in fuel-grade-ethanol (FGE) affects the corrosion morphology. • Acetic acid generates iron acetate, which has high solubility in FGE environments. • A pitting mechanism based on the rupture of passive film is proposed. - Abstract: The influences of organic acids, chloride and water on the corrosion behavior of carbon steel in fuel grade ethanol (FGE) environments were investigated by immersion testing in simulated FGE. The roles of acetic acid, chloride and water in pitting corrosion were studied by using X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES) and electrochemical experiments. The results indicated that iron acetate is generated on oxide film. Iron(II) acetate shows high solubility in FGE environments. The sites where iron(II) acetate is existed become preferential anodic sites, and chloride promotes anodic dissolution at such sites

  8. Hot impact densification (HID) - a new method of producing ceramic nuclear fuel pellets with tight dimensional tolerances

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.; Muehling, G.; Vollath, D.; Zimmermann, H.

    1984-01-01

    The hot impact densification (HID) is a new powerful method for producing ceramic fuel pellets for nuclear reactors. Green ceramic bodies are directly processed to pellets by high speed shaping in the plastic temperature region of ceramic material. Opposed to the well established press sintering procedure it can be heated, densified, and cooled by orders of magnitude faster. Therefore, at high throughputs, small equipment dimensions become possible. The fuel pellets produced meet all requirements, particular the dimensional tolerances achieved are very closed, consequently circular grinding is omitted. Furthermore, the relatively high temperature level of the impact pressing favors the mixed crystal formation of uranium and plutonium oxide. This improves the solubility of the fuel in nitric acid, an essential point at reprocessing. A prototype facility is designed so that automatic fabrication in continuous operation will be possible. The target working cycle for a fuel pellet is in the range of some seconds. (orig.)

  9. Plant for producing an oxygen-containing additive as an ecologically beneficial component for liquid motor fuels

    Science.gov (United States)

    Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery

    2013-04-30

    A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.

  10. Fuel properties of biodiesel produced from the crude fish oil from the soapstock of marine fish

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Cherng-Yuan; Li, Rong-Ji [Department of Marine Engineering, National Taiwan Ocean, University, Keelung 20224 (China)

    2009-01-15

    The soapstock of a mixture of marine fish was used as the raw material to produce the biodiesel in this study. The soapstock was collected from discarded fish products. Crude fish oil was squeezed from the soapstock of the fish and refined by a series of processes. The refined fish oil was transesterified to produce biodiesel. The fuel properties of the biodiesel were analyzed. The experimental results showed that oleic acid (C18:1) and palmitic acid (C16:0) were the two major components of the marine fish-oil biodiesel. The biodiesel from the mixed marine fish oil contained a significantly greater amount of polyunsaturated fatty acids than did the biodiesel from waste cooking oil. In addition, the marine fish-oil biodiesel contained as high as 37.07 wt.% saturated fatty acids and 37.3 wt.% long chain fatty acids in the range between C20 and C22. Moreover, the marine fish-oil biodiesel appeared to have a larger acid number, a greater increase in the rate of peroxidization with the increase in the time that it was stored, greater kinematic viscosity, higher heating value, higher cetane index, more carbon residue, and a lower peroxide value, flash point, and distillation temperature than those of waste cooking-oil biodiesel. (author)

  11. Micro Fine Sized Palm Oil Fuel Ash Produced Using a Wind Tunnel Production System

    Directory of Open Access Journals (Sweden)

    R. Ahmadi

    2016-01-01

    Full Text Available Micro fine sized palm oil fuel ash (POFA is a new supplementary cementitious material that can increase the strength, durability, and workability of concrete. However, production of this material incurs high cost and is not practical for the construction industry. This paper investigates a simple methodology of producing micro fine sized POFA by means of a laboratory scale wind tunnel system. The raw POFA obtained from an oil palm factory is first calcined to remove carbon residue and then grinded in Los Angeles abrasion machine. The grinded POFA is then blown in the fabricated wind tunnel system for separation into different ranges of particle sizes. The physical, morphological, and chemical properties of the micro fine sized POFA were then investigated using Laser Particle Size Analyser (PSA, nitrogen sorption, and Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX. A total of 32.1% micro fine sized POFA were collected from each sample blown, with the size range of 1–10 micrometers. The devised laboratory scale of wind tunnel production system is successful in producing micro fine sized POFA and, with modifications, this system is envisaged applicable to be used to commercialize micro fine sized POFA production for the construction industry.

  12. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates

    Energy Technology Data Exchange (ETDEWEB)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-04-08

    A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  13. Biomass utilization for green environment: Co-combustion of diesel fuel and producer gas in thermal application

    International Nuclear Information System (INIS)

    Hussain, A.; Ani, F.N.; Mehamed, A.F.

    2007-01-01

    Study of co-combustion of diesel oil and producer gas from a gasifier, individually as well as combined, in an experimental combustion chamber revealed that the producer gas can be co-combusted with liquid fuel. The process produced more CO, NO/sub x/, SO/sub 2/ and CO/sub 2/ as compared to the combustion of diesel oil alone; the exhaust temperature for the process was higher than the diesel combustion alone. (author)

  14. Design, Fabrication, and Operation of Innovative Microalgae Culture Experiments for the Purpose of Producing Fuels: Final Report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    A conceptual design was developed for a 1000-acre (water surface) algae culture facility for the production of fuels. The system is modeled after the shallow raceway system with mixing foils that is now being operated at the University of Hawaii. A computer economic model was created to calculate the discounted breakeven price of algae or fuels produced by the culture facility. A sensitivity analysis was done to estimate the impact of changes in important biological, engineering, and financial parameters on product price.

  15. Nuclear fuel technology - Determination of uranium in uranyl nitrate solutions of nuclear grade quality - Gravimetric method

    International Nuclear Information System (INIS)

    2003-01-01

    This International Standard specifies a precise and accurate gravimetric method for determining the mass fraction of uranium in uranyl nitrate solutions of nuclear grade quality containing more than 100 g/kg of uranium. Non-volatile impurities influence the accuracy of the method

  16. Effect of cationic molecules on the oxygen reduction reaction on fuel cell grade Pt/C (20 wt%) catalyst in potassium hydroxide (aq, 1 mol dm(-3)).

    Science.gov (United States)

    Ong, Ai Lien; Inglis, Kenneth K; Whelligan, Daniel K; Murphy, Sam; Varcoe, John R

    2015-05-14

    This study investigates the effect of 1 mmol dm(-3) concentrations of a selection of small cationic molecules on the performance of a fuel cell grade oxygen reduction reaction (ORR) catalyst (Johnson Matthey HiSPEC 3000, 20 mass% Pt/C) in aqueous KOH (1 mol dm(-3)). The cationic molecules studied include quaternary ammonium (including those based on bicyclic systems) and imidazolium types as well as a phosphonium example: these serve as fully solubilised models for the commonly encountered head-groups in alkaline anion-exchange membranes (AAEM) and anion-exchange ionomers (AEI) that are being developed for application in alkaline polymer electrolyte fuel cells (APEFCs), batteries and electrolysers. Both cyclic and hydrodynamic linear sweep rotating disk electrode voltammetry techniques were used. The resulting voltammograms and subsequently derived data (e.g. apparent electrochemical active surface areas, Tafel plots, and number of [reduction] electrons transferred per O2) were compared. The results show that the imidazolium examples produced the highest level of interference towards the ORR on the Pt/C catalyst under the experimental conditions used.

  17. Application of proton exchange membrane fuel cells for the monitoring and direct usage of biohydrogen produced by Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Oncel, S.; Vardar-Sukan, F. [Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir (Turkey)

    2011-01-01

    Photo-biologically produced hydrogen by Chlamydomonas reinhardtii is integrated with a proton exchange (PEM) fuel cell for online electricity generation. To investigate the fuel cell efficiency, the effect of hydrogen production on the open circuit fuel cell voltage is monitored during 27 days of batch culture. Values of volumetric hydrogen production, monitored by the help of the calibrated water columns, are related with the open circuit voltage changes of the fuel cell. From the analysis of this relation a dead end configuration is selected to use the fuel cell in its best potential. After the open circuit experiments external loads are tested for their effects on the fuel cell voltage and current generation. According to the results two external loads are selected for the direct usage of the fuel cell incorporating with the photobioreactors (PBR). Experiments with the PEM fuel cell generate a current density of 1.81 mA cm{sup -2} for about 50 h with 10 {omega} load and 0.23 mA cm{sup -2} for about 80 h with 100 {omega} load. (author)

  18. Producer gas production of Indonesian biomass in fixed-bed downdraft gasifier as an alternative fuels for internal combustion engines

    Science.gov (United States)

    Simanjuntak, J. P.; Lisyanto; Daryanto, E.; Tambunan, B. H.

    2018-03-01

    downdraft biomass gasification reactors, coupled with reciprocating internal combustion engines (ICE) are a viable technology for small scale heat and power generation. The direct use of producer gas as fuel subtitution in an ICE could be of great interest since Indonesia has significant land area in different forest types that could be used to produce bioenergy and convert forest materials to bioenergy for use in energy production and the versatility of this engine. This paper will look into the aspect of biomass energie as a contributor to energy mix in Indonesia. This work also contains information gathered from numerous previews study on the downdraft gasifier based on experimental or simulation study on the ability of producer gas as fuels for internal combustion engines aplication. All data will be used to complement the preliminary work on biomass gasification using downdraft to produce producer gas and its application to engines.

  19. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. © The Author(s) 2015.

  20. Producing fuel alcohol by extractive distillation: Simulating the process with glycerol

    Directory of Open Access Journals (Sweden)

    Ana María Uyazán

    2006-01-01

    Full Text Available Downstream separation processes in biotechnology form part of the stages having most impact on a product’s final cost. The tendency throughout the world today is to replace fossil fuels with those having a renewable origin such as ethanol; this, in turn, produces a demand for the same and the need for optimising fermentation, treating vinazas and dehydration processes. The present work approaches the problem of dehydration through simulating azeotropic ethanol extractive distillation using glycerol as separation agent. Simulations were done on an Aspen Plus process simulator (Aspen Tech version 11.1. The simulated process involves two distillation columns, a dehydrator and a glycerol recuperation column. Simulation restrictions were ethanol’s molar composition in dehydrator column distillate and the process’s energy consumption. The effect of molar reflux ratio, solvent-feed ratio, solvent entry and feed stage and solvent entry temperature were evaluated on the chosen restrictions. The results showed that the ethanol-water mixture dehydration with glycerol as separation agent is efficient from the energy point of view.

  1. Mass-produced multi-walled carbon nanotubes as catalyst supports for direct methanol fuel cells.

    Science.gov (United States)

    Jang, In Young; Park, Ki Chul; Jung, Yong Chae; Lee, Sun Hyung; Song, Sung Moo; Muramatsu, Hiroyuki; Kim, Yong Jung; Endo, Morinobu

    2011-01-01

    Commercially mass-produced multi-walled carbon nanotubes, i.e., VGNF (Showa Denko Co.), were applied to support materials for platinum-ruthenium (PtRu) nanoparticles as anode catalysts for direct methanol fuel cells. The original VGNFs are composed of high-crystalline graphitic shells, which hinder the favorable surface deposition of the PtRu nanoparticles that are formed via borohydride reduction. The chemical treatment of VGNFs with potassium hydroxide (KOH), however, enables highly dispersed and dense deposition of PtRu nanoparticles on the VGNF surface. This capability becomes more remarkable depending on the KOH amount. The electrochemical evaluation of the PtRu-deposited VGNF catalysts showed enhanced active surface areas and methanol oxidation, due to the high dispersion and dense deposition of the PtRu nanoparticles. The improvement of the surface deposition states of the PtRu nanoparticles was significantly due to the high surface area and mesorporous surface structure of the KOH-activated VGNFs.

  2. Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging.

    Science.gov (United States)

    Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan

    2013-02-01

    Oppan quantized style: By adding a gold precursor at its cathode, a microbial fuel cell (MFC) is demonstrated to form gold nanoparticles that can be used to simultaneously produce bioelectricity and hydrogen. By exploiting the quantized capacitance charging effect, the gold nanoparticles mediate the production of hydrogen without requiring an external power supply, while the MFC produces a stable power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sustainably produced ethanol. A premium fuel component; Nachhaltig produziertes Ethanol. Eine Premium Kraftstoffkomponente

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Joerg [Suedzucker AG, Obrigheim/Pfalz (Germany)

    2012-07-01

    Ethanol is the most used biofuel in the world. It is part of the European biofuel strategy, which is intended to preserve finite fossil resources, reduce greenhouse gas emissions and strengthen European agriculture. In addition to its traditional use in E5 fuel, ethanol most recently features in new fuels for petrol engines in Europe: as E10 as an expansion of the already existing concept of ethanol blends, such as in E5, or as ethanol fuel E85, a blend made up primarily of ethanol. There is already extensive international experience for both types of fuel for example in the USA or Brazil. The use of ethanol as a biofuel is linked to sustainability criteria in Europe which must be proven through a certification scheme. In addition to ethanol, the integrated production process also provides vegetable protein which is used in food as well as in animal feed and therefore provides the quality products of processed plants used for sustainable energy and in animal and human food. Ethanol has an effect on the vapour pressure, boiling behaviour and octane number of the fuel blend. Adjusting the blend stock petrol to fulfil the quality requirements of the final fuel is therefore necessary. Increasing the antiknock properties, increasing the heat of evaporation of the fuel using ethanol and the positive effects this has on the combustion efficiency of the petrol engine are particularly important. Investigations on cars or engines that were specifically designed for fuel with a higher ethanol content show significant improvements in using the energy from the fuel and the potential to reduce carbon dioxide emissions if fuels containing ethanol are used. The perspective based purely on an energy equivalent replacement of fossil fuels with ethanol is therefore misleading. Ethanol can also contribute to increasing the energy efficiency of petrol engines as well as being a replacement source of energy. (orig.)

  4. Assesment of the energy quality of the synthesis gas produced from biomass derived fuels conversion: Part I: Liquid Fuels, Ethanol

    International Nuclear Information System (INIS)

    Arteaga Perez, Luis E; Casas, Yannay; Peralta, Luis M; Granda, Daikenel; Prieto, Julio O

    2011-01-01

    The use of biofuels plays an important role to increase the efficiency and energetic safety of the energy processes in the world. The main goal of the present research is to study from the thermodynamics and kinetics the effect of the operational variables on the thermo-conversion processes of biomass derived fuels focused on ethanol reforming. Several models are developed to assess the technological proposals. The minimization of Gibbs free energy is the criterion applied to evaluate the performance of the different alternatives considering the equilibrium constraints. All the models where validated on an experimental data base. The gas composition, HHV and the ratio H2/CO are used as measures for the process efficiency. The operational parameters are studied in a wide range (reactants molar ratio, temperature and oxygen/fuel ratio). (author)

  5. Fuel burn-up distribution and transuranic nuclide contents produced at the first cycle operation of AP1000

    International Nuclear Information System (INIS)

    Jati Susilo; Jupiter Sitorus Pane

    2016-01-01

    AP1000 reactor core was designed with nominal power of 1154 MWe (3415 MWth), operated within life time of 60 years and cycle length of 18 months. For the first cycle, the AP1000 core uses three kinds of UO 2 enrichment, they are 2.35 w/o, 3.40 w/o and 4.45 w/o. Absorber materials such as ZrB 2 , Pyrex and Boron solution are used to compensate the excess reactivity at the beginning of cycle. In the core, U-235 fuels are burned by fission reaction and produce energy, fission products and new neutron. Because of the U-238 neutron absorption reaction, the high level radioactive waste of heavy nuclide transuranic such as Pu, Am, Cm and Np are also generated. They have a very long half life. The purpose of this study is to evaluate the result of fuel burn-up distribution and heavy nuclide transuranic contents produced by AP1000 at the end of first cycle operation (EOFC). Calculation of ¼ part of the AP1000 core in the 2 dimensional model has been done using SRAC2006 code with the module of COREBN/HIST. The input data called the table of macroscopic cross section, is calculated using module of PIJ. The result shows that the maximum fuel assembly (FA) burn-up is 27.04 GWD/MTU, that is still lower than allowed maximum burn-up of 62 GWD/MTU. Fuel loading position at the center/middle of the core will produce bigger burn-up and transuranic nuclide than one at the edges the of the core. The use of IFBA fuel just give a small effect to lessen the fuel burn-up and transuranic nuclide production. (author)

  6. The nuclear fuel elements' world market and the position of the Argentine Republic as producer

    International Nuclear Information System (INIS)

    Biondo, C.D.

    1983-01-01

    The development of the nuclear fuel elements' industry is analyzed, both in the present and projected world market, up to the year 2000, in the light of the situation affecting the nucleoelectric industry. By means of the offer/demand function, an analysis is made of the behaviour of the fuel elements' market throughout the fuel cycle structure. The regional unbalances between availability and demand of uranium resources are considered, as well as the factors having an unfavorable incidence on the fuel cycle's economic equation. The economic structure to be used for the calculation of the nucleoelectric generating cost is presented, in order to situate, within said nuclear economy, the component corresponding to the fuel cycle cost. Emphasis is placed on the 'front end' stages of the fuel cycle, but also considering those stages belonging to the 'back end'. Argentina's fuel elements market and its present and projected nucleoelectric park are analyzed, indicating their relative position in the world market. (R.J.S.) [es

  7. Characterization and Performance Test of Palm Oil Based Bio-Fuel Produced Via Ni/Zeolite-Catalyzed Cracking Process

    Directory of Open Access Journals (Sweden)

    Sri Kadarwati

    2015-02-01

    Full Text Available Catalytic cracking process of palm oil into bio-fuel using Ni/zeolite catalysts (2-10% wt. Ni at various reaction temperatures (400-500oC in a flow-fixed bed reactor system has been carried out. Palm oil was pre-treated to produce methyl ester of palm oil as feedstock in the catalytic cracking reactions. The Ni/zeolite catalysts were prepared by wetness impregnation method using Ni(NO32.6H2O as the precursor. The products were collected and analysed using GC, GC-MS, and calorimeter. The effects of process temperatures and Ni content in Ni/zeolite have been studied. The results showed that Ni-2/zeolite could give a yield of 99.0% at 500oC but only produced gasoline fraction of 18.35%. The physical properties of bio-fuel produced in this condition in terms of density, viscosity, flash point, and specific gravity were less than but similar to commercial fuel. The results of performance test in a 4-strike engine showed that the mixture of commercial gasoline (petrol and bio-fuel with a ratio of 9:1 gave similar performance to fossil-based gasoline with much lower CO and O2 emissions and more efficient combustion

  8. Future developments and technological and economic assessment of methods for producing synthetic liquid fuel from coal

    Energy Technology Data Exchange (ETDEWEB)

    Shlikhter, E B; Khor' kov, A V; Zhorov, Yu M

    1980-11-01

    Promising methods for obtaining synthetic liquid fuel from coal are surveyed and described: thermal dissolution of coal by means of a hydrogen donor solution: hydrogenation; gasification with subsequent synthesis and pyrolysis. A technological and economic assessment of the above processes is given. Emphasis is placed on methods employing catalytic conversion of methanol into hydrocarbon fuels. On the basis of thermodynamic calculations of the process for obtaining high-calorific liquid fuel from methanol the possibility of obtaining diesel fractions as well as gasoline is demonstrated. (12 refs.) (In Russian)

  9. Neutronic study of heavy nucleus produced in nuclear reactor fuel cycle

    International Nuclear Information System (INIS)

    Giacometti, A.

    1978-01-01

    Importance of minor actinides (U, Np, Pu, Am and Cm isotopes) PWR and fast neutron reactors and their associated fuel cycle is examined in this thesis. The amount of actinides formed in the various types of fuels or reactors are given. The different ways of formation and their importance are described. Modifications of the core reactivity due to actinides are shown. After a review of the fuel cycle (enrichment, fabrication, reprocessing, transport) actinide evolution outside the core is described and main problems concerning radioactivity in the different steps of the cycle or long term storage are underlined [fr

  10. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  11. Elaboration and characterisation of functionally graded cathodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, J.; Kapelski, G.; Bouvard, D. [Laboratoire de Genie Physique et Mecanique des Materiaux, Institut National Polytechnique de Grenoble, CNRS UMR 5010, BP 46, 38042 Saint Martin d' Heres cedex (France)

    2005-07-01

    The industrial development of solid oxide fuel cells (SOFC) requires decreasing their operating temperature from 1000 deg. C to 700 deg. C while keeping acceptable mechanical and electrochemical performances. A solution consists in designing composite bulk cathodes with numerous electro-chemical reaction sites. The fabrication of such cathodes has been investigated with classical materials as lanthanum strontium manganese (LSM) and yttrium stabilized zirconia (YSZ), which is also the constitutive material of the electrolyte. A composite cathode with continuous composition gradient has been obtained by co-sedimentation of the powders in a liquid and subsequent firing. The obtained composition is investigated with Scanning Electron Microscope (SEM) and Electron Dispersive Spectrometry (EDS). It is found to be in good agreement with the prediction of a numerical model of the sedimentation process. (authors)

  12. Performance and emissions of an engine fuelled with a biodiesel fuel produced from animal fats

    Directory of Open Access Journals (Sweden)

    Taymaz Imdat

    2013-01-01

    Full Text Available Oil reserves which are located around the world are declining day by day, so new alternative energy sources must be invented for engines of internal combustion and compression ignition, so biodiesel that is an alternative fuel source for diesel engines and it is a renewable energy resource. Biodiesel is a fuel made from vegetable oils, animals’ fats and waste oils. In this study, physical and chemical properties of biodiesel were analyzed and matched to the diesel fuel. In the experimental study, biodiesel was made from animal fats and compared to diesel fuel. Its effects on engine performance and emissions are studied. A single-cylinder, four-stroke, direct injected diesel engine with air cooling system are used as test equipment in different cycles. After the experimental study, it is concluded that the reduction of the emissions of CO and HC as biodiesel has the advantage of emission output. Environmentalist property of biodiesel is the most important characteristic of it. But the sight of engine performance diesel fuel has more advantage to biodiesel fuel.

  13. Vitrification of HLW produced by uranium/molybdenum fuel reprocessing in cogema's cold crucible melter

    International Nuclear Information System (INIS)

    Quang, R. Do; Petitjean, V.; Hollebeque, F.; Pinet, O.; Flament, T.; Prodhomme, A.; Dalcorso, J. P.

    2003-01-01

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R and D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12% in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed

  14. Vitrification of HLW Produced by Uranium/Molybdenum Fuel Reprocessing in COGEMA's Cold Crucible Melter

    International Nuclear Information System (INIS)

    Do Quang, R.; Petitjean, V.; Hollebecque, F.; Pinet, O.; Flament, T.; Prod'homme, A.

    2003-01-01

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R and D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12 % in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed

  15. Combustion of biodiesel fuel produced from hazelnut soapstock/waste sunflower oil mixture in a Diesel engine

    International Nuclear Information System (INIS)

    Usta, N.; Oeztuerk, E.; Can, Oe.; Conkur, E.S.; Nas, S.; Con, A.H.; Can, A.C.; Topcu, M.

    2005-01-01

    Biodiesel is considered as an alternative fuel to Diesel fuel No. 2, which can be generally produced from different kinds of vegetable oils. Since the prices of edible vegetable oils are higher than that of Diesel fuel No. 2, waste vegetable oils and non-edible crude vegetable oils are preferred as potential low priced biodiesel sources. In addition, it is possible to use soapstock, a by-product of edible oil production, for cheap biodiesel production. In this study, a methyl ester biodiesel was produced from a hazelnut soapstock/waste sunflower oil mixture using methanol, sulphuric acid and sodium hydroxide in a two stage process. The effects of the methyl ester addition to Diesel No. 2 on the performance and emissions of a four cycle, four cylinder, turbocharged indirect injection (IDI) Diesel engine were examined at both full and partial loads. Experimental results showed that the hazelnut soapstock/waste sunflower oil methyl ester can be partially substituted for the Diesel fuel at most operating conditions in terms of the performance parameters and emissions without any engine modification and preheating of the blends

  16. Engine performance and emission characteristics of plastic oil produced from waste polyethylene and its blends with diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Sudong; Tan, Zhongchao [Department of Mechanical and Mechatronics Engineering, University of Waterloo (Canada)], Email: tanz@uwaterloo.ca

    2011-07-01

    This paper describes an experiment to determine the possibility of transforming waste plastics into a potential source of diesel fuel. Experiments were done on the use of various blends of plastic oil produced from waste polyethylene (WPE) with diesel fuel (D) at different volumetric ratios and the results were reviewed. WPE was thermally degraded with catalysis of sodium aluminum silicate at optimum conditions (414-480 degree celsius range and 1 h reaction time) and the collected oil was fractionated at various temperatures. The properties of the fuel blends at different volumetric ratios were measured in this study. It was shown that these blends can be used as fuel in compression ignition engines without any modification. With respect to engine performance and exhaust emission, it was found that using a 5% WPE-D (WPE5) blend instead of diesel fuel reduced carbon monoxide (CO) emission. However, the results of experiment showed that carbon dioxide (CO2) emission and oxides of nitrogen (NOx) emission rose.

  17. Risk-constrained self-scheduling of a fuel and emission constrained power producer using rolling window procedure

    International Nuclear Information System (INIS)

    Kazempour, S. Jalal; Moghaddam, Mohsen Parsa

    2011-01-01

    This work addresses a relevant methodology for self-scheduling of a price-taker fuel and emission constrained power producer in day-ahead correlated energy, spinning reserve and fuel markets to achieve a trade-off between the expected profit and the risk versus different risk levels based on Markowitz's seminal work in the area of portfolio selection. Here, a set of uncertainties including price forecasting errors and available fuel uncertainty are considered. The latter uncertainty arises because of uncertainties in being called for reserve deployment in the spinning reserve market and availability of power plant. To tackle the price forecasting errors, variances of energy, spinning reserve and fuel prices along with their covariances which are due to markets correlation are taken into account using relevant historical data. In order to tackle available fuel uncertainty, a framework for self-scheduling referred to as rolling window is proposed. This risk-constrained self-scheduling framework is therefore formulated and solved as a mixed-integer non-linear programming problem. Furthermore, numerical results for a case study are discussed. (author)

  18. Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

    1995-12-31

    For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

  19. Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.

  20. Process and plant for obtaining producer gas from fossil fuels. Verfahren und Anlage zur Gewinnung von Generatorgas aus fossilen Brennstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1983-12-01

    In a plant for generating producer gas from fossil fuels with relatively high humidity, there is predrying of the wet material in two drying chambers situated above the actual reactor shaft. The drying air required for this purpose is drawn off via blowers and heat exchangers preheated from the area of the combustion zone. The preparation of the crude gases produced first in the process is done by a socalled bypass gas system, i.e. the reintroduction of the crude gases enriched with tar oil and steam and diverting prepared hot gases via an annular pipe from the area of the reduction zone.

  1. Copper produced from powder by HIP to encapsulate nuclear fuel elements

    International Nuclear Information System (INIS)

    Ekbom, L.B.; Bogegaard, S.

    1989-02-01

    In the Swedish nuclear waste mangement program, nuclear fuel elements are proposed to be encapsulated in copper canisters. To fill the space between the fuel elements two methods have been proposed. Originally lead was proposed to be cast into the canister. According to a second method the space between the fuel rods is filled with copper powder and hot isostatic pressed (HIP) to seal the canister lid and to densify the powder to homogenous copper. This latter method has the advantage that each fuel rod is individually encapsulated in a very corrosion resistant material. This investigation was performed to find out to what extent pure copper powder can be hot isosatic pressed to full density and to achieve properties comparable to that of the oxygen free high conductivity (OFHC) copper of the canister. OFHC copper was molten under helium gas protection and atomized to a fine spherical powder in a pilot plant. The powder was transfered to a glove box with an argon atmosphere. The powder was filled into a steel container, which was evacuated and sealed. HIP was done at 550 degree C and 200 MPa for one hour. The resulting copper was found to have a good ductility and mechanical properties comparable to that of ordinary copper. The constant strainrate stress corrosion test used to test the canister copper showed that the HIP-ed copper has the same good properties as OFHC copper. (authors)

  2. Rational non-Pu fuel-cycle composed simple power-stations and fissile producers

    International Nuclear Information System (INIS)

    Furukawa, K.; Mitachi, K.; Kato, Y.; Lecocq, A.

    1989-01-01

    In the next century, the fission breeder concept would not be practical for solving global energy problems. As a measure, a new rational is needed. In this paper the breeding fuel cycle system is proposed to establish the improvement in issues of safety, power-size flexibility, anti-terrorism and radio-waste, economy, etc. securing the simple operation, maintenance and chemical processing

  3. Hydrothermal Conversion in Near-Critical Water – A Sustainable Way of Producing Renewable Fuels

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Pedersen, Thomas Helmer; Rosendahl, Lasse

    2014-01-01

    Liquid fuels from biomass will form an essential part of meeting the grand challenges within energy. The need for renewable and sustainable energy sources is triggered by a number of factors; like increase in global energy demand, depletion of conventional resources, climate issues and the desire...... hydrothermal conversion of lignocellulosic biomass and upgrading pathways of bio-crude components with focus on hydrodeoxygenation reactions....

  4. Alternative fuel produced from thermal pyrolysis of waste tires and its use in a DI diesel engine

    International Nuclear Information System (INIS)

    Wang, Wei-Cheng; Bai, Chi-Jeng; Lin, Chi-Tung; Prakash, Samay

    2016-01-01

    Highlights: • The liquid, solid and gas yields from pyrolysis of waste tires were investigated. • For energy and economic consideration, pre-treatments of TPO were avoided. • Various proportions of TPO-diesel mixture were tested in a DI diesel engine. • TPOs derived from various pyrolysis temperatures were also tested in engine. • Fuel consumption, cylinder pressure, engine power, and SO2 emission were discussed. - Abstract: Alternative fuels from waste material have been receiving attentions due to the increasing demand of fossil fuels. Pyrolysis has been a considerable solution for processing waste tires because it gives clean emissions and produces valuable liquid or solid products. Pyrolysis oil from waste tires has become a potential replacement for petroleum diesel due to the similar physical and chemical properties to diesel fuel. In this study, waste tires were pyrolyzed in a lab-scale fixed bed reactor with various reaction temperatures. The liquid, solid and gas product yields from different pyrolysis temperatures were compared, as well as the analyses of property and element for the oil product. Due to the energy and economic consideration, the pre-treatments of TPO before adding into regular diesel were avoided. The TPO derived from various pyrolysis temperatures were mixed with regular diesel at different proportions and subsequently tested in a DI diesel engine. The engine performance, such as fuel consumption, cylinder pressure, engine power, and SO_2 emission, were examined and discussed. The results indicated that increasing the TPO fraction in diesel lead to worse engine performance, but it can be recovered using TPOs produced from higher pyrolysis temperatures.

  5. Microstructure and kinetics of a functionally graded NiTi-TiC x composite produced by combustion synthesis

    International Nuclear Information System (INIS)

    Burkes, Douglas E.; Moore, John J.

    2007-01-01

    Production of a NiTi-TiC x functionally graded material (FGM) composite is possible through use of a combustion synthesis (CS) reaction employing the propagating mode (SHS). The NiTi-TiC x FGM combines the well-known and understood superelastic and shape memory capabilities of NiTi with the high hardness, wear and corrosion resistance of TiC x . The material layers were observed as functionally graded both in composition and porosity with distinct interfaces, while still maintaining good material interaction and bonding. XRD of the FGM composite revealed the presence of TiC x with equi-atomic NiTi and minor NiTi 2 and NiTi 3 phases. The TiC x particle size decreased with increasing NiTi content. Microindentation performed across the length of the FGM revealed a decrease in hardness as the NiTi content increased

  6. The potential of using organic side-streams produced in Ghana for generation of bio-fuel

    International Nuclear Information System (INIS)

    Laryea, G. N; Abdul-Samii, R.; Tottimeh, G.

    2014-01-01

    Bio-fuel can be generated from organic side-streams of maize, rice, millet, sorghum and groundnut by using fast pyrolysis technology. Data on side-streams of these crops were obtained from the Ministry of Food and Agriculture (MoFA) in 2010 for the study. The study shows that the estimated total crop side-streams generated was 3,475,413 t of which 2,345,903.5 of bio-fuel can be produced, given a potential energy equivalent of 42,226 PJ/y. The result shows a growth rate of 12.9 per cent in energy equivalent potential for synthetic fuel production as compared to the estimated production in 2009. Northern Region had the highest energy potential of 9,676 PJ/y (22.91%) of the total energy equivalent of bio-fuel, whereas, Greater Accra Region had the lowest with 183 PJ/y (0.43%). It is recommended that the available energy potential at the three northern regions of Ghana be utilised effectively when renewable energy policy is improved for a wider applications of side-streams from crops.(au)

  7. Fossil fuel reform in developing states: The case of Trinidad and Tobago, a petroleum producing small Island developing State

    International Nuclear Information System (INIS)

    Scobie, Michelle

    2017-01-01

    Trinidad and Tobago is an oil exporting small island developing state (SIDS) with a 0.12% contribution to global emissions and with important socio-economic challenges. It has producer, electricity and transport fuel subsidies. It is at an interesting juncture in subsidy reform: the government faces the embeddedness of distributive justice norms that are contested by fiscal prudence and environmental stewardship norms. The value of the paper is twofold. First it develops a subsidy intractability framework to explain reform global narratives that highlights: the power of agents, the nature of contested economic, justice and environmental norms and the availability of mechanisms for reform. Second, this framework is used to explain reform narratives and trajectories in Trinidad and Tobago using data from public documents and from a unique elite survey of former and present heads of state, politicians, policy makers and stakeholders. Even in conditions of falling oil prices and national revenue and pressures to reduce emissions, where redistributive justice arguments are heavily embedded in public discourses, those aspects of the subsidy that have developmental or distributive justice goals are more intractable. The results of the study have implications for carbon emission reduction strategies in developing states with fossil fuel reserves. - Highlights: • A subsidy intractability framework is used to analyse fuel subsidy reform. • A sense of entitlement to resources contributes to subsidy intractability. • Global environmental stewardship norms matter less for fuel subsidy reform in SIDS. • Policy space is most determined by international economic conditions in SIDS.

  8. A novel CO2 sequestration system for environmentally producing hydrogen from fossil-fuels

    International Nuclear Information System (INIS)

    Eucker IV, W.

    2007-01-01

    Aqueous monoethanolamine (MEA) scrubbers are currently used to capture carbon dioxide (CO 2 ) from industrial flue gases in various fossil-fuel based energy production systems. MEA is a highly volatile, corrosive, physiologically toxic, and foul-smelling chemical that requires replacement after 1000 operational hours. Room temperature ionic liquids (RTILs), a novel class of materials with negligible vapor pressures and potentiality as benign solvents, may be the ideal replacement for MEA. Ab initio computational modeling was used to investigate the molecular interactions of ILs with CO 2 . The energetic and thermodynamic parameters of the RTILs as CO 2 solvents are on par with MEA. As viable competitors to the present CO 2 separation technology, RTILs may economize the fossil-fuel decarbonization process with the ultimate aim of realizing a green hydrogen economy

  9. Is the biochar produced from sewage sludge a good quality solid fuel?

    Directory of Open Access Journals (Sweden)

    Pulka Jakub

    2016-12-01

    Full Text Available The influence of sewage sludge torrefaction temperature on fuel properties was investigated. Non-lignocellulosic waste thermal treatment experiment was conducted within 1 h residence time, under the following temperatures: 200, 220, 240, 260, 280 and 300°C. Sawdust was used as lignocellulosic reference material. The following parameters of biochar have been measured: moisture, higher heating value, ash content, volatile compounds and sulfur content. Sawdust biochar has been confirmed to be a good quality solid fuel. High ash and sulfur content may be an obstacle for biochar energy reuse. The best temperature profile for sawdust torrefaction and fuel production for 1 h residence time was 220°C. At this temperature the product contained 84% of initial energy while decreased the mass by 25%. The best temperature profile for sewage sludge was 240°C. The energy residue was 91% and the mass residue was 85%. Higher temperatures in both cases caused excessive mass and energy losses.

  10. Quality Assessment of the Physico-Mechanical and Elemental Composition of Three Pencil Grades and Eraser Types Produced in Nigeria

    Directory of Open Access Journals (Sweden)

    K. I. Omoniyi

    2014-06-01

    Full Text Available The quality assessment of the physical (pH, electrical conductivity, density, writeability, eraseability, mechanical (compression test and break strength and elemental composition of the pencil grades HB, 2B and 3B and eraser types of brand names Ben 10, Tiky 20 and the commonest White eraser in Nigerian primary school (Gummes Co. China was carried out. The diameter of the graphite part increased in the order HB Cr > Cd. Though, the levels of the trace metals and essential elements detected in the school items are below the recommended limits, regulatory measures should be directed towards maintaining the standards of school items.

  11. Sewage sludge based producer gas of rich H{sub 2} content as a fuel for an IC engine

    Energy Technology Data Exchange (ETDEWEB)

    Szwaja, Stanislaw; Cupial, Karol [Czestochowa Univ. of Technology (Poland)

    2010-07-01

    The manuscript presents investigation on hydrogen rich gas combustion in an internal combustion (IC) engine. The gas is obtained from gasification process of sewage sludge which is by-product of waste water treatment in a municipal sewage treatment plant. Recently introduced EU regulations of environmental protection do not allow to use such sludge as a soil fertilizer or substance for landfilling the ground due to its biological toxicity. On another hand, this sludge contains organic content of approximately 45-55% and from this point of view the sludge looks as an attractive material for fuel production through its gasification. This technology, primarily applied for wood gasification, has been also successfully implemented for gasification of sludge. It was found that the producer gas obtained in this way is rich of hydrogen content even up to 25%. This is because of high water content in the sludge that provides favorable conditions for steam reforming resulting in increase of hydrogen in the products of gasification. The high hydrogen content in the producer gas can lead to improper combustion particularly when the combustion takes place in the internal combustion engine. That improper combustion might appear as combustion knock and it is the main problem for the engine in which hydrogen is used as a fuel [1]. Onset of the knock during combustion contributes to rapid increase in heat transfer to the piston crown causing the piston to be quickly overheated that leads to surface erosion and damages. Additionally, engine body vibration coming from the knock significantly shortens engine durability. Conclusions from this investigation provide good premises for combusting the sludge producer gas in the IC engine without any improper combustion anomalies, thus considers this gas as worthy fuel for a stationary engine driven a power generator. The presentation shows results of producer gas combustion in both the spark-ignited and the compression ignition engine with

  12. The effects of the evolution of fuel prices and the environmental regulations on the producers of electric power based on fossil fuel

    International Nuclear Information System (INIS)

    Balasoiu, Constantin; Alecu, Sorin

    2006-01-01

    The production of electric power in the context of the concept of human society's lasting development is influenced in the recent years by a series of external factors, both circumstantial and derived from internal and international regulations. This work proposes a theoretical analysis of additional costs induced by the evolution of fuel prices as well as of the short, medium and long term environmental restrictions for the producers of lignite based electric power in Romania. To this purpose, the authors have considered as theoretical elements of analysis, a 330 MW functioning power station, working entirely on lignite GEL (70% expenses on fuel) with a production cost of 40 Euros/MWh at a 70% degree of usage capacity and 36 Euros/MWh at 100%. The paper addresses the following items: 1. The periods of analysis and the influential factors; 2. The evaluation of additional costs for the observance of EU Directive 2001/80/EC; 3. The evaluation of additional costs induced by the stipulations of the Kyoto Protocol; 4. The evaluation of additional costs induced by the evolution of the price of the fuel. In conclusion accumulating all the influences described in the chapters of this material, the impact in the rise of production costs for the described lignite based power plant is summarized by taking into account: the impact of CO 2 emissions; the impact Directive 2001/80/EC; the impact of the fuel price; the total rise. One can notice, that the biggest influence on the additional production costs comes from the impact of CO 2 emissions, in the outlook of the integration in the EU ETS, which depends on: 1) The way in which the National Allocation Plan for the allowances of CO 2 emissions is made in the power sector. The higher D utl.ref is, the stronger will be their place on the market. 2) The evolution of the price of CO 2 emissions on the EU ETS

  13. Development of anionic membranes produced by radiation-grafting for alkaline fuel cell applications

    International Nuclear Information System (INIS)

    Pereira, Clotilde Coppini

    2017-01-01

    Anion Exchange Membranes (AEMs) are a promising alternative to the development of more efficient electrolytes for alkaline fuel cells. In general, the AEMs are ionomeric membranes able to conduct hydroxide ions (OH - ) due to the quaternary ammonium groups, which confer high pH equivalent to the AEM. In order to develop alkaline membranes with high chemical and thermal stability, besides satisfactory ionic conductivity for alkaline fuel cells, membranes based on low density polyethylene (LDPE), ultrahigh weight molecular weight polyethylene (UHWHPE), poly(ethylene-co-tetrafluoroethylene) (PETFE) and poly(hexafluoropropylene-co-tetrafluoroethylene) (PFEP) previously irradiated by using 60 Co gamma and electron beam sources, have been synthesized by styrene-grafting, and functionalized with trimethylamine to introduced quaternary ammonium groups. The resulting membranes were characterized by electron paramagnetic resonance (EPR), Raman spectroscopy, thermogravimetry (TG) and electrochemical impedance spectroscopy (EIS). The determination of the grafting degree and water uptake were conducted by gravimetry and ion exchange capacity, by titration. The membranes synthesized with PELD and PEUHMW polymers pre-irradiated at 70 kGy and stored at low temperature (-70 deg C), up to 10 months, showed ionic conductivity results, in hydroxide form (OH - ), of 29 mS.cm -1 and 14 mS.cm -1 at 65 deg C, respectively. The PFEP polymers irradiated by the simultaneous process showed insufficient grating levels for the membrane synthesis, requiring more studies to improve the irradiation and grafting process. The styrene-grafted PETFE membranes, pre-irradiated at 70 kGy and stored at low temperature (-70 deg C), up to 10 months, showed ionic conductivity results, in hydroxide form (OH - ), of 90 mS.cm -1 to 165 mS.cm -1 , in the temperature range 30 to 60 deg C. Such results have demonstrated that LDPE, UHMWPE and PETFE based AEMs are promising electrolytes for alkaline fuel cell

  14. Research priorities in bioconversion of municipal solid waste to produce chemicals, liquid and gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J. [BABA Ltd., Reading (United Kingdom)

    1988-09-01

    Areas for future research on the bioconversion of municipal solid wastes are highlighted in order to optimise the potential use of this resource to make chemical, liquid and gaseous fuels. Despite widespread research, a biological understanding of bioconversion technologies, including landfill gas, composting and anaerobic digestion, has yet to be established. Specifically, work on the development and growth of microorganisms in uncontrolled systems and the detailed biochemistry of purified strains needs to be undertaken. The microbial breakdown of xenobiotics to clean up polluted sites, and as an alternative to incineration of toxic organic wastes, is viewed as a desirable outcome of such an understanding. (UK)

  15. Fossil fuel produced radioactivities and their effect on the food chain (II)

    International Nuclear Information System (INIS)

    Okamoto, K.

    1982-01-01

    The effects of radioactivities released from fossil fuel burning are examined. Main radioactivities are 210 Pb and 210 Po. Revised values of the dose due to the intake of leafy vegetables and seafoods are presented. The dose from natural gas from the Northern Sea is shown to be much lower than the dose from coal. This conclusion can probably apply to other natural gas except for that from the North American continent. The dose due to coal burning is found to be much higher than that due to marine disposal of nuclear waste

  16. Fossil fuel produced radioactivities and their effect on the food chain (II)

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K [New South Wales Univ., Kensington (Australia). Dept. of Applied Mathematics

    1982-03-01

    The effects of radioactivities released from fossil fuel burning are examined. Main radioactivities are /sup 210/Pb and /sup 210/Po. Revised values of the dose due to the intake of leafy vegetables and seafoods are presented. The dose from natural gas from the Northern Sea is shown to be much lower than the dose from coal. This conclusion can probably apply to other natural gas except for that from the North American continent. The dose due to coal burning is found to be much higher than that due to marine disposal of nuclear waste.

  17. Application of Sensitivity and Uncertainty Analysis Methods to a Validation Study for Weapons-Grade Mixed-Oxide Fuel

    International Nuclear Information System (INIS)

    Dunn, M.E.

    2001-01-01

    At the Oak Ridge National Laboratory (ORNL), sensitivity and uncertainty (S/U) analysis methods and a Generalized Linear Least-Squares Methodology (GLLSM) have been developed to quantitatively determine the similarity or lack thereof between critical benchmark experiments and an application of interest. The S/U and GLLSM methods provide a mathematical approach, which is less judgment based relative to traditional validation procedures, to assess system similarity and estimate the calculational bias and uncertainty for an application of interest. The objective of this paper is to gain experience with the S/U and GLLSM methods by revisiting a criticality safety evaluation and associated traditional validation for the shipment of weapons-grade (WG) MOX fuel in the MO-1 transportation package. In the original validation, critical experiments were selected based on a qualitative assessment of the MO-1 and MOX contents relative to the available experiments. Subsequently, traditional trending analyses were used to estimate the Δk bias and associated uncertainty. In this paper, the S/U and GLLSM procedures are used to re-evaluate the suite of critical experiments associated with the original MO-1 evaluation. Using the S/U procedures developed at ORNL, critical experiments that are similar to the undamaged and damaged MO-1 package are identified based on sensitivity and uncertainty analyses of the criticals and the MO-1 package configurations. Based on the trending analyses developed for the S/U and GLLSM procedures, the Δk bias and uncertainty for the most reactive MO-1 package configurations are estimated and used to calculate an upper subcritical limit (USL) for the MO-1 evaluation. The calculated bias and uncertainty from the S/U and GLLSM analyses lead to a calculational USL that supports the original validation study for the MO-1

  18. Prediction of small spark ignited engine performance using producer gas as fuel

    Directory of Open Access Journals (Sweden)

    N. Homdoung

    2015-03-01

    Full Text Available Producer gas from biomass gasification is expected to contribute to greater energy mix in the future. Therefore, effect of producer gas on engine performance is of great interest. Evaluation of engine performances can be hard and costly. Ideally, they may be predicted mathematically. This work was to apply mathematical models in evaluating performance of a small producer gas engine. The engine was a spark ignition, single cylinder unit with a CR of 14:1. Simulation was carried out on full load and varying engine speeds. From simulated results, it was found that the simple mathematical model can predict the performance of the gas engine and gave good agreement with experimental results. The differences were within ±7%.

  19. Microstructure Characterization of WCCo-Mo Based Coatings Produced Using High Velocity Oxygen Fuel

    Directory of Open Access Journals (Sweden)

    Serkan Islak

    2015-12-01

    Full Text Available The present study has been carried out in order to investigate the microstructural properties of WCCo-Mo composite coatings deposited onto a SAE 4140 steel substrate by high velocity oxygen fuel (HVOF thermal spray. For this purpose, the Mo quantity added to the WCCo was changed as 10, 20, 30 and 40 wt. % percents. The coatings are compared in terms of their phase composition, microstructure and hardness. Phase compound and microstructure of coating layers were examined using X-ray diffractometer (XRD and scanning electron microscope (SEM. XRD results showed that WCCo-Mo composite coatings were mainly composed of WC, W2C, Co3W3C, Mo2C, MoO2, Mo and Co phases. The average hardness of the coatings increased with increasing Mo content.

  20. Growth kinetic and fuel quality parameters as selective criterion for screening biodiesel producing cyanobacterial strains.

    Science.gov (United States)

    Gayathri, Manickam; Shunmugam, Sumathy; Mugasundari, Arumugam Vanmathi; Rahman, Pattanathu K S M; Muralitharan, Gangatharan

    2018-01-01

    The efficiency of cyanobacterial strains as biodiesel feedstock varies with the dwelling habitat. Fourteen indigenous heterocystous cyanobacterial strains from rice field ecosystem were screened based on growth kinetic and fuel parameters. The highest biomass productivity was obtained in Nostoc punctiforme MBDU 621 (19.22mg/L/day) followed by Calothrix sp. MBDU 701 (13.43mg/L/day). While lipid productivity and lipid content was highest in Nostoc spongiaeforme MBDU 704 (4.45mg/L/day and 22.5%dwt) followed by Calothrix sp. MBDU 701 (1.54mg/L/day and 10.75%dwt). Among the tested strains, Nostoc spongiaeforme MBDU 704 and Nostoc punctiforme MBDU 621 were selected as promising strains for good quality biodiesel production by Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Using the second law of thermodynamics for enrichment and isolation of microorganisms to produce fuel alcohols or hydrocarbons.

    Science.gov (United States)

    Kohn, Richard A; Kim, Seon-Woo

    2015-10-07

    Fermentation of crops, waste biomass, or gases has been proposed as a means to produce desired chemicals and renewable fuels. The second law of thermodynamics has been shown to determine the net direction of metabolite flow in fermentation processes. In this article, we describe a process to isolate and direct the evolution of microorganisms that convert cellulosic biomass or gaseous CO2 and H2 to biofuels such as ethanol, 1-butanol, butane, or hexane (among others). Mathematical models of fermentation elucidated sets of conditions that thermodynamically favor synthesis of desired products. When these conditions were applied to mixed cultures from the rumen of a cow, bacteria that produced alcohols or alkanes were isolated. The examples demonstrate the first use of thermodynamic analysis to isolate bacteria and control fermentation processes for biofuel production among other uses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. How much ethanol fuel can be produced from sugarcane in Hawaii

    OpenAIRE

    Kwong, John

    2014-01-01

    This study evaluates how much sugar ethanol Hawaii can produce. Fossilfuel reserves will diminish with time, and alternative energy may not be effectivein totally replacing combustible engines for all application. Factors important tosugar ethanol production and distribution are examined and evaluated.  

  3. 78 FR 44075 - Notice of Data Availability Concerning Renewable Fuels Produced From Barley Under the RFS Program

    Science.gov (United States)

    2013-07-23

    ... and diesel fuel or renewable fuels such as biodiesel and renewable diesel. Regulated categories... production plants. Fuel and feedstock transport includes emissions from transporting bushels of harvested..., Mean (Low/High) 11,290 (2,784/21,679) Fuel Production 39,069 19,200 Fuel and Feedstock Transport 4,861...

  4. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    Science.gov (United States)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  5. Biotechnology for producing fuels and chemicals from biomass. Volume II. Fermentation chemicals from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Villet, R. (ed.)

    1981-02-01

    The technological and economic feasibility of producing some selected chemicals by fermentation is discussed: acetone, butanol, acetic acid, citric acid, 2,3-butanediol, and propionic acid. The demand for acetone and butanol has grown considerably. They have not been produced fermentatively for three decades, but instead by the oxo and aldol processes. Improved cost of fermentative production will hinge on improving yields and using cellulosic feedstocks. The market for acetic acid is likely to grow 5% to 7%/yr. A potential process for production is the fermentation of hydrolyzed cellulosic material to ethanol followed by chemical conversion to acetic acid. For about 50 years fermentation has been the chief process for citric acid production. The feedstock cost is 15% to 20% of the overall cost of production. The anticipated 5%/yr growth in demand for citric acid could be enhanced by using it to displace phosphates in detergent manufacture. A number of useful chemicals can be derived from 2,3-butanediol, which has not been produced commercially on a large scale. R and D are needed to establish a viable commercial process. The commercial fermentative production of propionic acid has not yet been developed. Recovery and purification of the product require considerable improvement. Other chemicals such as lactic acid, isopropanol, maleic anhydride, fumarate, and glycerol merit evaluation for commercial fermentative production in the near future.

  6. Microbial development in distillers wet grains produced during fuel ethanol production from corn (Zea mays)

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, R.M.; Rosentrater, K.A. [United States Dept. of Agriculture, Brookings, SD (United States). North Central Agricultural Research Laboratory

    2007-09-15

    The microbiology of post-production distillers wet grains (DWG) was investigated over a period of 9 days at an industrial ethanol plant. Samples of the DWG were physically and chemically characterized. Compositional analyses were conducted for protein, fiber, and fat. Fixed suspensions of DWG were dispersed and disrupted by sonication. Bacterial cells were enumerated under epifluorescent illumination. Solid media and standard dilution were used to enumerate total colony-forming units (CFU) of lactic-acid producing bacteria (LAB), and aerobic heterotrophic organisms. The DWG had a pH of approximately 4.4, a moisture content of 53.5 per cent, and 4 x 10{sup 5} total yeast cells. Thirteen morphologically distinct isolates were identified during the study, 10 of which were yeasts and molds from 6 different genera. Two of the yeasts were of the lactic-acid Pediococcus pentosaceus strain, and 1 of the yeasts was an aerobic heterotrophic bacteria. Results showed that the matrix of the DWG produced severe technical difficulties for several of the culture-independent community-level analyses. It was concluded that numbers of potentially beneficial bacteria appeared to increase over the time period relative to potential spoilage agents. Molds capable of producing mycotoxins colonized the DWG and grew to high densities over the 9 day period. 31 refs., 3 tabs., 2 figs.

  7. Chemical inhibition of the contaminant Lactobacillus fermentum from distilleries producing fuel bioethanol

    Directory of Open Access Journals (Sweden)

    Pedro de Oliva Neto

    2014-06-01

    Full Text Available The purpose of this study was to determine the Minimum Inhibitory Concentration (MIC of pure or mixed chemicals for Saccharomyces cerevisiae and Lactobacillus fermentum in the samples isolated from distilleries with serious bacterial contamination problems. The biocides, which showed the best results were: 3,4,4' trichlorocarbanilide (TCC, tested at pH 4.0 (MIC = 3.12 mg/l, TCC with benzethonium chloride (CBe at pH 6.0 (MIC = 3.12 mg/l and TCC mixed with benzalkonium chloride (CBa at pH 6.0 (MIC = 1.53 mg /l. If CBa was used in sugar cane milling in 1:1 ratio with TCC, a 8 times reduction of CBa was possible. This formulation also should be tested in fermentation steps since it was more difficult for the bacterium to develop resistance to biocide. There was no inhibition of S. cerevisiae and there were only antibiotics as an option to bacterial control of fuel ethanol fermentation by S. cerevisiae.

  8. Combustion Characteristics of Chlorine-Free Solid Fuel Produced from Municipal Solid Waste by Hydrothermal Processing

    Directory of Open Access Journals (Sweden)

    Kunio Yoshikawa

    2012-11-01

    Full Text Available An experimental study on converting municipal solid waste (MSW into chlorine-free solid fuel using a combination of hydrothermal processing and water-washing has been performed. After the product was extracted from the reactor, water-washing experiments were then conducted to obtain chlorine-free products with less than 3000 ppm total chlorine content. A series of combustion experiments were then performed for the products before and after the washing process to determine the chlorine content in the exhaust gas and those left in the ash after the combustion process at a certain temperature. A series of thermogravimetric analyses were also conducted to compare the combustion characteristics of the products before and after the washing process. Due to the loss of ash and some volatile matter after washing process, there were increases in the fixed carbon content and the heating value of the product. Considering the possible chlorine emission, the washing process after the hydrothermal treatment should be necessary only if the furnace temperature is more than 800 °C.

  9. Young and Especially Senescent Endothelial Microvesicles Produce NADPH: The Fuel for Their Antioxidant Machinery

    Directory of Open Access Journals (Sweden)

    Guillermo Bodega

    2018-01-01

    Full Text Available In a previous study, we demonstrated that endothelial microvesicles (eMVs have a well-developed enzymatic team involved in reactive oxygen species detoxification. In the present paper, we demonstrate that eMVs can synthesize the reducing power (NAD(PH that nourishes this enzymatic team, especially those eMVs derived from senescent human umbilical vein endothelial cells. Moreover, we have demonstrated that the molecules that nourish the enzymatic machinery involved in NAD(PH synthesis are blood plasma metabolites: lactate, pyruvate, glucose, glycerol, and branched-chain amino acids. Drastic biochemical changes are observed in senescent eMVs to optimize the synthesis of reducing power. Mitochondrial activity is diminished and the glycolytic pathway is modified to increase the activity of the pentose phosphate pathway. Different dehydrogenases involved in NADPH synthesis are also increased. Functional experiments have demonstrated that eMVs can synthesize NADPH. In addition, the existence of NADPH in eMVs was confirmed by mass spectrometry. Multiphoton confocal microscopy images corroborate the synthesis of reducing power in eMVs. In conclusion, our present and previous results demonstrate that eMVs can act as autonomous reactive oxygen species scavengers: they use blood metabolites to synthesize the NADPH that fuels their antioxidant machinery. Moreover, senescent eMVs have a stronger reactive oxygen species scavenging capacity than young eMVs.

  10. Agricultural residues as fuel for producer gas generation. Report from a test series with coconut shells, coconut husks, wheat straw and sugar cane

    Energy Technology Data Exchange (ETDEWEB)

    Hoeglund, C

    1981-08-01

    This paper reports on results from a series of tests with four different types of agricultural residues as fuel for producer gas generation. The fuels are coconut shells, coconut husks, pelletized wheat straw and pressed sugar cane. The tests were made with a 73 Hp agricultural tractor diesel engine equipped with a standard gasifier developed for wood chips in Sweden, and run on a testbed at the Swedish National Machinery Testing Institute. The engine was operated on approximately 10 per cent diesel oil and 90 per cent producer gas. The gas composition, its calorific value and temperature, the pressure drop and the engine power were monitored. Detailed elementary analysis of the fuel and gas were carried out. Observations were also made regarding the important aspects of bridging and slagging in the gasifier. The tests confirmed that coconut shells make an excellent fuel for producer gas generation. After 8 hours of running no problems with slags and bridging were experienced. Coconut husks showed no bridging but some slag formation. The gasifier operated satisfactorily for this fuel. Pelletized wheat straw and pressed sugar cane appeared unsuitable as fuel in the unmodified test gasifier (Type F 300) due to slag formation. It is important to note, however, that the present results are not optimal for any of the fuel used, the gasifier being designed for wood-chips and not for the test-fuels used. Tests using appropriately modified gasifiers are planned for the future.

  11. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  12. Single-column ion chromatography with determination of hydrazoic acid produced in spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Ma Guilan; Tan Shuping

    2006-01-01

    The reaction of hydrazine and its derivative with ammonium metavanadate may produce hydrazoic acid (HN 3 ). A single-column ion chromatography is used for the determination of HN 3 after neutralizing the rest acid in the sample with sodium hydroxide. Chromatography separation of HN 3 is carried out on a 25 cm x 0.46 cm (inside diameter) stainless steel column packed with Vydac IC302 ion Chromatography packing. The eluent is 1 mmol/L o-phthalic acid, and the ion is detected by conductivity detector. The detection limit in the presence chromatography is 5 μg/mL, the linear range is from 5 to 201 μg/mL, the linear correlation coefficient is 0.9994, respectively. The analysis accuracy is 2% for standard sample, and the detection limit is 51 μg/mL for HN 3 in the real sample. (authors)

  13. Supply Chain Sustainability Analysis of Fast Pyrolysis and Hydrotreating Bio-Oil to Produce Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Adom, Felix K. [Argonne National Lab. (ANL), Argonne, IL (United States); Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Hartley, Damon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jones, Sue [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The Department of Energy’s (DOE) Bioenergy Technology Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels. These assessments evaluate feedstock production, logistics of transporting the feedstock, and conversion of the feedstock to biofuel. There are two general types of TEAs. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables identification of data gaps and research and development needs, and provides goals and targets against which technology progress is assessed. On the other hand, a state of technology (SOT) analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases, and includes technical, economic, and environmental criteria as available.

  14. A method of producing a multilayer barrier structure for a solid oxide fuel cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a method of producing a multilayer barrier structure for a solid oxide cell stack, comprising the steps of: - providing a metal interconnect, wherein the metal interconnect is a ferritic stainless steel layer; - applying a first metal oxide layer on said metal...... oxide; and - reacting the metal oxide in said first metal oxide layer with the metal of said metal interconnect during the SOC-stack initialisation, and a solid oxide stack comprising an anode contact layer and support structure, an anode layer, an electrolyte layer, a cathode layer, a cathode contact...... layer, a metallic interconnect, and a multilayer barrier structure which is obtainable by the above method and through an initialisation step, which is carried out under controlled conditions for atmosphere composition and current load, which depends on the layer composition facilitating the formation...

  15. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Patrick D.; Call, Douglas F.; Yates, Matthew D.; Regan, John M.; Logan, Bruce E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering

    2010-09-15

    Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most ({proportional_to}30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m{sup 2}, whereas the original mixed culture produced up to 10 mW/m{sup 2}. Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m{sup 2}) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates. (orig.)

  16. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera

    KAUST Repository

    Kiely, Patrick D.; Call, Douglas F.; Yates, Matthew D.; Regan, John M.; Logan, Bruce E.

    2010-01-01

    Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most (~30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m 2, whereas the original mixed culture produced up to 10 mW/m 2. Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m2) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates. © 2010 Springer-Verlag.

  17. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera

    KAUST Repository

    Kiely, Patrick D.

    2010-07-15

    Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most (~30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m 2, whereas the original mixed culture produced up to 10 mW/m 2. Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m2) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates. © 2010 Springer-Verlag.

  18. Charge distribution on plutonium-containing aerosols produced in mixed-oxide reactor fuel fabrication and the laboratory

    International Nuclear Information System (INIS)

    Yeh, H.C.; Newton, G.J.; Teague, S.V.

    1976-01-01

    The inhalation toxicity of potentially toxic aerosols may be affected by the electrostatic charge on the particles. Charge may influence the deposition site during inhalation and therefore its subsequent clearance and dose patterns. The electrostatic charge distributions on plutonium-containing aerosols were measured with a miniature, parallel plate, aerosol electrical mobility spectrometer. Two aerosols were studied: a laboratory-produced 238 PuO 2 aerosol (15.8 Ci/g) and a plutonium mixed-oxide aerosol (PU-MOX, natural UO 2 plus PuO 2 , 0.02 Ci/g) formed during industrial centerless grinding of mixed-oxide reactor fuel pellets. Plutonium-238 dioxide particles produced in the laboratory exhibited a small net positive charge within a few minutes after passing through a 85 Kr discharger due to alpha particle emission removal of valence electrons. PU-MOX aerosols produced during centerless grinding showed a charge distribution essentially in Boltzmann equilibrium. The gross alpha aerosol concentrations (960-1200 nCi/l) within the glove box were sufficient to provide high ion concentrations capable of discharging the charge induced by mechanical and/or nuclear decay processes

  19. Development and optimization of a modified process for producing the battery grade LiOH: Optimization of energy and water consumption

    International Nuclear Information System (INIS)

    Grágeda, Mario; González, Alonso; Alavia, Wilson; Ushak, Svetlana

    2015-01-01

    LiOH·H 2 O is used for preparation of alkaline batteries. The required characteristics of this compound are low levels of impurities and a specific particle size distribution. LiOH·H 2 O is produced from ore and brines. In northern Chile, lithium is produced from brines. This region presents particular desert climate conditions where water and energy are scarce. To help solve this problem, the conventional production process for battery grade LiOH·H 2 O was simulated and a modified process was developed, with an efficient consumption of energy and water, to improve the environmental sustainability of the plant, and greater process yield and product purity. Different configurations of the equipments were studied and for the best configurations the behavior of the modified process at different scenarios were simulated. It was found that the purity is independent of concentration used in feed to thickeners. The process yield increases in average 2.4% for modified process due to recycling operation. In modified process is obtained 28% more product mass, specific energy consumption decreases up to 4.8% and losses of Li/kg of product decreased by 83% compared to conventional process. The water consumption per kg of product in modified process is 1%–6.3%, being lower than in conventional process. The results presented can be considered as guidelines to address the optimization of the industrial process for obtaining the battery grade LiOH. - Highlights: • Water and energy are important resources in any sustainable industrial process. • High purity LiOH·H 2 O is a material for producing of lithium batteries. • Conventional and modified optimized processes for LiOH·H 2 O production were simulated. • Energy and water consumptions decrease for the modified process. • Optimal operational conditions of H 2 O, feed, pressure and energy were established

  20. Pyrochemical processes for the recovery of weapons grade plutonium either as a metal or as PuO2 for use in mixed oxide reactor fuel pellets

    International Nuclear Information System (INIS)

    Colmenares, C.A.; Ebbinghaus, B.B.; Bronson, M.C.

    1995-01-01

    The authors have developed two processes for the recovery of weapons grade Pu, as either Pu metal or PuO 2 , that are strictly pyrochemical and do not produce any liquid waste. Large amounts of Pu metal (up to 4 kg.), in various geometric shapes, have been recovered by a hydride/dehydride/casting process (HYDEC) to produce metal ingots of any desired shape. The three processing steps are carried out in a single compact apparatus. The experimental technique and results obtained will be described. The authors have prepared PuO 2 powders from weapons grade Pu by a process that hydrides the Pu metal followed by the oxidation of the hydride (HYDOX process). Experimental details of the best way to carry out this process will be presented, as well as the characterization of both hydride and oxide powders produced

  1. Pressing device for producing compacts from source material in powder form in particular pulverized nuclear reactor fuel

    International Nuclear Information System (INIS)

    Heller, G.; Adelmann, M.; Konigs, W.; Wendorf, W.

    1984-01-01

    Pressing device for producing compacts from source material in powder form, in particular pulverized nuclear reactor fuel having a die-plate contained in platen and a bore associated with a ram, for receiving source material powder, a filling shoe, and a reservoir for powder connected by a hose to the filling shoe. The device is characterized by a passing wheel in the filling shoe as filling aid means; a tube containing a feedscrew disposed between the reservoir and hose as metering means; the reservoir having a bottom part with a can type place-on part with an opening eccentric to the axis; a coupling part and a cover part are placed on the open part of the can, these parts are also provided with a passageway to the feedscrew eccentric to the longitudinal axis

  2. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters

    KAUST Repository

    Kiely, Patrick D.; Cusick, Roland; Call, Douglas F.; Selembo, Priscilla A.; Regan, John M.; Logan, Bruce E.

    2011-01-01

    Conditions in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion of oxygen through the cathode and the release of H2 gas into solution. Based on 16S rRNA gene clone libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity, and increased in numbers of Geobacter sulfurreducens, when reactors were shifted from MFCs to MECs. With a complex source of organic matter (potato wastewater), the proportion of Geobacteraceae remained constant when MFCs were converted into MECs, but the percentage of clones belonging to G. sulfurreducens decreased and the percentage of G. metallireducens clones increased. A dairy manure wastewater-fed MFC produced little power, and had more diverse microbial communities, but did not generate current in an MEC. These results show changes in Geobacter species in response to the MEC environment and that higher species diversity is not correlated with current. © 2010 Elsevier Ltd.

  3. Enhancing the properties of Fischer-Tropsch fuel produced from syngas over Co/SiO2 catalyst: Lubricity and Calorific Value

    Science.gov (United States)

    Doustdar, O.; Wyszynski, M. L.; Mahmoudi, H.; Tsolakis, A.

    2016-09-01

    Bio-fuel produced from renewable sources is considered the most viable alternatives for the replacement of mineral diesel fuel in compression ignition engines. There are several options for biomass derived fuels production involving chemical, biological and thermochemical processes. One of the best options is Fischer Tropsch Synthesis, which has an extensive history of gasoline and diesel production from coal and natural gas. FTS fuel could be one of the best solutions to the fuel emission due to its high quality. FTS experiments were carried out in 16 different operation conditions. Mini structured vertical downdraft fixed bed reactor was used for the FTS. Instead of Biomass gasification, a simulated N2 -rich syngas cylinder of, 33% H2 and 50% N2 was used. FT fuels products were analyzed in GCMS to find the hydrocarbon distributions of FT fuel. Calorific value and lubricity of liquid FT product were measured and compared with commercial diesel fuel. Lubricity has become an important quality, particularly for biodiesel, due to higher pressures in new diesel fuel injection (DFI) technology which demands better lubrication from the fuel and calorific value which is amount of energy released in combustion paly very important role in CI engines. Results show that prepared FT fuel has desirable properties and it complies with standard values. FT samples lubricities as measured by ASTM D6079 standard vary from 286μm (HFRR scar diameter) to 417μm which are less than limit of 520μm. Net Calorific value for FT fuels vary from 9.89 MJ/kg to 43.29 MJ/kg, with six of the samples less than EN 14213 limit of 35MJ/kg. Effect of reaction condition on FT fuel properties was investigated which illustrates that in higher pressure Fischer-Tropsch reaction condition liquid product has better properties.

  4. Issues in the use of Weapons-Grade MOX Fuel in VVER-1000 Nuclear Reactors: Comparison of UO2 and MOX Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Carbajo, J.J.

    2005-05-27

    The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are described as accurately as possible, given the current sources of data.

  5. Development of a graded approach to natural phenomena hazard design and evaluation of radioactive waste and spent fuel stored at nuclear power plants

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    2001-01-01

    Nuclear safety related structures, systems and components, SSC, at large commercial nuclear power plants other than those applicable to reactor safety have in general not received the attention and detailed loading and behavior criteria use for reactor design safety. Such systems include spent fuel storage and radioactive waste storage and processing. In this paper is a suggested grading of design bases for natural hazards to be applied to such facilities commensurate with their radioactive risk. They are applicable to the full range of safety related SSC which are determined by the inventory of radioactive isotopes and the unmitigated doses at appropriate plant and site boundaries. (author)

  6. Compositionally graded Fe{sub (1−x)}-Pt{sub (x)} nanowires produced by alternating current electrodeposition into alumina templates

    Energy Technology Data Exchange (ETDEWEB)

    Fardi-Ilkhchy, Ali [Faculty of Materials Engineering, Sahand University of Technology, Tabriz 51335-1996 (Iran, Islamic Republic of); Nasirpouri, Farzad, E-mail: Nasirpouri@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz 51335-1996 (Iran, Islamic Republic of); Bran, Cristina; Vázquez, Manuel [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain)

    2016-12-15

    Fe{sub (1−x)}-Pt{sub (x)} (0graded nanowires (50 nm in diameter and 1 µm in length) were fabricated by alternating current (AC) electrodeposition into nanoporous aluminum oxide templates through a systematic approach. The effect of AC electrodeposition parameters such as frequency, voltage and electrolyte concentration on morphology and chemical composition of Fe-Pt alloy nanowires was studied. Based on experimental data, AC sine wave deposition at an intermediate voltage of 12 V{sub rms} and a frequency of 50 Hz, produces nanowires with nearly stoichiometric composition (Fe{sub 42}Pt{sub 58}) and a reasonably good uniformity of pore filling. However, there is a gradual change of composition in Fe-Pt alloy nanowires along the length under certain AC parameters. The observed dependency of alloy composition on the deposition voltage and frequency of AC electrodeposition is explained by an interplay between reduction potentials and diffusion coefficients of Fe and Pt ions which makes FePt system able to access compositionally graded nanowires. Magnetic measurements of nanowires of as-deposited nanowires confirm that maximum coercivity of 1.55 kOe is observed for nearly stoichiometric composition which increases up to 1.81 kOe after thermal annealing at 550 °C. - Graphical abstract: Evaluation of synthesizing extrinsic parameters (such as deposition voltages and frequency) and intrinsic parameters (diffusion coefficient and reduction potential of ion species) in compositionally graded Fe{sub (1−x)}-Pt{sub (x)} nanowires prepared by alternating current electrodeposition into alumina templates.

  7. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Belfort, Georges [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering; Grimaldi, Joseph J. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), and (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based on the

  8. Strategies for denaturing the weapons-grade plutonium stockpile

    International Nuclear Information System (INIS)

    Buckner, M.R.; Parks, P.B.

    1992-10-01

    In the next few years, approximately 50 metric tons of weapons-grade plutonium and 150 metric tons of highly-enriched uranium (HEU) may be removed from nuclear weapons in the US and declared excess. These materials represent a significant energy resource that could substantially contribute to our national energy requirements. HEU can be used as fuel in naval reactors, or diluted with depleted uranium for use as fuel in commercial reactors. This paper proposes to use the weapons-grade plutonium as fuel in light water reactors. The first such reactor would demonstrate the dual objectives of producing electrical power and denaturing the plutonium to prevent use in nuclear weapons

  9. Hydration of vegetable oils for high-grade Diesel fuel components; Hydrierung von Pflanzenoelen zu hochwertigen Dieselkraftstoffkomponenten

    Energy Technology Data Exchange (ETDEWEB)

    Endisch, M.; Olschar, M.; Kuchling, T. [TU Bergakademie Freiberg (Germany); Balfanz, U. [BP AG, Global Fuels Technology, Bochum (Germany)

    2008-07-01

    The legally regulated admixture of biogenic fuel components for diesel fuels are actually realized in Germany by an admixture of vegetable oil methylester (e.g. from rapeseed oil). The paper describes the hydration of vegetable oils as alternative to this procedure. Infrared and {sup 13}NMR spectroscopy were used to analyse the reaction kinetics for rapeseed, soy been and palm oil hydration. Experimental results of investigations under operational conditions using a continuous test facility and different vegetable oils identified the possibilities of this technology. The technology allows the high-yield production of diesel fuel components with certain numbers higher than average.

  10. Influence of the reuse of the electrolytic solution on the properties of hydroxyapatite coatings produced by plasma electrolytic oxidation of grade 4 titanium

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Cesar A.; Rangel, Elidiane Cipriano; Cruz, Nilson Cristino, E-mail: cesar.augustoa@hotmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil)

    2016-07-01

    Full text: Plasma electrolytic oxidation (PEO) is a process able to produce oxide coatings on light metals, such as Al, Ti, V, Mg, Ta and Nb. In this technique, the application of a voltage, in the range of hundreds of volts, between the sample and a cathode immersed in an electrolyte solution produces electrical fields intense enough to breakdown the insulating oxide layer on the sample surface giving rise to micro electric sparks[1]. These micro-arcs can locally melt the substrate alloying it with elements in the electrolyte solution [2]. In this work PEO has been used to produce coatings with high concentration of hydroxyapatite on Grade 4 titanium disks. The treatments were performed in a 1 liter stainless steel tank. The tank wall was used as the cathode and the coatings were produced during 120 s using calcium acetate and sodium glycerophosphate water solutions as electrolyte. The samples were biased with 480 V pulses with frequency and duty cycle of 100 Hz and 60%, respectively. Using profilometry, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction it has been evaluated the influence of the number of reuses of the solution on the coating properties. The coating produced contains around 85% of HA and it has not been observed any significant changes in their properties when the same solution was reused up to 5 times. [1] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, Surf. Coat. Technol. 130 (2000) 195 206. [2] C. A. Antonio, N. C. Cruz, et al. Materials Research. 17(6) 2014; 1427-1433. (author)

  11. Recycling of nuclear matters. Myths and realities. Calculation of recycling rate of the plutonium and uranium produced by the French channel of spent fuel reprocessing

    International Nuclear Information System (INIS)

    Coeytaux, X.; Schneider, M.

    2000-05-01

    The recycling rate of plutonium and uranium are: from the whole of the plutonium separated from the spent fuel ( inferior to 1% of the nuclear matter content) attributed to France is under 50% (under 42 tons on 84 tons); from the whole of plutonium produced in the French reactors is less than 20% (42 tons on 224 tons); from the whole of the uranium separated from spent fuels attributed to France is about 10 % (1600 tons on 16000 tons); from the whole of the uranium contained in the spent fuel is slightly over 5%. (N.C.)

  12. Method of producing a diesel fuel blend having a pre-determined flash-point and pre-determined increase in cetane number

    Science.gov (United States)

    Waller, Francis Joseph; Quinn, Robert

    2004-07-06

    The present invention relates to a method of producing a diesel fuel blend having a pre-determined flash-point and a pre-determined increase in cetane number over the stock diesel fuel. Upon establishing the desired flash-point and increase in cetane number, an amount of a first oxygenate with a flash-point less than the flash-point of the stock diesel fuel and a cetane number equal to or greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number. Thereafter, an amount of a second oxygenate with a flash-point equal to or greater than the flash-point of the stock diesel fuel and a cetane number greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number.

  13. Low Cost Solar Array Project. Feasibility of the silane process for producing semiconductor-grade silicon. Final report, October 1975-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The commercial production of low-cost semiconductor-grade silicon is an essential requirement of the JPL/DOE (Department of Energy) Low-Cost Solar Array (LSA) Project. A 1000-metric-ton-per-year commercial facility using the Union Carbide Silane Process will produce molten silicon for an estimated price of $7.56/kg (1975 dollars, private financing), meeting the DOE goal of less than $10/kg. Conclusions and technology status are reported for both contract phases, which had the following objectives: (1) establish the feasibility of Union Carbide's Silane Process for commercial application, and (2) develop an integrated process design for an Experimental Process System Development Unit (EPSDU) and a commercial facility, and estimate the corresponding commercial plant economic performance. To assemble the facility design, the following work was performed: (a) collection of Union Carbide's applicable background technology; (b) design, assembly, and operation of a small integrated silane-producing Process Development Unit (PDU); (c) analysis, testing, and comparison of two high-temperature methods for converting pure silane to silicon metal; and (d) determination of chemical reaction equilibria and kinetics, and vapor-liquid equilibria for chlorosilanes.

  14. Standard test method for analysis of isotopic composition of uranium in nuclear-grade fuel material by quadrupole inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method is applicable to the determination of the isotopic composition of uranium (U) in nuclear-grade fuel material. The following isotopic weight percentages are determined using a quadrupole inductively coupled plasma-mass spectrometer (Q-ICP-MS): 233U, 234U, 235U, 236U, and 238U. The analysis can be performed on various material matrices after acid dissolution and sample dilution into water or dilute nitric (HNO3) acid. These materials include: fuel product, uranium oxide, uranium oxide alloys, uranyl nitrate (UNH) crystals, and solutions. The sample preparation discussed in this test method focuses on fuel product material but may be used for uranium oxide or a uranium oxide alloy. Other preparation techniques may be used and some references are given. Purification of the uranium by anion-exchange extraction is not required for this test method, as it is required by other test methods such as radiochemistry and thermal ionization mass spectroscopy (TIMS). This test method is also described i...

  15. Gasification of heavy fuels to produce electrical energy and hydrogen; Gasificacion de combustibles pesados para producir energia electrica e hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Vera Garcia, Oscar Alberto [Universidad Nacional Autonoma de Mexico(UNAM), Mexico, D.F. (Mexico)

    2006-11-15

    A description is presented of the different types of integrated gasifiers that at the moment are used in the synthesis gas production to be used, with different fuels in the generation of electricity in Combined Cycle. Three cases of application of integrated gasifiers are analyzed. The first it is the engine power upgrade of a Combined Cycle power plant to natural gas to burn fuel of bad quality in an integrated gasifier (CCGI). The second one examines the incorporation of a shift reactor in which the synthesis gas is transformed into CO{sub 2} and H{sub 2} which are used to move the turbine to gas, adapted for pure hydrogen. Finally is studied the amount of other by-products that can be obtained from these co-generation cycles such as CO{sub 2} to be used in secondary recovery of oil wells, N{sub 2} to be used in the fertilizer industry or in the proper oil production and H{sub 2} to be used in the oil industry or the generation with fuel cells. All the cases are studied in quantitative form, making the balance of mass and energy of each one of them. In order to give more practical sense to the calculations, the engineering data of the Valladolid Power station of Comision Federal de Electricidad (CFE) have been taken as base. This article provides a basic idea, but very practical, to estimate the fuel consumption of the different modes of arrangement of a CCGI power station, as well as the volumes of the different gases that can be produced and the modifications to the size of the equipment that is required. [Spanish] Se presenta una descripcion de los diferentes tipos de gasificadores integrados que actualmente se utilizan en la produccion de gas de sintesis para ser utilizados, con diferentes combustibles, en la generacion de electricidad con Ciclo Combinado. Se analizan tres casos de aplicacion de gasificadores integrados. El primero es la repotenciacion de una planta de Ciclo Combinado a gas natural para quemar combustible de mala calidad en un gasificador

  16. Re-energizing energy supply: Electrolytically-produced hydrogen as a flexible energy storage medium and fuel for road transport

    Science.gov (United States)

    Emonts, Bernd; Schiebahn, Sebastian; Görner, Klaus; Lindenberger, Dietmar; Markewitz, Peter; Merten, Frank; Stolten, Detlef

    2017-02-01

    "Energiewende", which roughly translates as the transformation of the German energy sector in accordance with the imperatives of climate change, may soon become a byword for the corresponding processes most other developed countries are at various stages of undergoing. Germany's notable progress in this area offers valuable insights that other states can draw on in implementing their own transitions. The German state of North Rhine-Westphalia (NRW) is making its own contribution to achieving the Energiewende's ambitious objectives: in addition to funding an array of 'clean and green' projects, the Virtual Institute Power to Gas and Heat was established as a consortium of seven scientific and technical organizations whose aim is to inscribe a future, renewable-based German energy system with adequate flexibility. Thus, it is tasked with conceiving of and evaluating suitable energy path options. This paper outlines one of the most promising of these pathways, which is predicated on the use of electrolytically-produced hydrogen as an energy storage medium, as well as the replacement of hydrocarbon-based fuel for most road vehicles. We describe and evaluate this path and place it in a systemic context, outlining a case study from which other countries and federated jurisdictions therein may draw inspiration.

  17. Refining and blending of aviation turbine fuels.

    Science.gov (United States)

    White, R D

    1999-02-01

    Aviation turbine fuels (jet fuels) are similar to other petroleum products that have a boiling range of approximately 300F to 550F. Kerosene and No.1 grades of fuel oil, diesel fuel, and gas turbine oil share many similar physical and chemical properties with jet fuel. The similarity among these products should allow toxicology data on one material to be extrapolated to the others. Refineries in the USA manufacture jet fuel to meet industry standard specifications. Civilian aircraft primarily use Jet A or Jet A-1 fuel as defined by ASTM D 1655. Military aircraft use JP-5 or JP-8 fuel as defined by MIL-T-5624R or MIL-T-83133D respectively. The freezing point and flash point are the principle differences between the finished fuels. Common refinery processes that produce jet fuel include distillation, caustic treatment, hydrotreating, and hydrocracking. Each of these refining processes may be the final step to produce jet fuel. Sometimes blending of two or more of these refinery process streams are needed to produce jet fuel that meets the desired specifications. Chemical additives allowed for use in jet fuel are also defined in the product specifications. In many cases, the customer rather than the refinery will put additives into the fuel to meet their specific storage or flight condition requirements.

  18. Bio-based production of fuels and industrial chemicals by repurposing antibiotic-producing type I modular polyketide synthases: opportunities and challenges

    DEFF Research Database (Denmark)

    Yuzawa, Satoshi; Keasling, Jay D.; Katz, Leonard

    2017-01-01

    Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containin...... have applications as fuels or industrial chemicals....

  19. FIELD-PRODUCED JP-8 STANDARD FOR CALIBRATION OF LOWER EXPLOSIVE LIMIT METERS USED BY JET FUEL TANK MAINTENANCE PERSONNEL

    Science.gov (United States)

    Thousands of military personnel and tens of thousands of civilian workers perform jet fuel tank entry procedures. Before entering the confined space of a jet fuel tank, OSHA regulations (29CFR1910.146) require the internal atmosphere be tested with a calibrated, direct-reading...

  20. Producer gas and its use for the manufacture of lime

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A K; Kumar, S

    1976-04-01

    An analysis of available data indicates that coal-based producer gas is superior to coal or wood as a fuel for lime kilns and much more readily available than oil or natural gas. With producer gas, chemical-grade lime is obtained, and the kiln capacity is increased, so that a smaller unit can be used or more lime obtained. With a mixture of coal and wood as the fuel, the lime produced is contaminated with ash. The added cost of the gas-producer unit can be paid out in one year owing to the greater demand for and the consequent higher prices obtainable for the chemical-grade product. In addition, the flue gases from the kiln can be used in place of steam to heat the gas producer, but experimental studies are needed to determine the magnitude of the savings in fuel consumption. 15 references.

  1. Bio-based production of fuels and industrial chemicals by repurposing antibiotic-producing type I modular polyketide synthases: opportunities and challenges.

    Science.gov (United States)

    Yuzawa, Satoshi; Keasling, Jay D; Katz, Leonard

    2017-04-01

    Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides of predicted structure. We have repurposed PKSs to produce a number of short-chain mono- and di-carboxylic acids and ketones that could have applications as fuels or industrial chemicals.

  2. Bio-based production of fuels and industrial chemicals by repurposing antibiotic-producing type I modular polyketide synthases: opportunities and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Yuzawa, Satoshi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Keasling, Jay D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Univ. of California, Berkeley, CA (United States). QB3 Inst.; Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States). Dept. of Bioengineering; Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering; Technical Univ. of Denmark, Horsholm (Denmark). Novo Nordisk Foundation Center for Biosustainability; Katz, Leonard [Univ. of California, Berkeley, CA (United States). QB3 Inst.

    2016-11-16

    Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides of predicted structure. Finally, we have repurposed PKSs to produce a number of short-chain mono- and di-carboxylic acids and ketones that could have applications as fuels or industrial chemicals.

  3. 40 CFR 80.1426 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Science.gov (United States)

    2010-07-01

    ... contaminants that are impractical to remove and are related to customary feedstock production and transport... Biodiesel, and renewable diesel Soy bean oil;Oil from annual covercrops; One of the following:Trans... renewable biomass andpetroleum. Non-food grade corn oil Biodiesel, and renewable diesel Soy bean oil; One of...

  4. Successful completion of the development and testing of a coal to fuel cell grade hydrogen technology package for New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Anthony H. Clemens; Tana P. Levi; Robert S. Whitney; Alister I. Gardiner

    2009-07-01

    A technology package for the production, from New Zealand lignite, of high purity hydrogen suitable for use in an alkaline fuel cell has been successfully developed and tested. The technology involves the integration of an air-blown 1 tonne per day fluidised bed gasifier with a range of downstream syngas clean-up components leading to the fuel cell. The development of the technology package was built on earlier work that showed New Zealand lignites to be among the most reactive in the world and well suited to fluidised bed gasification. The reason for their high reactivity was shown to be due to the presence of ion-exchanged calcium within the lignite structure. The clean-up line is comprised of some commonly used 'off the shelf' technologies. These include a cyclone and Venturi scrubber for particulate and condensables capture respectively and a high temperature water gas shift reactor. It also contains a less commonly used counterflow caustic wash packed column for H{sub 2}S removal and an experimental membrane for final hydrogen separation. The clean-up line is constructed so that it may be used to testbed other new syngas clean-up technologies. The paper describes the new technology package, considers several issues that arose during its development and how these were addressed. It also considers the future development of the technology including co-gasification with biomass and conversion to an oxygen blown unit for synfuel production. 20 refs., 4 figs., 1 tab.

  5. A green preparation method of battery grade α-PbO based on Pb-O2 fuel cell

    Science.gov (United States)

    Wang, Pingyuan; Pan, Junqing; Gong, Shumin; Sun, Yanzhi

    2017-08-01

    In order to solve the problem of high pollution and high energy consumption of the current lead oxide (PbO) preparation processes, a new clean and energy saving preparation method for high purity α-PbO via discharge of a Pb-O2 fuel cell is reported. The fuel cell with metallic lead anode, oxygen cathode, and 30% NaOH electrolyte can provide a discharge voltage of 0.66-0.38 V corresponding to discharge current range of 5-50 mA cm-2. PbO is precipitated from the NaHPbO2-containing electrolyte through a cooling crystallization process after discharge process, and the XRD patterns indicate the structure is pure α-PbO. The mother liquid after crystallization can be recycled for the next batch. The obtained PbO mixed with 60% Shimadzu PbO is superior to the pure Shimadzu PbO in discharge capacity and cycle ability.

  6. Co-Optimization of Fuels & Engines: Misfueling Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Sluder, C. Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moriarty, Kristi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jehlik, Forrest [Argonne National Lab. (ANL), Argonne, IL (United States); West, Brian H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-06

    This report examines diesel/gasoline misfueling, leaded/unleaded gasoline misfueling, E85/E15/E10 misfueling, and consumer selection of regular grade fuel over premium grade fuel in an effort to evaluate misfueling technologies that may be needed to support the introduction of vehicles optimized for a new fuel in the marketplace. This is one of a series of reports produced as a result of the Co-Optimization of Fuels & Engines (Co-Optima) project, a Department of Energy-sponsored multi-agency project to accelerate the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines.

  7. Electrochemical performance of Ni0.8Cu0.2/Ce0.8Gd0.2O1.9 cermet anodes with functionally graded structures for intermediate-temperature solid oxide fuel cell fueled with syngas

    Science.gov (United States)

    Miyake, Michihiro; Iwami, Makoto; Takeuchi, Mizue; Nishimoto, Shunsuke; Kameshima, Yoshikazu

    2018-06-01

    The electrochemical performance of layered Ni0.8Cu0.2/Ce0.8Gd0.2O1.9 (GDC) cermet anodes is investigated for intermediate-temperature solid oxide fuel cells (IT-SOFCs) at 600 °C using humidified (3% H2O) model syngas with a molar ratio of H2/CO = 3/2 as the fuel. From the results obtained, the electrochemical performance of the functionally graded multi-layered anodes is found to be superior to the mono-layered anodes. The test cell with a bi-layered anode consisting of 100 mass% Ni0.8Cu0.2/0 mass% GDC (10M/0E) and 70 mass% Ni0.8Cu0.2/30 mass% GDC (7M/3E) exhibits high power density. The test cell with a tri-layered anode consisting of 10M/0E, 7M/3E, and 50 mass% Ni0.8Cu0.2/50 mass% GDC (5M/5E) exhibits an even higher power density, suggesting that 10M/0E and 5M/5E layers contribute to the current collecting part and active part, respectively.

  8. Refuse derived fuel (RDF) plasma torch gasification as a feasible route to produce low environmental impact syngas for the cement industry.

    Science.gov (United States)

    López-Sabirón, Ana M; Fleiger, Kristina; Schäfer, Stefan; Antoñanzas, Javier; Irazustabarrena, Ane; Aranda-Usón, Alfonso; Ferreira, Germán A

    2015-08-01

    Plasma torch gasification (PTG) is currently researched as a technology for solid waste recovery. However, scientific studies based on evaluating its environmental implications considering the life cycle assessment (LCA) methodology are lacking. Therefore, this work is focused on comparing the environmental effect of the emissions of syngas combustion produced by refuse derived fuel (RDF) and PTG as alternative fuels, with that related to fossil fuel combustion in the cement industry. To obtain real data, a semi-industrial scale pilot plant was used to perform experimental trials on RDF-PTG.The results highlight that PTG for waste to energy recovery in the cement industry is environmentally feasible considering its current state of development. A reduction in every impact category was found when a total or partial substitution of alternative fuel for conventional fuel in the calciner firing (60 % of total thermal energy input) was performed. Furthermore, the results revealed that electrical energy consumption in PTG is also an important parameter from the LCA approach. © The Author(s) 2015.

  9. 75 FR 59622 - Supplemental Determination for Renewable Fuels Produced Under the Final RFS2 Program From Canola Oil

    Science.gov (United States)

    2010-09-28

    ..., heating oil or jet fuel). In addition, this rule includes a new regulatory provision establishing a... work would be completed through a supplemental final rulemaking process. This supplemental final rule... the final RFS2 rule, EPA will revisit our lifecycle analyses in the future as new information becomes...

  10. Role of Chloride in the Corrosion and Fracture Behavior of Micro-Alloyed Steel in E80 Simulated Fuel Grade Ethanol Environment

    Directory of Open Access Journals (Sweden)

    Olufunmilayo O. Joseph

    2016-06-01

    Full Text Available In this study, micro-alloyed steel (MAS material normally used in the production of auto parts has been immersed in an E80 simulated fuel grade ethanol (SFGE environment and its degradation mechanism in the presence of sodium chloride (NaCl was evaluated. Corrosion behavior was determined through mass loss tests and electrochemical measurements with respect to a reference test in the absence of NaCl. Fracture behavior was determined via J-integral tests with three-point bend specimens at an ambient temperature of 27 °C. The mass loss of MAS increased in E80 with NaCl up to a concentration of 32 mg/L; beyond that threshold, the effect of increasing chloride was insignificant. MAS did not demonstrate distinct passivation behavior, as well as pitting potential with anodic polarization, in the range of the ethanol-chloride ratio. Chloride caused pitting in MAS. The fracture resistance of MAS reduced in E80 with increasing chloride. Crack tip blunting decreased with increasing chloride, thus accounting for the reduction in fracture toughness.

  11. Vertical integration of local fuel producers into rural district heating systems – Climate impact and production costs

    International Nuclear Information System (INIS)

    Kimming, M.; Sundberg, C.; Nordberg, Å.; Hansson, P.-A.

    2015-01-01

    Farmers can use their own agricultural biomass residues for heat production in small-scale systems, enabling synergies between the district heating (DH) sector and agriculture. The barriers to entry into the Swedish heat market were extremely high as long as heat distribution were considered natural monopoly, but were recently lowered due to the introduction of a regulated third party access (TPA) system in the DH sector. This study assesses the potential impact on greenhouse gas emissions and cost-based heat price in the DH sector when farmers vertically integrate into the heat supply chain and introduce more local and agricultural crops and residues into the fuel mix. Four scenarios with various degree of farmer integration, were assessed using life cycle assessment (LCA) methodology, and by analysis of the heat production costs. The results show that full integration of local farm and forest owners in the value chain can reduce greenhouse gas emissions and lower production costs/heat price, if there is an incentive to utilise local and agricultural fuels. The results imply that farmer participation in the DH sector should be encouraged by e.g. EU rural development programmes. - Highlights: • Five DH production systems based on different fuels and ownership were analysed. • Lower GHG emissions were obtained when farmers integrate fully into the DH chain. • Lower heat price was obtained by full vertical integration of farmers. • Salix and straw-based production resulted in the lowest GHG and heat price

  12. Is it economically feasible for farmers to grow their own fuel? A study of Camelina sativa produced in the western United States as an on-farm biofuel

    International Nuclear Information System (INIS)

    Keske, Catherine M.H.; Hoag, Dana L.; Brandess, Andrew; Johnson, Jerry J.

    2013-01-01

    This paper models the economic feasibility of growing the oilseed crop Camelina sativa (“camelina”) in the western United States to produce value-added protein feed supplement and an SVO-based biofuel. Modeled in eastern Colorado, this study demonstrates that camelina can be grown profitably both as a commodity and as an energy biofuel. These findings, along with the stochastic crop rotation budget and profitability sensitivity analysis, reflect unique contributions to the literature. The study's stochastic break-even analysis demonstrates a 0.51 probability of growing camelina profitably when diesel prices reach 1.15 $ L −1 . Results also show that the sale of camelina meal has the greatest impact on profitability. Yet once the price of diesel fuel exceeds 0.90 $ L −1 , the farmer generates more revenue from the ability to offset diesel fuel purchases than the revenues generated from the sale of camelina meal. A risk analysis using second degree stochastic dominance demonstrates that a risk-averse farmer would choose to grow camelina if the price of diesel equals or exceeds 1.31 $ L −1 . The article concludes that camelina can offset on-farm diesel use, making it economically feasible for farmers to grow their own fuel. As a result, camelina production may increase farm income, diversify rural economic development, and contribute to the attainment of energy policy goals. -- Highlights: •This is a stochastic budget analysis of growing camelina as SVO-based biofuel. •Results demonstrate economic feasibility for producers to grow their own fuel. •Camelina production can diversify regional and national energy portfolios. •Camelina production can contribute to on-farm energy independence

  13. THE EFFECT OF GASOLINE-LIKE FUEL PRODUCED FROM WASTE AUTOMOBILE TIRES ON EMISSIONS IN SPARK-IGNITION ENGINES

    OpenAIRE

    ÖZTOP, H. F.; VAROL, Y.; ALTUN, Ş.; FIRAT, M.

    2016-01-01

    In the present paper, the effect of Gasoline-Like Fuel (GLF) on emissions was investigated for direct injection spark-ignited engine. The GLF was obtained from waste automobile tires by using the pyrolysis. The tires are installed to oven without any procedure such as cutting, melding etc. Obtained GLF was then used in a four-cylinder, four-stroke, water-cooled and direct injection spark-ignited engine as blended with unleaded gasoline from 0% to 60% with an increment of 10%. Engine tests res...

  14. Investigation of the Microstructural, Mechanical and Corrosion Properties of Grade A Ship Steel-Duplex Stainless Steel Composites Produced via Explosive Welding

    Science.gov (United States)

    Kaya, Yakup; Kahraman, Nizamettin; Durgutlu, Ahmet; Gülenç, Behçet

    2017-08-01

    Grade A ship-building steel-AISI 2304 duplex stainless steel composite plates were manufactured via explosive welding. The AISI 2304 plates were used to clad the Grade A plates. Optical microscopy studies were conducted on the joining interface for characterization of the manufactured composite plates. Notch impact, tensile-shear, microhardness, bending and twisting tests were carried out to determine the mechanical properties of the composites. In addition, the surfaces of fractured samples were examined by scanning electron microscopy (SEM), and neutral salt spray (NSS) and potentiodynamic polarization tests were performed to examine corrosion behavior. Near the explosion zone, the interface was completely flat, but became wavy as the distance from the explosion zone increased. The notch impact tests indicated that the impact strength of the composites decreased with increasing distance from the explosion zone. The SEM studies detected brittle behavior below the impact transition temperature and ductile behavior above this temperature. Microhardness tests revealed that the hardness values increased with increasing distance from the explosion zone and mechanical tests showed that no visible cracking or separation had occurred on the joining interface. The NSS and potentiodynamic polarization tests determined that the AISI 2304 exhibited higher corrosion resistance than the Grade A steel.

  15. Technological, economic and environmental evaluation of rice husk gasification in a biorefinery context to produce indirect energy as jet fuel

    Directory of Open Access Journals (Sweden)

    Juan Jacobo Jaramillo Obando

    2017-09-01

    Full Text Available Higher alcohol 1-octanol was evaluated as jet fuel potential. The synthesis of the 1-octanol was modeled and the technological, economic and environmental evaluation of the global production process of the rice husk gasification was performed. The best operating conditions to 1-octanol synthesis were obtained in packed bed reactor PBR using Matlab software. Mass and energy balances were calculated using Aspen Plus Software. Economic assessment was developed using Aspen Process Economic Analyzer Software. Environmental impact evaluation was carried out using the waste reduction algorithm WAR. Process yield was 0.83 kg of 1-Octanol by kg of rice husk. Total production cost obtained was USD 0.957 per kg of 1-octanol and the total PEI of product leave the system is 0.08142 PEI/kg with a PEI mitigated of 12.97 PEI/kg. Production process of high alcohols from rice husk shows a high potential technological, economical and environmental as a sustainable industry at take advantage of an agroindustrial residue and transformed in products with added value and energy. 1-octanol as jet fuel has a potential but need to be more studied for direct use in jet motors.

  16. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    Science.gov (United States)

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  17. 76 FR 64839 - Sugar Program; Feedstock Flexibility Program for Bioenergy Producers

    Science.gov (United States)

    2011-10-19

    ... sugar to ethanol and other bioenergy production. Surplus Determination As required by the 2008... with selling sugar for ethanol, if FFP is activated, are significantly lower than if sales could be... eligible sugar buyer, the bioenergy producer must produce bioenergy products, including fuel grade ethanol...

  18. Fuel quality processing study, volume 1

    Science.gov (United States)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-01-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  19. Feasibility studies on selected bioenergy concepts producing electricity, heat, and liquid fuel. IEA Bioenergy, Techno-economic analysis activity

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y.; Koljonen, T. [VTT Energy, Espoo (Finland); Podesser, E. [Joanneum Research (Austria); Beckman, D. [Zeton Inc. (Canada); Overend, R. [National Renewable Energy Lab. (United States)

    1999-07-01

    The IEA Bioenergy Techno-Economic Analysis Activity reported here, had the following objectives: To assist companies working with technologies and products related to bioenergy applications in their efforts to demonstrate these; To promote bioenergy technologies, processes and applications; To build and maintain a network for R and D organisations and industry. The objectives were pursued 1995 - 1997 through carrying out site-specific prefeasibility studies in participating countries. Both electricity and liquid fuel applications were studied, utilising gasification, pyrolysis, and combustion technologies. Studies were carried out in collaboration with companies developing new products or services from participating countries (Austria, Canada, Finland, and the United States of America) in the bioenergy field. Cases are: Austria: Power production at a district heating station, Stirling-engine driven by unclean boiler flue gases, 50 kWe; Canada - Bio-oil production for a boiler power plant, Fast pyrolysis of sawmill wastes and bark, 11 MWe; Finland: Co-generation of power and heat at a pulp and paper mill, Pressurised integrated gasification combined-cycle (IGCC) using bark and wood, 34 MWe; Sweden: Bio-oil production for heating fuel, Fast pyrolysis of forest residues, 20 000 t/a; USA - Case 1: Co-firing in a coal boiler, Combustion of plantation willow, 15 MWe; USA - Case 2: Condensing power production, Pressurised IGCC using alfalfa stems, 75 MWe All of the cases studied are at different stages of development. Results from these case studies are reported together with technical uncertainties and future development needs, which are required for all the systems. In general, the results showed that for most of the cases studied economic conditions are possible, through existing subsidies or tax incentives, for feasible industrial operation. Specially designed Stirling engines have a short amortisation time integrated to biomass district heating plants in Austria

  20. Treatment and processing of the effluents and wastes (other than fuel) produced by a 900 MWe nuclear power plant

    International Nuclear Information System (INIS)

    Giraud

    1983-01-01

    Effluents produced by a 900 MWe power plant, are of three sorts: gaseous, liquid and solid. According to their nature, effluents are either released or stored for decaying before being released to the atmosphere. The non-contaminated reactor coolant effluents are purified (filtration, gas stripping) and treated by evaporation for reuse. Depending upon their radioactive level, liquid waste is either treated by evaporation or discharged after filtration. Solid waste issuing from previous treatments (concentrates, resins, filters) is processed in concrete drums using an encapsulation process. The concrete drum provides biological self-protection consistent with the national and international regulations pertaining to the transport of radioactive substance. Finally, the various low-level radioactive solid waste collected throughout the plant, is compacted into metal drums. Annual estimates of the quantity of effluents (gaseous, liquid) released in the environment and the number of drums (concrete, metal) produced by the plant figure in the conclusion

  1. Biodiesel production from various feedstocks and their effects on the fuel properties.

    Science.gov (United States)

    Canakci, M; Sanli, H

    2008-05-01

    Biodiesel, which is a new, renewable and biological origin alternative diesel fuel, has been receiving more attention all over the world due to the energy needs and environmental consciousness. Biodiesel is usually produced from food-grade vegetable oils using transesterification process. Using food-grade vegetable oils is not economically feasible since they are more expensive than diesel fuel. Therefore, it is said that the main obstacle for commercialization of biodiesel is its high cost. Waste cooking oils, restaurant greases, soapstocks and animal fats are potential feedstocks for biodiesel production to lower the cost of biodiesel. However, to produce fuel-grade biodiesel, the characteristics of feedstock are very important during the initial research and production stage since the fuel properties mainly depend on the feedstock properties. This review paper presents both biodiesel productions from various feedstocks and their effects on the fuel properties.

  2. The opportunities for woody biomass fuels in New Zealand produced in association with land disposal of effluent

    International Nuclear Information System (INIS)

    Sims, R.E.H.; Collins, C.

    1993-01-01

    An assessment of the future New Zealand biomass resource has shown exotic forest arisings could supply 970 GWh/year by the year 2002; wood processing residues 280 GWh/year; and fuelwood plantations 2,060 GWh/year with potential to rise to 10,000 GWh/year by 2012. Currently annual electricity demand is around 30,000 GWh 70% of which is generated by hydro power. A further 25% stems from natural gas, a resource with estimated reserves of only approximately 14 years. This paper describes how part replacement of gas by biomass could be a feasible proposition for the future. Life cycle cost analyses showed electricity could be generated from arisings for 4.8--6 c/kWh; from residues for 2.4--4.8 c/kWh; and from plantations for 4.8--7.2 c/kWh. For comparison the current retail electricity price is around 4--5.5 c/kWh and estimates for wind power generation range from 5--10 c/kWh. Future hydro-power schemes will generate power between 4--9 c/kWh depending on site suitability. The link between land disposal of effluent and short rotation coppice production can reduce the biomass costs. A meatworks processing 1.6 million sheep annually has planted 90 ha in trees for flood irrigation of effluent and biomass fuel production for use on site. Similar schemes linking sewage disposal with wood-fired power generation are under evaluation

  3. Combining protein extraction and anaerobic digestion to produce feed, fuel and fertilizer from green biomass – An organic biorefinery concept

    DEFF Research Database (Denmark)

    Fernandez, Maria Santamaria; Salces, Beatriz Molinuevo; Lübeck, Mette

    Organically grown green biomass (red clover, clover grass) was investigated as a resource for organic feed and organic fertilizer by combination of proteins extraction and anaerobic digestion of the residues. Extraction of proteins from both crops revealed very favourable amino acid composition...... for the use as animal feed. The residual 90% of organic matter, leaving the separation as solid press cake and brown juice was subjected to anaerobic digestion to produce biogas and fertilizer. Methane yields of 220-310 and 430-540 ml CH4/g VS were obtained for press cake and brown juice, respectively...

  4. Thorium-based Fuel Cycles: Reassessment of Fuel Economics and Proliferation Risk. Assessment of Proliferation Risk of Reactor-grade Plutonium regarding Construction of ‘Fizzle Bombs’ by Terrorists

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.; Mulder, Eben J.; Reitsma, Frederik

    2013-01-01

    Interventions which add resonance absorbers to the fuel deteriorate the neutron economy. This reduces the burn-up and increases the HM in spent fuel, especially 241 Pu and largely defeats the purpose of the exercise

  5. Treatment of oily wastes by agglomeration techniques to produce an auxiliary carbonaceous fuel with low SO2 emissions

    International Nuclear Information System (INIS)

    Majid, A.; Capes, C.E.; Sparks, B.D.

    1992-01-01

    Oily sludges and organic wastes are produced by a number of industries, particularly those related to the recovery of processing of petroleum. Traditional sludge disposal methods, involving concentration by impoundment followed by land filling or land farming, are meeting with increasingly stringent regulations. Further treatment of the wastes and reduction of volume and recycle are being encouraged and legislated. Such treatment may range from separation of constituents into higher value products, such as the separation of oil or other organic components from mineral (ash forming) impurities and water, to stabilization of impurities to prevent leaching or to reduce emissions during combustion. This paper reports on liquid phase agglomeration (LPA) which has the potential to play a major role in oily waste treatment processes. It can be adapted to separate finely divided solids or liquids from immiscible liquid suspensions or emulsions

  6. Jojoba methyl ester as a diesel fuel substitute: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, M.S.; Ismail, M.A.; Elfeky, S.M.S.; Abu-Elyazeed, O.S.M. [Mechanical Power Engineering Department, Faculty of Engineering at Mattaria, University of Helwan, Masakin Elhelmia, Mattaria, Cairo 11718 (Egypt)

    2007-02-15

    The aim of the present work is to prepare jojoba methyl ester (JME) as a diesel fuel substitute. This was carried out experimentally and its chemical and physical properties were determined. Esterification method is used to produce methyl ester from raw jojoba oil. This method is optimized to produce the highest amount of fuel using a minimum amount of methyl alcohol. To achieve the above aim, a test rig for fuel production was developed. To measure the JME burning velocity a constant volume bomb was developed. The bomb was fully instrumented with a piezoelectric pressure transducer, charge amplifier, digital storage oscilloscope, A/D converter and a personal computer. Several grades of fuel were produced but, two grades only were selected and tested as an economical alternative fuel. The chemical and physical properties of these grades of fuel are measured as well as the laminar burning velocity. It is found that JME liquid fuel exhibited lower burning velocities than iso-octane. The new fuel is found to be suitable for compression ignition engine particularly in the indirect-injection ones, while for direct-injection, and high-speed engines fuel modifications are required. The new fuel is safe, has no sulphur content and reduces the engine wear as well as lengthens the lifetime of lubricating oil. (author)

  7. The acid tolerant L-arabinose isomerase from the food grade Lactobacillus sakei 23K is an attractive D-tagatose producer.

    Science.gov (United States)

    Rhimi, Moez; Ilhammami, Rimeh; Bajic, Goran; Boudebbouze, Samira; Maguin, Emmanuelle; Haser, Richard; Aghajari, Nushin

    2010-12-01

    The araA gene encoding an L-arabinose isomerase (L-AI) from the psychrotrophic and food grade Lactobacillus sakei 23K was cloned, sequenced and over-expressed in Escherichia coli. The recombinant enzyme has an apparent molecular weight of nearly 220 kDa, suggesting it is a tetramer of four 54 kDa monomers. The enzyme is distinguishable from previously reported L-AIs by its high activity and stability at temperatures from 4 to 40 degrees C, and pH from 3 to 8, and by its low metal requirement of only 0.8 mM Mn(2+) and 0.8 mM Mg(2+) for its maximal activity and thermostability. Enzyme kinetic studies showed that this enzyme displays a high catalytic efficiency allowing D-galactose bioconversion rates of 20% and 36% at 10 and 45 degrees C, respectively, which are useful for commercial production of D-tagatose. 2010 Elsevier Ltd. All rights reserved.

  8. Application of sol gel spin coated yttria-stabilized zirconia layers for the improvement of solid oxide fuel cell electrolytes produced by atmospheric plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Lars [University of British Columbia, Department of Materials Engineering, 309-6350 Stores Road, Vancouver, British Columbia, V6T 1Z4 (Canada); National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, British Columbia, V6T 1W5 (Canada); Kesler, Olivera [National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, British Columbia, V6T 1W5 (Canada); University of British Columbia, Department of Mechanical Engineering, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4 (Canada); Tang, Zhaolin; Burgess, Alan [Northwest Mettech Corp., 467 Mountain Hwy, North Vancouver, British Columbia, V7J 2L3 (Canada)

    2007-05-15

    Due to its high thermal stability and purely oxide ionic conductivity, yttria-stabilized zirconia (YSZ) is the most commonly used electrolyte material for solid oxide fuel cells (SOFCs). Standard electrolyte fabrication techniques for planar SOFCs involve wet ceramic techniques such as tape-casting or screen printing, requiring sintering steps at temperatures above 1300 C. Plasma spraying (PS) may provide a more rapid and cost efficient method to produce SOFCs without sintering. High-temperature sintering requires long processing times and can lead to oxidation of metal alloys used as mechanical supports, or to detrimental interreactions between the electrolyte and adjacent electrode layers. This study investigates the use of spin coated sol gel derived YSZ precursor solutions to fill the pores present in plasma sprayed YSZ layers, and to enhance the surface area for reaction at the electrolyte-cathode interface, without the use of high-temperature firing steps. The effects of different plasma conditions and sol concentrations and solid loadings on the gas permeability and fuel cell performance have been investigated. (author)

  9. The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: Biodegradation and bioaccumulation as a means of treating radionuclide-containing streams

    International Nuclear Information System (INIS)

    Macaskie, L.E.

    1991-01-01

    Recent concerns on the radiotoxicity and longevity of nuclides have prompted the development of new technologies for their removal from wastes produced from nuclear power programs and nuclear fuel reprocessing activities. Alongside developments from traditional chemical treatment processes, interest has also centered on the application of biotechnology for efficient waste treatment. Many biological techniques have relied on empirical approaches in simple model systems, with scant regard to the nature and volume of actual target wastes; such considerations may limit the application of the new technologies in practice. This review aims to identify some of the likely problems, to discuss the various approaches under current consideration, and to evaluate ways in which either the target waste or the detoxifying biomass may be modified or presented for the most efficient treatment. 278 references

  10. Low - temperature properties of rape seed oil biodiesel fuel and its blending with other diesel fuels

    International Nuclear Information System (INIS)

    Kampars, V.; Skujins, A.

    2004-01-01

    The properties of commercial bio diesel fuel depend upon the refining technique and the nature of the renewable lipids from which it is produced. The examined bio diesel fuel produced from rape seed oil by the Latvian SIA 'Delta Riga' has better low-temperature properties than many other bio diesels; but a considerably higher cloud point (-5,7 deg C), cold filter plugging point (-7 deg C) and pour point (-12 deg C) than the examined petrodiesel (grade C, LST EN 590:2000) from AB 'Mazeikiu nafta'. The low-temperature properties considerably improve if blending of these fuels is used. The blended fuels with bio diesel contents up to 90% have lower cold filter plugging points than petrodollar's. The estimated viscosity variations with temperature show that the blended fuels are Arrenius-type liquids, which lose this property near the cold filter plugging point. (authors)

  11. Repairing fuel for reinsertion

    International Nuclear Information System (INIS)

    Krukshenk, A.

    1986-01-01

    Eqiupment for nuclear reactor fuel assembly repairing produced by Westinghouse and Brawn Bovery companies is described. Repair of failed fuel assemblies replacement of defect fuel elements gives a noticeable economical effect. Thus if the cost of a new fuel assembly is 450-500 thousand dollars, the replacement of one fuel element in it costs approximately 40-60 thousand dollars. In simple cases repairing includes either removal of failed fuel elements from a fuel assembly and its reinsertion with the rest of fuel elements into the reactor core (reactor refueling), or replacement of unfailed fuel elements from one fuel assembly to a new one (fuel assembly overhaul and reconditioning)

  12. Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode

    International Nuclear Information System (INIS)

    Lai, Chi-Yung; Wu, Chih-Hung; Meng, Chui-Ting; Lin, Chi-Wen

    2017-01-01

    Highlights: • A laccase-producing fungus on cathode of MFC was used to enhance degradation of azo dye. • Laccase-producing fungal cathodes performed better than laccase-free control cathodes. • A maximum power density of 13.38 mW/m"2 and an >90% decolorization of acid orange 7 were obtained. • Growing a fungal culture with continuous laccase production improved MFC’s electricity generation. - Abstract: Wood-degrading white-rot fungi produce many extracellular enzymes, including the multi-copper oxidative enzyme laccase (EC 1.10.3.2). Laccase uses atmospheric oxygen as the electron acceptor to catalyze a one-electron oxidation reaction of phenolic compounds and therefore has the potential to simultaneously act as a cathode catalyst in a microbial fuel cell (MFC) and degrade azo dye pollutants. In this study, the laccase-producing white-rot fungus Ganoderma lucidum BCRC 36123 was planted on the cathode surface of a single-chamber MFC to degrade the azo dye acid orange 7 (AO7) synergistically with an anaerobic microbial community in the anode chamber. In a batch culture, the fungus used AO7 as the sole carbon source and produced laccase continuously, reaching a maximum activity of 20.3 ± 0.3 U/L on day 19 with a 77% decolorization of the dye (50 mg/L). During MFC operations, AO7 in the anolyte diffused across a layer of polyvinyl alcohol-hydrogel that separated the cathode membrane from the anode chamber, and served as a carbon source to support the growth of, and production of laccase by, the fungal mycelium that was planted on the cathode. In such MFCs, laccase-producing fungal cathodes outperformed laccase-free controls, yielding a maximum open-circuit voltage of 821 mV, a closed-circuit voltage of 394 mV with an external resistance of 1000 Ω, a maximum power density of 13.38 mW/m"2, a maximum current density of 33 mA/m"2, and a >90% decolorization of AO7. This study demonstrates the feasibility of growing a white-rot fungal culture with continuous

  13. Evaluation of the uranium market and its consequences in the strategy of a nuclear fuel supplier that is also a uranium producer

    International Nuclear Information System (INIS)

    Esteves, R.G.

    2005-01-01

    On January 2005, the uranium spot market price reached the value of $21.00/lbU3O8. One month before, at the end of December, the average price was $20.70/lbU3O8 and in November the spot price registered $20.50. When we review this abstract, on July 2005, the price has reached $30.00/lbU3O8. In 1984, the uranium spot price dropped below the twenties and remained so reaching meanwhile even one-digit values, even considering that the uranium offer in this period was always below the demand. The main reason for that distortion in the market was and still is, the interference of the developing countries governments after the end of the cold war The Industrias Nucleares do Brasil - INB is in an odd situation in the market of fuel suppliers due to being also a uranium producer and in short future will also be an enrichment services supplier. This peculiar position brings additional advantages due to the flexibility to play with the uranium costs versus tail assay to optimize its nuclear fuel costs. That odd position, equivalent only in the market to AREVA, allows INB to exchange uranium by SWU and vice versa according to its uranium cost (not market sell price) and in the future to the SWU's costs obtaining a better margin that can not be reached by other fuel suppliers. In the first part of this paper it is evaluated, based on the recent market information, the consequences in the 2004 uranium spot price, expected to be more emphasized during 2005. This paper also evaluate the market mechanisms for expecting the price to cross the $40/lbU3O8 in short time The market supply mechanisms used up to now to fulfil the market deficit may be interrupted in case the developing countries governments stop the availability of the non civil uranium reserves from its stockpile. Different hypotheses for supplying the primary uranium deficit in this last case are analyzed in this work and evaluated its consequences. The solution of reducing the actual tails assay used aiming at

  14. Comparative SIFT-MS, GC-MS and FTIR analysis of methane fuel produced in biogas stations and in artificial photosynthesis over acidic anatase TiO2 and montmorillonite

    Science.gov (United States)

    Knížek, Antonín; Dryahina, Ksenyia; Španěl, Patrik; Kubelík, Petr; Kavan, Ladislav; Zukalová, Markéta; Ferus, Martin; Civiš, Svatopluk

    2018-06-01

    The era of fossil fuels is slowly nearing its inevitable end and the urgency of alternative energy sources basic research, exploration and testing becomes ever more important. Storage and alternative production of energy from fuels, such as methane, represents one of the many alternative approaches. Natural gas containing methane represents a powerful source of energy producing large volume of greenhouse gases. However, methane can be also produced in closed, CO2-neutral cycles. In our study, we compare detailed chemical composition of CH4 fuel produced in two different processes: Classical production of biogas in a rendering station, industrial wastewater treatment station and landfill gas station together with novel approach of artificial photosynthesis from CO2 over acidic anatase TiO2 in experimental apparatus developed in our laboratory. The analysis of CH4 fuel produced in these processes is important. Trace gaseous traces can be for example corrosive or toxic, low quality of the mixture suppresses effectivity of energy production, etc. In this analysis, we present a combination of two methods: High resolution Fourier transform infrared spectroscopy (HR-FTIR) suitable for the main component analysis; and the complementary extremely sensitive method of Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) and gas chromatography (GC-MS), which are in turn best suited for trace analysis. The combination of these methods provides more information than any single of them would be able to and promises a new possible analytical approach to fuel and gaseous mixture analysis.

  15. 77 FR 61313 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-10-09

    ... transportation fuels, including gasoline and diesel fuel, or renewable fuels such as ethanol and biodiesel, as... that which arose under RFS1 for certain renewable fuels (in particular biodiesel) that were produced...

  16. A review of catalytic upgrading of bio-oil to engine fuels

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Grunwaldt, Jan-Dierk; Jensen, Peter Arendt

    2011-01-01

    As the oil reserves are depleting the need of an alternative fuel source is becoming increasingly apparent. One prospective method for producing fuels in the future is conversion of biomass into bio-oil and then upgrading the bio-oil over a catalyst, this method is the focus of this review article...... are traditional hydrodesulphurization (HDS) catalysts, such as Co–MoS2/Al2O3, or metal catalysts, as for example Pd/C. However, catalyst lifetimes of much more than 200h have not been achieved with any current catalyst due to carbon deposition. Zeolite cracking is an alternative path, where zeolites, e.g. HZSM-5...... produce fuels of acceptable grade for the current infrastructure. HDO is evaluated as being a path to fuels in a grade and at a price equivalent to present fossil fuels, but several tasks still have to be addressed within this process. Catalyst development, understanding of the carbon forming mechanisms...

  17. The environmental performance of three alcohol fuel plants producers of small, medium and big scale; O desempenho eco-ambiental de tres usinas produtoras de alcool combustivel de pequeno, medio e grande porte

    Energy Technology Data Exchange (ETDEWEB)

    Borrero, Manuel Antonio Valdes; Pereira, Jose Tomaz Vieira [Universidade Estadual de Campinas, SP (Brazil); Miranda, Evaristo Eduardo de [Empresa Brasileira de Pesquisa Agropecuaria, Campinas, SP (Brazil). Nucleo de Monitoramento Ambiental e de Recursos Naturais por Satelite

    1999-07-01

    The article discusses the following issues of alcohol fuel plants producers: sizing; performance; natural resources; environmental aspects; and electric power generation. The environmental performance concept is introduced and a performance evaluation methodology are presented and applied. The results are also presented and criticized.

  18. Fuels processing for transportation fuel cell systems

    Science.gov (United States)

    Kumar, R.; Ahmed, S.

    Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

  19. Burning weapons-grade plutonium in reactors

    International Nuclear Information System (INIS)

    Newman, D.F.

    1993-06-01

    As a result of massive reductions in deployed nuclear warheads, and their subsequent dismantlement, large quantities of surplus weapons- grade plutonium will be stored until its ultimate disposition is achieved in both the US and Russia. Ultimate disposition has the following minimum requirements: (1) preclude return of plutonium to the US and Russian stockpiles, (2) prevent environmental damage by precluding release of plutonium contamination, and (3) prevent proliferation by precluding plutonium diversion to sub-national groups or nonweapons states. The most efficient and effective way to dispose of surplus weapons-grade plutonium is to fabricate it into fuel and use it for generation of electrical energy in commercial nuclear power plants. Weapons-grade plutonium can be used as fuel in existing commercial nuclear power plants, such as those in the US and Russia. This recovers energy and economic value from weapons-grade plutonium, which otherwise represents a large cost liability to maintain in safeguarded and secure storage. The plutonium remaining in spent MOX fuel is reactor-grade, essentially the same as that being discharged in spent UO 2 fuels. MOX fuels are well developed and are currently used in a number of LWRs in Europe. Plutonium-bearing fuels without uranium (non-fertile fuels) would require some development. However, such non-fertile fuels are attractive from a nonproliferation perspective because they avoid the insitu production of additional plutonium and enhance the annihilation of the plutonium inventory on a once-through fuel cycle

  20. Low contaminant formic acid fuel for direct liquid fuel cell

    Science.gov (United States)

    Masel, Richard I [Champaign, IL; Zhu, Yimin [Urbana, IL; Kahn, Zakia [Palatine, IL; Man, Malcolm [Vancouver, CA

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  1. The influence of surface microstructure and chemical composition on corrosion behaviour in fuel-grade bio-ethanol of low-alloy steel modified by plasma nitro-carburizing and post-oxidizing

    Science.gov (United States)

    Boniatti, Rosiana; Bandeira, Aline L.; Crespi, Ângela E.; Aguzzoli, Cesar; Baumvol, Israel J. R.; Figueroa, Carlos A.

    2013-09-01

    The interaction of bio-ethanol on steel surfaces modified by plasma-assisted diffusion technologies is studied for the first time. The influence of surface microstructure and chemical composition on corrosion behaviour of AISI 4140 low-alloy steel in fuel-grade bio-ethanol was investigated. The steel surfaces were modified by plasma nitro-carburizing followed plasma oxidizing. X-ray diffraction, scanning electron microscopy, optical microscopy, X-ray dispersive spectroscopy, and glow-discharge optical emission spectroscopy were used to characterize the modified surface before and after immersion tests in bio-ethanol up to 77 days. The main corrosion mechanism is pit formation. The pit density and pit size were measured in order to quantify the corrosion resistance which was found to depend more strongly on microstructure and morphology of the oxide layer than on its thickness. The best corrosion protection was observed for samples post-oxidized at 480 °C and 90 min.

  2. The influence of surface microstructure and chemical composition on corrosion behaviour in fuel-grade bio-ethanol of low-alloy steel modified by plasma nitro-carburizing and post-oxidizing

    International Nuclear Information System (INIS)

    Boniatti, Rosiana; Bandeira, Aline L.; Crespi, Ângela E.; Aguzzoli, Cesar; Baumvol, Israel J.R.; Figueroa, Carlos A.

    2013-01-01

    The interaction of bio-ethanol on steel surfaces modified by plasma-assisted diffusion technologies is studied for the first time. The influence of surface microstructure and chemical composition on corrosion behaviour of AISI 4140 low-alloy steel in fuel-grade bio-ethanol was investigated. The steel surfaces were modified by plasma nitro-carburizing followed plasma oxidizing. X-ray diffraction, scanning electron microscopy, optical microscopy, X-ray dispersive spectroscopy, and glow-discharge optical emission spectroscopy were used to characterize the modified surface before and after immersion tests in bio-ethanol up to 77 days. The main corrosion mechanism is pit formation. The pit density and pit size were measured in order to quantify the corrosion resistance which was found to depend more strongly on microstructure and morphology of the oxide layer than on its thickness. The best corrosion protection was observed for samples post-oxidized at 480 °C and 90 min.

  3. Biodiesel: o ônus e o bônus de produzir combustível Biodiesel: the charge and the bond of the fuel producing

    Directory of Open Access Journals (Sweden)

    Paulo Regis Ferreira da Silva

    2008-06-01

    do óleo diesel, mas as vantagens ambientais e agrícolas dependem de estudos pendentes em vários elos da cadeia produtiva.The petroleum dependence and the pollution generated by its use are the big disadvantages of this fuel, which demand look for another source of energy. Biodiesel is the fuel obtained from vegetables oils or animal fat, which can substitute petroleum diesel, total or partially. Three processes are possible to obtain biodiesel: cracking, tranesterfication or esterification, having glycerin as a derivate. The Brazilian National Program for Production and Use of Biodiesel stimulates the transesterification process, which is the chemical reaction of the triglycerides with alcohols (methanol or ethanol using a catalyst (NaOH. The goal of this revision was to discuss the advantages and disadvantages that biodiesel production can bring for agriculture and environmental and the competition that could occur for natural resources between food and fuel production. The biodiesel obtained from renewable sources has as advantages the lower pollutant it gases emission and lower persistence in the soil. However, it has a higher cost production than petroleum diesel and the energy balance is less favourable, although it can vary with the system production used. The higher demand for oleaginous grains will increase the number of species used in crop production. In the south of Brazil, the species more stimulated are soybean, sunflower, canola and castor plant. Castor, that is an alternative for drought regions, is being genetically modified for fuel production, but it has the big disadvantage of ricin production, which is very poisonous for human and environment. Sunflower produces a very healthy oil for human use, with high levels of fat poliinsaturated acids. Biodiesel is a good alternative to substitute partial or totally petroleum diesel, but the environmental and agricultural advantages depend on studies in every link of its production chain.

  4. Synthesis and characterization of electrolyte-grade 10%Gd-doped ceria thin film/ceramic substrate structures for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Chourashiya, M. G.; Bharadwaj, S. R.; Jadhav, L. D.

    2010-01-01

    In the present research, spray pyrolysis technique is employed to synthesize 10%Gd-doped ceria (GDC) thin films on ceramic substrates with an intention to use the "film/substrate" structure in solid oxide fuel cells. GDC films deposited on GDC substrate showed enhanced crystallite formation....... In case of NiO-GDC composite substrate, the thickness of film was higher (∼ 13 μm) as compared to the film thickness on GDC substrate (∼ 2 μm). The relative density of the films deposited on both the substrates was of the order of 95%. The impedance measurements revealed that ionic conductivity of GDC...

  5. Study and full-scale test of a high-velocity grade-crossing simulated accident of a locomotive and a nuclear-spent-fuel shipping cask

    International Nuclear Information System (INIS)

    Huerta, M.; Yoshimura, H.R.

    1983-02-01

    This report described structural analyses of a high-speed impact between a locomotive and a tractor-trailer system carrying a nuclear-spent-fuel shipping cask. The analyses included both mathematical and physical scale-modeling of the system. The report then describes the full-scale test conducted as part of the program. The system response is described in detail, and a comparison is made between the analyses and the actual hardware response as observed in the full-scale test. 34 figures

  6. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Anton Francesch, Judit

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  7. 77 FR 72746 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-12-06

    ... Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel Sulfur Programs AGENCY... Fuel Standard (``RFS'') program under section 211(o) of the Clean Air Act. The direct final rule also... marine diesel fuel produced by transmix processors, and the fuel marker requirements for 500 ppm sulfur...

  8. Nuclear Fuel elements

    International Nuclear Information System (INIS)

    Hirakawa, Hiromasa.

    1979-01-01

    Purpose: To reduce the stress gradient resulted in the fuel can in fuel rods adapted to control the axial power distribution by the combination of fuel pellets having different linear power densities. Constitution: In a fuel rod comprising a first fuel pellet of a relatively low linear power density and a second fuel pellet of a relatively high linear power density, the second fuel pellet is cut at its both end faces by an amount corresponding to the heat expansion of the pellet due to the difference in the linear power density to the adjacent first fuel pellet. Thus, the second fuel pellet takes a smaller space than the first fuel pellet in the fuel can. This can reduce the stress produced in the portion of the fuel can corresponding to the boundary between the adjacent fuel pellets. (Kawakami, Y.)

  9. Multi-unit inertial fusion plants based on HYLIFE-II, with shared heavy-ion RIA driver and target factory, producing electricity and hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Logan, G.; Moir, R. [Lawrence Livermore National Lab., CA (United States); Hoffman, M. [Univ. of California, Davis, CA (United States)

    1994-05-05

    Following is a modification of the IFEFUEL systems code, called IFEFUEL2, to treat specifically the HYLIFE-II target chamber concept. The same improved Recirculating Induction Accelerator (RIA) energy scaling model developed recently by Bieri is used in this survey of the economics of multi-unit IFE plants producing both electricity and hydrogen fuel. Reference cases will assume conventional HI-indirect target gains for a 2 mm spot, and improved HYLIFE-II BoP models as per Hoffman. Credits for improved plant availability and lower operating costs due to HYLIFE-II`s 30-yr target chamber lifetime are included, as well as unit cost reductions suggested by Delene to credit greater {open_quotes}learning curve{close_quotes} benefits for the duplicated portions of a multi-unit plant. To illustrate the potential impact of more advanced assumptions, additional {open_quotes}advanced{close_quotes} cases will consider the possible benefits of an MHD + Steam BoP, where direct MHD conversion of plasma from baseball-size LiH target blanket shells is assumed to be possible in a new (as yet undesigned) liquid Flibe-walled target chamber, together and separately, with advanced, higher-gain heavy-ion targets with Fast Ignitors. These runs may help decide the course of a possible future {open_quotes}HYLIFE-III{close_quotes} IFE study. Beam switchyard and final focusing system costs per target chamber are assumed to be consistent with single-sided illumination, for either {open_quotes}conventional{close_quotes} or {open_quotes}advanced{close_quotes} indirect target gain assumptions. Target costs are scaled according to the model by Woodworth. In all cases, the driver energy and rep rate for each chosen number of target chambers and total plant output will be optimized to minimize the cost of electricity (CoE) and the associated cost of hydrogen (CoH), using a relationship between CoE and CoH to be presented in the next section.

  10. Treat upgrade fuel fabrication

    International Nuclear Information System (INIS)

    Davidson, K.V.; Schell, D.H.

    1979-01-01

    An extrusion and thermal treatment process was developed to produce graphite fuel rods containing a dispersion of enriched UO 2 . These rods will be used in an upgraded version of the Transient Reactor Test Facility (TREAT). The improved fuel provides a higher graphite matrix density, better fuel dispersion and higher thermal capabilities than the existing fuel

  11. Assessment for development of an industrial wet oxidation system for burning waste and low-grade fuels. Final report, October 18, 1989--February 28, 1995

    International Nuclear Information System (INIS)

    Sundback, C.

    1995-05-01

    The ultimate goal of this program was to demonstrate safe, reliable, and effective operation of the supercritical water oxidation process (SCWO) at a pilot plant-level throughput. This program was a three phase program. Phase 1 of the program preceded MODEC's participation in the program. MODEC did participate in Phases 2 and 3 of the program. In Phase 2, the target waste and industry were pulp mill sludges from the pulp and paper industry. In Phase 3, the target was modified to be DOE-generated mixed low level waste; wastes containing RCRA hazardous constituents and radionuclide surrogates were used as model wastes. The paper describes the research unit planning and design; bench-scale development of SCWO; research and development of wet oxidation of fuels; and the design of a super-critical water pilot plant

  12. Weapons-grade plutonium dispositioning. Volume 1: Executive summary

    International Nuclear Information System (INIS)

    Parks, D.L.; Sauerbrun, T.J.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate dispositioning options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) assisted NAS in this evaluation by investigating the technical aspects of the dispositioning options and their capability for achieving plutonium annihilation levels greater than 90%. Additionally, the INEL investigated the feasibility of using plutonium fuels (without uranium) for disposal in existing light water reactors and provided a preconceptual analysis for a reactor specifically designed for destruction of weapons-grade plutonium. This four-volume report was prepared for NAS to document the findings of these studies. Volume 2 evaluates 12 plutonium dispositioning options. Volume 3 considers a concept for a low-temperature, low-pressure, low-power-density, low-coolant-flow-rate light water reactor that quickly destroys plutonium without using uranium or thorium. This reactor concept does not produce electricity and has no other mission than the destruction of plutonium. Volume 4 addresses neutronic performance, fabrication technology, and fuel performance and compatibility issues for zirconium-plutonium oxide fuels and aluminum-plutonium metallic fuels. This volumes gives summaries of Volumes 2--4

  13. Fuel elements (uranium clad with zirconium) produced by co-extrusion; Les elements combustibles uranium gaine de zirconium obtenus par coextrusion

    Energy Technology Data Exchange (ETDEWEB)

    Montagne, R.; Winogradzki, A.; Sauve, C.; Buffet, J. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Departement de Metallurgie et de Chimie Appliquee (France)

    1959-07-01

    In this paper a description is given of a process for making fuel elements for atomic reactors. Contact of the most intimate possible kind is achieved between the fuel and the sheath by the simultaneous extrusion of the two elements. Genuine welding between the two metals is thus effected. This can be subsequently improved by a heat-treatment which causes diffusion. Tests made on these co-extruded elements are described in the paper. Reprint of a paper published in Revue de Metallurgie, LV, no. 11, 1958.

  14. Heber Ethanol Fuel Facility, Imperial Valley, California. Quarterly report No. 2, March 1981-May 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The purposed project is a commercial-scale ethanol-fuel facility with a capacity of twenty million gallons per year of fuel-grade ethanol. In addition, 70,000 tons per year of distillers dried grains will be produced. The following tasks and issues are addressed: process engineering - process descriptions, plant layout, and design; economics and finance - overview of capital and operating costs; environmental analysis - preliminary project description; and permit processing and legal issues. (MHR)

  15. Disposal of Surplus Weapons Grade Plutonium

    International Nuclear Information System (INIS)

    Alsaed, H.; Gottlieb, P.

    2000-01-01

    The Office of Fissile Materials Disposition is responsible for disposing of inventories of surplus US weapons-usable plutonium and highly enriched uranium as well as providing, technical support for, and ultimate implementation of, efforts to obtain reciprocal disposition of surplus Russian plutonium. On January 4, 2000, the Department of Energy issued a Record of Decision to dispose of up to 50 metric tons of surplus weapons-grade plutonium using two methods. Up to 17 metric tons of surplus plutonium will be immobilized in a ceramic form, placed in cans and embedded in large canisters containing high-level vitrified waste for ultimate disposal in a geologic repository. Approximately 33 metric tons of surplus plutonium will be used to fabricate MOX fuel (mixed oxide fuel, having less than 5% plutonium-239 as the primary fissile material in a uranium-235 carrier matrix). The MOX fuel will be used to produce electricity in existing domestic commercial nuclear reactors. This paper reports the major waste-package-related, long-term disposal impacts of the two waste forms that would be used to accomplish this mission. Particular emphasis is placed on the possibility of criticality. These results are taken from a summary report published earlier this year

  16. Complex plasmochemical processing of solid fuel

    Directory of Open Access Journals (Sweden)

    Vladimir Messerle

    2012-12-01

    Full Text Available Technology of complex plasmaochemical processing of solid fuel by Ecibastuz bituminous and Turgay brown coals is presented. Thermodynamic and experimental study of the technology was fulfilled. Use of this technology allows producing of synthesis gas from organic mass of coal and valuable components (technical silicon, ferrosilicon, aluminum and silicon carbide and microelements of rare metals: uranium, molybdenum, vanadium etc. from mineral mass of coal. Produced a high-calorific synthesis gas can be used for methanol synthesis, as high-grade reducing gas instead of coke, as well as energy gas in thermal power plants.

  17. Ethane dehydrogenation over nano-Cr{sub 2}O{sub 3} anode catalyst in proton ceramic fuel cell reactors to co-produce ethylene and electricity

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xian-Zhu; Luo, Xiao-Xiong; Luo, Jing-Li; Chuang, Karl T.; Sanger, Alan R. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G2G6 (Canada); Krzywicki, Andrzej [NOVA Chemicals Corp., Calgary, Alberta T2P5C6 (Canada)

    2011-02-01

    Ethane and electrical power are co-generated in proton ceramic fuel cell reactors having Cr{sub 2}O{sub 3} nanoparticles as anode catalyst, BaCe{sub 0.8}Y{sub 0.15}Nd{sub 0.05}O{sub 3-{delta}} (BCYN) perovskite oxide as proton conducting ceramic electrolyte, and Pt as cathode catalyst. Cr{sub 2}O{sub 3} nanoparticles are synthesized by a combustion method. BaCe{sub 0.8}Y{sub 0.15}Nd{sub 0.05}O{sub 3-{delta}} (BCYN) perovskite oxides are obtained using a solid state reaction. The power density increases from 51 mW cm{sup -2} to 118 mW cm{sup -2} and the ethylene yield increases from about 8% to 31% when the operating temperature of the solid oxide fuel cell reactor increases from 650 C to 750 C. The fuel cell reactor and process are stable at 700 C for at least 48 h. Cr{sub 2}O{sub 3} anode catalyst exhibits much better coke resistance than Pt and Ni catalysts in ethane fuel atmosphere at 700 C. (author)

  18. Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature.

    Science.gov (United States)

    Kobayashi, Makoto; Akiho, Hiroyuki

    2017-12-01

    Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. EVALUATION OF POLLUTANT EMISSIONS FROM TWO-STROKE MARINE DIESEL ENGINE FUELED WITH BIODIESEL PRODUCED FROM VARIOUS WASTE OILS AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    Danilo Nikolić

    2016-12-01

    Full Text Available Shipping represents a significant source of diesel emissions, which affects global climate, air quality and human health. As a solution to this problem, biodiesel could be used as marine fuel, which could help in reducing the negative impact of shipping on environment and achieve lower carbon intensity in the sector. In Southern Europe, some oily wastes, such as wastes from olive oil production and used frying oils could be utilized for production of the second-generation biodiesel. The present research investigates the influence of the second-generation biodiesel on the characteristics of gaseous emissions of NOx, SO2, and CO from marine diesel engines. The marine diesel engine that was used, installed aboard a ship, was a reversible low-speed two-stroke engine, without any after-treatment devices installed or engine control technology for reducing pollutant emission. Tests were carried out on three regimes of engine speeds, 150 rpm, 180 rpm and 210 rpm under heavy propeller condition, while the ship was berthed in the harbor. The engine was fueled by diesel fuel and blends containing 7% and 20% v/v of three types of second-generation biodiesel made of olive husk oil, waste frying sunflower oil, and waste frying palm oil. A base-catalyzed transesterification was implemented for biodiesel production. According to the results, there are trends of NOx, SO2, and CO emission reduction when using blended fuels. Biodiesel made of olive husk oil showed better gaseous emission performances than biodiesel made from waste frying oils.

  20. Failure analysis of thermally cycled columnar thermal barrier coatings produced by high-velocity-air fuel and axial-suspension-plasma spraying: A design perspective

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Vaidhyanathan, V.; Markocsan, N.; Gupta, M.; Pala, Zdeněk; Lukáč, František

    2018-01-01

    Roč. 44, č. 3 (2018), s. 3161-3172 ISSN 0272-8842 Institutional support: RVO:61389021 Keywords : Columnar Thermal Barrier Coatings * Axial Suspension Plasma spraying * Thermal Cyclic Fatigue * High Velocity Air Fuel Spraying Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.986, year: 2016 https://www.sciencedirect.com/science/article/pii/S0272884217325403

  1. Phenomenological theory of current-producing processes at the solid oxide electrolyte/gas electrode interface: steady-state polarization of fuel-cell electrodes

    International Nuclear Information System (INIS)

    Murygin, I.V.; Chebotin, V.N.

    1979-01-01

    The polarization of fuel-cell electrodes (mixtures CO + CO 2 and H 2 + H 2 O) in systems with solid oxide electrolytes is discussed. The theory is based upon a process model where the electrode reaction zone can spread along the line of three-phase contact by diffusion of reaction partners and products across the electrolyte/electrode and electrolyte/gas interface

  2. Relating N2O emissions from energy crops to the avoided fossil fuel-derived CO2 – a study on bioethanol and biogas produced from organically managed maize, rye, vetch and grass-clover

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Hauggard-Nielsen, Henrik; Thomsen, Sune Tjalfe

    2010-01-01

    ‐derived CO2, where the N2O emission has been subtracted. This value does not account for farm machinery CO2 emissions and fuel consumption during biofuel production. We obtained the greatest net reduction in greenhouse gas emissions by co‐production of bioethanol and biogas or by biogas alone produced from...... fuel‐derived CO2, which is obtained when energy crops are used for biofuel production. The analysis includes five organically managed crops (viz. maize, rye, rye‐vetch, vetch and grass‐clover) and three scenarios for conversion of biomass to biofuel. The scenarios are 1) bioethanol production, 2......) biogas production and 3) co‐production of bioethanol and biogas, where the energy crops are first used for bioethanol fermentation and subsequently the residues from this process are utilized for biogas production. The net reduction in greenhouse gas missions is calculated as the avoided fossil fuel...

  3. Thermal conductivity model of vibro-packed fuel

    International Nuclear Information System (INIS)

    Yeon Soo, Kim

    2001-01-01

    In an effort to dispose of excess weapons grade plutonium accumulated in the cold war era in the United States and the Russian Federation, one method currently under investigation is the conversion of the plutonium into mixed oxide (MOX) reactor fuel for LWRs and fast reactors in the Russian Federation. A fuel option already partly developed at the Research Institute of Atomic Reactors (RIAR) in Dimitrovgrad is that of vibro-packed MOX. Fuel rod fabrication using powder vibro-packing is attractive because it includes neither a process too complex to operate in glove boxes (or remotely), nor a waste-producing step necessary for the conventional pellet rod fabrication. However, because of its loose bonding between fuel particles at the beginning of life, vibro-packed MOX fuel has a somewhat less effective thermal conductivity than fully sintered pellet fuel, and undergoes more restructuring. Helium would also likely be pressurized in vibro-packed MOX fuel rods for LWRs to enhance initial fuel thermal conductivity. The combination of these two factors complicates development of an accurate thermal conductivity model. But clearly in order to predict fuel thermomechanical responses during irradiation of vibro-packed MOX fuel, fuel thermal conductivity must be known. The Vibropac fuel of interest in this study refers the fuel that is compacted with irregular fragments of mixed oxide fuel. In this paper, the thermal-conductivity models in the literature that dealt with relatively similar situations to the present case are examined. Then, the best model is selected based on accuracy of prediction and applicability. Then, the selected model is expanded to fit the various situations of interest. (author)

  4. 78 FR 62462 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Science.gov (United States)

    2013-10-22

    ... renewable fuel is defined as fuel produced from renewable biomass that is used to replace or reduce the quantity of fossil fuel present in home heating oil or jet fuel.\\3\\ In essence, additional renewable fuel... of ``home heating oil.'' EPA determined that this term was ambiguous, and defined it by incorporating...

  5. Design of a Small Scale Pilot Biodiesel Production Plant and Determination of the Fuel Properties of Biodiesel Produced With This Plant

    Directory of Open Access Journals (Sweden)

    Tanzer Eryılmaz

    2014-09-01

    Full Text Available A small scale pilot biodiesel production plant that has a volume of 65 liters/day has been designed, constructed and tested. The plant was performed using oil mixture (50% wild mustard seed oil + 50% refined canola oil and methanol with sodium hydroxide (NaOH catalyst. The fuel properties of biodiesel indicated as density at 15oC (889.64 kg/m3, kinematic viscosity at 40oC (6.975 mm2/s, flash point (170oC, copper strip corrosion (1a, water content (499.87 mg/kg, and calorific value (39.555 MJ/kg, respectively.

  6. Composite Solid Fuel: Research of Formation Parameters

    Directory of Open Access Journals (Sweden)

    Tabakaev Roman

    2016-01-01

    Full Text Available Involving of local low-grade fuels resources in fuel and energy balance is actual question of research in the present. In this paper the possibility of processing low-grade fuel in the solid fuel composite was considered. The aim of the work is to define the optimal parameters for formation of the solid composite fuel. A result of researches determined that dextrin content in the binder allows to obtain solid composite fuel having the highest strength. The drying temperature for the various fuels was determined: for pellets production was 20-80 °C, for briquettes – 20-40 °C.

  7. Analysis of Flue Gas Emissions Using a Semi-industrial Boiler Fueled by Biodiesel Produced from Two-stage Transesterification of Waste Cooking Oil

    OpenAIRE

    Mansourpoor, M.; Shariati, A.

    2014-01-01

    In this work, waste cooking oil and methanol as feedstock together with sulfuric acid and potassium hydroxide as catalysts were used to produce biodiesel. The physical properties of the waste cooking oil, the produced biodiesel and the purchased petrodiesel were measured using specified ASTM standards. To examine their performance and their flue gases emissions, biodiesel and petrodiesel were burnt in a wet base semi-industrial boiler. The emitted combustion gases, including CO, NOx, SO2 and ...

  8. An essay pertaining to the supply and price of natural gas as fuel for electric utilities and independent power producers; and, the related growth of non-utility generators to meet capacity shortfalls in the next decade

    International Nuclear Information System (INIS)

    Clements, J.R.

    1990-01-01

    This paper addresses the impact natural gas and petroleum prices have on how the electric power industry decides to meet increasing demand for electric power. The topics of the paper include the pricing impact of the Iraq-Kuwait conflict, the BTU parity argument, electric utility capacity shortfalls in 1993, the growth of the non-utility generator and the independent power developer market, natural gas as the desired fuel of the decade, the financial strategy in acquiring natural gas reserves, the cost and availability of natural gas supplies for non-utility generators, and the reluctance of the gas producers to enter long term contracts

  9. Using NJOY99 and MCNP4B2 to Estimate the Radiation Damage Displacements per Atom per Second in Steel Within the Boiling Water Reactor Core Shroud and Vessel Wall from Reactor-Grade Mixed-Oxide/Uranium Oxide Fuel for the Nuclear Power Plant at Laguna Verde, Veracruz, Mexico

    International Nuclear Information System (INIS)

    Vickers, Lisa

    2003-01-01

    The government of Mexico has expressed interest in utilizing the Laguna Verde boiling water reactor (BWR) nuclear power plant for the disposition of reprocessed spent uranium oxide (UOX) fuel in the form of reactor-grade mixed-oxide (MOX) fuel. MOX fuel would replace spent UOX fuel as a fraction in the core from 18 to 30% depending on the fuel loading cycle. MOX fuel is expected to increase the neutron fluence, flux, fuel centerline temperature, reactor core pressure, and yield higher energy neutrons.There is concern that a core with a fraction of MOX fuel (i.e., increased 239 Pu wt%) would increase the radiation damage displacements per atom per second (dpa-s -1 ) in steel within the core shroud and vessel wall as compared to only conventional, enriched UOX fuel in the core. The evaluation of radiation damage within the core shroud and vessel wall is a concern because of the potentially adverse affect to personnel and public safety, environment, and operating life of the reactor.The primary uniqueness of this paper is the computation of radiation damage (dpa-s -1 ) using NJOY99-processed cross sections for steel within the core shroud and vessel wall. Specifically, the unique radiation damage results are several orders of magnitude greater than results of previous works. In addition, the conclusion of this paper was that the addition of the maximum fraction of one-third MOX fuel to the LV1 BWR core did significantly increase the radiation damage in steel within the core shroud and vessel wall such that without mitigation of radiation damage by periodic thermal annealing or reduction in operating parameters such as neutron fluence, core temperature, and pressure, it posed a potentially adverse affect to the personnel and public safety, environment, and operating life of the reactor

  10. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review

    International Nuclear Information System (INIS)

    Mansir, Nasar; Taufiq-Yap, Yun Hin; Rashid, Umer; Lokman, Ibrahim M.

    2017-01-01

    Highlights: • Solid acid catalysts are proficient to esterifying high free fatty acid feedstocks to biodiesel. • Heterogeneous catalysts have the advantage of easy separation and reusability. • Heterogeneous basic catalysts have limitations due to high FFA of low cost feedstocks. • Solid catalysts having acid and base sites reveal better catalyst for biodiesel production. - Abstract: The conventional fossil fuel reserves are continually declining worldwide and therefore posing greater challenges to the future of the energy sources. Biofuel alternatives were found promising to replace the diminishing fossil fuels. However, conversion of edible vegetable oils to biodiesel using homogeneous acids and base catalysts is now considered as indefensible for the future particularly due to food versus fuel competition and other environmental problems related to catalyst system and feedstock. This review has discussed the progression in research and growth related to heterogeneous catalysts used for biodiesel production for low grade feedstocks. The heterogeneous base catalysts have revealed effective way to produce biodiesel, but it has the limitation of being sensitive to high free fatty acid (FFA) or low grade feedstocks. Alternatively, solid acid catalysts are capable of converting the low grade feedstocks to biodiesel in the presence of active acid sites. The paper presents a comprehensive review towards the investigation of solid acid catalyst performance on low grade feedstock, their category, properties, advantages, limitations and possible remedy to their drawbacks for biodiesel production.

  11. An Innovative High Thermal Conductivity Fuel Design

    International Nuclear Information System (INIS)

    Khan, Jamil A.

    2009-01-01

    Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 (97% TD). This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

  12. An Innovative High Thermal Conductivity Fuel Design

    Energy Technology Data Exchange (ETDEWEB)

    Jamil A. Khan

    2009-11-21

    Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

  13. Sweet Sorghum Alternative Fuel and Feed Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Slack, Donald C. [Univ. of Arizona, Tucson, AZ (United States). Agricultural and Biosystems Engineering Dept.; Kaltenbach, C. Colin [Univ. of Arizona, Tucson, AZ (United States)

    2013-07-30

    The University of Arizona undertook a “pilot” project to grow sweet sorghum on a field scale (rather than a plot scale), produce juice from the sweet sorghum, deliver the juice to a bio-refinery and process it to fuel-grade ethanol. We also evaluated the bagasse for suitability as a livestock feed and as a fuel. In addition to these objectives we evaluated methods of juice preservation, ligno-cellulosic conversion of the bagasse to fermentable sugars and alternative methods of juice extraction.

  14. Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology

    Directory of Open Access Journals (Sweden)

    Timothy D. Myles

    2015-10-01

    Full Text Available In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC. The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs manufactured by Reactive Spray Deposition Technology (RSDT. MEAs with varying ratios of PTFE binder to carbon support material (I/C ratio were manufactured and their performance at various operating temperatures was recorded. The semi-empirical model derivation was based on the coated film catalyst layer approach and was calibrated to the experimental data by a least squares method. The behavior of important physical parameters as a function of I/C ratio and operating temperature were explored.

  15. High density Polyethylene plastic waste treatment with microwave heating pyrolysis method using coconut-shell activated carbon to produce alternative fuels

    Science.gov (United States)

    Juliastuti, S. R.; Hisbullah, M. I.; Abdillah, M.

    2018-03-01

    Pyrolysis is a technology that could crack polimer such as plastic waste into alternative fuels. This research uses microwave heating methode, which more efficient than conventional heating methode. The plastic waste used is 200 grams of HDPE, with feed to catalyst weight ratio are 1:1, 0.6:1, 0.4:1. Pyrolysis was run at temperatures of 250, 300, 350, & 400 °C for 15, 30 and 45 min. From the experimental result, the best variable of pyrolysis process with microwave method is at 45 minutes, at 400°C, and 1:1 feed to catalyst weight ratio. Result shows that yield of liquid and gas product is 99.22%; yield of residue is 0.78%; value of liquid product’s composition (cycloparaffin and n-paraffin) is 54.09% and concentration of methane gas is 10.2%.

  16. Operation strategy for solid oxide fuel cell systems for small-scale stationary applications

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    Solid oxide fuel cell micro cogeneration systems have the potential to reduce domestic energy consumption by providing both heat and power on site without transmission losses. The high grade heat produced during the operation of the power causes high thermal transients during startup/shutdown pha......Solid oxide fuel cell micro cogeneration systems have the potential to reduce domestic energy consumption by providing both heat and power on site without transmission losses. The high grade heat produced during the operation of the power causes high thermal transients during startup....../shutdown phases and degrades the fuel cells. To counteract the degradation, the system has not to be stressed with rapid load variation during the operation. The analysis will consider an average profile for heat and power demand of a family house. Finally data analysis and power system limitations will be used...

  17. Evaluation of Ultra Clean Fuels from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also

  18. Integrated fuel processor development

    International Nuclear Information System (INIS)

    Ahmed, S.; Pereira, C.; Lee, S. H. D.; Krumpelt, M.

    2001-01-01

    The Department of Energy's Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be designed to be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc. Rated for a capacity of 10 kWe (one-fifth of that needed for a car), the prototype fuel processor integrates the unit operations (vaporization, heat exchange, etc.) and processes (reforming, water-gas shift, preferential oxidation reactions, etc.) necessary to produce the hydrogen-rich gas (reformate) that will fuel the polymer electrolyte fuel cell stacks. The fuel processor work is being complemented by analytical and fundamental research. With the ultimate objective of meeting on-board fuel processor goals, these studies include: modeling fuel cell systems to identify design and operating features; evaluating alternative fuel processing options; and developing appropriate catalysts and materials. Issues and outstanding challenges that need to be overcome in order to develop practical, on-board devices are discussed

  19. Notice about the transparency of the management of nuclear materials and wastes produced at the different steps of the fuel cycle

    International Nuclear Information System (INIS)

    2010-01-01

    On behalf of the French minister of ecology, energy, sustainable development and sea, and of the President of the Parliamentary office for the evaluation of scientific and technological choices, the high committee for nuclear safety transparency and information (HCTISN) has examined the question of the international trade in relation with uranium processing, and with the management of nuclear materials and wastes at the different steps of the fuel cycle. The HCTISN has audited the French nuclear operators and administrations in concern and has visited some enrichment facilities in France and in UK. The aim of this notice is to answer some questions debated today: should reprocessed uranium and depleted uranium be considered as radioactive wastes? Do we send radioactive wastes to Russia? Is the resort to Russia for uranium enrichment a secret? Is the information spread by nuclear actors in agreement with citizens' expectations? To answer these questions, the document makes first a detailed presentation of the French fuel cycle, of the main radioelements and different uranium compounds involved. Then, the conditions of storage and transport of reprocessed and depleted uranium are presented as well. A third part presents the stakes linked with uranium supplies and the French policy implemented to secure these supplies in an international context. The forth part presents the definitions and decision principles implemented by the French legislation concerning the radioactive wastes and valorisable materials. The regulatory context of the main countries where uranium trades take place is presented as well. This part refers to the national plan of management of radioactive materials and wastes (PNGMDR) established in agreement with the program law from June 28, 2006 and relative to the sustainable management of radioactive materials and wastes. The last part is devoted to the quality of the information delivered to citizens. It presents a status and the difficulties

  20. Valorization of the energy potential of fossil and fissile fuels for heat production: dual-purpose power plants and heat-producing nuclear reactors

    International Nuclear Information System (INIS)

    Lavite, Michel.

    1975-07-01

    The heat market is analyzed briefly within the French context: present structures and characteristics of the market, current means of heat production, predictable trend of the demand. The possible applications of nuclear energy to heat production, through the agency of combined electricity-steam stations or heat-producing stations, are then examined. Nuclear solutions are compared with others from the technico-economic and ecological wiewpoints and an estimate fo their respective impacts on the energy balance is attempted [fr

  1. Study of the behavior of high activity waste produced during the regeneration of fast reactor fuel elements by the gaseous fluoride method

    International Nuclear Information System (INIS)

    Kiriolovich, A.P.; Dem'yanovich, M.A.; Lavrinovich, Yu.G.; Skiba, O.V.; Gazizov, R.K.; Vorobey, M.P.

    The composition and certain physicochemical and radiation properties of waste obtained from reprocessing BOR-60 fuel by the gaseous fluoride method were studied on an experimental stand. It was found that from 80 to 85 percent of the total activity is concentrated in the fluorination cakes. From thermographic analysis, measurement of radiation-induced gas evolution and composition of the gaseous phase, it is concluded that the waste must be canned. Compatibility of carbon steel, austenitic steel, and nickel with low-activity fluoride cakes was studied. It is shown that the corrosion of these materials increases with temperature and moisture content of the medium. In the first stage of waste disposal, hermetic storage in special containers of stainless steel or nickel is recommended. From their corrosion resistance in low-activity fluoride cakes, the wall temperatures of containers made of St. 3 should not exceed 100 0 C, Kh18N10T 230 0 C, and nickel 300 0 C. Later, after cooling and a decrease in the γ activity of the waste (10 to 15 years), they can be reprocessed to recover valuable components (Am, Cm, etc.) and then buried. 5 tables

  2. Atmospheric deposition, resuspension and root uptake of plutonium in corn and other grain-producing agroecosystems near a nuclear fuel facility

    International Nuclear Information System (INIS)

    Pinder, J.E. III; McLeod, K.W.; Adriano, D.C.; Corey, J.C.; Boni, A.L.

    1989-01-01

    Plutonium released to the environment may contribute to dose to humans through inhalation or ingestion of contaminated foodstuffs. Plutonium contamination of agricultural plants may result from interception and retention of atmospheric deposition, resuspension of Pu-bearing soil particles to plant surfaces, and root uptake and translocation to grain. Plutonium on vegetation surfaces may be transferred to grain surfaces during mechanical harvesting. Data obtained from corn grown near the US Department of Energy's H-Area nuclear fuel chemical separations facility on the Savannah River Site was used to estimated parameters of a simple model of Pu transport in agroecosystems. The parameter estimates for corn were compared to those previously obtained for wheat and soybeans. Despite some differences in parameter estimates among crops, the relative importances of atmospheric deposition, resuspension and root uptake were similar among crops. For even small deposition rates, the relative importances of processes for Pu contamination of corn grain should be: transfer of atmospheric deposition from vegetation surfaces to grain surfaces during combining > resuspension of soil to grain surfaces > root uptake. Approximately 3.9 x 10 -5 of a year's atmospheric deposition is transferred to grain. Approximately 6.2 x 10 -9 of the Pu inventory in the soil is resuspended to corn grain, and a further 7.3 x 10 -10 of the soil inventory is absorbed by roots and translocated to grains

  3. Photocatalytic degradation of H2S aqueous media using sulfide nanostructured solid-solution solar-energy-materials to produce hydrogen fuel.

    Science.gov (United States)

    Lashgari, Mohsen; Ghanimati, Majid

    2018-03-05

    H 2 S is a corrosive, flammable and noxious gas, which can be neutralized by dissolving in alkaline media and employed as H 2 -source by utilizing inside semiconductor-assisted/photochemical reactors. Herein, through a facile hydrothermal route, a ternary nanostructured solid-solution of iron, zinc and sulfur was synthesized in the absence and presence of Ag-dopant, and applied as efficient photocatalyst of hydrogen fuel production from H 2 S media. The effect of pH on the photocatalyst performance was scrutinized and the maximum activity was attained at pH=11, where HS - concentration is high. BET, diffuse reflectance and photoluminescence studies indicated that the ternary solid-solution photocatalyst, in comparison to its solid-solvent (ZnS), has a greater surface area, stronger photon absorption and less charge recombination, which justify its superiority. Moreover, the effect of silver-dopant on the photocatalyst performance was examined. The investigations revealed that although silver could boost the absorption of photons and increase the surface area, it could not appreciably enhance the photocatalyst performance due to its weak influence on retarding the charge-recombination process. Finally, the phenomenon was discussed in detail from mechanistic viewpoint. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Energy Fuels Nuclear, Inc. Arizona Strip Operations

    International Nuclear Information System (INIS)

    Pool, T.C.

    1993-01-01

    Founded in 1975 by uranium pioneer, Robert W. Adams, Energy Fuels Nuclear, Inc. (EFNI) emerged as the largest US uranium mining company by the mid-1980s. Confronting the challenges of declining uranium market prices and the development of high-grade ore bodies in Australia and Canada, EFNI aggressively pursued exploration and development of breccia-pipe ore bodies in Northwestern Arizona. As a result, EFNI's production for the Arizona Strip of 18.9 million pounds U 3 O 8 over the period 1980 through 1991, maintained the company's status as a leading US uranium producer

  5. Ammonia as a suitable fuel for fuel cells

    Directory of Open Access Journals (Sweden)

    Rong eLan

    2014-08-01

    Full Text Available Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  6. Ammonia as a Suitable Fuel for Fuel Cells

    International Nuclear Information System (INIS)

    Lan, Rong; Tao, Shanwen

    2014-01-01

    Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  7. Boosting nuclear fuels

    International Nuclear Information System (INIS)

    Demarthon, F.; Donnars, O.; Dupuy-Maury, F.

    2002-01-01

    This dossier gives a broad overview of the present day status of the nuclear fuel cycle in France: 1 - the revival of nuclear power as a solution to the global warming and to the increase of worldwide energy needs; 2 - the security of uranium supplies thanks to the reuse of weapon grade highly enriched uranium; 3 - the fabrication of nuclear fuels from the mining extraction to the enrichment processes, the fabrication of fuel pellets and the assembly of fuel rods; 4 - the new composition of present day fuels (UO x and chromium-doped pellets); 5 - the consumption of plutonium stocks and the Corail and Apa fuel assemblies for the reduction of plutonium stocks and the preservation of uranium resources. (J.S.)

  8. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  9. 2009 Fuel Cell Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Bill [Breakthrough Technologies Inst., Washington, DC (United States); Gangi, Jennifer [Breakthrough Technologies Inst., Washington, DC (United States); Curtin, Sandra [Breakthrough Technologies Inst., Washington, DC (United States); Delmont, Elizabeth [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  10. Teachers' Grading Decision Making

    Science.gov (United States)

    Isnawati, Ida; Saukah, Ali

    2017-01-01

    This study investigated teachers' grading decision making, focusing on their beliefs underlying their grading decision making, their grading practices and assessment types, and factors they considered in grading decision making. Two teachers from two junior high schools applying different curriculum policies in grade reporting in Indonesian…

  11. Some major deviations for biomass determination by indirect method and estimation based on alkali consumption. [Ratio of cell mass produced and alkali consumed; diesel fuel culture medium

    Energy Technology Data Exchange (ETDEWEB)

    Concone, B R.V.; Doin, P A; Pinto, A G

    1978-01-01

    Some factors like the variation of the liquid volume, the variation of cellular nitrogen content and the mass of cells taken with the samples during batch cultivation of microorganisms on diesel oil, were considered for the computation of the ratio between cell mass produced and the mass of alkali consumed to maintain constant the pH of the fermentation medium. The results obtained showed that if such ratios are computed with cell concentration instead of cell mass the deviations can be of the order of 27% caused by the variation of the liquid medium volume. Otherwise, the results showed also that those ratios are variable during batch cultivation on diesel oil probably because of the variations on the nitrogen content of microorganisms. The relative difference between the mass of cells measured and the mass of cells calculated from the alkali consumption curve can be of the order of 63%.

  12. Classic nuclear fuel trading and new ways of doing business

    International Nuclear Information System (INIS)

    Lohrey, K.; Max, A.

    2001-01-01

    Nuclear fuel trading is a complex, dynamic, and innovative business segment. After the end of the East-West conflict in the early nineties it began to assume global dimensions. Yet, the volume of the nuclear fuel market is relatively small: In 2000, natural uranium worth approx. euro 1.2 billion was produced, and the value of the fuel freshly loaded in nuclear power plants amounted to approx. euro 8.0 billion. For comparison: The crude oil produced worldwide in that same year had a market value of approx. euro 715 billion. As a consequence of the strategic importance of uranium in the military sector, processing and using it as a nuclear fuel as well as trading it are subject to political influences. This also applies to the recycling of weapon-grade nuclear material into the civilian nuclear fuel cycle, which is already being practiced on an industrial scale. The deregulation of the electricity markets and the resultant cost pressure on electricity producers have initiated major changes in the nuclear fuel market. On the supply side, there is more and more concentration on a few large producers and trading companies. On the demand side, especially in the United States of America, more and more nuclear power plant operators merge into bigger enterprises with a considerable demand potential. Electronic trading over the Internet is going to supplement conventional trading in nuclear fuels, but is not going to replace it. The relatively small volume of the nuclear fuel market, the small number both of transactions and of active market participants, as well as individual wishes of customers, make it likely that electronic trading will remain restricted to a few market segments with standardized products. (orig.)

  13. Student Attitudes Toward Grades and Grading Practices.

    Science.gov (United States)

    Stallings, William M.; Leslie, Elwood K.

    The result of a study designed to assess student attitudes toward grading practices are discussed. Questionnaire responses of 3439 students in three institutions were tabulated. Responses were generally negative toward conventional grading systems. (MS)

  14. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 79.33... diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel fuel are hereby individually designated: (1) Motor vehicle diesel fuel, grade 1-D; (2) Motor vehicle diesel...

  15. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  16. 75 FR 14669 - Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program

    Science.gov (United States)

    2010-03-26

    ... RINs from producers of the renewable fuel. The obligated parties do not need lead time for construction... fuels and new limits on renewable biomass feedstocks. This rulemaking marks the first time that... advanced biofuel and multiple cellulosic-based fuels with their 60% threshold. Additional fuel pathways...

  17. 76 FR 18066 - Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program

    Science.gov (United States)

    2011-04-01

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 80 Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program CFR Correction In Title 40 of the Code of Federal Regulations, Parts 72 to...-generating foreign producers and importers of renewable fuels for which RINs have been generated by the...

  18. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement.

    Science.gov (United States)

    Milton, Ross D; Giroud, Fabien; Thumser, Alfred E; Minteer, Shelley D; Slade, Robert C T

    2013-11-28

    Hydrogen peroxide production by glucose oxidase (GOx) and its negative effect on laccase performance have been studied. Simultaneously, FAD-dependent glucose dehydrogenase (FAD-GDH), an O2-insensitive enzyme, has been evaluated as a substitute. Experiments focused on determining the effect of the side reaction of GOx between its natural electron acceptor O2 (consumed) and hydrogen peroxide (produced) in the electrolyte. Firstly, oxygen consumption was investigated by both GOx and FAD-GDH in the presence of substrate. Relatively high electrocatalytic currents were obtained with both enzymes. O2 consumption was observed with immobilized GOx only, whilst O2 concentration remained stable for the FAD-GDH. Dissolved oxygen depletion effects on laccase electrode performances were investigated with both an oxidizing and a reducing electrode immersed in a single compartment. In the presence of glucose, dramatic decreases in cathodic currents were recorded when laccase electrodes were combined with a GOx-based electrode only. Furthermore, it appeared that the major loss of performance of the cathode was due to the increase of H2O2 concentration in the bulk solution induced laccase inhibition. 24 h stability experiments suggest that the use of O2-insensitive FAD-GDH as to obviate in situ peroxide production by GOx is effective. Open-circuit potentials of 0.66 ± 0.03 V and power densities of 122.2 ± 5.8 μW cm(-2) were observed for FAD-GDH/laccase biofuel cells.

  19. Fuel Exhaling Fuel Cell.

    Science.gov (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  20. Future automotive fuels

    International Nuclear Information System (INIS)

    Lepik, M.

    1993-01-01

    There are several important factors which are fundamental to the choice of alternative automobile fuels: the chain of energetic efficiency of fuels; costs; environmental friendliness; suitability for usual engines or adapting easiness; existing reserves of crude oil, natural gas or the fossil energy sources; and, alternatively, agricultural potentiality. This paper covers all these factors. The fuels dealt with in this paper are alcohol, vegetable oil, gaseous fuel, hydrogen and ammonia fuels. Renewable fuels are the most valuable forms of renewable energy. In addition to that rank, they can contribute to three other problem areas: agricultural surpluses, environmental degradation, and conservation of natural resources. Due to the competitive utilization of biomass for food energy production, bio-fuels should mainly be produced in those countries where an energy shortage is combined with a food surplus. The fuels arousing the most interest are alcohol and vegetable oil, the latter for diesel engines, even in northern countries. (au)

  1. Fuel cell opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Harris, K. [Hydrogenics Corporation, Mississauga, ON (Canada)

    2002-07-01

    The opportunities for fuel cell development are discussed. Fuel cells are highly efficient, reliable and require little maintenance. They also produce virtually zero emissions. The author stated that there are some complicated issues to resolve before fuel cells can be widely used. These include hydrogen availability and infrastructure. While the cost of fuel cells is currently very high, these costs are constantly coming down. The industry is still in the early stages of development. The driving forces for the development of fuel cells are: deregulation of energy markets, growing expectations for distributed power generation, discontinuity between energy supply and demand, and environmental concerns. 12 figs.

  2. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  3. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  4. Deep desulfurization of hydrocarbon fuels

    Science.gov (United States)

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  5. Biological fuel cells and their applications

    OpenAIRE

    Shukla, AK; Suresh, P; Berchmans, S; Rajendran, A

    2004-01-01

    One type of genuine fuel cell that does hold promise in the long-term is the biological fuel cell. Unlike conventional fuel cells, which employ hydrogen, ethanol and methanol as fuel, biological fuel cells use organic products produced by metabolic processes or use organic electron donors utilized in the growth processes as fuels for current generation. A distinctive feature of biological fuel cells is that the electrode reactions are controlled by biocatalysts, i.e. the biological redox-reac...

  6. Bombs grade 'spent' nuclear material removed from Uzbekistan

    International Nuclear Information System (INIS)

    2006-01-01

    Full text: Spent nuclear fuel containing enough uranium to produce 2.5 nuclear weapons has been safely returned to Russia from Uzbekistan in a classified mission completed on 19 April 2006. It is the first time that fuel used in a nuclear research reactor - referred to as 'spent' - has been repatriated to Russia since the break-up of the Soviet Union. Under tight security, 63 kilograms of spent highly enriched uranium (HEU) was transported to Mayak in Russia, in four separate shipments. IAEA safeguards inspectors monitored and verified the packing of the fuel for transport over the course of 16 days. The secret operation, six years in the planning, was a joint undertaking of the IAEA, the United States, Uzbekistan, Russia and Kazakhstan as part of the Global Threat Reduction Initiative (GTRI). The aim of the GTRI is to identify, secure and recover high-risk vulnerable nuclear and radiological materials around the world. 'There was particular concern about the Uzbek spent fuel given its significant quantity and that it was no longer 'self protecting', 'the IAEA's Crosscutting Co-ordinator for Research Reactors, Mr. Pablo Adelfang, said. 'This means that the fuel has lost its high radioactivity. In other words, it would no longer injure anyone who handled it and would not deter potential thieves,' Mr. Adelfang said. 'The shipment is an important step to reduce stockpiles of high-risk, vulnerable nuclear materials. Russia, the US, Uzbekistan and Kazakhstan should be applauded for their successful cooperation. It will contribute to the security of both Uzbekistan and the international community,' he added. In Russia, the fuel will be processed so that it can not be used for atomic bombs. Russia originally supplied the nuclear fuel to Uzbekistan for use in its 10 megawatt research reactor. Located at the Institute of Nuclear Physics of Uzbekistan, 30 km from Tashkent, the reactor is currently used for research and to produce isotopes for medical purposes. The IAEA is

  7. Preliminary assessment of a symbiotic fusion--fission power system using the TH/U refresh fuel cycle

    International Nuclear Information System (INIS)

    Bender, D.J.; Lee, J.D.; Moir, R.W.

    1977-10-01

    Studies of the mirror hybrid reactor by LLL/GA have concluded that the most promising role for this reactor concept is that of a producer of fissile fuel for fission reactors. Studies to date have examined primarily the U/Pu fuel cycle with light-water reactors serving as the consumers of the hybrid-bred fissile fuel; the specific scenarios examined required reprocessing and refabrication of the bred fuel before introduction into the fission reactor. This combination of technologies was chosen to illustrate the manner in which the hybrid reactor concept could serve the needs of, and use the technology of, the fission reactor industry as it now exists (and as it was thought it would evolve). However, the current U.S. Administration has expressed strong concerns about proliferation of nuclear weapons capability and terrorist diversion of weapons-grade nuclear materials. These concerns are based on the projected technology for the light-water reactor/fast breeder reactor using the U/Pu fuel cycle and extensive reprocessing/refabrication. A symbiotic nuclear power generation concept (hybrid fissile producer plus fission burner reactors) is described which eliminates those aspects of the present nuclear fuel cycle that (may) represent significant proliferation/diversion risks. Specifically, the proposed concept incorporates the following features: (1)Th/U 233 fuel cycle, (2) no reprocessing or fabrication of fissile material, and (3) no fissile material in a weapons-grade state

  8. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  9. Catalyst Substrates Remove Contaminants, Produce Fuel

    Science.gov (United States)

    2012-01-01

    A spacecraft is the ultimate tight building. We don t want any leaks, and there is very little fresh air coming in, says Jay Perry, an aerospace engineer at Marshall Space Flight Center. As a result, there is a huge potential for a buildup of contaminants from a host of sources. Inside a spacecraft, contaminants can be introduced from the materials that make spacecraft components, electronics boxes, or activities by the crew such as food preparation or cleaning. Humans also generate contaminants by breathing and through the body s natural metabolic processes. As part of the sophisticated Environmental Control and Life Support System on the International Space Station (ISS), a trace contaminant control system removes carbon dioxide and other impurities from the cabin atmosphere. To maintain healthy levels, the system uses adsorbent media to filter chemical contaminant molecules and a high-temperature catalytic oxidizer to change the chemical structure of the contaminants to something more benign, usually carbon dioxide and water. In the 1990s, while researching air quality control technology for extended spaceflight travel, Perry and others at Marshall were looking for a regenerable process for the continuous removal of carbon dioxide and trace chemical contaminants on long-duration manned space flights. At the time, the existing technology used on U.S. spacecraft could only be used once, which meant that a spacecraft had to carry additional spare parts for use in case the first one was depleted, or the spacecraft would have to return to Earth to exchange the components.

  10. Physico-chemical characteristics of eight different biomass fuels and comparison of combustion and emission results in a small scale multi-fuel boiler

    International Nuclear Information System (INIS)

    Forbes, E.G.A.; Easson, D.L.; Lyons, G.A.; McRoberts, W.C.

    2014-01-01

    Highlights: • Physical parameters of the eight biomass fuels examined were all different. • Significant differences were found in Proximate, Ultimate and TGA results. • Energy outputs were not proportionate to dry matter energy content. • Highest flue ash production from fuels with highest fines content. • Flue gas emissions varied significantly, NOx levels correlated with fuel N content. - Abstract: This study describes the results from the investigation of 7 different biomass fuel types produced on a farm, and a commercial grade wood pellet, for their physical, chemical, thermo-gravimetric and combustion properties. Three types of short rotation coppice (SRC) willow, two species of conifers, forest residues (brash), commercially produced wood-pellets and a chop harvested energy grass crop Miscanthus giganteus spp., (elephant grass) were investigated. Significant differences (p < 0.05) were found in most of the raw fuel parameters examined using particle distribution, Thermogravimetric, Ultimate and Proximate analysis. Combustion tests in a 120 kW multi-fuel boiler revealed differences, some significant, in the maximum output, energy conversion efficiency, gaseous emission profiles and ash residues produced from the fuels. It was concluded that some of the combustion results could be directly correlated with the inherent properties of the different fuels. Ash production and gaseous emissions were the aspects of performance that were clearly and significantly different though effects on energy outputs were more varied and less consistent. The standard wood pellet fuel returned the best overall performance and miscanthus produced the largest amount of total ash and clinker after combustion in the boiler

  11. Fuel Fraction Analysis of 500 MWth Gas Cooled Fast Reactor with Nitride (UN-PuN) Fuel without Refueling

    Science.gov (United States)

    Dewi Syarifah, Ratna; Su'ud, Zaki; Basar, Khairul; Irwanto, Dwi

    2017-01-01

    Nuclear Power Plant (NPP) is one of candidates which can support electricity demand in the world. The Generation IV NPP has fourth main objective, i.e. sustainability, economics competitiveness, safety and reliability, and proliferation and physical protection. One of Gen-IV reactor type is Gas Cooled Fast Reactor (GFR). In this study, the analysis of fuel fraction in small GFR with nitride fuel has been done. The calculation was performed by SRAC code, both Pij and CITATION calculation. SRAC2002 system is a code system applicable to analyze the neutronics of variety reactor type. And for the data library used JENDL-3.2. The step of SRAC calculation is fuel pin calculated by Pij calculation until the data homogenized, after it homogenized we calculate core reactor. The variation of fuel fraction is 40% up to 65%. The optimum design of 500MWth GFR without refueling with 10 years burn up time reach when radius F1:F2:F3 = 50cm:30cm:30cm and height F1:F2:F3 = 50cm:40cm:30cm, variation percentage Plutonium in F1:F2:F3 = 7%:10%:13%. The optimum fuel fraction is 41% with addition 2% Plutonium weapon grade mix in the fuel. The excess reactivity value in this case 1.848% and the k-eff value is 1.01883. The high burn up reached when the fuel fraction is low. In this study 41% fuel fraction produce faster fissile fuel, so it has highest burn-up level than the other fuel fraction.

  12. Toward sustainable fuel cells

    DEFF Research Database (Denmark)

    Stephens, Ifan; Rossmeisl, Jan; Chorkendorff, Ib

    2016-01-01

    to a regular gasoline car. However, current fuel cells require 0.25 g of platinum (Pt) per kilowatt of power (2) as catalysts to drive the electrode reactions. If the entire global annual production of Pt were devoted to fuel cell vehicles, fewer than 10 million vehicles could be produced each year, a mere 10...

  13. Bioethanol: fuel or feedstock?

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Falsig, Hanne; Jørgensen, Betina

    2007-01-01

    Increasing amounts of bioethanol are being produced from fermentation of biomass, mainly to counteract the continuing depletion of fossil resources and the consequential escalation of oil prices. Today, bioethanol is mainly utilized as a fuel or fuel additive in motor vehicles, but it could also...

  14. Nuclear fuel element

    International Nuclear Information System (INIS)

    Mogard, J.H.

    1977-01-01

    A nuclear fuel element is disclosed for use in power producing nuclear reactors, comprising a plurality of axially aligned ceramic cylindrical fuel bodies of the sintered type, and a cladding tube of metal or metal alloys, wherein said cladding tube on its cylindrical inner surface is provided with a plurality of slightly protruding spacing elements distributed over said inner surface

  15. Fuel assemblies

    International Nuclear Information System (INIS)

    Mukai, Hideyuki

    1987-01-01

    Purpose: To prevent bending of fuel rods caused by the difference of irradiation growth between coupling fuel rods and standards fuel rods thereby maintain the fuel rod integrity. Constitution: The f value for a fuel can (the ratio of pole of zirconium crystals in the entire crystals along the axial direction of the fuel can) of a coupling fuel rod secured by upper and lower tie plates is made smaller than the f value for the fuel can of a standard fuel rod not secured by the upper and the lower tie plates. This can make the irradiation growth of the fuel can of the coupling fuel rod greater than the irradiation growth of the fuel can of the standard fuel rod and, accordingly, since the elongation of the standard fuel rod can always by made greater, bending of the standard fuel rod can be prevented. (Yoshihara, M.)

  16. On arbitrarily graded rings

    Indian Academy of Sciences (India)

    58

    paper is devoted to the study of arbitrary rings graded through arbitrary sets. .... which recover certain multiplicative relations among the homogeneous components ... instance the case in which the grading set A is an Abelian group, where the ...

  17. Graded manifolds and supermanifolds

    International Nuclear Information System (INIS)

    Batchelor, M.

    1984-01-01

    In this paper, a review is presented on graded manifolds and supermanifolds. Many theorems, propositions, corrollaries, etc. are given with proofs or sketch proofs. Graded manifolds, supereuclidian space, Lie supergroups, etc. are dealt with

  18. Grading options for western hemlock "pulpwood" logs from southeastern Alaska.

    Science.gov (United States)

    David W. Green; Kent A. McDonald; John Dramm; Kenneth Kilborn

    Properties and grade yield are estimated for structural lumber produced from No. 3, No. 4, and low-end No. 2 grade western hemlock logs of the type previously used primarily for the production of pulp chips. Estimates are given for production in the Structural Framing, Machine Stress Rating, and Laminating Stock grading systems. The information shows that significant...

  19. Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition

    International Nuclear Information System (INIS)

    Terry, W.K.; Ryskamp, J.M.; Sterbentz, J.W.

    1995-08-01

    Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program

  20. Fuel cell systems

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Fuel cell systems are an entirely different approach to the production of electricity than traditional technologies. They are similar to the batteries in that both produce direct current through electrochemical process. There are six types of fuel cells each with a different type of electrolyte, but they all share certain important characteristics: high electrical efficiency, low environmental impact and fuel flexibility. Fuel cells serve a variety of applications: stationary power plants, transport vehicles and portable power. That is why world wide efforts are addressed to improvement of this technology. (Original)

  1. GRADE Equity Guidelines 3

    DEFF Research Database (Denmark)

    Welch, Vivian A; Akl, Elie A; Pottie, Kevin

    2017-01-01

    OBJECTIVE: The aim of this paper is to describe a conceptual framework for how to consider health equity in the GRADE (Grading Recommendations Assessment and Development Evidence) guideline development process. STUDY DESIGN AND SETTING: Consensus-based guidance developed by the GRADE working grou...

  2. Future fuels: Canada's coast-to-coast network of refineries is emerging from a $3-billion-plus spending binge to take the lead in producing low sulphur gasoline

    International Nuclear Information System (INIS)

    Lunan, D.

    2004-01-01

    A series of investments to convert Canada's 22 operating refineries to produce low-sulphur gasoline are discussed. The investment involves more than $3-billion that will transform Canada's portfolio of aging refineries into one of the most efficient in the western world, and in the process reduce sulphur content in Canadian gasoline to 30 ppm. In some cases the refitting will be completed years ahead of the required 2005 deadline. Total refining capacity in Canada is about 2.5 million barrels per day of crude oil, which includes 580,000 barrels per day of capacity that is dedicated to upgrading bitumen into synthetic crude oil. The initiative to update the refineries was led by Irving Oil, which launched a one billion dollar refit of its 250,000 barrels per day Saint John refinery in the year 2000. Irving Oil's efforts were driven by the company's marketing program in the United States where regional fuel quality standards are higher than national standards either in Canada or the United States. Shell Canada and Imperial Oil are also on track to meet the 30 ppm sulphur level ahead of schedule. For example, Shell Canada is cooperating with Suncor Energy Products in the construction of a hydrotreater at Suncor's Sarnia refinery which will be used to reduce sulphur content of diesel from both the Shell and Suncor refineries, while Imperial Oil is investing over $520 million to refit its refineries in Alberta, Ontario and Nova Scotia. Petro-Canada too, has embarked on a $450 million capital program late in 2003 to introduce low sulphur gasoline; this was in addition to the $1.2 billion program to integrate its bitumen production, upgrading and refining operations. Ultramar launched its $300 million desulphurization program in late 2002; the project is now nearing completion. Refit of Ultramar's Jean Gaulin refinery on Quebec's South Shore will also include a 30,000 barrels per day continuous regeneration platformer to provide a second hydrogen source for the

  3. Utilisation de produits organiques oxygénés comme carburants et combustibles dans les moteurs. Deuxième partie : Les différentes filières d'obtention des carburols. Analyse technico-économique Using Oxygenated Organic Products As Fuels in Engines. Part Two: Different Systems for Producing Alcohol Fuels. Technico-Economic Analysis

    Directory of Open Access Journals (Sweden)

    Chauvel A.

    2006-11-01

    Full Text Available Parmi les produits à même d'être substitués aux hydrocarbures pour la constitution des carburants, les composés organiques oxygénés occupent une place prépondérante à cause de leurs caractéristiques favorables à la combustion dans les moteurs, qu'ils soient employés purs ou mélangés (seuls ou à plusieurs aux hydrocarbures, constituants des carburants classiques. Dans cet article, ces composés oxygénés sont désignés sous le nom de carburols. Alors que l'objet de la première partie de l'étude a été d'examiner les conséquences techniques de l'emploi de ces produits sur les circuits de distribution et le fonctionnement des véhicules, il s'agit dans la présente partie d'analyser les caractéristiques technico-économiques de leur fabrication. En particulier, on y aborde successivement les points suivants : - disponibilités en matières premières : ressources fossiles et végétales ; - analyse technique des divers modes d'obtention - analyse économique ; - programmes nationaux. Among products that can be substituted for hydrocarbons for producing fuels, oxygenated organic compounds occupy a preponderant position because of their favorable characteristics for combustion in engines whether they are used in a pure form or in mixtures (alone or severally with hydrocarbons which are used to make up conventional fuels. In this article these oxygenated compounds are given the name carburols (alcohol fuels. Whereas the aim of Part 1 was to examine the technical consequences of using such products in distribution circuits and for vehicle operating, Part 2 is an analysis of the technico-economic aspects of manufacturing them. In particular, the following points are taken up successively: (a availabilities of raw materials. fossil and vegetebal resources; (b technical analysis of various production methods; (c economic analysis; (d national programs. Depending on the amounts involved, a distinction is made among alternative

  4. Nuclear fuel management via fuel quality factor averaging

    International Nuclear Information System (INIS)

    Mingle, J.O.

    1978-01-01

    The numerical procedure of prime number averaging is applied to the fuel quality factor distribution of once and twice-burned fuel in order to evolve a fuel management scheme. The resulting fuel shuffling arrangement produces a near optimal flat power profile both under beginning-of-life and end-of-life conditions. The procedure is easily applied requiring only the solution of linear algebraic equations. (author)

  5. Fuel cells 101

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, B.

    2003-06-01

    A capsule history of fuel cells is given, beginning with the first discovery in 1839 by William Grove, a Welsh judge who, when experimenting with electrolysis discovered that by re-combining the two components of electrolysis (water and oxygen) an electric charge was produced. A century later, in 1958, Francis Thomas Bacon, a British scientist demonstrated the first working fuel cell stack, a technology which was licensed and used in the Apollo spacecraft. In Canada, early research on the development of fuel cells was carried out at the University of Toronto, the Defence Research Establishment and the National Research Council. Most of the early work concentrated on alkaline and phosphoric acid fuel cells. In 1983, Ballard Research began the development of the electrolyte membrane fuel cell, which marked the beginning of Canada becoming a world leader in fuel cell technology development. The paper provides a brief account of how fuel cells work, describes the distinguishing characteristics of the various types of fuel cells (alkaline, phosphoric acid, molten-carbonate, solid oxide, and proton exchange membrane types) and their principal benefits. The emphasis is on proton exchange membrane fuel cells because they are the only fuel cell technology that is appropriate for providing primary propulsion power onboard a vehicle. Since vehicles are by far the greatest consumers of fossil fuels, it follows that proton exchange membrane fuel cells will have the greatest potential impact on both environmental matters and on our reliance on oil as our primary fuel. Various on-going and planned fuel cell demonstration projects are also described. 1 fig.

  6. General description and production lines of the Egyptian fuel manufacturing pilot plant

    International Nuclear Information System (INIS)

    Zidan, W.I.; Elseaidy, I.M.

    1999-01-01

    The Egyptian Fuel Manufacturing Pilot Plant, FMPP, is a new facility, producing an MTR-type fuel elements required for the Egyptian Second Research Reactor, ETRR-2, as well as other plates or elements for an external clients with the same type and enrichment percent or lower, (LEU). General description is presented. The production lines in FMPP, which begin from uranium hexaflouride (UF 6 , 19.7±0.2 % U 235 by wt), aluminum powder, and nuclear grade 6061 aluminium alloy in sheets, bars, and rods with the different heat treatments and dimensions as a raw materials, are processed through a series of the manufacturing, inspection, and quality control plan to produce the final specified MTR-type fuel elements. All these processes and the product control in each step are presented. The specifications of the final product are presented. (author)

  7. Engineering microbes to produce biofuels.

    Science.gov (United States)

    Wackett, Lawrence P

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Graded gauge theory

    International Nuclear Information System (INIS)

    Kerner, R.

    1983-01-01

    The mathematical background for a graded extension of gauge theories is investigated. After discussing the general properties of graded Lie algebras and what may serve as a model for a graded Lie group, the graded fiber bundle is constructed. Its basis manifold is supposed to be the so-called superspace, i.e. the product of the Minkowskian space-time with the Grassmann algebra spanned by the anticommuting Lorentz spinors; the vertical subspaces tangent to the fibers are isomorphic with the graded extension of the SU(N) Lie algebra. The connection and curvature are defined then on this bundle; the two different gradings are either independent of each other, or may be unified in one common grading, which is equivalent to the choice of the spin-statistics dependence. The Yang-Mills lagrangian is investigated in the simplified case. The conformal symmetry breaking is discussed, as well as some other physical consequences of the model. (orig.)

  9. FY 2000 report on the results of development of technology for commercializing high-efficiency fuel cell systems. Development of technology for commercializing high-efficiency fuel cell systems (Development of technology for effective utilization of power produced by polymer electrolyte fuel cell systems); 2000 nendo kokoritsu nenryo denchi system jitsuyoka gijutsu kaihatsu seika hokokusho. Kotai kobunshigata nenryo denchi no shutsuryoku yuko riyo gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This project is aimed at development of technologies for effective utilization of power produced by polymer electrolyte fuel cell (PEFC) systems and waste heat, to spread cogeneration systems incorporating PEFC systems for residential purposes. Described herein are the FY 2000 results. The program for high-efficiency peripherals for residential PFEC systems attempts use of GaN-FET as the semiconductor device of wide band gap and high breakdown voltage to realize conversion efficiency over 90% by improving inverter efficiency. Two types of the prototype heat recovery systems are developed for the PEFC, one incorporating a latent heat cooling system and the other a water cooling system, to improve heat recovery efficiency and increase heat recovery temperature. The program for technology to fit PEFC output to energy demand develops hot water supply systems provided with a hot water storage function for stable supply of hot water irrespective of the heat recovery conditions, and also with a back-up function with burners. The program also develops the PEFC system of fine load following characteristics, for which pure hydrogen is used as the fuel to allow the system to instantaneously follow fluctuating loads. The program for high-efficiency partial load operation technology studies a 1kW-class residential PEFC cogeneration system incorporating a power storage device for high-efficiency operation at partial loads, where the former operates in a high output mode while the latter absorbs fluctuating loads. (NEDO)

  10. Increasing TRIGA fuel lifetime with 12 wt.% U TRIGA fuel

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, W F; Cenko, M J; Levine, S H; Witzig, W F [Pennsylvania State University (United States)

    1974-07-01

    In-core fuel management studies have been performed for the Penn State Breazeale Reactor (PSBR) wherein 12 wt % U fuel elements are used to replace the standard 8.5 wt % U TRIGA fuel. The core configuration used to develop a calculational model was a 90-element hexagonal array, which is representative of the PSBR core, and consists of five hexagonal rings surrounding a central thimble containing water. The technique employed for refueling the core fully loaded with 8.5 wt % U fuel involves replacing 8.5 wt % U fuel with 12 wt % U fuel using an in-out reloading scheme. A batch reload consists of 6 new 12 wt % U fuel elements. Placing the 12 wt % U fuel in the B ring produces fuel temperatures ({approx}450 {sup o}C) that are well below the 800{sup o}C maximum limitation when the PSBR is operating at its maximum allowed power of 1 Megawatt. The advantages of using new 12 wt % U fuel to replace the burned up 8.5 wt % U fuel in the B ring over refueling strictly with 8.5 wt % U-Zr TRIGA fuel are clearly delineated in Table 1 where cost calculations used the General Atomic pre-1972 prices for TRIGA fuel, i.e., $1500 and $1650 for an 8.5 and 12 wt % U fuel element, respectively. Experimental results obtained to date utilizing the 12 wt % U fuel elements agree with the computed results. (author)

  11. 76 FR 15855 - Denial of Petitions for Reconsideration of Regulation of Fuels and Fuel Additives: Changes to...

    Science.gov (United States)

    2011-03-22

    ... Petitions for Reconsideration of Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard..., published on March 26, 2010 (75 FR 14670), which amended the Renewable Fuel Standard Program pursuant to... renewable fuels to verify domestic crops and crop residues used to produce the renewable fuels complied with...

  12. Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

    2007-12-01

    The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected

  13. Synthetic carbonaceous fuel and feedstock using nuclear power, air, and water. [CO/sub 2/ from atmosphere and ocean reacting with H/sub 2/ to produce MeOH and then gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M [Brookhaven National Lab., Upton, NY; Baron, S

    1977-01-01

    Development of synthetic carbonaceous fuels and feedstocks (SCFF) is imperative if the U.S. is to maintain its world leadership. All forms of carbonaceous materials can serve as sources of raw material for SCFF, however, here we consider the ultimate renewable resource of carbon which is CO/sub 2/ from the atmosphere or the oceans. A number of methods for the recovery of CO/sub 2/ have been examined. An absorption-stripping system utilizing dilute carbonate solvent appears most economical for atmospheric recovery while distillation appears of interest for sea-water recovery. An alternative isothermal process utilizing chlor-alkali cells is also described. Electrolytic hydrogen is thermocatalytically combined with the CO/sub 2/ to form methanol which can then be dehydrated to gasoline. Production cost is dominated by the energy for hydrogen and the plant capital investment. Base loaded nuclear power plants supplying peaking load and generating SCFF in an off-peak mode is proposed for reducing costs. Under 1974/5 conditions, incremental power costs would have been a minimum. Under 1985 escalated conditions, incremental costs indicate 6 mills/kWh(e) for power which yields 33.9 c/gallon methanol or 77.1 c/gallon of equivalent gasoline which takes credit for oxygen would break even with $23/bbl of oil. The capital investment for producing the equivalent of one million barrels/day of gasoline in 142 nuclear reactors of 100 MW(e) capacity, operating in an off-peak mode, amounts to slightly more than the investment in new oil exploration and production facilities and considerably less than the projected outflow of capital to foreign OPEC countries. The nuclear synthesis-route using atmospheric and aquatic CO/sub 2/ simulates the solar photosynthetic process and provides a long-term renewable and environmentally acceptable alternate source of SCFF.

  14. Thorium-Based Fuel Cycles in the Modular High Temperature Reactor

    Institute of Scientific and Technical Information of China (English)

    CHANG Hong; YANG Yongwei; JING Xingqing; XU Yunlin

    2006-01-01

    Large stockpiles of civil-grade as well as weapons-grade plutonium have been accumulated in the world from nuclear power or other programs of different countries. One alternative for the management of the plutonium is to incinerate it in the high temperature reactor (HTR). The thorium-based fuel cycle was studied in the modular HTR to reduce weapons-grade plutonium stockpiles, while producing no additional plutonium or other transuranic elements. Three thorium-uranium fuel cycles were also investigated. The thorium absorption cross sections of the resolved and unresolved resonances were generated using the ZUT-DGL code based on existing resonance data. The equilibrium core of the modular HTR was calculated and analyzed by means of the code VSOP'94. The results show that the modular HTR can incinerate most of the initially loaded plutonium amounting to about 95.3% net 239Pu for weapons-grade plutonium and can effectively utilize the uranium and thorium in the thorium-uranium fuel cycles.

  15. Alternative Fuels

    Science.gov (United States)

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  16. Improvement of fuel combustion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tumanovskii, A.G.; Babii, V.I.; Enyakin, Y.P.; Kotler, V.R.; Ryabov, G.V.; Verbovetskii, E.K.; Nadyrov, I.I. [All-Russian Thermal Engineering Institute, Moscow (Russian Federation)

    1996-07-01

    The main problems encountered in the further development of fuel combustion technologies at thermal power stations in Russia are considered. Experience is generalized and results are presented on the efficiency with which nitrogen oxide emissions are reduced by means of technological methods when burning natural gas, fuel oil, and coal. The problems that arise in the introduction of new combustion technologies and in using more promising grades of coal are considered. The results studies are presented that show that low grade Russian coals can be burnt in circulating fluidized bed boilers. 14 refs., 5 figs., 4 tabs.

  17. Fuel related risks; Braenslerisker

    Energy Technology Data Exchange (ETDEWEB)

    Englund, Jessica; Sernhed, Kerstin; Nystroem, Olle; Graveus, Frank (Grontmij AB, (Sweden))

    2012-02-15

    The project, within which this work report was prepared, aimed to complement the Vaermeforsk publication 'Handbook of fuels' on fuel related risks and measures to reduce the risks. The fuels examined in this project where the fuels included in the first version of the handbook from 2005 plus four additional fuels that will be included in the second and next edition of the handbook. Following fuels were included: woodfuels (sawdust, wood chips, powder, briquettes), slash, recycled wood, salix, bark, hardwood, stumps, straw, reed canary grass, hemp, cereal, cereal waste, olive waste, cocoa beans, citrus waste, shea, sludge, forest industrial sludge, manure, Paper Wood Plastic, tyre, leather waste, cardboard rejects, meat and bone meal, liquid animal and vegetable wastes, tall oil pitch, peat, residues from food industry, biomal (including slaughterhouse waste) and lignin. The report includes two main chapters; a general risk chapter and a chapter of fuel specific risks. The first one deals with the general concept of risk, it highlights laws and rules relevant for risk management and it discuss general risks that are related to the different steps of fuel handling, i.e. unloading, storing, processing the fuel, transportation within the facility, combustion and handling of ashes. The information that was used to produce this chapter was gathered through a literature review, site visits, and the project group's experience from risk management. The other main chapter deals with fuel-specific risks and the measures to reduce the risks for the steps of unloading, storing, processing the fuel, internal transportation, combustion and handling of the ashes. Risks and measures were considered for all the biofuels included in the second version in the handbook of fuels. Information about the risks and risk management was gathered through interviews with people working with different kinds of fuels in electricity and heat plants in Sweden. The information from

  18. Fuel assembly

    International Nuclear Information System (INIS)

    Chaki, Masao; Nishida, Koji; Karasawa, Hidetoshi; Kanazawa, Toru; Orii, Akihito; Nagayoshi, Takuji; Kashiwai, Shin-ichi; Masuhara, Yasuhiro

    1998-01-01

    The present invention concerns a fuel assembly, for a BWR type nuclear reactor, comprising fuel rods in 9 x 9 matrix. The inner width of the channel box is about 132mm and the length of the fuel rods which are not short fuel rods is about 4m. Two water rods having a circular cross section are arranged on a diagonal line in a portion of 3 x 3 matrix at the center of the fuel assembly, and two fuel rods are disposed at vacant spaces, and the number of fuel rods is 74. Eight fuel rods are determined as short fuel rods among 74 fuel rods. Assuming the fuel inventory in the short fuel rod as X(kg), and the fuel inventory in the fuel rods other than the short fuel rods as Y(kg), X and Y satisfy the relation: X + Y ≥ 173m, Y ≤ - 9.7X + 292, Y ≤ - 0.3X + 203 and X > 0. Then, even when the short fuel rods are used, the fuel inventory is increased and fuel economy can be improved. (I.N.)

  19. Fuel assembly

    International Nuclear Information System (INIS)

    Yamazaki, Hajime.

    1995-01-01

    In a fuel assembly having fuel rods of different length, fuel pellets of mixed oxides of uranium and plutonium are loaded to a short fuel rod. The volume ratio of a pellet-loaded portion to a plenum portion of the short fuel rod is made greater than the volume ratio of a fuel rod to which uranium fuel pellets are loaded. In addition, the volume of the plenum portion of the short fuel rod is set greater depending on the plutonium content in the loaded fuel pellets. MOX fuel pellets are loaded on the short fuel rods having a greater degree of freedom relevant to the setting for the volume of the plenum portion compared with that of a long rod fuel, and the volume of the plenum portion is ensured greater depending on the plutonium content. Even if a large amount of FP gas and He gas are discharged from the MOX fuels compared with that from the uranium fuels, the internal pressure of the MOX fuel rod during operation is maintained substantially identical with that of the uranium fuel rod, so that a risk of generating excess stresses applied to the fuel cladding tubes and rupture of fuels are greatly reduced. (N.H.)

  20. 2009 Fuel Cell Market Report, November 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  1. Fuel Cell Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance

  2. Graded tensor calculus

    International Nuclear Information System (INIS)

    Scheunert, M.

    1982-10-01

    We develop a graded tensor calculus corresponding to arbitrary Abelian groups of degrees and arbitrary commutation factors. The standard basic constructions and definitions like tensor products, spaces of multilinear mappings, contractions, symmetrization, symmetric algebra, as well as the transpose, adjoint, and trace of a linear mapping, are generalized to the graded case and a multitude of canonical isomorphisms is presented. Moreover, the graded versions of the classical Lie algebras are introduced and some of their basic properties are described. (orig.)

  3. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  4. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  5. Assessment and reduction of proliferation risk of reactor-grade plutonium regarding construction of ‘fizzle bombs’ by terrorists

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.; Mulder, Eben J.; Reitsma, Frederik

    2014-01-01

    The approximately 23.7 wt% 240 Pu in reactor-grade plutonium denatures the 239 Pu to the extent that it cannot fuel high yield nuclear weapons. 240 Pu has a high spontaneous fission rate, which increases the spontaneous neutron flux within the fuel. When such a nuclear weapon is triggered, these neutrons cause the nuclear fission chain reaction to pre-detonate which blows the imploding fuel shell apart before the designed level of compression and reactivity could be attained, thereby greatly reducing the average energy yield of such “fizzle” bombs. Therefore reactor-grade plutonium is normally viewed as highly proliferation resistant. In this article the literature on the proliferation resistance of reactor-grade plutonium and on the mechanism and effect of fizzle bombs is reviewed in order to test this view. It is shown that even very low yield fizzle bombs, exploded in urban areas, would still cause serious blast damage as well as radioactive contamination. Combined with the high levels of induced terror, fizzle bombs might thus be attractive psychological weapons for terrorists. Therefore reactor-grade plutonium may not be sufficiently proliferation resistant against nuclear terrorism. However, denaturisation with more than 9% 238 Pu produces high levels of decay heat which will melt or explode the high explosives around uncooled implosion type weapons, rendering them useless. Unfortunately, reactor-grade Pu contains only 2.7% 238 Pu and is thus not sufficiently proliferation resistant in this respect. It is also shown that the associated neptunium poses a substantial proliferation risk. In the present study strong improvement of the proliferation resistance was demonstrated by simulation of incineration of reactor-grade plutonium in the 400 MW th Pebble Bed Modular Reactor Demonstration Power Plant. Results for modified fuel cycles, aimed at transmutating 237 Np to 238 Pu are also reported. However, these modifications increased the disloaded heavy metal

  6. Assessment and reduction of proliferation risk of reactor-grade plutonium regarding construction of ‘fizzle bombs’ by terrorists

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [School for Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001 (Internal Post Box 360), Potchefstroom 2520 (South Africa); Mulder, Eben J. [School for Mechanical and Nuclear Engineering, North West University (South Africa); Reitsma, Frederik [Calvera Consultants (South Africa)

    2014-05-01

    The approximately 23.7 wt% {sup 240}Pu in reactor-grade plutonium denatures the {sup 239}Pu to the extent that it cannot fuel high yield nuclear weapons. {sup 240}Pu has a high spontaneous fission rate, which increases the spontaneous neutron flux within the fuel. When such a nuclear weapon is triggered, these neutrons cause the nuclear fission chain reaction to pre-detonate which blows the imploding fuel shell apart before the designed level of compression and reactivity could be attained, thereby greatly reducing the average energy yield of such “fizzle” bombs. Therefore reactor-grade plutonium is normally viewed as highly proliferation resistant. In this article the literature on the proliferation resistance of reactor-grade plutonium and on the mechanism and effect of fizzle bombs is reviewed in order to test this view. It is shown that even very low yield fizzle bombs, exploded in urban areas, would still cause serious blast damage as well as radioactive contamination. Combined with the high levels of induced terror, fizzle bombs might thus be attractive psychological weapons for terrorists. Therefore reactor-grade plutonium may not be sufficiently proliferation resistant against nuclear terrorism. However, denaturisation with more than 9% {sup 238}Pu produces high levels of decay heat which will melt or explode the high explosives around uncooled implosion type weapons, rendering them useless. Unfortunately, reactor-grade Pu contains only 2.7% {sup 238}Pu and is thus not sufficiently proliferation resistant in this respect. It is also shown that the associated neptunium poses a substantial proliferation risk. In the present study strong improvement of the proliferation resistance was demonstrated by simulation of incineration of reactor-grade plutonium in the 400 MW{sub th} Pebble Bed Modular Reactor Demonstration Power Plant. Results for modified fuel cycles, aimed at transmutating {sup 237}Np to {sup 238}Pu are also reported. However, these

  7. Advanced fuel cycles for WWER-1000 reactors

    International Nuclear Information System (INIS)

    Semchenkov, Y. M.; Pavlovichev, A. M.; Pavlov, V. I.; Spirkin, E. I.; Styrin, Y. A.; Kosourov, E. K.

    2007-01-01

    Main stages of Russian uranium fuel development regarding improvement of safety and economics of fuel load operation are presented. Intervals of possible changes in fuel cycle duration have been demonstrated for the use of current and perspective fuel. Examples of equilibrium fuel load patterns have been demonstrated and main core neutronics parameters have been presented. Problems on the use of axial blankets with reduced enrichment in WWER-1000 fuel assemblies are considered. Some results are presented regarding core neutronic characteristics of WWER-1000 at the use of regenerated uranium and uranium-plutonium fuel. Examples of equilibrium fuel cycles for the core partially loaded with MOX fuel from weapon-grade plutonium are also considered (Authors)

  8. H2CAP - Hydrogen assisted catalytic biomass pyrolysis for green fuels

    DEFF Research Database (Denmark)

    Arndal, Trine Marie Hartmann; Høj, Martin; Jensen, Peter Arendt

    2014-01-01

    Pyrolysis of biomass produces a high yield of condensable oil at moderate temperature and low pressure.This bio-oil has adverse properties such as high oxygen and water contents, high acidity and immiscibility with fossil hydrocarbons. Catalytic hydrodeoxygenation (HDO) is a promising technology...... that can be used to upgrade the crude bio-oil to fuel-grade oil. The development of the HDO process is challenged by rapid catalyst deactivation, instability of the pyrolysis oil, poorly investigated reaction conditions and a high complexity and variability of the input oil composition. However, continuous...... catalytic hydropyrolysis coupled with downstream HDO of the pyrolysis vapors before condensation shows promise (Figure 1). A bench scale experimental setup will be constructed for the continuous conversion of solid biomass (100g /h) to low oxygen, fuel-grade bio-oil. The aim is to provide a proof...

  9. Microgeneration of electricity with producer gas in dual fuel mode operation Microgeração de eletricidade com gás de gaseificação num motor gerador dual

    Directory of Open Access Journals (Sweden)

    Marcelo J. Silva

    2011-10-01

    Full Text Available Among the alternatives to meet the increasing of world demand for energy, the use of biomass as energy source is one of the most promising as it contributes to reducing emissions of carbon dioxide in the atmosphere. Gasification is a technological process of biomass energy production of a gaseous biofuel. The fuel gas has a low calorific value that can be used in Diesel engine in dual mode for power generation in isolated communities. This study aimed to evaluate the reduction in the consumption of oil Diesel an engine generator, using gas from gasification of wood. The engine generator brand used was a BRANCO, with direct injection power of 7.36 kW (10 HP coupled to an electric generator 5.5 kW. Diesel oil mixed with intake air was injected, as the oil was injected via an injector of the engine (dual mode. The fuel gas was produced in a downdraft gasifier. The engine generator was put on load system from 0.5 kW to 3.5 kW through a set of electrical resistances. Diesel oil consumption was measured with a precision scale. It was concluded that the engine converted to dual mode when using the gas for the gasification of wood decreased Diesel consumption by up to 57%.Dentre as alternativas à crescente demanda energética mundial, o uso da biomassa como fonte de energia é uma das formas mais promissoras, pois contribui para a redução das emissões de dióxido de carbono na atmosfera. A gaseificação é uma tecnologia de transformação energética da biomassa num biocombustível gasoso. O gás de gaseificação é um combustível de baixo poder calorífico que pode ser utilizado em motor ciclo Diesel no modo dual para geração de energia elétrica em comunidades isoladas. Este trabalho teve por objetivo avaliar a redução no consumo de Diesel num motor gerador, com a utilização de gás da gaseificação da madeira. O motor avaliado foi da marca BRANCO, com injeção direta e potência de 7,36 kW (10 cv acoplado a um gerador elétrico de 5

  10. Bio-coal briquettes using low-grade coal

    Science.gov (United States)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  11. Fuel safety research 2001

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    The Fuel Safety Research Laboratory is in charge of research activity which covers almost research items related to fuel safety of water reactor in JAERI. Various types of experimental and analytical researches are being conducted by using some unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and the Reactor Fuel Examination Facility (RFEF) of JAERI. The research to confirm the safety of high burn-up fuel and MOX fuel under accident conditions is the most important item among them. The laboratory consists of following five research groups corresponding to each research fields; Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). Research group of fuel behavior analysis (FEMAXI group). Research group of radionuclides release and transport behavior from irradiated fuel under severe accident conditions (VEGA group). The research conducted in the year 2001 produced many important data and information. They are, for example, the fuel behavior data under BWR power oscillation conditions in the NSRR, the data on failure-bearing capability of hydrided cladding under LOCA conditions and the FP release data at very high temperature in steam which simulate the reactor core condition during severe accidents. This report summarizes the outline of research activities and major outcomes of the research executed in 2001 in the Fuel Safety Research Laboratory. (author)

  12. Fuel assembly

    International Nuclear Information System (INIS)

    Sakuyama, Tadashi; Mukai, Hideyuki.

    1988-01-01

    Purpose: To prevent the bending of a fuel rod caused by the difference in the elongation between a joined fuel rod and a standard fuel rod thereby maintain the fuel rod integrity. Constitution: A joined fuel rod is in a thread engagement at its lower end plug thereof with a lower plate, while passed through at its upper end plug into an upper tie plate and secured with a nut. Further, a standard fuel rod is engaged at its upper end plug and lower end plug with the upper tie plate and the lower tie plate respectively. Expansion springs are mounted to the upper end plugs of these bonded fuel rods and the standard fuel rods for preventing this lifting. Each of the fuel rods comprises a plurality of sintered pellets of nuclear fuel materials laminated in a zircaloy fuel can. The content of the alloy ingredient in the fuel can of the bonded fuel rod is made greater than that of the alloy ingredient of the standard fuel rod. this can increase the elongation for the bonded fuel rod, and the spring of the standard fuel rod is tightly bonded to prevent the bending. (Yoshino, Y.)

  13. Degradation resistant fuel cladding materials and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Marlowe, M.O. [GE Nuclear Energy, Wilmington, NC (United States); Montes, J. [ENUSA, Madrid (Spain)

    1995-12-31

    GE has been producing the degradation resistant cladding (zirconium liner and zircaloy-2 surface larger) described here with the cooperation of its primary zirconium vendors since the beginning of 1994. Approximately 24 fuel reloads, or in excess of 250,000 fuel rods, have been produced using this material by GE. GE has also produced tubing for one reload of fuel that is currently being produced by its technology affiliate ENUSA. (orig./HP)

  14. Fuel processing

    International Nuclear Information System (INIS)

    Allardice, R.H.

    1990-01-01

    The technical and economic viability of the fast breeder reactor as an electricity generating system depends not only upon the reactor performance but also on a capability to recycle plutonium efficiently, reliably and economically through the reactor and fuel cycle facilities. Thus the fuel cycle is an integral and essential part of the system. Fuel cycle research and development has focused on demonstrating that the challenging technical requirements of processing plutonium fuel could be met and that the sometimes conflicting requirements of the fuel developer, fuel fabricator and fuel reprocessor could be reconciled. Pilot plant operation and development and design studies have established both the technical and economic feasibility of the fuel cycle but scope for further improvement exists through process intensification and flowsheet optimization. These objectives and the increasing processing demands made by the continuing improvement to fuel design and irradiation performance provide an incentive for continuing fuel cycle development work. (author)

  15. Canada's nuclear fuel industry: An overview. Background paper

    International Nuclear Information System (INIS)

    Nixon, A.

    1993-11-01

    Canada was among the first countries to mine and process uranium-bearing ores. Such ores contain trace amounts of radium, which was in great demand for medical treatment and for use by research laboratories in the early part of the century. For the last half century, the same basic processes have been used to extract uranium from its ores and convert it to a form suitable for use in nuclear reactors. The process described here is that currently in use in Canada. Mining can take a variety of forms, from open-pit to deep, hard-rock. Mining is typically the most costly step in the process, particularly for lower-grade ores. The ore is crushed and ground in the mill to the consistency of fine sand from which the uranium is extracted chemically to produce the impure concentrate known as yellowcake. In the next step, the impure uranium concentrate is chemically refined into highly purified, nuclear-grade, uranium trioxide (UO 3 ). Uranium trioxide is then converted, in two separate chemical processes, into uranium dioxide (UO 2 ) which is destined for domestic consumption and uranium hexafluoride (UF 6 ) which is exported. In Canada, fabrication is the final step of the fuel production process. Uranium dioxide powder is compressed and sintered into very dense ceramic pellets which are then sealed in zirconium tubes and assembled into fuel bundles for Candu reactors. This background paper will review the Canadian nuclear fuels industry. 1 fig

  16. Classroom: Efficient Grading

    Science.gov (United States)

    Shaw, David D.; Pease, Leonard F., III.

    2014-01-01

    Grading can be accelerated to make time for more effective instruction. This article presents specific time management strategies selected to decrease administrative time required of faculty and teaching assistants, including a multiple answer multiple choice interface for exams, a three-tier grading system for open ended problem solving, and a…

  17. Grain Grading and Handling.

    Science.gov (United States)

    Rendleman, Matt; Legacy, James

    This publication provides an introduction to grain grading and handling for adult students in vocational and technical education programs. Organized in five chapters, the booklet provides a brief overview of the jobs performed at a grain elevator and of the techniques used to grade grain. The first chapter introduces the grain industry and…

  18. JP-8 Catalytic Cracking for Compact Fuel Processors

    National Research Council Canada - National Science Library

    Campbell, Timothy

    2004-01-01

    ...), kerosene, and diesel to produce hydrogen for fuel cell use, several issues arise. First, these fuels have high sulfur content, which can poison and deactivate components of the reforming process and the fuel cell stack...

  19. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  20. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... impact for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  1. Study of technical and financial pre-feasibility for the handling and sale, as fuel in cement industries, of petroleum coke produced at a petroleum refinery located in Moin, Limon

    International Nuclear Information System (INIS)

    Corrales Suarez, Jeffry

    2013-01-01

    A study of the technical and financial pre-feasibility is realized for the handling, conditioning and sale as fuel in cement industries of petroleum coke, that is produced in the project of extension and modernization of the refinery of RECOPE in Moin, Limon. Daily production has been of 570 metric tons. The market study has determined a demand of approximately 120 000 metric tons in the country and in the region. The total production of coke has been possible place it at national and regional level, due to lack of another producer. The coke is recommended to crush it to decrease the size of the particles for the conditioning, handling and to facilitate their manipulation. Conveyor belts are used for handling on the inside of the refinery. The coke is transported in trucks type tanker on the exterior of the refinery. The moisture content is reduced by dryer vibratory of fluidized bed to 5% of moisture to guarantee a product better quality. The product is stored under roof in ventilated facilities and with appropriate systems of security to minimize the risk of an accident. The fixed capital investment to develop the project has been of USD 3,1 millions and working capital of USD 14,4 millions. The financial evaluation is realized considering two financing models of 70% and without financing. The net present value (NPV) has been of USD -13,0 millions and the desirability index of -6,6 for the model with financing. The model without financing has obtained a NPV of USD -1,9 millions and a desirability index of -1,2. The financial profitability of the project has been very sensitive to the sales price of the coke, to the coke volume of production, to the growth percentage of the sale price and the cost of the raw material for the two models considered. The financial risk analysis is realized by the Monte Carlo method, whereupon is obtained a probability of approximately 34% in that the internal rate of return (IRR) has been higher than the cut rate and of 36% in that

  2. Fuel assembly in a reactor

    International Nuclear Information System (INIS)

    Saito, Shozo; Kawahara, Akira.

    1975-01-01

    Object: To provide a fuel assembly in a reactor which can effectively prevent damage of the clad tube caused by mutual interference between pellets and the clad tube. Structure: A clad tube for a fuel element, which is located in the outer peripheral portion, among the fuel elements constituting fuel assemblies arranged in assembled and lattice fashion within a channel box, is increased in thickness by reducing the inside diameter thereof to be smaller than that of fuel elements internally located, thereby preventing damage of the clad tube resulting from rapid rise in output produced when control rods are removed. (Kamimura, M.)

  3. South Korea's nuclear fuel industry

    International Nuclear Information System (INIS)

    Clark, R.G.

    1990-01-01

    March 1990 marked a major milestone for South Korea's nuclear power program, as the country became self-sufficient in nuclear fuel fabrication. The reconversion line (UF 6 to UO 2 ) came into full operation at the Korea Nuclear Fuel Company's fabrication plant, as the last step in South Korea's program, initiated in the mid-1970s, to localize fuel fabrication. Thus, South Korea now has the capability to produce both CANDU and pressurized water reactor (PWR) fuel assemblies. This article covers the nuclear fuel industry in South Korea-how it is structures, its current capabilities, and its outlook for the future

  4. Producing cement

    Energy Technology Data Exchange (ETDEWEB)

    Stone, E G

    1923-09-12

    A process and apparatus are described for producing Portland cement in which pulverized shale is successively heated in a series of inclined rotary retorts having internal stirrers and oil gas outlets, which are connected to condensers. The partially treated shale is removed from the lowermost retort by a conveyor, then fed separately or conjointly into pipes and thence into a number of vertically disposed retorts. Each of these retorts may be fitted interiorly with vertical arranged conveyors which elevate the shale and discharge it over a lip, from whence it falls to the bottom of the retorts. The lower end of each casing is furnished with an adjustable discharge door through which the spent shale is fed to a hopper, thence into separate trucks. The oil gases generated in the retorts are exhausted through pipes to condensers. The spent shale is conveyed to a bin and mixed while hot with ground limestone. The admixed materials are then ground and fed to a rotary kiln which is fired by the incondensible gases derived from the oil gases obtained in the previous retorting of the shale. The calcined materials are then delivered from the rotary kiln to rotary coolers. The waste gases from the kiln are utilized for heating the retorts in which the ground shale is heated for the purpose of extracting therefrom the contained hydrocarbon oils and gases.

  5. Spent fuel pyroprocessing demonstration

    International Nuclear Information System (INIS)

    McFarlane, L.F.; Lineberry, M.J.

    1995-01-01

    A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option

  6. Grade Expectations: Rationality and Overconfidence

    Science.gov (United States)

    Magnus, Jan R.; Peresetsky, Anatoly A.

    2018-01-01

    Confidence and overconfidence are essential aspects of human nature, but measuring (over)confidence is not easy. Our approach is to consider students' forecasts of their exam grades. Part of a student's grade expectation is based on the student's previous academic achievements; what remains can be interpreted as (over)confidence. Our results are based on a sample of about 500 second-year undergraduate students enrolled in a statistics course in Moscow. The course contains three exams and each student produces a forecast for each of the three exams. Our models allow us to estimate overconfidence quantitatively. Using these models we find that students' expectations are not rational and that most students are overconfident, in agreement with the general literature. Less obvious is that overconfidence helps: given the same academic achievement students with larger confidence obtain higher exam grades. Female students are less overconfident than male students, their forecasts are more rational, and they are also faster learners in the sense that they adjust their expectations more rapidly. PMID:29375449

  7. Grade Expectations: Rationality and Overconfidence

    Directory of Open Access Journals (Sweden)

    Jan R. Magnus

    2018-01-01

    Full Text Available Confidence and overconfidence are essential aspects of human nature, but measuring (overconfidence is not easy. Our approach is to consider students' forecasts of their exam grades. Part of a student's grade expectation is based on the student's previous academic achievements; what remains can be interpreted as (overconfidence. Our results are based on a sample of about 500 second-year undergraduate students enrolled in a statistics course in Moscow. The course contains three exams and each student produces a forecast for each of the three exams. Our models allow us to estimate overconfidence quantitatively. Using these models we find that students' expectations are not rational and that most students are overconfident, in agreement with the general literature. Less obvious is that overconfidence helps: given the same academic achievement students with larger confidence obtain higher exam grades. Female students are less overconfident than male students, their forecasts are more rational, and they are also faster learners in the sense that they adjust their expectations more rapidly.

  8. Fuel safety research 2000

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    In April 1999, the Fuel Safety Research Laboratory was newly established as a part of reorganization of the Nuclear Safety Research Center, JAERI. The new laboratory was organized by combining three pre-existing laboratories, Reactivity Accident Laboratory, Fuel Reliability Laboratory, and a part of Severe Accident Research Laboratory. The Fuel Safety Research Laboratory becomes to be in charge of all fuel safety research in JAERI. Various experimental and analytical researches are conducted in the laboratory by using the unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and hot cells in JAERI. The laboratory consists of following five research groups corresponding to each research fields; (a) Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). (b) Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). (c) Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). (d) Research group of fuel behavior analysis (FEMAXI group). (e) Research group of FP release/transport behavior from irradiated fuel (VEGA group). The research activities in year 2000 produced many important data and information. They are, for example, failure of high burnup BWR fuel rod under RIA conditions, data on the behavior of hydrided Zircaloy cladding under LOCA conditions and FP release data from VEGA experiments at very high temperature/pressure condition. This report summarizes the outline of research activities and major outcomes of the research executed in 2000 in the Fuel Safety Research Laboratory. (author)

  9. Reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Hatfield, G.W.

    1960-11-01

    One of the persistent ideas concerning nuclear power is that the fuel costs are negligible. This, of course, is incorrect and, in fact, one of the major problems in the development of economic nuclear power is to get the cost of the fuel cycles down to an acceptable level. The irradiated fuel removed from the nuclear power reactors must be returned as fresh fuel into the system. Aside from the problems of handling and shipping involved in the reprocessing cycles, the two major steps are the chemical separation and the refabrication. The chemical separation covers the processing of the spent fuel to separate and recover the unburned fuel as well as the new fuel produced in the reactor. This includes the decontamination of these materials from other radioactive fission products formed in the reactor. Refabrication involves the working and sheathing of recycled fuel into the shapes and forms required by reactor design and the economics of the fabrication problem determines to a large extent the quality of the material required from the chemical treatment. At present there appear to be enough separating facilities in the United States and the United Kingdom to handle the recycling of fuel from power reactors for the next few years. However, we understand the costs of recycling fuel in these facilities will be high or low depend ing on whether or not the capital costs of the plant are included in the processing cost. Also, the present plants may not be well adapted to carry out the chemical processing of the very wide variety of power reactor fuel elements which are being considered and will continue to be considered over the years to come. (author)

  10. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO 2 pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO 2 and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under irradiation

  11. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO{sub 2} pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO{sub 2} and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under

  12. Critical experiments with mixed oxide fuel

    International Nuclear Information System (INIS)

    Harris, D.R.

    1997-01-01

    This paper very briefly outlines technical considerations in performing critical experiments on weapons-grade plutonium mixed oxide fuel assemblies. The experiments proposed would use weapons-grade plutonium and Er 2 O 3 at various dissolved boron levels, and for specific fuel assemblies such as the ABBCE fuel assembly with five large water holes. Technical considerations described include the core, the measurements, safety, security, radiological matters, and licensing. It is concluded that the experiments are feasible at the Rensselaer Polytechnic Institute Reactor Critical Facility. 9 refs

  13. FY 2000 report on the research cooperation project - Research cooperation in developmental support for oil producing countries. Development of the new field of usage of Orinoco oil for fuel of gas turbine combined power generation; 2000 nendo san'yukoku kaihatsu shien kenkyu kyoryoku jigyo seika hokokusho. Gasu tabin fukugo hatsuden nenryo muke Orinoko oil no shin yoto kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    For the purpose of spreading the usage of Orinoco crude oil which is suffering from sluggishness in the export and heightening the economical efficiency in Venezuela, research cooperation was made for a project for reduction of the power cost and environmental loads in Japan by producing the advanced gas turbine use fuel oil from Orinoco oil and exporting it to Japan. In this project, conducted were the technical verification that the gas turbine use fuel oil (GTF) can be produced from Orinoco oil and the economical verification based on the result thereof. As a result of the technical verification, it was confirmed that from the Orinoco crude oil which is heavy, high in sulfur and high in heavy metal concentration, a refined oil satisfying the following properties of the advanced gas turbine fuel oil could be trial-produced using the distilling unit, SDA unit, desulfurizer and de-metaling unit: vanadium concentration: 0.5 wtppm or below; sodium + potassium concentration: 1.0 wtppm or below; viscosity: 20 cSt or below at 135 degrees C. Further, from the economical verification, the good result was obtained that the price was lower than the LNG price and the domestic price of A heavy oil/C heavy oil. (NEDO)

  14. Radionuclide inventories : ORIGEN2.2 isotopic depletion calculation for high burnup low-enriched uranium and weapons-grade mixed-oxide pressurized-water reactor fuel assemblies.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Ross, Kyle W. (Los Alamos National Laboratory, Los Alamos, NM); Smith, James Dean; Longmire, Pamela

    2010-04-01

    The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction process was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.

  15. Fuel assembly

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1970-01-01

    Herein disclosed is a fuel assembly in which a fuel rod bundle is easily detachable by rotating a fuel rod fastener rotatably mounted to the upper surface of an upper tie-plate supporting a fuel bundle therebelow. A locking portion at the leading end of each fuel rod protrudes through the upper tie-plate and is engaged with or separated from the tie-plate by the rotation of the fastener. The removal of a desired fuel rod can therefore be remotely accomplished without the necessity of handling pawls, locking washers and nuts. (Owens, K.J.)

  16. Nuclear fuel

    International Nuclear Information System (INIS)

    D Hondt, P.

    1998-01-01

    The research and development programme on nuclear fuel at the Belgian Nuclear Research Centre SCK/CEN is described. The objective of this programme is to enhance the quantitative prediction of the operational limits of nuclear fuel and to assess the behaviour of fuel under incidental and accidental conditions. Progress is described in different domains including the modelling of fission gas release in LWR fuel, thermal conductivity, basic physical phenomena, post-irradiation examination for fuel performance assessment, and conceptual studies of incidental and accidental fuel experiments

  17. Cellulase producing microorganism ATCC 55702

    Science.gov (United States)

    Dees, H. Craig

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  18. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two different co-processed fuel oils were tested: one that had been partially hydrotreated, and the other a product of fractionation before hydrotreating. Task 5 focused on examining refining methods that would utilize coal and produce thermally stable jet fuel, included delayed coking and solvent extraction. Delayed coking was done on blends of decant oil and coal, with the goal to produce a premium carbon product and liquid fuels. Coking was done on bench scale and large laboratory scale cokers. Two coals were examined for co-coking, using Pittsburgh seam coal and Marfork coal product. Reactions in the large, laboratory scaled coker were reproducible in yields of products and in quality of products. While the co-coke produced from both coals was of sponge coke quality, minerals left in the coke made it unacceptable for use as anode or graphite grade filler.

  19. Bio-fuel barometer

    International Nuclear Information System (INIS)

    2015-01-01

    After a year of doubt and decline the consumption of bio-fuel resumed a growth in 2014 in Europe: +6.1% compared to 2013, to reach 14 millions tep (Mtep) that is just below the 2012 peak. This increase was mainly due to bio-diesel. By taking into account the energy content and not the volume, the consumption of bio-diesel represented 79.7% of bio-fuel consumption in 2014, that of bio-ethanol only 19.1% and that of biogas 1%. The incorporating rate of bio-fuels in fuels used for transport were 4.6% in 2013 and 4.9% in 2014. The trend is good and the future of bio-fuel seems clearer as the European Union has set a not-so-bad limit of 7% for first generation bio-fuels in order to take into account the CASI effect. The CASI effect shows that an increase of the consumption of first generation bio-fuels (it means bio-fuels produced from food crops like rape, soy, cereals, sugar beet,...) implies in fact a global increase in greenhouse gas release that is due to a compensation phenomenon. More uncultivated lands (like forests, grasslands, bogs are turned into cultivated lands in order to compensate lands used for bio-fuel production. In most European countries the consumption of bio-diesel increased in 2014 while it was a bad year for the European industry of ethanol because ethanol prices dropped by 16 %. Oil companies are now among the most important producers of bio-diesel in Europe.

  20. Perspectives on gasification systems to produce energy carriers and other chemicals with low CO2 emissions : techno‐economic system analysis on current and advanced flexible thermo‐chemical conversion of fossil fuels and biomass

    NARCIS (Netherlands)

    Meerman, J.C.

    2012-01-01

    To prevent dangerous climate change, the emissions of anthropogenic greenhouse gasses (GHG) need to be reduced. Two key mitigation options to reduce GHG involve a transition from the current fossil-fuel based infrastructure towards one based on renewable and the implementation of CO2 capture,

  1. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Alternative vehicle fuel rating. 309.10... LABELING REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Duties of Importers, Producers, and Refiners of Non-Liquid Alternative Vehicle Fuels (other Than...

  2. High density fuels using dispersion and monolithic fuel

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia; Universidade de São Paulo

    2017-01-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  3. High density fuels using dispersion and monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  4. Influence of the Ambient Temperature, to the Hydrogen Fuel Cell Functioning

    Directory of Open Access Journals (Sweden)

    POPOVICI Ovidiu

    2012-10-01

    Full Text Available The reversible fuel cell can be used to produce hydrogen. The hydrogen is further the chemical energy source to produce electrical energy using the fuel cell. The ambient temperature will influence theparameters of the hydrogen fuel cell.

  5. Influence of the Ambient Temperature, to the Hydrogen Fuel Cell Functioning

    OpenAIRE

    POPOVICI Ovidiu; HOBLE Dorel Anton

    2012-01-01

    The reversible fuel cell can be used to produce hydrogen. The hydrogen is further the chemical energy source to produce electrical energy using the fuel cell. The ambient temperature will influence theparameters of the hydrogen fuel cell.

  6. Unified fuel elements development for research reactors

    International Nuclear Information System (INIS)

    Vatulin, A.; Stetsky, Y.; Dobrikova, I.

    1998-01-01

    Square cross-section rod type fuel elements have been developed for russian pool-type research reactors. new fuel elements can replace the large nomenclature of tubular fuel elements with around, square and hexahedral cross-sections and to solve a problem of enrichment reduction. the fuel assembly designs with rod type fuel elements have been developed. The overall dimensions of existing the assemblies are preserved in this one. the experimental-industrial fabricating process of fuel elements, based on a joint extrusion method has been developed. The fabricating process has been tested in laboratory conditions, 150 experimental fuel element samples of the various sizes were produced. (author)

  7. CRA Grade Inflation

    OpenAIRE

    Kenneth H. Thomas

    2000-01-01

    Community Reinvestment Act of 1977 (CRA) ratings and performance evaluations are the only bank and thrift exam findings disclosed by financial institution regulators. Inflation of CRA ratings has been alleged by community activists for two decades, but there has been no quantification or empirical investigation of grade inflation. Using a unique grade inflation methodology on actual ratings and evaluation data for 1,407 small banks and thrifts under the revised CRA regulations, this paper con...

  8. Functionally graded materials

    CERN Document Server

    Mahamood, Rasheedat Modupe

    2017-01-01

    This book presents the concept of functionally graded materials as well as their use and different fabrication processes. The authors describe the use of additive manufacturing technology for the production of very complex parts directly from the three dimension computer aided design of the part by adding material layer after layer. A case study is also presented in the book on the experimental analysis of functionally graded material using laser metal deposition process.

  9. Fuel management

    International Nuclear Information System (INIS)

    Schwarz, E.R.

    1975-01-01

    Description of the operation of power plants and the respective procurement of fuel to fulfil the needs of the grid. The operation of the plants shall be optimised with respect to the fuel cost. (orig./RW) [de

  10. Fuel gases

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This paper gives a brief presentation of the context, perspectives of production, specificities, and the conditions required for the development of NGV (Natural Gas for Vehicle) and LPG-f (Liquefied Petroleum Gas fuel) alternative fuels. After an historical presentation of 80 years of LPG evolution in vehicle fuels, a first part describes the economical and environmental advantages of gaseous alternative fuels (cleaner combustion, longer engines life, reduced noise pollution, greater natural gas reserves, lower political-economical petroleum dependence..). The second part gives a comparative cost and environmental evaluation between the available alternative fuels: bio-fuels, electric power and fuel gases, taking into account the processes and constraints involved in the production of these fuels. (J.S.)

  11. Fuel cycles

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1983-05-01

    AECL publications, from the open literature, on fuels and fuel cycles used in CANDU reactors are listed in this bibliography. The accompanying index is by subject. The bibliography will be brought up to date periodically

  12. Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers

    Science.gov (United States)

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  13. Nuclear fuels

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO 2 and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO 2 ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO 2 and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast neutrons radiation

  14. Secondary resources processing in production of nuclear grade yellow cake

    International Nuclear Information System (INIS)

    Sivasubramanian, S.

    2009-01-01

    Full text: Recovering uranium in a cost competitive manner from sources other than the uranium ore is considered necessary from the point of view of meeting the strategic as well as the nuclear power programme need of the country. Globally, uranium is produced from ores which have more than 10 times uranium content compared to those available in India. Secondary sources of uranium are mostly defined by recycled uranium, from spent fuel of nuclear reactors, re-enriched depleted uranium tails, ex-military weapons grade uranium and stock piles for civilian use. Uranium production from secondary sources in India is largely dependent on processing of monazite, and to a smaller extent it is recovered from waste metallurgical slags generated by BARC and other private industries engaged in extracting niobium tantalum from the ores. The paper gives over view of the commercially successful processes of producing uranium from monazite and other secondary sources along with the details of setting up demonstration units for recovering uranium from wet phosphoric acid. The research and development work carried out to improve the cost economics of uranium production from monazite is also discussed as the total reported quantity of uranium associated with the monazite resources of the country is estimated at 30,000 tons of uranium metal (at the end of X Plan) compared to 75,000 ton of uranium in its primary ores

  15. Cleanup Verification Package for the 118-H-6:2, 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils; the 118-H-6:3, 105-H Reactor Fuel Storage Basin and Underlying Soils; the 118-H-6:6 Fuel Storage Basin Deep Zone Side Slope Soils; the 100-H-9, 100-H-10, and 100-H-13 French Drains; the 100-H-11 and 100-H-12 Expansion Box French Drains; and the 100-H-14 and 100-H-31 Surface Contamination Zones

    International Nuclear Information System (INIS)

    Appel, M.J.

    2006-01-01

    This cleanup verification package documents completion of removal actions for the 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils (subsite 118-H-6:2); 105-H Reactor Fuel Storage Basin and Underlying Soils (118-H-6:3); and Fuel Storage Basin Deep Zone Side Slope Soils. This CVP also documents remedial actions for the following seven additional waste sties: French Drain C (100-H-9), French Drain D (100-H-10), Expansion Box French Drain E (100-H-11), Expansion Box French Drain F (100-H-12), French Drain G (100-H-13), Surface Contamination Zone H (100-H-14), and the Polychlorinated Biphenyl Surface Contamination Zone (100-H-31)

  16. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program's preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO 2 and UO 2 ), typically containing 95% or more UO 2 . DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO 2 powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO 2 powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required

  17. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  18. Processing low-grade coal to produce high-grade products

    CSIR Research Space (South Africa)

    de Korte, GJ

    2015-07-01

    Full Text Available of the coal being mined in the central basin is gradually becoming poorer. This necessitates that more of the coal be processed to improve the quality to meet customer requirements. The challenge to the coal processing industry is to process low-yielding coals...

  19. Safety and licensing of MOX versus UO2 for BWRs and PWRs: Aspects applicable for civilian and weapons grade Pu

    International Nuclear Information System (INIS)

    Goldstein, L.; Malone, J.

    2000-01-01

    This paper reviews the safety and licensing differences between MOX and UO 2 BWR and PWR cores. MOX produced from the normal recycle route and from weapons grade material are considered. Reload quantities of recycle MOX assemblies have been licensed and continue to operate safely in European LWRs. In general, the European MOX assemblies in a reload are 2 . These studies indicated that no important technical or safety related issues have evolved from these studies. The general specifications used by fuel vendors for recycled MOX fuel and core designs are as follows: MOX assemblies should be designed to minimize or eliminate local power peaking mismatches with co-resident and adjacently loaded UO 2 assemblies. Power peaking at the interfaces arises from different neutronic behavior between UO 2 and MOX assemblies. A MOX core (MOX and UO 2 or all-MOX assemblies) should provide cycle energy equivalent to that of an all-UO 2 core. This applies, in particular, to recycle MOX applications. An important consideration when burning weapons grade material is rapid disposition which may not necessarily allow for cycle energy equivalence. The reactivity coefficients, kinetics data, power peaking, and the worth of shutdown systems with MOX fuel and cores must be such to meet the design criteria and fulfill requirements for safe reactor operation. Both recycle and weapons grade plutonium are considered, and positive and negative impacts are given. The paper contrasts MOX versus UO 2 with respect to safety evaluations. The consequences of some transients/accidents are compared for both types of MOX and UO 2 fuel. (author)

  20. Fuel pellet

    International Nuclear Information System (INIS)

    Hayashi, K.

    1980-01-01

    Fuel pellet for insertion into a cladding tube in order to form a fuel element or a fuel rod. The fuel pellet has got a belt-like projection around its essentially cylindrical lateral circumferential surface. The upper and lower edges in vertical direction of this belt-like projection are wave-shaped. The projection is made of the same material as the bulk pellet. Both are made in one piece. (orig.) [de

  1. Alternative Fuels for Military Applications

    Science.gov (United States)

    2011-01-01

    federal subsidies have promoted produc- tion and use of biodiesel, which is not a hydrocarbon but rather a fatty acid methyl ester ( FAME ) unsuitable for... methyl ester ( FAME ). FAME and blends of FAME with petroleum-derived fuels are currently banned from use in all deployable, tactical DoD military...fatty acid methyl ester FT Fischer-Tropsch FY fiscal year ISBL inside battery limit Navy Fuels Team Naval Fuels and Lubricants Cross-Functional Team

  2. Spent fuel management

    International Nuclear Information System (INIS)

    2005-01-01

    The production of nuclear electricity results in the generation of spent fuel that requires safe, secure and efficient management. Appropriate management of the resulting spent fuel is a key issue for the steady and sustainable growth of nuclear energy. Currently about 10,000 tonnes heavy metal (HM) of spent fuel are unloaded every year from nuclear power reactors worldwide, of which 8,500 t HM need to be stored (after accounting for reprocessed fuel). This is the largest continuous source of civil radioactive material generated, and needs to be managed appropriately. Member States have referred to storage periods of 100 years and even beyond, and as storage quantities and durations extend, new challenges arise in the institutional as well as in the technical area. The IAEA gives high priority to safe and effective spent fuel management. As an example of continuing efforts, the 2003 International Conference on Storage of Spent Fuel from Power Reactors gathered 125 participants from 35 member states to exchange information on this important subject. With its large number of Member States, the IAEA is well-positioned to gather and share information useful in addressing Member State priorities. IAEA activities on this topic include plans to produce technical documents as resources for a range of priority topics: spent fuel performance assessment and research, burnup credit applications, cask maintenance, cask loading optimization, long term storage requirements including records maintenance, economics, spent fuel treatment, remote technology, and influence of fuel design on spent fuel storage. In addition to broader topics, the IAEA supports coordinated research projects and technical cooperation projects focused on specific needs

  3. Economic assessment of greenhouse gas reduction through low-grade waste heat recovery using organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Usman, Muhammad [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Dong Hyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-02-15

    Low-grade waste heat recovery technologies reduce the environmental impact of fossil fuels and improve overall efficiency. This paper presents the economic assessment of greenhouse gas (GHG) reduction through waste heat recovery using organic Rankine cycle (ORC). The ORC engine is one of the mature low temperature heat engines. The low boiling temperature of organic working fluid enables ORC to recover low-temperature waste heat. The recovered waste heat is utilized to produce electricity and hot water. The GHG emissions for equivalent power and hot water from three fossil fuels-coal, natural gas, and diesel oil-are estimated using the fuel analysis approach and corresponding emission factors. The relative decrease in GHG emission is calculated using fossil fuels as the base case. The total cost of the ORC system is used to analyze the GHG reduction cost for each of the considered fossil fuels. A sensitivity analysis is also conducted to investigate the effect of the key parameter of the ORC system on the cost of GHG reduction. Throughout the 20-year life cycle of the ORC plant, the GHG reduction cost for R245fa is 0.02 $/kg to 0.04 $/kg and that for pentane is 0.04 $/kg to 0.05 $/kg. The working fluid, evaporation pressure, and pinch point temperature difference considerably affect the GHG emission.

  4. Comparative analysis of the properties of concrete produced with ...

    African Journals Online (AJOL)

    Compressive and flexural strength values of concrete produced with PLC grade 42.5R were higher than values obtained with grade 32.5. The 28 day compressive strength values of concrete produced with PLC grade 42.5R were, 28.0, 30.0, 35.0, and 40.0 N/mm,2 while values of 22.0, 28.0, 33.0 and 35.0 were obtained ...

  5. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  6. Fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A new fuel can with a loose bottom and head is described. The fuel bar is attached to the loose bottom and head with two grid poles keeping the distance between bottom and head. A bow-shaped handle is attached to the head so that the fuel bar can be lifted from the can

  7. Costs of electronuclear fuel production

    International Nuclear Information System (INIS)

    Flaim, T.; Loose, V.

    1978-07-01

    The Los Alamos Scientific Laboratory (LASL) proposes to study the electronuclear fuel producer (EFP) as a means of producing fissile fuel to generate electricity. The main advantage of the EFP is that it may reduce the risks of nuclear proliferation by breeding 233 U from thorium, thereby avoiding plutonium separation. A report on the costs of electronuclear fuel production based upon two designs considered by LASL is presented. The findings indicate that the EFP design variations considered are not likely to result in electricity generation costs as low as the uranium fuel cycle used in the US today. At current estimates of annual fuel output (500 kg 233 U per EFP), the costs of electricity generation using fuel produced by the EFP are more than three times higher than generating costs using the traditional fuel cycle. Sensitivity analysis indicates that electronuclear fuel production would become cost competitive with the traditional uranium fuel cycle when U 3 O 8 (yellowcake) prices approach $1000 per pound

  8. Hexaaluminate Combustion Catalysts for Fuel Cell Fuel Reformers

    National Research Council Canada - National Science Library

    Thomas, Fred S; Campbell, Timothy J; Shaaban, Aly H; Binder, Michael J; Holcomb, Frank H; Knight, James

    2004-01-01

    .... When heat is produced by combustion of logistics fuel in an open-flame or radiant burner, the rate of hydrogen production in the steam reforming reactor is generally limited by the rate of heat transfer from the burner...

  9. Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Mark; Mungal, M Godfrey

    2014-10-28

    This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

  10. 40 CFR 79.56 - Fuel and fuel additive grouping system.

    Science.gov (United States)

    2010-07-01

    ... industry-sponsored or other independent brokering arrangements. (3) Manufacturers who enroll a fuel or fuel... Specification for Automotive Spark-Ignition Engine Fuel”, used to define the general characteristics of gasoline... shall be chemical-grade quality, at a minimum, and shall not contain a significant amount of other...

  11. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Patarin, L.

    2002-01-01

    This book treats of the different aspects of the industrial operations linked with the nuclear fuel, before and after its use in nuclear reactors. The basis science of this nuclear fuel cycle is chemistry. Thus a recall of the elementary notions of chemistry is given in order to understand the phenomena involved in the ore processing, in the isotope enrichment, in the fabrication of fuel pellets and rods (front-end of the cycle), in the extraction of recyclable materials (residual uranium and plutonium), and in the processing and conditioning of wastes (back-end of the fuel cycle). Nuclear reactors produce about 80% of the French electric power and the Cogema group makes 40% of its turnover at the export. Thus this book contains also some economic and geopolitical data in order to clearly position the stakes. The last part, devoted to the management of wastes, presents the solutions already operational and also the research studies in progress. (J.S.)

  12. Fuel for the bottom line

    International Nuclear Information System (INIS)

    Dickinson, J.

    1992-01-01

    This article discusses the integration of natural gas fuel production with power production in a partnership between the gas producer and the power plant owner that benefits them both. The topics discussed in the article include modifying existing fuel supply agreements, improving the economics of projects under development, and increasing profitability

  13. High performance nuclear fuel element

    International Nuclear Information System (INIS)

    Mordarski, W.J.; Zegler, S.T.

    1980-01-01

    A fuel-pellet composition is disclosed for use in fast breeder reactors. Uranium carbide particles are mixed with a powder of uraniumplutonium carbides having a stable microstructure. The resulting mixture is formed into fuel pellets. The pellets thus produced exhibit a relatively low propensity to swell while maintaining a high density

  14. Direct fuel cell - A high proficiency power generator for biofuels

    International Nuclear Information System (INIS)

    Patel, P.S.; Steinfeld, G.; Baker, B.S.

    1994-01-01

    Conversion of renewable bio-based resources into energy offers significant benefits for our environment and domestic economic activity. It also improves national security by displacing fossil fuels. However, in the current economic environment, it is difficult for biofuel systems to compete with other fossil fuels. The biomass-fired power plants are typically smaller than 50 MW, lower in electrical efficiencies (<25%) and experience greater costs for handling and transporting the biomass. When combined with fuel cells such as the Direct Fuel Cell (DFC), biofuels can produce power more efficiently with negligible environmental impact. Agricultural and other waste biomass can be converted to ethanol or methane-rich biofuels for power generation use in the DFC. These DFC power plants are modular and factory assembled. Due to their electrochemical (non-combustion) conversion process, these plants are environmentally friendly, highly efficient and potentially cost effective, even in sizes as small as a few meagawatts. They can be sited closer to the source of the biomass to minimize handling and transportation costs. The high-grade waste heat available from DFC power plants makes them attractive in cogeneration applications for farming and rural communities. The DFC potentially opens up new markets for biofuels derived from wood, grains and other biomass waste products

  15. LPG fuel

    International Nuclear Information System (INIS)

    Dagnas, F.X.; Jeuland, N.; Fouquet, J.P.; Lauraire, S.; Coroller, P.

    2005-01-01

    LPG fuel has become frequently used through a distribution network with 2 000 service stations over the French territory. LPG fuel ranks number 3 world-wide given that it can be used on individual vehicles, professional fleets, or public transport. What is the environmental benefit of LPG fuel? What is the technology used for these engines? What is the current regulation? Government commitment and dedication on support to promote LPG fuel? Car makers projects? Actions to favour the use of LPG fuel? This article gathers 5 presentations about this topic given at the gas conference

  16. Fatigue Characterization of Functionally Graded Metallic Alloys

    International Nuclear Information System (INIS)

    Silva, F. S.

    2008-01-01

    Functionally graded components exhibit spatial variations of mechanical properties in contrast with, and as an alternative to, purely homogeneous components. A large class of graded materials, however, are in fact mostly homogeneous materials with property variations (chemical or mechanical) restricted to a specific area or layer produced by applying for example a coating or by introducing sub-surface residual stresses. However, it is also possible to obtain graded materials with a smooth transition of mechanical properties along the entire component, for example in a 40 mm component. This is possible, for example, by using centrifugal casting technique or incremental melting and solidification technique. In this paper we will study fully metallic functionally graded components with a smooth gradient, focusing on fatigue crack propagation. Fatigue propagation will be assessed in the direction parallel to the gradation (in different homogeneous layers of the functionally graded component) to assess what would be fatigue crack propagation on the direction perpendicular to the gradation. Fatigue crack growth rate (standard mode I fatigue crack growth) will be correlated to the mode I stress intensity factor range. Other mechanical properties of different layers of the component (Young's modulus) will also be considered in this analysis. The effect of residual stresses along the component gradation on crack propagation will also be taken into account. A qualitative analysis of the effects of some important features, present in functionally graded materials, will be made based on the obtained results

  17. Nano-watt fueling from a micro-scale microbial fuel cell using black tea waste

    KAUST Repository

    Rojas, Jhonathan Prieto; Alqarni, Wejdan Mohammed Mofleh; Kalantan, Kalthom Kamil Saleh; Hussain, Muhammad Mustafa; Mink, Justine E.

    2016-01-01

    In this report, we show the rapid assessment of black tea as potential fuel to power up nanopower systems using a microsized, simplistic and sustainable air-cathode microbial fuel cell. It was found that tea produced more power compared

  18. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto; Ogiya, Shunsuke.

    1989-01-01

    For improving the economy of a BWR type reactor by making the operation cycle longer, the fuel enrichment degree has to be increased further. However, this makes the subcriticality shallower in the upper portion of the reactor core, to bring about a possibility that the reactor shutdown becomes impossible. In the present invention, a portion of fuel rod is constituted as partial length fuel rods (P-fuel rods) in which the entire stack length in the effective portion is made shorter by reducing the concentration of fissionable materials in the axial portion. A plurality of moderator rods are disposed at least on one diagonal line of a fuel assembly and P-fuel rods are arranged at a position put between the moderator rods. This makes it possible to reactor shutdown and makes the axial power distribution satisfactory even if the fuel enrichment degree is increased. (T.M.)

  19. Fuel Services

    International Nuclear Information System (INIS)

    Silberstein, A.

    1982-09-01

    FRAGEMA has developed most types of inspection equipments to work on irradiated fuel assemblies and on single fuel rods during reactor outages with an efficiency compatible with the utilities operating priorities. In order to illustrate this statement, two specific examples of inspection equipments are shortly described: the on-site removable fuel rod assembly examination stand, and the fuel assembly multiple examination device. FRAGEMA has developed techniques for the identifiction of the leaking fuel rods in the fuel assembly and the tooling necessary to perform the replacement of the faulted element. These examples of methods, techniques and equipments described and the experience accumulated through their use allow FRAGEMA to qualify for offering the supply of the corresponding software, hardware or both whenever an accurate understanding of the fuel behaviour is necessary and whenever direct intervention on the assembly and associated components is necessary due to safety, operating or economical reasons

  20. Fuel assembly

    International Nuclear Information System (INIS)

    Watanabe, Shoichi; Hirano, Yasushi.

    1998-01-01

    A one-half or more of entire fuel rods in a fuel assembly comprises MOX fuel rods containing less than 1wt% of burnable poisons, and at least a portion of the burnable poisons comprises gadolinium. Then, surplus reactivity at an initial stage of operation cycle is controlled to eliminate burnable poisons remained unburnt at a final stage, as well as increase thermal reactivity. In addition, the content of fission plutonium is determined to greater than the content of uranium 235, and fuel rods at corner portions are made not to incorporate burnable poisons. Fuel rods not containing burnable poisons are disposed at positions in adjacent with fuel rods facing to a water rod at one or two directions. Local power at radial center of the fuel assembly is increased to flatten the distortion of radial power distribution. (N.H.)

  1. Fuel Handbook[Wood and other renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (SE)] (ed.)

    2006-03-15

    This handbook on renewable fuels is intended for power and heat producers in Sweden. This fuel handbook provides, from a plant owner's perspective, a method to evaluate different fuels on the market. The fuel handbook concerns renewable fuels (but does not include household waste) that are available on the Swedish market today or fuels that have potential to be available within the next ten years. The handbook covers 26 different fuels. Analysis data, special properties, operating experiences and literature references are outlined for each fuel. [Special properties, operating experiences and literature references are not included in this English version] The handbook also contains: A proposed methodology for introduction of new fuels. A recommendation of analyses and tests to perform in order to reduce the risk of problems is presented. [The recommendation of analyses and tests is not included in the English version] A summary of relevant laws and taxes for energy production, with references to relevant documentation. [Only laws and taxes regarding EU are included] Theory and background to evaluate a fuel with respect to combustion, ash and corrosion properties and methods that can be used for such evaluations. Summary of standards, databases and handbooks on biomass fuels and other solid fuels, and links to web sites where further information about the fuels can be found. The appendices includes: A methodology for trial firing of fuels. Calculations procedures for, amongst others, heating value, flue gas composition, key number and free fall velocity [Free fall velocity is not included in the English version]. In addition, conversion routines between different units for a number of different applications are provided. Fuel analyses are presented in the appendix. (The report is a translation of parts of the report VARMEFORSK--911 published in 2005)

  2. Student Test Grades in College: A Study of Possible Predictors

    Science.gov (United States)

    Hammonds, Frank; Mariano, Gina

    2015-01-01

    Research on variables related to test performance has produced mixed results. Typically, research of this type involves only a few variables. In an attempt to obtain a more complete picture, we investigated how test grades might be related to variables such as classification, student seating location, test completion time, predicted grade, time…

  3. Effect of Cement Grades on some properties of Sandcrete ...

    African Journals Online (AJOL)

    The purpose of this study is to investigate the effects of cement grade on some properties of sandcrete. The cement used for this work was Ordinary Portland cement (Dangote brand) of grade 42.5 and 32.5 meeting the requirement of ASTM C150 type 1 cement. Three types of fine aggregate was also used to produce ...

  4. Production of fuels and chemicals from apple pomace

    Energy Technology Data Exchange (ETDEWEB)

    Hang, Y.D.

    1987-03-01

    Nearly 36 million tons of apples are produced annually in the US. Approximately 45% of the total US apple production is used for processing purposes. The primary by-product of apple processing is apple pomace. It consists of the presscake resulting from pressing apples for juice or cider, including the presscake obtained in pressing peel and core wastes generated in the manufacture of apple sauce or slices. More than 500 food processing plants in the US produce a total of about 1.3 million metric tons of apple pomace each year, and it is likely that annual disposal fees exceed $10 million. Apple pomace has the potential to be used for the production of fuels (ethanol and biogas containing 60% methane) and food-grade chemicals. These uses will be reviewed in this article.

  5. Aircraft Fuel Cell Power Systems

    Science.gov (United States)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  6. 76 FR 38843 - Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards

    Science.gov (United States)

    2011-07-01

    ... or renewable fuels such as ethanol and biodiesel. Potentially regulated categories include: Examples... Feedstocks To Produce 1.28 Billion Gallons Of Biodiesel 3. Production Capacity 4. Consumption Capacity 5... 5. Transportation Fuel Cost 6. Deliverability And Transport Costs Of Materials, Goods, And Products...

  7. 77 FR 1319 - Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards

    Science.gov (United States)

    2012-01-09

    ... fuels such as ethanol and biodiesel. Potentially regulated categories include: NAICS \\1\\ Examples of... they are produced as well as the cost associated with transporting these fuels to the U.S. Of the... II.E, we believe that the 1.0 billion gallon standard can indeed be met. Since biodiesel has an...

  8. Fuel cycle developments

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is a review of the end-of-1994 status of world uranium production and fuels processing. The major producing areas/countries of the world are discussed and the production figures for each area/country are provided. The conversion services market is also discussed, as is the enrichment services market. Each of the major enrichment services provider organizations is noted

  9. Meat standards and grading: a world view.

    Science.gov (United States)

    Polkinghorne, R J; Thompson, J M

    2010-09-01

    This paper addresses the principles relating to meat standards and grading of beef and advances the concept that potential exists to achieve significant desirable change from adopting more consumer focused systems within accurate value-based payment frameworks. The paper uses the definitions that classification is a set of descriptive terms describing features of the carcass that are useful to those involved in the trading of carcasses, whereas grading is the placing of different values on carcasses for pricing purposes, depending on the market and requirements of traders. A third definition is consumer grading, which refers to grading systems that seek to define or predict consumer satisfaction with a cooked meal. The development of carcass classification and grading schemes evolved from a necessity to describe the carcass using standard terms to facilitate trading. The growth in world trade of meat and meat products and the transition from trading carcasses to marketing individual meal portions raises the need for an international language that can service contemporary needs. This has in part been addressed by the United Nations promoting standard languages on carcasses, cuts, trim levels and cutting lines. Currently no standards exist for describing consumer satisfaction. Recent Meat Standards Australia (MSA) research in Australia, Korea, Ireland, USA, Japan and South Africa showed that consumers across diverse cultures and nationalities have a remarkably similar view of beef eating quality, which could be used to underpin an international language on palatability. Consumer research on the willingness to pay for eating quality shows that consumers will pay higher prices for better eating quality grades and generally this was not affected by demographic or meat preference traits of the consumer. In Australia the MSA eating quality grading system has generated substantial premiums to retailers, wholesalers and to the producer. Future grading schemes which measure

  10. KNF's fuel service technologies and experiences

    International Nuclear Information System (INIS)

    Shin, Jung Cheol; Kwon, Jung Tack; Kim, Jaeik; Park, Jong Youl; Kim, Yong Chan

    2009-01-01

    In Korea, since 1978, the commercial nuclear power plant was operated. After 10 years, from 1988, the nuclear fuel was produced by KNF (Korea Nuclear Fuel). The Fuel Service Team was established at KNF in 1995. Through the technical self reliance periods in cooperate with advanced foreign companies for 5 years, KNF has started to carry out fuel service activities onsite in domestic nuclear power plants. By ceaseless improving and advancing our own methodologies, after that, KNF is able to provide the most safe and reliable fuel repair services and poolside examinations including the root cause analysis of failed fuels. Recently, KNF developed the fuel cleaning system using ultrasonic technique for crud removal, and the CANDU fuel sipping system to detect a failed fuel bundle in PHWR. In this paper, all of KNF's fuel service technologies are briefly described, and the gained experience in shown

  11. Role of nuclear grade graphite in controlling oxidation in modular HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Windes, Willaim [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kane, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

  12. Fuel Production from Seawater and Fuel Cells Using Seawater.

    Science.gov (United States)

    Fukuzumi, Shunichi; Lee, Yong-Min; Nam, Wonwoo

    2017-11-23

    Seawater is the most abundant resource on our planet and fuel production from seawater has the notable advantage that it would not compete with growing demands for pure water. This Review focuses on the production of fuels from seawater and their direct use in fuel cells. Electrolysis of seawater under appropriate conditions affords hydrogen and dioxygen with 100 % faradaic efficiency without oxidation of chloride. Photoelectrocatalytic production of hydrogen from seawater provides a promising way to produce hydrogen with low cost and high efficiency. Microbial solar cells (MSCs) that use biofilms produced in seawater can generate electricity from sunlight without additional fuel because the products of photosynthesis can be utilized as electrode reactants, whereas the electrode products can be utilized as photosynthetic reactants. Another important source for hydrogen is hydrogen sulfide, which is abundantly found in Black Sea deep water. Hydrogen produced by electrolysis of Black Sea deep water can also be used in hydrogen fuel cells. Production of a fuel and its direct use in a fuel cell has been made possible for the first time by a combination of photocatalytic production of hydrogen peroxide from seawater and dioxygen in the air and its direct use in one-compartment hydrogen peroxide fuel cells to obtain electric power. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Production of nuclear grade zirconium: A review

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L., E-mail: L.Xu-2@tudelft.nl [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110004 (China); Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD (Netherlands); Xiao, Y. [Department of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Sandwijk, A. van [Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Xu, Q. [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110004 (China); Yang, Y. [Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD (Netherlands)

    2015-11-15

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium as a fuel cladding material. This paper provides an overview of the processes for nuclear grade zirconium production with emphasis on the methods of Zr–Hf separation. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The known pyrometallurgical Zr–Hf separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt–metal equilibrium. In the present paper, the available Zr–Hf separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  14. Contractions from grading

    Science.gov (United States)

    Krishnan, Chethan; Raju, Avinash

    2018-04-01

    We note that large classes of contractions of algebras that arise in physics can be understood purely algebraically via identifying appropriate Zm-gradings (and their generalizations) on the parent algebra. This includes various types of flat space/Carroll limits of finite and infinite dimensional (A)dS algebras, as well as Galilean and Galilean conformal algebras. Our observations can be regarded as providing a natural context for the Grassmann approach of Krishnan et al. [J. High Energy Phys. 2014(3), 36]. We also introduce a related notion, which we call partial grading, that arises naturally in this context.

  15. Deactivation completed at historic Hanford Fuels Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1994-03-01

    This report discusses deactivation work which was completed as of March 31, 1994 at the 308 Fuels Development Laboratory (FDL) at the Hanford Site near Richland, Washington. The decision to deactivate the structure, formerly known as the Plutonium Fabrication Pilot Plant (PFPP), was driven by a 1980s Department of Energy (DOE) decision that plutonium fuels should not be fabricated in areas near the Site`s boundaries, as well as by changing facility structural requirements. Inventory transfer has been followed by the cleanout and stabilization of plutonium oxide (PuO{sub 2}) and enriched uranium oxide (UO{sub 2}) residues and powders in the facility`s equipment and duct work. The Hanford Site, located in southeastern Washington state, was one of America`s primary arsenals of nuclear defense production for nearly 50 years beginning in World War II. Approximately 53 metric tons of weapons grade plutonium, over half of the national supply and about one quarter of the world`s supply, were produced at Hanford between 1944 and 1989. Today, many Site buildings are undergoing deactivation, a precursor phase to decontamination and decommissioning (D&D). The primary difference between the two activities is that equipment and structural items are not removed or torn down in deactivation. However, utilities are disconnected, and special nuclear materials (SNM) as well as hazardous and pyrophoric substances are removed from structures undergoing this process.

  16. Deactivation completed at historic Hanford Fuels Laboratory

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1994-03-01

    This report discusses deactivation work which was completed as of March 31, 1994 at the 308 Fuels Development Laboratory (FDL) at the Hanford Site near Richland, Washington. The decision to deactivate the structure, formerly known as the Plutonium Fabrication Pilot Plant (PFPP), was driven by a 1980s Department of Energy (DOE) decision that plutonium fuels should not be fabricated in areas near the Site's boundaries, as well as by changing facility structural requirements. Inventory transfer has been followed by the cleanout and stabilization of plutonium oxide (PuO 2 ) and enriched uranium oxide (UO 2 ) residues and powders in the facility's equipment and duct work. The Hanford Site, located in southeastern Washington state, was one of America's primary arsenals of nuclear defense production for nearly 50 years beginning in World War II. Approximately 53 metric tons of weapons grade plutonium, over half of the national supply and about one quarter of the world's supply, were produced at Hanford between 1944 and 1989. Today, many Site buildings are undergoing deactivation, a precursor phase to decontamination and decommissioning (D ampersand D). The primary difference between the two activities is that equipment and structural items are not removed or torn down in deactivation. However, utilities are disconnected, and special nuclear materials (SNM) as well as hazardous and pyrophoric substances are removed from structures undergoing this process

  17. Approaches for Securing the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Jae San; Kim, Min Su; Jo, Seong Youn

    2007-01-01

    The greatest challenge to international nuclear nonproliferation regime is posed by nuclear energy's dual nature for both peaceful and military purposes. Uranium enrichment and spent nuclear fuel (SNF) reprocessing (sensitive nuclear technologies) are critical from the non-proliferation viewpoint because they may be used to produce weapons-grade nuclear materials. Therefore, since 1970s the world community started to develop further measures to curb the spread of sensitive nuclear technologies. The establishment of a Nuclear Suppliers Group (NSG) in 1975 was one such measure. The NSG united countries which voluntarily agreed to coordinate their legislation regarding export of nuclear materials, equipment and technologies to countries not possessing nuclear weapons. Alongside measures to limit the spread of sensitive nuclear technologies, multilateral approaches to the nuclear fuel cycle (NFC) started to be discussed. It's becoming increasingly important to link the objective need for an expanded use of nuclear energy with strengthening nuclear non-proliferation by preventing the spread of sensitive nuclear technologies and securing access for interested countries to NFC products and services

  18. Fuel cells fuelled by Saccharides

    International Nuclear Information System (INIS)

    Schechner, P.; Mor, L.; Sabag, N.; Rubin, Z.; Bubis, E.

    2005-01-01

    Full Text:Saccharides, like glucose, fructose and lactose, are ideal renewable fuels. They have high energy content, are safe, transportable, easy to store, non-flammable, non poisonous, non-volatile, odorless, easy to produce anywhere and abundant. Fuel Cells are electro-chemical devices capable to convert chemical energy into electrical energy from fuels, with theoretical efficiencies higher than 0.8 at room temperatures and with low pollutant emissions. Fuel Cells that can produce electricity form saccharides will be able to replace batteries, power electrical plants from biomass wastes, and serve as engines for transportation. In spite of these advantages, saccharide fuelled fuel cells are no available yet. Two obstacles hinder the feasibility of this potentially revolutionary device. The first is the high stability of the saccharides, which requires a good catalyst to extract the electrons from the saccharide fuel. The second is related to the nature of the Fuel Cells: the physical process takes place at the interface surface between the fuel and the electrode. In order to obtain high densities, materials with high surface to volume ratio are needed. Efforts to overcome these obstacles will be described. The use of saccharides as a fuel was treated from the thermodynamic point of view and compared with other common fuels currently used in fuel cells. We summarize measurements performed in a membrane less Alkaline Fuel Cell, using glucose as a fuel and KOH as electrolyte. The anode has incorporated platinum particles and operated at room temperature. Measurements were done, at different concentrations of glucose, of the Open Circuit Voltage, Polarization Curves and Power Density as function of the Current Density. The maximum Power Density reached was 0.61 mW/cm 2 when the Current density was 2.13 mA/cm 2 and the measured Open Circuit Voltage was 0.771 V

  19. Fuel analyzer; Analisador de combustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Cozzolino, Roberval [RS Motors, Indaiatuba, SP (Brazil)

    2008-07-01

    The current technology 'COMBUSTIMETRO' aims to examine the fuel through performance of the engine, as the role of the fuel is to produce energy for the combustion engine in the form of which is directly proportional to the quality and type of fuel. The 'COMBUSTIMETRO' has an engine that always keeps the same entry of air, fuel and fixed point of ignition. His operation is monitored by sensors (Sonda Lambda, RPM and Gases Analyzer) connected to a processor that performs calculations and records the information, generate reports and graphs. (author)

  20. Development of An Advanced JP-8 Fuel

    Science.gov (United States)

    1993-12-01

    included the Microthermal Precipitation Test (MTP), Fuel Reactor Test, Hot Liquid Process Simulator (HLPS), and Isothermal Corrosion Oxidation Test (ICOT... Microthermal Precipitation Test The impetus for this development effort was the need for a screening test that could discriminate between fuels of...varying propensity to produce thermally induced insoluble particulate material in the bulk fuel. The Microthermal Precipitation (MTP) test thermally

  1. The development of microfabricated biocatalytic fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi; Karube, Isao [University of Tokyo (Japan). Research Center for Advanced Science and Technology

    1999-02-01

    The production of electricity by biocatalytic fuel cells has been feasible for almost two decades and can produce electric power at a practical level. These fuel cells use immobilized microorganisms or enzymes as catalysts, and glucose as a fuel. A microfabricated enzyme battery has recently been made that is designed to function as a power supply for microsurgery robots or artificial organs. (author)

  2. Fuel selection for radioisotope thermoelectric generators

    International Nuclear Information System (INIS)

    Menezes, A.

    1988-06-01

    The availability of Radioisotope Thermoeletric Generator fuels is evaluated based on the amount of fuel discharged from selected power reactors. In general, the best alternatives are either to use Plutonium-238 produced by irradiation of Neptunium-237 generated in typical thermal reactors or to use Curium-244 directly separated from the discharged fuels of fast or thermal reactors. (author) [pt

  3. The manufacturing role in fuel performance

    International Nuclear Information System (INIS)

    Barr, A.P.

    1997-01-01

    Manufacturing companies have been involved in the CANDU fuel industry for more than 40 years. Early manufacturing contributions were the development of materials and processes used to fabricate the CANDU fuel bundle. As CANDU reactors were commissioned, the manufacturing contribution has been to produce economical, high quality fuel for the CANDU market. (author)

  4. Fuel property effects on Navy aircraft fuel systems

    Science.gov (United States)

    Moses, C. A.

    1984-01-01

    Problems of ensuring compatibility of Navy aircraft with fuels that may be different than the fuels for which the equipment was designed and qualified are discussed. To avoid expensive requalification of all the engines and airframe fuel systems, methodologies to qualify future fuels by using bench-scale and component testing are being sought. Fuel blends with increasing JP5-type aromatic concentration were seen to produce less volume swell than an equivalent aromatic concentration in the reference fuel. Futhermore, blends with naphthenes, decalin, tetralin, and naphthalenes do not deviate significantly from the correlation line of aromatic blends, Similar results are found with tensile strenth and elongation. Other elastomers, sealants, and adhesives are also being tested.

  5. Fuel assembly

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Matsuzuka, Ryuji.

    1976-01-01

    Object: To provide a fuel assembly which can decrease pressure loss of coolant to uniform temperature. Structure: A sectional area of a flow passage in the vicinity of an inner peripheral surface of a wrapper tube is limited over the entire length to prevent the temperature of a fuel element in the outermost peripheral portion from being excessively decreased to thereby flatten temperature distribution. To this end, a plurality of pincture-frame-like sheet metals constituting a spacer for supporting a fuel assembly, which has a plurality of fuel elements planted lengthwise and in given spaced relation within the wrapper tube, is disposed in longitudinal grooves and in stacked fashion to form a substantially honeycomb-like space in cross section. The fuel elements are inserted and supported in the space to form a fuel assembly. (Kamimura, M.)

  6. Fuel assemblies

    International Nuclear Information System (INIS)

    Nagano, Mamoru; Yoshioka, Ritsuo

    1983-01-01

    Purpose: To effectively utilize nuclear fuels by increasing the reactivity of a fuel assembly and reduce the concentration at the central region thereof upon completion of the burning. Constitution: A fuel assembly is bisected into a central region and a peripheral region by disposing an inner channel box within a channel box. The flow rate of coolants passing through the central region is made greater than that in the peripheral region. The concentration of uranium 235 of the fuel rods in the central region is made higher. In such a structure, since the moderating effect in the central region is improved, the reactivity of the fuel assembly is increased and the uranium concentration in the central region upon completion of the burning can be reduced, fuel economy and effective utilization of uranium can be attained. (Kamimura, M.)

  7. Fuel assembly

    International Nuclear Information System (INIS)

    Bando, Masaru.

    1993-01-01

    As neutron irradiation progresses on a fuel assembly of an FBR type reactor, a strong force is exerted to cause ruptures if the arrangement of fuel elements is not displaced, whereas the fuel elements may be brought into direct contact with each other not by way of spacers to cause burning damages if the arrangement is displaced. In the present invention, the circumference of fuel elements arranged in a normal triangle lattice is surrounded by a wrapper tube having a hexagonal cross section, wire spacers are wound therearound, and deformable spacers are distributed to optional positions for fuel elements in the wrapper tube. Interaction between the fuel elements caused by irradiation is effectively absorbed, thereby enabling to delay the occurrence of the rupture and burning damages of the elements. (N.H.)

  8. Fuel assembly

    International Nuclear Information System (INIS)

    Yokota, Tokunobu.

    1990-01-01

    A fuel assembly used in a FBR type nuclear reactor comprises a plurality of fuel rods and a moderator guide member (water rod). A moderator exit opening/closing mechanism is formed at the upper portion of the moderator guide member for opening and closing a moderator exit. In the initial fuel charging operation cycle to the reactor, the moderator exit is closed by the moderator exit opening/closing mechanism. Then, voids are accumulated at the inner upper portion of the moderator guide member to harden spectrum and a great amount of plutonium is generated and accumulated in the fuel assembly. Further, in the fuel re-charging operation cycle, the moderator guide member is used having the moderator exit opened. In this case, voids are discharged from the moderator guide member to decrease the ratio, and the plutonium accumulated in the initial charging operation cycle is burnt. In this way, the fuel economy can be improved. (I.N.)

  9. Fuel spacer

    International Nuclear Information System (INIS)

    Nishida, Koji; Yokomizo, Osamu; Kanazawa, Toru; Kashiwai, Shin-ichi; Orii, Akihito.

    1992-01-01

    The present invention concerns a fuel spacer for a fuel assembly of a BWR type reactor and a PTR type reactor. Springs each having a vane are disposed on the side surface of a circular cell which supports a fuel rods. A vortex streams having a vertical component are formed by the vanes in the flowing direction of a flowing channel between adjacent cylindrical cells. Liquid droplets carried by streams are deposited on liquid membrane streams flowing along the fuel rod at the downstream of the spacer by the vortex streams. In view of the above, the liquid droplets can be deposited to the fuel rod without increasing the amount of metal of the spacer. Accordingly, the thermal margin of the fuel assembly can be improved without losing neutron economy. (I.N.)

  10. Coordinated irradiation plan for the Fuel Refabrication and Development Program

    International Nuclear Information System (INIS)

    Barner, J.O.

    1979-04-01

    The Department of Energy's Fuel Refabrication and Development (FRAD) Program is developing a number of proliferation-resistant fuel systems and forms for alternative use in nuclear reactors. A major portion of the program is the development of irradiation behavioral information for the fuel system/forms with the ultimate objective of qualifying the design for licensing and commercial utilization. The nuclear fuel systems under development include denatured thoria--urania fuels and spiked urania--plutonia or thoria--plutonia fuels. The fuel forms being considered include pellet fuel produced from mechanically mixed or coprecipitated feed materials, pellet fuel fabricated from partially calcined gel-derived or freeze-dried spheres (hybrid fuel) and packed-particle fuel produced from sintered gel-derived spheres (sphere-pac). This document describes the coordinated development program that will be used to test and demonstrate the irradiation performance of alternative fuels

  11. Spent fuel management in Canada

    International Nuclear Information System (INIS)

    Khan, A.; Pattantyus, P.

    1999-01-01

    The current status of the Canadian spent fuel storage is presented. This includes wet and dry interim storage. Extension of wet interim storage facilities is nor planned, as dry technologies have found wide acceptance. The Canadian nuclear program is sustained by commercial Ontario Hydro CANDU type reactors, since 1971, representing 13600 MW(e) of installed capacity, able to produce 9200 spent fuel bundles (1800 tU) every year, and Hydro Quebec and New Brunswick CANDU reactors each producing 685 MW(e) and about 100 tU of spent fuel annually. The implementation of various interim (wt and dry) storage technologies resulted in simple, dense and low cost systems. Economical factors determined that the open cycle option be adopted for the CANDU type reactors rather that recycling the spent fuel. Research and development activities for immobilization and final disposal of nuclear waste are being undertaken in the Canadian Nuclear Fuel Waste Management Program

  12. Transparency associated with the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2009-01-01

    This document presents the different fuel cycle stages with which the CEA is associated, the annual flow of materials and wastes produced at these different stages, and the destiny of these produced materials and wastes. These information are given for the different CEA R and D activities: experimentation hot laboratories (activities, fuel cycle stages, list of laboratories, tables giving annual flows for each of them), research reactors (types of reactors, fuel usage modes, annual flows of nuclear materials for each reactor), spent fuel management (different types of used materials), spent fuels and radioactive wastes with a foreign origin (quantities, processes)

  13. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  14. Fuel cycle

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-01-01

    The situation of the nuclear fuel cycle for LWR type reactors in France and in the Federal Republic of Germany was presented in 14 lectures with the aim to compare the state-of-the-art in both countries. In addition to the momentarily changing fuilds of fuel element development and fueling strategies, the situation of reprocessing, made interesting by some recent developmnts, was portrayed and differences in ultimate waste disposal elucidated. (orig.) [de

  15. Endangered Animals. Second Grade.

    Science.gov (United States)

    Popp, Marcia

    This second grade teaching unit centers on endangered animal species around the world. Questions addressed are: What is an endangered species? Why do animals become extinct? How do I feel about the problem? and What can I do? Students study the definition of endangered species and investigate whether it is a natural process. They explore topics…

  16. Calculating Student Grades.

    Science.gov (United States)

    Allswang, John M.

    1986-01-01

    This article provides two short microcomputer gradebook programs. The programs, written in BASIC for the IBM-PC and Apple II, provide statistical information about class performance and calculate grades either on a normal distribution or based on teacher-defined break points. (JDH)

  17. Grades as Information

    Science.gov (United States)

    Grant, Darren

    2007-01-01

    We determine how much observed student performance in microeconomics principles can be attributed, inferentially, to three kinds of student academic "productivity," the instructor, demographics, and unmeasurables. The empirical approach utilizes an ordered probit model that relates student performance in micro to grades in prior…

  18. First Grade Baseline Evaluation

    Science.gov (United States)

    Center for Innovation in Assessment (NJ1), 2013

    2013-01-01

    The First Grade Baseline Evaluation is an optional tool that can be used at the beginning of the school year to help teachers get to know the reading and language skills of each student. The evaluation is composed of seven screenings. Teachers may use the entire evaluation or choose to use those individual screenings that they find most beneficial…

  19. The Fifth Grade Classroom.

    Science.gov (United States)

    Hartman, Michael; And Others

    An interdisciplinary design project report investigates the relationship of the fifth grade educational facility to the student and teacher needs in light of human and environmental factors. The classroom, activity and teaching spaces are analyzed with regard to the educational curriculum. Specifications and design criteria concerning equipment…

  20. Cutting Class Harms Grades

    Science.gov (United States)

    Taylor, Lewis A., III

    2012-01-01

    An accessible business school population of undergraduate students was investigated in three independent, but related studies to determine effects on grades due to cutting class and failing to take advantage of optional reviews and study quizzes. It was hypothesized that cutting classes harms exam scores, attending preexam reviews helps exam…