WorldWideScience

Sample records for producing focused intensities

  1. US evaluation of volume brain lesions produced by high-intensity focused US

    International Nuclear Information System (INIS)

    Chua, R.V.; Chua, G.T.; Fry, F.J.; Franklin, T.D.; Wills, E.R.; Hastings, J.S.; Sanghui, N.T.

    1987-01-01

    Eighteen volume brain lesions produced by high-intensity focused US in the right cerebral hemispheres of research canines were evaluated by diagnostic US from immediately after ablation up to 62 days later. Animals were killed and perfused for whole-brain recovery. US evaluation of whole-brain specimens was performed. Histologic analysis of brain sections verified lesion placement, size, and tissue response to US. These sections were compared with US studies for correlation data. Correlation data suggest that US visualization may aid in accurate placement of volume brain lesions and in evaluation of effects of high-intensity focuses US in normal brain

  2. Self-focusing in laser produced spark

    International Nuclear Information System (INIS)

    Bakos, J.S.; Foeldes, I.B.

    1983-05-01

    The self-focusing effect appearing in different phases of development of laser produced breakdown plasma in air is investigated. Self-focusing during the ionization process is demonstrated. Thermal self-focusing was observed in the later stage of the plasma development at moderate light intensities. Plasma development was investigated by forward and side scattering of the laser light in the plasma. A crossed beam experiment gave evidence of the thermal mechanism of self-focusing. (author)

  3. Volumetric intensity dependence on the formation of molecular and atomic ions within a high intensity laser focus.

    Science.gov (United States)

    Robson, Lynne; Ledingham, Kenneth W D; McKenna, Paul; McCanny, Thomas; Shimizu, Seiji; Yang, Jiamin M; Wahlström, Claes-Göran; Lopez-Martens, Rodrigo; Varju, Katalin; Johnsson, Per; Mauritsson, Johan

    2005-01-01

    The mechanism of atomic and molecular ionization in intense, ultra-short laser fields is a subject which continues to receive considerable attention. An inherent difficulty with techniques involving the tight focus of a laser beam is the continuous distribution of intensities contained within the focus, which can vary over several orders of magnitude. The present study adopts time of flight mass spectrometry coupled with a high intensity (8 x 10(15) Wcm(-2)), ultra-short (20 fs) pulse laser in order to investigate the ionization and dissociation of the aromatic molecule benzene-d1 (C(6)H(5)D) as a function of intensity within a focused laser beam, by scanning the laser focus in the direction of propagation, while detecting ions produced only in a "thin" slice (400 and 800 microm) of the focus. The resultant TOF mass spectra varies significantly, highlighting the dependence on the range of specific intensities accessed and their volumetric weightings on the ionization/dissociation pathways accessed.

  4. Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation

    Directory of Open Access Journals (Sweden)

    Shin Yoshizawa

    2017-03-01

    Full Text Available A target tissue can be thermally coagulated in high-intensity focused ultrasound (HIFU treatment noninvasively. HIFU thermal treatments have been clinically applied to various solid tumors. One of the problems in HIFU treatments is a long treatment time. Acoustically driven microbubbles can accelerate the ultrasonic heating, resulting in the significant reduction of the treatment time. In this paper, a method named “trigger HIFU exposure” which employs cavitation microbubbles is introduced and its results are reviewed. A trigger HIFU sequence consists of high-intensity short pulses followed by moderate-intensity long bursts. Cavitation bubbles induced in a multiple focal regions by rapidly scanning the focus of high-intensity pulses enhanced the temperature increase significantly and produced a large coagulation region with high efficiency.

  5. High-intensity focused ultrasound ablation around the tubing.

    Science.gov (United States)

    Siu, Jun Yang; Liu, Chenhui; Zhou, Yufeng

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17-339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10-30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography.

  6. Distribution Channel Intensity among Table Water Producers in Nigeria

    Directory of Open Access Journals (Sweden)

    Joseph Edewor Agbadudu

    2017-09-01

    Full Text Available Planning for and making reasonable decisions regarding reaching the target market with an organization’s product is a critical task on the part of management, which involves a careful evaluation and selection of its channel structure and intensity.This study therefore examines distribution channel intensity among table water producers in Edo State, Nigeria. The focus of the study is to ascertain the variables that significantly predict distribution intensity among the firms in the table water industry in Edo State. The study seeks to proffer answer to fundamental question of why brands within a single category of a given consumer good differ significantly in their distribution intensity. Using a survey research design, the data used for this study were obtained by taking a sample of 110 table water firms within the three senatorial districts in the State. The data obtained were presented and analyzed using different statistical tools such as mean and multiple regression through Statistical Packages for Social Sciences (SPSS version 22 software. Findings revealed that manufacturers’ target focus, manufacturers’ support program, brand quality and level of firm’s technological advancement were significant predictors of distribution channel intensity among the industrial players in table water industry in the State. Based on the findings, the study recommended that table water firms within the State can secure a competitive edge over their fellow counterpart in the industry by designing an optimal distribution intensity that will meet up their marketing objectives. It is also recommended that the adoption of modern technology in form of online sales is an efficient way of sales and distribution which could be used to enhance their distribution techniques if there is a need to cut down on middle men due to increased cost. The study concluded that optimal distribution intensity could be achieved not by mere imitation of competitors but through

  7. Fine focusing of intense heavy ions for the production of hot dense matter

    International Nuclear Information System (INIS)

    Heimrich, B.

    1989-02-01

    In order to perform the first experimental studies on the interaction of intense ion beams with matter an electrostatic quadrupole doublet was developed which focuses the space-charge carrying ion beam of the RFQ accelerator at the GSI Darmstadt on an area of 1 mm 2 . By an especially manufactured target holder this intense ion beam was stopped in tungsten targets and the first plasma induced by heavy ions was produced. Electrons and ions which are emitted from the plasmas have been spectroscoped by an especially for this fabricated spectrometer in their energy and time distribution in the eV region by which first comparisons between theory and praxis on the heating of dense matter by intense ion beams could be made. (orig./HSI) [de

  8. A random phased array device for delivery of high intensity focused ultrasound.

    Science.gov (United States)

    Hand, J W; Shaw, A; Sadhoo, N; Rajagopal, S; Dickinson, R J; Gavrilov, L R

    2009-10-07

    Randomized phased arrays can offer electronic steering of a single focus and simultaneous multiple foci concomitant with low levels of secondary maxima and are potentially useful as sources of high intensity focused ultrasound (HIFU). This work describes laboratory testing of a 1 MHz random phased array consisting of 254 elements on a spherical shell of radius of curvature 130 mm and diameter 170 mm. Acoustic output power and efficiency are measured for a range of input electrical powers, and field distributions for various single- and multiple-focus conditions are evaluated by a novel technique using an infrared camera to provide rapid imaging of temperature changes on the surface of an absorbing target. Experimental results show that the array can steer a single focus laterally to at least +/-15 mm off axis and axially to more than +/-15 mm from the centre of curvature of the array and patterns of four and five simultaneous foci +/-10 mm laterally and axially whilst maintaining low intensity levels in secondary maxima away from the targeted area in good agreement with linear theoretical predictions. Experiments in which pork meat was thermally ablated indicate that contiguous lesions several cm(3) in volume can be produced using the patterns of multiple foci.

  9. A random phased array device for delivery of high intensity focused ultrasound

    International Nuclear Information System (INIS)

    Hand, J W; Shaw, A; Sadhoo, N; Rajagopal, S; Dickinson, R J; Gavrilov, L R

    2009-01-01

    Randomized phased arrays can offer electronic steering of a single focus and simultaneous multiple foci concomitant with low levels of secondary maxima and are potentially useful as sources of high intensity focused ultrasound (HIFU). This work describes laboratory testing of a 1 MHz random phased array consisting of 254 elements on a spherical shell of radius of curvature 130 mm and diameter 170 mm. Acoustic output power and efficiency are measured for a range of input electrical powers, and field distributions for various single- and multiple-focus conditions are evaluated by a novel technique using an infrared camera to provide rapid imaging of temperature changes on the surface of an absorbing target. Experimental results show that the array can steer a single focus laterally to at least ±15 mm off axis and axially to more than ±15 mm from the centre of curvature of the array and patterns of four and five simultaneous foci ±10 mm laterally and axially whilst maintaining low intensity levels in secondary maxima away from the targeted area in good agreement with linear theoretical predictions. Experiments in which pork meat was thermally ablated indicate that contiguous lesions several cm 3 in volume can be produced using the patterns of multiple foci.

  10. Intensity dependence of focused ultrasound lesion position

    Science.gov (United States)

    Meaney, Paul M.; Cahill, Mark D.; ter Haar, Gail R.

    1998-04-01

    Knowledge of the spatial distribution of intensity loss from an ultrasonic beam is critical to predicting lesion formation in focused ultrasound surgery. To date most models have used linear propagation models to predict the intensity profiles needed to compute the temporally varying temperature distributions. These can be used to compute thermal dose contours that can in turn be used to predict the extent of thermal damage. However, these simulations fail to adequately describe the abnormal lesion formation behavior observed for in vitro experiments in cases where the transducer drive levels are varied over a wide range. For these experiments, the extent of thermal damage has been observed to move significantly closer to the transducer with increasing transducer drive levels than would be predicted using linear propagation models. The simulations described herein, utilize the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear propagation model with the parabolic approximation for highly focused ultrasound waves, to demonstrate that the positions of the peak intensity and the lesion do indeed move closer to the transducer. This illustrates that for accurate modeling of heating during FUS, nonlinear effects must be considered.

  11. Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries

    International Nuclear Information System (INIS)

    Ebohon, Obas John; Ikeme, Anthony Jekwu

    2006-01-01

    The need to decompose CO 2 emission intensity is predicated upon the need for effective climate change mitigation and adaptation policies. Such analysis enables key variables that instigate CO 2 emission intensity to be identified while at the same time providing opportunities to verify the mitigation and adaptation capacities of countries. However, most CO 2 decomposition analysis has been conducted for the developed economies and little attention has been paid to sub-Saharan Africa. The need for such an analysis for SSA is overwhelming for several reasons. Firstly, the region is amongst the most vulnerable to climate change. Secondly, there are disparities in the amount and composition of energy consumption and the levels of economic growth and development in the region. Thus, a decomposition analysis of CO 2 emission intensity for SSA affords the opportunity to identify key influencing variables and to see how they compare among countries in the region. Also, attempts have been made to distinguish between oil and non-oil-producing SSA countries. To this effect a comparative static analysis of CO 2 emission intensity for oil-producing and non oil-producing SSA countries for the periods 1971-1998 has been undertaken, using the refined Laspeyres decomposition model. Our analysis confirms the findings for other regions that CO 2 emission intensity is attributable to energy consumption intensity, CO 2 emission coefficient of energy types and economic structure. Particularly, CO 2 emission coefficient of energy use was found to exercise the most influence on CO 2 emission intensity for both oil and non-oil-producing sub-Saharan African countries in the first sub-interval period of our investigation from 1971-1981. In the second subinterval of 1981-1991, energy intensity and structural effect were the two major influencing factors on emission intensity for the two groups of countries. However, energy intensity effect had the most pronounced impact on CO 2 emission

  12. Gaussian representation of high-intensity focused ultrasound beams.

    Science.gov (United States)

    Soneson, Joshua E; Myers, Matthew R

    2007-11-01

    A method for fast numerical simulation of high-intensity focused ultrasound beams is derived. The method is based on the frequency-domain representation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and assumes for each harmonic a Gaussian transverse pressure distribution at all distances from the transducer face. The beamwidths of the harmonics are constrained to vary inversely with the square root of the harmonic number, and as such this method may be viewed as an extension of a quasilinear approximation. The technique is capable of determining pressure or intensity fields of moderately nonlinear high-intensity focused ultrasound beams in water or biological tissue, usually requiring less than a minute of computer time on a modern workstation. Moreover, this method is particularly well suited to high-gain simulations since, unlike traditional finite-difference methods, it is not subject to resolution limitations in the transverse direction. Results are shown to be in reasonable agreement with numerical solutions of the full KZK equation in both tissue and water for moderately nonlinear beams.

  13. Multiple high-intensity focused ultrasound probes for kidney-tissue ablation.

    Science.gov (United States)

    Häcker, Axel; Chauhan, Sunita; Peters, Kristina; Hildenbrand, Ralf; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan

    2005-10-01

    To investigate kidney-tissue ablation by high-intensity focused ultrasound (HIFU) using multiple and single probes. Ultrasound beams (1.75 MHz) produced by a piezoceramic element (focal distance 80 mm) were focused at the center of renal parenchyma. One of the three probes (mounted on a jig) could also be used for comparison with a single probe at comparable power ratings. Lesion dimensions were examined in perfused and unperfused ex vivo porcine kidneys at different power levels (40, 60, and 80 W) and treatment times (4, 6, and 8 seconds). At identical power levels, the lesions induced by multiple probes were larger than those induced by a single probe. Lesion size increased with increasing pulse duration and generator power. The sizes and shapes of the lesions were predictably repeatable in all samples. Lesions in perfused kidneys were smaller than those in unperfused kidneys. Ex vivo, kidney-tissue ablation by means of multiple HIFU probes offers significant advantages over single HIFU probes in respect of lesion size and formation. These advantages need to be confirmed by tests in vivo at higher energy levels.

  14. Focusing of high intensity ultrasound through the rib cage using a therapeutic random phased array

    Science.gov (United States)

    Bobkova, Svetlana; Gavrilov, Leonid; Khokhlova, Vera; Shaw, Adam; Hand, Jeffrey; #, ||

    2010-01-01

    A method for focusing high intensity ultrasound through a rib cage that aims to minimize heating of the ribs whilst maintaining high intensities at the focus (or foci) is proposed and tested theoretically and experimentally. Two approaches, one based on geometric acoustics and the other accounting for diffraction effects associated with propagation through the rib cage, are investigated theoretically for idealized source conditions. It is shown that for an idealized radiator the diffraction approach provides a 23% gain in peak intensity and results in significantly less power losses on the ribs (1% versus 7.5% of the irradiated power) compared with the geometric one. A 2D 1-MHz phased array with 254 randomly distributed elements, tissue mimicking phantoms, and samples of porcine rib cages are used in experiments; the geometric approach is used to configure how the array is driven. Intensity distributions are measured in the plane of the ribs and in the focal plane using an infra-red camera. Theoretical and experimental results show that it is possible to provide adequate focusing through the ribs without overheating them for a single focus and several foci, including steering at ± 10–15 mm off and ± 20 mm along the array axis. Focus splitting due to the periodic spatial structure of ribs is demonstrated both in simulations and experiments; the parameters of splitting are quantified. The ability to produce thermal lesions with a split focal pattern in ex vivo porcine tissue placed beyond the rib phantom is also demonstrated. The results suggest that the method is potentially useful for clinical applications of HIFU for which the rib cage lies between the transducer(s) and the targeted tissue. PMID:20510186

  15. Laser plasma focus produced in a ring target

    International Nuclear Information System (INIS)

    Saint-Hilaire, G.; Szili, Z.

    1976-01-01

    A new geometry for generating a laser-produced plasma is presented. A toroidal mirror is used to focus a CO 2 laser beam on the inside wall of a copper ring target. The plasma produced converges at the center of the ring where an axial plasma focus is formed. High-speed photography shows details of a plasma generated at a distance from the target surface. This new geometry could have important applications in the field of x-ray lasers

  16. Dynamics of Cavitation Clouds within a High-Intensity Focused Ultrasonic Beam

    Science.gov (United States)

    2012-03-01

    the cloud size. I. INTRODUCTION High-intensity focused ultrasound (HIFU), along with the associated cavitation , is used in a variety of fields. The...Article 3. DATES COVERED (From - To) March 2012- May 2012 4. TITLE AND SUBTITLE Dynamics of Cavitation Clouds within a High-Intensity Focused...in initially quiescent water. The resulting pressure field and behavior of the cavitation bubbles are measured using high-speed digital in-line

  17. MO-AB-210-03: Workshop [Advancements in high intensity focused ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z. [University of Chicago (United States)

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  18. Relativistic derivation of the ponderomotive force produced by two intense laser fields

    International Nuclear Information System (INIS)

    Stroscio, M.A.

    1985-01-01

    The ponderomotive force plays a fundamental role in the absorption of laser light on self-consistent plasma density profiles, in multiple-photon ionization, and in intense field electrodynamics. The relativistic corrections to the ponderomotive force of a transversely polarized electromagnetic wave lead to an approximately 20-percent reduction in the single particle ponderomotive force produced by a 10-γm 10 16 -W/cm 2 laser field. Recent experimental investigations are based on using two intense laser fields to produce desired lasermatter interactions. This paper presents the first derivation of the nonlinear relativistic ponderomotive force produced by two intense laser fields. The results demonstrate that relativistic ponderomotive forces are not additive

  19. Calculating computer-generated optical elements to produce arbitrary intensity distributions

    International Nuclear Information System (INIS)

    Findlay, S.; Nugent, K.A.; Scholten, R.E.

    2000-01-01

    Full text: We describe preliminary investigation into using a computer to generate optical elements (CGOEs) with phase-only variation, that will produce an arbitrary intensity distribution in a given image plane. An iterative calculation cycles between the CGOE and the image plane and modifies each according to the appropriate constraints. We extend this to the calculation of defined intensity distributions in two separated planes by modifying both phase and intensity at the CGOE

  20. Non-Thermal High-Intensity Focused Ultrasound for Breast Cancer Therapy

    Science.gov (United States)

    2013-07-01

    Comet assay reveals DNA strand breaks induced by ultrasonic cavitation in vitro, Ultrasound in medicine & biology 1995; 21: 841-8. 3. Dalecki D...doxorubicin, focused ultrasound , HIFU, prostate cancer I. INTRODUCTION Pulsed high-intensity focused ultrasound (pFUS) is able to create acoustic cavitation ... ultrasound for breast cancer therapy PRINCIPAL INVESTIGATOR: Chang Ming (Charlie) Ma, Ph.D

  1. Line intensities for diagnosing laser-produced plasmas

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Matthews, D.L.; Lee, R.W.; Whitten, B.L.; Kilkenny, J.D.

    1983-01-01

    We have measured relative line intensities of the K x-ray spectra of Si, Cl, and Ca from laser-produced plasmas to assess their usefulness as a plasma diagnostic. The different elements are added at low concentrations to CH disks which are irradiated at 5 x 10 14 W/cm 2 with a 0.53 μm laser pulse of 20 Joules at 1 nsec. The concentration of each element is kept low in order not to change the Z of the plasma, and therefore the plasma dynamics. The various spectra are measured with a time-resolved spectrograph to obtain line intensities as a function of time over the length of the laser pulse. These relative intensities of various He-like and H-like lines are compared with calculations from a steady-state level population code. The results give good consistency among the various line ratios. Agreement is not as good for analysis of the Li-like satellite lines. Modelling of the Li-like lines need further investigation. 10 references, 9 figures

  2. Time-dependent change of blood flow in the prostate treated with high-intensity focused ultrasound.

    Science.gov (United States)

    Shoji, Sunao; Tonooka, Akiko; Hashimoto, Akio; Nakamoto, Masahiko; Tomonaga, Tetsuro; Nakano, Mayura; Sato, Haruhiro; Terachi, Toshiro; Koike, Junki; Uchida, Toyoaki

    2014-09-01

    Avascular areas on contrast-enhanced magnetic resonance imaging have been considered to be areas of localized prostate cancer successfully treated by high-intensity focused ultrasound. However, the optimal timing of magnetic resonance imaging has not been discussed. The thermal effect of high-intensity focused ultrasound is degraded by regional prostatic blood flow. Conversely, the mechanical effect of high-intensity focused ultrasound (cavitation) is not affected by blood flow, and can induce vessel damage. In this series, the longitudinal change of blood flow on contrast-enhanced magnetic resonance imaging was observed from postoperative day 1 to postoperative day 14 in 10 patients treated with high-intensity focused ultrasound. The median rates of increase in the non-enhanced volume of the whole gland, transition zone and peripheral zone from postoperative day 1 to postoperative day 14 were 36%, 39%, and 34%, respectively. In another pathological analysis of the prostate tissue of 17 patients immediately after high-intensity focused ultrasound without neoadjuvant hormonal therapy, we observed diffuse coagulative degeneration and partial non-coagulative prostate tissue around arteries with vascular endothelial cell detachment. These observations on contrast-enhanced magnetic resonance imaging support a time-dependent change of the blood flow in the prostate treated with high-intensity focused ultrasound. Additionally, our pathological findings support the longitudinal changes of these magnetic resonance imaging findings. Further large-scale studies will investigate the most appropriate timing of contrast-enhanced magnetic resonance imaging for evaluation of the effectiveness of high-intensity focused ultrasound for localized prostate cancer. © 2014 The Japanese Urological Association.

  3. Multifunctional pulse generator for high-intensity focused ultrasound system

    Science.gov (United States)

    Tamano, Satoshi; Yoshizawa, Shin; Umemura, Shin-Ichiro

    2017-07-01

    High-intensity focused ultrasound (HIFU) can achieve high spatial resolution for the treatment of diseases. A major technical challenge in implementing a HIFU therapeutic system is to generate high-voltage high-current signals for effectively exciting a multichannel HIFU transducer at high efficiencies. In this paper, we present the development of a multifunctional multichannel generator/driver. The generator can produce a long burst as well as an extremely high-voltage short pulse of pseudosinusoidal waves (trigger HIFU) and second-harmonic superimposed waves for HIFU transmission. The transmission timing, waveform, and frequency can be controlled using a field-programmable gate array (FPGA) via a universal serial bus (USB) microcontroller. The hardware is implemented in a compact printed circuit board. The test results of trigger HIFU reveal that the power consumption and the temperature rise of metal-oxide semiconductor field-effect transistors were reduced by 19.9% and 38.2 °C, respectively, from the previous design. The highly flexible performance of the novel generator/driver is demonstrated in the generation of second-harmonic superimposed waves, which is useful for cavitation-enhanced HIFU treatment, although the previous design exhibited difficulty in generating it.

  4. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Bin; Chu Wei; Li Guihua; Zhang Haisu; Ni Jielei [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate School of Chinese Academy of Sciences, Beijing 100080 (China); Gao Hui; Liu Weiwei [Institute of Modern Optics, Nankai University, Tianjin, 300071 (China); Yao Jinping; Cheng Ya; Xu Zhizhan [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Chin, See Leang [Center for Optics, Photonics and Laser (COPL) and Department of Physics, Engineering Physics and Optics, Universite Laval, Quebec City, QC, G1V 0A6 (Canada)

    2011-12-15

    We demonstrate that the peak intensity in the filament core, which is inherently limited by the intensity clamping effect during femtosecond laser filamentation, can be significantly enhanced using spatiotemporally focused femtosecond laser pulses. In addition, the filament length obtained by spatiotemporally focused femtosecond laser pulses is {approx}25 times shorter than that obtained by a conventional focusing scheme, resulting in improved high spatial resolution.

  5. Intensity and shape of spectral lines from laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jamelot, G; Jaegle, P; Carillon, A; Wehenkel, C [Centre National de la Recherche Scientifique, 91 - Orsay (France); Paris-11 Univ., 91 - Orsay (France); Ecole Polytechnique, 91 - Palaiseau (France))

    1979-01-01

    In starting from spectral studies of multicharged ions in dense laser-produced plasmas, the main processes which determine the intensity and the shape of lines in the X-UV range are described. The role of radiation transfer is underlined. Intensity anomalies resulting from occurrence of population inversions are considered and a recent experiment performed for investigating such anomalies is described.

  6. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery.

    Science.gov (United States)

    Phenix, Christopher Peter; Togtema, Melissa; Pichardo, Samuel; Zehbe, Ingeborg; Curiel, Laura

    2014-01-01

    Ultrasonography is a safe, inexpensive and wide-spread diagnostic tool capable of producing real-time non-invasive images without significant biological effects. However, the propagation of higher energy, intensity and frequency ultrasound waves through living tissues can induce thermal, mechanical and chemical effects useful for a variety of therapeutic applications. With the recent development of clinically approved High Intensity Focused Ultrasound (HIFU) systems, therapeutic ultrasound is now a medical reality. Indeed, HIFU has been used for the thermal ablation of pathological lesions; localized, minimally invasive ultrasound-mediated drug delivery through the transient formation of pores on cell membranes; the temporary disruption of skin and the blood brain barrier; the ultrasound induced break-down of blood clots; and the targeted release of drugs using ultrasound and temperature sensitive drug carriers. This review seeks to engage the pharmaceutical research community by providing an overview on the biological effects of ultrasound as well as highlighting important therapeutic applications, current deficiencies and future directions.

  7. Relativistic focusing and ponderomotive channeling of intense laser beams

    International Nuclear Information System (INIS)

    Hafizi, B.; Ting, A.; Sprangle, P.; Hubbard, R. F.

    2000-01-01

    The ponderomotive force associated with an intense laser beam expels electrons radially and can lead to cavitation in plasma. Relativistic effects as well as ponderomotive expulsion of electrons modify the refractive index. An envelope equation for the laser spot size is derived, using the source-dependent expansion method with Laguerre-Gaussian eigenfunctions, and reduced to quadrature. The envelope equation is valid for arbitrary laser intensity within the long pulse, quasistatic approximation and neglects instabilities. Solutions of the envelope equation are discussed in terms of an effective potential for the laser spot size. An analytical expression for the effective potential is given. For laser powers exceeding the critical power for relativistic self-focusing the analysis indicates that a significant contraction of the spot size and a corresponding increase in intensity is possible. (c) 2000 The American Physical Society

  8. Focused ultrasound transducer spatial peak intensity estimation: a comparison of methods

    Science.gov (United States)

    Civale, John; Rivens, Ian; Shaw, Adam; ter Haar, Gail

    2018-03-01

    Characterisation of the spatial peak intensity at the focus of high intensity focused ultrasound transducers is difficult because of the risk of damage to hydrophone sensors at the high focal pressures generated. Hill et al (1994 Ultrasound Med. Biol. 20 259-69) provided a simple equation for estimating spatial-peak intensity for solid spherical bowl transducers using measured acoustic power and focal beamwidth. This paper demonstrates theoretically and experimentally that this expression is only strictly valid for spherical bowl transducers without a central (imaging) aperture. A hole in the centre of the transducer results in over-estimation of the peak intensity. Improved strategies for determining focal peak intensity from a measurement of total acoustic power are proposed. Four methods are compared: (i) a solid spherical bowl approximation (after Hill et al 1994 Ultrasound Med. Biol. 20 259-69), (ii) a numerical method derived from theory, (iii) a method using measured sidelobe to focal peak pressure ratio, and (iv) a method for measuring the focal power fraction (FPF) experimentally. Spatial-peak intensities were estimated for 8 transducers at three drive powers levels: low (approximately 1 W), moderate (~10 W) and high (20-70 W). The calculated intensities were compared with those derived from focal peak pressure measurements made using a calibrated hydrophone. The FPF measurement method was found to provide focal peak intensity estimates that agreed most closely (within 15%) with the hydrophone measurements, followed by the pressure ratio method (within 20%). The numerical method was found to consistently over-estimate focal peak intensity (+40% on average), however, for transducers with a central hole it was more accurate than using the solid bowl assumption (+70% over-estimation). In conclusion, the ability to make use of an automated beam plotting system, and a hydrophone with good spatial resolution, greatly facilitates characterisation of the FPF, and

  9. Paul Trap Simulator Experiment (PTSX) to simulate intense beam propagation through a periodic focusing quadrupole field

    International Nuclear Information System (INIS)

    Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong

    2002-01-01

    The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V 0 (t) over 90 deg. segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations

  10. Paul Trap Simulator Experiment (PTSX) to simulate intense beam propagation through a periodic focusing quadrupole field

    Science.gov (United States)

    Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong

    2002-01-01

    The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V0(t) over 90° segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations.

  11. Paul trap experiment to simulate intense nonneutral beam propagation through a periodic focusing field configuration

    CERN Document Server

    Davidson, R C; Majeski, R; Qin, H; Shvets, G

    2001-01-01

    This paper describes the design concept for a compact Paul trap experimental configuration that fully simulates the collective processes and nonlinear transverse dynamics of an intense charged particle beam that propagates over large distances through a periodic quadrupole magnetic field. To summarize, a long nonneutral plasma column (L>=r sub p) is confined axially by applied DC voltages V[circ]=const. on end cylinders at z=+-L, and transverse confinement is provided by segmented cylindrical electrodes (at radius r sub w) with applied oscillatory voltages +-V sub 0 (t) over 90 deg. segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact experimental facility. The nominal operating parameters in the experimental design are: barium ions (A=137); plasma column length 2L=2 m; wall radius r sub w =10...

  12. High Intensity Focused Ultrasound for Cancer Therapy--harnessing its non-linearity

    International Nuclear Information System (INIS)

    Haar, Gail ter

    2008-01-01

    In medicine in general, and for cancer treatments in particular, there is a drive to find effective non-invasive therapies. High Intensity Focused Ultrasound (HIFU) represents one such technique. In principle, it is simple--a high energy ultrasound beam is brought to a tight focus within a target which may lie several centimetres below the skin surface (for example, in a tumour of the liver), and is used to destroy a selected tissue volume. The main mechanism for cell killing in a HIFU beam is heat. Ultrasound energy absorption is frequency dependent, the higher frequencies being absorbed most strongly. Significant thermal advantage may therefore be gained from non-linear propagation, which generates higher harmonics, in tissue. Acoustic cavitation and thermal exsolution of gas (boiling) also contribute to tissue damage. This activity leads to the local mechanical disruption of cells. In addition, the non-linear oscillation of these bubbles leads to enhanced energy deposition. The acoustic emissions from such bubbles are characteristic of their behaviour and may be correlated to some extent with the appearance of the disruption produced. The more widespread clinical acceptance of HIFU is awaiting faster, and more efficient, energy delivery and treatment monitoring. A better understanding of the nonlinear aspects of HIFU propagation in tissue is thus important if this technique is to benefit more patients

  13. Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields

    International Nuclear Information System (INIS)

    Dorf, Mikhail A.; Davidson, Ronald C.; Kaganovich, Igor D.; Startsev, Edward A.

    2012-01-01

    The design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ion driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B ∼ 100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasma electrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electron dynamics strongly affected by a weak applied magnetic field.

  14. Line focus x-ray tubes-a new concept to produce high brilliance x-rays.

    Science.gov (United States)

    Bartzsch, Stefan; Oelfke, Uwe

    2017-10-27

    Currently hard coherent x-ray radiation at high photon fluxes can only be produced with large and expensive radiation sources, such as 3[Formula: see text] generation synchrotrons. Especially in medicine, this limitation prevents various promising developments in imaging and therapy from being translated into clinical practice. Here we present a new concept of highly brilliant x-ray sources, line focus x-ray tubes (LFXTs), which may serve as a powerful and cheap alternative to synchrotrons and a range of other existing technologies. LFXTs employ an extremely thin focal spot and a rapidly rotating target for the electron beam which causes a change in the physical mechanism of target heating, allowing higher electron beam intensities at the focal spot. Monte Carlo simulations and numeric solutions of the heat equation are used to predict the characteristics of the LFXT. In terms of photon flux and coherence length, the performance of the line focus x-ray tube compares with inverse Compton scattering sources. Dose rates of up to 180 Gy [Formula: see text] can be reached in 50 cm distance from the focal spot. The results demonstrate that the line focus tube can serve as a powerful compact source for phase contrast imaging and microbeam radiation therapy. The production of a prototype seems technically feasible.

  15. The Role of Focused Echocardiography in Pediatric Intensive Care: A Critical Appraisal

    Science.gov (United States)

    Gaspar, Heloisa Amaral; Morhy, Samira Saady

    2015-01-01

    Echocardiography is a key tool for hemodynamic assessment in Intensive Care Units (ICU). Focused echocardiography performed by nonspecialist physicians has a limited scope, and the most relevant parameters assessed by focused echocardiography in Pediatric ICU are left ventricular systolic function, fluid responsiveness, cardiac tamponade and pulmonary hypertension. Proper ability building of pediatric emergency care physicians and intensivists to perform focused echocardiography is feasible and provides improved care of severely ill children and thus should be encouraged. PMID:26605333

  16. Pulmonary Vein Isolation by High Intensity Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Matthias Antz

    2007-04-01

    Full Text Available Pulmonary vein isolation (PVI using radiofrequency current (RFC ablation is a potentially curative treatment option for patients with atrial fibrillation (AF. The shortcomings of the RFC technology (technically challenging, long procedure times, complications steadily kindle the interest in new energy sources and catheter designs. High intensity focused ultrasound (HIFU has the ability to precisely focus ultrasound waves in a defined area with a high energy density. HIFU balloon catheters (BC positioned at the PV ostia appear to be an ideal tool to transmit the ablation energy in a circumferential manner to the PV ostia and may therefore bear substantial advantage over conventional ablation catheters in PVI procedures. In clinical trials the HIFU BC has shown promising success rates similar to RFC catheter ablation for PVI in patients with AF. However, procedure times are still long and serious complications have been observed. Therefore, it may be a valuable alternative to the conventional techniques in selected patients but further clinical trials have to be initiated.

  17. Current status of high-intensity focused ultrasound for the management of uterine adenomyosis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Vincent Y. T. [Dept. of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong (China)

    2017-04-15

    While high-intensity focused ultrasound has been used for some time in the management of uterine fibroids, its effectiveness and safety in managing adenomyosis is less well established. A literature review was performed of all eligible reports using this modality as a treatment for adenomyosis. Relevant publications were obtained from the PubMed electronic database from inception through March 2016. Eleven articles, including information from 1,150 treatments and follow-up data from 990 patients, were reviewed. High-intensity focused ultrasound appears to be effective and safe in the management of symptomatic adenomyosis, and can be considered as an alternative uterine-sparing option for women with this condition.

  18. Current status of high-intensity focused ultrasound for the management of uterine adenomyosis

    International Nuclear Information System (INIS)

    Cheng, Vincent Y. T.

    2017-01-01

    While high-intensity focused ultrasound has been used for some time in the management of uterine fibroids, its effectiveness and safety in managing adenomyosis is less well established. A literature review was performed of all eligible reports using this modality as a treatment for adenomyosis. Relevant publications were obtained from the PubMed electronic database from inception through March 2016. Eleven articles, including information from 1,150 treatments and follow-up data from 990 patients, were reviewed. High-intensity focused ultrasound appears to be effective and safe in the management of symptomatic adenomyosis, and can be considered as an alternative uterine-sparing option for women with this condition

  19. A derating method for therapeutic applications of high intensity focused ultrasound

    Science.gov (United States)

    Bessonova, O. V.; Khokhlova, V. A.; Canney, M. S.; Bailey, M. R.; Crum, L. A.

    2010-05-01

    Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. A new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal wave-forms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue.

  20. Reduced clot debris size using standing waves formed via high intensity focused ultrasound

    Science.gov (United States)

    Guo, Shifang; Du, Xuan; Wang, Xin; Lu, Shukuan; Shi, Aiwei; Xu, Shanshan; Bouakaz, Ayache; Wan, Mingxi

    2017-09-01

    The feasibility of utilizing high intensity focused ultrasound (HIFU) to induce thrombolysis has been demonstrated previously. However, clinical concerns still remain related to the clot debris produced via fragmentation of the original clot potentially being too large and hence occluding downstream vessels, causing hazardous emboli. This study investigates the use of standing wave fields formed via HIFU to disintegrate the thrombus while achieving a reduced clot debris size in vitro. The results showed that the average diameter of the clot debris calculated by volume percentage was smaller in the standing wave mode than in the travelling wave mode at identical ultrasound thrombolysis settings. Furthermore, the inertial cavitation dose was shown to be lower in the standing wave mode, while the estimated cavitation bubble size distribution was similar in both modes. These results show that a reduction of the clot debris size with standing waves may be attributed to the particle trapping of the acoustic potential well which contributed to particle fragmentation.

  1. Self-consistent simulation studies of periodically focused intense charged-particle beams

    International Nuclear Information System (INIS)

    Chen, C.; Jameson, R.A.

    1995-01-01

    A self-consistent two-dimensional model is used to investigate intense charged-particle beam propagation through a periodic solenoidal focusing channel, particularly in the regime in which there is a mismatch between the beam and the focusing channel. The present self-consistent studies confirm that mismatched beams exhibit nonlinear resonances and chaotic behavior in the envelope evolution, as predicted by an earlier envelope analysis [C. Chen and R. C. Davidson, Phys. Rev. Lett. 72, 2195 (1994)]. Transient effects due to emittance growth are studied, and halo formation is investigated. The halo size is estimated. The halo characteristics for a periodic focusing channel are found to be qualitatively the same as those for a uniform focusing channel. A threshold condition is obtained numerically for halo formation in mismatched beams in a uniform focusing channel, which indicates that relative envelope mismatch must be kept well below 20% to prevent space-charge-dominated beams from developing halos

  2. Amide proton transfer imaging of high intensity focused ultrasound-treated tumor tissue

    NARCIS (Netherlands)

    Hectors, S.J.C.G.; Jacobs, I.; Strijkers, G.J.; Nicolay, K.

    2014-01-01

    Purpose: In this study, the suitability of amide proton transfer (APT) imaging as a biomarker for the characterization of high intensity focused ultrasound (HIFU)-treated tumor tissue was assessed. Methods: APT imaging was performed on tumor-bearing mice before (n=15), directly after (n=15) and at 3

  3. Amide Proton Transfer Imaging of High Intensity Focused Ultrasound-Treated Tumor Tissue

    NARCIS (Netherlands)

    Hectors, Stefanie J. C. G.; Jacobs, Igor; Strijkers, Gustav J.; Nicolay, Klaas

    2014-01-01

    PurposeIn this study, the suitability of amide proton transfer (APT) imaging as a biomarker for the characterization of high intensity focused ultrasound (HIFU)-treated tumor tissue was assessed. MethodsAPT imaging was performed on tumor-bearing mice before (n=15), directly after (n=15) and at 3

  4. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound

    Science.gov (United States)

    Canney, Michael S.; Khokhlova, Vera A.; Bessonova, Olga V.; Bailey, Michael R.; Crum, Lawrence A.

    2009-01-01

    Nonlinear propagation causes high intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have previously been investigated and found not to significantly alter high intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector, and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared to calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and from measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating due to shock waves is therefore important to HIFU and clinicians should be aware of the potential for very rapid boiling since it alters treatments. PMID:20018433

  5. Focusing and guiding intense electron beams by a superconductor tube

    International Nuclear Information System (INIS)

    Roth, P.

    1996-01-01

    An intense electron beam travelling axially through the opening of a superconductor tube was studied. Model calculations showed that the beam is focused by the superconductor tube when the space-charge effect of the beam electrons is compensated. The tube functions as a lens for electrons injected parallel to the tube axis and also for electrons having a small initial radial velocity component. The electron trajectories were computed, and the focal length of the superconductor tube was estimated. (author). 2 figs., 6 refs

  6. Focusing and guiding intense electron beams by a superconductor tube

    Energy Technology Data Exchange (ETDEWEB)

    Roth, P

    1997-12-31

    An intense electron beam travelling axially through the opening of a superconductor tube was studied. Model calculations showed that the beam is focused by the superconductor tube when the space-charge effect of the beam electrons is compensated. The tube functions as a lens for electrons injected parallel to the tube axis and also for electrons having a small initial radial velocity component. The electron trajectories were computed, and the focal length of the superconductor tube was estimated. (author). 2 figs., 6 refs.

  7. Theoretical and Computational Investigation of Periodically Focused Intense Charged-Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center

    2013-06-26

    The purpose of this report is to summarize results of theoretical and computational investigations of periodically focused intense charged-particle beams in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research. The breakthroughs and highlights in our research in the period from April 1, 2010 to March 30, 2013 were: a) Theory and simulation of adiabatic thermal Child-Langmuir flow; b) Particle-in-cell simulations of adiabatic thermal beams in periodic solenoidal focusing field; c)Dynamics of charged particles in an adiabatic thermal beam equilibrium in a periodic solenoidal focusing field; d) Training of undergraduate researchers and graduate student in accelerator and beam physics. A brief introduction and summary is presented. Detailed descriptions of research results are provided in an appendix of publications at the end of the report.

  8. High-intensity laser physics

    International Nuclear Information System (INIS)

    Mohideen, U.

    1993-01-01

    This thesis is a study of the effect of high intensity lasers on atoms, free electrons and the generation of X-rays from solid density plasmas. The laser produced 50 milli Joule 180 femto sec pulses at 5 Hz. This translates to a maximum intensity of 5 x 10 18 W/cm 2 . At such high fields the AC stark shifts of atoms placed at the focus is much greater than the ionization energy. The characteristics of multiphoton ionization of atoms in intense laser fields was studied by angle resolved photoelectron spectroscopy. Free electrons placed in high intensity laser fields lead to harmonic generation. This phenomenon of Nonlinear Compton Scattering was theoretically investigated. Also, when these high intensity pulses are focused on solids a hot plasma is created. This plasma is a bright source of a short X-ray pulse. The pulse-width of X-rays from these solid density plasmas was measured by time-resolved X-ray spectroscopy

  9. Designing Neutralized Drift Compression for Focusing of Intense Ion Beam Pulses in a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.; Startsev, E.A.; Barnard, J.J.; Friedman, A.; Lee, E.P.; Lidia, S.M.; Logan, B.G.; Roy, P.K.; Seidl, P.A.; Welch, D.R.; Sefkow, A.B.

    2009-01-01

    Neutralized drift compression offers an effective method for particle beam focusing and current amplification. In neutralized drift compression, a linear radial and longitudinal velocity drift is applied to a beam pulse, so that the beam pulse compresses as it drifts in the drift-compression section. The beam intensity can increase more than a factor of 100 in both the radial and longitudinal directions, resulting in more than 10,000 times increase in the beam number density during this process. The self-electric and self-magnetic fields can prevent tight ballistic focusing and have to be neutralized by supplying neutralizing electrons. This paper presents a survey of the present theoretical understanding of the drift compression process and plasma neutralization of intense particle beams. The optimal configuration of focusing and neutralizing elements is discussed in this paper.

  10. High-Intensity Focused Ultrasound (HIFU) in Localized Prostate Cancer Treatment

    International Nuclear Information System (INIS)

    Alkhorayef, Mohammed; Mahmoud, Mustafa Z.; Alzimami, Khalid S.; Sulieman, Abdelmoneim; Fagiri, Maram A.

    2015-01-01

    High-intensity focused ultrasound (HIFU) applies high-intensity focused ultrasound energy to locally heat and destroy diseased or damaged tissue through ablation. This study intended to review HIFU to explain the fundamentals of HIFU, evaluate the evidence concerning the role of HIFU in the treatment of prostate cancer (PC), review the technologies used to perform HIFU and the published clinical literature regarding the procedure as a primary treatment for PC. Studies addressing HIFU in localized PC were identified in a search of internet scientific databases. The analysis of outcomes was limited to journal articles written in English and published between 2000 and 2013. HIFU is a non-invasive approach that uses a precisely delivered ultrasound energy to achieve tumor cell necrosis without radiation or surgical excision. In current urological oncology, HIFU is used clinically in the treatment of PC. Clinical research on HIFU therapy for localized PC began in the 1990s, and the majority of PC patients were treated with the Ablatherm device. HIFU treatment for localized PC can be considered as an alternative minimally invasive therapeutic modality for patients who are not candidates for radical prostatectomy. Patients with lower pre-HIFU PSA level and favourable pathologic Gleason score seem to present better oncologic outcomes. Future advances in technology and safety will undoubtedly expand the HIFU role in this indication as more of patient series are published, with a longer follow-up period

  11. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    International Nuclear Information System (INIS)

    2015-01-01

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  12. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  13. Technical characterization of an ultrasound source for noninvasive thermoablation by high-intensity focused ultrasound.

    Science.gov (United States)

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E; Kraut, O; Alken, P

    2002-08-01

    To develop a generator for high-intensity focused ultrasound (HIFU, a method of delivering ultrasonic energy with resultant heat and tissue destruction to a tight focus at a selected depth within the body), designed for extracorporeal coupling to allow various parenchymal organs to be treated. The ultrasound generated by a cylindrical piezo-ceramic element is focused at a depth of 10 cm using a parabolic reflector with a diameter of 10 cm. A diagnostic B-mode ultrasonographic transducer is integrated into the source to allow the focus to be located in the target area. The field distribution of the sound pressure was measured in degassed water using a needle hydrophone. An ultrasound-force balance was used to determine the acoustic power. These measurements allowed the spatially averaged sound intensity to be calculated. The morphology and extent of tissue necrosis induced by HIFU was examined on an ex-vivo kidney model. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (- 6 dB). The spatially maximum averaged sound intensity was 8591 W/cm2 at an electrical power of 400 W. The lesion caused to the ex-vivo kidney at this maximum generator power with a pulse duration of 2 s was a clearly delineated ellipsoidal coagulation necrosis up to 8.8 x 2.3 mm (length x width) and with central liquefied necrosis of 7.9 x 1.9 mm. This newly developed ultrasound generator with a focal length of 10 cm can induce clear necrosis in parenchymal tissue. Because of its specific configuration and the available power range of the ultrasound generator, there is potential for therapeutic noninvasive ablation of tissue deep within a patient's body.

  14. Development of a High Intensity Focused Ultrasound (HIFU) Hydrophone System

    International Nuclear Information System (INIS)

    Schafer, Mark E.; Gessert, James

    2009-01-01

    The growing clinical use of High Intensity Focused Ultrasound (HIFU) has driven a need for reliable, reproducible measurements of HIFU acoustic fields. We have previously presented data on a reflective scatterer approach, incorporating several novel features for improved bandwidth, reliability, and reproducibility [Proc. 2005 IEEE Ultrasonics Symposium, 1739-1742]. We now report on several design improvements which have increase the signal to noise ratio of the system, and potentially reduced the cost of implementation. For the scattering element, we now use an artificial sapphire material to provide a more uniform radiating surface. The receiver is a segmented, truncated spherical structure with a 10 cm radius; the scattering element is positioned at the center of the sphere. The receiver is made from 25 micron thick, biaxially stretched PVDF, with a Pt-Au electrode on the front surface. In the new design, a specialized backing material provides the stiffness required to maintain structural stability, while at the same time providing both electrical shielding and ultrasonic absorption. Compared with the previous version, the new receiver design has improved the noise performance by 8-12 dB; the new scattering sphere has reduced the scattering loss by another 14 dB, producing an effective sensitivity of -298 dB re 1 microVolt/Pa. The design trade-off still involves receiver sensitivity with effective spot size, and signal distortion from the scatter structure. However, the reduced cost and improved repeatability of the new scatter approach makes the overall design more robust for routine waveform measurements of HIFU systems.

  15. Envelope model for passive magnetic focusing of an intense proton or ion beam propagating through thin foils

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2013-04-01

    Full Text Available Ion beams (including protons with low emittance and high space-charge intensity can be propagated with normal incidence through a sequence of thin metallic foils separated by vacuum gaps of order the characteristic transverse beam extent to transport/collimate the beam or to focus it to a small transverse spot. Energetic ions have sufficient range to pass through a significant number of thin foils with little energy loss or scattering. The foils reduce the (defocusing radial electric self-field of the beam while not altering the (focusing azimuthal magnetic self-field of the beam, thereby allowing passive self-beam focusing if the magnetic field is sufficiently strong relative to the residual electric field. Here we present an envelope model developed to predict the strength of this passive (beam generated focusing effect under a number of simplifying assumptions including relatively long pulse duration. The envelope model provides a simple criterion for the necessary foil spacing for net focusing and clearly illustrates system focusing properties for either beam collimation (such as injecting a laser-produced proton beam into an accelerator or for magnetic pinch focusing to a small transverse spot (for beam driven heating of materials. An illustrative example is worked for an idealization of a recently performed laser-produced proton-beam experiment to provide guidance on possible beam focusing and collimation systems. It is found that foils spaced on the order of the characteristic transverse beam size desired can be employed and that envelope divergence of the initial beam entering the foil lens must be suppressed to limit the total number of foils required to practical values for pinch focusing. Relatively modest proton-beam current at 10 MeV kinetic energy can clearly demonstrate strong magnetic pinch focusing achieving a transverse rms extent similar to the foil spacing (20–50  μm gaps in beam propagation distances of tens of mm

  16. The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array

    Science.gov (United States)

    Yuldashev, Petr V.; Shmeleva, Svetlana M.; Ilyin, Sergey A.; Sapozhnikov, Oleg A.; Gavrilov, Leonid R.; Khokhlova, Vera A.

    2013-04-01

    The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high-intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field, and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low-power sonications. Intensity levels at the face of the array elements that corresponded to the formation of high-amplitude shock fronts in the focal region were determined as 10 W cm-2 in the free field in water and 40 W cm-2 in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue.

  17. High-intensity focused ultrasound in the treatment of breast tumours.

    Science.gov (United States)

    Peek, Mirjam C L; Wu, Feng

    2018-01-01

    High-intensity focused ultrasound (HIFU) is a minimally invasive technique that has been used for the treatment of both benign and malignant tumours. With HIFU, an ultrasound (US) beam propagates through soft tissue as a high-frequency pressure wave. The US beam is focused at a small target volume, and due to the energy building up at this site, the temperature rises, causing coagulative necrosis and protein denaturation within a few seconds. HIFU is capable of providing a completely non-invasive treatment without causing damage to the directly adjacent tissues. HIFU can be either guided by US or magnetic resonance imaging (MRI). Guided imaging is used to plan the treatment, detect any movement during the treatment and monitor response in real-time. This review describes the history of HIFU, the HIFU technique, available devices and gives an overview of the published literature in the treatment of benign and malignant breast tumours with HIFU.

  18. Study on Laser Induced Plasma Produced in Liquid

    International Nuclear Information System (INIS)

    Tsuda, N.; Yamada, J.

    2003-01-01

    When an intense laser light is focused in liquid, a hot plasma is produced at the focal spot. The breakdown threshold and the transmittance of sodium choroids solution are observed using excimer laser or YAG laser. The breakdown threshold decreases with increasing NaCl concentration. Threshold intensity of plasma produced by YAG laser is lower than excimer laser. The behavior of plasma development is observed by a streak camera. The plasma produced by a YAG laser develops only backward. However, the plasma produced by excimer laser develops not only backward but also forward same as the plasma development in high-pressure gases

  19. Intense ion beam generator

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Sudan, R.N.

    1977-01-01

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation

  20. Variational analysis of self-focusing of intense ultrashort pulses in gases

    International Nuclear Information System (INIS)

    Arevalo, E.; Becker, A.

    2005-01-01

    By using perturbation theory we derive an expression for the electrical field of a Gaussian laser beam propagating in a gas medium. This expression is used as a trial solution in a variational method to get quasianalytical solutions for the width, intensity, and self-focusing distance. The approximation gives a better agreement with results of numerical simulations for a broad range of values of the input power than previous analytical results available in the literature. The results apply in the case of ultrashort pulses too

  1. Laser-enhanced cavitation during high intensity focused ultrasound: An in vivo study

    OpenAIRE

    Cui, Huizhong; Zhang, Ti; Yang, Xinmai

    2013-01-01

    Laser-enhanced cavitation during high intensity focused ultrasound (HIFU) was studied in vivo using a small animal model. Laser light was employed to illuminate the sample concurrently with HIFU radiation. The resulting cavitation was detected with a passive cavitation detector. The in vivo measurements were made under different combinations of HIFU treatment depths, laser wavelengths, and HIFU durations. The results demonstrated that concurrent light illumination during HIFU has the potentia...

  2. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    International Nuclear Information System (INIS)

    Chiping Chen

    2006-01-01

    Under the auspices of the research grant, the Intense Beam Theoretical Research Group at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; (c) Development of elliptic beam theory; and (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX)

  3. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    Energy Technology Data Exchange (ETDEWEB)

    Chiping Chen

    2006-10-26

    Under the auspices of the research grant, the Intense Beam Theoretical Research Goup at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; Development of elliptic beam theory; (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX).

  4. Plasma devices for focusing extreme light pulses

    International Nuclear Information System (INIS)

    Fuchs, J.; Gonoskov, A.A.; Nakatsutsumi, M.; Nazarov, W.; Quere, F.; Sergeev, A.M.; Yan, X.Q.

    2014-01-01

    Since the inception of the laser, there has been a constant push toward increasing the laser peak intensity, as this has lead to opening the exploration of new territories, and the production of compact sources of particles and radiation with unprecedented characteristics. However, increasing the peak laser intensity is usually performed by enhancing the produced laser properties, either by lowering its duration or increasing its energy, which involves a great level of complexity for the laser chain, or comes at great cost. Focusing tightly is another possibility to increase the laser intensity, but this comes at the risk of damaging the optics with target debris, as it requires their placement in close proximity to the interaction region. Plasma devices are an attractive, compact alternative to tightly focus extreme light pulses and further increase the final laser intensity. (authors)

  5. Environmental persistence of OXA-48-producing Klebsiella pneumoniae in a French intensive care unit.

    Science.gov (United States)

    Pantel, Alix; Richaud-Morel, Brigitte; Cazaban, Michel; Bouziges, Nicole; Sotto, Albert; Lavigne, Jean-Philippe

    2016-03-01

    The spread of carbapenemase-producing Gram-negative rods is an emerging global problem. This study describes the epidemiologic features of an outbreak caused by an environmental reservoir of OXA-48-producing Klebsiella pneumoniae caused by persistence of the bacteria during 20 months in an intensive care unit in France. This report emphasizes the importance of early environmental screening to interrupt the transmission of carbapenemase-producingEnterobacteriaceae. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  6. Focused transport of intense charged particle beams. Final technical report FY/93

    International Nuclear Information System (INIS)

    1997-01-01

    Many recent developments in accelerator technology have increased the need for a better understanding of the physics of intense-beam transport. Of particular interest to the work described here is the appearance, as beam intensities are increased, of a class of nonlinear phenomena which involve the collective interaction of the beam particles. Beam intensity, used as a measure of the importance of space-charge collective behavior, depends on the ratio of current to emittance. The nonlinear beam dynamics, and any resulting emittance growth, which are characteristic of the intense-beam regime, can therefore occur even at low currents in any accelerator system with sufficiently high intensity, especially in the low beta section. Furthermore, since emittance of a beam is difficult to reduce, the ultimate achievement of necessary beam luminosities requires the consideration of possible causes of longitudinal and transverse emittance growth at every stage of the beam lifetime. The research program described here has addressed the fundamental physics which comes into play during the transport, acceleration and focusing of intense beams. Because of the long term and ongoing nature of the research program discussed here, this report is divided into two sections. The first section constitutes a long term revue of the accomplishments which have resulted from the research effort reported, especially in pioneering the use of particle-in-cell (PIC) computer simulation techniques for simulation of the dynamics of space-charge-dominated beams in particle accelerators. The following section emphasizes, in more detail, the accomplishments of the FY 92/93 period immediately prior to the termination of this particular avenue of support. 41 refs

  7. Dynamic T2-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    International Nuclear Information System (INIS)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M.

    2012-01-01

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate ( 2 , since T 2 increases linearly in fat during heating. T 2 -mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T 2 . Calibration of T 2 -based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T 2 and temperature with a thermocouple. A positive T 2 temperature dependence in bone marrow of 20 ms/°C was observed. Dynamic T 2 -mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  8. Three-dimensional light distribution near the focus of a tightly focused beam of few-cycle optical pulses

    International Nuclear Information System (INIS)

    Romallosa, Kristine Marie; Bantang, Johnrob; Saloma, Caesar

    2003-01-01

    Via the Richards-Wolf vector diffraction theory, we analyze the three-dimensional intensity distribution of the focal volume that is produced by a strongly focused 750-nm beam of ultrafast, Gaussian-shaped optical pulses (10 -9 s≥ pulse width τ≥1 fs=10 -15 s). Knowledge of the three-dimensional distribution near focus is essential in determining the diffraction-limited resolution of an optical microscope. The optical spectrum of a short pulse is characterized by side frequencies about the carrier frequency. The effect of spectral broadening on the focused intensity distribution is evaluated via the Linfoot's criteria of fidelity, structural content, and correlation quality and with reference to a 750-nm cw focused beam. Different values are considered for τ and numerical aperture of the focusing lens (0.1≤X NA ≤1.2). At X NA =0.8, rapid deterioration of the focused intensity distribution is observed at τ=1.2 fs. This happens because a 750-nm optical pulse with τ=1.2 fs has an associated coherence length of 359.7 nm which is less than the Nyquist sampling interval of 375 nm that is required to sample 750 nm sinusoid without loss of information. The ill-effects of spectral broadening is weaker in two-photon excitation microscope than in its single-photon counterpart for the same focusing lens and light source

  9. Collective Focusing of Intense Ion Beam Pulses for High-energy Density Physics Applications

    International Nuclear Information System (INIS)

    Dorf, Mikhail A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2011-01-01

    The collective focusing concept in which a weak magnetic lens provides strong focusing of an intense ion beam pulse carrying a neutralizing electron background is investigated by making use of advanced particle-in-cell simulations and reduced analytical models. The original analysis by Robertson Phys. Rev. Lett. 48, 149 (1982) is extended to the parameter regimes of particular importance for several high-energy density physics applications. The present paper investigates (1) the effects of non-neutral collective focusing in a moderately strong magnetic field; (2) the diamagnetic effects leading to suppression of the applied magnetic field due to the presence of the beam pulse; and (3) the influence of a finite-radius conducting wall surrounding the beam cross-section on beam neutralization. In addition, it is demonstrated that the use of the collective focusing lens can significantly simplify the technical realization of the final focusing of ion beam pulses in the Neutralized Drift Compression Experiment-I (NDCX-I), and the conceptual designs of possible experiments on NDCX-I are investigated by making use of advanced numerical simulations.

  10. Self-modulation and anomalous collective scattering of laser produced intense ion beam in plasmas

    Directory of Open Access Journals (Sweden)

    K. Mima

    2018-05-01

    Full Text Available The collective interaction between intense ion beams and plasmas is studied by simulations and experiments, where an intense proton beam produced by a short pulse laser is injected into a pre-ionized gas. It is found that, depending on its current density, collective effects can significantly alter the propagated ion beam and the stopping power. The quantitative agreement that is found between theories and experiments constitutes the first validation of the collective interaction theory. The effects in the interaction between intense ion beams and background gas plasmas are of importance for the design of laser fusion reactors as well as for beam physics. Keywords: Two stream instabilities, Ultra intense short pulse laser, Proton beam, Wake field, Electron plasma wave, Laser plasma interaction, PACS codes: 52.38.Kd, 29.27.Fh, 52.40.Kh, 52.70.Nc

  11. An ex vivo feasibility experimental study on targeted cell surgery by high intensity focused ultrasound

    Science.gov (United States)

    Wang, Zhi Biao; Wu, Junru; Fang, Liao Qiong; Wang, Hua; Li, Fa Qi; Tian, Yun Bo; Gong, Xiao Bo; Zhang, Hong; Zhang, Lian; Feng, Ruo

    2012-10-01

    High intensity focused ultrasound (HIFU) has become a new noninvasive surgical modality in medicine. A portion of tissue seated inside a patient's body may experience coagulative necrosis after a few seconds of insonification by high intensity focused ultrasound (US) generated by an extracorporeal focusing US transducer. The region of tissue affected by coagulative necrosis (CN) usually has an ellipsoidal shape when the thermal effect due to US absorption plays the dominant role. Its long and short axes are parallel and perpendicular to the US propagation direction respectively. It was shown by ex vivo experiments that the dimension of the short and long axes of the tissue which experiences CN can be as small as 50 μm and 250 μm respectively after one second exposure of US pulse (the spatial and pulse average acoustic power is on the order of tens of Watts and the local acoustic spatial and temporal pulse averaged intensity is on the order of 3 × 104 W/cm2) generated by a 1.6 MHz HIFU transducer of 12 cm diameter and 11 cm geometric focal length (f-number = 0.92). The numbers of cells which suffered CN were estimated to be on the order of 40. This result suggests that HIFU is able to interact with tens of cells at/near its focal zone while keeping the neighboring cells minimally affected, and thus the targeted cell surgery may be achievable.

  12. Analysis of intense beam instability in a general quadrupole focusing channel with image charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, A., E-mail: animesh@vecc.gov.in; Sing Babu, P., E-mail: psb@vecc.gov.in; Pandit, V.S., E-mail: pandit@vecc.gov.in

    2016-02-01

    The stability properties of transverse envelopes of mismatched intense continuous charge particle beam propagating in a general quadrupole focusing channel have been investigated in the presence of image charge effect due to a cylindrical conducting pipe. Phase shifts and growth factors of the envelope oscillations in the case of instability are calculated by numerical evaluation of the eigenvalues of linearly perturbed envelope equations for small deviations from the matched beam conditions. A detailed study on the region of instability and its dependence on the system parameters like occupancy of the quadrupole focusing field, syncopation factor, zero current phase advance, beam intensity etc. have been carried out. It has been found that the strength and regions of envelope instability due to the lattice and confluent resonances in the parametric space are affected by the presence of image charge.

  13. Bandwidth Limitations in Characterization of High Intensity Focused Ultrasound Fields in the Presence of Shocks

    Science.gov (United States)

    Khokhlova, V. A.; Bessonova, O. V.; Soneson, J. E.; Canney, M. S.; Bailey, M. R.; Crum, L. A.

    2010-03-01

    Nonlinear propagation effects result in the formation of weak shocks in high intensity focused ultrasound (HIFU) fields. When shocks are present, the wave spectrum consists of hundreds of harmonics. In practice, shock waves are modeled using a finite number of harmonics and measured with hydrophones that have limited bandwidths. The goal of this work was to determine how many harmonics are necessary to model or measure peak pressures, intensity, and heat deposition rates of the HIFU fields. Numerical solutions of the Khokhlov-Zabolotskaya-Kuznetzov-type (KZK) nonlinear parabolic equation were obtained using two independent algorithms, compared, and analyzed for nonlinear propagation in water, in gel phantom, and in tissue. Measurements were performed in the focus of the HIFU field in the same media using fiber optic probe hydrophones of various bandwidths. Experimental data were compared to the simulation results.

  14. Observation of intense beam in low pressure from IPR Plasma Focus facility

    International Nuclear Information System (INIS)

    Kumar, R.; Shyam, A.; Chaturvedi, S.; Lathi, D.; Sarkar, Partha; Chaudhari, V.; Verma, R.; Shukla, R.; Debnath, K.; Sonara, J.; Shah, K.; Adhikary, B.

    2004-01-01

    Full text: Plasma focus (PF) is a powerful source of various ionizing radiation such as charged particles beam (ions and electrons), X-ray, neutrons etc. This device can operate from energy level of 50J to 1MJ. Plasma Focus is relatively small, simple and cheap in comparison with other radiation sources based on isotopes, accelerators and fusion reactors. Radiation pulse from PF is strong and very short. Now with the new pulsed power technology this device can be operated repeatedly with enhanced lifetime. All these features make plasma focus a versatile device for academic as well as industrial interest such as hot plasma physics and plasma collective processes, equation of state of matter under extreme conditions, material science including material characterization, dynamic equation control, and surface modification and destruction test. Intense burst of neutrons have been observed from a low energy (3.6 kJ) Mather type plasma focus device operated in 0.4 Torr pressure of deuterium medium at IPR. The emitted neutrons (10 9 /shot), that are accompanied by a strong hard X-ray pulse, were found to be having energy up to 3.26 MeV in the axial direction of the device

  15. Feasibility of MRI-guided high intensity focused ultrasound treatment for adenomyosis

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Tien-Ying [State Key Laboratory of Ultrasound Engineering in Medicine, Department of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Zhang, Lian; Chen, Wenzhi [Clinical Center of Tumor Therapy of 2nd Affiliated Hospital of Chongqing Medical University, Chongqing 400010 (China); Liu, Yinjiang; He, Min; Huang, Xiu [State Key Laboratory of Ultrasound Engineering in Medicine, Department of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Orsi, Franco [Interventional Radiology Unit, European Institute of Oncology, 435 Via Ripamonti, 20141 Milan (Italy); Wang, Zhibiao, E-mail: wangzhibiao@haifu.com.cn [State Key Laboratory of Ultrasound Engineering in Medicine, Department of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Clinical Center of Tumor Therapy of 2nd Affiliated Hospital of Chongqing Medical University, Chongqing 400010 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We tested the feasibility of MRIgHIFU ablation for adenomyosis. Black-Right-Pointing-Pointer Patients were treated with MRIgHIFU under conscious sedation. Black-Right-Pointing-Pointer Patient symptoms were assessed using SSS and UFS-QOL. Black-Right-Pointing-Pointer The mean SSS and UFS-QOL showed significant improvements at follow up. Black-Right-Pointing-Pointer No serious complications were observed 62.5 {+-} 21.6. -- Abstract: Purpose: To test the feasibility of MRI-guided high intensity focused ultrasound ablation for adenomyosis. Materials and methods: Patients with symptomatic adenomyosis were treated with MRI-guided high intensity focused ultrasound (MRIgHIFU). Under conscious sedation, MRIgHIFU was performed by a clinical MRI-compatible focused ultrasound tumour therapeutic system (JM15100, Haifu{sup Registered-Sign} Technology Co. Ltd., Chongqing, China) which is combined with a 1.5 T MRI system (Magnetom Symphony, Siemens Healthcare, Erlangen, Germany). MRI was used to calculate the volume of the uterus and lesion. Non-perfused volume of the targeted lesions was evaluated immediately after MRIgHIFU. Patient symptoms were assessed using symptom severity score (SSS) and uterine fibroids symptoms and quality of life questionnaire (UFS-QOL). Results: Ten patients with mean age of 40.3 {+-} 4 years with an average lesion size of 56.9 {+-} 12.7 mm in diameter were treated. Non-perfused volume and the percentage of non-perfused volume obtained from contrast-enhanced T1 Magnetic resonance images immediately post-treatment were 66.6 {+-} 49.4 cm{sup 3} and 62.5 {+-} 21.6%, respectively. The mean SSS and UFS-QOL showed significant improvements of 25%, 16% and 25% at 3, 6 and 12 months follow up, respectively, to pre-treatment scores. No serious complications were observed. Conclusion: Based on the results from this study, MRIgHIFU treatment appears to be a safe and feasible modality to ablate adenomyosis lesion and

  16. Histopathology of breast cancer after magnetic resonance-guided high-intensity focused ultrasound and radiofrequency ablation

    NARCIS (Netherlands)

    Knuttel, Floor; Waaijer, Laurien; Merckel, LG; van den Bosch, Maurice A A J; Witkamp, Arjen J.; Deckers, Roel; van Diest, Paul J.

    AIMS: Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation and radiofrequency ablation (RFA) are being researched as possible substitutes for surgery in breast cancer patients. The histopathological appearance of ablated tissue has not been studied in great detail. This

  17. Optimal transcostal high-intensity focused ultrasound with combined real-time 3D movement tracking and correction

    International Nuclear Information System (INIS)

    Marquet, F; Aubry, J F; Pernot, M; Fink, M; Tanter, M

    2011-01-01

    Recent studies have demonstrated the feasibility of transcostal high intensity focused ultrasound (HIFU) treatment in liver. However, two factors limit thermal necrosis of the liver through the ribs: the energy deposition at focus is decreased by the respiratory movement of the liver and the energy deposition on the skin is increased by the presence of highly absorbing bone structures. Ex vivo ablations were conducted to validate the feasibility of a transcostal real-time 3D movement tracking and correction mode. Experiments were conducted through a chest phantom made of three human ribs immersed in water and were placed in front of a 300 element array working at 1 MHz. A binarized apodization law introduced recently in order to spare the rib cage during treatment has been extended here with real-time electronic steering of the beam. Thermal simulations have been conducted to determine the steering limits. In vivo 3D-movement detection was performed on pigs using an ultrasonic sequence. The maximum error on the transcostal motion detection was measured to be 0.09 ± 0.097 mm on the anterior–posterior axis. Finally, a complete sequence was developed combining real-time 3D transcostal movement correction and spiral trajectory of the HIFU beam, allowing the system to treat larger areas with optimized efficiency. Lesions as large as 1 cm in diameter have been produced at focus in excised liver, whereas no necroses could be obtained with the same emitted power without correcting the movement of the tissue sample.

  18. High-Intensity Focused Ultrasound Treatment for Advanced Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2014-01-01

    Full Text Available Pancreatic cancer is under high mortality but has few effective treatment modalities. High-intensity focused ultrasound (HIFU is becoming an emerging approach of noninvasively ablating solid tumor in clinics. A variety of solid tumors have been tried on thousands of patients in the last fifteen years with great success. The principle, mechanism, and clinical outcome of HIFU were introduced first. All 3022 clinical cases of HIFU treatment for the advanced pancreatic cancer alone or in combination with chemotherapy or radiotherapy in 241 published papers were reviewed and summarized for its efficacy, pain relief, clinical benefit rate, survival, Karnofsky performance scale (KPS score, changes in tumor size, occurrence of echogenicity, serum level, diagnostic assessment of outcome, and associated complications. Immune response induced by HIFU ablation may become an effective way of cancer treatment. Comments for a better outcome and current challenges of HIFU technology are also covered.

  19. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU).

    Science.gov (United States)

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E

    2015-11-03

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.

  20. Initial development of ponderomotive filaments in plasma from intense hot spots produced by a random phase plate

    International Nuclear Information System (INIS)

    Rose, H.A.; DuBois, D.F.

    1993-01-01

    Local intensity peaks, hot spots, in laser beams may initiate self-focusing, in lieu of linear instabilities. If the hot spot power, P, contains several times the critical power, P c , and if the plasma density, n, is small compared to the critical density, n c , then on a time scale less than an acoustic transit time across the hot spot radius, τ ia , the hot spot collapses, capturing order unity of the initial hot spot power. The collapse time is determined as a universal function of P/P c and τ ia . The focal region moves towards the laser with an initially supersonic speed, and decelerates as it propagates. The power of this back propagating focus decreases monotonically until the critical power is reached. This limiting, shallowest, focus develops on a time scale long compared to τ ia and corresponds to the focus obtained in a model with adiabatically responding ions. For low-density plasma nonlinear ion effects terminate collapse and a bound on the transient intensity amplification is obtained as a universal function of the optics f/number, F, and n/n c . The boundary between thermal and ponderomotive regimes depends upon F and not the laser intensity

  1. Charge-exchange-induced formation of hollow atoms in high-intensity laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosmej, F.B. [TU-Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Faenov, A.Ya.; Pikuz, T.A.; Magunov, A.I.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Auguste, T.; D' Oliveira, P.; Hulin, S.; Monot, P. [Commissariat a lEnergie Atomique DSM/DRECAM/SPAM, Gif-Sur-Yvette Cedex (France); Andreev, N.E.; Chegotov, M.V.; Veisman, M.E. [High Energy Density Research Centre, Institute of High Temperatures of Russian Academy of Sciences, Moscow (Russian Federation)

    1999-03-14

    For the first time registration of high-resolution soft x-ray emission and atomic data calculations of hollow-atom dielectronic satellite spectra of highly charged nitrogen have been performed. Double-electron charge-exchange processes from excited states are proposed for the formation of autoionizing levels nln'l' in high-intensity laser-produced plasmas, when field-ionized ions penetrate into the residual gas. Good agreement is found between theory and experiment. Plasma spectroscopy with hollow ions is proposed and a temperature diagnostic for laser-produced plasmas in the long-lasting recombining regime is developed. (author). Letter-to-the-editor.

  2. Comparative study of lesions created by high-intensity focused ultrasound using sequential discrete and continuous scanning strategies.

    Science.gov (United States)

    Fan, Tingbo; Liu, Zhenbo; Zhang, Dong; Tang, Mengxing

    2013-03-01

    Lesion formation and temperature distribution induced by high-intensity focused ultrasound (HIFU) were investigated both numerically and experimentally via two energy-delivering strategies, i.e., sequential discrete and continuous scanning modes. Simulations were presented based on the combination of Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and bioheat equation. Measurements were performed on tissue-mimicking phantoms sonicated by a 1.12-MHz single-element focused transducer working at an acoustic power of 75 W. Both the simulated and experimental results show that, in the sequential discrete mode, obvious saw-tooth-like contours could be observed for the peak temperature distribution and the lesion boundaries, with the increasing interval space between two adjacent exposure points. In the continuous scanning mode, more uniform peak temperature distributions and lesion boundaries would be produced, and the peak temperature values would decrease significantly with the increasing scanning speed. In addition, compared to the sequential discrete mode, the continuous scanning mode could achieve higher treatment efficiency (lesion area generated per second) with a lower peak temperature. The present studies suggest that the peak temperature and tissue lesion resulting from the HIFU exposure could be controlled by adjusting the transducer scanning speed, which is important for improving the HIFU treatment efficiency.

  3. Magnetic resonance–guided interstitial high-intensity focused ultrasound for brain tumor ablation

    Science.gov (United States)

    MacDonell, Jacquelyn; Patel, Niravkumar; Rubino, Sebastian; Ghoshal, Goutam; Fischer, Gregory; Burdette, E. Clif; Hwang, Roy; Pilitsis, Julie G.

    2018-01-01

    Currently, treatment of brain tumors is limited to resection, chemotherapy, and radiotherapy. Thermal ablation has been recently explored. High-intensity focused ultrasound (HIFU) is being explored as an alternative. Specifically, the authors propose delivering HIFU internally to the tumor with an MRI-guided robotic assistant (MRgRA). The advantage of the authors’ interstitial device over external MRI-guided HIFU (MRgHIFU) is that it allows for conformal, precise ablation and concurrent tissue sampling. The authors describe their workflow for MRgRA HIFU delivery. PMID:29385926

  4. T1 ρ mapping for the evaluation of high intensity focused ultrasound tumor treatment

    NARCIS (Netherlands)

    Hectors, Stefanie J. C. G.; Moonen, Rik P. M.; Strijkers, Gustav J.; Nicolay, Klaas

    2015-01-01

    This study was aimed to assess the effects of High Intensity Focused Ultrasound (HIFU) thermal ablation on tumor T1ρ . In vivo T1ρ measurements of murine tumors at various spin-lock amplitudes (B1 = 0-2000 Hz) were performed before (n = 13), directly after (n = 13) and 3 days (n = 7) after HIFU

  5. Geometrical optimization of an ellipsoidal plasma mirror toward tight focusing of ultra-intense laser pulse

    International Nuclear Information System (INIS)

    Kon, A; Nakatsutsumi, M; Chen, Z L; Kodama, R; Buffechoux, S; Fuchs, J; Jin, Z

    2010-01-01

    We developed for the first time, very compact ( 3 ) extremely low f-number (f/number = 0.4) confocal ellipsoid focusing systems. Direct measurement of the laser focal spot using a low-energy laser beam indicates 1/5 reduction of the spot size compared to standard focusing (using a f/2.7 optics). Such mirror is thus able to achieve significant enhancement of the focused laser intensity without modifying the laser system itself. The mirror is then used under plasma mirror regime which enables us to compactify the size, to liberate us from the anxiety of protecting the optics from target debris after shots, and to enhance the temporal contrast. In this paper, we focus our attention to designing and optimizing the geometry of such innovative plasma optics.

  6. A new flow focusing technique to produce very thin jets

    International Nuclear Information System (INIS)

    Acero, A J; Rebollo-Muñoz, N; Montanero, J M; Gañán-Calvo, A M; Vega, E J

    2013-01-01

    A new technique is proposed in this paper to produce jets, droplets, and emulsions with sizes ranging from tens of microns down to the submicrometer scale. Liquid is injected at a constant flow rate through a hypodermic needle to form a film over the needle's outer surface. This film flows toward the needle tip until a liquid ligament is steadily ejected. Both the film motion and the liquid ejection are driven by the viscous and pressure forces exerted by a coflowing fluid stream. If this stream is a high-speed gas current, the outcome is a capillary jet which breaks up into droplets due to the Rayleigh instability. Micrometer emulsions are also produced by this instability mechanism when the injected liquid is focused by a viscous liquid stream. The minimum flow rates reached with the proposed technique are two orders of magnitude lower than those of the standard flow focusing configuration. This sharp reduction of the minimum flow rate allows one to form steady jets with radii down to the submicrometer scale. The stability of this new configuration is analyzed experimentally for both gas–liquid and liquid–liquid systems. In most of the cases, the loss of stability must be attributed to the liquid source because the critical Weber (capillary) number for the gas–liquid (liquid–liquid) case was significantly greater than the value corresponding to the convective/absolute instability transition in the jet. (paper)

  7. Trans-abdominal ultrasound evaluation of high-intensity focused ultrasound treatment of uterine leiomyoma

    International Nuclear Information System (INIS)

    Miao Wei; Huang Jin; Wang Junhua; Wang Yuling

    2010-01-01

    Objective: To determine the value of dynamic trans-abdominal ultrasound after high-intensity focused ultrasound (HIFU) treatment of uterine leiomyomas. Methods: The trans-abdominal ultrasound images of 63 patients before and after HIFU treatment of uterine leiomyomas were compared. Results: The volume and blood flow of leiomyomas were reduced after the HIFU treatment. Conclusion: Trans-abdominal ultrasound is a valuable method for evaluating the results of HIFU treatment of uterine leiomyomas. (authors)

  8. High-intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic power.

    Science.gov (United States)

    Pajek, Daniel; Burgess, Alison; Huang, Yuexi; Hynynen, Kullervo

    2014-09-01

    The purpose of this study was to evaluate use of intravascular perfluorocarbon droplets to reduce the sonication power required to achieve clot lysis with high-intensity focused ultrasound. High-intensity focused ultrasound with droplets was initially applied to blood clots in an in vitro flow apparatus, and inertial cavitation thresholds were determined. An embolic model for ischemic stroke was used to illustrate the feasibility of this technique in vivo. Recanalization with intravascular droplets was achieved in vivo at 24 ± 5% of the sonication power without droplets. Recanalization occurred in 71% of rabbits that received 1-ms pulsed sonications during continuous intravascular droplet infusion (p = 0.041 vs controls). Preliminary experiments indicated that damage was confined to the ultrasonic focus, suggesting that tolerable treatments would be possible with a more tightly focused hemispheric array that allows the whole focus to be placed inside of the main arteries in the human brain. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Electrostatic plasma lens for focusing negatively charged particle beams.

    Science.gov (United States)

    Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M

    2012-02-01

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  10. DEVELOPMENT OF A WATER SPOUT FOR THE ACTIVE EXTINGUISHING OF THE FOCUS OF AN INTENSE FLAME

    Directory of Open Access Journals (Sweden)

    Stanislav LICHOROBIEC

    2017-12-01

    Full Text Available The topic of the article is devoted to the experimental development of directional charges, which have a front part filled with water and are thus capable of forming a high velocity water jet, which has intense cooling effects and is accompanied by a shock wave created by the explosion of the charge. The water jet can then be used to extinguish the flame from an intense fire epicenter caused, for example, by a gas pipe failure, a tank with flammable liquid or an oil well. The text is accompanied with the visual design of the water spout prototype, including the experimental test of extinguishing the focus of an intense flame caused by various sources.

  11. Raman Amplification with a Flying Focus

    Science.gov (United States)

    Turnbull, D.; Bucht, S.; Davies, A.; Haberberger, D.; Kessler, T.; Shaw, J. L.; Froula, D. H.

    2018-01-01

    We propose a new laser amplifier scheme utilizing stimulated Raman scattering in plasma in conjunction with a "flying focus"—a chromatic focusing system combined with a chirped pump beam that provides spatiotemporal control over the pump's focal spot. Pump intensity isosurfaces are made to propagate at v =-c so as to be in sync with the injected counterpropagating seed pulse. By setting the pump intensity in the interaction region to be just above the ionization threshold of the background gas, an ionization wave is produced that travels at a fixed distance ahead of the seed. Simulations show that this will make it possible to optimize the plasma temperature and mitigate many of the issues that are known to have impacted previous Raman amplification experiments, in particular, the growth of precursors.

  12. Conceptual design of a novel instrument for producing intense pulses of 10 ps X-rays for ultra-fast fluorescence measurements

    International Nuclear Information System (INIS)

    Gruber, G.J.; Derenzo, S.E.

    1996-01-01

    A novel bench-top device for producing intense, fast pulses of x-rays has been designed with 10 ps fwhm (full-width at half-maximum) x-ray pulse width, 120 keV maximum energy, 100 kHz repetition rate, and 1 A peak current onto the x-ray anode. The device includes three sections: (1) an electron gun that generates 5 ns wide pulses of 120 keV electrons at 100 kHz; (2) solenoidal magnetic lenses and deflection plates that focus the electrons onto an aperture plate and sweep the pulsed beam past the aperture, respectively; and (3) a tungsten anode onto which the post-aperture electrons are focused, producing pulses of x-rays. Using solenoidal magnetic lenses with a cur-rent density of 150 A·turns/cm 2 to focus the electron beam, a deflection plate dV/dt of 10 13 V/s is needed to achieve electron pulse widths of about 10 ps. The design process used EGUN (an electron optics and gun design program) electron trajectory simulations, including calculation of important space charge effects. When built, this instrument will be used to excite scintillator samples in crystal or powdered form, allowing fluorescent lifetimes and spectra to be measured with a microchannel PMT. The very narrow 10 ps x-ray pulse width is necessary for accurate measurements of the risetimes of very fast scintillators, (e.g., BaF 2 ). In addition, the large x-ray flux (1 A peak current) is advantageous when using a reflection grating monochromator to measure decay times at different wavelengths

  13. ''Flicker'' in laser-plasma self-focusing

    International Nuclear Information System (INIS)

    Coggeshall, S.V.; Mead, W.C.; Jones, R.D.

    1988-01-01

    Under certain conditions, a new mode of laser-plasma self-focusing can occur which is characterized by a self-sustaining, continual shifting of filament-produced focal spots and a somewhat chaotic redistribution of light at the critical surface. Associated with this phenomenon is the possibility of significant intensity multiplication due to self-focusing. This flickering of laser light is caused by small amplitude, short wavelength ion acoustic waves which are produced near the foci of the filaments and subsequently propagate and convect toward the laser. As these ion fluctuations move toward the laser, they cause further light ray trajectory changes which shift the locations of the foci. New sound waves are launched and the process is self-perpetuated. 7 refs., 5 figs

  14. Developing a minimum dataset for nursing team leader handover in the intensive care unit: A focus group study.

    Science.gov (United States)

    Spooner, Amy J; Aitken, Leanne M; Corley, Amanda; Chaboyer, Wendy

    2018-01-01

    Despite increasing demand for structured processes to guide clinical handover, nursing handover tools are limited in the intensive care unit. The study aim was to identify key items to include in a minimum dataset for intensive care nursing team leader shift-to-shift handover. This focus group study was conducted in a 21-bed medical/surgical intensive care unit in Australia. Senior registered nurses involved in team leader handovers were recruited. Focus groups were conducted using a nominal group technique to generate and prioritise minimum dataset items. Nurses were presented with content from previous team leader handovers and asked to select which content items to include in a minimum dataset. Participant responses were summarised as frequencies and percentages. Seventeen senior nurses participated in three focus groups. Participants agreed that ISBAR (Identify-Situation-Background-Assessment-Recommendations) was a useful tool to guide clinical handover. Items recommended to be included in the minimum dataset (≥65% agreement) included Identify (name, age, days in intensive care), Situation (diagnosis, surgical procedure), Background (significant event(s), management of significant event(s)) and Recommendations (patient plan for next shift, tasks to follow up for next shift). Overall, 30 of the 67 (45%) items in the Assessment category were considered important to include in the minimum dataset and focused on relevant observations and treatment within each body system. Other non-ISBAR items considered important to include related to the ICU (admissions to ICU, staffing/skill mix, theatre cases) and patients (infectious status, site of infection, end of life plan). Items were further categorised into those to include in all handovers and those to discuss only when relevant to the patient. The findings suggest a minimum dataset for intensive care nursing team leader shift-to-shift handover should contain items within ISBAR along with unit and patient specific

  15. High-intensity focused ultrasound to treat primary hyperparathyroidism: a feasibility study in four patients

    DEFF Research Database (Denmark)

    Kovatcheva, Roussanka D; Vlahov, Jordan D; Shinkov, Alexander D

    2010-01-01

    Many patients with primary hyperparathyroidism either decline or are not candidates for surgical parathyroidectomy. There are drawbacks to medical therapy as well as percutaneous ethanol injection as alternative therapies for primary hyperparathyroidism. Therefore, in this pilot study, our aim...... was to test the feasibility, safety, and efficacy of a newly developed noninvasive high-intensity focused ultrasound (HIFU) technique for the nonsurgical management of primary hyperparathyroidism....

  16. Intense pulsed sources of ions and electrons produced by lasers

    International Nuclear Information System (INIS)

    Bourrabier, G.; Consoli, T.; Slama, L.

    1966-11-01

    We describe a device for the acceleration of the plasma burst produced by focusing a laser beam into a metal target. We extract the electrons and the ions from the plasma. The maximum current is around 2000 amperes during few microseconds. The study of the effect of the kind of the target on the characteristics of the current shows the great importance of the initial conditions that is the ionisation potential of the target and the energy laser. (authors) [fr

  17. Dependence of high order harmonics intensity on laser focal spot position in preformed plasma plumes

    International Nuclear Information System (INIS)

    Singhal, H.; Ganeev, R.; Naik, P. A.; Arora, V.; Chakravarty, U.; Gupta, P. D.

    2008-01-01

    The dependence of the high-order harmonic intensity on the laser focal spot position in laser produced plasma plumes is experimentally studied. High order harmonics up to the 59th order (λ∼13.5 nm) were generated by focusing 48 fs laser pulses from a Ti:sapphire laser system in silver plasma plume produced using 300 ps uncompressed laser radiation as the prepulse. The intensity of harmonics nearly vanished when the best focus was located in the plume center, whereas it peaked on either side with unequal intensity. The focal spot position corresponding to the peak harmonic intensity moved away from the plume center for higher order harmonics. The results are explained in terms of the variation of phase mismatch between the driving laser beam and harmonics radiation produced, relativistic drift of electrons, and defocusing effect due to radial ionization gradient in the plasma for different focal spot positions

  18. High intensity focused ultrasound treatment of small renal masses: Clinical effectiveness and technological advances

    Science.gov (United States)

    Nabi, G.; Goodman, C.; Melzer, A.

    2010-01-01

    The review summarises the technological advances in the application of high-intensity focused ultrasound for small renal masses presumed to be cancer including the systematic review of its clinical application. Current progress in the area of magnetic resonance image guided ultrasound ablation is also appraised. Specifically, organ tracking and real time monitoring of temperature changes during the treatment are discussed. Finally, areas of future research interest are outlined. PMID:21116349

  19. High intensity focused ultrasound treatment of small renal masses: Clinical effectiveness and technological advances

    OpenAIRE

    Nabi, G.; Goodman, C.; Melzer, A.

    2010-01-01

    The review summarises the technological advances in the application of high-intensity focused ultrasound for small renal masses presumed to be cancer including the systematic review of its clinical application. Current progress in the area of magnetic resonance image guided ultrasound ablation is also appraised. Specifically, organ tracking and real time monitoring of temperature changes during the treatment are discussed. Finally, areas of future research interest are outlined.

  20. Managing social awkwardness when caring for morbidly obese patients in intensive care: A focused ethnography.

    Science.gov (United States)

    Hales, Caz; de Vries, Kay; Coombs, Maureen

    2016-06-01

    Critically ill morbidly obese patients pose considerable healthcare delivery and resource utilisation challenges in the intensive care setting. These are resultant from specific physiological responses to critical illness in this population and the nature of the interventional therapies used in the intensive care environment. An additional challenge arises for this population when considering the social stigma that is attached to being obese. Intensive care staff therefore not only attend to the physical and care needs of the critically ill morbidly obese patient but also navigate, both personally and professionally, the social terrain of stigma when providing care. To explore the culture and influences on doctors and nurses within the intensive care setting when caring for critically ill morbidly obese patients. A focused ethnographic approach was adopted to elicit the 'situated' experiences of caring for critically ill morbidly obese patients from the perspectives of intensive care staff. Participant observation of care practices and interviews with intensive care staff were undertaken over a four month period. Analysis was conducted using constant comparison technique to compare incidents applicable to each theme. An 18 bedded tertiary intensive care unit in New Zealand. Sixty-seven intensive care nurses and 13 intensive care doctors involved with the care and management of seven critically ill patients with a body mass index ≥40kg/m(2). Interactions between intensive care staff and morbidly obese patients were challenging due to the social stigma surrounding obesity. Social awkwardness and managing socially awkward moments were evident when caring for morbidly obese patients. Intensive care staff used strategies of face-work and mutual pretence to alleviate feelings of discomfort when engaged in aspects of care and caring. This was a strategy used to prevent embarrassment and distress for both the patients and staff. This study has brought new understandings

  1. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma

    Science.gov (United States)

    Salehi, M.; Mirzanejad, S.

    2017-05-01

    Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.

  2. Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended Young's experiment

    Directory of Open Access Journals (Sweden)

    Ichiro Inoue

    2015-11-01

    Full Text Available Characterization of transverse coherence is one of the most critical themes for advanced X-ray sources and their applications in many fields of science. However, for hard X-ray free-electron laser (XFEL sources there is very little knowledge available on their transverse coherence characteristics, despite their extreme importance. This is because the unique characteristics of the sources, such as the ultra-intense nature of XFEL radiation and the shot-by-shot fluctuations in the intensity distribution, make it difficult to apply conventional techniques. Here, an extended Young's interference experiment using a stream of bimodal gold particles is shown to achieve a direct measurement of the modulus of the complex degree of coherence of XFEL pulses. The use of interference patterns from two differently sized particles enables analysis of the transverse coherence on a single-shot basis without a priori knowledge of the instantaneous intensity ratio at the particles. For a focused X-ray spot as small as 1.8 µm (horizontal × 1.3 µm (vertical with an ultrahigh intensity that exceeds 1018 W cm−2 from the SPring-8 Ångstrom Compact free-electron LAser (SACLA, the coherence lengths were estimated to be 1.7 ± 0.2 µm (horizontal and 1.3 ± 0.1 µm (vertical. The ratios between the coherence lengths and the focused beam sizes are almost the same in the horizontal and vertical directions, indicating that the transverse coherence properties of unfocused XFEL pulses are isotropic. The experiment presented here enables measurements free from radiation damage and will be readily applicable to the analysis of the transverse coherence of ultra-intense nanometre-sized focused XFEL beams.

  3. [THE ENVIRONMENTAL BASES AND MECHANISM FOR NATURAL OPISTHORCHIASIS FOCUS PULSATION IN THE COMBINED FOCUS OF OPISTHORCHIASIS AND TULAREMIA].

    Science.gov (United States)

    Ushakov, A V

    2015-01-01

    A cyclic change in the epizootic activity of a tularemia activity underlies the mechanism of natural opisthorchiasis focus pulsation in the combined focus of opisthorchiasis and tularemia in the ecosystem of the Konda River. This is due to mass breeding and depression in the water vole (Arvicola terrestris) population. The mass breeding is predetermined by high population reproduction constants. The rodents' potential fecundity occurs with the high capacity of lands, which is caused by the hydrological regime of rivers. The size depression is predetermined by the epizootics of tularemia. The water vole is a host of the pathogens of opisthorchiasis and tularemia. So the mass rodent breeding in the combined infection and invasion focus causes an increase in the number of real invasion sources. The epizootic of tularemia is responsible for elimination of these invasion sources and for decreases in the flow of invasion material, the infection rate of Codiella and hence the amount of their produced cercarae, the extensive and intensive indicators of fish contamination, and the intensity of an epizootic process in the opisthorchiasis focus.

  4. Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling

    NARCIS (Netherlands)

    Yeoh, S.Y.; Arias Moreno, A.J.; Rietbergen, van B.; Hoeve, ter N.D.; Diest, van P.J.; Grull, H.

    2015-01-01

    Background Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for palliative treatment of bone pain. In this study, the effects of MR-HIFU ablation on bone mechanics and modeling were investigated. Methods A total of 12 healthy rat femurs were ablated

  5. Experimental studies of particle acceleration with ultra-intense lasers - Applications to nuclear physics experiments involving laser-produced plasmas

    International Nuclear Information System (INIS)

    Plaisir, C.

    2010-11-01

    For the last ten years, the Ultra High Intensity Lasers offer the opportunity to produce accelerated particle beams which contain more than 10 12 electrons, protons accelerated into a few ps. We have simulated and developed some diagnostics based on nuclear activation to characterize both the angular and the energy distributions of the particle beams produced with intense lasers. The characterization methods which are presented are illustrated by means of results obtained in different experiments. We would use the particle beams produced to excite nuclear state in a plasma environment. It can modify intrinsic characteristics of the nuclei such as the half-life of some isomeric states. To prepare this kind of experiments, we have measured the nuclear reaction cross section (gamma,n) to produce the isomeric state of the 84 Rb, which has an excitation energy of 463 keV, with the electron accelerator ELSA of CEA/DIF in Bruyeres-le-Chatel (France). (author)

  6. Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, P; Lee, H J; Offerman, D; Shipton, E; Kemp, A; Kritcher, A L; Doppner, T; Back, C A; Glenzer, S H

    2009-02-04

    We present measurements of the chlorine K-alpha emission from reduced mass targets, irradiated with ultra-high intensity laser pulses. Chlorinated plastic targets with diameters down to 50 micrometers and mass of a few 10{sup -8} g were irradiated with up to 7 J of laser energy focused to intensities of several 10{sup 19} W/cm{sup 2}. The conversion of laser energy to K-alpha radiation is measured, as well as high resolution spectra that allow observation of line shifts, indicating isochoric heating of the target up to 18 eV. A zero-dimensional 2-temperature equilibration model, combined with electron impact K-shell ionization and post processed spectra from collisional radiative calculations reproduces the observed K-alpha yields and line shifts, and shows the importance of target expansion due to the hot electron pressure.

  7. Evaluating Red Reflex and Surgeon Preference Between Nearly-Collimated and Focused Beam Microscope Illumination Systems.

    Science.gov (United States)

    Cionni, Robert J; Pei, Ron; Dimalanta, Ramon; Lubeck, David

    2015-08-01

    To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery.

  8. Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo

    Science.gov (United States)

    Fisher, Jonathan A. N.; Gumenchuk, Iryna

    2018-06-01

    Objective. The use of transcranial, low intensity focused ultrasound (FUS) is an emerging neuromodulation technology that shows promise for both therapeutic and research applications. Among many, one of the most exciting applications is the use of FUS to rehabilitate or augment human sensory capabilities. While there is compelling empirical evidence demonstrating this capability, basic questions regarding the spatiotemporal extent of the modulatory effects remain. Our objective was to assess the basic, yet often overlooked hypothesis that FUS in fact alters sensory-evoked neural activity within the region of the cerebral cortex at the beam’s focus. Approach. To address this knowledge gap, we developed an approach to optically interrogate patterns of neural activity in the cortex directly at the acoustic focus, in vivo. Implementing simultaneous wide-field optical imaging and FUS stimulation in mice, our experiments probed somatosensory-evoked electrical activity through the use of voltage sensitive dyes (VSDs) and, in transgenic mice expressing GCaMP6f, monitored associated Ca2+ responses. Main results. Our results demonstrate that low-intensity FUS alters both the kinetics and spatial patterns of neural activity in primary somatosensory cortex at the acoustic focus. When preceded by 1 s of pulsed ultrasound at intensities below 1 W cm‑2 (I sppa), the onset of sensory-evoked cortical responses occurred 3.0  ±  0.7 ms earlier and altered the surface spatial morphology of Ca2+ responses. Significance. These findings support the heretofore unconfirmed assumption that FUS-induced sensory modulation reflects, at least in part, altered reactivity in primary sensory cortex at the site of sonication. The findings are significant given the interest in using FUS to target and alter spatial aspects of sensory receptive fields on the cerebral cortex.

  9. Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo.

    Science.gov (United States)

    Fisher, Jonathan A N; Gumenchuk, Iryna

    2018-02-13

    The use of transcranial, low intensity focused ultrasound (FUS) is an emerging neuromodulation technology that shows promise for both therapeutic and research applications. Among many, one of the most exciting applications is the use of FUS to rehabilitate or augment human sensory capabilities. While there is compelling empirical evidence demonstrating this capability, basic questions regarding the spatiotemporal extent of the modulatory effects remain. Our objective was to assess the basic, yet often overlooked hypothesis that FUS in fact alters sensory-evoked neural activity within the region of the cerebral cortex at the beam's focus. To address this knowledge gap, we developed an approach to optically interrogate patterns of neural activity in the cortex directly at the acoustic focus, in vivo. Implementing simultaneous wide-field optical imaging and FUS stimulation in mice, our experiments probed somatosensory-evoked electrical activity through the use of voltage sensitive dyes (VSDs) and, in transgenic mice expressing GCaMP6f, monitored associated Ca 2+ responses. Our results demonstrate that low-intensity FUS alters both the kinetics and spatial patterns of neural activity in primary somatosensory cortex at the acoustic focus. When preceded by 1 s of pulsed ultrasound at intensities below 1 W cm -2 (I sppa ), the onset of sensory-evoked cortical responses occurred 3.0  ±  0.7 ms earlier and altered the surface spatial morphology of Ca 2+ responses. These findings support the heretofore unconfirmed assumption that FUS-induced sensory modulation reflects, at least in part, altered reactivity in primary sensory cortex at the site of sonication. The findings are significant given the interest in using FUS to target and alter spatial aspects of sensory receptive fields on the cerebral cortex.

  10. Self-focusing and its related interactions at very high laser intensities for fast ignition at Osaka University

    International Nuclear Information System (INIS)

    Tanaka, K.A.; Kodama, R.; Izumi, N.; Takahashi, K.; Heya, M.; Fujita, H.; Kato, Y.; Kitagawa, Y.; Mima, K.; Miyanaga, N.; Norimatsu, T.; Sentoku, Y.; Sunahara, A.; Takabe, H.; Yamanaka, T.; Koase, T.; Iwatani, T.; Ohtani, F.; Miyakoshi, T.; Habara, H.; Tanpo, M.; Tohyama, S.; Weber, F.A.; Barbee, T.W.; Dasilva, L.B.; Dasilva, L.B.

    2000-01-01

    At the Institute of Laser Engineering, various type of experiments related to fast ignition were performed with the 12-beam laser system GEKKO XII and the newly added 100 TW beams line. Using both X-ray and UV laser probes, drilling via ponderomotive laser light self-focusing was studied to show drilling well into the overdense plasma over a distance of 100 μm at a self-focused laser intensity of 10 18 W/cm 2 . This type of self-focusing accelerated electrons up to 0.1 to 1 MeV and was also applied to an imploding shell. (authors)

  11. MR-Guided Pulsed High-Intensity Focused Ultrasound Enhancement of Gene Therapy Combined With Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    Science.gov (United States)

    2009-09-01

    ultrasound . J. Acoust. Soc.Am. 72 1926-1932, (1982) (7) Neppiras E A. Acoustic cavitation . Physics reports 61(3): 159-251, (1980) (8) ter Haar G R, Daniels...Guided Pulsed High-Intensity Focused Ultrasound Enhancement of 5b. GRANT NUMBER W81XWH-08-1-0469 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...failing to This work is aimed to study MR guided high intensity focused ultrasound (MRgHIFU) enhancement of gene therapy for Prostate Cancer. The

  12. Conceptual design of a novel instrument for producing intense pulses of 10 ps X-rays for ultra-fast fluorescence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, G.J.

    1996-05-01

    A novel bench-top device for producing intense, fast pulses of x-rays has been designed with 10 ps fwhm (full-width at half-maximum) x-ray pulse width, 120 keV maximum energy, 100 kHz repetition rate, and 1 A peak current onto the x-ray anode. The device includes three sections: (1) an electron gun that generates 5 ns wide pulses of 120 keV electrons at 100 kHz; (2) solenoidal magnetic lenses and deflection plates that focus the electrons onto an aperture plate and sweep the pulsed beam past the aperture, respectively; and (3) a tungsten anode onto which the post-aperture electrons are focused, producing pulses of x-rays. At a sweeping rate of 10{sup 13} V/s, the electron pulses and resulting x-ray pulses are reduced to about 10 ps. The design process used EGUN (an electron optics and gun design program) electron trajectory simulations, including calculation of important space charge effects. When built, this instrument will be used to excite new, fast, bright scintillator samples in crystal or powdered form, allowing fluorescent lifetimes and spectra to be measured with a microchannel PMT. The very narrow 10 ps x-ray pulse width is necessary for accurate measurements of the risetimes of very fast scintillators (e.g., BaF{sub 2}). In addition, the large x-ray flux (1 A peak current) is advantageous when using a reflection grating monochromator to measure decay times at different wavelengths.

  13. Conceptual design of a novel instrument for producing intense pulses of 10 ps X-rays for ultra-fast fluorescence measurements

    International Nuclear Information System (INIS)

    Gruber, G.J.

    1996-05-01

    A novel bench-top device for producing intense, fast pulses of x-rays has been designed with 10 ps fwhm (full-width at half-maximum) x-ray pulse width, 120 keV maximum energy, 100 kHz repetition rate, and 1 A peak current onto the x-ray anode. The device includes three sections: (1) an electron gun that generates 5 ns wide pulses of 120 keV electrons at 100 kHz; (2) solenoidal magnetic lenses and deflection plates that focus the electrons onto an aperture plate and sweep the pulsed beam past the aperture, respectively; and (3) a tungsten anode onto which the post-aperture electrons are focused, producing pulses of x-rays. At a sweeping rate of 10 13 V/s, the electron pulses and resulting x-ray pulses are reduced to about 10 ps. The design process used EGUN (an electron optics and gun design program) electron trajectory simulations, including calculation of important space charge effects. When built, this instrument will be used to excite new, fast, bright scintillator samples in crystal or powdered form, allowing fluorescent lifetimes and spectra to be measured with a microchannel PMT. The very narrow 10 ps x-ray pulse width is necessary for accurate measurements of the risetimes of very fast scintillators (e.g., BaF 2 ). In addition, the large x-ray flux (1 A peak current) is advantageous when using a reflection grating monochromator to measure decay times at different wavelengths

  14. Combined centroid-envelope dynamics of intense, magnetically focused charged beams surrounded by conducting walls

    International Nuclear Information System (INIS)

    Fiuza, K.; Rizzato, F.B.; Pakter, R.

    2006-01-01

    In this paper we analyze the combined envelope-centroid dynamics of magnetically focused high-intensity charged beams surrounded by conducting walls. Similar to the case where conducting walls are absent, it is shown that the envelope and centroid dynamics decouple from each other. Mismatched envelopes still decay into equilibrium with simultaneous emittance growth, but the centroid keeps oscillating with no appreciable energy loss. Some estimates are performed to analytically obtain characteristics of halo formation seen in the full simulations

  15. A Method of Estimating Pressure and Intensity Distributions of Multielement Phased Array High Intensity Focused Ultrasonic Field at Full Power Using a Needle Hydrophone

    International Nuclear Information System (INIS)

    Yu Ying; Shen Guofeng; Bai Jingfeng; Chen Yazhu

    2011-01-01

    The pressure and intensity distribution of high intensity focused ultrasound (HIFU) fields at full power are critical for predicting heating patterns and ensuring safety of the therapy. With the limitations of maximum pressure at the hydrophone and damage from cavitation or thermal effects, it is hard to measure pressure and intensity directly when HIFU is at full power. HIFU-phased arrays are usually composed of large numbers of small elements and the sound power radiated from some of them at full power is measureable using a hydrophone, we grouped them based on the limitation of maximum permissible pressure at the hydrophone and the characteristics of the element arrangement in the array. Then sound field measurement of the group was carried out at full power level. Using the acoustic coherence principle, the pressure and intensity distribution of the array at full power level can be calculated from corresponding values from the groups. With this method, computer simulations and sound field measurement of a 65-element concentric distributed phased array was carried out. The simulation results demonstrate theoretically the feasibility of this method. Measurements on the 65-element phased array also verify the effectiveness of this method for estimating the pressure and intensity distribution of phased array at full power level using a needle hydrophone.

  16. Ultra High Intensity laser produced fast electron transport in under-dense and over-dense matter

    International Nuclear Information System (INIS)

    Manclossi, Mauro

    2006-01-01

    This thesis is related to inertial fusion research, and particularly concerns the approach to fast ignition, which is based on the use of ultra-intense laser pulses to ignite the thermonuclear fuel. Until now, the feasibility of this scheme has not been proven and depends on many fundamental aspects of the underlying physics, which are not yet fully understood and which are also very far from controls. The main purpose of this thesis is the experimental study of transport processes in the material over-dense (solid) and under-dense (gas jet) of a beam of fast electrons produced by pulse laser at a intensity of some 10 19 Wcm -2 . (author)

  17. Kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations

    International Nuclear Information System (INIS)

    Davidson, R.C.; Chen, C.

    1997-08-01

    A kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field B sol (rvec x) is developed. The analysis is carried out for a thin beam with characteristic beam radius r b much-lt S, and directed axial momentum γ b mβ b c (in the z-direction) large compared with the transverse momentum and axial momentum spread of the beam particles. Making use of the nonlinear Vlasov-Maxwell equations for general distribution function f b (rvec x,rvec p,t) and self-consistent electrostatic field consistent with the thin-beam approximation, the kinetic model is used to investigate detailed beam equilibrium properties for a variety of distribution functions. Examples are presented both for the case of a uniform solenoidal focusing field B z (z) = B 0 = const. and for the case of a periodic solenoidal focusing field B z (z + S) = B z (z). The nonlinear Vlasov-Maxwell equations are simplified in the thin-beam approximation, and an alternative Hamiltonian formulation is developed that is particularly well-suited to intense beam propagation in periodic focusing systems. Based on the present analysis, the Vlasov-Maxwell description of intense nonneutral beam propagation through a periodic solenoidal focusing field rvec B sol (rvec x) is found to be remarkably tractable and rich in physics content. The Vlasov-Maxwell formalism developed here can be extended in a straightforward manner to investigate detailed stability behavior for perturbations about specific choices of beam equilibria

  18. Review Paper: A Review on Brain Stimulation Using Low Intensity Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Ehsan Rezayat

    2016-07-01

    Full Text Available Brain stimulation techniques are important in both basic and clinical studies. Majority of well-known brain stimulating techniques have low spatial resolution or entail invasive processes. Low intensity focused ultrasound (LIFU seems to be a proper candidate for dealing with such deficiencies. This review recapitulates studies which explored the effects of LIFU on brain structures and its function, in both research and clinical areas. Although the mechanism of LIFU action is still unclear, its different effects from molecular level up to behavioral level can be explored in animal and human brain. It can also be coupled with brain imaging assessments in future research.

  19. Generation and focusing of pulsed intense ion beams. Progress report, April 1, 1979-September 30, 1979

    International Nuclear Information System (INIS)

    Sudan, R.N.; Hammer, D.A.

    1981-04-01

    Theoretical calculations suggest that an intense pulsed approx. 1 MeV proton beam can be used to simulate the characteristics of approx. 1 GeV heavy ion beam propagation in an inertial confinement fusion reactor chamber. Given the present availability of the former beams and the high projected cost for obtaining the latter ones, such experimental simulations appear appropriate. Work was undertaken under the cited contract to apply the technology of intense proton beams to this end. The first task was the development of a high brightness pulsed proton source which could produce a weakly convergent approx. 10 kA proton beam in a field free drift region. This was accomplished at approx. 250 keV, and preliminary beam propagation experiments were performed. It was concluded that a proper simulation experiment would require a higher voltage beam. An upgraded version of the existing generator, which would have produced a 30 kA beam at about 500 keV, and further propagation experiments were proposed as part of our unsuccessful renewal proposal dated October 15, 1979

  20. Intense ${^31-35}$Ar beams produced with a nanostructured CaO target at ISOLDE

    CERN Document Server

    Ramos, J P; Mendonça, T M; Seiffert, C; Senos, A M R; Fynbo, H O U; Tengblad, O; Briz, J A; Lund, M V; Koldste, G T; Carmona-Gallardo, M; Pesudo, V; Stora, T

    2014-01-01

    At the ISOLDE facility at CERN, thick targets are bombarded with highly energetic pulsed protons to produce radioactive ion beams (RIBs). The isotopes produced in the bulk of the material have to diffuse out of the grain and effuse throughout the porosity of the material to a transfer line which is connected to an ionizer, from which the charged isotopes are extracted and delivered for physics experiments. Calcium oxide (CaO) powder targets have been used to produce mainly neutron deficient argon and carbon RIBs over the past decades. Such targets presented unstable yields, either decaying over time or low from the beginning of operation. These problems were suspected to come from the degradation of the target microstructure (sintering due to high temperature and/or high proton intensity). In this work, a CaO microstructural study in terms of sintering was conducted on a nanostructured CaO powder synthesized from the respective carbonate. Taking the results of this study, several changes were made at ISOLDE i...

  1. Clinical evaluation of high-intensity focused ultrasound in treating uterus myomas

    International Nuclear Information System (INIS)

    Peng Jingjing; Tan Yan; Wei Dong; Li Yan; Zhao Zhengguo; Gao hui; Zhang Tao

    2010-01-01

    Objective: To explore the safety and efficacy of high-intensity focused ultrasound (HIFU) for the treatment of uterus myomas. Methods: HIFU was performed in 47 patients with symptomatic hysteromyoma, who had a childbearing history and were 26-59 years old. Postoperative follow-up was carried out. Clinical symptoms and the tumor's size were observed before and after the HIFU treatment. The results were compared with each other. Results: After HIFU treatment, the symptoms such as dysmenorrhea and hypermenorrhea were markedly improved. Some patients developed hematuria or lower limb pain, which was relieved after symptomatic management. The average volume of myoma before the treatment was (47.6 ± 24.1) cm 3 and it was reduced to (17.7 ± 13.1) cm 3 at 6 months after the treatment, the difference was statistically significant (P < 0.05). Conclusion: HIFU is a safe and effective treatment for uterus myomas. (authors)

  2. A framework for continuous target tracking during MR-guided high intensity focused ultrasound thermal ablations in the abdomen

    NARCIS (Netherlands)

    Zachiu, Cornel; Denis de Senneville, Baudouin; Dmitriev, Ivan D.; Moonen, Chrit T.W.; Ries, Mario

    2017-01-01

    Background: During lengthy magnetic resonance-guided high intensity focused ultrasound (MRg-HIFU) thermal ablations in abdominal organs, the therapeutic work-flow is frequently hampered by various types of physiological motion occurring at different time-scales. If left un-addressed this can lead to

  3. Quality of MR thermometry during palliative MR-guided high-intensity focused ultrasound (MR-HIFU) treatment of bone metastases

    NARCIS (Netherlands)

    Lam, Mie K; Huisman, Merel; Nijenhuis, Robbert J; van den Bosch, Maurice; Viergever, Max A; Moonen, Chrit Tw; Bartels, LW

    2015-01-01

    BACKGROUND: Magnetic resonance (MR)-guided high-intensity focused ultrasound has emerged as a clinical option for palliative treatment of painful bone metastases, with MR thermometry (MRT) used for treatment monitoring. In this study, the general image quality of the MRT was assessed in terms of

  4. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.; Gamboa, E. J.; Göde, S.; Propp, A.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Aurand, B.; Willi, O. [Heinrich-Heine-University Düsseldorf, Düsseldorf (Germany); Goyon, C.; Hazi, A.; Pak, A.; Ruby, J.; Williams, G. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Kerr, S. [University of Alberta, Edmonton, Alberta T6G 1R1 (Canada); Ramakrishna, B. [Indian Institute of Technology, Hyderabad (India); Rödel, C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Friedrich-Schiller-University Jena, Jena (Germany)

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  5. High-Intensity Focused Ultrasound (HIFU) in Uterine Fibroid Treatment: Review Study

    International Nuclear Information System (INIS)

    Mahmoud, Mustafa Z.; Alkhorayef, Mohammed; Alzimami, Khalid S.; Aljuhani, Manal Saud; Sulieman, Abdelmoneim

    2014-01-01

    High-intensity focused ultrasound (HIFU) is a highly precise medical procedure used locally to heat and destroy diseased tissue through ablation. This study intended to review HIFU in uterine fibroid therapy, to evaluate the role of HIFU in the therapy of leiomyomas as well as to review the actual clinical activities in this field including efficacy and safety measures beside the published clinical literature. An inclusive literature review was carried out in order to review the scientific foundation, and how it resulted in the development of extracorporeal distinct devices. Studies addressing HIFU in leiomyomas were identified from a search of the Internet scientific databases. The analysis of literature was limited to journal articles written in English and published between 2000 and 2013. In current gynecologic oncology, HIFU is used clinically in the treatment of leiomyomas. Clinical research on HIFU therapy for leiomyomas began in the 1990s, and the majority of patients with leiomyomas were treated predominantly with HIFUNIT 9000 and prototype single focus ultrasound devices. HIFU is a non-invasive and highly effective standard treatment with a large indication range for all sizes of leiomyomas, associated with high efficacy, low operative morbidity and no systemic side effects. Uterine fibroid treatment using HIFU was effective and safe in treating symptomatic uterine fibroids. Few studies are available in the literature regarding uterine artery embolization (UAE). HIFU provides an excellent option to treat uterine fibroids

  6. Launching focused surface plasmon in circular metallic grating

    International Nuclear Information System (INIS)

    Kumar, Pawan; Tripathi, V. K.; Kumar, Ashok; Shao, X.

    2015-01-01

    The excitation of focused surface plasma wave (SPW) over a metal–vacuum interface embedded with circular surface grating is investigated theoretically. The normally impinged radiation imparts oscillatory velocity to free electrons that beats with the surface ripple to produce a nonlinear current, driving the SPW. As SPW propagates, it gets focused. The focused radiation has a maximum at the centre of grating and decreases beyond the centre due to diffraction. The amplitude of SPW is fixed for a given groove depth and increases rapidly around the resonance frequency. The intensity at the focus point depends on dimensions of the grating. It increases with the radiation frequency approaching the surface plasmon resonance. The scheme has potential applications for photonic devices and surface enhanced Raman scattering

  7. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU)

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s-1) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  8. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU).

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-21

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s -1 ) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  9. Focused Ethnography

    Directory of Open Access Journals (Sweden)

    Hubert Knoblauch

    2005-09-01

    Full Text Available In this paper I focus on a distinctive kind of sociological ethnography which is particularly, though not exclusively, adopted in applied research. It has been proposed that this branch of ethno­graphy be referred to as focused ethnography. Focused ethnography shall be delineated within the context of other common conceptions of what may be called conventional ethnography. However, rather than being opposed to it, focused ethno­graphy is rather complementary to conventional ethnography, particularly in fields that are charac­teristic of socially and functionally differentiated contemporary society. The paper outlines the back­ground as well as the major methodological features of focused ethnography, such as short-term field visits, data intensity and time intensity, so as to provide a background for future studies in this area. URN: urn:nbn:de:0114-fqs0503440

  10. Smooth transverse and longitudinal focusing in high-intensity ion linacs

    International Nuclear Information System (INIS)

    Billen, J.H.; Takeda, Harunori; Young, L.M.

    1996-01-01

    We examine ion linac designs that start with a high energy radio- frequency quadrupole (RFQ) followed by either a drift-tube linac (DTL) or a coupled-cavity drift-tube linac (CCDTL). For high energies a conventional CCL follows the CCDTL. High RFQ output energy allows tailoring the transverse and longitudinal focusing strengths to match into the following structure. When the RFQ beam enters a higher frequency structure, the DTL or CCDTL starts with a low accelerating gradient and large negative synchronous phase. The gradient and phase both ramp up gradually to higher values. Other changes later in the machine are also gradual. Beam dynamics simulations show that these linacs require no separate matching sections. Applications include a cw 100 mA H + beam from a 350-MHz, 6.7 MeV RFQ injecting a 700 MHz CCDTL and CCL; a 7% duty 28 mA H - beam from a 402.5 MHz RFQ and DTL injecting 805 MHz structures; a cw 135 mA D + beam produced by a 175 MHz, 8 MeV RFQ and DTL; and a 2.4% duty, 80 mA H + beam using a 433 MHz 10 MeV RFQ and a 1300 MHz CCDTL. The machines take advantage of the considerable flexibility of the CCDTL. Designs can use a variety of different transverse focusing lattices. Use of two coupling cavity orientations permits a constant period even when the number of drift tubes per cavity changes along the linac

  11. High Intensity Focused Ultrasound Ablation of Pancreatic Neuroendocrine Tumours: Report of Two Cases

    International Nuclear Information System (INIS)

    Orgera, Gianluigi; Krokidis, Miltiadis; Monfardini, Lorenzo; Bonomo, Guido; Della Vigna, Paolo; Fazio, Nicola; Orsi, Franco

    2011-01-01

    We describe the use of ultrasound-guided high-intensity focused ultrasound (HIFU) for ablation of two pancreatic neuroendocrine tumours (NETs; insulinomas) in two inoperable young female patients. Both suffered from episodes of severe nightly hypoglycemia that was not efficiently controlled by medical treatment. After HIFU ablation, local disease control and symptom relief were achieved without postinterventional complications. The patients remained free of symptoms during 9-month follow-up. The lesions appeared to be decreased in volume, and there was decreased enhancing pattern in the multidetector computed tomography control (MDCT). HIFU is likely to be a valid alternative for symptoms control in patients with pancreatic NETs. However, currently the procedure should be reserved for inoperable patients for whom symptoms cannot be controlled by medical therapy.

  12. Rainfed intensive crop systems

    DEFF Research Database (Denmark)

    Olesen, Jørgen E

    2014-01-01

    This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed.......This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed....

  13. Properties of the Dense Plasma Produced in Plasma Focus

    International Nuclear Information System (INIS)

    Peacock, N.J.; Wilcock, P.D.; Speer, R.J.; Morgan, P.D.

    1969-01-01

    The plasma produced by the focus or quasi-cylindrical magnetic compression which occurs at the open end of a metal-walled, coaxial plasma gun has been studied, using the electrical waveforms and the electromagnetic and reaction particle, emission. The electromagnetic radiation in the XUV region of the spectrum has previously been briefly reported, and the present paper describes further more detailed analyses of the line emission at wavelengths shorter than 10 Å when impurities are added to the gas filling. The emission is characteristic of a plasma with a temperature of a few keV and a density greater than 10 19 cm -3 , while the appearance of optical transitions in highly stripped ions, e. g. A XVIII, gives a measure of the thermalization in the plasma. The stored electrical energy has been doubled and the scaling of the neutron emission with the applied voltage and the initial particle density is presented. The duration of the neutron and X-ray emission is considerably longer than the observed instability growth time in the plasma filament. Calculations of the mode of heating and the confinement of the plasma are compared with experimental observations. (author)

  14. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  15. Cluster analysis of DCE-MRI data identifies regional tracer-kinetic changes after tumor treatment with high intensity focused ultrasound

    NARCIS (Netherlands)

    Jacobs, Igor; Hectors, Stefanie J. C. G.; Schabel, Matthias C.; Grüll, Holger; Strijkers, Gustav J.; Nicolay, Klaas

    2015-01-01

    Evaluation of high intensity focused ultrasound (HIFU) treatment with MRI is generally based on assessment of the non-perfused volume from contrast-enhanced T1-weighted images. However, the vascular status of tissue surrounding the non-perfused volume has not been extensively investigated with MRI.

  16. Spray and microjets produced by focusing a laser pulse into a hemispherical drop

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2009-11-02

    We use high-speed video imaging to study laser disruption of the free surface of a hemispheric drop. The drop sits on a glass surface and the Nd:YAG (yttrium aluminum garnet) laser pulse propagates through the drop and is focused near the free surface from below. We focus on the evolution of the cylindrical liquid sheet and spray which emerges out of the drop and resembles typical impact crowns. The tip of the sheet emerges at velocities over 1 km/s. The tip of the crown breaks up into fine spray some of which is sucked back into the growing cavity at about 100 m/s. We measure the size of the typical spray droplets to be about 3 μm. We also show the formation of fine microjets, which are produced when the laser is focused inside the drop and the shock front hits small bubbles sitting under the free surface. For water these microjets are 5–50 μm in diameter and exit at 100–250 m/s. For higher viscositydrops, these jets can emerge at over 500 m/s.

  17. Spray and microjets produced by focusing a laser pulse into a hemispherical drop

    KAUST Repository

    Thoroddsen, Sigurdur T; Takehara, K.; Etoh, T. G.; Ohl, C.-D.

    2009-01-01

    We use high-speed video imaging to study laser disruption of the free surface of a hemispheric drop. The drop sits on a glass surface and the Nd:YAG (yttrium aluminum garnet) laser pulse propagates through the drop and is focused near the free surface from below. We focus on the evolution of the cylindrical liquid sheet and spray which emerges out of the drop and resembles typical impact crowns. The tip of the sheet emerges at velocities over 1 km/s. The tip of the crown breaks up into fine spray some of which is sucked back into the growing cavity at about 100 m/s. We measure the size of the typical spray droplets to be about 3 μm. We also show the formation of fine microjets, which are produced when the laser is focused inside the drop and the shock front hits small bubbles sitting under the free surface. For water these microjets are 5–50 μm in diameter and exit at 100–250 m/s. For higher viscositydrops, these jets can emerge at over 500 m/s.

  18. Effects of beamline components (undulator, monochromator, focusing device) on the beam intensity at ID18F (ESRF)

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, A. E-mail: somogyia@esrf.fr; Drakopoulos, M.; Vekemans, B.; Vincze, L.; Simionovici, A.; Adams, F

    2003-01-01

    The ID18F microprobe end-station of the European Synchrotron Radiation Facility (ESRF) is dedicated to precise and reproducible quantitative X-ray fluorescence analysis in the ppm level with {<=}5% accuracy for elements of Z{>=}19 and micron-size spatial resolution. In order to fulfill this requirement the precise monitoring and normalization of the intensity variation of the focused micro-beam is necessary. The various effects influencing the intensity variation, hence the stability of the {mu}-beam, were investigated by placing different detectors (miniature ionization chamber, photodiodes) into the monochromatic beam. The theoretical statistical error of the measured signal in each detector was estimated on the basis of the absorption and e{sup -}-ion-pair production processes and was compared with the measured statistical errors.

  19. Effects of beamline components (undulator, monochromator, focusing device) on the beam intensity at ID18F (ESRF)

    International Nuclear Information System (INIS)

    Somogyi, A.; Drakopoulos, M.; Vekemans, B.; Vincze, L.; Simionovici, A.; Adams, F.

    2003-01-01

    The ID18F microprobe end-station of the European Synchrotron Radiation Facility (ESRF) is dedicated to precise and reproducible quantitative X-ray fluorescence analysis in the ppm level with ≤5% accuracy for elements of Z≥19 and micron-size spatial resolution. In order to fulfill this requirement the precise monitoring and normalization of the intensity variation of the focused micro-beam is necessary. The various effects influencing the intensity variation, hence the stability of the μ-beam, were investigated by placing different detectors (miniature ionization chamber, photodiodes) into the monochromatic beam. The theoretical statistical error of the measured signal in each detector was estimated on the basis of the absorption and e - -ion-pair production processes and was compared with the measured statistical errors

  20. Effects of beamline components (undulator, monochromator, focusing device) on the beam intensity at ID18F (ESRF)

    CERN Document Server

    Somogyi, A; Vekemans, B; Vincze, L; Simionovici, A; Adams, F

    2003-01-01

    The ID18F microprobe end-station of the European Synchrotron Radiation Facility (ESRF) is dedicated to precise and reproducible quantitative X-ray fluorescence analysis in the ppm level with =19 and micron-size spatial resolution. In order to fulfill this requirement the precise monitoring and normalization of the intensity variation of the focused micro-beam is necessary. The various effects influencing the intensity variation, hence the stability of the mu-beam, were investigated by placing different detectors (miniature ionization chamber, photodiodes) into the monochromatic beam. The theoretical statistical error of the measured signal in each detector was estimated on the basis of the absorption and e sup - -ion-pair production processes and was compared with the measured statistical errors.

  1. Optimized simultaneous transverse and longitudinal focusing of intense ion beam pulses for warm dense matter applications

    International Nuclear Information System (INIS)

    Sefkow, Adam B.; Davidson, Ronald C.; Kaganovich, Igor D.; Gilson, Erik P.; Roy, Prabir K.; Seidl, Peter A.; Yu, Simon S.; Welch, Dale R.; Rose, David V.; Barnard, John J.

    2007-01-01

    Intense, space-charge-dominated ion beam pulses for warm dense matter and heavy ion fusion applications must undergo simultaneous transverse and longitudinal bunch compression in order to meet the requisite beam intensities desired at the target. The longitudinal compression of an ion bunch is achieved by imposing an initial axial velocity tilt on the drifting beam and subsequently neutralizing its space-charge and current in a drift region filled with high-density plasma. The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory has measured a sixty-fold longitudinal current compression of an intense ion beam with pulse duration of a few nanoseconds, in agreement with simulations and theory. A strong solenoid is modeled near the end of the drift region in order to transversely focus the beam to a sub-millimeter spot size coincident with the longitudinal focal plane. The charge and current neutralization provided by the background plasma is critical in determining the total achievable transverse and longitudinal compression of the beam pulse. Numerical simulations show that the current density of an NDCX ion beam can be compressed over a few meters by factors greater than 10 5 with peak beam density in excess of 10 14 cm -3 . The peak beam density sets a lower bound on the local plasma density required near the focal plane for optimal beam compression, since the simulations show stagnation of the compression when n beam >n plasma . Beam-plasma interactions can also have a deleterious effect on the compression physics and lead to the formation of nonlinear wave excitations in the plasma. Simulations that optimize designs for the simultaneous transverse and longitudinal focusing of an NDCX ion beam for future warm dense matter experiments are discussed

  2. Positioning device for MRI-guided high intensity focused ultrasound system

    Energy Technology Data Exchange (ETDEWEB)

    Damianou, Christakis [Frederick Institute of Technology (FIT), Limassol (Cyprus); MEDSONIC, LTD, Limassol (Cyprus); Ioannides, Kleanthis [Polikliniki Igia, Limassol (Cyprus); Milonas, Nicos [Frederick Institute of Technology (FIT), Limassol (Cyprus)

    2008-04-15

    A prototype magnetic resonance imaging (MRI)- compatible positioning device was used to move an MRI-guided high intensity focused ultrasound (HIFU) transducer. The positioning device has three user-controlled degrees of freedom that allow access to various targeted lesions. The positioning device was designed and fabricated using construction materials selected for compatibility with high magnetic fields and fast switching magnetic field gradients encountered inside MRI scanners. The positioning device incorporates only MRI compatible materials such as piezoelectric motors, plastic sheets, brass screws, plastic pulleys and timing belts. The HIFU/MRI system includes the multiple subsystems (a) HIFU system, (b) MR imaging, (c) Positioning device (robot) and associate drivers, (d) temperature measurement, (e) cavitation detection, (f) MRI compatible camera, and (g) Soft ware. The MRI compatibility of the system was successfully demonstrated in a clinical high-field MRI scanner. The ability of the robot to accurately move the transducer thus creating discrete and overlapping lesions in biological tissue was tested successfully. A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be sited on the scanner's table. The propagation of HIFU can use either a lateral or superior-inferior approach. Discrete and large lesions were created successfully with reproducible results. (orig.)

  3. Robotic Assisted Laparoscopic Prostatectomy after High Intensity Focused Ultrasound Failure

    Directory of Open Access Journals (Sweden)

    Leon Telis

    2017-01-01

    Full Text Available Background. Prostate cancer is the most common cancer diagnosed in men. As new focal therapies become more popular in treatment of prostate cancer, failure cases requiring salvage therapy with either surgical or other techniques are being reported. Objective. To report the options in treatment of prostate cancer after recurrence or failure of the primary treatment modality. Methods. We report a salvage robotic assisted laparoscopic radical prostatectomy (RALP for prostate cancer recurrence following high intensity focused ultrasound treatment (HIFU in the United States. Results. A 67-year-old man who underwent HIFU treatment for prostate adenocarcinoma 2 years prior was presented with a rising prostate specific antigen of 6.1 ng/mL to our clinic. A biopsy proven recurrent disease in the area of previous treatment documented the failure of treatment. The patient elected to undergo a salvage RALP. The operation time was 159 minutes. The patient was discharged from the hospital on postoperative day 1 with no complications. The catheter was removed on post-op day 10. The patient reserved sexual function and urinary continence. The PSA levels on 6 months’ follow-up are undetectable. Conclusions. Salvage RALP is an effective and safe treatment choice for recurrent prostate adenocarcinoma following failed HIFU treatment if operated by an experienced surgeon.

  4. The effect of high intensity laser propagation instabilities on channel formation in underdense plasmas

    International Nuclear Information System (INIS)

    Najmudin, Z.; Krushelnick, K.; Tatarakis, M.; Clark, E.L.; Danson, C.N.; Malka, V.; Neely, D.; Santala, M.I.K.; Dangor, A.E.

    2003-01-01

    Experiments have been performed using high power laser pulses (up to 50 TW) focused into underdense helium plasmas (n e ≤5x10 19 cm -3 ). Using shadowgraphy, it is observed that the laser pulse can produce irregular density channels, which exhibit features such as long wavelength hosing and 'sausage-like' self-focusing instabilities. This phenomenon is a high intensity effect and the characteristic period of oscillation of these instabilities is typically found to correspond to the time required for ions to move radially out of the region of highest intensity

  5. Estimate of the intensities of the radioactive nuclides produced at the super-FRS at the future GSI facility

    International Nuclear Information System (INIS)

    Ricciardi, M.V.

    2004-11-01

    The principal goal of the new facility is the construction of a worldwide unique and technically innovative accelerator system that will provide an extensive range of particle beams. Proton and antiproton beams will be available and ion beams of all chemical elements up to uranium will be produced with world-record intensities. The main employ of the high-intensity ion beams is the production of energetic beams of short-lived (radioactive) nuclei, in the following referred to as exotic or Rare Isotope Beams (RIBs). RIBs are produced in nuclear reactions experienced by the primary beams of stable particles. We report on the study of the production of radioactive nuclides and of their propagation through the Super-FRS. The study was performed by means of a nuclear-reaction Monte-Carlo code, ABRABLA, opportunely implemented for the above-described purpose. This work offers an overview of the radioactivity production in the Super-FRS area; the latter is the required starting knowledge for the design of the shielding structure. (orig.)

  6. Anomalous intensities of Ne-like ion resonance line in plasma produced by picosecond laser pulse

    International Nuclear Information System (INIS)

    Bryunetkin, B.A.; Skobelev, I.Yu.; Faenov, A.Ya.; Kalashnikov, M.P.; Nikles, P.; Shnyupep, M.

    1995-01-01

    An anomalous structure of intensities of spectral lines of CuXX and GeXXX Ne-like ions emitted by plasma produced by laser pulses of picosecond duration and up to 2x10 18 W/cm 2 flux density is recorded for the first time. It is shown that spectrum maximum of these ions is emitted from a plasma region whose density is significantly above the critical value of the length of heating laser radiation wave. 9 refs.; 3 figs

  7. Noninvasive lifting of arm, thigh, and knee skin with transcutaneous intense focused ultrasound.

    Science.gov (United States)

    Alster, Tina S; Tanzi, Elizabeth L

    2012-05-01

    Transcutaneous intense focused ultrasound is a novel Food and Drug Administration-approved technology for noninvasive skin tightening of the face and neck. No studies have reported on its safety and effectiveness on nonfacial areas. Eighteen paired areas (6 each) on the upper arms, medial thighs, and extensor knees were randomly treated with two different transducers (4.0 MHz, 4.5-mm focal depth and 7.0 MHz, 3.0-mm focal depth). One side was randomly assigned to receive a single pass (single plane) of microthermal coagulation zones over the involved area with the 4.0 MHz, 4.5-mm-depth transducer, and the contralateral side was assigned to receive consecutive single passes (dual plane) using both transducers (4.0 MHz, 4.5-mm depth followed by 7.0 MHz, 3.0-mm depth). Two independent masked assessors determined clinical improvement scores using comparative standardized photographs obtained at baseline and 3 and 6 months after treatment. Subjective assessments of clinical improvement and side effects of treatment were obtained. Global assessment scores revealed significant improvement in all treated areas, with the upper arms and knees demonstrating more skin lifting and tightening than the thighs. Areas receiving dual-plane treatment had slightly better clinical scores than those receiving single-plane treatment in all three sites. Clinical scores from single-plane and dual-plane treated areas continued to improve between 3 and 6 months after treatment. Side effects were mild and transient and included erythema, warmth, and skin tenderness. Rare focal bruising was noted in two patients on the upper arms that resolved within 7 days. No other side effects were reported or observed. Transcutaneous intense focused ultrasound can be safely and effectively used to improve the clinical appearance (texture and contour) of the upper arms, extensor knees, and medial thighs. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  8. Exploring teams of learners becoming "WE" in the Intensive Care Unit--a focused ethnographic study.

    Science.gov (United States)

    Conte, Helen; Scheja, Max; Hjelmqvist, Hans; Jirwe, Maria

    2015-08-16

    Research about collaboration within teams of learners in intensive care is sparse, as is research on how the learners in a group develop into a team. The aim of this study was to explore the collaboration in teams of learners during a rotation in an interprofessional education unit in intensive care from a sociocultural learning perspective. Focused Ethnographic methods were used to collect data following eight teams of learners in 2009 and 2010. Each team consisted of one resident, one specialist nurse student and their supervisors (n = 28). The material consisted of 100 hours of observations, interviews, and four hours of sound recordings. A qualitative analysis explored changing patterns of interplay through a constant comparative approach. The learners' collaboration progressed along a pattern of participation common to all eight groups with a chronological starting point and an end point. The progress consisted of three main steps where the learners' groups developed into teams during a week's training. The supervisors' guided the progress by gradually stepping back to provide latitude for critical reflection and action. Our main conclusion in training teams of learners how to collaborate in the intensive care is the crucial understanding of how to guide them to act like a team, feel like a team and having the authority to act as a team.

  9. Antimicrobial susceptibility and molecular epidemiology of extended-spectrum beta-lactamase-producing Enterobacteriaceae from intensive care units at Hamad Medical Corporation, Qatar.

    Science.gov (United States)

    Sid Ahmed, Mazen A; Bansal, Devendra; Acharya, Anushree; Elmi, Asha A; Hamid, Jemal M; Sid Ahmed, Abuelhassan M; Chandra, Prem; Ibrahim, Emad; Sultan, Ali A; Doiphode, Sanjay; Bilal, Naser Eldin; Deshmukh, Anand

    2016-01-01

    The emergence of extended-spectrum beta-lactamase (ESBL)-producing isolates has important clinical and therapeutic implications. High prevalence of ESBL-producing Enterobacteriaceae has been reported in the literature for clinical samples from a variety of infection sites. The present study was undertaken to evaluate the prevalence of ESBL-producing Enterobacteriaceae, and to perform molecular characterization and antimicrobial susceptibility testing of clinical isolates from patients admitted to the intensive care units at Hamad Medical Corporation, Doha, Qatar, from November 2012 to October 2013. A total of 629 Enterobacteriaceae isolates were included in the study. Identification and susceptibility testing was performed using Phoenix (Becton Dickinson) and the ESBL producers were confirmed by double-disk potentiation as recommended by the Clinical and Laboratory Standards Institute. Molecular analysis of the ESBL producers was performed by polymerase chain reaction. In total, 109 isolates (17.3 %) were confirmed as ESBL producers and all were sensitive to meropenem in routine susceptibility assays. Most of the ESBL producers (99.1 %) were resistant to amoxicillin/clavulanic acid and ceftriaxone and 93.6 % were resistant to cefepime. Among the ESBL-producing genes, bla CTX-M (66.1 %) was the most prevalent, followed by bla SHV (53.2 %) and bla TEM (40.4 %). These findings show the high prevalence of ESBL-producing Enterobacteriaceae within the intensive care units at Hamad Medical Corporation, Qatar, and emphasize the need for judicious use of antibiotics and the implementation of strict infection control measures.

  10. Radial focusing and energy compression of a laser-produced proton beam by a synchronous rf field

    Directory of Open Access Journals (Sweden)

    Masahiro Ikegami

    2009-06-01

    Full Text Available The dynamics of a MeV laser-produced proton beam affected by a radio frequency (rf electric field has been studied. The proton beam was emitted normal to the rear surface of a thin polyimide target irradiated with an ultrashort pulsed laser with a power density of 4×10^{18}  W/cm^{2}. The energy spread was compressed to less than 11% at the full width at half maximum (FWHM by an rf field. Focusing and defocusing effects of the transverse direction were also observed. These effects were analyzed and reproduced by Monte Carlo simulations. The simulation results show that the transversely focused protons had a broad continuous spectrum, while the peaks in the proton spectrum were defocused. Based on this new information, we propose that elimination of the continuous energy component of laser-produced protons is possible by utilizing a focal length difference between the continuous spectral protons and the protons included in the spectral peak.

  11. Producing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.; Jung, R.G.; Applebaum, D.C.; Fairand, B.P.; Gallagher, W.J.

    1977-01-01

    A method of producing x-rays by directing radiant energy from a laser onto a target is described. Conversion efficiency of at least about 3 percent is obtained by providing the radiant energy in a low-power precursor pulse of approximately uniform effective intensity focused onto the surface of the target for about 1 to 30 nanoseconds so as to generate an expanding unconfined coronal plasma having less than normal solid density throughout and comprising a low-density (underdense) region wherein the plasma frequency is less than the laser radiation frequency and a higher-density (overdense) region wherein the plasma frequency is greater than the laser radiation frequency and, about 1 to 30 nanoseconds after the precursor pulse strikes the target, a higher-power main pulse focused onto the plasma for about 10 -3 to 30 nanoseconds and having such power density and total energy that the radiant energy is absorbed in the underdense region and conducted into the overdense region to heat it and thus to produce x-rays therefrom with the plasma remaining substantially below normal solid density and thus facilitating the substantial emission of x-rays in the form of spectral lines arising from nonequilibrium ionization states

  12. The impact of childhood sexual abuse on the outcome of intensive trauma-focused treatment for PTSD.

    Science.gov (United States)

    Wagenmans, Anouk; Van Minnen, Agnes; Sleijpen, Marieke; De Jongh, Ad

    2018-01-01

    Background : It is assumed that PTSD patients with a history of childhood sexual abuse benefit less from trauma-focused treatment than those without such a history. Objective : To test whether the presence of a history of childhood sexual abuse has a negative effect on the outcome of intensive trauma-focused PTSD treatment. Method : PTSD patients, 83% of whom suffered from severe PTSD, took part in a therapy programme consisting of 2 × 4 consecutive days of Prolonged Exposure (PE) and EMDR therapy (eight of each). In between sessions, patients participated in sport activities and psycho-education sessions. No prior stabilization phase was implemented. PTSD symptom scores of clinician-administered and self-administered measures were analysed using the data of 165 consecutive patients. Pre-post differences were compared between four trauma groups; patients with a history of childhood sexual abuse before age 12 (CSA), adolescent sexual abuse (ASA; i.e. sexual abuse between 12 and 18 years of age), sexual abuse (SA) at age 18 and over, or no history of sexual abuse (NSA). Results : Large effect sizes were achieved for PTSD symptom reduction for all trauma groups (Cohen's d  = 1.52-2.09). For the Clinical Administered PTSD Scale (CAPS) and the Impact of Event Scale (IES), no differences in treatment outcome were found between the trauma (age) groups. For the PTSD Symptom Scale Self Report (PSS-SR), there were no differences except for one small effect between CSA and NSA. Conclusions : The results do not support the hypothesis that the presence of a history of childhood sexual abuse has a detrimental impact on the outcome of first-line (intensive) trauma-focused treatments for PTSD.

  13. Weakening Pin Bone Attachment in Fish Fillets Using High-Intensity Focused Ultrasound.

    Science.gov (United States)

    Skjelvareid, Martin H; Stormo, Svein Kristian; Þórarinsdóttir, Kristín Anna; Heia, Karsten

    2017-09-18

    High Intensity Focused Ultrasound (HIFU) can be used for the localized heating of biological tissue through the conversion of sound waves into heat. Although originally developed for human medicine, HIFU may also be used to weaken the attachment of pin bones in fish fillets to enable easier removal of such bones. This was shown in the present study, where a series of experiments were performed on HIFU phantoms and fillets of cod and salmon. In thin objects such as fish fillets, the heat is mainly dissipated at the surfaces. However, bones inside the fillet absorb ultrasound energy more efficiently than the surrounding tissue, resulting in a "self-focusing" heating of the bones. Salmon skin was found to effectively block the ultrasound, resulting in a significantly lower heating effect in fillets with skin. Cod skin partly blocked the ultrasound, but only to a small degree, enabling HIFU treatment through the skin. The treatment of fillets to reduce the pin bone attachment yielded an average reduction in the required pulling force by 50% in cod fillets with skin, with little muscle denaturation, and 72% in skinned fillets, with significant muscle denaturation. Salmon fillets were treated from the muscle side of the fillet to circumvent the need for penetration through skin. The treatment resulted in a 30% reduction in the peak pulling force and 10% reduction in the total pulling work, with a slight denaturation of the fillet surface.

  14. High-Intensity Focused Ultrasound for the Treatment of Wrinkles and Skin Laxity in Seven Different Facial Areas

    OpenAIRE

    Park, Hyunchul; Kim, Eunjin; Kim, Jeongeun; Ro, Youngsuck; Ko, Jooyeon

    2015-01-01

    Background High-intensity focused ultrasound (HIFU) treatment has recently emerged in response to the increasing demand for noninvasive procedures for skin lifting and tightening. Objective This study was aimed at evaluating the clinical efficacy of and patient satisfaction with HIFU treatment for wrinkles and laxity in seven different areas of the face in Asian skin. Methods Twenty Korean patients with facial wrinkle and laxity were analyzed after a single session of HIFU treatment. Two inde...

  15. Control of treatment size in cavitation-enhanced high-intensity focused ultrasound using radio-frequency echo signals

    Science.gov (United States)

    Tomiyasu, Kentaro; Takagi, Ryo; Iwasaki, Ryosuke; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    In high-intensity focused ultrasound (HIFU) treatment, controlling the ultrasound dose at each focal target spot is important because it is a problem that the length of the coagulated region in front of the focal point deviates owing to the differences in absorption in each focal target spot and attenuation in the intervening tissues. In this study, the detected changes in the power spectra of HIFU echoes were used by controlling the HIFU duration in the “trigger HIFU” sequence with the aim to increase coagulation size through the enhancement of the ultrasonic heating by the cavitation induced by the preceding extremely high intensity short “trigger” pulse. The result shows that this method can be used to detect boiling bubbles and the following generated cavitation bubbles at their early stage. By automatically stopping HIFU exposure immediately after detecting the bubbles, overheating was prevented and the deviation of the length of the coagulated region was reduced.

  16. Focused Ethnography as Research Method: A Case Study of Techno Music Producers in Home-Recording Studios

    Directory of Open Access Journals (Sweden)

    Jan Michael Kühn

    2013-05-01

    Full Text Available Translator's Introduction: Jan-Michael Kühn's essay introduces the reader to Hubert Knoblauch's focused ethnography [fokussierte Ethnographie] as an ethnographic fieldwork method. More than a decade after Knoblauch's first publications on this method, there are precious few guides to focused ethnography in the English language, save one (Knoblauch 2005. At any rate, there are certainly no introductions to this methodology that also use EDM scenes as a case study. Kühn's article was originally published in German in Soziologie Magazin, a student-run journal published from Martin Luther University in Halle (Saale but operated by an editorial network that spans Germany. As a result, Kühn orients his writing towards an audience of junior researchers, post-docs and graduate students, highlighting the ways in which focused ethnography suits the circumstances of early research careers, where one may have difficulty securing long-term research stays for fieldwork of broader scope. In particular, he notes that Knoblauch's methods require a very narrow scope for the project (i.e., a "field sector" rather than the whole field, a reliance on the researcher's previous knowledge of the field, and short bursts of intense ethnographic activity in order to create work that is tightly focused but still rigorous and generative of fresh knowledge and new concepts.KEYWORDS: qualitative methods; cultural production; music production; home-recording; technoculture

  17. Measurement and numerical simulation of high intensity focused ultrasound field in water

    Science.gov (United States)

    Lee, Kang Il

    2017-11-01

    In the present study, the acoustic field of a high intensity focused ultrasound (HIFU) transducer in water was measured by using a commercially available needle hydrophone intended for HIFU use. To validate the results of hydrophone measurements, numerical simulations of HIFU fields were performed by integrating the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation from the frequency-domain perspective with the help of a MATLAB-based software package developed for HIFU simulation. Quantitative values for the focal waveforms, the peak pressures, and the size of the focal spot were obtained in various regimes of linear, quasilinear, and nonlinear propagation up to the source pressure levels when the shock front was formed in the waveform. The numerical results with the HIFU simulator solving the KZK equation were compared with the experimental data and found to be in good agreement. This confirms that the numerical simulation based on the KZK equation is capable of capturing the nonlinear pressure field of therapeutic HIFU transducers well enough to make it suitable for HIFU treatment planning.

  18. Enhanced thermal effect using magnetic nano-particles during high-intensity focused ultrasound.

    Science.gov (United States)

    Devarakonda, Surendra Balaji; Myers, Matthew R; Giridhar, Dushyanth; Dibaji, Seyed Ahmad Reza; Banerjee, Rupak Kumar

    2017-01-01

    Collateral damage and long sonication times occurring during high-intensity focused ultrasound (HIFU) ablation procedures limit clinical advancement. In this reserarch, we investigated whether the use of magnetic nano-particles (mNPs) can reduce the power required to ablate tissue or, for the same power, reduce the duration of the procedure. Tissue-mimicking phantoms containing embedded thermocouples and physiologically acceptable concentrations (0%, 0.0047%, and 0.047%) of mNPs were sonicated at acoustic powers of 5.2 W, 9.2 W, and 14.5 W, for 30 seconds. Lesion volumes were determined for the phantoms with and without mNPs. It was found that with the 0.047% mNP concentration, the power required to obtain a lesion volume of 13 mm3 can be halved, and the time required to achieve a 21 mm3 lesion decreased by a factor of 5. We conclude that mNPs have the potential to reduce damage to healthy tissue, and reduce the procedure time, during tumor ablation using HIFU.

  19. Dynamic T{sub 2}-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M. [Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Philips Healthcare Canada, Markham, ON, L6C 2S3 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada)

    2012-11-28

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1 Degree-Sign C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T{sub 2}, since T{sub 2} increases linearly in fat during heating. T{sub 2}-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T{sub 2}. Calibration of T{sub 2}-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T{sub 2} and temperature with a thermocouple. A positive T{sub 2} temperature dependence in bone marrow of 20 ms/ Degree-Sign C was observed. Dynamic T{sub 2}-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  20. Chronic cardiac arrhythmias produced by focused cobalt-60 gamma irradiation of the canine atria

    International Nuclear Information System (INIS)

    Dick, H.L.H.; Saylor, C.B.; Reeves, M.M.; Davies, M.J.

    1979-01-01

    Cardiac arrhythmias following exposure of the human heart to ionizing radiation have been reported. Earlier experiments involving irradiation of the hearts of various animals failed to consistently produce similar arrhythmias. In the present work, cobalt-60 irradiation was focused on the interatrial septum of the hearts of 12 dogs. Ten animals developed arrhythmias: These were repetive junctional and atrial tachycardias, repetitive atrial fibrillation, and type one, second-degree atrial ventricular block. The duration varied from 1 to 52 days, with onsets varying from 48 to 146 days postirradiation

  1. Thermal Ablation of the Pancreas With Intraoperative High-Intensity Focused Ultrasound: Safety and Efficacy in a Porcine Model.

    Science.gov (United States)

    Dupré, Aurélien; Melodelima, David; Pflieger, Hannah; Chen, Yao; Vincenot, Jérémy; Kocot, Anthony; Langonnet, Stéphan; Rivoire, Michel

    2017-02-01

    New focal destruction technologies such as high-intensity focused ultrasound (HIFU) may improve the prognosis of pancreatic ductal adenocarcinoma. Our objectives were to demonstrate the safety and efficacy of intraoperative pancreatic HIFU ablation in a porcine model. In a porcine model (N = 12), a single HIFU ablation was performed in either the body or tail of the pancreas, distant to superior mesenteric vessels. All animals were sacrificed on the eighth day. The primary objective was to obtain an HIFU ablation measuring at least 1 cm without premature death. In total, 12 HIFU ablations were carried out. These ablations were performed within 160 seconds and on average measured 20 (15-27) × 16 (8-26) mm. The primary objective was fulfilled in all but 1 pig. There were no premature deaths or severe complications. High-intensity focused ultrasound treatment was associated with a transitory increase in amylase and lipase levels, and pseudocysts were observed in half of the pigs without being clinically apparent. All ablations were well delimited at both gross and histological examinations. Intraoperative thermal destruction of porcine pancreas with HIFU is feasible. Reproducibility and safety have to be confirmed when applied close to mesenteric vessels and in long-term preclinical studies.

  2. Physics and technology of large plasma focus devices

    International Nuclear Information System (INIS)

    Herold, H.

    1990-01-01

    This paper reports on the plasma focus (PF) which produces a high temperature (0,5 to 1 keV), high density (5 · 10 18 cm -3 ), short living (up to 500 ns) fusion plasma in a very simple and cheap device. In the focus plasma, fusion processes take place with an energy efficiency which is not surpassed even by large Tokamak or Inertial Confinement Fusion devices. But this fusion efficiency and the high fusion neutron yield are not the only impetus to PF research. Due to the high energy density in the focus plasma (j ≥ 10 6 A/cm 2 exclamation point), many very interesting, mostly nonlinear phenomena take place which led to high intensity electron, ion and radiation emission. Micro- and macro instabilities, turbulence and selforganization processes develop. Most of these phenomena are not or only poorly understood

  3. Focusing effects in laser-electron Thomson scattering

    Directory of Open Access Journals (Sweden)

    Chris Harvey

    2016-09-01

    Full Text Available We study the effects of laser pulse focusing on the spectral properties of Thomson scattered radiation. Modeling the laser as a paraxial beam we find that, in all but the most extreme cases of focusing, the temporal envelope has a much bigger effect on the spectrum than the focusing itself. For the case of ultrashort pulses, where the paraxial model is no longer valid, we adopt a subcycle vector beam description of the field. It is found that the emission harmonics are blue shifted and broaden out in frequency space as the pulse becomes shorter. Additionally the carrier envelope phase becomes important, resulting in an angular asymmetry in the spectrum. We then use the same model to study the effects of focusing beyond the limit where the paraxial expansion is valid. It is found that fields focussed to subwavelength spot sizes produce spectra that are qualitatively similar to those from subcycle pulses due to the shortening of the pulse with focusing. Finally, we study high-intensity fields and find that, in general, the focusing makes negligible difference to the spectra in the regime of radiation reaction.

  4. Volumetric MR-Guided High-Intensity Focused Ultrasound with Direct Skin Cooling for the Treatment of Symptomatic Uterine Fibroids : Proof-of-Concept Study

    NARCIS (Netherlands)

    Ikink, Marlijne E; van Breugel, Johanna M M; Schubert, Gerald; Nijenhuis, Robbert J; Bartels, LW; Moonen, Chrit T W; van den Bosch, Maurice A A J

    2015-01-01

    Objective. To prospectively assess the safety and technical feasibility of volumetric magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation with direct skin cooling (DISC) during treatment of uterine fibroids. Methods. In this proof-of-concept study, eight patients were

  5. [Control parameters for high-intensity focused ultrasound (HIFU) for tissue ablation in the ex-vivo kidney].

    Science.gov (United States)

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E H; Kraut, O; Alken, P

    2002-01-01

    Therapeutic application of contactless thermoablation by high-intensity focused ultrasound (HIFU) demands precise physical definition of focal size and determination of control parameters. Our objective was to define the focal expansion of a new ultrasound generator and to evaluate the extent of tissue ablation under variable generator parameters in an ex vivo model. Axial and transversal distribution of ultrasound intensity in the area of the focal point was calculated by needle hydrophone. The extent of tissue necrosis after focused ultrasound was assessed in an ex vivo porcine kidney model applying generator power up to 400 Watt and pulse duration up to 8 s. The measurement of field distribution revealed a physical focal size of 32 x 4 mm. Sharp demarcation between coagulation necrosis and intact tissue was observed in our tissue model. Lesion size was kept under control by variation of both generator power and impulse duration. At a constant impulse duration of 2 s, generator power of 100 W remained below the threshold doses for induction of a reproducible lesion. An increase in power up to 200 W and 400 W, respectively, induced lesions with diameters up to 11.2 x 3 mm. Constant total energy (generator power x impulse duration) led to a larger lesion size under higher generator power. It is possible to induce sharply demarcated, reproducible thermonecrosis, which can be regulated by generator power and impulse duration, by means of a cylindrical piezo element with a paraboloid reflector at a focal distance of 10 cm. The variation of generator power was an especially suitable control parameter for the inducement of a defined lesion size.

  6. Salvage High-intensity Focused Ultrasound for the Recurrent Prostate Cancer after Radiotherapy

    International Nuclear Information System (INIS)

    Shoji, S.; Nakano, M.; Omata, T.; Harano, Y.; Nagata, Y.; Uchida, T.; Usui, Y.; Terachi, T.

    2010-01-01

    To investigate the use of minimally invasive high-intensity focused ultrasound (HIFU) as a salvage therapy in men with localized prostate cancer recurrence following external beam radiotherapy (EBRT), brachytherapy or proton therapy. A review of 20 cases treated using the Sonablate registered 500 HIFU device, between August 28, 2002 and September 1, 2009, was carried out. All men had presumed organ-confined, histologically confirmed recurrent prostate adenocarcinoma following radiation therapy. All men with presumed, organ-confined, recurrent disease following EBRT in 8 patients, brachytherapy in 7 patients or proton therapy in 5 patients treated with salvage HIFU were included. The patients were followed for a mean (range) of 16.0 (3-80) months. Biochemical disease-free survival (bDFS) rates in patients with low-intermediate and high risk groups were 86% and 50%, respectively. Side-effects included urethral stricture in 2 of the 16 patients (13%), urinary tract infection or dysuria syndrome in eight (26%), and urinary incontinence in one (6%). Recto-urethral fistula occurred in one patient (6%). Transrectal HIFU is an effective treatment for recurrence after radiotherapy especially in patients with low- and intermediate risk groups.

  7. Levator Ani Necrosis: An Exceptional Complication Occurring after “High Intensity Focused Ultrasound” of the Prostate

    Directory of Open Access Journals (Sweden)

    Danny Badawy

    2016-01-01

    Full Text Available High intensity focused ultrasound (HIFU is a minimally invasive treatment option that might be considered in the management of localized prostate cancer. It is a well-tolerated treatment with few minor urologic complications and no major toxicities. In this paper, we report to our knowledge the first case of levator ani necrosis in a patient treated with HIFU, manifesting as sturdy perineal pain, which took years of NSAID intake and serial MRIs to demonstrate partial improvement. Therefore, we regard HIFU as a serious potential treatment option that still requires longer follow-up data before its approval in the personalized treatment panel of prostate cancer.

  8. Keratorefractive Effect of High Intensity Focused Ultrasound Keratoplasty on Rabbit Eyes

    Directory of Open Access Journals (Sweden)

    Zhiyu Du

    2016-01-01

    Full Text Available Purpose. To evaluate high intensity focused ultrasound (HIFU as an innovation and noninvasive technique to correct presbyopia by altering corneal curvature in the rabbit eye. Methods. Eighteen enucleated rabbit eyes were treated with a prototype HIFU keratoplasty. According to the therapy power, these eyes were divided three groups: group 1 (1 W, group 2 (2 W, and group 3 (3 W. The change in corneal power was quantified by a Sirius Scheimpflug camera. Light microscopy (LM and transmission electron microscopy (TEM were performed to determine the effect on the corneal stroma. Results. In the treated eyes, the corneal curvature increases from 49.42 ± 0.30 diopters (D and 48.00 ± 1.95 D before procedure to 51.37 ± 1.11 D and 57.00 ± 1.84 D after HIFU keratoplasty application in groups 1 and 3, respectively. The major axis and minor axis of the focal region got longer when the powers of the HIFU got increased; the difference was statistically significant (p<0.05. LM and TEM showed HIFU-induced shrinkage of corneal stromal collagen with little disturbance to the underlying epithelium. Conclusions. We have preliminarily exploited HIFU to establish a new technique for correcting presbyopia. HIFU keratoplasty will be a good application prospect for treating presbyopia.

  9. Focusing on patient safety in the Neonatal Intensive Care Unit environment

    Directory of Open Access Journals (Sweden)

    Ilias Chatziioannidis

    2017-02-01

    Full Text Available Patient safety in the Neonatal Intensive Care Unit (NICU environment is an under-researched area, but recently seems to get high priority on the healthcare quality agenda worldwide. NICU, as a highly sensitive and technological driven environment, signals the importance for awareness in causation of mistakes and accidents. Adverse events and near misses that comprise the majority of human errors, cause morbidity often with devastating results, even death. Likewise in other organizations, errors causes are multiple and complex. Other high reliability organizations, such as air force and nuclear industry, offer examples of how standardized/homogenized work and removal of systems weaknesses can minimize errors. It is widely accepted that medical errors can be explained based on personal and/or system approach. The impact/effect of medical errors can be reduced when thorough/causative identification approach is followed by detailed analysis of consequences and prevention measures. NICU’s medical and nursing staff should be familiar with patient safety language, implement best practices, and support safety culture, maximizing efforts for reducing errors. Furthermore, top management commitment and support in developing patient safety culture is essential in order to assure the achievement of the desirable organizational safety outcomes. The aim of the paper is to review patient safety issues in the NICU environment, focusing on development and implementation of strategies, enhancing high quality standards for health care.

  10. Using passive cavitation images to classify high-intensity focused ultrasound lesions.

    Science.gov (United States)

    Haworth, Kevin J; Salgaonkar, Vasant A; Corregan, Nicholas M; Holland, Christy K; Mast, T Douglas

    2015-09-01

    Passive cavitation imaging provides spatially resolved monitoring of cavitation emissions. However, the diffraction limit of a linear imaging array results in relatively poor range resolution. Poor range resolution has limited prior analyses of the spatial specificity and sensitivity of passive cavitation imaging in predicting thermal lesion formation. In this study, this limitation is overcome by orienting a linear array orthogonal to the high-intensity focused ultrasound propagation direction and performing passive imaging. Fourteen lesions were formed in ex vivo bovine liver samples as a result of 1.1-MHz continuous-wave ultrasound exposure. The lesions were classified as focal, "tadpole" or pre-focal based on their shape and location. Passive cavitation images were beamformed from emissions at the fundamental, harmonic, ultraharmonic and inharmonic frequencies with an established algorithm. Using the area under a receiver operating characteristic curve (AUROC), fundamental, harmonic and ultraharmonic emissions were found to be significant predictors of lesion formation for all lesion types. For both harmonic and ultraharmonic emissions, pre-focal lesions were classified most successfully (AUROC values of 0.87 and 0.88, respectively), followed by tadpole lesions (AUROC values of 0.77 and 0.64, respectively) and focal lesions (AUROC values of 0.65 and 0.60, respectively). Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Intense electron and ion beams

    CERN Document Server

    Molokovsky, Sergey Ivanovich

    2005-01-01

    Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers and researchers.

  12. Polylactic acid nano- and microchamber arrays for encapsulation of small hydrophilic molecules featuring drug release via high intensity focused ultrasound.

    Science.gov (United States)

    Gai, Meiyu; Frueh, Johannes; Tao, Tianyi; Petrov, Arseniy V; Petrov, Vladimir V; Shesterikov, Evgeniy V; Tverdokhlebov, Sergei I; Sukhorukov, Gleb B

    2017-06-01

    Long term encapsulation combined with spatiotemporal release for a precisely defined quantity of small hydrophilic molecules on demand remains a challenge in various fields ranging from medical drug delivery, controlled release of catalysts to industrial anti-corrosion systems. Free-standing individually sealed polylactic acid (PLA) nano- and microchamber arrays were produced by one-step dip-coating a PDMS stamp into PLA solution for 5 s followed by drying under ambient conditions. The wall thickness of these hydrophobic nano-microchambers is tunable from 150 nm to 7 μm by varying the PLA solution concentration. Furthermore, small hydrophilic molecules were successfully in situ precipitated within individual microchambers in the course of solvent evaporation after sonicating the PLA@PDMS stamp to remove air-bubbles and to load the active substance containing solvent. The cargo capacity of single chambers was determined to be in the range of several picograms, while it amounts to several micrograms per cm 2 . Two different methods for sealing chambers were compared: microcontact printing versus dip-coating whereby microcontact printing onto a flat PLA sheet allows for entrapment of micro-air-bubbles enabling microchambers with both ultrasound responsiveness and reduced permeability. Cargo release triggered by external high intensity focused ultrasound (HIFU) stimuli is demonstrated by experiment and compared with numerical simulations.

  13. Non invasive transcostal focusing based on the decomposition of the time reversal operator: in vitro validation

    Science.gov (United States)

    Cochard, Étienne; Prada, Claire; Aubry, Jean-François; Fink, Mathias

    2010-03-01

    Thermal ablation induced by high intensity focused ultrasound has produced promising clinical results to treat hepatocarcinoma and other liver tumors. However skin burns have been reported due to the high absorption of ultrasonic energy by the ribs. This study proposes a method to produce an acoustic field focusing on a chosen target while sparing the ribs, using the decomposition of the time-reversal operator (DORT method). The idea is to apply an excitation weight vector to the transducers array which is orthogonal to the subspace of emissions focusing on the ribs. The ratio of the energies absorbed at the focal point and on the ribs has been enhanced up to 100-fold as demonstrated by the measured specific absorption rates.

  14. Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios

    International Nuclear Information System (INIS)

    Castanheira, Érica Geraldes; Acevedo, Helmer; Freire, Fausto

    2014-01-01

    Highlights: • A comprehensive evaluation of alternative LUC and fertilization schemes. • The GHG intensity of palm oil greatly depends on the LUC scenario. • Colombian palm area expansion resulted in negative or low palm oil GHG intensity. • GHG emissions from plantation vary significantly with N 2 O emission parameters. - Abstract: The main goal of this article is to assess the life-cycle greenhouse gas (GHG) intensity of palm oil produced in a specific plantation and mill in Colombia. A comprehensive evaluation of the implications of alternative land use change (LUC) scenarios (forest, shrubland, savanna and cropland conversion) and fertilization schemes (four synthetic and one organic nitrogen-fertilizer) was performed. A sensitivity analysis to field nitrous oxide emission calculation, biogas management options at mill, time horizon considered for global warming and multifunctionality approach were also performed. The results showed that the GHG intensity of palm oil greatly depends on the LUC scenario. Significant differences were observed between the LUC scenarios (−3.0 to 5.3 kg CO 2 eq kg −1 palm oil). The highest result is obtained if tropical rainforest is converted and the lowest if palm is planted on previous cropland, savanna and shrubland, in which almost all LUC from Colombian oil palm area expansion occurred between 1990 and 2009. Concerning plantation and oil extraction, it was shown that field nitrous oxide emissions and biogas management options have a high influence on GHG emissions

  15. Therapeutic effects of microbubble added to combined high-intensity focused ultrasound and chemotherapy in a pancreatic cancer xenograft model

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mi Hye [Dept. of Radiology, Konkuk University Medical Center, Seoul (Korea, Republic of); Lee, Jae Young; Kim, Bo Ram; Park, Eun Joo; Kim, Hoe Suk; Han, Joon Koo [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Hae Ri [Dept. of Pre-Dentistry, Gangneung-Wonju National University College of Dentistry, Gangneung (Korea, Republic of); Choi, Byung Ihn [Dept. of Radiology, Chung-Ang University Hospital, Seoul (Korea, Republic of)

    2016-09-15

    To investigate whether high-intensity focused ultrasound (HIFU) combined with microbubbles enhances the therapeutic effects of chemotherapy. A pancreatic cancer xenograft model was established using BALB/c nude mice and luciferase-expressing human pancreatic cancer cells. Mice were randomly assigned to five groups according to treatment: control (n = 10), gemcitabine alone (GEM; n = 12), HIFU with microbubbles (HIFU + MB, n = 11), combined HIFU and gemcitabine (HIGEM; n = 12), and HIGEM + MB (n = 13). After three weekly treatments, apoptosis rates were evaluated using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay in two mice per group. Tumor volume and bioluminescence were monitored using high-resolution 3D ultrasound imaging and in vivo bioluminescence imaging for eight weeks in the remaining mice. The HIGEM + MB group showed significantly higher apoptosis rates than the other groups (p < 0.05) and exhibited the slowest tumor growth. From week 5, the tumor-volume-ratio relative to the baseline tumor volume was significantly lower in the HIGEM + MB group than in the control, GEM, and HIFU + MB groups (p < 0.05). Despite visible distinction, the HIGEM and HIGEM + MB groups showed no significant differences. High-intensity focused ultrasound combined with microbubbles enhances the therapeutic effects of gemcitabine chemotherapy in a pancreatic cancer xenograft model.

  16. Therapeutic Effects of Microbubbles Added to Combined High-Intensity Focused Ultrasound and Chemotherapy in a Pancreatic Cancer Xenograft Model

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mi Hye [Department of Radiology, Konkuk University Medical Center, Seoul 05030 (Korea, Republic of); Lee, Jae Young [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Kim, Hae Ri [Department of Pre-Dentistry, Gangneung-Wonju National University College of Dentistry, Gangneung 25457 (Korea, Republic of); Kim, Bo Ram; Park, Eun-Joo; Kim, Hoe Suk; Han, Joon Koo [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Choi, Byung Ihn [Department of Radiology, Chung-Ang University Hospital, Seoul 06973 (Korea, Republic of)

    2016-11-01

    To investigate whether high-intensity focused ultrasound (HIFU) combined with microbubbles enhances the therapeutic effects of chemotherapy. A pancreatic cancer xenograft model was established using BALB/c nude mice and luciferase-expressing human pancreatic cancer cells. Mice were randomly assigned to five groups according to treatment: control (n = 10), gemcitabine alone (GEM; n = 12), HIFU with microbubbles (HIFU + MB, n = 11), combined HIFU and gemcitabine (HIGEM; n = 12), and HIGEM + MB (n = 13). After three weekly treatments, apoptosis rates were evaluated using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay in two mice per group. Tumor volume and bioluminescence were monitored using high-resolution 3D ultrasound imaging and in vivo bioluminescence imaging for eight weeks in the remaining mice. The HIGEM + MB group showed significantly higher apoptosis rates than the other groups (p < 0.05) and exhibited the slowest tumor growth. From week 5, the tumor-volume-ratio relative to the baseline tumor volume was significantly lower in the HIGEM + MB group than in the control, GEM, and HIFU + MB groups (p < 0.05). Despite visible distinction, the HIGEM and HIGEM + MB groups showed no significant differences. High-intensity focused ultrasound combined with microbubbles enhances the therapeutic effects of gemcitabine chemotherapy in a pancreatic cancer xenograft model.

  17. The intense neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1966-07-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through {mu}-, {pi}- and K-meson production. Isotope production enters many fields of applied research. (author)

  18. The intense neutron generator

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1966-01-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through μ-, π- and K-meson production. Isotope production enters many fields of applied research. (author)

  19. Laser-enhanced high-intensity focused ultrasound heating in an in vivo small animal model

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2016-11-01

    The enhanced heating effect during the combination of high-intensity focused ultrasound (HIFU) and low-optical-fluence laser illumination was investigated by using an in vivo murine animal model. The thighs of murine animals were synergistically irradiated by HIFU and pulsed nano-second laser light. The temperature increases in the target region were measured by a thermocouple under different HIFU pressures, which were 6.2, 7.9, and 9.8 MPa, in combination with 20 mJ/cm2 laser exposures at 532 nm wavelength. In comparison with conventional laser therapies, the laser fluence used here is at least one order of magnitude lower. The results showed that laser illumination could enhance temperature during HIFU applications. Additionally, cavitation activity was enhanced when laser and HIFU irradiation were concurrently used. Further, a theoretical simulation showed that the inertial cavitation threshold was indeed decreased when laser and HIFU irradiation were utilized concurrently.

  20. A Rectourethral Fistula due to Transrectal High-Intensity Focused Ultrasound Treatment: Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    Valeria Fiaschetti

    2012-01-01

    Full Text Available Colovesical fistula (CVF is an abnormal connection between the enteric and the urinary systems. The rectourethral fistula (RUF is a possible but extremely rare complication of treatment of prostate cancer with “transrectal High-Intensity Focused Ultrasound (HIFU treatment.” We present a case of CVF due to HIFU treatment of recurrent prostate cancer. The case was assessed with cystography completed with a pelvic CT scan—with MPR, MIP, and VR reconstruction—before emptying the bladder. Since the CT scan confirmed that the fistula involved solely the urethra and excluded even a minimal involvement of the bladder, it was possible to employ a conservative treatment by positioning a Foley catheter of monthly duration, in order to allow the urethra to rest. Still today, after 6 months, the patient is in a good clinical condition and has not shown yet signs of a recurrence of the fistula.

  1. Assessing client self-narrative change in emotion-focused therapy of depression: an intensive single case analysis.

    Science.gov (United States)

    Angus, Lynne E; Kagan, Fern

    2013-12-01

    Personality researchers use the term self-narrative to refer to the development of an overall life story that places life events in a temporal sequence and organizes them in accordance to overarching themes. In turn, it is often the case that clients seek out psychotherapy when they can no longer make sense of their life experiences, as a coherent story. Angus and Greenberg (L. Angus and L. Greenberg, 2011, Working with narrative in emotion-focused therapy: Changing stories, healing lives. Washington, DC: American Psychological Association Press) view the articulation and consolidation of an emotionally integrated self-narrative account as an important part of the therapeutic change process that is essential for sustained change in emotion-focused therapy of depression. The purpose of the present study was to investigate client experiences of change, and self-narrative reconstruction, in the context of one good outcome emotion-focused therapy dyad drawn from the York II Depression Study. Using the Narrative Assessment Interview (NAI) method, client view of self and experiences of change were assessed at three points in time--after session one, at therapy termination, and at 6 months follow-up. Findings emerging from an intensive narrative theme analyses of the NAI transcripts--and 1 key therapy session identified by the client--are reported and evidence for the contributions of narrative and emotion processes to self-narrative change in emotion-focused therapy of depression are discussed. Finally, the implications of assessing clients' experiences of self-narrative change for psychotherapy research and practice are addressed.

  2. Multi-slit triode ion optical system with ballistic beam focusing

    Energy Technology Data Exchange (ETDEWEB)

    Davydenko, V., E-mail: V.I.Davydenko@inp.nsk.su; Amirov, V.; Gorbovsky, A.; Deichuli, P.; Ivanov, A.; Kolmogorov, A.; Kapitonov, V.; Mishagin, V.; Shikhovtsev, I.; Sorokin, A.; Stupishin, N. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Karpushov, A. N. [Ecole Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Smirnov, A. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Uhlemann, R. [Institute of Energy and Climate Research-Plasma Physics, Research Center Juelich, 52425 Juelich (Germany)

    2016-02-15

    Multi-slit triode ion-optical systems with spherical electrodes are of interest for formation of intense focused neutral beams for plasma heating. At present, two versions of focusing multi-slit triode ion optical system are developed. The first ion optical system forms the proton beam with 15 keV energy, 140 A current, and 30 ms duration. The second ion optical system is intended for heating neutral beam injector of Tokamak Configuration Variable (TCV). The injector produces focused deuterium neutral beam with 35 keV energy, 1 MW power, and 2 s duration. In the later case, the angular beam divergence of the neutral beam is 20-22 mrad in the direction across the slits of the ion optical system and 12 mrad in the direction along the slits.

  3. Decline of the self-focusing of a pulsed high intensity electron beam owing to gas breakdown

    International Nuclear Information System (INIS)

    Hotta, H.; Arai, H.

    1977-01-01

    The self-focusing of a pulsed high-intensity electron beam in a gas declines in the intermediate pressure region owing to gas breakdown. The degree of the self-focusing of a beam from a Febetron 706 in monatomic gases increases by increasing the breakdown time (t/sub B/), which is defined as the time when the plasma conductivity becomes 10 mho/cm. Secondary electrons are consumed appreciably in polyatomic gases after t/sub B/ through their reactions with ions and neutral molecules. Therefore, in such gases, the amount of the consumption must be estimated to analyze the self-focusing. For the estimation of the consumption, we must remark that the mean energy of secondary electrons is quite different between before and after t/sub B/ because of the different strength of induced longitudinal electric field. As a result of the numerical analyses, we obtain the equation t/sub B/-t/sub N/ =12/w (α-eta) (t/sub N/ is neutralization time, w is electron drift velocity, α is the first Townsend ionization coefficient, and eta is the electron attachment coefficient). Since eta is usually negligibly small before t/sub B/ and t/sub N/ is also negligibly small above a certain pressure, t/sub B/ is approximately inversely proportional to wα. The t/sub B/ in polyatomic gases, however, must be corrected for the consumption described above

  4. Optical fiber plasmonic lens for near-field focusing fabricated through focused ion beam

    Science.gov (United States)

    Sloyan, Karen; Melkonyan, Henrik; Moreira, Paulo; Dahlem, Marcus S.

    2017-02-01

    We report on numerical simulations and fabrication of an optical fiber plasmonic lens for near-field focusing applications. The plasmonic lens consists of an Archimedean spiral structure etched through a 100 nm-thick Au layer on the tip of a single-mode SM600 optical fiber operating at a wavelength of 632:8 nm. Three-dimensional finite-difference time-domain computations show that the relative electric field intensity of the focused spot increases 2:1 times when the number of turns increases from 2 to 12. Furthermore, a reduction of the intensity is observed when the initial inner radius is increased. The optimized plasmonic lens focuses light into a spot with a full-width at half-maximum of 182 nm, beyond the diffraction limit. The lens was fabricated by focused ion beam milling, with a 200nm slit width.

  5. Practicing Reiki does not appear to routinely produce high-intensity electromagnetic fields from the heart or hands of Reiki practitioners.

    Science.gov (United States)

    Baldwin, Ann Linda; Rand, William Lee; Schwartz, Gary E

    2013-06-01

    The study objective was to determine whether Reiki practice increases the electromagnetic field strength from the heart and hands of Reiki practitioners. This study repeated experiments performed 20 years ago that detected exceptionally high-strength electromagnetic fields (100 nT) from the hands of several energy healers. The equipment used was far more sensitive than in the original studies. Using a Magnes 2500 WH SQUID, the electromagnetic field from the hands and heart of each of 3 Reiki masters was measured when they were (1) not practicing Reiki, (2) sending Reiki to a distant person, and (3) sending Reiki to a person in the room. Similar measurements were made on 4 Reiki-naïve volunteers before and after they received a Reiki training/attunement enabling them to self-administer Reiki. The study setting was the Scripps Institute, San Diego, CA. Magnetic field intensity of hands and heart recorded over 5-minute sessions with corresponding frequency spectra. For all subjects, under all conditions, sensors closest to the heart and the hands produced spikes of 2 pT corresponding to the heartbeat. Recordings from 2 Masters and 1 volunteer showed a low-intensity sine wave oscillation of 0.25-0.3 Hz (intensity 0.1-0.5 pT) whether or not they were practicing Reiki. This oscillation probably reflected respiratory sinus arrhythmia, judged by comparison with recent previous studies. These signals were not detected in the original studies. In the current study, no electromagnetic field intensities greater than 3 pT were observed in any of the recordings. Practicing Reiki does not appear to routinely produce high-intensity electromagnetic fields from the heart or hands. Alternatively, it is possible that energy healing is stimulated by tuning into an external environmental radiation, such as the Schumann resonance, which was blocked in the present study by the strong magnetic shielding surrounding the SQUID.

  6. MR-Guided High-Intensity Focused Ultrasound Ablation of Breast Cancer with a Dedicated Breast Platform

    International Nuclear Information System (INIS)

    Merckel, Laura G.; Bartels, Lambertus W.; Köhler, Max O.; Bongard, H. J. G. Desirée van den; Deckers, Roel; Mali, Willem P. Th. M.; Binkert, Christoph A.; Moonen, Chrit T.; Gilhuijs, Kenneth G. A.; Bosch, Maurice A. A. J. van den

    2013-01-01

    Optimizing the treatment of breast cancer remains a major topic of interest. In current clinical practice, breast-conserving therapy is the standard of care for patients with localized breast cancer. Technological developments have fueled interest in less invasive breast cancer treatment. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a completely noninvasive ablation technique. Focused beams of ultrasound are used for ablation of the target lesion without disrupting the skin and subcutaneous tissues in the beam path. MRI is an excellent imaging method for tumor targeting, treatment monitoring, and evaluation of treatment results. The combination of HIFU and MR imaging offers an opportunity for image-guided ablation of breast cancer. Previous studies of MR-HIFU in breast cancer patients reported a limited efficacy, which hampered the clinical translation of this technique. These prior studies were performed without an MR-HIFU system specifically developed for breast cancer treatment. In this article, a novel and dedicated MR-HIFU breast platform is presented. This system has been designed for safe and effective MR-HIFU ablation of breast cancer. Furthermore, both clinical and technical challenges are discussed, which have to be solved before MR-HIFU ablation of breast cancer can be implemented in routine clinical practice.

  7. Gold nanoparticle nucleated cavitation for enhanced high intensity focused ultrasound therapy

    Science.gov (United States)

    McLaughlan, J. R.; Cowell, D. M. J.; Freear, S.

    2018-01-01

    High intensity focused ultrasound (HIFU) or focused ultrasound surgery is a non-invasive technique for the treatment of cancerous tissue, which is limited by difficulties in getting real-time feedback on treatment progress and long treatment durations. The formation and activity of acoustic cavitation, specifically inertial cavitation, during HIFU exposures has been demonstrated to enhance heating rates. However, without the introduction of external nuclei its formation an activity can be unpredictable, and potentially counter-productive. In this study, a combination of pulse laser illumination (839 nm), HIFU exposures (3.3 MHz) and plasmonic gold nanorods (AuNR) was demonstrated as a new approach for the guidance and enhancement of HIFU treatments. For imaging, short duration HIFU pulses (10 μs) demonstrated broadband acoustic emissions from AuNR nucleated cavitation with a signal-to-noise ranging from 5-35 dB for peak negative pressures between 1.19-3.19  ±  0.01 MPa. In the absence of either AuNR or laser illumination these emissions were either not present or lower in magnitude (e.g. 5 dB for 3.19 MPa). Continuous wave (CW) HIFU exposures for 15 s, were then used to generate thermal lesions for peak negative pressures from 0.2-2.71  ±  0.01 MPa at a fluence of 3.4 mJ cm-2 . Inertial cavitation dose (ICD) was monitored during all CW exposures, where exposures combined with both laser illumination and AuNRs resulted in the highest level of detectable emissions. This parameter was integrated over the entire exposure to give a metric to compare with measured thermal lesion area, where it was found that a minimum total ICD of 1.5 × 103 a.u. was correlated with the formation of thermal lesions in gel phantoms. Furthermore, lesion area (mm2) was increased for equivalent exposures without either AuNRs or laser illumination. Once combined with cancer targeting AuNRs this approach could allow for the future theranostic use of HIFU, such as

  8. Dynamics of C2 formation in laser-produced carbon plasma in helium environment

    International Nuclear Information System (INIS)

    Al-Shboul, K. F.; Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-01-01

    We investigated the role of helium ambient gas on the dynamics of C 2 species formation in laser-produced carbon plasma. The plasma was produced by focusing 1064 nm pulses from an Nd:YAG laser onto a carbon target. The emission from the C 2 species was studied using optical emission spectroscopy, and spectrally resolved and integrated fast imaging. Our results indicate that the formation of C 2 in the plasma plume is strongly affected by the pressure of the He gas. In vacuum, the C 2 emission zone was located near the target and C 2 intensity oscillations were observed both in axial and radial directions with increasing the He pressure. The oscillations in C 2 intensity at higher pressures in the expanding plume could be caused by various formation zones of carbon dimers.

  9. Coulomb focusing and ''path'' interference of autoionizing electrons produced in 10 keV He+ + He collisions

    International Nuclear Information System (INIS)

    Swenson, J.K.; Burgdoerfer, J.; Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N.

    1991-01-01

    Autoionizing electrons emitted following low energy ion-atom collisions may scatter significantly from the receding spectator ion's attractive Coulomb field. In such cases the observed electron intensity is ''focused'' in the direction of the scattering ion as a result of the effective compression of the emission solid angle. In addition, interference may occur between trajectories, corresponding to electrons scattering around opposite sides of the ion, which lead to the same final laboratory electron energy and emission angle. This Coulomb ''path'' interference mechanism manifests itself in the uncharacteristically rapid angular dependence of the He target 2s 2 1 S autoionizing state measured near 0 degree following low energy He + + He collisions. A classical trajectory model for Coulomb focusing is presented and a semi-classical approximation is used to model the Coulomb ''path'' interference mechanism. In this description we account for the evolution of the phase of the autoionizing state until its decay and the path dependence of the amplitude of the emitted electron following decay of the autoionizing state. Calculated model lineshapes, which include contributions from adjacent overlapping resonances, reproduce quite well the angular dependence observed in the data near 0 degree. 14 refs., 7 figs

  10. On the self-focusing of electric helicons

    International Nuclear Information System (INIS)

    Tsintadze, N.L.; El-Ashry, M.Y.; Garuchava, D.P.

    1987-07-01

    The present work is devoted to the investigation of the stationary self-focusing of circularly polarized helicons in a magnetized plasma in the case of ultra-relativistic intensities. It is shown that the larger intensity and effective width at the boundary is the much faster growing self-focusing. (author). 8 refs

  11. Intensive Care Nurses’ Belief Systems Regarding the Health Economics: A Focused Ethnography

    Science.gov (United States)

    Heydari, Abbas; Vafaee-Najar, Ali; Bakhshi, Mahmoud

    2016-01-01

    Background: Health care beliefs can have an effect on the efficiency and effectiveness of nursing practices. Nevertheless, how belief systems impact on the economic performance of intensive care unit (ICU) nurses is not known. This study aimed to explore the ICU nurses’ beliefs and their effect on nurse’s: practices and behavior patterns regarding the health economics. Methods: In this study, a focused ethnography method was used. Twenty-four informants from ICU nurses and other professional individuals were purposively selected and interviewed. As well, 400 hours of ethnographic observations were used for data collection. Data analysis was performed using the methods described by Miles and Huberman (1994). Findings: Eight beliefs were found that gave meaning to ICU nurse’s practices regarding the health economics. 1. The registration of medications and supplies disrupt the nursing care; 2. Monitoring and auditing improve consumption; 3. There is a fear of possible shortage in the future; 4. Supply and replacement of equipment is difficult; 5. Higher prices lead to more accurate consumption; 6. The quality of care precedes the costs; 7. Clinical Guidelines are abundant but useful; and 8. Patient economy has priority over hospital economy. Maintaining the quality of patient care with least attention to hospital costs was the main focus of the beliefs formed up in the ICU regarding the health economics. Conclusions: ICU nurses’ belief systems have significantly shaped in relation to providing a high-quality care. Although high quality of care can lead to a rise in the effectiveness of nursing care, cost control perspective should also be considered in planning for improve the quality of care. Therefore, it is necessary to involve the ICU nurses in decision-making about unit cost management. They must become familiar with the principles of heath care economics and productivity by applying an effective cost management program. It may be optimal to implement the

  12. Intensive Care Nurses' Belief Systems Regarding the Health Economics: A Focused Ethnography.

    Science.gov (United States)

    Heydari, Abbas; Vafaee-Najar, Ali; Bakhshi, Mahmoud

    2016-09-01

    Health care beliefs can have an effect on the efficiency and effectiveness of nursing practices. Nevertheless, how belief systems impact on the economic performance of intensive care unit (ICU) nurses is not known. This study aimed to explore the ICU nurses' beliefs and their effect on nurse's practices and behavior patterns regarding the health economics. In this study, a focused ethnography method was used. Twenty-four informants from ICU nurses and other professional individuals were purposively selected and interviewed. As well, 400 hours of ethnographic observations were used for data collection. Data analysis was performed using the methods described by Miles and Huberman (1994). Eight beliefs were found that gave meaning to ICU nurse's practices regarding the health economics. 1. The registration of medications and supplies disrupt the nursing care; 2.Monitoring and auditing improve consumption; 3.There is a fear of possible shortage in the future; 4.Supply and replacement of equipment is difficult; 5.Higher prices lead to more accurate consumption; 6.The quality of care precedes the costs; 7. Clinical Guidelines are abundant but useful; and 8.Patient economy has priority over hospital economy. Maintaining the quality of patient care with least attention to hospital costs was the main focus of the beliefs formed up in the ICU regarding the health economics. ICU nurses' belief systems have significantly shaped in relation to providing a high-quality care. Although high quality of care can lead to a rise in the effectiveness of nursing care, cost control perspective should also be considered in planning for improve the quality of care. Therefore, it is necessary to involve the ICU nurses in decision-making about unit cost management. They must become familiar with the principles of heath care economics and productivity by applying an effective cost management program. It may be optimal to implement the reforms in various aspects, such as the hospital

  13. A Randomized Controlled Trial of 7-Day Intensive and Standard Weekly Cognitive Therapy for PTSD and Emotion-Focused Supportive Therapy

    Science.gov (United States)

    Ehlers, Anke; Hackmann, Ann; Grey, Nick; Wild, Jennifer; Liness, Sheena; Albert, Idit; Deale, Alicia; Stott, Richard; Clark, David M.

    2014-01-01

    Objective Psychological treatments for posttraumatic stress disorder (PTSD) are usually delivered once or twice weekly over several months. It is unclear whether they can be successfully delivered over a shorter period of time. This clinical trial had two goals, (1) to investigate the acceptability and efficacy of a 7-day intensive version of cognitive therapy for PTSD, and (2) to investigate whether cognitive therapy has specific treatment effects by comparing intensive and standard weekly cognitive therapy with an equally credible alternative treatment. Method Patients with chronic PTSD (N=121) were randomly allocated to 7-day intensive or standard 3-month weekly cognitive therapy for PTSD, 3-month weekly emotion-focused supportive therapy, or a 14-week waitlist condition. Primary outcomes were PTSD symptoms and diagnosis as assessed by independent assessors and self-report. Secondary outcomes were disability, anxiety, depression, and quality of life. Measures were taken at initial assessment, 6 weeks and 14 weeks (post-treatment/wait). For groups receiving treatment, measures were also taken at 3 weeks, and follow-ups at 27 and 40 weeks after randomization. All analyses were intent-to-treat. Results At post-treatment/wait assessment, 73%, 77%, 43%, 7% of the intensive cognitive therapy, standard cognitive therapy, supportive therapy, and waitlist groups, respectively, had recovered from PTSD. All treatments were well tolerated and were superior to waitlist on all outcome measures, with the exception of no difference between supportive therapy and waitlist on quality of life. For primary outcomes, disability and general anxiety, intensive and standard cognitive therapy were superior to supportive therapy. Intensive cognitive therapy achieved faster symptom reduction and comparable overall outcomes to standard cognitive therapy. Conclusions Cognitive therapy for PTSD delivered intensively over little more than a week is as effective as cognitive therapy delivered

  14. Outbreak of Imipenemase-1-Producing Carbapenem-Resistant in an Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Jin Young Lee

    2017-02-01

    Full Text Available Background Carbapenem-resistant Enterobacteriaceae (CRE with acquired metallo β-lactamase (MBL resistance have been increasingly reported worldwide and associated with significant mortality and morbidity. Here, an outbreak of genetically related strains of Klebsiella pneumoniae producing the imipenemase (IMP-1 MBL in a medical intensive care unit (MICU in Korea is reported. Methods Since isolating carbapenem-resistant K. pneumoniae (CRKP at the MICU of the hospital on August 10, 2011, surveillance cultures for CRE in 31 hospitalized patients were performed from August to September 2011. Carbapenem resistance was determined based on the disk diffusion method outlined in the Clinical and Laboratory Standards Institute guidelines. Polymerase chain reaction (PCR was performed for genes coding for β-lactamase. Associations among isolates were assessed via pulsed-field gel electrophoresis (PFGE. In addition, a surveillance study of environmental cultures and health-care workers (HCWs was conducted in the MICU during the same time frame. Results During the study period, non-duplicated CRKP specimens were discovered in four patients in the MICU, suggestive of an outbreak. On August 10, 2011, CRKP was isolated from the sputum of a 79-year-old male patient who was admitted to the MICU. A surveillance study to detect additional CRE carriers by rectal swab revealed an additional three CRKP isolates. PCR and sequencing of the four isolates identified the presence of the IMP-1 gene. In addition, PFGE showed that the four isolated strains were genetically related. CRE was not identified in specimens taken from the hands of HCWs or other environmental sources during surveillance following the outbreak. Transmission of the carbapenemase-producing Enterobacteriaceae strain was controlled by isolation of the patients and strict contact precautions. Conclusions This study shows that rapid and systemic detection of CRE and strict infection controls are important

  15. Optimising hard X-ray generation from laser-produced plasmas

    International Nuclear Information System (INIS)

    Lindheimer, C.

    1995-04-01

    The aim of this work is to increase the X-ray yield for a laser produced plasma by optimising the focusing conditions and temporal shape of the laser pulses. The focusing conditions are improved by introducing a control system that secures the laser target surface to exact focus within a range of a few micrometers, allowing continuously high laser intensity for plasma generation. The temporal shape of the laser pulses is changed by introducing a saturable absorber in the laser beam. The laser produces a substantial pre-pulse that heats and expands the target material prior to main pulse arrival. The saturable absorber can increase the main pulse/pre-pulse ratio of the laser pulse up to four orders of magnitude and consequently reduce expansion of the target material before the main pulse. The belief is that an increase in target density at the time of main pulse arrival will change the energy distribution of the X-rays, towards a more efficient X-ray production in the hard X-ray region. This report and the work connected to it, includes the preliminary measurements and results for these improvements. 17 refs

  16. Ultrasound-guided high-intensity focused ultrasound treatment for abdominal wall endometriosis: Preliminary results

    International Nuclear Information System (INIS)

    Wang Yang; Wang Wei; Wang Longxia; Wang Junyan; Tang Jie

    2011-01-01

    Purpose: To evaluate the safety and therapeutic efficacy of ultrasound (US)-guided high-intensity focused ultrasound (HIFU) ablation for the treatment of abdominal wall endometriosis (AWE). Materials and methods: Twenty-one consecutive patients with AWE were treated as outpatients by US-guided HIFU ablation under conscious sedation. The median size of the AWE was 2.4 cm (range 1.0-5.3 cm). An acoustic power of 200-420 W was used, intermittent HIFU exposure of 1 s was applied. Treatment was considered complete when the entire nodule and its nearby 1 cm margin become hyperechoic on US. Pain relief after HIFU ablation was observed and the treated nodule received serial US examinations during follow-up. Results: All AWE was successfully ablated after one session of HIFU ablation, the ablation time lasted for 5-48 min (median 13 min), no major complications occurred. The cyclic pain disappeared in all patients during a mean follow-up of 18.7 months (range 3-31 months). The treated nodules gradually shank over time, 16 nodules became unnoticeable on US during follow-up. Conclusion: US-guided HIFU ablation appears to be safe and effective for the treatment of AWE.

  17. Ultrasound-guided high-intensity focused ultrasound treatment for abdominal wall endometriosis: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yang [Department of Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China); Wang Wei, E-mail: wangyang301301@yahoo.com.cn [Department of Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China); Wang Longxia; Wang Junyan; Tang Jie [Department of Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China)

    2011-07-15

    Purpose: To evaluate the safety and therapeutic efficacy of ultrasound (US)-guided high-intensity focused ultrasound (HIFU) ablation for the treatment of abdominal wall endometriosis (AWE). Materials and methods: Twenty-one consecutive patients with AWE were treated as outpatients by US-guided HIFU ablation under conscious sedation. The median size of the AWE was 2.4 cm (range 1.0-5.3 cm). An acoustic power of 200-420 W was used, intermittent HIFU exposure of 1 s was applied. Treatment was considered complete when the entire nodule and its nearby 1 cm margin become hyperechoic on US. Pain relief after HIFU ablation was observed and the treated nodule received serial US examinations during follow-up. Results: All AWE was successfully ablated after one session of HIFU ablation, the ablation time lasted for 5-48 min (median 13 min), no major complications occurred. The cyclic pain disappeared in all patients during a mean follow-up of 18.7 months (range 3-31 months). The treated nodules gradually shank over time, 16 nodules became unnoticeable on US during follow-up. Conclusion: US-guided HIFU ablation appears to be safe and effective for the treatment of AWE.

  18. Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particles

    International Nuclear Information System (INIS)

    Nie, Zhongquan; Shi, Guang; Li, Dongyu; Zhang, Xueru; Wang, Yuxiao; Song, Yinglin

    2015-01-01

    The intensity distributions near the focus for radially polarized Laguerre–Bessel–Gaussian beams by a high numerical aperture objective in the immersion liquid are computed based on the vector diffraction theory. We compare the focusing properties of the radially polarized Laguerre–Bessel–Gaussian beams with those of Laguerre–Gaussian and Bessel–Gaussian modes. Furthermore, the effects of the optimally designed concentric three-zone phase filters on the intensity profiles in the focal region are examined. We further analyze the radiation forces on Rayleigh particles produced by the highly focused radially polarized Laguerre–Bessel–Gaussian beams using the specially engineered three-zone phase filters. - Highlights: • The tightly focusing of radially polarized LBG beams is examined. • The focusing performances of LBG beams are preferable over that of LG and BG modes. • A bright spot and an optical cage can be formed by special phase modulation. • These special focusing patterns can stably manipulate two types of particles

  19. MR-guided high intensity focused ultrasound thermoablation under temperature mapping monitoring for the treatment of uterine fibroids

    International Nuclear Information System (INIS)

    Xu Yonghua; Fu Zhongxiang; Yang Lixia; Chen Wenzhi; Liu Yingjiang; Ye Fangwei; Wang Zhibiao

    2010-01-01

    Objective: To assess the feasibility and effectiveness of MR-guided high intensity focused ultrasound (MRgHIFU) thermoablation under temperature mapping monitoring for the treatment of uterine fibroids. Methods: MRgHIFU was carried out in 52 patients with a total of 61 uterine fibroids. The mean age was (39.6 ± 7.3) years (ranged between 23-56 years), and the average diameter of the fibroids was(6.1 ± 2.1) cm (ranged between 1.2-10.7 cm). This procedure was accomplished by a JM-HIFU system (Mode JM15100, Chongqing Haifu Technology Co., Ltd., China), in combination with a 1.5-Tesla MRI system (Avanto TIM, Siemens, Germany), which provided real-time guidance and temperature mapping. Contrast-enhanced MR imaging was performed both immediately and three months after MRgHIFU treatment in order to evaluate the efficacy of thermal ablation. The treatment time and adverse events were recorded. The percentage of ablation volume was calculated after the procedure. The changes in the size of the uterine fibroid and in the clinical symptoms three months after the procedure were evaluated. Results: The mean fibroid volume for each case before and three months after MRgHIFU treatment was (113.3 ± 87.7) cm 3 and (58.1 ± 45.0) cm 3 respectively(P 3 (ranged between 7.7-282.9 cm 3 ) of fibroid volume was (19.8 ± 8.8) minutes. The mean energy of focused ultrasound delivered into the ablated fibroid tissue was (7.1 ± 6.7) J/mm 3 (ranged between 0.9-32.1 J/mm 3 ). The symptoms were relieved, the mean overall points decreased from (24.7 ± 4.8) to (16.7 ± 3.2) after therapy (P < 0.05). One patient experienced mild skin burn (small blisters), which subsided within two days. No other adverse events and complications were observed. Two patients got pregnant at three months after the treatment. Conclusion: MR-guided high intensity focused ultrasound treatment is a safe, effective and non-invasive technique for ablating uterine fibroids. A single thermoablation procedure is enough to

  20. Experimental platform for investigations of high-intensity laser plasma interactions in the magnetic field of a pulsed power generator

    Science.gov (United States)

    Ivanov, V. V.; Maximov, A. V.; Swanson, K. J.; Wong, N. L.; Sarkisov, G. S.; Wiewior, P. P.; Astanovitskiy, A. L.; Covington, A. M.

    2018-03-01

    An experimental platform for the studying of high-intensity laser plasma interactions in strong magnetic fields has been developed based on the 1 MA Zebra pulsed power generator coupled with the 50-TW Leopard laser. The Zebra generator produces 100-300 T longitudinal and transverse magnetic fields with different types of loads. The Leopard laser creates plasma at an intensity of 1019 W/cm2 in the magnetic field of coil loads. Focusing and targeting systems are integrated in the vacuum chamber of the pulsed power generator and protected from the plasma debris and strong mechanical shock. The first experiments with plasma at laser intensity >2 × 1018 W/cm2 demonstrated collimation of the laser produced plasma in the axial magnetic field strength >100 T.

  1. Nuclear energy = more jobs. [Capital-intensive vs labor-intensive systems

    Energy Technology Data Exchange (ETDEWEB)

    Brookes, L G

    1979-07-01

    In the April 1979 issue of Energy Manager, Dr. David Elliott of Open University says capital-intensive systems employ less labor per unit of output, concluding that nuclear energy represented a poor bargain in terms of money invested per job created. Responding to this earlier article, Dr. Brookes argues that capital-intensive systems may employ less labor per unit of output, but they also produce more output and income per worker. Dr. Brookes uses a simple analysis to illustrate how progress results by increasing capital investment and disagrees strongly with Elliotts conclusions - says output must become more capital-intensive to provide more employment opportunities. Further, he feels that Elliott and other antinuclear and environmentalist writers have fallen into the trap of the fallacy of composition - assuming that what is true for a small number of constituent parts taken singly is true also for the total system taken as a whole. Examples can be found in economics of microeconomic elements which do not add up to the expected macroeconomic composition, which explains why some capital-intensive strategies are good and others are not. The excess income produced by capital-intensive energy strategies supports the service and public administration sectors. 3 figures, 1 table. (DCK)

  2. Doubling Beam Intensity Unlocks Rare Opportunities for Discovery at Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    Segui, Jennifer A.

    2014-01-01

    Particle accelerators such as the Booster synchrotron at the Fermi National Accelerator Laboratory (FNAL) produce high-intensity proton beams for particle physics experiments that can ultimately reveal the secrets of the universe. High-intensity proton beams are required by experiments at the ''intensity frontier'' of particle physics research, where the availability of more particles improves the chances of observing extremely rare physical processes. In addition to their central role in particle physics experiments, particle accelerators have found widespread use in industrial, nuclear, environmental, and medical applications. RF cavities are essential components of particle accelerators that, depending on the design, can perform multiple functions, including bunching, focusing, decelerating, and accelerating a beam of charged particles. Engineers are working to model the RF cavities required for upgrading the 40-year old Booster synchrotron. It is a rather complicated process to refurbish, test, and qualify the upgraded RF cavities to sustain an increased repetition rate of the RF field required to produce proton beams at double the current intensity. Both multiphysics simulation and physical measurements are used to evaluate the RF, thermal, and mechanical properties of the Booster RF cavities.

  3. Magnetic focusing of an intense slow positron beam for enhanced depth-resolved analysis of thin films and interfaces

    CERN Document Server

    Falub, C V; Mijnarends, P E; Schut, H; Veen, A V

    2002-01-01

    The intense reactor-based slow positron beam (POSH) at the Delft research reactor has been coupled to a Two-Dimensional Angular Correlation of Annihilation Radiation (2D-ACAR) setup. The design is discussed with a new target chamber for the 2D-ACAR setup based on Monte Carlo simulations of the positron trajectories, beam energy distribution and beam transmission in an increasing magnetic field gradient. Numerical simulations and experiment show that when the slow positron beam with a FWHM of 11.6 mm travels in an increasing axial magnetic field created by a strong NdFeB permanent magnet, the intensity loss is negligible above approx 6 keV and a focusing factor of 5 in diameter is achieved. Monte Carlo simulations and Doppler broadening experiments in the target region show that in this configuration the 2D-ACAR setup can be used to perform depth sensitive studies of defects in thin films with a high resolution. The positron implantation energy can be varied from 0 to 25 keV before entering the non-uniform mag...

  4. Prediction of thermal coagulation from the instantaneous strain distribution induced by high-intensity focused ultrasound

    Science.gov (United States)

    Iwasaki, Ryosuke; Takagi, Ryo; Tomiyasu, Kentaro; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    The targeting of the ultrasound beam and the prediction of thermal lesion formation in advance are the requirements for monitoring high-intensity focused ultrasound (HIFU) treatment with safety and reproducibility. To visualize the HIFU focal zone, we utilized an acoustic radiation force impulse (ARFI) imaging-based method. After inducing displacements inside tissues with pulsed HIFU called the push pulse exposure, the distribution of axial displacements started expanding and moving. To acquire RF data immediately after and during the HIFU push pulse exposure to improve prediction accuracy, we attempted methods using extrapolation estimation and applying HIFU noise elimination. The distributions going back in the time domain from the end of push pulse exposure are in good agreement with tissue coagulation at the center. The results suggest that the proposed focal zone visualization employing pulsed HIFU entailing the high-speed ARFI imaging method is useful for the prediction of thermal coagulation in advance.

  5. Vector fields in a tight laser focus: comparison of models.

    Science.gov (United States)

    Peatross, Justin; Berrondo, Manuel; Smith, Dallas; Ware, Michael

    2017-06-26

    We assess several widely used vector models of a Gaussian laser beam in the context of more accurate vector diffraction integration. For the analysis, we present a streamlined derivation of the vector fields of a uniformly polarized beam reflected from an ideal parabolic mirror, both inside and outside of the resulting focus. This exact solution to Maxwell's equations, first developed in 1920 by V. S. Ignatovsky, is highly relevant to high-intensity laser experiments since the boundary conditions at a focusing optic dictate the form of the focus in a manner analogous to a physical experiment. In contrast, many models simply assume a field profile near the focus and develop the surrounding vector fields consistent with Maxwell's equations. In comparing the Ignatovsky result with popular closed-form analytic vector models of a Gaussian beam, we find that the relatively simple model developed by Erikson and Singh in 1994 provides good agreement in the paraxial limit. Models involving a Lax expansion introduce a divergences outside of the focus while providing little if any improvement in the focal region. Extremely tight focusing produces a somewhat complicated structure in the focus, and requires the Ignatovsky model for accurate representation.

  6. Historical intensity VIII earthquakes along the Rhone valley (Valais, Switzerland): primary and secondary effects

    Energy Technology Data Exchange (ETDEWEB)

    Fritsche, S.; Faeh, D.; Schwarz-Zanetti, G.

    2012-06-15

    In recent years the upper Rhone Valley has been one of the most intensively investigated regions by the Swiss Seismological Service. The high seismicity in the region encourages research in the seismological field and one main focus has been historical seismology. This report presents the state of the art of our historical investigations by giving an overview of the effects of four damaging earthquakes with intensity larger than VII, for which a fairly large number of documents could be found and analyzed. The overview includes the events of 1584 (Aigle, epicentral intensity VIII), 1755 (Brig, epicentral intensity VIII), 1855 (Visp, epicentral intensity VIII), and 1946 (Sierre, epicentral intensity VIII for the main shock and intensity VII for the largest aftershock). The paper focuses mainly on primary and secondary effects in the epicentral region, providing the key data and a general characterization of the event. Generally, primary effects such as the reaction of the population and impact on buildings took more focus in the past. Thus building damage is more frequently described in historic documents. However, we also found a number of sources describing secondary effects such as landslides, snow avalanches, and liquefaction. Since the sources may be useful, we include citations of these documents. The 1584 Aigle event, for example, produced exceptional movements in the Lake of Geneva, which can be explained by an expanded sub aquatic slide with resultant tsunami and seiche. The strongest of the aftershocks of the 1584 event triggered a destructive landslide covering the villages Corbeyrier and Yvorne, Vaud. All macroseismic data on the discussed events are accessible through the web page of the Swiss Seismological Service (http://www.seismo.ethz.ch). (authors)

  7. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    Science.gov (United States)

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  8. Intense electron-beam transport in the ion-focused regime through the collision-dominated regime

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Poukey, J.W.; Welch, D.R.; Mock, R.C.

    1993-01-01

    This paper reviews the transport of the 19-MeV, 700-kA, 25-ns Hermes-III electron beam in long gas cells filled with N 2 gas spanning six decades in pressure from 10 3 to ∼10 3 Torr. We show through measurements and theoretical analyses that the beam has two windows of stable transport: a low-pressure window (between ∼1 and ∼100 mTorr) that is dominated by propagation in the semi-collisionless IFR (ion-focused regime), and a high-pressure window (between ∼1 and ∼100 Torr) that is dominated by propagation in the resistive CDR (collision-dominated regime). In the CDR, 79±1.5% of the beam energy is transported over 11 m at 20 Torr. In the IFR, we show that intense radiation fields with controllable rise times and pulse widths can be generated on axis at a bremsstrahlung target. In summary, the measurements and analyses presented here provide a quantitative description of the Hermes-III beam transport over six decades in pressure

  9. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.

    Science.gov (United States)

    Brujan, E A; Ikeda, T; Matsumoto, Y

    2005-10-21

    The dynamics of inertial cavitation bubbles produced by short pulses of high-intensity focused ultrasound near a rigid boundary are studied to get a better understanding of the role of jet formation and shock wave emission during bubble collapse in the therapeutic applications of ultrasound. The bubble dynamics are investigated by high-speed photography with up to 2 million frames/s and acoustic measurements, as well as by numerical calculations. The significant parameter of this study is the dimensionless stand-off, gamma, which is defined as the distance of the bubble centre at its maximum expansion scaled by the maximum bubble radius. High-speed photography is applied to observe the bubble motion and the velocity of the liquid jet formed during bubble collapse. Hydrophone measurements are used to determine the pressure and the duration of the shock wave emitted during bubble rebound. Calculations yield the variation with time of the bubble wall, the maximum velocity and the kinetic energy of the re-entrant jet. The comparisons between experimental and numerical data are favourable with regard to both shape history and translational motion of the bubble. The acoustic energy constitutes the largest individual amount in the energy balance of bubble collapse. The ratio of the shock wave energy, measured at 10 mm from the emission centre, to the cavitation bubble energy was 1:2.4 at gamma = 1.55 and 1:3.5 at gamma = 1. At this distance, the shock wave pressure ranges from 0.122 MPa, at gamma = 1, to 0.162 MPa, at gamma = 1.55, and the temporal duration at the half maximum level is 87 ns. The maximum jet velocity ranges from 27 m s(-1), at gamma = 1, to 36 m s(-1), at gamma = 1.55. For gamma < 1.2, the re-entrant jet can generate an impact pressure on the nearby boundary larger than 50 MPa. We discuss the implications of the results for the therapeutic applications of high-intensity focused ultrasound.

  10. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound

    International Nuclear Information System (INIS)

    Brujan, E A; Ikeda, T; Matsumoto, Y

    2005-01-01

    The dynamics of inertial cavitation bubbles produced by short pulses of high-intensity focused ultrasound near a rigid boundary are studied to get a better understanding of the role of jet formation and shock wave emission during bubble collapse in the therapeutic applications of ultrasound. The bubble dynamics are investigated by high-speed photography with up to 2 million frames/s and acoustic measurements, as well as by numerical calculations. The significant parameter of this study is the dimensionless stand-off, γ, which is defined as the distance of the bubble centre at its maximum expansion scaled by the maximum bubble radius. High-speed photography is applied to observe the bubble motion and the velocity of the liquid jet formed during bubble collapse. Hydrophone measurements are used to determine the pressure and the duration of the shock wave emitted during bubble rebound. Calculations yield the variation with time of the bubble wall, the maximum velocity and the kinetic energy of the re-entrant jet. The comparisons between experimental and numerical data are favourable with regard to both shape history and translational motion of the bubble. The acoustic energy constitutes the largest individual amount in the energy balance of bubble collapse. The ratio of the shock wave energy, measured at 10 mm from the emission centre, to the cavitation bubble energy was 1:2.4 at γ = 1.55 and 1:3.5 at γ = 1. At this distance, the shock wave pressure ranges from 0.122 MPa, at γ = 1, to 0.162 MPa, at γ 1.55, and the temporal duration at the half maximum level is 87 ns. The maximum jet velocity ranges from 27 m s -1 , at γ = 1, to 36 m s -1 , at γ = 1.55. For γ < 1.2, the re-entrant jet can generate an impact pressure on the nearby boundary larger than 50 MPa. We discuss the implications of the results for the therapeutic applications of high-intensity focused ultrasound

  11. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies.

    Science.gov (United States)

    van den Bijgaart, Renske J E; Eikelenboom, Dylan C; Hoogenboom, Martijn; Fütterer, Jurgen J; den Brok, Martijn H; Adema, Gosse J

    2017-02-01

    Tumor ablation technologies, such as radiofrequency-, cryo- or high-intensity focused ultrasound (HIFU) ablation will destroy tumor tissue in a minimally invasive manner. Ablation generates large volumes of tumor debris in situ, releasing multiple bio-molecules like tumor antigens and damage-associated molecular patterns. To initiate an adaptive antitumor immune response, antigen-presenting cells need to take up tumor antigens and, following activation, present them to immune effector cells. The impact of the type of tumor ablation on the precise nature, availability and suitability of the tumor debris for immune response induction, however, is poorly understood. In this review, we focus on immune effects after HIFU-mediated ablation and compare these to findings using other ablation technologies. HIFU can be used both for thermal and mechanical destruction of tissue, inducing coagulative necrosis or subcellular fragmentation, respectively. Preclinical and clinical results of HIFU tumor ablation show increased infiltration and activation of CD4 + and CD8 + T cells. As previously observed for other types of tumor ablation technologies, however, this ablation-induced enhanced infiltration alone appears insufficient to generate consistent protective antitumor immunity. Therapies combining ablation with immune stimulation are therefore expected to be key to boost HIFU-induced immune effects and to achieve systemic, long-lasting, antitumor immunity.

  12. High-intensity focused ultrasound treatment of placenta accreta after vaginal delivery: a preliminary study.

    Science.gov (United States)

    Bai, Y; Luo, X; Li, Q; Yin, N; Fu, X; Zhang, H; Qi, H

    2016-04-01

    To evaluate the safety and efficiency of high-intensity focused ultrasound (HIFU) in the treatment of placenta accreta after vaginal delivery. Enrolled into this study between September 2011 and September 2013 were 12 patients who had been diagnosed with placenta accreta following vaginal delivery and who had stable vital signs. All patients were treated using an ultrasound-guided HIFU treatment system. As indication of the effectiveness of the treatment we considered decreased vascular index on color Doppler imaging, decrease in size of residual placenta compared with pretreatment size on assessment by three-dimensional ultrasound with Virtual Organ Computer-aided Analysis, reduced signal intensity and degree of enhancement on magnetic resonance imaging and avoidance of hysterectomy following treatment. To assess the safety of HIFU treatment, we recorded side effects, hemorrhage, infection, sex steroid levels, return of menses and subsequent pregnancy. Patients were followed up in this preliminary study until December 2013. The 12 patients receiving HIFU treatment had an average postpartum hospital stay of 6.8 days and an average period of residual placental involution of 36.9 days. HIFU treatment did not apparently increase the risk of infection or hemorrhage and no patient required hysterectomy. In all patients menstruation recommenced after an average of 80.2 days, and sex steroid levels during the middle luteal phase of the second menstrual cycle were normal. Two patients became pregnant again during the follow-up period. This preliminary study suggests that ultrasound-guided HIFU is a safe and effective non-invasive method to treat placenta accreta patients after vaginal delivery who have stable vital signs and desire to preserve fertility. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  13. Collection and focusing of laser accelerated ion beams for therapy applications

    Directory of Open Access Journals (Sweden)

    Ingo Hofmann

    2011-03-01

    Full Text Available Experimental results in laser acceleration of protons and ions and theoretical predictions that the currently achieved energies might be raised by factors 5–10 in the next few years have stimulated research exploring this new technology for oncology as a compact alternative to conventional synchrotron based accelerator technology. The emphasis of this paper is on collection and focusing of the laser produced particles by using simulation data from a specific laser acceleration model. We present a scaling law for the “chromatic emittance” of the collector—here assumed as a solenoid lens—and apply it to the particle energy and angular spectra of the simulation output. For a 10 Hz laser system we find that particle collection by a solenoid magnet well satisfies requirements of intensity and beam quality as needed for depth scanning irradiation. This includes a sufficiently large safety margin for intensity, whereas a scheme without collection—by using mere aperture collimation—hardly reaches the needed intensities.

  14. Study on the Pollution-heaven Hypothesis Focusing on Pollution-Intensive Industries

    Energy Technology Data Exchange (ETDEWEB)

    Lho, S.W. [Kyungnam University, Masan (Korea)

    2002-03-01

    The purpose of this study is to test pollution-heaven hypothesis on the Korean pollution-intensive industries, that is, textile and clothing, petrochemical and primary metal industry. The empirical study examines that foreign direct investment(FDI) of Korean pollution-intensive industries regresses on couple of exogenous variables and the environmental regulation on FDI. As the environmental regulation is not directly observed, it uses C0{sub 2} emissions as the pollutant. The results of the study show that the environmental regulation in a host country is an insignificant determinant of FDI for the Korean polluting industries. That is, they do not support Leonard (1988), Xing and Kolstad (2000) that the hypothesis is a significant for heavily polluting industries. (author). 34 refs., 10 tabs.

  15. TuFF3. Self-focusing in underdense ultraviolet laser-produced plasmas

    International Nuclear Information System (INIS)

    Tanaka, K.; Boswell, B.; Craxton, R.S.; Goldman, L.M.; Richardson, M.C.; Seka, W.; Short, R.W.; Soures, J.M.

    1984-01-01

    Ultraviolet laser-matter interaction processes are of considerable interest to laser fusion. Among these processes, filamentation (or self-focusing) is of particular importance, since it could prevent attainment of the illumination uniformity required for high target compression. In addition self-focusing may complicate the interpretation of target interaction experiments. Self-focusing has been studied experimentally by side-on x-ray pinhole camera photography and backscatter spectrometry. These results are compared with two-dimensional simulations using the hydro code SAGE, which is well suited to model thermal self-focusing (no ponderomotive forces are included in these simulations)

  16. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    Energy Technology Data Exchange (ETDEWEB)

    Westover, B. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Chen, C. D.; Patel, P. K.; McLean, H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Beg, F. N., E-mail: fbeg@ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States)

    2014-03-15

    Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10{sup 20} W cm{sup −2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo code Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.

  17. The Los Alamos Intense Neutron Source

    International Nuclear Information System (INIS)

    Nebel, R.A.; Barnes, D.C.; Bollman, R.; Eden, G.; Morrison, L.; Pickrell, M.M.; Reass, W.

    1997-01-01

    The Intense Neutron Source (INS) is an Inertial Electrostatic Confinement (IEC) fusion device presently under construction at Los Alamos National Laboratory. It is designed to produce 10 11 neutrons per second steady-state using D-T fuel. Phase 1 operation of this device will be as a standard three grid IEC ion focus device. Expected performance has been predicted by scaling from a previous IEC device. Phase 2 operation of this device will utilize a new operating scheme, the Periodically Oscillating Plasma Sphere (POPS). This scheme is related to both the Spherical Reflect Diode and the Oscillating Penning Trap. With this type of operation the authors hope to improve plasma neutron production to about 10 13 neutrons/second

  18. High-intensity focused ultrasound for potential treatment of polycystic ovary syndrome: toward a noninvasive surgery.

    Science.gov (United States)

    Shehata, Islam A; Ballard, John R; Casper, Andrew J; Hennings, Leah J; Cressman, Erik; Ebbini, Emad S

    2014-02-01

    To investigate the feasibility of using high-intensity focused ultrasound (HIFU), under dual-mode ultrasound arrays (DMUAs) guidance, to induce localized thermal damage inside ovaries without damage to the ovarian surface. Laboratory feasibility study. University-based laboratory. Ex vivo canine and bovine ovaries. DMUA-guided HIFU. Detection of ovarian damage by ultrasound imaging, gross pathology, and histology. It is feasible to induce localized thermal damage inside ovaries without damage to the ovarian surface. DMUA provided sensitive imaging feedback regarding the anatomy of the treated ovaries and the ablation process. Different ablation protocols were tested, and thermal damage within the treated ovaries was histologically characterized. The absence of damage to the ovarian surface may eliminate many of the complications linked to current laparoscopic ovarian drilling (LOD) techniques. HIFU may be used as a less traumatic tool to perform LOD. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus

    International Nuclear Information System (INIS)

    Zhang Lian; Chen Wenzhi; Liu Yinjiang; Hu Xiao; Zhou Kun; Chen Li; Peng Song; Zhu Hui; Zou Huiling; Bai Jin; Wang Zhibiao

    2010-01-01

    Purpose: To prospectively evaluate the feasibility of magnetic resonance (MR) imaging-guided high intensity focused ultrasound (HIFU) therapeutic ablation of uterine fibroids in patients with bowel lies anterior to uterus. Materials and methods: Twenty-one patients with 23 uterine fibroids underwent MR imaging-guided high intensity focused ultrasound treatment, with a mean age of 39.4 ± 6.9 (20-49) years, with fibroids average measuring 6.0 ± 1.6 (range, 2.9-9.5) cm in diameter. After being compressed with a degassed water balloon on abdominal wall, MR imaging-guided high intensity focused ultrasound treatment was performed under conscious sedation by using fentanyl and midazolam. This procedure was performed by a Haifu JM focused ultrasound tumour therapeutic system (JM2.5C, Chongqing Haifu Technology Co., Ltd., China), in combination with a 1.5-Tesla MRI system (Symphony, Siemens, Germany), which provides real-time guidance and control. Contrast-enhanced MR imaging was performed to evaluate the efficacy of thermal ablation immediately and 3 months after HIFU treatment. The treatment time and adverse events were recorded. Results: The mean fibroid volume was 97.0 ± 78.3 (range, 12.7-318.3) cm 3 . According to the treatment plan, an average 75.0 ± 11.4% (range, 37.8-92.4%) of the fibroid volume was treated. The mean fibroid volume immediately after HIFU was 109.7 ± 93.1 (range, 11.9-389.6) cm 3 , slightly enlarged because of edema. The average non-perfused volume was 83.3 ± 71.7 (range, 7.7-282.9) cm 3 , the average fractional ablation, which was defined as non-perfused volume divided by the fibroid volume immediately after HIFU treatment, was 76.9 ± 18.7% (range, 21.0-97.0%). There were no statistically significant differences between the treatment volume and the non-perfused volume. Follow-up magnetic resonance imaging (MRI) at 3 months obtained in 12 patients, the fibroid volume decreased by 31.4 ± 29.3% (range, -1.9 to 60.0%) in average, with paired t

  20. Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lian; Chen Wenzhi [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); Liu Yinjiang; Hu Xiao [National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Zhou Kun [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); Chen Li [National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Peng Song; Zhu Hui [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); Zou Huiling [National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Bai Jin [Institute of Ultrasound Engineering in Medicine of Chongqing University of Medical Sciences, Chongqing 400016 (China); Wang Zhibiao [Clinical Center for Tumour Therapy of 2nd Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010 (China); National Engineering Research Center of Ultrasound Medicine, Chongqing 400010 (China); Institute of Ultrasound Engineering in Medicine of Chongqing University of Medical Sciences, Chongqing 400016 (China)], E-mail: wangzhibiao@haifu.com.cn

    2010-02-15

    Purpose: To prospectively evaluate the feasibility of magnetic resonance (MR) imaging-guided high intensity focused ultrasound (HIFU) therapeutic ablation of uterine fibroids in patients with bowel lies anterior to uterus. Materials and methods: Twenty-one patients with 23 uterine fibroids underwent MR imaging-guided high intensity focused ultrasound treatment, with a mean age of 39.4 {+-} 6.9 (20-49) years, with fibroids average measuring 6.0 {+-} 1.6 (range, 2.9-9.5) cm in diameter. After being compressed with a degassed water balloon on abdominal wall, MR imaging-guided high intensity focused ultrasound treatment was performed under conscious sedation by using fentanyl and midazolam. This procedure was performed by a Haifu JM focused ultrasound tumour therapeutic system (JM2.5C, Chongqing Haifu Technology Co., Ltd., China), in combination with a 1.5-Tesla MRI system (Symphony, Siemens, Germany), which provides real-time guidance and control. Contrast-enhanced MR imaging was performed to evaluate the efficacy of thermal ablation immediately and 3 months after HIFU treatment. The treatment time and adverse events were recorded. Results: The mean fibroid volume was 97.0 {+-} 78.3 (range, 12.7-318.3) cm{sup 3}. According to the treatment plan, an average 75.0 {+-} 11.4% (range, 37.8-92.4%) of the fibroid volume was treated. The mean fibroid volume immediately after HIFU was 109.7 {+-} 93.1 (range, 11.9-389.6) cm{sup 3}, slightly enlarged because of edema. The average non-perfused volume was 83.3 {+-} 71.7 (range, 7.7-282.9) cm{sup 3}, the average fractional ablation, which was defined as non-perfused volume divided by the fibroid volume immediately after HIFU treatment, was 76.9 {+-} 18.7% (range, 21.0-97.0%). There were no statistically significant differences between the treatment volume and the non-perfused volume. Follow-up magnetic resonance imaging (MRI) at 3 months obtained in 12 patients, the fibroid volume decreased by 31.4 {+-} 29.3% (range, -1.9 to 60

  1. Effect of quadrupole focusing-field fluctuation on the transverse stability of intense hadron beams in storage rings

    Science.gov (United States)

    Ito, Kiyokazu; Matsuba, Masanori; Okamoto, Hiromi

    2018-02-01

    A systematic experimental study is performed to clarify the parameter dependence of the noise-induced beam instability previously demonstrated by a Princeton group [M. Chung et al., Phys. Rev. Lett. 102, 145003 (2009)]. Because of the weakness of the driving force, the instability develops very slowly, which substantially limits the application of conventional experimental and numerical techniques. In the present study, a novel tabletop apparatus called "S-POD" (Simulator of Particle Orbit Dynamics) is employed to explore the long-term collective behavior of intense hadron beams. S-POD provides a many-body Coulomb system physically equivalent to a relativistic charged-particle beam and thus enables us to conduct various beam-dynamics experiments without the use of large-scale machines. It is reconfirmed that random noise on the linear beam-focusing potential can be a source of slow beam quality degradation. Experimental observations are explained well by a simple perturbation theory that predicts the existence of a series of dangerous noise frequency bands overlooked in the previous study. Those additional instability bands newly identified with S-POD are more important practically because the driving noise frequencies can be very low. The dependence of the instability on the noise level, operating tune, and beam intensity is examined and found consistent with theoretical predictions.

  2. Focused ultrasound in ophthalmology

    Directory of Open Access Journals (Sweden)

    Silverman RH

    2016-09-01

    Full Text Available Ronald H Silverman1,2 1Department of Ophthalmology, Columbia University Medical Center, 2F.L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY, USA Abstract: The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via cilio-destruction, tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. Keywords: ophthalmic ultrasound, ultrasound biomicroscopy (UBM, high-intensity focused ultrasound (HIFU, ultrafast imaging, Doppler imaging 

  3. Impact of cavitation on lesion formation induced by high intensity focused ultrasound

    International Nuclear Information System (INIS)

    Fan Pengfei; Jie Yu; Yang Xin; Tu Juan; Guo Xiasheng; Zhang Dong; Huang Pintong

    2017-01-01

    High intensity focused ultrasound (HIFU) has shown a great promise in noninvasive cancer therapy. The impact of acoustic cavitation on the lesion formation induced by HIFU is investigated both experimentally and theoretically in transparent protein-containing gel and ex vivo liver tissue samples. A numerical model that accounts for nonlinear acoustic propagation and heat transfer is used to simulate the lesion formation induced by the thermal effect. The results showed that lesions could be induced in the samples exposed to HIFU with various acoustic pressures and pulse lengths. The measured areas of lesions formed in the lateral direction were comparable to the simulated results, while much larger discrepancy was observed between the experimental and simulated data for the areas of longitudinal lesion cross-section. Meanwhile, a series of stripe-wiped-off B-mode pictures were obtained by using a special imaging processing method so that HIFU-induced cavitation bubble activities could be monitored in real-time and quantitatively analyzed as the functions of acoustic pressure and pulse length. The results indicated that, unlike the lateral area of HIFU-induced lesion that was less affected by the cavitation activity, the longitudinal cross-section of HIFU-induced lesion was significantly influenced by the generation of cavitation bubbles through the temperature elevation resulting from HIFU exposures. Therefore, considering the clinical safety in HIFU treatments, more attention should be paid on the lesion formation in the longitudinal direction to avoid uncontrollable variation resulting from HIFU-induced cavitation activity. (paper)

  4. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    International Nuclear Information System (INIS)

    Habibi, M.; Ghamari, F.

    2014-01-01

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam

  5. Ca-48 handling for a cyclotron ECR ion source to produce highly intense ion beams

    International Nuclear Information System (INIS)

    Lebedev, V.Ya.; Bogomolov, S.L.; Dmitriev, S.N.; Kutner, V.B.; Shamanin, A.N.; Yakushev, A.B.

    2002-01-01

    Production of highly intense ion beams of 48 Ca is one of the main tasks in experiments carried out within the framework of the synthesis of new superheavy elements. 48 Ca is very rare and expensive isotope, therefore there is necessity to reach the high intensity of ion beams of the isotope at a low consumption rate. Analysis and our preliminary experiments have showed that the best way of producing highly intense calcium ion beams is evaporation of metallic calcium in an ECR ion source. So we have developed a technique of metallic 48 Ca production by reducing CaO (this chemical form is available at the market with 40-80% of 48 Ca ) with aluminium powder. We used two tantalum crucibles: a larger, with a mixture of CaO + Al heated up to 1250 deg C, which was connected to the smaller (2 mm I.D. and 30 mm long) in which calcium vapour condensed. The temperature distribution in the small crucible was about 50 deg C at the bottom and about 500 deg C in the middle of the crucible. The pressure inside of the set-up was between 0.1 and 1 Pa. The production rate of metallic 48 Ca was 10-20 mg/h. The crucible with the condensed metallic Ca in argon atmosphere was transferred to the ECR-4M ion source, where it was inserted in a wired tubular oven and the calcium evaporation was controlled through the oven power supply. The application of metallic 48 Ca as the working substance for the ECR-4M ion source of the U-400 cyclotron of allowed us to approach a stable high intensity of 48 Ca ion beams: the intensities for the internal and external beams were 10 13 c -1 and 3.10 12 c -1 , respectively, at a consumption rate about 0.4 mg/h. A technique was developed for the reclamation of 48 Ca from the residue inside of the large crucible and from the inner parts of the ECR ion source. Extracting Ca from the inner parts of the ion source enabled us to save up to some 25% of the calcium used in the ECR ion source, so that the actual consumption rate was about 0.3 mg/h at the highest 48

  6. Elucidation of the role of biological factors and device design in cerebral NIRS using an in vivo hematoma model based on high-intensity focused ultrasound

    Science.gov (United States)

    Wang, Jianting; Huang, Stanley; Myers, Matthew; Chen, Yu; Welle, Cristin; Pfefer, Joshua

    2016-03-01

    Near-Infrared Spectroscopy (NIRS) is an emerging medical countermeasure for rapid, field detection of hematomas caused by traumatic brain injury (TBI). Bench and animal tests to determine NIRS sensitivity and specificity are needed. However, current animal models involving non-invasively induced, localized neural damage are limited. We investigated an in vivo murine hematoma model in which cerebral hemorrhage was induced noninvasively by high-intensity focused ultrasound (HIFU) with calibrated positioning and parameters. To characterize the morphology of induced hematomas, we used skull-intact histological evaluation. A multi-wavelength fiber-optic NIRS system with three source-detector separation distances was used to detect hematoma A 1.1 MHz transducer produced consistent small-to-medium hematoma localized to a single hemisphere, along with bruising of the scalp, with a low mortality rate. A 220 kHz transducer produced larger, more diffuse hematomas, with higher variability in size and a correspondingly higher mortality rate. No skin bruising or blood accumulation between the skin and skull was observed following injury application with the 220 kHz transducer. Histological analysis showed higher sensitivity for larger hematomas (>4x4 mm2). NIRS optical density change after HIFU was able to detect all hematomas, with sensitivity dependent on wavelength and separation distance. While improvements in methods for validating cerebral blood distribution are needed, the HIFU hematoma model provided useful insights that will inform development of biologically relevant, performance test methods for cerebral NIRS systems.

  7. Electrostatic lens to focus an ion beam to uniform density

    International Nuclear Information System (INIS)

    Johnson, C.H.

    1977-01-01

    A focusing lens for an ion beam having a gaussian or similar density profile is described. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens

  8. Instabilities in superconductors and in intense laser produced plasma's

    International Nuclear Information System (INIS)

    Banerjee, Satyajit S.; Mohan, Shyam; Sinha, Jaivardhan; Kahaly, Subendhu; Ravindra Kumar, G.

    2007-01-01

    In this talk I will attempt to discuss phenomena's in two areas of physics which appear quite divorced from each other, viz., superconductivity and plasma's. The first portion of the talk will describe the behavior of a collection of vortices in superconductors in a random pinning environment. Vortices manifest themselves in a variety of systems, like in fluids and in type II superconductors. A collection of vortices inside superconductors behaves like an elastic media. Investigating this elastic medium of the vortex state is a convenient prototype for investigating similar physics in a wide variety of systems, viz., charge density waves, Wigner crystals, magnetic domains, etc. The behavior of all these systems can be generalized under, nature of elastic media in the presence of a random pinning environment and thermal fluctuations. Based on the idea that softer matter is easy to pin we have attempted to investigate how the vortex lattice disorders as its gets softer. Surprisingly we find evidence to two distinct types of instabilities in the vortex lattice instead of one. These two instabilities produce vastly different effects on certain quantities associated with the extent of disorder in the superconductor. It appears that prior to softening of the vortex state, a heterogeneously pinned state of the vortex matter appears, perhaps through a KT like transition. In the second part of the talk, I will attempt to describe some of our recent results pertaining to instabilities and the appearance of giant magnetic fields in plasma's. These results have been obtained with a high sensitivity magneto-optical imaging setup we have developed at IIT Kanpur. Using the setup, we investigate distribution of magnetic fields around dense solid plasmas generated by intense p-polarized laser (∼10 16 Wcm -2 , 100 fs) irradiation of magnetic tapes, using high sensitivity magneto optical imaging technique. We demonstrate giant axial magnetic fields and map out for the first time

  9. Modelling the temperature evolution of bone under high intensity focused ultrasound

    Science.gov (United States)

    ten Eikelder, H. M. M.; Bošnački, D.; Elevelt, A.; Donato, K.; Di Tullio, A.; Breuer, B. J. T.; van Wijk, J. H.; van Dijk, E. V. M.; Modena, D.; Yeo, S. Y.; Grüll, H.

    2016-02-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR

  10. Oceanographic, Air-sea Interaction, and Environmental Aspects of Artificial Upwelling Produced by Wave-Inertia Pumps for Potential Hurricane Intensity Mitigation

    Science.gov (United States)

    Soloviev, A.; Dean, C.

    2017-12-01

    The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the

  11. Astrophysics of magnetically collimated jets generated from laser-produced plasmas.

    Science.gov (United States)

    Ciardi, A; Vinci, T; Fuchs, J; Albertazzi, B; Riconda, C; Pépin, H; Portugall, O

    2013-01-11

    The generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magnetohydrodynamic simulations. We show that for laser intensities I∼10(12)-10(14) W cm(-2), a magnetic field in excess of ∼0.1  MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which recollimates the flow into a supermagnetosonic jet beam. This mechanism is equivalent to astrophysical models of hydrodynamic inertial collimation, where an isotropic wind is focused into a jet by a confining circumstellar toruslike envelope. The results suggest an alternative mechanism for a large-scale magnetic field to produce jets from wide-angle winds.

  12. Low Intensity Focused tDCS Over the Motor Cortex Shows Inefficacy to Improve Motor Imagery Performance

    Directory of Open Access Journals (Sweden)

    Irma N. Angulo-Sherman

    2017-07-01

    Full Text Available Transcranial direct current stimulation (tDCS is a brain stimulation technique that can enhance motor activity by stimulating the motor path. Thus, tDCS has the potential of improving the performance of brain-computer interfaces during motor neurorehabilitation. tDCS effects depend on several aspects, including the current density, which usually varies between 0.02 and 0.08 mA/cm2, and the location of the stimulation electrodes. Hence, testing tDCS montages at several current levels would allow the selection of current parameters for improving stimulation outcomes and the comparison of montages. In a previous study, we found that cortico-cerebellar tDCS shows potential of enhancing right-hand motor imagery. In this paper, we aim to evaluate the effects of the focal stimulation of the motor cortex over motor imagery. In particular, the effect of supplying tDCS with a 4 × 1 ring montage, which consists in placing an anode on the motor cortex and four cathodes around it, over motor imagery was assessed with different current densities. Electroencephalographic (EEG classification into rest or right-hand/feet motor imagery was evaluated on five healthy subjects for two stimulation schemes: applying tDCS for 10 min on the (1 right-hand or (2 feet motor cortex before EEG recording. Accuracy differences related to the tDCS intensity, as well as μ and β band power changes, were tested for each subject and tDCS modality. In addition, a simulation of the electric field induced by the montage was used to describe its effect on the brain. Results show no improvement trends on classification for the evaluated currents, which is in accordance with the observation of variable EEG band power results despite the focused stimulation. The lack of effects is probably related to the underestimation of the current intensity required to apply a particular current density for small electrodes and the relatively short inter-electrode distance. Hence, higher current

  13. Spatiotemporal control of laser intensity

    Science.gov (United States)

    Froula, Dustin H.; Turnbull, David; Davies, Andrew S.; Kessler, Terrance J.; Haberberger, Dan; Palastro, John P.; Bahk, Seung-Whan; Begishev, Ildar A.; Boni, Robert; Bucht, Sara; Katz, Joseph; Shaw, Jessica L.

    2018-05-01

    The controlled coupling of a laser to plasma has the potential to address grand scientific challenges1-6, but many applications have limited flexibility and poor control over the laser focal volume. Here, we present an advanced focusing scheme called a `flying focus', where a chromatic focusing system combined with chirped laser pulses enables a small-diameter laser focus to propagate nearly 100 times its Rayleigh length. Furthermore, the speed at which the focus moves (and hence the peak intensity) is decoupled from the group velocity of the laser. It can co- or counter-propagate along the laser axis at any velocity. Experiments validating the concept measured subluminal (-0.09c) to superluminal (39c) focal-spot velocities, generating a nearly constant peak intensity over 4.5 mm. Among possible applications, the flying focus could be applied to a photon accelerator7 to mitigate dephasing, facilitating the production of tunable XUV sources.

  14. High intensity circular proton accelerators

    International Nuclear Information System (INIS)

    Craddock, M.K.

    1987-12-01

    Circular machines suitable for the acceleration of high intensity proton beams include cyclotrons, FFAG accelerators, and strong-focusing synchrotrons. This paper discusses considerations affecting the design of such machines for high intensity, especially space charge effects and the role of beam brightness in multistage accelerators. Current plans for building a new generation of high intensity 'kaon factories' are reviewed. 47 refs

  15. High-density ionization with an intense linear focus discharge

    International Nuclear Information System (INIS)

    Lee, T.N.

    1975-01-01

    Some experimental results obtained with a linear focus device are described. Measurements include plasma diagnostics made with fast photography, pinhole x-ray photography, and x-ray spectroscopy in the photon energy range of 6 to 35 0 keV. (MOW)

  16. Distribution alternatives for a small wine-producer

    Directory of Open Access Journals (Sweden)

    Radka Šperková

    2010-01-01

    Full Text Available Distribution can be defined as a way of goods from producer to consumer. In wine production industry there exist several distribution channels, through which wine is distributed to the final consumer. Aim of this paper is to identify and compare advantages and disadvantages of particular distribution channels for wine sales related to a small wine-producer.Distribution of wine to the final consumer is done through dealers represented by retail chains, specialized wine-shops, hotels, and restaurants. In a smaller scale it is done through internet sales, own outlets and wine auctions. According to the research of Focus agency, Marketing & Social Research, done in 2009, customers buy wine mostly in retail chains and decide on sort and quality of wine directly at the moment of purchase. Selection is based except wine quality also on the shape of the bottle, etiquette, and also cork (consumers explicitly prefer cork, and the screw top rather discourages. Certain part of customers – specifically those, who are more acquainted with wine – buy wine in special wine-shops. The research shows a decrease of direct wine-sales.When using services of independent trade organizations, producers have to control the intensity of commercial activities and knowledge of technical characteristics of products. Small wine producers, though, do not have to use this distribution channel, and can focus only on direct sales. For some small wine producers, specifically those operating in the areas with an extended possibility for wine-tourism, this channel can be more suitable and effective than using retail chains. This way of distribution does not require extensive start-up investments, it is directly dependent on producers own effort, and can be done as a supplementary activity to the main source of income.Regardless the particular choice of a distribution channel by a small wine producer it is necessary to be judged not only from the viewpoint of its advantages and

  17. Diagnosis of state visits to patients held in intensive care units

    Directory of Open Access Journals (Sweden)

    Rosa Del Socorro Morales-Aguila

    2017-01-01

    Full Text Available The visit is the space where it is possible to relate the patient, family and health personnel. To diagnose the situation of the visits to patients imprisoned in units of intensive care of Institutions Prestadoras of Health (IPS. Study descriptive, cross; the population was five intensive care units, the intrinsic sample consisted of 34 participants. respondents agreed visiting hours morning and afternoon 53%; the residence time of family members during the half-hour visit was 30%; the number of people allowed is three relatives 70%; information about the patient's progress is provided by the medical specialist 65%; 18% weakness was evident in the application of informed consent procedures make. These results serve to generate changes in the future with the attention paid to the families of critically ill patients, based on the recommendations of the American Association of Intensive Care more flexible patient visits focused on family relationship, in order to minimize anxiety produced by the gravity of their situation and environment of the Unit of Intensive care.

  18. Intensity Ratio, Coherence and Phase of EEG during Sensory Focused Attention.

    Science.gov (United States)

    1981-09-01

    intensity increases as reaction time increases. There have been fewer studies of the relation of EEG coherence to cognitive vari- ables. Busk and...RUGG, X.D.uAsymmtry in EEGalpha coherence and Power: Effects oftask and sex. Electroenceph. dlin. Neurophysiol. 45, 393-401, 1978. BUSK , J. and

  19. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    Science.gov (United States)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  20. Clinical benefits of tight glycaemic control: focus on the intensive care unit.

    Science.gov (United States)

    Mesotten, Dieter; Van den Berghe, Greet

    2009-12-01

    While stress hyperglycaemia has traditionally been regarded as an adaptive, beneficial response, it is clear that hyperglycaemia and hypoglycaemia are associated with increased risk of death in critically ill intensive care unit (ICU) patients. Recent studies on blood-glucose control failed to fully clarify whether this association is causal. Early proof-of-concept single-centre randomised controlled studies found that maintaining normoglycaemia by intensive insulin therapy, as compared with tolerating hyperglycaemia as an adaptive response, improved patient outcome. However, recent large multicentre studies VISEP, GLUCONTROL and NICE-SUGAR) could not confirm this survival benefit. Methodological disparity in the execution of the complex intervention of tight glycaemic control may have contributed significantly to the contradicting results. First, different target ranges for blood glucose were used in the control group of the GLUCONTROL and 'Normoglycemia in intensive care evaluation and survival using glucose algorithm' regulation' (NICE-SUGAR) studies. Second, problems to steer blood-glucose levels within target range in the intervention group resulted in a significant overlap of the treatment groups. Third, allowing inaccurate blood-glucose measurement devices, in combination with different blood sampling sites and types of infusion pumps, may have led to unnoticed swings in blood-glucose levels. Fourth, the level of expertise of the intensive care nurses with the therapy may have been variable due to low number of study patients per centre. Finally, the studies on tight blood-glucose control were done with vastly different nutritional and end-of-life strategies. The currently available studies do not allow to confidently recommend one optimal target for glucose in heterogeneous ICU patient groups and settings. Provided that adequate devices for blood-glucose measurement and insulin administration are available, together with an extensive experience of the

  1. Diffraction, self-focusing, and the geometrical optics limit in laser produced plasmas

    International Nuclear Information System (INIS)

    Marchand, R.; Rankin, R.; Capjack, C.E.; Birnboim, A.

    1987-01-01

    The effect of diffraction on the self-modulation of an intense laser beam in an initially uniform hydrogen plasma is investigated. A formalism is used in which the diffraction term in the paraxial wave equation can be arbitrarily reduced by the use of a weight factor iota. In the limit where iota approaches zero, it is shown that the paraxial wave equation correctly reduces to the geometrical optics limit and that the problem then becomes formally equivalent to solving the ray-tracing equations. When iota = 1, the paraxial wave equation takes its usual form and diffraction is fully accounted for. This formalism is applied to the simulation of self-modulation of an intense laser beam in a hydrogen plasma, for which diffraction is shown to be significant

  2. Effect of self-focusing on resonant third harmonic generation of laser in a rippled density plasma

    International Nuclear Information System (INIS)

    Kaur, Sukhdeep; Sharma, A. K.; Yadav, Sushila

    2010-01-01

    Resonant third harmonic generation by a Gaussian laser beam in a rippled density plasma is studied. The laser ponderomotive force induces second harmonic longitudinal velocity on electrons that couples with the static density ripple to produce a density perturbation at 2ω,2k+q, where ω and k are the frequency and wave number of the laser and q is the ripple wave number of the laser. This density perturbation beats with electron oscillatory velocity at ω,k-vector to produce a nonlinear current driving the third harmonic generation. In the regime of quadratic nonlinearity, the self-focusing of the laser enhances the third harmonic power. However, at higher intensity, plasma density is significantly reduced on the axis, detuning the third harmonic resonance and weakening the harmonic yield. Self-focusing causes enhancement in the efficiency of harmonic generation.

  3. Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound

    Science.gov (United States)

    Cao, Yang; Chen, Yuli; Yu, Tao; Guo, Yuan; Liu, Fengqiu; Yao, Yuanzhi; Li, Pan; Wang, Dong; Wang, Zhigang; Chen, Yu; Ran, Haitao

    2018-01-01

    Background: As one of the most effective triggers with high tissue-penetrating capability and non-invasive feature, ultrasound shows great potential for controlling the drug release and enhancing the chemotherapeutic efficacy. In this study, we report, for the first time, construction of a phase-changeable drug-delivery nanosystem with programmable low-intensity focused ultrasound (LIFU) that could trigger drug-release and significantly enhance anticancer drug delivery. Methods: Liquid-gas phase-changeable perfluorocarbon (perfluoropentane) and an anticancer drug (doxorubicin) were simultaneously encapsulated in two kinds of nanodroplets. By triggering LIFU, the nanodroplets could be converted into microbubbles locally in tumor tissues for acoustic imaging and the loaded anticancer drug (doxorubicin) was released after the microbubble collapse. Based on the acoustic property of shell materials, such as shell stiffness, two types of nanodroplets (lipid-based nanodroplets and PLGA-based nanodroplets) were activated by different acoustic pressure levels. Ultrasound irradiation duration and power of LIFU were tested and selected to monitor and control the drug release from nanodroplets. Various ultrasound energies were introduced to induce the phase transition and microbubble collapse of nanodroplets in vitro (3 W/3 min for lipid nanodroplets; 8 W/3 min for PLGA nanodroplets). Results: We detected three steps in the drug-releasing profiles exhibiting the programmable patterns. Importantly, the intratumoral accumulation and distribution of the drug with LIFU exposure were significantly enhanced, and tumor proliferation was substantially inhibited. Co-delivery of two drug-loaded nanodroplets could overcome the physical barriers of tumor tissues during chemotherapy. Conclusion: Our study provides a new strategy for the efficient ultrasound-triggered chemotherapy by nanocarriers with programmable LIFU capable of achieving the on-demand drug release. PMID:29507623

  4. Power dependent filamentation of a femtosecond laser pulse in air by focusing with an axicon

    International Nuclear Information System (INIS)

    Sun, Xiaodong; Zeng, Tao; Liu, Weiwei; Gao, Hui; Zhang, Siwen

    2015-01-01

    In the present work, femtosecond laser filament generation by focusing the laser pulse with an axicon in air is studied at different input laser powers both experimentally and numerically. It is found that the length of the filament increases almost linearly with the input laser power. Moreover, the laser intensity inside the filament starts to saturate at a power much higher than the critical power of self-focusing for a Gaussian beam. We have also observed the laser pulse self-compression during nonlinear propagation. The shortest pulse duration could be obtained at the center of the effective focal region produced by the axicon. (paper)

  5. Forest soil carbon is threatened by intensive biomass harvesting.

    Science.gov (United States)

    Achat, David L; Fortin, Mathieu; Landmann, Guy; Ringeval, Bruno; Augusto, Laurent

    2015-11-04

    Forests play a key role in the carbon cycle as they store huge quantities of organic carbon, most of which is stored in soils, with a smaller part being held in vegetation. While the carbon storage capacity of forests is influenced by forestry, the long-term impacts of forest managers' decisions on soil organic carbon (SOC) remain unclear. Using a meta-analysis approach, we showed that conventional biomass harvests preserved the SOC of forests, unlike intensive harvests where logging residues were harvested to produce fuelwood. Conventional harvests caused a decrease in carbon storage in the forest floor, but when the whole soil profile was taken into account, we found that this loss in the forest floor was compensated by an accumulation of SOC in deeper soil layers. Conversely, we found that intensive harvests led to SOC losses in all layers of forest soils. We assessed the potential impact of intensive harvests on the carbon budget, focusing on managed European forests. Estimated carbon losses from forest soils suggested that intensive biomass harvests could constitute an important source of carbon transfer from forests to the atmosphere (142-497 Tg-C), partly neutralizing the role of a carbon sink played by forest soils.

  6. Evaluation of a real-time PCR assay for rectal screening of OXA-48-producing Enterobacteriaceae in a general intensive care unit of an endemic hospital.

    Science.gov (United States)

    Fernández, J; Cunningham, S A; Fernández-Verdugo, A; Viña-Soria, L; Martín, L; Rodicio, M R; Escudero, D; Vazquez, F; Mandrekar, J N; Patel, R

    2017-07-01

    Carbapenemase-producing Enterobacteriaceae are increasing worldwide. Rectal screening for these bacteria can inform the management of infected and colonized patients, especially those admitted to intensive care units (ICUs). A laboratory developed, qualitative duplex real-time polymerase chain reaction assay for rapid detection of OXA-48-like and VIM producing Enterobacteriaceae, performed on rectal swabs, was designed and evaluated in an intensive care unit with endemic presence of OXA-48. During analytical assay validation, no cross-reactivity was observed and 100% sensitivity and specificity were obtained for both bla OXA-48-like and bla VIM in all spiked clinical samples. During the clinical part of the study, the global sensitivity and specificity of the real-time PCR assay for OXA-48 detection were 95.7% and 100% (P=0.1250), respectively, in comparison with culture; no VIM-producing Enterobacteriaceae were detected. Clinical features of patients in the ICU who were colonized or infected with OXA-48 producing Enterobacteriaceae, including outcome, were analyzed. Most had severe underlying conditions, and had risk factors for colonization with carbapenemase-producing Enterobacteriaceae before or during ICU admission, such as receiving previous antimicrobial therapy, prior healthcare exposure (including long-term care), chronic disease, immunosuppression and/or the presence of an intravascular catheter and/or mechanical ventilation device. The described real-time PCR assay is fast (~2-3hours, if DNA extraction is included), simple to perform and results are easy to interpret, features which make it applicable in the routine of clinical microbiology laboratories. Implementation in endemic hospitals could contribute to early detection of patients colonized by OXA-48 producing Enterobacteriaceae and prevention of their spread. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Examining Challenges Related to the Production of Actionable Climate Knowledge for Adaptation Decision-Making: A Focus on Climate Knowledge System Producers

    Science.gov (United States)

    Ernst, K.; Preston, B. L.; Tenggren, S.; Klein, R.; Gerger-Swartling, Å.

    2017-12-01

    Many challenges to adaptation decision-making and action have been identified across peer-reviewed and gray literature. These challenges have primarily focused on the use of climate knowledge for adaptation decision-making, the process of adaptation decision-making, and the needs of the decision-maker. Studies on climate change knowledge systems often discuss the imperative role of climate knowledge producers in adaptation decision-making processes and stress the need for producers to engage in knowledge co-production activities and to more effectively meet decision-maker needs. While the influence of climate knowledge producers on the co-production of science for adaptation decision-making is well-recognized, hardly any research has taken a direct approach to analyzing the challenges that climate knowledge producers face when undertaking science co-production. Those challenges can influence the process of knowledge production and may hinder the creation, utilization, and dissemination of actionable knowledge for adaptation decision-making. This study involves semi-structured interviews, focus groups, and participant observations to analyze, identify, and contextualize the challenges that climate knowledge producers in Sweden face as they endeavor to create effective climate knowledge systems for multiple contexts, scales, and levels across the European Union. Preliminary findings identify complex challenges related to education, training, and support; motivation, willingness, and culture; varying levels of prioritization; professional roles and responsibilities; the type and amount of resources available; and professional incentive structures. These challenges exist at varying scales and levels across individuals, organizations, networks, institutions, and disciplines. This study suggests that the creation of actionable knowledge for adaptation decision-making is not supported across scales and levels in the climate knowledge production landscape. Additionally

  8. Economic Performance of SME Agricultural Producers in the Context of Risk Management: Focus on Visegrad 4 Member Countries

    Directory of Open Access Journals (Sweden)

    Jan Vavřina

    2014-01-01

    Full Text Available The long term regulation of the EU agrarian sector via the Common Agricultural Policy (CAP and its respective instruments focuses on the sustainable development both of the agriculture and rural area as a whole. It is needed above all to stress out the equalization instruments of CAP within the context of negative impacts’ diminish of outer sectorial environment in relation with the economic status of agricultural businesses, specifically the small and medium ones. The EU programming period of years 2014-2020 is focused from the view point of the agrarian sector on more efficient CAP to encourage the competitiveness of European farmers. The aforementioned programming period is for agricultural producers from V4 countries the first one when CAP guarantees the maximum amount of operational subsidies for them, of course regarding the respective agreed EU accession treaties. Nevertheless, CAP subsidies cannot be considered to be the key factor of competitiveness within EU single market. The relation between long term increasing of production’s inputs on one hand and the decreasing of agricultural producers’ prices on the other one can be marked as very important negative aspect within the need of farmers’ sustainable competitiveness. So, the direct consequence of a negative influence of aforementioned factor is the subsequent negative direct influence on profitability of agricultural producers. The need for increasing the efficiency of production, marketing and other related processing activities appears to be relevant and inevitable. The business processes are repeated cyclically, that is why there is emerged the need for its systematic and continuous management, measurement, assessment and subsequent changes and optimization. The management of risks has to be involved in the business activities of agricultural businesses regardless their economic size and branch, taking into account possible negative influences. The article aims at

  9. WE-G-12A-01: High Intensity Focused Ultrasound Surgery and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, K [National Cancer Institute, Rockville, MD (United States); O' Neill, B [The Methodist Hospital Research Institute, Houston, TX (United States)

    2014-06-15

    More and more emphasis is being made on alternatives to invasive surgery and the use of ionizing radiation to treat various diseases including cancer. Novel screening, diagnosis, treatment and monitoring of response to treatment are also hot areas of research and new clinical technologies. Ultrasound(US) has gained traction in all of the aforementioned areas of focus. Especially with recent advances in the use of ultrasound to noninvasively treat various diseases/organ systems. This session will focus on covering MR-guided focused ultrasound and the state of the art clinical applications, and the second speaker will survey the more cutting edge technologies e.g. Focused Ultrasound (FUS) mediated drug delivery, principles of cavitation and US guided FUS. Learning Objectives: Fundamental physics and physical limitations of US interaction with tissue and nanoparticles The alteration of tissue transport using focused ultrasound US control of nanoparticle drug carriers for targeted release The basic principles of MRI-guided focused ultrasound (MRgFUS) surgery and therapy the current state of the art clinical applications of MRgFUS requirements for quality assurance and treatment planning.

  10. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    Science.gov (United States)

    Sher, Mark H.; Macklin, John J.; Harris, Stephen E.

    1989-09-26

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  11. Modelling the temperature evolution of bone under high intensity focused ultrasound

    International Nuclear Information System (INIS)

    Ten Eikelder, H M M; Bošnački, D; Breuer, B J T; Van Wijk, J H; Van Dijk, E V M; Modena, D; Yeo, S Y; Grüll, H; Elevelt, A; Donato, K; Di Tullio, A

    2016-01-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR

  12. Intense pulsed sources of ions and electrons produced by lasers; Sources pulsees intenses d'ions et d'electrons produites par laser

    Energy Technology Data Exchange (ETDEWEB)

    Bourrabier, G [Centre de Recherche de la C.S.F., Corbeville (France); Consoli, T; Slama, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-11-01

    We describe a device for the acceleration of the plasma burst produced by focusing a laser beam into a metal target. We extract the electrons and the ions from the plasma. The maximum current is around 2000 amperes during few microseconds. The study of the effect of the kind of the target on the characteristics of the current shows the great importance of the initial conditions that is the ionisation potential of the target and the energy laser. (authors) [French] On decrit un dispositif destine a accelerer la bouffee de plasma produite par focalisation d'un faisceau laser sur une cible solide. On extrait du plasma les electrons et les ions. Le courant maximum atteint pres de 2000 amperes pendant quelques microsecondes. L'etude de l'effet de la nature de la cible sur les caracteristiques du courant collecte, met en evidence l'importance des conditions initiales (potentiel d'ionisation de la cible, energie du laser). (auteurs)

  13. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2013-08-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1

  14. Non-invasive high-intensity focused ultrasound for UV-induced hyperpigmentation in Fitzpatrick skin types III and IV: a prospective, randomized, controlled, evaluator-blinded trial.

    Science.gov (United States)

    Vachiramon, Vasanop; Jurairattanaporn, Natthachat; Harnchoowong, Sarawin; Chayavichitsilp, Pamela

    2018-02-01

    Skin hyperpigmentation is a frequently encountered problem, particularly in darker skin types. Unfortunately, standard treatments for this condition have shown disappointing results. High-intensity focused ultrasound (HIFU) is commonly indicated for skin laxity, but recently was used to treat UV-induced hyperpigmentation in animal models. This study is aimed to evaluate the efficacy and safety of high-intensity focused ultrasound for UVB-induced hyperpigmentation in human subjects. A randomized, evaluator-blinded pilot study was conducted on 20 subjects. Each subject was induced three hyperpigmentary spots by local broadband UVB. After 2 weeks, each spot was randomly allocated to control, low-energy, and high-energy HIFU. Subjects were instructed to follow up weekly for a duration of 1 month. Lightness index measurements, mean improvement scores, subjects' satisfaction, pain scores, and side effects were evaluated. All 20 subjects completed the study. Fourteen subjects had Fitzpatrick (FPT) skin type III and six subjects had FPT skin type IV. Twelve subjects showed greater improvement at control sites while eight subjects showed greater improvement at HIFU-treated sites. In FPT skin type III, HIFU appeared to be inferior to control in both lightness index and mean improvement scores, but in FPT skin type IV, HIFU had greater lightness index improvement and higher improvement scores than control. Side effects were more frequent in high-energy-treated areas. Focused ultrasound may be offered in some patients with hyperpigmentary conditions. More research is needed to determine proper energy settings for optimal outcome.

  15. Evidence for an intense solar outburst in prehistory

    International Nuclear Information System (INIS)

    Peratt, A L; Yao, W F

    2008-01-01

    A past intense solar outburst and its effect on Earth was proposed by Gold (1962 Pontificiae Acad. Sci. Scr. Varia 25 159) who, along with others, based his hypotheses on strong astronomical and geophysical evidence. The discovery that objects from the Neolithic or Early Bronze Age carry patterns associated with high-current Z-pinches, as would result from an intense plasma impinging Earth, provides a possible insight into the origin and meaning of these ancient symbols produced by humans. Peratt (2003 Trans. Plasma Sci. 31 1192) dealt with the comparison of graphical and radiation data from high-current Z-pinches to petroglyphs, geoglyphs and megaliths. Peratt (2007 Trans. Plasma Sci. 35 778) focused primarily, but not exclusively, on petroglyphs of some 84 different morphologies; pictures found in laboratory experiments and carved on rock. These corresponded to mankind's visual observations of ancient aurora as might be produced if the solar wind had increased at times between one and two orders of magnitude, millennia ago (Gold 1962 Pontificiae Acad. Sci. Scr. Varia 25 159). In Peratt (2007 Trans. Plasma Sci. 35 778), the data were given on the source of light and its temporal change from a current-increasing Z-pinch or dense plasma focus aurora. Orientation and field-of-view data are given as surveyed and contributed from 139 countries, from sites and fields containing several millions of these objects, the latest data coming from a 300 km survey along the Orinoco river basin in Venezuela. In this paper, we include additional petroglyph figures derivable from experiment and computer. This information allows a reconstruction of the auroral form presumably associated with extreme geomagnetic storms and shows, based on existent geophysical evidence, relativistic electron flow inward at Earth's south polar axis and hypervelocity proton impacts around the north polar axis.

  16. Comparative histometric analysis of the effects of high-intensity focused ultrasound and radiofrequency on skin.

    Science.gov (United States)

    Suh, Dong Hye; Choi, Jeong Hwee; Lee, Sang Jun; Jeong, Ki-Heon; Song, Kye Yong; Shin, Min Kyung

    2015-01-01

    High-intensity focused ultrasound (HIFU) and radiofrequency (RF) are used for non-invasive skin tightening. Neocollagenesis and neoelastogenesis have been reported to have a mechanism of controlled thermal injury. To compare neocollagenesis and neoelastogenesis in each layer of the dermis after each session of HIFU and monopolar RF. We analyzed the area fraction of collagen and elastic fibers using the Masson's Trichrome and Victoria blue special stains, respectively, before and after 2 months of treatments. Histometric analyses were performed in each layer of the dermis, including the papillary dermis, and upper, mid, and deep reticular dermis. Monopolar RF led to neocollagenesis in the papillary dermis, and upper, mid, and deep reticular dermis, and neoelastogenesis in the papillary dermis, and upper and mid reticular dermis. HIFU led to neocollagenesis in the mid and deep reticular dermis and neoelastogenesis in the deep reticular dermis. Among these treatment methods, HIFU showed the highest level of neocollagenesis and neoelastogenesis in the deep reticular dermis. HIFU affects deep tissues and impacts focal regions. Monopolar RF also affects deep tissues, but impacts diffuse regions. We believe these data provide further insight into effective skin tightening.

  17. Plasma-focused cyclic accelerators

    International Nuclear Information System (INIS)

    Mondelli, A.A.; Chernin, D.P.

    1985-01-01

    The use of ambient plasma to neutralize the transverse forces of an intense particle beam has been known for many years. Most recently, the so-called ion-focused regime (IFR) for beam propagation has been used as a means of focusing intense electron beams in linear accelerators and suggested for injecting an electron beam across magnetic field lines into a high-current cyclic accelerator. One technique for generating the required background plasma for IFR propagation is to use a laser to ionize ambient gas in the accelerator chamber. This paper discusses an alternative means of plasma production for IFR, viz. by using RF breakdown. For this approach the accelerator chamber acts as a waveguide. This technique is not limited to toroidal accelerators. It may be applied to any accelerator or recirculator geometry as well as for beam steering and for injection or extraction of beams in closed accelerator configurations

  18. Non-invasive treatment efficacy evaluation for high-intensity focused ultrasound therapy using magnetically induced magnetoacoustic measurement

    Science.gov (United States)

    Guo, Gepu; Wang, Jiawei; Ma, Qingyu; Tu, Juan; Zhang, Dong

    2018-04-01

    Although the application of high intensity focused ultrasound (HIFU) has been demonstrated to be a non-invasive treatment technology for tumor therapy, the real-time temperature monitoring is still a key issue in the practical application. Based on the temperature-impedance relation, a fixed-point magnetically induced magnetoacoustic measurement technology of treatment efficacy evaluation for tissue thermocoagulation during HIFU therapy is developed with a sensitive indicator of critical temperature monitoring in this study. With the acoustic excitation of a focused transducer in the magnetoacoustic tomography with the magnetic induction system, the distributions of acoustic pressure, temperature, electrical conductivity, and acoustic source strength in the focal region are simulated, and the treatment time dependences of the peak amplitude and the corresponding amplitude derivative under various acoustic powers are also achieved. It is proved that the strength peak of acoustic sources is generated by tissue thermocoagulation with a sharp conductivity variation. The peak amplitude of the transducer collected magnetoacoustic signal increases accordingly along with the increase in the treatment time under a fixed acoustic power. When the temperature in the range with the radial and axial widths of about ±0.46 mm and ±2.2 mm reaches 69 °C, an obvious peak of the amplitude derivative can be achieved and used as a sensitive indicator of the critical status of treatment efficacy. The favorable results prove the feasibility of real-time non-invasive temperature monitoring and treatment efficacy evaluation for HIFU ablation using the magnetically induced magnetoacoustic measurement, and might provide a new strategy for accurate dose control during HIFU therapy.

  19. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    International Nuclear Information System (INIS)

    Wehring, B.W.; Uenlue, K.

    1995-01-01

    Funds were received for the first year of a three year DOE Nuclear Engineering Research Grant, ''Study of Neutron Focusing at the Texas Cold Neutron Source'' (FGO2-92ER75711). The purpose of this three year study was to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility was also to be designed, setup, and tested under the three year project. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which we wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, we obtained gains of 3 to 5 for the neutron flux averaged over an area of 1 x 1 cm

  20. Calculation of the geometrical intensity on an image surface

    International Nuclear Information System (INIS)

    Seppala, L.G.

    1975-01-01

    Laser fusion experiments involve the focusing of high power laser beams onto fuel pellets. The geometrical intensity is of interest in the cases where the laser is focused to the center of the pellet. Analytic expressions and ray trace methods for evaluating the geometrical intensity are presented

  1. Lysis of Chlamydomonas reinhardtii by high-intensity focused ultrasound as a function of exposure time.

    Science.gov (United States)

    Bigelow, Timothy A; Xu, Jin; Stessman, Dan J; Yao, Linxing; Spalding, Martin H; Wang, Tong

    2014-05-01

    Efficient lysis of microalgae for lipid extraction is an important concern when processing biofuels. Historically, ultrasound frequencies in the range of 10-40 kHz have been utilized for this task. However, greater efficiencies might be achievable if higher frequencies could be used. In our study, we evaluated the potential of using 1.1 MHz ultrasound to lyse microalgae for biofuel production while using Chlamydomonas reinhardtii as a model organism. The ultrasound was generated using a spherically focused transducer with a focal length of 6.34 cm and an active diameter of 6.36 cm driven by 20 cycle sine-wave tone bursts at a pulse repetition frequency of 2 kHz (3.6% duty cycle). The time-average acoustic power output was 26.2 W while the spatial-peak-pulse-average intensity (ISPPA) for each tone burst was 41 kW/cm(2). The peak compressional and rarefactional pressures at the focus were 102 and 17 MPa, respectively. The exposure time was varied for the different cases in the experiments from 5s to 9 min and cell lysis was assessed by quantifying the percentage of protein and chlorophyll release into the supernate as well as the lipid extractability. Free radical generation and lipid oxidation for the different ultrasound exposures were also determined. We found that there was a statistically significant increase in lipid extractability for all of the exposures compared to the control. The longer exposures also completely fragmented the cells releasing almost all of the protein and chlorophyll into the supernate. The cavitation activity did not significantly increase lipid oxidation while there was a minor trend of increased free radical production with increased ultrasound exposure. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. High-intensity focused ultrasound for ex vivo kidney tissue ablation: influence of generator power and pulse duration.

    Science.gov (United States)

    Häcker, Axel; Köhrmann, Kai Uwe; Knoll, Thomas; Langbein, Sigrun; Steidler, Annette; Kraut, Oliver; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan

    2004-11-01

    The therapeutic application of noninvasive tissue ablation by high-intensity focused ultrasound (HIFU) requires precise physical definition of the focal size and determination of control parameters. The objective of this study was to measure the extent of ex-vivo porcine kidney tissue ablation at variable generator parameters and to identify parameters to control lesion size. The ultrasound waves generated by a cylindrical piezoceramic element (1.04 MHz) were focused at a depth of 100 mm using a parabolic reflector (diameter 100 mm). A needle hydrophone was used to measure the field distribution of the sound pressure. The morphology and extent of tissue necrosis were examined at generator powers of up to 400 W (P(el)) and single pulse durations of as long as 8 seconds. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (-6 dB). A sharp demarcation between coagulation necrosis and intact tissue was observed. Lesion size was controlled by both the variation of generator power and the pulse duration. At a constant pulse duration of 2 seconds, a generator power of 100 W remained below the threshold doses for inducing a reproducible lesion. An increase in power to as high as 400 W induced lesions with average dimensions of as much as 11.2 x 3 mm. At constant total energy (generator power x pulse duration), lesion size increased at higher generator power. This ultrasound generator can induce defined and reproducible necrosis in ex-vivo kidney tissue. Lesion size can be controlled by adjusting the generator power and pulse duration. Generator power, in particular, turned out to be a suitable control parameter for obtaining a lesion of a defined size.

  3. Development of X-ray photoelectron microscope with a compact X-ray source generated by line-focused laser irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, N.; Takahashi, Z.; Nishimura, Y.; Watanabe, K.; Okamoto, Y.; Sakata, A.; Azuma, H.; Hara, T.

    2005-01-01

    A laboratory-sized X-ray photoelectron microscope was constructed using a compact X-ray source produced by line-focused laser irradiation. The system is a scanning type photoelectron microscope where X-ray beam is micro-focused via Schwarzschild optics. A compact laser-plasma X-ray source has been developed with a YAG laser, a line-focus lens assembly, an Al tape-target driver and a debris prevention system. The 13.1 nm X-ray was delivered along line plasma whose length was 0.6 or 11 mm with higher intensity than that from a point-focused source. The Schwarzschild optics having the designed demagnification of 224, which was coated with Mo/Si multilayers for 13.1 nm X-ray, was set on the beamline 1 m distant from the source. The electron energy analyser was a spherical capacitor analyser with the photoelectron image detection system that was suited for detection of vast photoelectrons excited by an X-ray pulse of ns-order duration. The spatial resolution less than 5 μm has been confirmed from the variation of As 3d electron intensity along the position of the GaAs sample coated with a photo-resist test pattern

  4. High intensity laser interactions with sub-micron droplets

    International Nuclear Information System (INIS)

    Mountford, L.C.

    1999-01-01

    A high-density source of liquid ethanol droplets has been developed, characterised and used in laser interaction studies for the first time. Mie Scattering and attenuation measurements show that droplets with a radius of (0.5 ± 0.1) μm and atomic densities of 10 19 atoms/cm 3 can be produced, bridging the gap between clusters and macroscopic solids. Lower density (10 16 cm -3 ) sprays can also be produced and these are electrostatically split into smaller droplets with a radius of (0.3 ± 0.1) μm. This work has been accepted for publication in Review of Scientific Instruments. A range of high intensity interaction experiments have been carried out with this unique sub-micron source. The absolute yield of keV x-rays, generated using 527 nm, 2 ps pulses focused to ∼10 17 W/cm 2 , was measured for the first time. ∼7 μJ of x-rays with photon energies above 1 keV were produced, comparable to yields obtained from much higher Z Xenon clusters. At intensities ≤10 16 W/cm 2 the yield from droplets exceeds that from solid targets of similar Z. The droplet medium is debris free and self-renewing, providing a suitable x-ray source for lithographic techniques. Due to the spacing between the droplets, it was expected that the droplet plasma temperature would exceed that of a solid target plasma, which is typically limited by rapid heat conduction to <1 keV. Analysis of the x-ray data shows this to be true with a mean droplet plasma temperature of (2 ± 0.8) keV, and a number of measurements exceeding 5 keV (to appear in Applied Physics Letters). The absorption of high intensity laser pulses in the dense spray has been measured for the first time and this was found to be wavelength and polarisation independent and in excess of 60%. These first interaction measurements clearly indicate that there are significant differences between the laser heating of droplet, solid and cluster targets. (author)

  5. Public attitudes toward nuclear power generation. Focusing on measurement of attitude intensity

    International Nuclear Information System (INIS)

    Nagai, Yasuko; Hayashi, Chikio

    1999-01-01

    The purpose of the present study was to 1) examine the differences of the perception between nuclear power generation (NPG) and electric power generation by nuclear fusion, 2) find the structural characteristics of the attitude toward NPG, 3) shed light on the characteristics of knowledge about NPG, and 4) develop a scale to measure the intensity in attitude toward NPG. Subjects (N = 1,582) were randomly assigned into 4 groups and were asked to answer a questionnaire including public attitudes toward NPG and related matters. The results were as follows: 1) the perception of electric power generation by nuclear fusion was less favorable than that of NPG; 2) Items which correlated with attitudes toward NPG were: 'sense of anxiety,' sensitivity to risk,' 'trust in science and technology,' 'evaluation of Japan's nuclear policy', 'evaluation of electric power companies,' and interest in life and environmental issues.' Moreover, people with a strong attitude tended to be rational and had a better knowledge of NPG; 3) The evaluation of the amount of subjective knowledge concerning nuclear power and electric power generation was reliable as a measure of objective knowledge; 4) The measurement method used in this study was characterized by the use of biased questions(ten positively and ten negatively biased questions) which were shown to the subjects using the split-half method. An attempt was made to measure the attitude and its intensity taking into consideration gender, positive or negative attitude toward NPG, level of knowledge about NPG, age, and occupation. As a result, differences in intensity between different attributes were found. (author)

  6. A computational study for investigating acoustic streaming and tissue heating during high intensity focused ultrasound through blood vessel with an obstacle

    Science.gov (United States)

    Parvin, Salma; Sultana, Aysha

    2017-06-01

    The influence of High Intensity Focused Ultrasound (HIFU) on the obstacle through blood vessel is studied numerically. A three-dimensional acoustics-thermal-fluid coupling model is employed to compute the temperature field around the obstacle through blood vessel. The model construction is based on the linear Westervelt and conjugate heat transfer equations for the obstacle through blood vessel. The system of equations is solved using Finite Element Method (FEM). We found from this three-dimensional numerical study that the rate of heat transfer is increasing from the obstacle and both the convective cooling and acoustic streaming can considerably change the temperature field.

  7. High power phased array prototype for clinical high intensity focused ultrasound : applications to transcostal and transcranial therapy.

    Science.gov (United States)

    Pernot, M; Aubry, J -F; Tanter, M; Marquet, F; Montaldo, G; Boch, A -L; Kujas, M; Seilhean, D; Fink, M

    2007-01-01

    Bursts of focused ultrasound energy three orders of magnitude more intense than diagnostic ultrasound became during the last decade a noninvasive option for treating cancer from breast to prostate or uterine fibroid. However, many challenges remain to be addressed. First, the corrections of distortions induced on the ultrasonic therapy beam during its propagation through defocusing obstacles like skull bone or ribs remain today a technological performance that still need to be validated clinically. Secondly, the problem of motion artifacts particularly important for the treatment of abdominal parts becomes today an important research topic. Finally, the problem of the treatment monitoring is a wide subject of interest in the growing HIFU community. For all these issues, the potential of new ultrasonic therapy devices able to work both in Transmit and Receive modes will be emphasized. A review of the work under achievement at L.O.A. using this new generation of HIFU prototypes on the monitoring, motion correction and aberrations corrections will be presented.

  8. Modeling nitrogen plasmas produced by intense electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Angus, J. R.; Swanekamp, S. B.; Schumer, J. W.; Hinshelwood, D. D. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Mosher, D.; Ottinger, P. F. [Independent contractors for NRL through Engility, Inc., Alexandria, Virginia 22314 (United States)

    2016-05-15

    A new gas–chemistry model is presented to treat the breakdown of a nitrogen gas with pressures on the order of 1 Torr from intense electron beams with current densities on the order of 10 kA/cm{sup 2} and pulse durations on the order of 100 ns. For these parameter regimes, the gas transitions from a weakly ionized molecular state to a strongly ionized atomic state on the time scale of the beam pulse. The model is coupled to a 0D–circuit model using the rigid–beam approximation that can be driven by specifying the time and spatial profiles of the beam pulse. Simulation results are in good agreement with experimental measurements of the line–integrated electron density from experiments done using the Gamble II generator at the Naval Research Laboratory. It is found that the species are mostly in the ground and metastable states during the atomic phase, but that ionization proceeds predominantly through thermal ionization of optically allowed states with excitation energies close to the ionization limit.

  9. Design a 10 kJ IS Mather Type Plasma Focus for Solid Target Activation to Produce Short-Lived Radioisotopes 12C(d,n)13N

    Science.gov (United States)

    Sadat Kiai, S. M.; Adlparvar, S.; Sheibani, S.; Elahi, M.; Safarien, A.; Farhangi, S.; Zirak, A. R.; Alhooie, S.; Mortazavi, B. N.; Khalaj, M. M.; Khanchi, A. R.; Dabirzadeh, A. A.; Kashani, A.; Zahedi, F.

    2010-10-01

    A 10 kJ (15 kV, 88 μF) IS (Iranian Sun) Mather type plasma focus device has been studied to determine the activity of a compound exogenous carbon solid target through 12C(d,n)13N nuclear reaction. The produced 13N is a short-lived radioisotope with a half-life of 9.97 min and threshold energy of 0.28 MeV. The results indicate that energetic deuterons impinging on the solid target can produce yield of = 6.7 × 10-5 with an activity of A = 6.8 × 104 Bq for one plasma focus shut and A ν = 4 × 105 Bq for 6 shut per mint when the projectile maximum deuterons energy is E max = 3 MeV.

  10. Space-time structure of neutron and X-ray sources in a plasma focus

    International Nuclear Information System (INIS)

    Bostick, W.H.; Nardi, V.; Prior, W.

    1977-01-01

    Systematic measurements with paraffin collimators of the neutron emission intensity have been completed on a plasma focus with a 15-20 kV capacitor bank (hollow centre electrode; discharge period T approximately 8 μs; D 2 filling at 4-8 torr). The space resolution was 1 cm or better. These data indicate that at least 70% of the total neutron yield originates within hot-plasma regions where electron beams and high-energy D beams (approximately > 0.1-1 MeV) are produced. The neutron source is composed of several (approximately > 1-10) space-localized sources of different intensity, each with a duration approximately less than 5 ns (FWHM). Localized neutron sources and hard (approximately > 100 keV) X-ray sources have the same time multiplicity and are usually distributed in two groups over a time interval 40-400 ns long. By the mode of operation used by the authors one group of localized sources (Burst II) is observed 200-400 ns after the other group (Burst I) and its space distribution is broader than for Burst I. The maximum intensity of a localized source of neutrons in Burst I is much higher than the maximum intensity in Burst II. Secondary reactions T(D,n) 4 He (from the tritium produced only by primary reactions in the same discharge; no tritium was used in filling the discharge chamber) are observed in a time coincidence with the strongest D-D neutron pulse of Burst I. The neutron signal from a localized source with high intensity has a relatively long tail of small amplitude (area tail approximately less than 0.2 X area peak). This tail can be generated by the D-D reactions of the unconfined part of an ion beam in the cold plasma. Complete elimination of scattered neutrons on the detector was achieved in these measurements. (author)

  11. Thermal self-focusing with multiple beams

    International Nuclear Information System (INIS)

    Craxton, R.S.; McCrory, R.L.

    1986-07-01

    Self-focusing in underdense plasmas in the presence of overlapping beams is of interest for multibeam laser-irradiation systems. The hydrodynamics/ray-tracing simulation code SAGE is used to model thermal self-focusing in two-dimensional line-focus geometry with beams incident obliquely at different angles. The conjecture that multiple overlapping beams may suppress self-focusing is investigated for parameters appropriate to reactor-sized targets; in particular, the dependence upon intensity, scale length and pulse width is examined. While the full problem is three-dimensional, insight may be gained from two-dimensional simulations

  12. Intense harmonic generation from various ablation media

    International Nuclear Information System (INIS)

    Ozaki, T.; Elouga, L.; Suzuki, M.; Kuroda, H.; Ganeev, R.A.

    2006-01-01

    Complete test of publication follows. High-order harmonic generation (HHG) is a unique source of coherent extreme ultraviolet (XUV) radiation, which can produce soft x-rays within the spectral 'water-window' (between 2.3 and 4.4 nm), and ultimately short pulses with attosecond duration. However, the intensity of present-day harmonics is still low, and serious applications will need an increase of the conversion efficiency. Instead of using gas media, one can also use ablation material, produced on solid targets using a low-intensity prepulse, as the nonlinear medium to generate high-order harmonics. Recently, we have successfully demonstrated the generation of up to the 63 rd harmonic (λ = 12.6 nm) of a Ti:sapphire laser radiation using boron ablation, and a strong enhancement in the intensity of the 13 th harmonic from indium ablation. These harmonics were generated with a modest laser (10 mJ, 150 fs) and with the pre-pulse to main pulse energy ratio constant. In this paper, we perform systematic investigations of ablation harmonics, using the 200 mJ, 30 fs Ti:sapphire beam line of the Canadian Advanced Laser Light Source (ALLS) facility. ALLS allows studying ablation harmonics over wider experimental parameters, and with independent control over the pre-pulse and main pulse energies. The 10 Hz, 200 mJ Ti:sapphire beam line of ALLS is divided into two beams. Each beam has its own energy control system, which allows independent control over the energy of each beam. One of the beams is used as a pre-pulse for creating ablation, which is focused onto the solid target without pulse compression, with pulse duration of 200 ps. The second beam is used as the main pulse for harmonic generation. The main pulse is delayed in time relative to the pre-pulse by propagating through an optical delay line, and then sent through a pulse compressor. The compressed pulse duration have typical pulse duration of 30 fs FWHM, which is then focused onto the ablation medium using MgF 2

  13. Feasibility of ultrasound-guided high intensity focused ultrasound ablating uterine fibroids with hyperintense on T2-weighted MR imaging

    International Nuclear Information System (INIS)

    Zhao, Wen-Peng; Chen, Jin-Yun; Zhang, Lian; Li, Quan; Qin, Juan

    2013-01-01

    Purpose: To retrospectively investigate whether uterine fibroids with hyperintense on pretreatment T2-weighted magnetic resonance imaging (MRI) could be treated with ultrasound-guided high intensity focused ultrasound (USgHIFU). Materials and methods: 282 patients with 282 symptomatic uterine fibroids who underwent USgHIFU treatment were retrospectively analyzed. Based on the signal intensity of T2-weighted MRI, uterine fibroids were classified as hypointense, isointense and hyperintense. Hyperintense fibroids were subjectively further subdivided into heterogeneous hyperintense, slightly homogeneous hyperintense and markedly homogeneous hyperintense based on the signal intensity of fibroid relative to myometrium and endometrium on T2-weighted MRI. Enhanced MRI was performed within one month after HIFU treatment. Non-perfused volume (NPV, indicative of successful ablation) ratio, treatment time, treatment efficiency, energy effect ratio and adverse events were recorded. Results: The median volume of uterine fibroids was 70.3 cm 3 (interquartile range, 41.1–132.5 cm 3 ). The average NPV ratio, defined as non-perfused volume divided by the fibroid volume after HIFU treatment, was 76.8 ± 19.0% (range, 0–100%) in the 282 patients. It was 86.3 ± 11.9% (range, 40.9–100.0%) in the group with hypointense fibroids, 77.1 ± 16.5% (range, 32.2–100.0%) in isointense fibroids, and 67.6 ± 23.9% (range, 0–100.0%) in hyperintense fibroids. The lowest NPV ratio, lowest treatment efficiency, more treatment time, more sonication energy and pain scores were observed in the slightly homogeneous hyperintense fibroids, and the NPV ratio was 55.8 ± 26.7% (range, 0–83.9%) in this subgroup. Conclusion: Based on our results, the heterogeneous and markedly homogeneous hyperintense fibroids were suitable for USgHIFU, and only the slightly homogeneous hyperintense fibroids should be excluded

  14. Review of magnetic resonance-guided focused ultrasound in the treatment of uterine fibroids

    Directory of Open Access Journals (Sweden)

    Pedro Felipe Magalhães Peregrino

    Full Text Available Uterine leiomyoma is the most frequently occurring solid pelvic tumor in women during the reproductive period. Magnetic resonance-guided high-intensity focused ultrasound is a promising technique for decreasing menorrhagia and dysmenorrhea in symptomatic women. The aim of this study is to review the role of Magnetic resonance-guided high-intensity focused ultrasound in the treatment of uterine fibroids in symptomatic patients. We performed a review of the MEDLINE and Cochrane databases up to April 2016. The analysis and data collection were performed using the following keywords: Leiomyoma, High-Intensity Focused Ultrasound Ablation, Ultrasonography, Magnetic Resonance Imaging, Menorrhagia. Two reviewers independently performed a quality assessment; when there was a disagreement, a third reviewer was consulted. Nineteen studies of Magnetic resonance-guided high-intensity focused ultrasound-treated fibroid patients were selected. The data indicated that tumor size was reduced and that symptoms were improved after treatment. There were few adverse effects, and they were not severe. Some studies have reported that in some cases, additional sessions of Magnetic resonance-guided high-intensity focused ultrasound or other interventions, such as myomectomy, uterine artery embolization or even hysterectomy, were necessary. This review suggests that Magnetic resonance-guided high-intensity focused ultrasound is a safe and effective technique. However, additional evidence from future studies will be required before the technique can be recommended as an alternative treatment for fibroids.

  15. Hyperecho in ultrasound images during high-intensity focused ultrasound ablation for hepatocellular carcinomas

    International Nuclear Information System (INIS)

    Fukuda, Hiroyuki; Numata, Kazushi; Nozaki, Akito; Kondo, Masaaki; Morimoto, Manabu; Tanaka, Katsuaki; Ito, Ryu; Ohto, Masao; Ishibashi, Yoshiharu; Oshima, Noriyoshi; Ito, Ayao; Zhu, Hui; Wang Zhibiao

    2011-01-01

    High-intensity focused ultrasound (HIFU) is a noninvasive method that can cause complete coagulation necrosis without requiring the insertion of any instruments. The hyperechoic grayscale change (hyperechoic region) is used as a sign that the treated lesion has been completely coagulated. The purpose of this study was to evaluate the first hyperechoic region during treatment using HIFU ablation according to various conditions, such as the sonication power, the depth of the tumor from the surface of the skin, and the shield rate. HIFU treatment was performed in 20 patients. The HIFU system (Chongqing Haifu Tech, Chongqing, China) was used under ultrasound guidance. Complete coagulation was achieved in 17 cases. Hyperechoic region were detected after HIFU ablation in 17 patients. The size of the hyperechoic region at a depth of >50 mm was significantly smaller than that at a depth of ≤50 mm. The number and power of the sonications for areas at a depth of >50 mm were significantly larger than those for areas at a depth of ≤50 mm. The number and power in cases with a shield rate of 31–60% were significantly larger than those in cases with a shield rate of 0–30%. When the shield rate was 0%, a hyperechoic region occurred, even when a maximum sonication power was not used. In all three cases with tumors located at a depth of greater than 70 mm and a shield rate of larger than 60%, a hyperechoic region was not seen. In conclusion, hyperechoic regions are easy to visualize in cases with tumors located at a depth of ≤50 mm or shield rates of 0–30%.

  16. Coulomb focusing and path'' interference of autoionizing electrons produced in 10 keV He sup + + He collisions

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, J.K. (Lawrence Livermore National Lab., CA (USA)); Burgdoerfer, J. (Tennessee Univ., Knoxville, TN (USA)); Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N. (Oak Ridge National Lab., TN (USA))

    1991-03-13

    Autoionizing electrons emitted following low energy ion-atom collisions may scatter significantly from the receding spectator ion's attractive Coulomb field. In such cases the observed electron intensity is focused'' in the direction of the scattering ion as a result of the effective compression of the emission solid angle. In addition, interference may occur between trajectories, corresponding to electrons scattering around opposite sides of the ion, which lead to the same final laboratory electron energy and emission angle. This Coulomb path'' interference mechanism manifests itself in the uncharacteristically rapid angular dependence of the He target 2s{sup 2} {sup 1}S autoionizing state measured near 0{degree} following low energy He{sup +} + He collisions. A classical trajectory model for Coulomb focusing is presented and a semi-classical approximation is used to model the Coulomb path'' interference mechanism. In this description we account for the evolution of the phase of the autoionizing state until its decay and the path dependence of the amplitude of the emitted electron following decay of the autoionizing state. Calculated model lineshapes, which include contributions from adjacent overlapping resonances, reproduce quite well the angular dependence observed in the data near 0{degree}. 14 refs., 7 figs.

  17. Conditional probability of intense rainfall producing high ground concentrations from radioactive plumes

    International Nuclear Information System (INIS)

    Wayland, J.R.

    1977-03-01

    The overlap of the expanding plume of radioactive material from a hypothetical nuclear accident with rainstorms over dense population areas is considered. The conditional probability of the occurrence of hot spots from intense cellular rainfall is presented

  18. Fourth Order Nonlinear Intensity and the corresponding Refractive ...

    African Journals Online (AJOL)

    Nonlinear effects occur whenever the optical fields associated with one or more intense light such as from laser beams propagating in a crystal are large enough to produce polarization fields. This paper describes how the fourth order nonlinear intensity and the corresponding effective refractive index that is intensity ...

  19. Plasma-focused cyclic accelerators

    International Nuclear Information System (INIS)

    Mondelli, A.A.; Chernin, D.P.

    1985-01-01

    The use of ambient plasma to neutralize the transverse forces of an intense particle beam has been known for many years. Most recently, the so-called ion-focused regime (IFR) for beam propagation has been used as a means of focusing intense electron beams in linear accelerators and suggested for injecting an electron beam across magnetic field lines into a high-current cyclic accelerator. One technique for generating the required background plasma for IFR propagation is to use a laser to ionize ambient gas in the accelerator chamber. For cyclic accelerators a technique is required for carrying the plasma channel and the beam around a bend. Multiple laser-generated channels with dipole magnetic fields to switch the beam from one channel to the next have been tested at Sandia. This paper discusses an alternative means of plasma production for IFR, viz. by using rf breakdown. For this approach the accelerator chamber acts as a waveguide. With a suitable driving frequency, a waveguide mode can be driven which has its peak field intensity on the axis with negligible fields at the chamber walls. The plasma production and hence the beam propagation is thereby isolated from the walls. This technique is not limited to toroidal accelerators. It may be applied to any accelerator or recirculator geometry as well as for beam steering and for injection or extraction of beams in closed accelerator configurations

  20. X-ray spectrum emitted by a laser-produced cerium plasma in the 7.5 to 12 A wavelength range

    International Nuclear Information System (INIS)

    Doron, R.; Behar, E.; Fraenkel, M.; Mandelbaum, P.; Schwob, J.L.; Zigler, A.

    2001-01-01

    A highly stripped cerium (Z = 58) plasma is produced by irradiating a solid cerium target with an intense short laser pulse. The X-ray spectrum emitted from the plasma is recorded in the 7.5-12 A wavelength range using a flat RAP crystal spectrometer. Ab-initio calculations using the RELAC relativistic computer code, as well as isoelectronic trends deduced from previous works, together with spectra obtained under different laser beam focusing conditions, are all employed for the identification of the spectral lines and features emitted by various ions from Fe-like Ce 32+ to As-like Ce 25+ . The technique of comparing spectra obtained using different laser intensities is also employed to confirm or to resolve some ambiguous identifications of spectral features in the spectrum of a laser-produced lanthanum plasma studied in a previous work. (orig.)

  1. X-ray spectrum emitted by a laser-produced cerium plasma in the 7.5 to 12 A wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Doron, R.; Behar, E.; Fraenkel, M.; Mandelbaum, P.; Schwob, J.L.; Zigler, A. [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Faenov, A.Ya.; Pikuz, T.A. [Multicharged Ion Spectra Data Center, VNIIFTRI, Mendeleevo (Russian Federation)

    2001-01-01

    A highly stripped cerium (Z = 58) plasma is produced by irradiating a solid cerium target with an intense short laser pulse. The X-ray spectrum emitted from the plasma is recorded in the 7.5-12 A wavelength range using a flat RAP crystal spectrometer. Ab-initio calculations using the RELAC relativistic computer code, as well as isoelectronic trends deduced from previous works, together with spectra obtained under different laser beam focusing conditions, are all employed for the identification of the spectral lines and features emitted by various ions from Fe-like Ce{sup 32+} to As-like Ce{sup 25+}. The technique of comparing spectra obtained using different laser intensities is also employed to confirm or to resolve some ambiguous identifications of spectral features in the spectrum of a laser-produced lanthanum plasma studied in a previous work. (orig.)

  2. MRI monitoring of lesions created at temperature below the boiling point and of lesions created above the boiling point using high intensity focused ultrasound

    OpenAIRE

    Damianou, C.; Ioannides, K.; Hadjisavvas, V.; Mylonas, N.; Couppis, A.; Iosif, D.; Kyriacou, P. A.

    2010-01-01

    Magnetic Resonance Imaging (MRI) was utilized to monitor lesions created at temperature below the boiling point and lesions created at temperature above the boiling point using High Intensity Focused Ultrasound (HIFU) in freshly excised kidney, liver and brain and in vivo rabbit kidney and brain. T2-weighted fast spin echo (FSE) was proven as an excellent MRI sequence that can detect lesions with temperature above the boiling point in kidney. This advantage is attributed to the significant di...

  3. Enhanced high harmonic generation driven by high-intensity laser in argon gas-filled hollow core waveguide

    International Nuclear Information System (INIS)

    Cassou, Kevin; Daboussi, Sameh; Hort, Ondrej; Descamps, Dominique; Petit, Stephane; Mevel, Eric; Constant, Eric; Guilbaud, Oilvier; Kazamias, Sophie

    2014-01-01

    We show that a significant enhancement of the photon flux produced by high harmonic generation can be obtained through guided configuration at high laser intensity largely above the saturation intensity. We identify two regimes. At low pressure, we observe an intense second plateau in the high harmonic spectrum in argon. At relatively high pressure, complex interplay between strongly time-dependent ionization processes and propagation effects leads to important spectral broadening without loss of spectral brightness. We show that the relevant parameter for this physical process is the product of laser peak power by gas pressure. We compare source performances with high harmonic generation using a gas jet in loose focusing geometry and conclude that the source developed is a good candidate for injection devices such as seeded soft x-ray lasers or free electron lasers in the soft x-ray range. (authors)

  4. Patients' experiences of intensive care diaries

    DEFF Research Database (Denmark)

    Egerod, Ingrid; Bagger, Christine

    2010-01-01

    The aim of the study was to explore patients' experiences and perceptions of receiving intensive care diaries. A focus group and intensive care diaries for four former ICU patients were analysed to understand what works and what needs further development for patients who receive a diary. The stud......-ICU patients to gradually construct or reconstruct their own illness narrative, which is pieced together by their fragmented memory, the diary, the pictures, the hospital chart and the accounts from family and friends.......The aim of the study was to explore patients' experiences and perceptions of receiving intensive care diaries. A focus group and intensive care diaries for four former ICU patients were analysed to understand what works and what needs further development for patients who receive a diary. The study...... that the diary alone provided incomplete information and reading the diary did not necessarily bring back memories, but helped complete their story. The patients needed to know what they had gone through in ICU and wished to share their story with their family. We conclude that diaries might help post...

  5. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  6. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  7. Effect of laser beam focus position on ion emission from plasmas produced by picosecond and sub-nanosecond laser pulses from solid targets

    Czech Academy of Sciences Publication Activity Database

    Woryna, E.; Badziak, J.; Makowski, J.; Parys, P.; Wolowski, J.; Krása, Josef; Láska, Leoš; Rohlena, Karel; Vankov, A. B.

    2001-01-01

    Roč. 31, č. 4 (2001), s. 791-798 ISSN 0078-5466 R&D Projects: GA AV ČR IAA1010105 Grant - others:KBN(PL) 2 P03B 082 19 Institutional research plan: CEZ:AV0Z1010921 Keywords : laser-produced plasma * laser beam focus position influence Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.298, year: 2001

  8. Tight focusing of radially polarized circular Airy vortex beams

    Science.gov (United States)

    Chen, Musheng; Huang, Sujuan; Shao, Wei

    2017-11-01

    Tight focusing properties of radially polarized circular Airy vortex beams (CAVB) are studied numerically. The light field expressions for the focused fields are derived based on vectorial Debye theory. We also study the relationship between focal profiles, such as light intensity distribution, radius of focal spot and focal length, and the parameters of CAVB. Numerical results demonstrate that we can generate a radially polarized CAVB with super-long focal length, super-strong longitudinal intensity or subwavelength focused spot at the focal plane by properly choosing the parameters of incident light and high numerical aperture (NA) lens. These results have potential applications for optical trapping, optical storage and particle acceleration.

  9. Parental presence on neonatal intensive care unit clinical bedside rounds: randomised trial and focus group discussion

    Science.gov (United States)

    Boswell, Danette; Broom, Margaret; Smith, Judith; Davis, Deborah

    2015-01-01

    Background There are limited data to inform the choice between parental presence at clinical bedside rounds (PPCBR) and non-PPCBR in neonatal intensive care units (NICUs). Methods We performed a single-centre, survey-based, crossed-over randomised trial involving parents of all infants who were admitted to NICU and anticipated to stay >11 days. Parents were randomly assigned using a computer-generated stratified block randomisation protocol to start with PPCBR or non-PPCBR and then crossed over to the other arm after a wash-out period. At the conclusion of each arm, parents completed the ‘NICU Parental Stressor Scale’ (a validated tool) and a satisfaction survey. After completion of the trial, we surveyed all healthcare providers who participated at least in one PPCBR rounding episode. We also offered all participating parents and healthcare providers the opportunity to partake in a focus group discussion regarding PPCBR. Results A total of 72 parents were enrolled in this study, with 63 parents (87%) partially or fully completing the trial. Of the parents who completed the trial, 95% agreed that parents should be allowed to attend clinical bedside rounds. A total of 39 healthcare providers’ surveys were returned and 35 (90%) agreed that parents should be allowed to attend rounds. Nine healthcare providers and 8 parents participated in an interview or focus group, augmenting our understanding of the ways in which PPCBR was beneficial. Conclusions Parents and healthcare providers strongly support PPCBR. NICUs should develop policies allowing PPCBR while mitigating the downsides and concerns of parents and healthcare providers such as decreased education opportunity and confidentiality concerns. Trial registration number Australia and New Zealand Clinical Trials Register number, ACTRN12612000506897. PMID:25711125

  10. Innovation system and knowledge-intensive entrepreneurship

    DEFF Research Database (Denmark)

    Timmermans, Bram

    2011-01-01

    The goal of this deliverable is to investigate the properties and the nature of knowledge-intensive entrepreneurship as a largely distributed phenomenon at firm, sector and national levels in Denmark. Following the guidelines previously developed in the Deliverable 2.2.1 “Innovation systems...... and knowledge-intensive entrepreneurship: Analytical framework and guidelines for case study research” I will investigate the interplay between national innovation systems and knowledge- intensive entrepreneurship by focusing on two main sectors: machine tools, and computer and related activities....

  11. Generation and focusing of intense ion beams with an inverse pinch ion diode

    International Nuclear Information System (INIS)

    Hashimoto, Yoshiyuki; Sato, Morihiko; Yatsuzuka, Mitsuyasu; Nobuhara, Sadao

    1992-01-01

    Generation and focusing of ion beams using an inverse pinch ion diode with a flat anode has been studied. The ion beams generated with the inverse pinch ion diode were found to be focused at 120 mm from the anode by the electrostatic field in the diode. The energy and maximum current density of the ion beams were 180 keV and 420 A/cm 2 , respectively. The focusing angle of the ion beams was 4.3deg. The beam brightness was estimated to be 1.3 GW/cm 2 ·rad 2 . The focusing distance of the ion beams was found to be controllable by changing the diameters of the anode and cathode. (author)

  12. Monte Carlo simulation on hard X-ray dose produced in interaction between high intensity laser and solid target

    International Nuclear Information System (INIS)

    Yang Bo; Qiu Rui; Li Junli; Zhang Hui

    2014-01-01

    The X-ray dose produced in the interaction between high intensity laser and solid target was studied by simulation using Monte Carlo code. Compared with experimental results, the calculation model was verified. The calculation model was used to study the effect on X-ray dose with different electron temperatures, target materials (including Au, Cu and PE) and thicknesses. The results indicate that the X-ray dose is mainly determined by the electron temperature, and will be affected by the target parameters. X-ray dose of Au is about 1.2 times that of Cu, and is about 5 times that of PE (polyethylene). In addition, compared with other target thickness, when target thickness is the mean range of electron in the target, X-ray dose is relatively large. These results will provide references on evaluating the ionizing radiation dose for laser devices. (authors)

  13. HIFU procedures at moderate intensities-effect of large blood vessels

    International Nuclear Information System (INIS)

    Hariharan, P; Myers, M R; Banerjee, R K

    2007-01-01

    A three-dimensional computational model is presented for studying the efficacy of high-intensity focused ultrasound (HIFU) procedures targeted near large blood vessels. The analysis applies to procedures performed at intensities below the threshold for cavitation, boiling and highly nonlinear propagation, but high enough to increase tissue temperature a few degrees per second. The model is based upon the linearized KZK equation and the bioheat equation in tissue. In the blood vessel the momentum and energy equations are satisfied. The model is first validated in a tissue phantom, to verify the absence of bubble formation and nonlinear effects. Temperature rise and lesion-volume calculations are then shown for different beam locations and orientations relative to a large vessel. Both single and multiple ablations are considered. Results show that when the vessel is located within about a beam width (few mm) of the ultrasound beam, significant reduction in lesion volume is observed due to blood flow. However, for gaps larger than a beam width, blood flow has no major effect on the lesion formation. Under the clinically representative conditions considered, the lesion volume is reduced about 40% (relative to the no-flow case) when the beam is parallel to the blood vessel, compared to about 20% for a perpendicular orientation. Procedures involving multiple ablation sites are affected less by blood flow than single ablations. The model also suggests that optimally focused transducers can generate lesions that are significantly larger (>2 times) than the ones produced by highly focused beams

  14. HIFU procedures at moderate intensities-effect of large blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Hariharan, P [Mechanical, Industrial, and Nuclear Engineering Department, University of Cincinnati, Cincinnati, OH (United States); Myers, M R [Division of Solid and Fluid Mechanics, Center for Devices and Radiological Health, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 62, Silver Spring, MD 20993-0002 (United States); Banerjee, R K [Mechanical, Industrial, and Nuclear Engineering Department, University of Cincinnati, Cincinnati, OH (United States)

    2007-07-21

    A three-dimensional computational model is presented for studying the efficacy of high-intensity focused ultrasound (HIFU) procedures targeted near large blood vessels. The analysis applies to procedures performed at intensities below the threshold for cavitation, boiling and highly nonlinear propagation, but high enough to increase tissue temperature a few degrees per second. The model is based upon the linearized KZK equation and the bioheat equation in tissue. In the blood vessel the momentum and energy equations are satisfied. The model is first validated in a tissue phantom, to verify the absence of bubble formation and nonlinear effects. Temperature rise and lesion-volume calculations are then shown for different beam locations and orientations relative to a large vessel. Both single and multiple ablations are considered. Results show that when the vessel is located within about a beam width (few mm) of the ultrasound beam, significant reduction in lesion volume is observed due to blood flow. However, for gaps larger than a beam width, blood flow has no major effect on the lesion formation. Under the clinically representative conditions considered, the lesion volume is reduced about 40% (relative to the no-flow case) when the beam is parallel to the blood vessel, compared to about 20% for a perpendicular orientation. Procedures involving multiple ablation sites are affected less by blood flow than single ablations. The model also suggests that optimally focused transducers can generate lesions that are significantly larger (>2 times) than the ones produced by highly focused beams.

  15. Motion compensation with skin contact control for high intensity focused ultrasound surgery in moving organs

    Science.gov (United States)

    Diodato, A.; Cafarelli, A.; Schiappacasse, A.; Tognarelli, S.; Ciuti, G.; Menciassi, A.

    2018-02-01

    High intensity focused ultrasound (HIFU) is an emerging therapeutic solution that enables non-invasive treatment of several pathologies, mainly in oncology. On the other hand, accurate targeting of moving abdominal organs (e.g. liver, kidney, pancreas) is still an open challenge. This paper proposes a novel method to compensate the physiological respiratory motion of organs during HIFU procedures, by exploiting a robotic platform for ultrasound-guided HIFU surgery provided with a therapeutic annular phased array transducer. The proposed method enables us to keep the same contact point between the transducer and the patient’s skin during the whole procedure, thus minimizing the modification of the acoustic window during the breathing phases. The motion of the target point is compensated through the rotation of the transducer around a virtual pivot point, while the focal depth is continuously adjusted thanks to the axial electronically steering capabilities of the HIFU transducer. The feasibility of the angular motion compensation strategy has been demonstrated in a simulated respiratory-induced organ motion environment. Based on the experimental results, the proposed method appears to be significantly accurate (i.e. the maximum compensation error is always under 1 mm), thus paving the way for the potential use of this technique for in vivo treatment of moving organs, and therefore enabling a wide use of HIFU in clinics.

  16. Physics of intense, high energy radiation effects

    International Nuclear Information System (INIS)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-01-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  17. Low-intensity conflict in multinational corporations

    DEFF Research Database (Denmark)

    Lauring, Jakob; Andersen, Poul Houman; Storgaard, Marianne

    2017-01-01

    in four Danish MNCs. Findings: They describe consequences of low-intensity conflict and identify three types of actions by headquarters’ representatives that could lead to the development of low-intensity conflicts, namely, ignoring, bypassing and educating. Originality/value: Very few studies have dealt......Purpose: This paper aims to identify antecedents for, and consequences of, low-intensity inter-unit conflict in multinational corporations (MNCs). Inter-unit conflict in MNCs is an important and well-researched theme. However, while most studies have focused on open conflict acknowledged by both...... parties, much less research has dealt with low-intensity conflicts. Still, low-intensity conflicts can be highly damaging – not least because they are rarely resolved. Design/methodology/approach: The authors used a qualitative approach to understanding low-intensity conflict relying on 170 interviews...

  18. The first occurrence of a CTX-M ESBL-producing Escherichia coli outbreak mediated by mother to neonate transmission in an Irish neonatal intensive care unit.

    LENUS (Irish Health Repository)

    O'Connor, Ciara

    2017-01-05

    Escherichia coli (E. coli) comprise part of the normal vaginal microflora. Transfer from mother to neonate can occur during delivery resulting, sometimes, in neonatal bacterial disease. Here, we aim to report the first outbreak of CTX-M ESBL-producing E. coli with evidence of mother-to-neonate transmission in an Irish neonatal intensive care unit (NICU) followed by patient-to-patient transmission.

  19. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound.

    Science.gov (United States)

    Seo, Joonho; Koizumi, Norihiro; Mitsuishi, Mamoru; Sugita, Naohiko

    2017-12-01

    Although high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory-induced organ motion can reduce the treatment efficiency and negatively influence the treatment result. In this research, we present: (1) a methodology for integration of ultrasound (US) image based visual servoing in a HIFU system; and (2) the experimental results obtained using the developed system. In the visual servoing system, target motion is monitored by biplane US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three-axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed. In the experiments, respiratory-induced organ motion was simulated in a water tank with a linear actuator and kidney-shaped phantom model. Motion compensation with HIFU irradiation was applied to the moving phantom model. Based on the experimental results, visual servoing exhibited a motion compensation accuracy of 1.7 mm (RMS) on average. Moreover, the integrated system could make a spherical HIFU-ablated lesion in the desired position of the respiratory-moving phantom model. We have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment. © 2016 The Authors The International Journal of Medical Robotics and Computer Assisted Surgery Published by John Wiley & Sons Ltd.

  20. Labor-Intensive Industry Company Transition and Export Marketing

    OpenAIRE

    Jin, Meng

    2014-01-01

    This thesis focused on how to develop export during the development process from labor-intensive industry to technology-intensive industry. The situation of wage, labor-intensive industry and technology-intensive industry development are backgrounds. The objective of this thesis was to analyze the problems of the case company and to provide the case company with strategies. The approach used in this thesis is case study. The data acquisition includes interviews, online chatting and telep...

  1. Effect of biological characteristics of different types of uterine fibroids, as assessed with T2-weighted magnetic resonance imaging, on ultrasound-guided high-intensity focused ultrasound ablation.

    Science.gov (United States)

    Zhao, Wen-Peng; Chen, Jin-Yun; Chen, Wen-Zhi

    2015-02-01

    The aims of this study were to assess the effects of the biological characteristics of different types of uterine fibroids, as assessed with T2-weighted magnetic resonance imaging (MRI), on ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation. Thirty-five patients with 39 symptomatic uterine fibroids who underwent myomectomy or hysterectomy were enrolled. Before surgery, the uterine fibroids were subdivided into hypo-intense, iso-intense, heterogeneous hyper-intense and homogeneous hyper-intense categories based on signal intensity on T2-weighted MRI. Tissue density and moisture content were determined in post-operative samples and normal uterine tissue, the isolated uterine fibroids were subjected to USgHIFU, and the extent of ablation was measured using triphenyltetrazolium chloride. Hematoxylin and eosin staining and sirius red staining were undertaken to investigate the organizational structure of the uterine fibroids. Estrogen and progesterone receptor expression was assayed via immunohistochemical staining. The mean diameter of uterine fibroids was 6.9 ± 2.8 cm. For all uterine fibroids, the average density and moisture content were 10.7 ± 0.7 mg/mL and 75.7 ± 2.4%, respectively; and for the homogeneous hyper-intense fibroids, 10.3 ± 0.5 mg/mL and 76.6 ± 2.3%. The latter subgroup had lower density and higher moisture content compared with the other subgroups. After USgHIFU treatment, the extent of ablation of the hyper-intense fibroids was 102.7 ± 42.1 mm(2), which was significantly less than those of the hypo-intense and heterogeneous hyper-intense fibroids. Hematoxylin and eosin staining and sirius red staining revealed that the homogeneous hyper-intense fibroids had sparse collagen fibers and abundant cells. Immunohistochemistry results revealed that estrogen and progesterone receptors were highly expressed in the homogeneous hyper-intense fibroids. This study revealed that lower density, higher moisture content, sparse collagen

  2. Investigation of a staged plasma-focus apparatus

    International Nuclear Information System (INIS)

    Lee, J.H.; McFarland, D.R.; Harries, W.L.

    1978-01-01

    A new staged plasma-focus geometry combining two Mather-type plasma-focus guns has been constructed, and the current-sheet dynamics investigated. The production of simultaneous pairs of plasma foci has been achieved. The intensities of X-ray and fusion-neutron emission were measured and found to agree with the scaling law for a plasma focus. Advantages of this new geometry include the possibility of using plasma-focus type pinches in multiple arrays at power levels beyond the validity regime of the current scaling law for a single gun. (author)

  3. Targeted Vessel Ablation for More Efficient Magnetic Resonance-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Voogt, Marianne J., E-mail: m.voogt@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology (Netherlands); Stralen, Marijn van [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Ikink, Marlijne E. [University Medical Center Utrecht, Department of Radiology (Netherlands); Deckers, Roel; Vincken, Koen L.; Bartels, Lambertus W. [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Mali, Willem P. Th. M.; Bosch, Maurice A. A. J. van den [University Medical Center Utrecht, Department of Radiology (Netherlands)

    2012-10-15

    Purpose: To report the first clinical experience with targeted vessel ablation during magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) treatment of symptomatic uterine fibroids. Methods: Pretreatment T1-weighted contrast-enhanced magnetic resonance angiography was used to create a detailed map of the uterine arteries and feeding branches to the fibroids. A three-dimensional overlay of the magnetic resonance angiography images was registered on 3D T2-weighted pretreatment imaging data. Treatment was focused primarily on locations where supplying vessels entered the fibroid. Patients were followed 6 months after treatment with a questionnaire to assess symptoms and quality of life (Uterine Fibroid Symptom and Quality of Life) and magnetic resonance imaging to quantify shrinkage of fibroid volumes. Results: In two patients, three fibroids were treated with targeted vessel ablation during MR-HIFU. The treatments resulted in almost total fibroid devascularization with nonperfused volume to total fibroid volume ratios of 84, 68, and 86%, respectively, of treated fibroids. The predicted ablated volumes during MR-HIFU in patients 1 and 2 were 45, 40, and 82 ml, respectively, while the nonperfused volumes determined immediately after treatment were 195, 92, and 190 ml respectively, which is 4.3 (patient 1) and 2.3 (patient 2) times higher than expected based on the thermal dose distribution. Fibroid-related symptoms reduced after treatment, and quality of life improved. Fibroid volume reduction ranged 31-59% at 6 months after treatment. Conclusion: Targeted vessel ablation during MR-HIFU allowed nearly complete fibroid ablation in both patients. This technique may enhance the use of MR-HIFU for fibroid treatment in clinical practice.

  4. Investigation of intrinsic and extrinsic defects effective role on producing intense red emission in ZnO:Eu nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Mehrdad, E-mail: najafi@shahroodut.ac.ir; Haratizadeh, Hamid

    2015-05-15

    Highlights: • Effective role of defects on producing red emission at indirect excitation. • V{sub Zn} and V{sub O} defects have important role on energy transfer. • Mg related defects and Zn{sub i} defects were responsible for blue emission. • Extrinsic and intrinsic defects mediated energy transfer to sensitize Eu{sup 3+} ions. • Decrease of red emission because of diminishing in oxygen vacancy. - Abstract: Europium doped ZnO nanorads and nanosheets were synthesized by hydrothermal method. Effects of Mg doping, morphology and annealing in oxygen ambient on structural and optical properties of ZnO nanostructures were investigated using X-ray diffraction (XRD), particle size analysis (PSA), thermo gravimetric analysis (TGA), differential thermal analysis (DTA), differential thermo gravimetry (DTG), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). This study recommends that both of intrinsic and extrinsic defects facilitate energy transfer (ET) from the ZnO host to Eu{sup 3+} ions and consequently have efficient role on producing intense red emission at indirect excitation. The results also showed that annealing process improved the crystal structure of ZnO nanosheets due to decrease of surface defects; however decreased ET and red emission because of diminishing in oxygen vacancy. In addition in ZnO nanorods sample with more surface area in comparison with ZnO nanosheets sample deep level emissions are enhanced.

  5. Modification of solid surface by intense pulsed light-ion and metal-ion beams

    Science.gov (United States)

    Nakagawa, Y.; Ariyoshi, T.; Hanjo, H.; Tsutsumi, S.; Fujii, Y.; Itami, M.; Okamoto, A.; Ogawa, S.; Hamada, T.; Fukumaru, F.

    1989-03-01

    Metal surfaces of Al, stainless-steel and Ti were bombarded with focused intense pulsed proton and carbon ion beams (energy ˜ 80 keV, current density ≲ 1000 A/cm 2, pulse width ˜ 300 ns). Thin titanium carbide layers were produced by carbon-ion irradiation on the titanium surface. The observed molten surface structures and recrystallized layer (20 μm depth) indicated that the surfaces reached high temperatures as a result of the irradiation. The implantation of intense pulsed metal ion beams (Al +, ˜ 20 A/cm 2) with simultaneous deposition of anode metal vapor on Ti and Fe made a mixed layer of AlTi and AlFe of about 0.5 μm depth. Ti and B multilayered films evaporated on glass substrates were irradiated by intense pulsed proton beams of relatively lower current density (10-200 A/cm 2). Ti films containing B atoms above 10 at.% were obtained. When the current density was about 200 A/cm 2 diffraction peaks of TiB 2 appeared.

  6. Charged particles beams measurements in plasma focus discharges

    International Nuclear Information System (INIS)

    Jakubowski, L.; Sadowski, M.; Zebrowski, J.

    2001-01-01

    Experimental studies performed with many Plasma-Focus (PF) facilities have shown that simultaneously with the emission of X-ray pulses and intense relativistic electron beams (REBs) there also appears the emission of pulsed ion streams of a relatively high energy (up to several MeV). Such ions are emitted mainly along the z-axis of the PF discharge, although the ion angular distribution is relatively wide. From PF discharges with deuterium filling fast neutrons produced by nuclear fusion reactions are also emitted. The paper concerns studies of the energetic ion beams and their correlation with the pulsed REBs. Time-integrated measurements were performed with an ion pinhole camera equipped with solid-state nuclear track detectors (SSNTDs), and time-resolved studies were carried out with a scintillation detector, enabling the determination of an ion energy spectrum on the basis of the time-of-flight (TOF) technique. (author)

  7. Adjuvant hormone therapy in patients undergoing high-intensity focused ultrasound therapy for locally advanced prostate cancer

    Directory of Open Access Journals (Sweden)

    A. I. Neimark

    2014-01-01

    Full Text Available Objective: to evaluate the efficiency and safety of using the luteinizing hormone releasing hormone leuprorelin with the Atrigel delivery system in doses of 7.5, 22.5, and 45 mg as an adjuvant regimen in high- and moderate-risk cancer patients who have received high-intensity focused ultrasound (HIFU therapy.Subjects and methods. Moderate- and high-risk locally advanced prostate cancer (PC patients treated with HIFU (n = 28 and HIFU in combination with hormone therapy during 6 months (n = 31 were examined.Results. The investigation has shown that leuprorelin acetate monotherapy used within 6 months after HIFU therapy can achieve the highest reduction in prostate-specific antigen levels and positively affect the symptoms of the disease. HIFU in combination with androgen deprivation substantially diminishes the clinical manifestations of the disease and improves quality of life in HIFU-treated patients with PC, by reducing the degree of infravesical obstruction (according to uroflowmetric findings and IPSS scores, and causes a decrease in prostate volume as compared to those who have undergone HIFU only. Treatment with leuprorelin having the Atrigel delivery system has demonstrated the low incidence of adverse reactions and good tolerability.

  8. Ionization waves of arbitrary velocity driven by a flying focus

    Science.gov (United States)

    Palastro, J. P.; Turnbull, D.; Bahk, S.-W.; Follett, R. K.; Shaw, J. L.; Haberberger, D.; Bromage, J.; Froula, D. H.

    2018-03-01

    A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. We present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionization wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation, and THz generation.

  9. [Focused ultrasound therapy: current status and potential applications in neurosurgery].

    Science.gov (United States)

    Dervishi, E; Aubry, J-F; Delattre, J-Y; Boch, A-L

    2013-12-01

    High Intensity Focused Ultrasound (HIFU) therapy is an innovative approach for tissue ablation, based on high intensity focused ultrasound beams. At the focus, HIFU induces a temperature elevation and the tissue can be thermally destroyed. In fact, this approach has been tested in a number of clinical studies for the treatment of several tumors, primarily the prostate, uterine, breast, bone, liver, kidney and pancreas. For transcranial brain therapy, the skull bone is a major limitation, however, new adaptive techniques of phase correction for focusing ultrasound through the skull have recently been implemented by research systems, paving the way for HIFU therapy to become an interesting alternative to brain surgery and radiotherapy. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Characteristic Uptake Pattern of Bone Scintigraphy in Patients with Hepatocellular Carcinoma Following Treatment with High-Intensity Focused Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Waihan; Ho, Waiyin; Lai, Andrew S. H.; Wong, Kwongkuen; Law, Martin [Queen Mary Hospital, Pokfulam (Hong Kong)

    2013-12-15

    This study retrospectively reviews the characteristic bone scintigraphic findings in 18 patients with hepatocellular carcinoma (HCC) following treatment with high-intensity focused ultrasound (HIFU). A potential complication of HIFU is damage to the tissues along the path of the ultrasound beam and structures superficial to the lesion of interest. Patients with hepatocellular carcinoma who underwent a bone scan between 1st December 2005 and 31st December 2011 were considered for this study. Among these patients, only those who had bone scans after the HIFU treatment were included. The time between HIFU treatment and bone scans, HIFU energy, HCC sites, tumour sizes and related radiological findings were evaluated. In total, 20 bone scans of 18 patients were reviewed. Of these scans, two patients were normal; three patients showed decreased uptake, four patients showed increased uptake and nine patients showed mixed uptakes of the bony tracer in their rib cages. The defects were located in the anterior, lateral, anterolateral or posterolateral aspects of the rib cage. The majority of those cold defects were in the right anterior rib cages. SPECT/CT was used to localise the decreased uptake in ribs. The magnetic resonance imaging in individual patients invariably showed ill-defined rim enhancement along the right chest wall, signifying chest wall injury. The results showed that tissue ablation using HIFU caused tissue injury along the pathway of high-intensity ultrasound beams. The harm to tissues is presented as photopenic area on the rib cages due to necrosis or hot spots due to rib fractures in the bone scan. Since these cold defects are subtle, they are easily overlooked or mistaken as aggressive bony metastasis.

  11. Effect of high-intensity focused ultrasound (HIFU combined with radiotherapy on tumor malignancy in patients with advanced pancreatic cancer and evaluation of side effects

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-02-01

    Full Text Available Objective: To study the effect of high-intensity focused ultrasound (HIFU combined with radiotherapy on tumor malignancy in patients with advanced pancreatic cancer and the corresponding side effects. Methods: A total of 84 patients with advanced pancreatic cancer treated in our hospital between May 2013 and March 2016 were selected and randomly divided into HIFU group and IGRT group, HIFU group accepted high-intensity focused ultrasound combined with radiotherapy and IGRT group received radiotherapy alone. 4 weeks after treatment, the levels of tumor markers, liver and kidney function indexes, perineural invasionrelated molecules and cytokines in serum as well as the levels of immune cells in peripheral blood were determined. Results: 4 weeks after treatment, serum CA199, CA242, OPN, NGAL, RBP4, NGF, TrkA, p75, BDNF and TrkB levels of HIFU group were significantly lower than those of IGRT group, serum IL-2, TNF-毩, IFN-γ and IL-13 levels as well as peripheral blood NKT cell and CD4+T cell levels were significantly higher than those of IGRT group, and serum ALT, AST, Cr and BUN levels were not significantly different from those of IGRT group. Conclusion: HIFU combined with radiotherapy treatment of advanced pancreatic cancer can more effectively kill cancer cells, inhibit pancreatic cancer cell invasion to the peripheral nerve and enhance the antitumor immune response mediated by NKT cells and CD4+T cells.

  12. Optimization of soft x-ray line emission from laser-produced carbon ...

    Indian Academy of Sciences (India)

    Intense XUV soft x-ray emission from laser-produced plasma sources is currently ... absorption edges of oxygen and carbon respectively) is particularly attractive as it permits ... ability of the target element producing intense discrete lines in the water .... ficient due to Pert [17] and dielectronic recombination coefficient due to ...

  13. The intense neutron generator study

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1966-07-01

    The study has confirmed that a beam of 65 mA of protons at 1000 MeV, striking a molten lead-bismuth target surrounded by heavy water moderator, would give the desired flux of 10{sup 16} thermal neutrons per cm{sup 2} per second to provide intense beams of neutrons and also to produce radioisotopes. The proton beam passing through a thin auxiliary target would also produce beams of mesons. The design and construction of the ion source, injector, accelerator, target and auxiliaries present challenging technical problems. Moreover, continued development for improved life and economy promises to be rewarding. The high neutron intensity is sought for research in solid and liquid state physics and also for nuclear physics. Participation by universities and industry, both in development and use, is expected to be extensive. (author)

  14. The intense neutron generator study

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1966-01-01

    The study has confirmed that a beam of 65 mA of protons at 1000 MeV, striking a molten lead-bismuth target surrounded by heavy water moderator, would give the desired flux of 10 16 thermal neutrons per cm 2 per second to provide intense beams of neutrons and also to produce radioisotopes. The proton beam passing through a thin auxiliary target would also produce beams of mesons. The design and construction of the ion source, injector, accelerator, target and auxiliaries present challenging technical problems. Moreover, continued development for improved life and economy promises to be rewarding. The high neutron intensity is sought for research in solid and liquid state physics and also for nuclear physics. Participation by universities and industry, both in development and use, is expected to be extensive. (author)

  15. Characterization of Pressure Fields of Focused Transducers at TÜBİTAK UME

    Science.gov (United States)

    Karaböce, B.; Şahin, A.; İnce, A. T.; Skarlatos, Y.

    Field radiated by HIFU (High Intensity Focused Ultrasound) has been investigated by measuring its pressure field and mapping in 2-D and 3-D. A new ultrasound pressure measurement system has been designed and constructed at TÜBİTAK UME (The Scientific and Technological Research Council of Turkey, the National Metrology Institute). System consists of a water tank, positioning system, measurement devices and a controlling program. The hydrophone was attached to a 3-axis, computer-controlled positioning system for alignment with the ultrasound source. The signal was captured and analyzed by the commercially available LabVIEW 8.1 software. The measurements of the ultrasound field were carried out with a needle hydrophone. For each waveform, p, p+ and p-pressures have been calculated. Wave behaviors produced by the KZK model and from experiments look like similar in general. In p, p+, p- the focal point, zero point after the primary peak (focus) and extremum points in the near field well match.

  16. Focusing and bunching of ion beam in axial injection channel of IPHC cyclotron TR24

    Science.gov (United States)

    Adam, T.; Ivanenko, I.; Kazarinov, N.; Osswald, F.; Traykov, E.

    2017-07-01

    The CYRCe cyclotron (CYclotron pour la ReCherche et l’Enseignement) is used at IPHC (Institut Pluridisciplinaire Hubert Curien) for the production of radio-isotopes for diagnostics, medical treatments and fundamental research in radiobiology. The TR24 cyclotron produced and commercialized by ACSI (Canada) delivers a 16-25 MeV proton beam with intensity from few nA up to 500 μA. The solenoidal focusing instead of existing quadrupole one is proposed in this report. The changing of the focusing elements will give the better beam matching with the acceptance of the spiral inflector of the cyclotron. The parameters of the focusing solenoid are found. Additionally, the main parameters of the bunching system are evaluated in the presence of the beam space charge. This system consists of the buncher installed in the axial injection beam line of the cyclotron. The using of the grid-less multi harmonic buncher may increase the accelerated beam current and will give the opportunity to new proton beam applications.

  17. Effects of oxytocin on high intensity focused ultrasound (HIFU) ablation of adenomysis: A prospective study

    International Nuclear Information System (INIS)

    Zhang, Xin; Zou, Min; Zhang, Cai; He, Jia; Mao, Shihua; Wu, Qingrong; He, Min; Wang, Jian; Zhang, Ruitao; Zhang, Lian

    2014-01-01

    Objective: To investigate the effects of oxytocin on high-intensity focused ultrasound (HIFU) ablation for the treatment of adenomyosis. Materials and methods: Eighty-six patients with adenomyosis from three hospitals were randomly assigned to the oxytocin group or control group for HIFU treatment. During HIFU treatment, 80 units of oxytocin was added in 500 ml of 0.9% normal saline running at the rate of 2 ml/min (0.32 U/min) in the oxytocin group, while 0.9% normal saline was used in the control group. Both patients and HIFU operators were blinded to oxytocin or saline application. Treatment results, adverse effects were compared. Results: When using oxytocin, the non-perfused volume (NPV) ratio was 80.7 ± 11.6%, the energy-efficiency factor (EEF) was 8.1 ± 9.9 J/mm 3 , and the sonication time required to ablate 1 cm 3 was 30.0 ± 36.0 s/cm 3 . When not using oxytocin, the non-perfused volume ratio was 70.8 ± 16.7%, the EEF was 15.8 ± 19.6 J/mm 3 , and the sonication time required to ablate 1 cm 3 was 58.2 ± 72.7 S/cm 3 . Significant difference in the NPV ratio, EEF, and the sonication time required to ablate 1 cm 3 between the two groups was observed. No oxytocin related adverse effects occurred. Conclusion: Oxytocin could significantly decrease the energy for ablating adenomyosis with HIFU, safely enhance the treatment efficiency

  18. Successful elimination of extended-spectrum beta-lactamase (ESBL)-producing nosocomial bacteria at a neonatal intensive care unit.

    Science.gov (United States)

    Szél, Borbála; Reiger, Zsolt; Urbán, Edit; Lázár, Andrea; Mader, Krisztina; Damjanova, Ivelina; Nagy, Kamilla; Tálosi, Gyula

    2017-06-01

    Extended-spectrum beta-lactamase (ESBL)-producing Gram-negative bacteria are highly dangerous to neonates. At our Neonatal Intensive Care Unit (NICU), the presence of these bacteria became so threatening in 2011 that immediate intervention was required. This study was conducted during a nearly two-year period consisting of three phases: retrospective (9 months), educational (3 months) and prospective (9 months). Based on retrospective data analysis, a complex management plan was devised involving the introduction of the INSURE protocol, changes to the antibiotic regimen, microbiological screening at short intervals, progressive feeding, a safer bathing protocol, staff hand hygiene training and continuous monitoring of the number of newly infected and newly colonized patients. During these intervals, a total of 355 patients were monitored. Both ESBL-producing Enterobacter cloaceae and Klebsiella pneumoniae were found (in both patients and environmental samples). In the prospective period a significant reduction could be seen in the average number of both colonized (26/167 patients; P=0.029) and infected (3/167 patients; P=0.033) patients compared to data from the retrospective period regarding colonized (72/188 patients) and infected (9/188 patients) patients. There was a decrease in the average number of patient-days (from 343.72 to 292.44 days per months), though this difference is not significant (P=0.058). During the prospective period, indirect hand hygiene compliance showed a significant increase (from the previous 26.02 to 33.6 hand hygiene procedures per patient per hospital day, Pinfections were rolled back successfully in a multi-step effort that required an interdisciplinary approach.

  19. The feasibility of producing adequate feedstock for year–round cellulosic ethanol production in an intensive agricultural fuelshed

    Science.gov (United States)

    Uden, Daniel R.; Mitchell, Rob B.; Allen, Craig R.; Guan, Qingfeng; McCoy, Tim D.

    2013-01-01

    To date, cellulosic ethanol production has not been commercialized in the United States. However, government mandates aimed at increasing second-generation biofuel production could spur exploratory development in the cellulosic ethanol industry. We conducted an in-depth analysis of the fuelshed surrounding a starch-based ethanol plant near York, Nebraska that has the potential for cellulosic ethanol production. To assess the feasibility of supplying adequate biomass for year-round cellulosic ethanol production from residual maize (Zea mays) stover and bioenergy switchgrass (Panicum virgatum) within a 40-km road network service area of the existing ethanol plant, we identified ∼14,000 ha of marginally productive cropland within the service area suitable for conversion from annual rowcrops to switchgrass and ∼132,000 ha of maize-enrolled cropland from which maize stover could be collected. Annual maize stover and switchgrass biomass supplies within the 40-km service area could range between 429,000 and 752,000 metric tons (mT). Approximately 140–250 million liters (l) of cellulosic ethanol could be produced, rivaling the current 208 million l annual starch-based ethanol production capacity of the plant. We conclude that sufficient quantities of biomass could be produced from maize stover and switchgrass near the plant to support year-round cellulosic ethanol production at current feedstock yields, sustainable removal rates and bioconversion efficiencies. Modifying existing starch-based ethanol plants in intensive agricultural fuelsheds could increase ethanol output, return marginally productive cropland to perennial vegetation, and remove maize stover from productive cropland to meet feedstock demand.

  20. Intercostal high intensity focused ultrasound for liver ablation: The influence of beam shaping on sonication efficacy and near-field risks

    Energy Technology Data Exchange (ETDEWEB)

    Greef, M. de, E-mail: m.degreef@umcutrecht.nl; Wijlemans, J. W.; Bartels, L. W.; Moonen, C. T. W.; Ries, M. [Imaging Division, University Medical Center Utrecht, Utrecht 3508GA (Netherlands); Schubert, G.; Koskela, J. [Philips Healthcare, Vantaa FI-01511 (Finland)

    2015-08-15

    Purpose: One of the major issues in high intensity focused ultrasound ablation of abdominal lesions is obstruction of the ultrasound beam by the thoracic cage. Beam shaping strategies have been shown by several authors to increase focal point intensity while limiting rib exposure. However, as rib obstruction leaves only part of the aperture available for energy transmission, conserving total emitted acoustic power, the intensity in the near-field tissues inherently increases after beam shaping. Despite of effective rib sparing, those tissues are therefore subjected to increased risk of thermal damage. In this study, for a number of clinically representative intercostal sonication geometries, modeling clinically available hardware, the effect of beam shaping on both the exposure of the ribs and near-field to acoustic energy was evaluated and the implications for the volumetric ablation rate were addressed. Methods: A relationship between rib temperature rise and acoustic energy density was established by means of in vivo MR thermometry and simulations of the incident acoustic energy for the corresponding anatomies. This relationship was used for interpretation of rib exposure in subsequent numerical simulations in which rib spacing, focal point placement, and the focal point trajectory were varied. The time required to heat a targeted region to 65 °C was determined without and with the application of beam shaping. The required sonication time was used to calculate the acoustic energy density at the fat–muscle interface and at the surface of the ribs. At the fat–muscle interface, exposure was compared to available literature data and rib exposure was interpreted based on the earlier obtained relation between measured temperature rise and simulated acoustic energy density. To estimate the volumetric ablation rate, the cool-down time between periods of energy exposure was estimated using a time-averaged power limit of 100 kJ/h. Results: At the level of the ribs

  1. Changes in carbon intensity in China. Empirical findings from 1980-2003

    International Nuclear Information System (INIS)

    Fan, Ying; Wei, Yi-Ming; Liu, Lan-Cui; Wu, Gang; Tsai, Hsien-Tang

    2007-01-01

    China experienced sustainable, rapid economic growth over the period 1980-2003 but, at the same time, energy-related carbon intensity showed a downward trend. It begs the question, therefore, what factors were driving this decline in carbon intensity and will this decline be maintained in future? Moreover, what measures can be adopted to ensure a continual decline in carbon intensity? These questions led to increased research in the factors governing CO 2 emission in China. This paper quantifies the driving force behind China's primary energy-related carbon intensity and measures the material production sectors' final energy-related carbon intensity. Our results show that the overwhelming contributor to the decline of energy-related carbon intensity was the reduction in real energy intensity. However, policies that focus only on the decline in energy intensity are insufficient to further decrease carbon intensity. The change of primary energy mix can improve the decline of carbon intensity. This should focus on the material production sectors' development strategies and final energy use. Greater emphasis should be given to secondary industry, which needs national and regional governments' policy support. (author)

  2. Producers and oil markets

    International Nuclear Information System (INIS)

    Greaves, W.

    1993-01-01

    This article attempts an assessment of the potential use of futures by the Middle East oil producers. It focuses on Saudi Arabia since the sheer size of Saudi Arabian sales poses problems, but the basic issues discussed are similar for the other Middle East producers. (Author)

  3. Development of a two-dimensional imaging system for clinical applications of intravenous coronary angiography using intense synchrotron radiation produced by a multipole wiggler

    International Nuclear Information System (INIS)

    Hyodo, K.; Ando, M.; Oku, Y.; Yamamoto, S.; Takeda, T.; Itai, Y.; Ohtsuka, S.; Sugishita, Y.; Tada, J.

    1998-01-01

    A two-dimensional clinical intravenous coronary angiography system, comprising a large-size View area produced by asymmetrical reflection from a silicon crystal using intense synchrotron radiation from a multipole wiggler and a two-dimensional detector with an image intensifier, has been completed. An advantage of the imaging system is that two-dimensional dynamic imaging of the cardiovascular system can be achieved due to its two-dimensional radiation field. This world-first two-dimensional system has been successfully adapted to clinical applications. Details of the imaging system are described in this paper

  4. Development of a two-dimensional imaging system for clinical applications of intravenous coronary angiography using intense synchrotron radiation produced by a multipole wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, K.; Ando, M. [High Energy Accelerator Research Organization, Inst. of Material Structure Sciences, Tsukuba (Japan); Oku, Y.; Yamamoto, S. [Graduated School for Advanced Sciences, Tsukuba (Japan); Takeda, T.; Itai, Y.; Ohtsuka, S.; Sugishita, Y. [The Univ. of Tsukuba, Inst. of Clinical Medicine, Tsukuba (Japan); Tada, J. [The Univ. of Tsukuba, Inst. of Basic Medical Sciences, Tsukuba (Japan)

    1998-05-01

    A two-dimensional clinical intravenous coronary angiography system, comprising a large-size View area produced by asymmetrical reflection from a silicon crystal using intense synchrotron radiation from a multipole wiggler and a two-dimensional detector with an image intensifier, has been completed. An advantage of the imaging system is that two-dimensional dynamic imaging of the cardiovascular system can be achieved due to its two-dimensional radiation field. This world-first two-dimensional system has been successfully adapted to clinical applications. Details of the imaging system are described in this paper. 18 refs.

  5. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study

    International Nuclear Information System (INIS)

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2014-01-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with

  6. Intensive mobilities

    DEFF Research Database (Denmark)

    Vannini, Phillip; Bissell, David; Jensen, Ole B.

    with fieldwork conducted in Canada, Denmark and Australia to develop our understanding of the experiential politics of long distance workers. Rather than focusing on the extensive dimensions of mobilities that are implicated in patterns and trends, our paper turns to the intensive dimensions of this experience......This paper explores the intensities of long distance commuting journeys as a way of exploring how bodily sensibilities are being changed by the mobilities that they undertake. The context of this paper is that many people are travelling further to work than ever before owing to a variety of factors...... which relate to transport, housing and employment. Yet we argue that the experiential dimensions of long distance mobilities have not received the attention that they deserve within geographical research on mobilities. This paper combines ideas from mobilities research and contemporary social theory...

  7. High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations

    International Nuclear Information System (INIS)

    Hnatovsky, C.; Taylor, R.S.; Simova, E.; Bhardwaj, V.R.; Rayner, D.M.; Corkum, P.B.

    2005-01-01

    An ultrahigh-resolution (20 nm) technique of selective chemical etching and atomic force microscopy has been used to study the photoinduced modification in fused silica produced at various depths by tightly focused femtosecond laser radiation affected by spherical aberration. We demonstrate that shapes of the irradiated zones near the threshold for modification can be predicted by taking proper account of spherical aberration caused by the refractive index mismatched air-silica interface. We establish a depth dependence of the pulse energy required to initiate modification and characterize the relationship between numerical aperture of the writing lens and practically achievable writing depth. We also show that spatial characteristics of the laser-modified zones can be controlled by a specially designed focusing system which allows correction for a variable amount of spherical aberration

  8. Generation of second-harmonic radiations of a self-focusing laser from a plasma with density-transition

    International Nuclear Information System (INIS)

    Kant, Niti; Gupta, Devki Nandan; Suk, Hyyong

    2011-01-01

    A Gaussian laser-beam resonantly generates a second-harmonic wave in a plasma in the presence of a wiggler magnetic-field of suitable period. The self-focusing of the fundamental pulse enhances the intensity of the second-harmonic pulse. An introduction of an upward plasma-density ramp strongly enhances the self-focusing of the fundamental laser pulse. The laser pulse attains a minimum spot size and propagates up to several Rayleigh lengths without divergence. Due to the strong self-focusing of the fundamental laser pulse, the second-harmonic intensity enhances significantly. A considerable enhancement of the intensity of the second-harmonic is observed from the proposed mechanism. -- Highlights: → An upward plasma-density ramp is very important for laser propagation in plasmas. → As the plasma density increases, effect of self-focusing becomes stronger. → We utilize this self-focused laser to generate second-harmonic radiations. → The self-focusing laser enhances the intensity of the second-harmonic pulse.

  9. Generation of second-harmonic radiations of a self-focusing laser from a plasma with density-transition

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Niti [Department of Physics, Lovely Professional University, Phagwara 144 402, Punjab (India); Gupta, Devki Nandan, E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, Hyyong [Advanced Photonics Research Institute (APRI) and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2011-08-15

    A Gaussian laser-beam resonantly generates a second-harmonic wave in a plasma in the presence of a wiggler magnetic-field of suitable period. The self-focusing of the fundamental pulse enhances the intensity of the second-harmonic pulse. An introduction of an upward plasma-density ramp strongly enhances the self-focusing of the fundamental laser pulse. The laser pulse attains a minimum spot size and propagates up to several Rayleigh lengths without divergence. Due to the strong self-focusing of the fundamental laser pulse, the second-harmonic intensity enhances significantly. A considerable enhancement of the intensity of the second-harmonic is observed from the proposed mechanism. -- Highlights: → An upward plasma-density ramp is very important for laser propagation in plasmas. → As the plasma density increases, effect of self-focusing becomes stronger. → We utilize this self-focused laser to generate second-harmonic radiations. → The self-focusing laser enhances the intensity of the second-harmonic pulse.

  10. The 'Critical Power' Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise.

    Science.gov (United States)

    Jones, Andrew M; Vanhatalo, Anni

    2017-03-01

    The curvilinear relationship between power output and the time for which it can be sustained is a fundamental and well-known feature of high-intensity exercise performance. This relationship 'levels off' at a 'critical power' (CP) that separates power outputs that can be sustained with stable values of, for example, muscle phosphocreatine, blood lactate, and pulmonary oxygen uptake ([Formula: see text]), from power outputs where these variables change continuously with time until their respective minimum and maximum values are reached and exercise intolerance occurs. The amount of work that can be done during exercise above CP (the so-called W') is constant but may be utilized at different rates depending on the proximity of the exercise power output to CP. Traditionally, this two-parameter CP model has been employed to provide insights into physiological responses, fatigue mechanisms, and performance capacity during continuous constant power output exercise in discrete exercise intensity domains. However, many team sports (e.g., basketball, football, hockey, rugby) involve frequent changes in exercise intensity and, even in endurance sports (e.g., cycling, running), intensity may vary considerably with environmental/course conditions and pacing strategy. In recent years, the appeal of the CP concept has been broadened through its application to intermittent high-intensity exercise. With the assumptions that W' is utilized during work intervals above CP and reconstituted during recovery intervals below CP, it can be shown that performance during intermittent exercise is related to four factors: the intensity and duration of the work intervals and the intensity and duration of the recovery intervals. However, while the utilization of W' may be assumed to be linear, studies indicate that the reconstitution of W' may be curvilinear with kinetics that are highly variable between individuals. This has led to the development of a new CP model for intermittent exercise in

  11. Producing new radionuclides for medicine

    International Nuclear Information System (INIS)

    Michaut, C.

    2009-01-01

    The Arronax cyclotron, a new particle accelerator dedicated to the production of radionuclides for medicine and research has been commissioned in Nantes (France). Because of its unique features: an energy of 70 MeV and an intensity of 750 μA, Arronax will produce radionuclides that can not be produce in present cyclotrons. Among others it will produce Strontium-82 and Germanium-68 that are the precursors for Rubidium-82 and Gallium-68 respectively. 20 per cent of the research works will be dedicated to other domains like radioactive wastes, the radiation biological damage and the radiation damage on electronic devices. (A.C.)

  12. Application of monolithic polycapillary focusing optics in MXRF

    International Nuclear Information System (INIS)

    Gao, N.; Ponomarev, I.; Xiao, Q.F.; Gibson, W.M.

    1996-01-01

    A monolithic polycapillary focusing optic, consisting of hundreds of thousands of small tapered glass capillaries, can collect a large solid angle of x rays from a point source and guide them through the capillaries by multiple total reflections to form an intense focused beam. Such a focused beam has many applications in microbeam x-ray fluorescence (MXRF) analysis. Two monolithic polycapillary focusing optics were tested and characterized in a MXRF set-up using a microfocusing x-ray source (50microm x 10microm). For the Cu K α line, the measured focal spot sizes of these optics were 105microm and 43microm Full-Width-Half-Maximum (FWHM), respectively. When the source was operated at 16W, the average Cu K α intensities over the focal spots were measured to be 2.4 x 10 4 photons/s/microm 2 and 8.9 x 10 4 photons/s/microm 2 , respectively. When the authors compared the monolithic optics to straight monocapillary optics (single channel capillary) with approximately the same output beam sizes, intensity gains of 16 and 44 were obtained. The optics were applied to the MXRF set-up to analyze trace elements in various samples and a Minimum Detection Limit (MDL) of about 2 pg was achieved for the transition elements (V, Cr, Mn, and Fe). The optics were also used to map the distributions of trace elements in various samples

  13. Plasma lenses for focusing relativistic electron beams

    International Nuclear Information System (INIS)

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-01-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n p much greater than electron beam density, n b ) or underdense (n p less than 2 n b ). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated

  14. Metastable decomposition and hydrogen migration of ethane dication produced in an intense femtosecond near-infrared laser field.

    Science.gov (United States)

    Hoshina, Kennosuke; Kawamura, Haruna; Tsuge, Masashi; Tamiya, Minoru; Ishiguro, Masaji

    2011-02-14

    We investigated a formation channel of triatomic molecular hydrogen ions from ethane dication induced by irradiation of intense laser fields (800 nm, 100 fs, ∼1 × 10(14) W∕cm(2)) by using time of flight mass spectrometry. Hydrogen ion and molecular hydrogen ion (H,D)(n)(+) (n = 1-3) ejected from ethane dications, produced by double ionization of three types of samples, CH(3)CH(3), CD(3)CD(3), and CH(3)CD(3), were measured. All fragments were found to comprise components with a kinetic energy of ∼3.5 eV originating from a two-body Coulomb explosion of ethane dications. Based on the signal intensities and the anisotropy of the ejection direction with respect to the laser polarization direction, the branching ratios, H(+):D(+) = 66:34, H(2)(+):HD(+):D(2)(+) = 63:6:31, and H(3)(+):H(2)D(+):HD(2)(+):D(3)(+) = 26:31:34:9 for the decomposition of C(2)H(3)D(3)(2+), were determined. The ratio of hydrogen molecules, H(2):HD:D(2) = 31:48:21, was also estimated from the signal intensities of the counter ion C(2)(H,D)(4)(2+). The similarity in the extent of H∕D mixture in (H,D)(3)(+) with that of (H,D)(2) suggests that these two dissociation channels have a common precursor with the C(2)H(4)(2+)...H(2) complex structure, as proposed theoretically in the case of H(3)(+) ejection from allene dication [A. M. Mebel and A. D. Bandrauk, J. Chem. Phys. 129, 224311 (2008)]. In contrast, the (H,D)(2)(+) ejection path with a lower extent of H∕D mixture and a large anisotropy is expected to proceed essentially via a different path with a much rapid decomposition rate. For the Coulomb explosion path of C-C bond breaking, the yield ratios of two channels, CH(3)CD(3)(2+)→ CH(3)(+) + CD(3)(+) and CH(2)D(+) + CHD(2)(+), were 81:19 and 92:8 for the perpendicular and parallel directions, respectively. This indicates that the process occurs at a rapid rate, which is comparable to hydrogen migration through the C-C bond, resulting in smaller anisotropy for the latter channel that

  15. High efficiency focus neutron generator

    Science.gov (United States)

    Sadeghi, H.; Amrollahi, R.; Zare, M.; Fazelpour, S.

    2017-12-01

    In the present paper, the new idea to increase the neutron yield of plasma focus devices is investigated and the results are presented. Based on many studies, more than 90% of neutrons in plasma focus devices were produced by beam target interactions and only 10% of them were due to thermonuclear reactions. While propounding the new idea, the number of collisions between deuteron ions and deuterium gas atoms were increased remarkably well. The COMSOL Multiphysics 5.2 was used to study the given idea in the known 28 plasma focus devices. In this circumstance, the neutron yield of this system was also obtained and reported. Finally, it was found that in the ENEA device with 1 Hz working frequency, 1.1 × 109 and 1.1 × 1011 neutrons per second were produced by D-D and D-T reactions, respectively. In addition, in the NX2 device with 16 Hz working frequency, 1.34 × 1010 and 1.34 × 1012 neutrons per second were produced by D-D and D-T reactions, respectively. The results show that with regards to the sizes and energy of these devices, they can be used as the efficient neutron generators.

  16. Using self-generated harmonics as a diagnostic of high intensity laser-produced plasmas

    International Nuclear Information System (INIS)

    Krushelnick, K; Watts, I; Tatarakis, M; Gopal, A; Wagner, U; Beg, F N; Clark, E L; Clarke, R J; Dangor, A E; Norreys, P A; Wei, M S; Zepf, M

    2002-01-01

    The interaction of high intensity laser pulses (up to I∼10 20 W cm -2 ) with plasmas can generate very high order harmonics of the laser frequency (up to the 75th order have been observed). Measurements of the properties of these harmonics can provide important insights into the plasma conditions which exist during such interactions. For example, observations of the spectrum of the harmonic emission can provide information of the dynamics of the critical surface as well as information on relativistic non-linear optical effects in the plasma. However, most importantly, observations of the polarization properties of the harmonics can provide a method to measure the ultra-strong magnetic fields (greater than 350 MG) which can be generated during these interactions. It is likely that such techniques can be scaled to provide a significant amount of information from experiments at even higher intensities

  17. Plasma focus - dense Z pinch and their applications

    International Nuclear Information System (INIS)

    Ishii, Shozo

    1986-02-01

    ''Workshop on the possibility of Z-pinch as a intense pulse light source'' in 1983 and ''Research meeting on plasma focus and Z-pinch'' in 1984 were held at Institute of Plasma Physics, Nagoya University under a collaborating research program. Research activities reported at the meetings on plasma focus, dense Z-pinch, and related phenomena are summerized. (author)

  18. Produced water - composition and analysis

    International Nuclear Information System (INIS)

    Kvernheim, Arne Lund

    1998-01-01

    Produced water can be defined as ''High volume waste-water separated from oil and gas that is produced from subsurface formations''. The water contains aliphatic and aromatic hydrocarbons, particulate matter and soluble salts as well as elements originating from formations and from sea water injections. Residues of chemicals may also be present. The accepted North Sea discharge limit is 40 ppm. In this presentation the focus will be on the chemical composition of produced water and on the challenges involved in developing and implementing analytical methods. The focus will also be on the development of a new oil-in-water analytical method as a replacement for the Freon method. 7 refs., 1 tab

  19. Developing data-intensive applications on Facebook

    OpenAIRE

    Hribar, Rok

    2011-01-01

    Facebook applications are becoming an important asset to companies in marketing and promotion of their services or products. For easier and more efficient marketing for companies there are many different data-intensive Facebook applications that businesses can use. Data-intensive applications require large amounts of data, the greater part of the implementation is used primarily for searching and transfering data from database. In my graduation thesis I focused on the development, transfe...

  20. Line broadening by focusing

    International Nuclear Information System (INIS)

    Brito, A.L. de; Jabs, A.

    1983-01-01

    It is pointed out that the spectral width of a quasi-monochromatic light beam broadens when the beam is focused. A quantitative formula for this broadening is derived from classical wave theory. The effect is shown to explain some experiments on laser beams done by E. Panarella which that author has explained under the ad-hoc hypothesis that the frequency of the photons changes along with the intensity of the light beam. The line broadening by focusing might also contribute to gas ionization by incident light when the ionization potential is well above the mean photon energy. Some remarks are made on some direct applications of the Heisenberg relations in comparison with our treatment. (Author) [pt

  1. Macrocognition in the Healthcare Built Environment (mHCBE): A Focused Ethnographic Study of "Neighborhoods" in a Pediatric Intensive Care Unit.

    Science.gov (United States)

    O'Hara, Susan; Klar, Robin Toft; Patterson, Emily S; Morris, Nancy S; Ascenzi, Judy; Fackler, James C; Perry, Donna J

    2018-04-01

    The objectives of this research were to describe the interactions (formal and informal), in which macrocognitive functions occur and their location on a pediatric intensive care unit, to describe challenges and facilitators of macrocognition using space syntax constructs (openness, connectivity, and visibility), and to analyze the healthcare built environment (HCBE) using those constructs to explicate influences on macrocognition. In high reliability, complex industries, macrocognition is an approach to develop new knowledge among interprofessional team members. Although macrocognitive functions have been analyzed in multiple healthcare settings, the effect of the HCBE on those functions has not been directly studied. The theoretical framework, "macrocognition in the healthcare built environment" (mHCBE) addresses this relationship. A focused ethnographic study was conducted including observation and focus groups. Architectural drawing files used to create distance matrices and isovist field view analyses were compared to panoramic photographs and ethnographic data. Neighborhoods comprised of corner configurations with maximized visibility enhanced team interactions as well as observation of patients, offering the greatest opportunity for informal situated macrocognitive interactions (SMIs). Results from this study support the intricate link between macrocognitive interactions and space syntax constructs within the HCBE. These findings help increase understanding of how use of the framework of Macrocognition in the HCBE can improve design and support adaptation of interprofessional team practices, maximizing macrocognitive interaction opportunities for patient, family, and team safety and quality.

  2. Nonlinear focal shift beyond the geometrical focus in moderately focused acoustic beams.

    Science.gov (United States)

    Camarena, Francisco; Adrián-Martínez, Silvia; Jiménez, Noé; Sánchez-Morcillo, Víctor

    2013-08-01

    The phenomenon of the displacement of the position along the axis of the pressure, intensity, and radiation force maxima of focused acoustic beams under increasing driving voltages (nonlinear focal shift) is studied for the case of a moderately focused beam. The theoretical and experimental results show the existence of this shift along the axis when the initial pressure in the transducer increases until the acoustic field reaches the fully developed nonlinear regime of propagation. Experimental data show that at high amplitudes and for moderate focusing, the position of the on-axis pressure maximum and radiation force maximum can surpass the geometrical focal length. On the contrary, the on-axis pressure minimum approaches the transducer under increasing driving voltages, increasing the distance between the positive and negative peak pressure in the beam. These results are in agreement with numerical KZK model predictions and the existed data of other authors and can be explained according to the effect of self-refraction characteristic of the nonlinear regime of propagation.

  3. Auto-focusing accelerating hyper-geometric laser beams

    International Nuclear Information System (INIS)

    Kovalev, A A; Kotlyar, V V; Porfirev, A P

    2016-01-01

    We derive a new solution to the paraxial wave equation that defines a two-parameter family of three-dimensional structurally stable vortex annular auto-focusing hyper-geometric (AH) beams, with their complex amplitude expressed via a degenerate hyper-geometric function. The AH beams are found to carry an orbital angular momentum and be auto-focusing, propagating on an accelerating path toward a focus, where the annular intensity pattern is ‘sharply’ reduced in diameter. An explicit expression for the complex amplitude of vortex annular auto-focusing hyper-geometric-Gaussian beams is derived. The experiment has been shown to be in good agreement with theory. (paper)

  4. Effect of grazing frequency and intensity on Lolium perenne L ...

    African Journals Online (AJOL)

    ) system. Low frequency, low intensity grazing produced lower CDMD and herbage N levels than higher grazing frequencies and intensities. These differences were, however, generally small. Overall, levels of herbage digestibility (estimated ...

  5. An adiabatic focuser

    International Nuclear Information System (INIS)

    Chen, P.; Oide, K.; Sessler, A.M.; Yu, S.S.

    1989-08-01

    Theoretical analysis is made of an intense relativistic electron beam, such as would be available from a linear collider, moving through a plasma of increasing density, but density always less than that of the beam (underdense). In this situation, the plasma electrons are expelled from the beam channel and the electrons are subject to an ever-increasing focusing force provided by the channel ions. Analysis is made on the beam radiation energy loss in the classical, the transition, and the quantum regimes. It is shown that the focuser is insensitive to the beam energy spread behaviors in the nonclassical regimes, the radiation limit on lenses (the Oide limit) can be exceeded. The sensitivity of the system to the topic mismatch and the nonlinearity is also analyzed. Examples are given with SLC-type and TLC-type parameters. 9 refs., 1 tab

  6. Endogenous Catalytic Generation of O2 Bubbles for In Situ Ultrasound-Guided High Intensity Focused Ultrasound Ablation.

    Science.gov (United States)

    Liu, Tianzhi; Zhang, Nan; Wang, Zhigang; Wu, Meiying; Chen, Yu; Ma, Ming; Chen, Hangrong; Shi, Jianlin

    2017-09-26

    High intensity focused ultrasound (HIFU) surgery generally suffers from poor precision and low efficiency in clinical application, especially for cancer therapy. Herein, a multiscale hybrid catalytic nanoreactor (catalase@MONs, abbreviated as C@M) has been developed as a tumor-sensitive contrast and synergistic agent (C&SA) for ultrasound-guided HIFU cancer surgery, by integrating dendritic-structured mesoporous organosilica nanoparticles (MONs) and catalase immobilized in the large open pore channels of MONs. Such a hybrid nanoreactor exhibited sensitive catalytic activity toward H 2 O 2 , facilitating the continuous O 2 gas generation in a relatively mild manner even if incubated with 10 μM H 2 O 2 , which finally led to enhanced ablation in the tissue-mimicking PAA gel model after HIFU exposure mainly resulting from intensified cavitation effect. The C@M nanoparticles could be accumulated within the H 2 O 2 -enriched tumor region through enhanced permeability and retention effect, enabling durable contrast enhancement of ultrasound imaging, and highly efficient tumor ablation under relatively low power of HIFU exposure in vivo. Very different from the traditional perfluorocarbon-based C&SA, such an on-demand catalytic nanoreactor could realize the accurate positioning of tumor without HIFU prestimulation and efficient HIFU ablation with a much safer power output, which is highly desired in clinical HIFU application.

  7. First clinical experience with a dedicated MRI-guided high-intensity focused ultrasound system for breast cancer ablation

    Energy Technology Data Exchange (ETDEWEB)

    Merckel, Laura G.; Knuttel, Floor M.; Peters, Nicky H.G.M.; Mali, Willem P.T.M.; Bosch, Maurice A.A.J. van den [University Medical Center Utrecht, Department of Radiology, HP E 01.132, Utrecht (Netherlands); Deckers, Roel; Moonen, Chrit T.W.; Bartels, Lambertus W. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Dalen, Thijs van [Diakonessenhuis Utrecht, Department of Surgery, Utrecht (Netherlands); Schubert, Gerald [Philips Healthcare, Best (Netherlands); Weits, Teun [Diakonessenhuis Utrecht, Department of Radiology, Utrecht (Netherlands); Diest, Paul J. van [University Medical Center Utrecht, Department of Pathology, Utrecht (Netherlands); Vaessen, Paul H.H.B. [University Medical Center Utrecht, Department of Anesthesiology, Utrecht (Netherlands); Gorp, Joost M.H.H. van [Diakonessenhuis Utrecht, Department of Pathology, Utrecht (Netherlands)

    2016-11-15

    To assess the safety and feasibility of MRI-guided high-intensity focused ultrasound (MR-HIFU) ablation in breast cancer patients using a dedicated breast platform. Patients with early-stage invasive breast cancer underwent partial tumour ablation prior to surgical resection. MR-HIFU ablation was performed using proton resonance frequency shift MR thermometry and an MR-HIFU system specifically designed for breast tumour ablation. The presence and extent of tumour necrosis was assessed by histopathological analysis of the surgical specimen. Pearson correlation coefficients were calculated to assess the relationship between sonication parameters, temperature increase and size of tumour necrosis at histopathology. Ten female patients underwent MR-HIFU treatment. No skin redness or burns were observed in any of the patients. No correlation was found between the applied energy and the temperature increase. In six patients, tumour necrosis was observed with a maximum diameter of 3-11 mm. In these patients, the number of targeted locations was equal to the number of areas with tumour necrosis. A good correlation was found between the applied energy and the size of tumour necrosis at histopathology (Pearson = 0.76, p = 0.002). Our results show that MR-HIFU ablation with the dedicated breast system is safe and results in histopathologically proven tumour necrosis. (orig.)

  8. Intense low energy positron beams

    International Nuclear Information System (INIS)

    Lynn, K.G.; Jacobsen, F.M.

    1993-01-01

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e + beams exist producing of the order of 10 8 - 10 9 e + /sec. Several laboratories are aiming at high intensity, high brightness e + beams with intensities greater than 10 9 e + /sec and current densities of the order of 10 13 - 10 14 e + sec - 1 cm -2 . Intense e + beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B + moderators or by increasing the available activity of B + particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e + collisions with atoms and molecules. Within solid state physics high intensity, high brightness e + beams are in demand in areas such as the re-emission e + microscope, two dimensional angular correlation of annihilation radiation, low energy e + diffraction and other fields. Intense e + beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies

  9. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Science.gov (United States)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.

    2013-10-01

    Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  10. Early stages of technology intensive companies

    OpenAIRE

    Muhos, M. (Matti)

    2011-01-01

    Abstract This study aims to clarify the early development stages of technology intensive companies. The current literature does not offer an extensive review of stage perspectives for company growth – the overall picture of the field is somewhat vague. The evolution of this field remains unclear as well as the current state. Further, recent empirical stage models focusing on technology intensive companies have not been delineated. As companies move through their early stages, they face ev...

  11. Using focus groups in the consumer research phase of a social marketing program to promote moderate-intensity physical activity and walking trail use in Sumter County, South Carolina.

    Science.gov (United States)

    Burroughs, Ericka; Peck, Lara E; Sharpe, Patricia A; Granner, Michelle L; Bryant, Carol A; Fields, Regina

    2006-01-01

    The use of social marketing approaches in public health practice is increasing. Using marketing concepts such as the "four Ps" (product, price, place, and promotion), social marketing borrows from the principles of commercial marketing but promotes beneficial health behaviors. Consumer research is used to segment the population and develop a strategy based on those marketing concepts. In a community-based participatory research study, 17 focus groups were used in consumer research to develop a social marketing program to promote walking and other moderate-intensity physical activities. Two phases of focus groups were conducted. Phase 1 groups, which included both men and women, were asked to respond to questions that would guide the development of a social marketing program based on social marketing concepts. Phase 1 also determined the intervention's target audience, which was irregularly active women aged 35 to 54. Phase 2 groups, composed of members of the target audience, were asked to further define the product and discuss specific promotion strategies. Phase 1 participants determined that the program product, or target behavior, should be walking. In addition, they identified price, place, and promotion strategies. Phase 2 participants determined that moderate-intensity physical activity is best promoted using the term exercise and offered suggestions for marketing walking, or exercise, to the target audience. There have been few published studies of social marketing campaigns to promote physical activity. In this study, focus groups were key to understanding the target audience in a way that would not have been accomplished with quantitative data alone. The group discussions generated important insights into values and motivations that affect consumers' decisions to adopt a product or behavior. The focus group results guided the development of a social marketing program to promote physical activity in the target audience in Sumter County, South Carolina.

  12. Course Notes: United States Particle Accelerator School Beam Physics with Intense Space-Charge

    International Nuclear Information System (INIS)

    Barnard, J.J.; Lund, S.M.

    2008-01-01

    The purpose of this course is to provide a comprehensive introduction to the physics of beams with intense space charge. This course is suitable for graduate students and researchers interested in accelerator systems that require sufficient high intensity where mutual particle interactions in the beam can no longer be neglected. This course is intended to give the student a broad overview of the dynamics of beams with strong space charge. The emphasis is on theoretical and analytical methods of describing the acceleration and transport of beams. Some aspects of numerical and experimental methods will also be covered. Students will become familiar with standard methods employed to understand the transverse and longitudinal evolution of beams with strong space charge. The material covered will provide a foundation to design practical architectures. In this course, we will introduce you to the physics of intense charged particle beams, focusing on the role of space charge. The topics include: particle equations of motion, the paraxial ray equation, and the Vlasov equation; 4-D and 2-D equilibrium distribution functions (such as the Kapchinskij-Vladimirskij, thermal equilibrium, and Neuffer distributions), reduced moment and envelope equation formulations of beam evolution; transport limits and focusing methods; the concept of emittance and the calculation of its growth from mismatches in beam envelope and from space-charge non-uniformities using system conservation constraints; the role of space-charge in producing beam halos; longitudinal space-charge effects including small amplitude and rarefaction waves; stable and unstable oscillation modes of beams (including envelope and kinetic modes); the role of space charge in the injector; and algorithms to calculate space-charge effects in particle codes. Examples of intense beams will be given primarily from the ion and proton accelerator communities with applications from, for example, heavy-ion fusion, spallation

  13. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  14. Experimental evidence and theoretical analysis of photoionized plasma under x-ray radiation produced by an intense laser

    International Nuclear Information System (INIS)

    Wang Feilu; Fujioka, Shinsuke; Nishimura, Hiroaki; Takabe, Hideaki; Kato, Daiji; Li Yutong; Zhao Gang; Zhang Jie

    2008-01-01

    Photoionized plasma was studied experimentally under laboratory conditions by means of high intensity short pulse lasers. The experiment consists of a gold cavity filled with nitrogen gas. Six laser beams were focused on the inner surface of the gold cavity, thereby generating an almost black-body radiation having temperature of 80 eV inside the cavity. This radiation heats the nitrogen gas mainly by means of photoionization. L-shell emissions from N V to N VII have been observed in the wavelength range between 90 and 200 A. A time-dependent Detailed Configuration Accounting computer program has been developed to analyze the experimental spectra. In contrast to standard analysis of astrophysical observations, the evidence for photoionization is inferred from the spectral lines ratios. Comparison between the experimental and simulated line spectra indicates that the radiation heated nitrogen attains temperature of 20-30 eV, much lower than the source radiation temperature. Paradoxically, it is also shown that similar line emissions can be reproduced computationally also when the radiation and plasma temperatures both equal approximately 60 eV. This misleading result indicates that experimental simulation in laboratory is sometimes necessary to avoid misinterpretation of astrophysical spectra.

  15. The dynamic functional capacity theory: A neuropsychological model of intense emotions

    Directory of Open Access Journals (Sweden)

    Philip C. Klineburger

    2015-12-01

    Full Text Available The music-evoked emotion literature implicates many brain regions involved in emotional processing but is currently lacking a model that specifically explains how they temporally and dynamically interact to produce intensely pleasurable emotions. A conceptual model, the dynamic functional capacity theory (DFCT, is proposed and provides a foundation for the further understanding of how brain regions interact to produce intensely pleasurable emotions. The DFCT claims that brain regions mediating emotion and arousal regulation have a limited functional capacity that can be exceeded by intense stimuli. The prefrontal cortex is hypothesized to abruptly deactivate when this happens, resulting in the inhibitory release of sensory cortices, the limbic system, the reward-circuit, and the brainstem reticular activating system, causing “unbridled” activation of these areas. This process is hypothesized to produce extremely intense emotions. This theory may provide—music-evoked emotion researchers and music therapy researchers—a theoretical foundation for continued research and complement current theories of emotion.

  16. Self-guiding of high-intensity laser pulses for laser wake field acceleration

    International Nuclear Information System (INIS)

    Umstader, D.; Liu, X.

    1992-01-01

    A means of self-guiding an ultrashort and high-intensity laser pulse is demonstrated both experimentally and numerically. Its relevance to the laser wake field accelerator concept is discussed. Self-focusing and multiple foci formation are observed when a high peak power (P>100 GW), 1 μm, subpicosecond laser is focused onto various gases (air or hydrogen). It appears to result from the combined effects of self-focusing by the gas, and de-focusing both by diffraction and the plasma formed in the central high-intensity region. Quasi-stationary computer simulations show the same multiple foci behavior as the experiments. The results suggest much larger nonlinear electronic susceptibilities of a gas near or undergoing ionization in the high field of the laser pulse. Although self-guiding of a laser beam by this mechanism appears to significantly extend its high-intensity focal region, small-scale self-focusing due to beam non-uniformity is currently a limitation

  17. RESEARCH OF REGISTRATION APPROACHES OF THERMAL INFRARED IMAGES AND INTENSITY IMAGES OF POINT CLOUD

    Directory of Open Access Journals (Sweden)

    L. Liu

    2017-09-01

    Full Text Available In order to realize the analysis of thermal energy of the objects in 3D vision, the registration approach of thermal infrared images and TLS (Terrestrial Laser Scanner point cloud was studied. The original data was pre-processed. For the sake of making the scale and brightness contrast of the two kinds of data meet the needs of basic matching, the intensity image of point cloud was produced and projected to spherical coordinate system, histogram equalization processing was done for thermal infrared image.This paper focused on the research of registration approaches of thermal infrared images and intensity images of point cloud based on SIFT,EOH-SIFT and PIIFD operators. The latter of which is usually used for medical image matching with different spectral character. The comparison results of the experiments showed that PIIFD operator got much more accurate feature point correspondences compared to SIFT and EOH-SIFT operators. The thermal infrared image and intensity image also have ideal overlap results by quadratic polynomial transformation. Therefore, PIIFD can be used as the basic operator for the registration of thermal infrared images and intensity images, and the operator can also be further improved by incorporating the iteration method.

  18. Challenges and opportunities in mapping land use intensity globally

    DEFF Research Database (Denmark)

    Kuemmerle, Tobias; Erb, Karlheinz; Meyfroidt, Patrick

    2013-01-01

    Future increases in land-based production will need to focus more on sustainably intensifying existing production systems. Unfortunately, our understanding of the global patterns of land use intensity is weak, partly because land use intensity is a complex, multidimensional term, and partly becau...... challenges and opportunities for mapping land use intensity for cropland, grazing, and forestry systems, and identify key issues for future research....... we lack appropriate datasets to assess land use intensity across broad geographic extents. Here, we review the state of the art regarding approaches for mapping land use intensity and provide a comprehensive overview of available global-scale datasets on land use intensity. We also outline major...

  19. Interplanetary magnetic field associated changes in cosmic ray intensity and geomagnetic field during 1973-75

    International Nuclear Information System (INIS)

    Singh, R.L.; Shukla, J.P.; Shukla, A.K.; Sharma, S.M.; Agrawal, S.P.

    1979-01-01

    The effects of interplanetary magnetic field (IMF) B and its Bsub(z) component on cosmic ray intensity and geomagnetic field variations have been examined for the period 1973-75. It is observed that: (1) B >= 10γ (magnetic blobs) is pre-requisite in producing cosmic ray intensity and geomagnetic field variations of varying magnitudes, (2) the longer existence of magnetic blobs on successive days produces larger decreases in cosmic ray intensity and geomagnetic field and (3) the southward component (Bsub(z)) of IMF generally gives rise to large Asub(p) changes, though it is not effective in producing cosmic ray intensity decreases. (auth.)

  20. A high-intensity plasma-sputter heavy negative ion source

    International Nuclear Information System (INIS)

    Alton, G.D.; Mori, Y.; Takagi, A.; Ueno, A.; Fukumoto, S.

    1989-01-01

    A multicusp magnetic field plasma surface ion source, normally used for H/sup /minus//ion beam formation, has been modified for the generation of high-intensity, pulsed, heavy negative ion beams suitable for a variety of uses. To date, the source has been utilized to produce mA intensity pulsed beams of more than 24 species. A brief description of the source, and basic pulsed-mode operational data, (e.g., intensity versus cesium oven temperature, sputter probe voltage, and discharge pressure), are given. In addition, illustrative examples of intensity versus time and the mass distributions of ion beams extracted from a number of samples along with emittance data, are also presented. Preliminary results obtained during dc operation of the source under low discharge power conditions suggest that sources of this type may also be used to produce high-intensity (mA) dc beams. The results of these investigations are given, as well, and the technical issues that must be addressed for this mode of operation are discussed. 15 refs., 10 figs., 2 tabs

  1. Intensities of Mobility

    DEFF Research Database (Denmark)

    Bissell, David; Vannini, Phillip; Jensen, Ole B.

    2017-01-01

    This paper explores the intensities of long-distance commuting journeys in order to understand how bodily sensibilities become attuned to the regular mobilities which they undertake. More people are travelling farther to and from work than ever before, owing to a variety of factors which relate...... to complex social and geographical dynamics of transport, housing, lifestyle, and employment. Yet, the experiential dimensions of long-distance commuting have not received the attention that they deserve within research on mobilities. Drawing from fieldwork conducted in Australia, Canada, and Denmark...... this paper aims to further develop our collective understanding of the experiential particulars of long-distance workers or ‘supercommuters’. Rather than focusing on the extensive dimensions of mobilities that are implicated in broad social patterns and trends, our paper turns to the intensive dimensions...

  2. Evaluating the effect of Focus Farms on Ontario dairy producers' knowledge, attitudes, and behavior toward control of Johne's disease.

    Science.gov (United States)

    Roche, S M; Jones-Bitton, A; Meehan, M; Von Massow, M; Kelton, D F

    2015-08-01

    This study evaluated a participatory-based, experiential learning program, Ontario Focus Farms (FF), which aimed to change dairy producer behavior to control Johne's disease (JD) in Ontario, Canada. The goals were to (1) assess the effect of FF on participating dairy producers' knowledge, attitudes, and behavior with regard to JD control; (2) compare changes in these factors among FF participants to changes among a group of nonparticipating dairy producers; and (3) describe the characteristics of producers who made at least one on-farm management change. Pre- and post-FF intervention questionnaires collected data on respondents' knowledge, attitudes, behavior, herd production, and demographic information; before and after JD-risk assessments were used to assess respondents' on-farm risk of JD transmission. Overall, 176 dairy producers participated in the FF process; 39.8% (70/176) of FF and 14.6% (52/357) of control participants responded to both the pre- and postintervention questionnaires. Upon comparison, FF respondents were more likely to be younger, have larger herds, and have higher management scores. The proportion of FF participants who reported making at least one on-farm change (81%) was significantly higher than that of control respondents (38%). Overall, FF respondents significantly changed their risk score in 4 out of 5 risk areas and had an average reduction of 13 points in their overall risk score between before and after risk assessments. Control respondents' risk assessment scores did not significantly change during the study period. In a JD knowledge assessment, FF and control respondents exhibited a moderate knowledge score before the intervention period, with median scores of 75.9% (22/29) in each group. The FF respondents significantly increased their score at the postintervention assessment, with a median of 82.8% (24/29); control-respondent scores did not significantly change. Both FF and control respondents held strong positive attitudes

  3. Fan beam intensity modulated proton therapy

    Science.gov (United States)

    Hill, Patrick M.

    A fan beam proton therapy is developed which delivers intensity modulated proton therapy using distal edge tracking. The system may be retrofit onto existing proton therapy gantries without alterations to infrastructure in order to improve treatments through intensity modulation. A novel range and intensity modulation system is designed using acrylic leaves that are inserted or retracted from subsections of the fan beam. Leaf thicknesses are chosen in a base-2 system and motivated in a binary manner. Dose spots from individual beam channels range between 1 and 5 cm. Integrated collimators attempting to limit crosstalk among beam channels are investigated, but found to be inferior to uncollimated beam channel modulators. A treatment planning system performing data manipulation in MATLAB and dose calculation in MCNPX is developed. Beamlet dose is calculated on patient CT data and a fan beam source is manually defined to produce accurate results. An energy deposition tally follows the CT grid, allowing straightforward registration of dose and image data. Simulations of beam channels assume that a beam channel either delivers dose to a distal edge spot or is intensity modulated. A final calculation is performed separately to determine the deliverable dose accounting for all sources of scatter. Treatment plans investigate the effects that varying system parameters have on dose distributions. Beam channel apertures may be as large as 20 mm because the sharp distal falloff characteristic of proton dose provides sufficient intensity modulation to meet dose objectives, even in the presence of coarse lateral resolution. Dose conformity suffers only when treatments are delivered from less than 10 angles. Jaw widths of 1--2 cm produce comparable dose distributions, but a jaw width of 4 cm produces unacceptable target coverage when maintaining critical structure avoidance. Treatment time for a prostate delivery is estimated to be on the order of 10 minutes. Neutron production

  4. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  5. The intense proton accelerator program

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1990-01-01

    The Science and Technology Agency of Japan has formulated the OMEGA project, in which incineration of nuclear wastes by use of accelerators is defined as one of the important tasks. Japan Atomic Energy Research Institute (JAERI) has been engaged for several years in basic studies in incineration technology with use of an intense proton linear accelerator. The intense proton accelerator program intends to provide a large scale proton linear accelerator called Engineering Test Accelerator. The principal purpose of the accelerator is to develop nuclear waste incineration technology. The accelerator will also be used for other industrial applications and applied science studies. The present report further outlines the concept of incineration of radio-activities of nuclear wastes, focusing on nuclear reactions and a concept of incineration plant. Features of Engineering Test Accelerator are described focusing on the development of the accelerator, and research and development of incineration technology. Applications of science and technology other than nuclear waste incineration are also discussed. (N.K.)

  6. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Directory of Open Access Journals (Sweden)

    S. Busold

    2013-10-01

    Full Text Available Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 10^{9} particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30  mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  7. Multicharged and intense heavy ion beam sources

    International Nuclear Information System (INIS)

    Kutner, V.B.

    1981-01-01

    The cyclotron plasma-are source (PIG), duoplasmatron (DP), laser source (LS), electron beam ion source (EBIS) and electron cyclotron resonance source (ECRS) from the viewpoint of generating intense and high charge state beams are considered. It is pointed out that for the last years three types of multicharged ion sources-EBIS, ECR and LS have been essentially developed. In the EBIS source the Xe 48+ ions are produced. The present day level of the development of the electron-beam ionization technique shows that by means of this technique intensive uranium nuclei beams production becomes a reality. On the ECR source Xe 26+ approximately 4x10 10 h/s, Asub(r)sup(12+) approximately 10 12 h/s intensive ion beams are produced. In the laser source a full number of C 6+ ions during one laser pulse constitutes not less than 10 10 from the 5x10mm 2 emission slit. At the present time important results are obtained pointing to the possibility to separate the ion component of laser plasma in the cyclotron central region. On the PIG source the Xe 15+ ion current up to 10μA per pulse is produced. In the duoplasmatron the 11-charge state of xenon ion beams is reached [ru

  8. Intensity Modulation: A Novel Approach to Percept Control in Spinal Cord Stimulation.

    Science.gov (United States)

    Tan, Daniel; Tyler, Dustin; Sweet, Jennifer; Miller, Jonathan

    2016-04-01

    Spinal cord stimulation (SCS) can be effective for neuropathic pain, but clinical benefit is sometimes inadequate or is offset by stimulation-induced side-effects, and response can be inconsistent among patients. Intensity-modulated stimulation (IMS) is an alternative to tonic stimulation (TS) that involves continuous variation of stimulation intensity in a sinusoidal pattern between two different values, sequentially activating distinct axonal populations to produce an effect that resembles natural physiological signals. The purpose of this study is to evaluate the effect of IMS on the clinical effect of SCS. Seven patients undergoing a percutaneous SCS trial for postlaminectomy syndrome were enrolled. Thresholds for perception, pain relief, and discomfort were measured and used to create patient-specific models of axonal activation and charge delivery for both TS and IMS. All participants underwent three two-min periods of blinded stimulation using TS, IMS, and placebo, and were asked to describe the effect on quality of the sensory percept and pain relief. All participants perceived IMS differently from placebo, and five noted significant differences from TS that resulted in a more comfortable sensation. TS was described as electric and tingling, whereas IMS was described as producing a focal area of deep pressure with a sense of motion away from that focus. The anatomic location of coverage was similar between the two forms of stimulation, although one participant reported better lower back coverage with IMS. Computer modeling revealed that, compared with TS, IMS involved 36.4% less charge delivery and produced 78.7% less suprathreshold axonal activation. IMS for SCS is feasible, produces a more comfortable percept than conventional TS, and appears to provide a similar degree of pain relief with significantly lower energy requirements. Further studies are necessary to determine whether this represents an effective alternative to tonic SCS for treatment of

  9. Time-resolved measurements of the focused ion beams on PBFA II

    International Nuclear Information System (INIS)

    Mix, L.P.; Stygar, W.A.; Leeper, R.J.; Maenchen, J.E.; Wenger, D.F.

    1992-01-01

    A time-resolved camera has been developed to image the intense ion beam focus on PBFA II. Focused ions from a sector of the ion diode are Rutherford scattered from a thin gold foil on the diode axis and pinhole imaged onto an array of up to 49 PIN detectors to obtain the spatially and temporally resolved images. The signals from these detectors are combined to provide a movie of the beam focus with a time resolution of about 3 ns and a spatial resolution of 2 mm over a 12 mm field of view. Monte Carlo simulations of the camera response are used with the measured ion energy to account for the time-of-flight dispersion of the beam and to convert the recorded signals to an intensity. From measurements on an 81 degree sector of the diode, average intensities on a 6 mm sphere of about 5 TW/cm 2 and energies approaching 80 kJ/cm 2 are calculated for standard proton diodes. Corresponding numbers for a lithium diode are less than those measured with protons. The details of the analysis and image reconstruction will be presented along with scaled images from recent ion focusing experiments

  10. Foil focusing of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    When an intense relativistic electron beams (IREB) passes through a grounded metal foil, the transverse electric field due to the beam space charge is locally shorted out, and the beam is focused by the magnetic field of its current. The effect can be treated as focusing by a thin lens with first order aberration. Expressions for the focal length and aberration coefficient of the equivalent thin lens are developed in this note. These are then applied to practical examples representative of IREB research at Los Alamos National Laboratory.

  11. Focal shift and faculae dimension of focused flat beam propagating in turbulent atmosphere

    International Nuclear Information System (INIS)

    Zhang Jianzhu; Li Youkuan; Zhang Feizhou; An Jianzhu

    2011-01-01

    Through theoretic analysis and numerical simulation,the focal shift of a focused flat beam propagating in turbulent atmosphere is studied. When a focused flat beam propagates in turbulent atmosphere, the effect of turbulence will induce the focal spot to move toward the transmitter. The turbulence is stronger and the diameter of transmitter is smaller, the measure of focal shift is larger. When adjusting the focus of transmitter and letting the focal spot of beam locate on detector, the laser intensity received by detector is not the strongest. The laser intensity will be the strongest if the focus of transmitter equals to the distance from transmitter to detector. (authors)

  12. Swiftly moving focus points and forming shapes through the scattering media

    Science.gov (United States)

    Tran, Vinh; Sahoo, Sujit Kumar; Tang, Dongliang; Dang, Cuong

    2018-02-01

    Propagation of light through scattering media such as ground glass or biological tissue limits the quality and intensity of focusing point. Wave front shaping technique which uses spatial light modulator (SLM) devices to reshape the field profile of incoming light, is considered as one of the most effective and convenient methods. Advanced biomedical or manufacturing applications require drawing various contours or shapes quickly and precisely. However, creating each shape behind the scattering medium needs different phase profiles, which are time consuming to optimize or measure. Here, we demonstrate a technique to draw various shapes or contours behind the scattering medium by swiftly moving the focus point without any mechanical movements. Our technique relies on the existence of speckle correlation property in scattering media, also known as optical memory effect. In our procedure, we first modulate the phase-only SLM to create the focus point on the other side of scattering medium. Then, we digitally shift the preoptimized phase profile on the SLM and ramp it to tilt the beam accordingly. Now, the incoming beam with identical phase profile shines on the same scattering region at a tilted angle to regenerate the focus point at the desired position due to memory effect. Moreover, with linear combination of different field patterns, we can generate a single phase profile on SLM to produce two, three or more focus points simultaneously on the other side of a turbid medium. Our method could provide a useful tool for prominent applications such as opto-genetic excitation, minimally invasive laser surgery and other related fields.

  13. Developing knowledge intensive ideas in engineering education: the application of camp methodology

    Science.gov (United States)

    Heidemann Lassen, Astrid; Løwe Nielsen, Suna

    2011-11-01

    Background: Globalization, technological advancement, environmental problems, etc. challenge organizations not just to consider cost-effectiveness, but also to develop new ideas in order to build competitive advantages. Hence, methods to deliberately enhance creativity and facilitate its processes of development must also play a central role in engineering education. However, so far the engineering education literature provides little attention to the important discussion of how to develop knowledge intensive ideas based on creativity methods and concepts. Purpose: The purpose of this article is to investigate how to design creative camps from which knowledge intensive ideas can unfold. Design/method/sample: A framework on integration of creativity and knowledge intensity is first developed, and then tested through the planning, execution and evaluation of a specialized creativity camp with focus on supply chain management. Detailed documentation of the learning processes of the participating 49 engineering and business students is developed through repeated interviews during the process as well as a survey. Results: The research illustrates the process of development of ideas, and how the participants through interdisciplinary collaboration, cognitive flexibility and joint ownership develop highly innovative and knowledge-intensive ideas, with direct relevance for the four companies whose problems they address. Conclusions: The article demonstrates how the creativity camp methodology holds the potential of combining advanced academic knowledge and creativity, to produce knowledge intensive ideas, when the design is based on ideas of experiential learning as well as creativity principles. This makes the method a highly relevant learning approach for engineering students in the search for skills to both develop and implement innovative ideas.

  14. Motivational intensity modulates attentional scope: evidence from behavioral and ERP studies.

    Science.gov (United States)

    Liu, Lei; Zhang, Guangnan; Zhou, Renlai; Wang, Zuowei

    2014-10-01

    Previous studies have found that affective states with high motivational intensity narrow attentional scope, whereas affective states with low motivational intensity broaden attentional scope. This conclusion, however, is based on fragmented evidence based on several separate studies. The present study tests this conclusion within a single study using both behavioral (Experiment 1) and neurophysiological (Experiment 2) measures. Experiment 1 showed that individuals had the global precedence effect in the neutral affective state. However, the global precedence effect was reduced for affective states with high motivational intensity, whereas the global precedence effect was not significantly enhanced for those with low motivational intensity. Experiment 2 replicated these results with event-related potential (ERP) recording. ERP results showed that affective states with high motivational intensity induced smaller N2 and greater late positive potential (LPP) amplitudes than low motivational intensity and neutral affective states. However, no differences were found between the low motivational intensity and neutral affective states. Furthermore, smaller LPP predicted the tendency a global attentional focus in the frontal and central areas and larger LPP predicted a narrowed focus in the frontal area. The findings suggested that high motivational intensity of affective states can affect attentional scope.

  15. Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: an in vitro study

    International Nuclear Information System (INIS)

    Suo, Dingjie; Guo, Sijia; Jiang, Xiaoning; Jing, Yun; Lin, Weili

    2015-01-01

    High intensity focused ultrasound (HIFU) based thrombolysis has emerged as a promising drug-free treatment approach for ischemic stroke. The large amount of acoustic power required by this approach, however, poses a critical challenge to the future clinical translation. In this study, multi-frequency acoustic waves at MHz range (near 1.5 MHz) were introduced as HIFU excitations to reduce the required power for treatment as well as the treatment time. In vitro bovine blood clots weighing around 150 mg were treated by single-frequency and multi-frequency HIFU. The pulse length was 2 ms for all experiments except the ones where the duty cycle was changed. It was found that dual-frequency thrombolysis efficiency was statistically better than single-frequency under the same acoustic power and excitation condition. When varying the acoustic power but fixing the duty cycle at 5%, it was found that dual-frequency ultrasound can save almost 30% power in order to achieve the same thrombolysis efficiency. In the experiment where the duty cycle was increased from 0.5% to 10%, it was shown that dual-frequency ultrasound can achieve the same thrombolysis efficiency with only half of the duty cycle of single-frequency. Dual-frequency ultrasound could also accelerate the thrombolysis by a factor of 2–4 as demonstrated in this study. No significant differences were found between dual-frequencies with different frequency differences (0.025, 0.05, and 0.1 MHz) and between dual-frequency and triple-frequency. The measured cavitation doses of dual-frequency and triple-frequency excitations were at about the same level but both were significantly higher than that of single-frequency. (paper)

  16. High proportion of intestinal colonization with successful epidemic clones of ESBL-producing Enterobacteriaceae in a neonatal intensive care unit in Ecuador.

    Directory of Open Access Journals (Sweden)

    Viveka Nordberg

    Full Text Available BACKGROUND AND AIMS: Neonatal infections caused by Extended-spectrum beta-lactamase (ESBL-producing bacteria are associated with increased morbidity and mortality. No data are available on neonatal colonization with ESBL-producing bacteria in Ecuador. The aim of this study was to determine the proportion of intestinal colonization with ESBL-producing Enterobacteriaceae, their resistance pattern and risk factors of colonization in a neonatal intensive care unit in Ecuador. METHODS: During a three month period, stool specimens were collected every two weeks from hospitalized neonates. Species identification and susceptibility testing were performed with Vitek2, epidemiologic typing with automated repetitive PCR. Associations between groups were analyzed using the Pearson X (2 test and Fisher exact test. A forward step logistic regression model identified significant predictors for colonization. RESULTS: Fifty-six percent of the neonates were colonized with ESBL-producing Enterobacteriaceae. Length of stay longer than 20 days and enteral feeding with a combination of breastfeeding and formula feeding were significantly associated with ESBL-colonization. The strains found were E. coli (EC, 89% and K. pneumoniae (KP, 11% and epidemiological typing divided these isolates in two major clusters. All EC and KP had bla CTX-M group 1 except for a unique EC isolate that had bla CTX-M group 9. Multi-locus sequence typing performed on the K. pneumoniae strains showed that the strains belonged to ST855 and ST897. The two detected STs belong to two different epidemic clonal complexes (CC, CC11 and CC14, which previously have been associated with dissemination of carbapenemases. None of the E. coli strains belonged to the epidemic ST 131 clone. CONCLUSIONS: More than half of the neonates were colonized with ESBL-producing Enterobacteriaceae where the main risk factor for colonization was length of hospital stay. Two of the isolated clones were epidemic and known

  17. High intensity focused ultrasound treatment of adenomyosis: The relationship between the features of magnetic resonance imaging on T2 weighted images and the therapeutic efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Chunmei [State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Haifu Hospital, College of Biomedical Engineering, Chongqing Medical University, Chongqing (China); Setzen, Raymond [Department of Obstetrics and Gynecology, Chris Hani Baragwanath Academic Hospital, Johannesburg (South Africa); Liu, Zhongqiong; Liu, Yunchang [State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Haifu Hospital, College of Biomedical Engineering, Chongqing Medical University, Chongqing (China); Xie, Bin [Department of Ultrasound, Huanggang Central Hospital, Huanggang City, Hubei 438000 (China); Aili, Aixingzi, E-mail: 1819483078@qq.com [Shanghai First Maternity and Infant Health Hospital, Shanghai (China); Zhang, Lian, E-mail: lianwzhang@yahoo.com [State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Haifu Hospital, College of Biomedical Engineering, Chongqing Medical University, Chongqing (China)

    2017-04-15

    Objectives: To investigate the relationship between the features of magnetic resonance imaging (MRI) on T2 weighted images (T2WI) and the therapeutic efficacy of high intensity focused ultrasound (HIFU) on adenomyosis. Materials and methods: From January 2011 to November 2015, four hundred and twenty-eight patients with symptomatic adenomyosis were treated with HIFU. Based on the signal intensity and the number of hyperintense foci in the adenomyotic lesions on T2WI, the patients were classified into groups. The day after HIFU ablation patients underwent contrast-enhanced MRI and a comparison was made of non-perfused volume (NPV) ratio, energy efficiency factor (EEF), treatment time, sonication time, and adverse effects. Results: No significant difference in terms of HIFU treatment settings and results was observed between the group of patients with hypointense adenomyotic lesions and the group with isointense adenomyotic lesions (P > 0.05). However, the sonication time and EEF were significantly higher in the group with multiple hyperintense foci compared to the group with few hyperintense foci. The NPV ratio achieved in the lesions with multiple hyperintenese foci was significantly lower than that in the lesions with few hyperintense foci (P < 0.05). No significant difference was observed in the rate of adverse effects between the two groups. Conclusions: Based on our results, the response of the adenomyotic lesions to HIFU treatment is not related to the signal intensity of adenomyotic lesions on T2WI. However, the number of the high signal intensity foci in the adenomyotic lesions on T2WI can be considered as a predictive factor to help select patients for HIFU treatment.

  18. High intensity focused ultrasound treatment of adenomyosis: The relationship between the features of magnetic resonance imaging on T2 weighted images and the therapeutic efficacy

    International Nuclear Information System (INIS)

    Gong, Chunmei; Setzen, Raymond; Liu, Zhongqiong; Liu, Yunchang; Xie, Bin; Aili, Aixingzi; Zhang, Lian

    2017-01-01

    Objectives: To investigate the relationship between the features of magnetic resonance imaging (MRI) on T2 weighted images (T2WI) and the therapeutic efficacy of high intensity focused ultrasound (HIFU) on adenomyosis. Materials and methods: From January 2011 to November 2015, four hundred and twenty-eight patients with symptomatic adenomyosis were treated with HIFU. Based on the signal intensity and the number of hyperintense foci in the adenomyotic lesions on T2WI, the patients were classified into groups. The day after HIFU ablation patients underwent contrast-enhanced MRI and a comparison was made of non-perfused volume (NPV) ratio, energy efficiency factor (EEF), treatment time, sonication time, and adverse effects. Results: No significant difference in terms of HIFU treatment settings and results was observed between the group of patients with hypointense adenomyotic lesions and the group with isointense adenomyotic lesions (P > 0.05). However, the sonication time and EEF were significantly higher in the group with multiple hyperintense foci compared to the group with few hyperintense foci. The NPV ratio achieved in the lesions with multiple hyperintenese foci was significantly lower than that in the lesions with few hyperintense foci (P < 0.05). No significant difference was observed in the rate of adverse effects between the two groups. Conclusions: Based on our results, the response of the adenomyotic lesions to HIFU treatment is not related to the signal intensity of adenomyotic lesions on T2WI. However, the number of the high signal intensity foci in the adenomyotic lesions on T2WI can be considered as a predictive factor to help select patients for HIFU treatment.

  19. Producing the Spielberg Brand

    OpenAIRE

    Russell, J.

    2016-01-01

    This chapter looks at the manufacture of Spielberg’s brand, and the limits of its usage. Spielberg’s directorial work is well known, but Spielberg’s identity has also been established in other ways, and I focus particularly on his work as a producer. At the time of writing, Spielberg had produced (or executive produced) 148 movies and television series across a range of genres that takes in high budget blockbusters and low budget documentaries, with many more to come. In these texts, Spielber...

  20. Characterization of a focusing parabolic guide using neutron radiography method

    International Nuclear Information System (INIS)

    Kardjilov, Nikolay; Boeni, Peter; Hilger, Andre; Strobl, Markus; Treimer, Wolfgang

    2005-01-01

    The aim of the investigation was to test the focusing properties of a new type of focusing neutron guide (trumpet) with parabolically shaped walls. The guide has a length of 431mm with an entrance area of 16x16mm 2 and an output area of 4x4mm 2 . The interior surfaces were coated with a supermirror-surface m=3 and due to their parabolic shape it was expected that an incident parallel beam can be focused in the focal point of the parabolas. To prove this statement the neutron intensity distribution at different distances behind the guide was recorded by means of a standard, high-resolution radiography detector. The experiments were performed at the V12b instrument at HMI with different levels of beam monochromatization demonstrating maximum intensity gains of about 25. The consideration for using the focusing guide for the purposes of cold neutron radiography will be presented

  1. Self-focusing and Raman scattering of laser pulses in tenuous plasmas

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.; Mora, P.

    1993-01-01

    The propagation and self-focusing of short, intense laser pulses in a tenuous plasma is studied both analytically and numerically. Specifically, pulses of length of the order of a few plasma wavelengths and of intensity, which is large enough for relativistic self-focusing to occur, are considered. Such pulses are of interest in various laser plasma acceleration schemes. It is found that these pulses are likely to be strongly affected by Raman instabilities. Two different regimes of instability, corresponding to large and small scattering angles, are found to be important. Small-angle scattering is perhaps the most severe since it couples strongly with relativistic self-focusing, leading the pulses to acquire significant axial and transverse structure in a time of the order of the self-focusing time. Thus it will be difficult to propagate smooth self-focused pulses through tenuous plasmas for distances longer than the Rayleigh length, except for pulse duration of the order of the plasma period

  2. Trauma-Focused Early Intensive Cognitive Behavioral Intervention (TF-EICBI) in children and adolescent survivors of suicide bombing attacks (SBAs). A preliminary study.

    Science.gov (United States)

    Leor, Agnes; Dolberg, Orna T; Eshel, Shira Pagorek; Yagil, Yaron; Schreiber, Shaul

    2013-01-01

    To describe and evaluate the impact of an early intervention (Trauma-Focused Early Intensive Cognitive Behavioral Intervention, TF-EICBI) in children and adolescents who were victims of suicide bombing attacks (SBAs) in Israel. Description of an intervention and preliminary experience in its use. An acute trauma center of a Child and Adolescent Psychiatric Unit in a Department of Psychiatry of a university-affiliated medical center. Ten children and adolescents who were victims of SBAs and underwent early interventions (EIG) were compared to 11 adolescent victims who received no intervention (NEIG). The EIG included all the children and adolescent survivors of various SBAs that had occurred during 1 year who presented to our hospital after the TF-EICBI was implemented (June 2001). The NEIG comprised all adolescents girls children and adolescents after SBAs.

  3. The application of selected radionuclides for monitoring of the D-D reactions produced by dense plasma-focus device.

    Science.gov (United States)

    Jednorog, S; Szydlowski, A; Bienkowska, B; Prokopowicz, R

    The dense plasma focus (DPF) device-DPF-1000U which is operated at the Institute of Plasma Physics and Laser Microfusion is the largest that type plasma experiment in the world. The plasma that is formed in large plasma experiments is characterized by vast numbers of parameters. All of them need to be monitored. A neutron activation method occupies a high position among others plasma diagnostic methods. The above method is off-line, remote, and an integrated one. The plasma which has enough temperature to bring about nuclear fusion reactions is always a strong source of neutrons that leave the reactions area and take along energy and important information on plasma parameters and properties as well. Silver as activated material is used as an effective way of neutrons measurement, especially when they are emitted in the form of short pulses like as it happens from the plasma produced in Dense Plasma-Focus devices. Other elements such as beryllium and yttrium are newly introduced and currently tested at the Institute of Plasma Physics and Laser Microfusion to use them in suitable activation neutron detectors. Some specially designed massive indium samples have been recently adopted for angular neutrons distribution measurements (vertical and horizontal) and have been used in the recent plasma experiment conducted on the DPF-1000U device. This choice was substantiated by relatively long half-lives of the neutron induced isotopes and the threshold character of the 115 In(n,n') 115m In nuclear reaction.

  4. Non-periodic multi-slit masking for a single counter rotating 2-disc chopper and channeling guides for high resolution and high intensity neutron TOF spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowiak, M.; Hofmann, T.; Stüßer, N.

    2017-02-01

    Energy resolution is an important design goal for time-of-flight instruments and neutron spectroscopy. For high-resolution applications, it is required that the burst times of choppers be short, going down to the µs-range. To produce short pulses while maintaining high neutron flux, we propose beam masks with more than two slits on a counter-rotating 2-disc chopper, behind specially adapted focusing multi-channel guides. A novel non-regular arrangement of the slits ensures that the beam opens only once per chopper cycle, when the masks are congruently aligned. Additionally, beam splitting and intensity focusing by guides before and after the chopper position provide high intensities even for small samples. Phase-space analysis and Monte Carlo simulations on examples of four-slit masks with adapted guide geometries show the potential of the proposed setup.

  5. Simple method based on intensity measurements for characterization of aberrations from micro-optical components.

    Science.gov (United States)

    Perrin, Stephane; Baranski, Maciej; Froehly, Luc; Albero, Jorge; Passilly, Nicolas; Gorecki, Christophe

    2015-11-01

    We report a simple method, based on intensity measurements, for the characterization of the wavefront and aberrations produced by micro-optical focusing elements. This method employs the setup presented earlier in [Opt. Express 22, 13202 (2014)] for measurements of the 3D point spread function, on which a basic phase-retrieval algorithm is applied. This combination allows for retrieval of the wavefront generated by the micro-optical element and, in addition, quantification of the optical aberrations through the wavefront decomposition with Zernike polynomials. The optical setup requires only an in-motion imaging system. The technique, adapted for the optimization of micro-optical component fabrication, is demonstrated by characterizing a planoconvex microlens.

  6. Crystalline and amorphous phases in carbon nitride films produced by intense high-pressure plasma

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Orlov, A.V.; Bursill, L.A.; JuLin, P.; Nugent, K.W.; Chon, J.W.; Prawer, S.

    1997-01-01

    Carbon-nitride films are prepared using a high-intensity pulsed plasma deposition technique. A wide range of nitrogen pressure and discharge intensity are used to investigate their effect on the morphology, nitrogen content, structure, bonding, phase composition and mechanical characteristics of the CN films deposited. Increasing the nitrogen pressure from 0.1 atm to 10 atm results in an increase of nitrogen incorporation into CN films to maximum of 45 at %. Under the high-energy density deposition conditions which involve ablation of the quartz substrate the CN films are found to incorporate in excess of 60 at %N. Raman spectra of these films contain sharp peaks characteristic of a distinct crystalline CN phase. TEM diffraction patterns for the films deposited below 1 atm unambiguously show the presence of micron-sized crystals displaying a cubic symmetry. (authors)

  7. High-Intensity Focused Ultrasound for the Treatment of Wrinkles and Skin Laxity in Seven Different Facial Areas.

    Science.gov (United States)

    Park, Hyunchul; Kim, Eunjin; Kim, Jeongeun; Ro, Youngsuck; Ko, Jooyeon

    2015-12-01

    High-intensity focused ultrasound (HIFU) treatment has recently emerged in response to the increasing demand for noninvasive procedures for skin lifting and tightening. This study was aimed at evaluating the clinical efficacy of and patient satisfaction with HIFU treatment for wrinkles and laxity in seven different areas of the face in Asian skin. Twenty Korean patients with facial wrinkle and laxity were analyzed after a single session of HIFU treatment. Two independent, blinded clinicians evaluated the clinical improvement in seven areas of the face by comparison of standardized photographs obtained before, and at 3 and 6 months after treatment. Assessment of subjective satisfaction and adverse effects of treatment were done by using questionnaires. The physicians' evaluation and patients' satisfaction with the clinical effects of HIFU in each area were similar regardless of the number of treatment shots. The jawline, cheek, and perioral areas were the sites where HIFU was most effective, in decreasing order. The adverse effects included erythema and swelling in six cases, and purpura and bruising in two cases. However, the adverse effects were mild and transient. HIFU could be a safe, effective, and noninvasive procedure that can be used to improve facial wrinkles and skin laxity in Asian skin. It is particularly effective for clinical improvement in the jawline, cheek, and perioral areas.

  8. Intense particle beam and multiple applications

    International Nuclear Information System (INIS)

    Ueda, M.; Machida, M.

    1988-01-01

    The Multiple Application Intense Particle Beam project is an experiment in which an injector of high energy neutral or ionized particles will be used to diagnose high density and high temperature plasmas. The acceleration of the particles will be carried out feeding a diode with a high voltage pulse produced by a Marx generator. Other apllications of intense particle beam generated by this injector that could be explored in the future include: heating and stabilization of compact toroids, treatment of metallic surfaces and ion implantation. (author) [pt

  9. Geometrical theory of nonlinear phase distortion of intense laser beams

    International Nuclear Information System (INIS)

    Glaze, J.A.; Hunt, J.T.; Speck, D.R.

    1975-01-01

    Phase distortion arising from whole beam self-focusing of intense laser pulses with arbitrary spatial profiles is treated in the limit of geometrical optics. The constant shape approximation is used to obtain the phase and angular distribution of the geometrical rays in the near field. Conditions for the validity of this approximation are discussed. Geometrical focusing of the aberrated beam is treated for the special case of a beam with axial symmetry. Equations are derived that show both the shift of the focus and the distortion of the intensity distribution that are caused by the nonlinear index of refraction of the optical medium. An illustrative example treats the case of beam distortion in a Nd:Glass amplifier

  10. EU energy-intensive industries and emissions trading: losers becoming winners?

    Energy Technology Data Exchange (ETDEWEB)

    Wettestad, Joergen

    2008-11-15

    The EU Emissions Trading System (ETS) initially treated power producers and energy-intensive industries similarly, despite clear structural differences between these industries regarding pass through of costs and vulnerability to global competition. Hence, the energy-intensive industries could be seen as losing out in the internal distribution. In the January 2008 proposal for a reformed ETS post-2012, a differentiated system was proposed where the energy-intensive industries come out relatively much better. What is the explanation for the change taking place? Although power producers still have a dominant position in the system, the increasing consensus about windfall profits has weakened their standing. Conversely, the energy-intensive industries have become better organised and more active. This balance shift is first and foremost noticeable in several important EU-level stake holder consultation processes. Energy-intensive industries have, however, also successfully utilised the national pathway to exert influence on Brussels policy-making. Finally, growing fear of lax global climate policies and related carbon leakage has strengthened the case of these industries further. The latter dimension indicates that although energy-intensive industries have managed to reduce internal distribution anomalies, external challenges remain. (author). 9 refs

  11. Lean production of intensive cities

    DEFF Research Database (Denmark)

    Ratner, Helene Gad; Bojesen, Anders; Bramming, Pia

    2014-01-01

    turnover. This is analysed in terms of Italo Calvino's Invisible cities. It is argued that Calvino's themes and prose help us understand change as a multiplicity of temporal intensities producing ambivalence and affect. We describe this use of literary abstractions as a ‘hyperbolic social epistemology......’. Through the depiction of four intensifications of Lean Production, the metaphors of Calvino's cities show how reality and illusion; hope and poverty; dreams and death and utopia and dystopia are intricately mingled and produce temporary and equally ambivalent affects of alienation, hypocrisy, self...

  12. Laser-produced dense plasma in extremely high pressure gas and its application to a plasma-bridged gap switch

    International Nuclear Information System (INIS)

    Yamada, J.; Okuda, A.

    1989-01-01

    When an extremely high pressure gas is irradiated by an intense laser light, a dense plasma produced at the focal spot moves towards the focusing lens with a high velocity. Making use of this phenomenon, a new plasma-bridged gap switch is proposed and its switching characteristics is experimentally examined. From the experiments, it is confirmed that the switching time is almost constant with the applied voltage only when the focal spot is just on the positive electrode, indicating that the bridging of gap is caused by the laser light. (author)

  13. Intensity-modulated radiation therapy.

    Science.gov (United States)

    Goffman, Thomas E; Glatstein, Eli

    2002-07-01

    Intensity-modulated radiation therapy (IMRT) is an increasingly popular technical means of tightly focusing the radiation dose around a cancer. As with stereotactic radiotherapy, IMRT uses multiple fields and angles to converge on the target. The potential for total dose escalation and for escalation of daily fraction size to the gross cancer is exciting. The excitement, however, has greatly overshadowed a range of radiobiological and clinical concerns.

  14. Method of active charge and current neutralization of intense ion beams for ICF

    International Nuclear Information System (INIS)

    Guiragossian, Z.G.T.; Orthel, J.L.; Lemons, D.S.; Thode, L.E.

    1981-01-01

    Methods of generating the beam neutralization electrons with required properties are given in the context of a Light Ion Fusion Experiment (LIFE) designed accelerator. Recently derived envelope equations for neutralized and ballistically focused intense ion beams are applied to the LIFE geometry in which 10 MeV He + multiple beamlets coalesce and undergo 45:1 radial compression while beam pulses experience a 20:1 axial compression in the propagation range of 10 m. Both active and auto-neutralization methods are examined and found to produce initial electron temperatures consistent with the requirement of the envelope equation for both radial and axial adiabatic beam pulse compressions. The stability of neutralized beam propagation is also examined concerning the Pierce type electrostatic instability and for the case of LIFE beams it is found to have insignificant effect. A scaled experimental setup is presented which can serve to perform near term tests on the ballistically focused propagation of neutralized light ion beams

  15. Intensity of rivalry in Czech furniture production industry

    Directory of Open Access Journals (Sweden)

    Lucie Špačková

    2012-01-01

    Full Text Available The paper focuses on furniture production industry in the Czech Republic and evaluates the influence of competition forces within this industry. These forces have a direct impact on success of competitive strategies of the firms. Furniture production industry is a typical branch occupied by numerous small and medium-sized firms. Small firms aim on satisfying domestic (or rather local demand, medium-sized and big firms are much more aiming on exports. The methodical sources for evaluation of rivalry represent particular influences defined by Porter in his model of five competitive forces. Main influences identified by Porter, which are increasing the intensity of competition in the furniture production industry in the Czech Republic include low industry concentration, relatively low diversity of competitors, decline in sales, low (or none switching costs, and existing excessive capacity within the industry. Further development will be most significantly influenced by a growing concentration of the bigger Czech producers on domestic market and overall economic development.

  16. Achieving a Green Solution: Limitations and Focus Points for Sustainable Algal Fuels

    Directory of Open Access Journals (Sweden)

    Blanca Antizar-Ladislao

    2012-05-01

    Full Text Available Research investigating the potential of producing biofuels from algae has been enjoying a recent revival due to heightened oil prices, uncertain fossil fuel sources and legislative targets aimed at reducing our contribution to climate change. If the concept is to become a reality however, many obstacles need to be overcome. Recent studies have suggested that open ponds provide the most sustainable means of cultivation infrastructure due to their low energy inputs compared to more energy intensive photobioreactors. Most studies have focused on strains of algae which are capable of yielding high oil concentrations combined with high productivity. Yet it is very difficult to cultivate such strains in open ponds as a result of microbial competition and limited radiation-use efficiency. To improve viability, the use of wastewater has been considered by many researchers as a potential source of nutrients with the added benefit of tertiary water treatment however productivity rates are affected and optimal conditions can be difficult to maintain year round. This paper investigates the process streams which are likely to provide the most viable methods of energy recovery from cultivating and processing algal biomass. The key findings are the importance of a flexible approach which depends upon location of the cultivation ponds and the industry targeted. Additionally this study recommends moving towards technologies producing higher energy recoveries such as pyrolysis or anaerobic digestion as opposed to other studies which focused upon biodiesel production.

  17. Efficacy of a once-a-week screening programme to control extended-spectrum beta-lactamase-producing bacteria in a neonatal intensive care unit.

    Science.gov (United States)

    Rybczynska, Helena; Melander, Eva; Johansson, Hugo; Lundberg, Fredrik

    2014-06-01

    Extended-spectrum beta-lactamase (ESBL)-producing bacteria are an escalating problem threatening health. Devastating consequences can result in neonatal intensive care units (NICU) due to these bacteria. The aim of this study was to investigate the efficacy of once-a-week screening (July 2010 to September 2012) versus screening on demand (April 2008 to June 2010). The investigation was an open retrospective descriptive study comparing 2 unpaired groups, the first exposed to screening on demand and the second to screening once a week. All other infection control measures were unchanged. Both groups were cared for in the NICU of Skåne University Hospital. Parameters compared were the proportion of cultured neonates, prevalence, time before detection, number of secondary cases, and clinical infections due to ESBL-producing bacteria. The proportion of cultured neonates increased from 28% to 49% (p control the epidemiology of unwanted pathogens among newborn infants. It provides the opportunity for early intervention, thereby avoiding secondary cases and infections. Premature neonates in particular benefit from this approach. The prevalence of ESBL of 1.77% is low from an international perspective. ESBL appear to be introduced onto the ward by mothers colonized with ESBL.

  18. In vivo photoacoustics and high frequency ultrasound imaging of mechanical high intensity focused ultrasound (HIFU) ablation.

    Science.gov (United States)

    Daoudi, Khalid; Hoogenboom, Martijn; den Brok, Martijn; Eikelenboom, Dylan; Adema, Gosse J; Fütterer, Jürgen J; de Korte, Chris L

    2017-04-01

    The thermal effect of high intensity focused ultrasound (HIFU) has been clinically exploited over a decade, while the mechanical HIFU is still largely confined to laboratory investigations. This is in part due to the lack of adequate imaging techniques to better understand the in-vivo pathological and immunological effects caused by the mechanical treatment. In this work, we explore the use of high frequency ultrasound (US) and photoacoustics (PA) as a potential tool to evaluate the effect of mechanical ablation in-vivo , e.g. boiling histotripsy. Two mice bearing a neuroblastoma tumor in the right leg were ablated using an MRI-HIFU system conceived for small animals and monitored using MRI thermometry. High frequency US and PA imaging were performed before and after the HIFU treatment. Afterwards, the tumor was resected for further assessment and evaluation of the ablated region using histopathology. High frequency US imaging revealed the presence of liquefied regions in the treated area together with fragmentized tissue which appeared with different reflecting proprieties compared to the surrounding tissue. Photoacoustic imaging on the other hand revealed the presence of deoxygenated blood within the tumor after the ablation due to the destruction of blood vessel network while color Doppler imaging confirmed the blood vessel network destruction within the tumor. The treated area and the presence of red blood cells detected by photoacoustics were further confirmed by the histopathology. This feasibility study demonstrates the potential of high frequency US and PA approach for assessing in-vivo the effect of mechanical HIFU tumor ablation.

  19. The efficacy and safety of intense focused ultrasound in the treatment of enlarged facial pores in Asian skin.

    Science.gov (United States)

    Lee, Hee Jung; Lee, Kyung Real; Park, Jae Yang; Yoon, Moon Soo; Lee, Sang Eun

    2015-02-01

    Intense focused ultrasound (IFUS) has been used successfully for skin tightening. To investigate the efficacy of IFUS in treating enlarged pores and to evaluate changes in skin elasticity and sebum production following IFUS. Twenty-two subjects with enlarged pores were randomized to receive a single treatment with IFUS using 1.5-mm transducer on one side of the face, and 3.0-mm transducer on the other. OBJECTIVE clinical assessments were made by blinded photographic evaluation. Subjective satisfaction and adverse effects were evaluated. Measurements of elasticity and sebum were performed at baseline, 3 and 6 weeks post-treatment. Physicians' evaluation showed clinical pore improvements in 86% and 91% of the IFUS-treated sites using 1.5-mm and 3.0-mm transducer, respectively. The mean improvement scores were 1.7 and 1.9 for 1.5-mm and 3.0-mm transducer, respectively, with no statistical differences. Cutometer measurement demonstrated a significant improvement in skin elasticity. Sebum level showed a reduction without statistical significance. There was a positive correlation between improvement in elasticity and pore improvement grades. All treatments were well tolerated without significant side effects. IFUS using 1.5-mm or 3.0-mm transducer was safe and effective for reducing enlarged pores in Asian skin with an improvement in skin elasticity.

  20. Plasma focus project

    International Nuclear Information System (INIS)

    Sahlin, H.L.

    1975-12-01

    The primary objective of this project is to provide a relatively simple pulsed power source for high density pulsed fusion studies with a variety of DT and other fusion microexplosion targets. The plasma focus operated on DT at 1 MJ should produce greater than or equal to 10 15 DT neutrons per pulse corresponding to 2800 J of nuclear energy release and for low pressure operation and appropriately configured high Z anode center should yield an x-ray burst of about 1000 J with a substantial fraction of this x-ray energy concentrated in the 5-100 kV range. Because of its x-ray and neutron production potential, the operation of the focus as an x-ray source is also under study and an initial design study for a repetitively pulsed 1 MJ plasma focus as a pulsed neutron materials testing source has been completed. The plasma focus seems particularly appropriate for application as a materials testing source for pulsed fusion reactors, for example, based on laser driven fusion microexplosions. The construction status of the device is described

  1. Intensive chemotherapy as salvage treatment for solid tumors: focus on germ cell cancer

    International Nuclear Information System (INIS)

    Selle, F.; Gligorov, J.; Richard, S.; Khalil, A.; Alexandre, I.; Avenin, D.; Provent, S.; Soares, D.G.; Lotz, J.P.

    2014-01-01

    Germ cell tumors present contrasting biological and molecular features compared to many solid tumors, which may partially explain their unusual sensitivity to chemotherapy. Reduced DNA repair capacity and enhanced induction of apoptosis appear to be key factors in the sensitivity of germ cell tumors to cisplatin. Despite substantial cure rates, some patients relapse and subsequently die of their disease. Intensive doses of chemotherapy are used to counter mechanisms of drug resistance. So far, high-dose chemotherapy with hematopoietic stem cell support for solid tumors is used only in the setting of testicular germ cell tumors. In that indication, high-dose chemotherapy is given as the first or late salvage treatment for patients with either relapsed or progressive tumors after initial conventional salvage chemotherapy. High-dose chemotherapy is usually given as two or three sequential cycles using carboplatin and etoposide with or without ifosfamide. The administration of intensive therapy carries significant side effects and can only be efficiently and safely conducted in specialized referral centers to assure optimum patient care outcomes. In breast and ovarian cancer, most studies have demonstrated improvement in progression-free survival (PFS), but overall survival remained unchanged. Therefore, most of these approaches have been dropped. In germ cell tumors, clinical trials are currently investigating novel therapeutic combinations and active treatments. In particular, the integration of targeted therapies constitutes an important area of research for patients with a poor prognosis

  2. Intensive chemotherapy as salvage treatment for solid tumors: focus on germ cell cancer

    Energy Technology Data Exchange (ETDEWEB)

    Selle, F.; Gligorov, J. [Medical Oncology and Cellular Therapy Department, Hospital Tenon, Public Assistance Hospitals of Paris, Alliance for Cancer Research (APREC), Paris (France); Pierre & Marie Curie University (UPMC Paris VI), Paris (France); Richard, S.; Khalil, A. [Medical Oncology and Cellular Therapy Department, Hospital Tenon, Public Assistance Hospitals of Paris, Alliance for Cancer Research (APREC), Paris (France); Alexandre, I. [Medical Oncology Department, Hospital Centre of Bligny, Briis-sous-Forges (France); Avenin, D.; Provent, S.; Soares, D.G. [Medical Oncology and Cellular Therapy Department, Hospital Tenon, Public Assistance Hospitals of Paris, Alliance for Cancer Research (APREC), Paris (France); Lotz, J.P. [Medical Oncology and Cellular Therapy Department, Hospital Tenon, Public Assistance Hospitals of Paris, Alliance for Cancer Research (APREC), Paris (France); Pierre & Marie Curie University (UPMC Paris VI), Paris (France)

    2014-11-04

    Germ cell tumors present contrasting biological and molecular features compared to many solid tumors, which may partially explain their unusual sensitivity to chemotherapy. Reduced DNA repair capacity and enhanced induction of apoptosis appear to be key factors in the sensitivity of germ cell tumors to cisplatin. Despite substantial cure rates, some patients relapse and subsequently die of their disease. Intensive doses of chemotherapy are used to counter mechanisms of drug resistance. So far, high-dose chemotherapy with hematopoietic stem cell support for solid tumors is used only in the setting of testicular germ cell tumors. In that indication, high-dose chemotherapy is given as the first or late salvage treatment for patients with either relapsed or progressive tumors after initial conventional salvage chemotherapy. High-dose chemotherapy is usually given as two or three sequential cycles using carboplatin and etoposide with or without ifosfamide. The administration of intensive therapy carries significant side effects and can only be efficiently and safely conducted in specialized referral centers to assure optimum patient care outcomes. In breast and ovarian cancer, most studies have demonstrated improvement in progression-free survival (PFS), but overall survival remained unchanged. Therefore, most of these approaches have been dropped. In germ cell tumors, clinical trials are currently investigating novel therapeutic combinations and active treatments. In particular, the integration of targeted therapies constitutes an important area of research for patients with a poor prognosis.

  3. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  4. Energetic proton generation in ultra-intense laser-solid interactions

    International Nuclear Information System (INIS)

    Wilks, S.C.; Langdon, A.B.; Cowan, T.E.; Roth, M.; Singh, M.; Hatchett, S.; Key, M. H.; Pennington, D.; MacKinnon, A.; Snavely, R.A.

    2001-01-01

    An explanation for the energetic ions observed in the PetaWatt experiments is presented. In solid target experiments with focused intensities exceeding 10 20 W/cm 2 , high-energy electron generation, hard bremsstrahlung, and energetic protons have been observed on the backside of the target. In this report, an attempt is made to explain the physical process present that will explain the presence of these energetic protons, as well as explain the number, energy, and angular spread of the protons observed in experiment. In particular, we hypothesize that hot electrons produced on the front of the target are sent through to the back off the target, where they ionize the hydrogen layer there. These ions are then accelerated by the hot electron cloud, to tens of MeV energies in distances of order tens of μm, whereupon they end up being detected in the radiographic and spectrographic detectors

  5. Structured Laguerre-Gaussian beams for mitigation of spherical aberration in tightly focused regimes

    Science.gov (United States)

    Haddadi, S.; Bouzid, O.; Fromager, M.; Hasnaoui, A.; Harfouche, A.; Cagniot, E.; Forbes, A.; Aït-Ameur, K.

    2018-04-01

    Many laser applications utilise a focused laser beam having a single-lobed intensity profile in the focal plane, ideally with the highest possible on-axis intensity. Conventionally, this is achieved with the lowest-order Laguerre-Gaussian mode (LG00), the Gaussian beam, in a tight focusing configuration. However, tight focusing often involves significant spherical aberration due to the high numerical aperture of the systems involved, thus degrading the focal quality. Here, we demonstrate that a high-order radial LG p0 mode can be tailored to meet and in some instances exceed the performance of the Gaussian. We achieve this by phase rectification of the mode using a simple binary diffractive optic. By way of example, we show that the focusing of a rectified LG50 beam is almost insensitive to a spherical aberration coefficient of over three wavelengths, in contrast with the usual Gaussian beam for which the intensity of the focal spot is reduced by a factor of two. This work paves the way towards enhanced focal spots using structured light.

  6. Can student-produced video transform university teaching?

    DEFF Research Database (Denmark)

    2011-01-01

    as preparation for the two week intensive field course. The overall objective of the redesign was to modernize and improve the quality of the students learning experience, by exploring the potentials of video and online tools to create flexible, student-centered and student-activating education. The student...... produced three types of videos during the course: Video 1 was independently produced by the students, guided by online tasks and instructions. These videos were student produced learning material, showing cases from all over Europe. The videos was collected and presented in a "visual database" in Google...

  7. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  8. Spectral lines and characteristic of temporal variations in photoionized plasmas induced with laser-produced plasma extreme ultraviolet source

    Science.gov (United States)

    Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.

    2017-11-01

    Spectral lines for Kr/Ne/H2 photoionized plasma in the ultraviolet and visible (UV/Vis) wavelength ranges have been created using a laser-produced plasma (LPP) EUV source. The source is based on a double-stream gas puff target irradiated with a commercial Nd:YAG laser. The laser pulses were focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Spectral lines from photoionization in neutral Kr/Ne/H2 and up to few charged states were observed. The intense emission lines were associated with the Kr transition lines. Experimental and theoretical investigations on intensity variations for some ionic lines are presented. A decrease in the intensity with the delay time between the laser pulse and the spectrum acquisition was revealed. Electron temperature and electron density in the photoionized plasma have been estimated from the characteristic emission lines. Temperature was obtained using Boltzmann plot method, assuming that the population density of atoms and ions are considered in a local thermodynamic equilibrium (LTE). Electron density was calculated from the Stark broadening profile. The temporal evaluation of the plasma and the way of optimizing the radiation intensity of LPP EUV sources is discussed.

  9. Intensity of competition in the market of greenhouse vegetables

    Directory of Open Access Journals (Sweden)

    Oleg Ivanovich Botkin

    2012-03-01

    Full Text Available This paper reviews the competitive environment of the market greenhouse vegetables. Revealed specific features of the industry, determining the level of intensity of competition in the market greenhouse vegetables. Classified factors internal and external environment, identify indicators that affect the state of the market. The factors that determine the intensity of competition in the market greenhouse vegetables.The main competitors on the Russian market of greenhouse production.Identified indicators of the intensity level of competition, in particular: the level of monopolization of the market greenhouse vegetables, the level of concentration of production in the industry, the generalized index of the intensity of the competitive environment.Shows a comparative analysis of competitors’ market greenhouse vegetables in Udmurtia.Revealed competitive advantages which can help local producers to reduce the pressure of competition and intra-industry to occupy a leading position in the Russian market of greenhouse vegetable production.The dynamics of economic performance of Russian producers. Ways of improving the competitiveness of enterprises for the production of greenhouse vegetables

  10. Ablation of clinically relevant kidney tissue volumes by high-intensity focused ultrasound: Preliminary results of standardized ex-vivo investigations.

    Science.gov (United States)

    Häcker, Axel; Peters, Kristina; Knoll, Thomas; Marlinghaus, Ernst; Alken, Peter; Jenne, Jürgen W; Michel, Maurice Stephan

    2006-11-01

    To investigate strategies to achieve confluent kidney-tissue ablation by high-intensity focused ultrasound (HIFU). Our model of the perfused ex-vivo porcine kidney was used. Tissue ablation was performed with an experimental HIFU device (Storz Medical, Kreuzlingen, Switzerland). Lesion-to-lesion interaction was investigated by varying the lesion distance (5 to 2.5 mm), generator power (300, 280, and 260 W), cooling time (10, 20, and 30 seconds), and exposure time (4, 3, and 2 seconds). The lesion rows were analyzed grossly and by histologic examination (hematoxylin-eosin and nicotinamide adenine dinucleotide staining). It was possible to achieve complete homogeneous ablation of a clinically relevant tissue volume but only by meticulous adjustment of the exposure parameters. Minimal changes in these parameters caused changes in lesion formation with holes within the lesions and lesion-to-lesion interaction. Our preliminary results show that when using this new device, HIFU can ablate a large tissue volume homogeneously in perfused ex-vivo porcine tissue under standardized conditions with meticulous adjustment of exposure parameters. Further investigations in vivo are necessary to test whether large tissue volumes can be ablated completely and reliably despite the influence of physiologic tissue and organ movement.

  11. Focusing lenses for the 20-beam fusion laser, SHIVA

    International Nuclear Information System (INIS)

    O'Neal, W.C.

    1976-01-01

    The focus lens design for the 20-beam SHIVA laser fusion facility involves considerations of uniform and normal pellet illumination. The resulting requirements dictate tailored beam intensity profiles and vacuum-loaded thin lenses

  12. The Intense Slow Positron Beam Facility at the NC State University PULSTAR Reactor

    International Nuclear Information System (INIS)

    Hawari, Ayman I.; Moxom, Jeremy; Hathaway, Alfred G.; Brown, Benjamin; Gidley, David W.; Vallery, Richard; Xu, Jun

    2009-01-01

    An intense slow positron beam is in its early stages of operation at the 1-MW open-pool PULSTAR research reactor at North Carolina State University. The positron beam line is installed in a beam port that has a 30-cmx30-cm cross sectional view of the core. The positrons are created in a tungsten converter/moderator by pair-production using gamma rays produced in the reactor core and by neutron capture reactions in cadmium cladding surrounding the tungsten. Upon moderation, slow (∼3 eV) positrons that are emitted from the moderator are electrostatically extracted, focused and magnetically guided until they exit the reactor biological shield with 1-keV energy, approximately 3-cm beam diameter and an intensity exceeding 6x10 8 positrons per second. A magnetic beam switch and transport system has been installed and tested that directs the beam into one of two spectrometers. The spectrometers are designed to implement state-of-the-art PALS and DBS techniques to perform positron and positronium annihilation studies of nanophases in matter.

  13. Genetic engineering of to produce Bacterial Polyhydroxyalkanotes ...

    African Journals Online (AJOL)

    PHAs), in the sense of an environmental precaution appears meaningful and necessary. In order to more economically produce microbial products, this investigation was focused on suitable producers, like the yeast Schizosaccharomyces pombe ...

  14. The Crash Intensity Evaluation Using General Centrality Criterions and a Geographically Weighted Regression

    Science.gov (United States)

    Ghadiriyan Arani, M.; Pahlavani, P.; Effati, M.; Noori Alamooti, F.

    2017-09-01

    Today, one of the social problems influencing on the lives of many people is the road traffic crashes especially the highway ones. In this regard, this paper focuses on highway of capital and the most populous city in the U.S. state of Georgia and the ninth largest metropolitan area in the United States namely Atlanta. Geographically weighted regression and general centrality criteria are the aspects of traffic used for this article. In the first step, in order to estimate of crash intensity, it is needed to extract the dual graph from the status of streets and highways to use general centrality criteria. With the help of the graph produced, the criteria are: Degree, Pageranks, Random walk, Eccentricity, Closeness, Betweenness, Clustering coefficient, Eigenvector, and Straightness. The intensity of crash point is counted for every highway by dividing the number of crashes in that highway to the total number of crashes. Intensity of crash point is calculated for each highway. Then, criteria and crash point were normalized and the correlation between them was calculated to determine the criteria that are not dependent on each other. The proposed hybrid approach is a good way to regression issues because these effective measures result to a more desirable output. R2 values for geographically weighted regression using the Gaussian kernel was 0.539 and also 0.684 was obtained using a triple-core cube. The results showed that the triple-core cube kernel is better for modeling the crash intensity.

  15. Generalized Kapchinskij-Vladimirskij Distribution and Envelope Equation for High-intensity Beams in a Coupled Transverse Focusing Lattice

    International Nuclear Information System (INIS)

    Qin, Hong; Chung, Moses; Davidson, Ronald C.

    2009-01-01

    In an uncoupled lattice, the Kapchinskij-Vladimirskij (KV) distribution function first analyzed in 1959 is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high- intensity beams including self-fields in a self-consistent manner. The KV solution is generalized here to high-intensity beams in a coupled transverse lattice using the recently developed generalized Courant-Snyder invariant for coupled transverse dynamics. This solution projects to a rotating, pulsating elliptical beam in transverse configuration space, determined by the generalized matrix envelope equation.

  16. Propagation of intense laser pulses in an underdense plasma

    International Nuclear Information System (INIS)

    Monot, P.; Auguste, T.; Gibbon, P.; Jakober, F.; Mainfray, G.

    1994-01-01

    Experiments carried out with a laser beam focused into a vacuum chamber onto a 3-mm long, pulsed hydrogen jet, at powers close to the critical power required for relativistic self focusing, have shown that an underdense plasma is able to significantly reduce the divergence of an intense laser pulse. The propagation mode is in good agreement with theoretical predictions of relativistic self focusing. 2 figs., 8 refs

  17. Experimental study on ablation of leiomyoma by combination high-intensity focused ultrasound and iodized oil in vitro.

    Science.gov (United States)

    Liang, Zhi-Gang; Gao, Yi; Ren, Xiao-Yan; Sun, Cui; Gu, Heng-Fang; Mou, Meng; Xiao, Yan-Bing

    2017-10-01

    The aim of the current study was to investigate whether iodized oil (IO) enhances high-intensity focused ultrasound (HIFU) ablation of uterine leiomyoma and to determine the features of hyperechoic changes in the target region. Forty samples of uterine leiomyoma were randomly divided into an experimental group and a control group. In the experimental group, the leiomyoma was ablated by HIFU 30 min after 1 mL of iodized oil had been injected into the center of the myoma. The hyperechoic values and areas in the target region were observed by B-modal ultrasound after HIFU ablation. The samples were cut successively into slices and stained by triphenyltetrazolium chloride (TTC) solution within 1 h after HIFU ablation. The diameters of TTC-non-stained areas were measured and tissues in the borderline of the TTC-stained and -non-stained areas were observed pathologically. All procedures in the control group were the same as those in the experimental group except IO was replaced by physiological saline. The hyperechoic value in the target region in the experimental group was higher than that in the control group 4 min after HIFU ablation (P leiomyoma occurred in the target region in both groups. IO causes coagulation necrosis, enlarges tissue damage, and postpones the attenuation of hyperechoic changes in the target region when HIFU ablation is carried out for leiomyoma in vitro. © 2017 Japan Society of Obstetrics and Gynecology.

  18. Intensity modulated radiotherapy for sinonasal malignancies with a focus on optic pathway preservation

    Directory of Open Access Journals (Sweden)

    Chi Alexander

    2013-01-01

    Full Text Available Abstract Purpose To assess if intensity-modulated radiotherapy (IMRT can possibly lead to improved local control and lower incidence of vision impairment/blindness in comparison to non-IMRT techniques when treating sinonasal malignancies; what is the most optimal dose constraints for the optic pathway; and the impact of different IMRT strategies on optic pathway sparing in this setting. Methods and materials A literature search in the PubMed databases was conducted in July, 2012. Results Clinical studies on IMRT and 2D/3D (2 dimensional/3 dimensional RT for sinonasal malignancies suggest improved local control and lower incidence of severe vision impairment with IMRT in comparison to non-IMRT techniques. As observed in the non-IMRT studies, blindness due to disease progression may occur despite a lack of severe toxicity possibly due to the difficulty of controlling locally very advanced disease with a dose ≤ 70 Gy. Concurrent chemotherapy’s influence on the the risk of severe optic toxicity after radiotherapy is unclear. A maximum dose of ≤ 54 Gy with conventional fractionation to the optic pathway may decrease the risk of blindness. Increased magnitude of intensity modulation through increasing the number of segments, beams, and using a combination of coplanar and non-coplanar arrangements may help increase dose conformality and optic pathway sparing when IMRT is used. Conclusion IMRT optimized with appropriate strategies may be the treatment of choice for the most optimal local control and optic pathway sparing when treating sinonasal malignancy.

  19. High intensity discharge device containing oxytrihalides

    Science.gov (United States)

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  20. An efficient power market - consequences for energy-intensive industries and regions

    International Nuclear Information System (INIS)

    Bye, Torstein; Hoel, Michael; Stroem, Steinar

    2000-01-01

    From economic theory we know that, unless special arguments can be made, we obtain economic efficiency if all buyers of a homogeneous good pay the same price for the good. If this principle is violated inefficiency will occur. The principle holds for all goods, i.e. both for consumer goods (e.g. clothing or food), inputs in a production process (e.g. raw materials), and for combined goods. Electricity is an example of a combined good that can be used both as a final good and as an input in production processes. In Norway, the energy intensive industry (metals and chemicals) and the paper and pulp industry pay a lower price for their use of electricity than other users pay. The reason is that this industry has signed long-term contracts where the prices have been influenced by political processes. This pricing leads to an inefficient use of electricity in Norway. In this book we study the consequences of changing the electricity prices for this sectors so that we obtain a situation where all domestic users of electricity pay the same price. The book contains numerical calculations of potential structural changes and changes in overall economic welfare (producer and consumer surplus). We also calculate changes in emissions both from these sectors and from the rest of the economy. The last chapter deals with structural change and regional differences, with emphasis on the regions in which the energy intensive firms are located. We discuss how strong the negative impact on these regions will be as a consequence of shutting down non-profitable energy intensive firms when the price of electricity changes. A main conclusion in the book is that Norway will benefit from increasing the electricity price paid by the energy intensive sectors, both in economic terms and with respect to overall pollution. Reduced electricity use in the energy intensive sectors will in the short run lead to increased export of electricity. In the longer run, new investments in power producing

  1. Study on the photoneutrons produced in 15 MV medical linear accelerators : Comparison of three dimensional conformal radiotherapy and intensity modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Oh Nam [Gangneung Asan Hospital, Gangneung (Korea, Republic of); Yang, Oh Nam; Lim, Cheong Hwan [Hanseo Univ., Seosan (Korea, Republic of)

    2012-12-15

    Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photoneutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photon beams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose.

  2. Study on the photoneutrons produced in 15 MV medical linear accelerators : Comparison of three dimensional conformal radiotherapy and intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Yang, Oh Nam; Yang, Oh Nam; Lim, Cheong Hwan

    2012-01-01

    Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photoneutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photon beams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose

  3. EDITORIAL: Focus on Attosecond Physics

    Science.gov (United States)

    Bandrauk, André D.; Krausz, Ferenc; Starace, Anthony F.

    2008-02-01

    Investigations of light-matter interactions and motion in the microcosm have entered a new temporal regime, the regime of attosecond physics. It is a main 'spin-off' of strong field (i.e., intense laser) physics, in which nonperturbative effects are fundamental. Attosecond pulses open up new avenues for time-domain studies of multi-electron dynamics in atoms, molecules, plasmas, and solids on their natural, quantum mechanical time scale and at dimensions shorter than molecular and even atomic scales. These capabilities promise a revolution in our microscopic knowledge and understanding of matter. The recent development of intense, phase-stabilized femtosecond (10-15 s) lasers has allowed unparalleled temporal control of electrons from ionizing atoms, permitting for the first time the generation and measurement of isolated light pulses as well as trains of pulses on the attosecond (1 as = 10-18 s) time scale, the natural time scale of the electron itself (e.g., the orbital period of an electron in the ground state of the H atom is 152 as). This development is facilitating (and even catalyzing) a new class of ultrashort time domain studies in photobiology, photochemistry, and photophysics. These new coherent, sub-fs pulses carried at frequencies in the extreme ultraviolet and soft-x-ray spectral regions, along with their intense, synchronized near-infrared driver waveforms and novel metrology based on sub-fs control of electron-light interactions, are spawning the new science of attosecond physics, whose aims are to monitor, to visualize, and, ultimately, to control electrons on their own time and spatial scales, i.e., the attosecond time scale and the sub-nanometre (Ångstrom) spatial scale typical of atoms and molecules. Additional goals for experiment are to advance the enabling technologies for producing attosecond pulses at higher intensities and shorter durations. According to theoretical predictions, novel methods for intense attosecond pulse generation may in

  4. Risk factors for infection and/or colonisation with extended-spectrum β-lactamase-producing bacteria in the neonatal intensive care unit: a meta-analysis.

    Science.gov (United States)

    Li, Xuan; Xu, Xuan; Yang, Xianxian; Luo, Mei; Liu, Pin; Su, Kewen; Qing, Ying; Chen, Shuai; Qiu, Jingfu; Li, Yingli

    2017-11-01

    Extended-spectrum β-lactamase (ESBL)-producing bacteria are an important cause of healthcare-associated infections in the neonatal intensive care unit (NICU). The aim of this meta-analysis was to identify risk factors associated with infection and/or colonisation with ESBL-producing bacteria in the NICU. Electronic databases were searched for relevant studies published from 1 January 2000 to 1 July 2016. The literature was screened and data were extracted according to the inclusion and exclusion criteria. The Z-test was used to calculate the pooled odds ratio (OR) of the risk factors. ORs and their 95% confidence intervals were used to determine the significance of the risk. A total of 14 studies, including 746 cases and 1257 controls, were identified. Thirteen risk factors were determined to be related to infection and/or colonisation with ESBL-producing bacteria in the NICU: birthweight [standardised mean difference (SMD) = 1.17]; gestational age (SMD = 1.36); Caesarean delivery (OR = 1.76); parenteral nutrition (OR = 7.51); length of stay in the NICU (SMD = 0.72); mechanical ventilation (OR = 4.8); central venous catheter use (OR = 2.85); continuous positive airway pressure (OR = 5.0); endotracheal intubation (OR = 2.82); malformations (OR = 2.89); previous antibiotic use (OR = 6.72); ampicillin/gentamicin (OR = 2.31); and cephalosporins (OR = 6.0). This study identified risk factors for infection and/or colonisation with ESBL-producing bacteria in the NICU, which may provide a theoretical basis for preventive measures and targeted interventions. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  5. New imaging technique based on diffraction of a focused x-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Kazimirov, A [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Kohn, V G [Russian Research Center ' Kurchatov Institute, 123182 Moscow (Russian Federation); Cai, Z-H [Advanced Photon Source, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)], E-mail: ayk7@cornell.edu

    2009-01-07

    We present first experimental results from a new diffraction depth-sensitive imaging technique. It is based on the diffraction of a focused x-ray beam from a crystalline sample and recording the intensity pattern on a high-resolution CCD detector positioned at a focal plane. Structural non-uniformity inside the sample results in a region of enhanced intensity in the diffraction pattern. The technique was applied to study silicon-on-insulator thin layers of various thicknesses which revealed a complex strain profile within the layers. A circular Fresnel zone plate was used as a focusing optic. Incoherent diffuse scattering spreads out of the diffraction plane and results in intensity recorded outside of the focal spot providing a new approach to separately register x-rays scattered coherently and incoherently from the sample. (fast track communication)

  6. Hydrodynamic simulation of X-UV laser-produced plasmas

    International Nuclear Information System (INIS)

    Fajardo, M.; Zeitoun, P.; Gauthier, J.C.

    2004-01-01

    With the construction of novel X-UV sources, such as V-UV FEL's (free-electron lasers), X-UV laser-matter interaction will become available at ultra-high intensities. But even table-top facilities such as X-UV lasers or High Harmonic Generation, are starting to reach intensities high enough to produce dense plasmas. X-UV laser-matter interaction is studied by a 1-dimensional hydrodynamic Lagrangian code with radiative transfer for a range of interesting X-UV sources. Heating is found to be very different for Z=12-14 elements having L-edges around the X-UV laser wavelength. Possible absorption mechanisms were investigated in order to explain this behaviour, and interaction with cold dense matter proved to be dominant. Plasma sensitivity to X-UV laser parameters such as energy, pulse duration, and wavelength was also studied, covering ranges of existing X-UV lasers. We found that X-UV laser-produced plasmas could be studied using table-top lasers, paving the way for future V-UV-FEL high intensity experiments. (authors)

  7. High Intensity Source Laboratory (HISL)

    International Nuclear Information System (INIS)

    1992-01-01

    The High Intensity Source Laboratory (HISL) is a laboratory facility operated for the US Department of Energy (DOE) by EG ampersand G, Energy Measurements (EG ampersand G/EM). This document is intended as an overview -- primarily for external users -- of the general purposes and capabilities of HISL; numerous technical details are beyond its scope. Moreover, systems at HISL are added, deleted, and modified to suit current needs, and upgraded with continuing development. Consequently, interested parties are invited to contact the HISL manager for detailed, current, technical, and administrative information. The HISL develops and operates pulsed radiation sources with energies, intensities, and pulse widths appropriate for several applications. Principal among these are development, characterization, and calibration of various high-bandwidth radiation detectors and diagnostic systems. Hardness/vulnerability of electronic or other sensitive components to radiation is also tested. In this connection, source development generally focuses on attending (1) the highest possible intensities with (2) reasonably short pulse widths and (3) comprehensive output characterization

  8. Effect of microbubble contrast agent during high intensity focused ultrasound ablation on rabbit liver in vivo

    International Nuclear Information System (INIS)

    Chung, Dong Jin; Cho, Se Hyun; Lee, Jae Mun; Hahn, Seong-Tae

    2012-01-01

    Objective: To evaluate the effect of a microbubble contrast agent (SonoVue) during HIFU ablation of a rabbit liver. Materials and methods: HIFU ablations (intensity of 400 W/cm 2 for 4 s, six times, with a 5 s interval between exposures) were performed upon 16 in vivo rabbit livers before and after intravenous injection of a microbubble contrast agent (0.8 ml). A Wilcoxon signed rank test was used to compare mean ablation volume and time required to tissue ablation on real-time US. Shape of ablation and pattern of coagulative necrosis were analyzed by Fisher's exact test. Results: The volume of coagulative necrosis was significantly larger in the combination microbubble and HIFU group than in the HIFU alone group (P < 0.05). Also, time to reach ablation was shorter in the combination microbubble and HIFU group than in the HIFU alone group (P < 0.05). When analyzing the shape of tissue ablation, a pyramidal shape was more prevalently in the HIFU alone group compared to the combination microbubble and HIFU group (P < 0.05). Following an analysis of the pattern of coagulative necrosis, non-cavitary necrosis was found in ten and cavitary necrosis in six of the samples in the combination microbubble and HIFU group. Conversely, non-cavitary necrosis occurred in all 16 samples in the HIFU alone group (P < 0.05). Conclusion: HIFU of in vivo rabbit livers with a microbubble contrast agent produced larger zones of ablation and more cavitary tissue necrosis than without the use of a microbubble contrast agent. Microbubble contrast agents may be useful in tissue ablation by enhancing the treatment effect of HIFU.

  9. Intense positron beams and possible experiments

    International Nuclear Information System (INIS)

    Lynn, K.G.; Frieze, W.E.

    1983-07-01

    In this paper, we survey some of the ideas that have been proposed regarding the production of intense beams of low energy positrons. Various facilities to produce beams of this type are already under design or construction and other methods beyond those in use have been previously discussed. Moreover, a variety of potential experiments utilizing intense positron beams have been suggested. It is to be hoped that this paper can serve as a useful summary of some of the current ideas, as well as a stimulation for new ideas to be forthcoming at the workshop. 31 references

  10. Ion Distribution Measurement In Plasma Focus

    International Nuclear Information System (INIS)

    Suryadi; Sunardi; Usada, Widdi; Purwadi, Agus; Zaenuri, Akhmad

    1996-01-01

    Measurement of the Argon ion distribution in plasma focus by using Faraday cup has been done. The intensity of ion beam followed the I Rn rule, n=1,02. In the operation condition of 0,8 mbar and 12,5 kV the current sheath spen 2.2 to 2.4 μsecond in the rundown phase. Cu ion was also been observed in the Faraday cup

  11. Engineering Education in Research-Intensive Universities

    Science.gov (United States)

    Alpay, E.; Jones, M. E.

    2012-01-01

    The strengths and weaknesses of engineering education in research-intensive institutions are reported and key areas for developmental focus identified. The work is based on a questionnaire and session summaries used during a two-day international conference held at Imperial College London. The findings highlight several common concerns, such as…

  12. Magnetic compound refractive lens for focusing and polarizing cold neutron beams

    International Nuclear Information System (INIS)

    Littrell, K. C.; Velthuis, S. G. E. te; Felcher, G. P.; Park, S.; Kirby, B. J.; Fitzsimmons, M. R.

    2007-01-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given

  13. Magnetic compound refractive lens for focusing and polarizing cold neutron beams.

    Science.gov (United States)

    Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R

    2007-03-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given.

  14. Trends in Intense Typhoon Minimum Sea Level Pressure

    Directory of Open Access Journals (Sweden)

    Stephen L. Durden

    2012-01-01

    Full Text Available A number of recent publications have examined trends in the maximum wind speed of tropical cyclones in various basins. In this communication, the author focuses on typhoons in the western North Pacific. Rather than maximum wind speed, the intensity of the storms is measured by their lifetime minimum sea level pressure (MSLP. Quantile regression is used to test for trends in storms of extreme intensity. The results indicate that there is a trend of decreasing intensity in the most intense storms as measured by MSLP over the period 1951–2010. However, when the data are broken into intervals 1951–1987 and 1987–2010, neither interval has a significant trend, but the intensity quantiles for the two periods differ. Reasons for this are discussed, including the cessation of aircraft reconnaissance in 1987. The author also finds that the average typhoon intensity is greater in El Nino years, while the intensity of the strongest typhoons shows no significant relation to El Nino Southern Oscillation.

  15. Phase analysis and focusing of synchrotron radiation

    CERN Document Server

    Chubar, O; Snigirev, A

    1999-01-01

    High accuracy calculations of synchrotron radiation (SR) emitted by a relativistic electron show that the phase of the frequency domain electric field of SR differs from the phase of radiation of a virtual point source. These differences may result in the reduction of focusing efficiency of diffraction-limited SR, if the focusing is performed by conventional optical components optimised for point sources. We show that by applying a phase correction locally, one may transform the phase of SR electric field at a desired polarisation to that of a point source. Such corrections are computed for undulator radiation (planar and helical) and bending magnet radiation (central part and edges). The focusing of the corrected SR wavefront can result in the increase of peak intensity in the focused spot up to several times compared to the focusing without correction. For non-diffraction-limited radiation, the effect of the phase corrections is reduced. Due to this reason, the use of the proposed phase corrections in exist...

  16. Axial sheath dynamics in a plasma focus

    International Nuclear Information System (INIS)

    Soliman, H.M.; El-Khalafawy, T.A.; Masoud, M.M.

    1990-01-01

    This paper presents the result of investigation with a 10 kJ Mather type plasma focus. It is operated in hydrogen gas at ambient pressure of 0.15--1 torr and charging voltage of 8--11 kV. Radial distribution of the current sheath density with axial distance has been estimated. Plasma rotation in the expansion chamber in the absence of external magnetic field has been detected. A plasma flare from the plasma focus region propagating in the radial direction has been observed. Streak photography shows two plasma streams flowing simultaneously out of the muzzle. The mean energy of the electron beam ejected from the pinch region of the focused plasma, was measured by retarding field analyzer to be 0.32 keV. The electron temperature of the plasma focus at peak compression was determined by measuring the X-ray intensity as a function of absorber thickness at a distance of 62 cm from the focus. The electron temperature has been found to 3 keV

  17. The contemporary role of ablative treatment approaches in the management of renal cell carcinoma (RCC): focus on radiofrequency ablation (RFA), high-intensity focused ultrasound (HIFU), and cryoablation.

    Science.gov (United States)

    Klatte, Tobias; Kroeger, Nils; Zimmermann, Uwe; Burchardt, Martin; Belldegrun, Arie S; Pantuck, Allan J

    2014-06-01

    Currently, most of renal tumors are small, low grade, with a slow growth rate, a low metastatic potential, and with up to 30 % of these tumors being benign on the final pathology. Moreover, they are often diagnosed in elderly patients with preexisting medical comorbidities in whom the underlying medical conditions may pose a greater risk of death than the small renal mass. Concerns regarding overdiagnosis and overtreatment of patients with indolent small renal tumors have led to an increasing interest in minimally invasive, ablative as an alternative to extirpative interventions for selected patients. To provide an overview about the state of the art in radiofrequency ablation (RFA), high-intensity focused ultrasound, and cryoablation in the clinical management of renal cell carcinoma. A PubMed wide the literature search of was conducted. International consensus panels recommend ablative techniques in patients who are unfit for surgery, who are not considered candidates for or elect against elective surveillance, and who have small renal masses. The most often used techniques are cryoablation and RFA. These ablative techniques offer potentially curative outcomes while conferring several advantages over extirpative surgery, including improved patient procedural tolerance, faster recovery, preservation of renal function, and reduction in the risk of intraoperative and postsurgical complications. While it is likely that outcomes associated with ablative modalities will improve with further advances in technology, their application will expand to more elective indications as longer-term efficacy data become available. Ablative techniques pose a valid treatment option in selected patients.

  18. Effects of music and video on perceived exertion during high-intensity exercise

    Institute of Scientific and Technical Information of China (English)

    Enoch C.Chow; Jennifer L.Etnier

    2017-01-01

    Background:Dissociative attentional stimuli (e.g.,music,video) are effective in decreasing ratings of perceived exertion (RPE) during low-to-moderate intensity exercise,but have inconsistent results during exercise at higher intensity.The purpose of this study was to assess attentional focus and RPE during high-intensity exercise as a function of being exposed to music,video,both (music and video),or a no-treatment control condition.Methods:During the first session,healthy men (n =15) completed a maximal fitness test to determine the workload necessary for high-intensity exercise (operationalized as 125% ventilatory threshold) to be performed during subsequent sessions.On 4 subsequent days,they completed 20 min of high-intensity exercise in a no-treatment control condition or while listening to music,watching a video,or both.Attentional focus,RPE,heart rate,and distance covered were measured every 4 min during the exercise.Results:Music and video in combination resulted in significantly lower RPE across time (partial η2 =0.36) and the size of the effect increased over time (partial η2 =0.14).Additionally,music and video in combination resulted in a significantly more dissociative focus than the other conditions (partial η2 =0.29).Conclusion:Music and video in combination may result in lower perceived exertion during high-intensity exercise when compared to music or video in isolation.Future research will be necessary to test if reductions in perceived exertion in response to dissociative attentional stimuli have implications for exercise adherence.

  19. Evaluating environmental consequences of producing herbaceous crops for bioenergy

    International Nuclear Information System (INIS)

    McLaughlin, S.B.

    1995-01-01

    The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy's Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO 2 emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels

  20. Evaluating environmental consequences of producing herbaceous crops for bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, S.B.

    1995-12-31

    The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy`s Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO{sub 2} emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels.

  1. Transarterial infusion chemotherapy combined with high intensity focused ultrasound for the treatment of pancreatic carcinomas: a clinical study

    International Nuclear Information System (INIS)

    Zhang Yiping; Zhao Jingzhi; Qiao Xinrong; Huang Hankui

    2011-01-01

    Objective: To assess the clinical value of transarterial infusion chemotherapy combined with high intensity focused ultrasound (HIFU) for the treatment of pancreatic carcinomas. Methods: A total of 64 patients with inoperable pancreatic carcinomas were randomly divided into study group (n=32) and control group (n=32). Transarterial infusion chemotherapy combined with HIFU was employed in patients of study group, while simple transarterial infusion chemotherapy was conducted in patients of control group. The effective rate, the clinical benefit rate (CBR), the occurrence of side effect and the survival time of the two groups were recorded. The results were compared between the two groups. Results: The effective rate (PR + MR), the median survival time and the one-year survival rate of the study group were 55.56%, 13.0 months and 68.75% respectively, while the effective rate (PR + MR), the median survival time and the one-year survival rate of the control group were 28.57%, 9.0 months and 43.75% respectively. Both the effective rate and the one-year survival rate of the study group were significantly higher than those of the control group (P<0.05). Conclusion: Compared with pure transarterial infusion chemotherapy, transarterial infusion chemotherapy combined with HIFU can significantly improve the short-term efficacy and increase the one-year survival rate for patients with advanced pancreatic carcinomas. (authors)

  2. Bremsstrahlung production with high-intensity laser matter interactions and applications

    NARCIS (Netherlands)

    Galy, J.; Maucec, M.; Hamilton, D. J.; Edwards, R.; Magill, J.

    2007-01-01

    In the last decade an evolution of experimental relativistic laser-plasma physics has led to highly sophisticated lasers, which are now able to generate ultra short pulses and can be focused to intensities in excess of 10(21) W cm(-2), with more than 500 J on target. In the intense electric field of

  3. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue

    Energy Technology Data Exchange (ETDEWEB)

    Alhamami, Mosa; Kolios, Michael C.; Tavakkoli, Jahan, E-mail: jtavakkoli@ryerson.ca [Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada)

    2014-05-15

    Purpose: The aims of this study are: (a) to investigate the capability of photoacoustic (PA) method in detecting high-intensity focused ultrasound (HIFU) treatments in muscle tissuesin vitro; and (b) to determine the optical properties of HIFU-treated and native tissues in order to assist in the interpretation of the observed contrast in PA detection of HIFU treatments. Methods: A single-element, spherically concaved HIFU transducer with a centre frequency of 1 MHz was utilized to create thermal lesions in chicken breast tissuesin vitro. To investigate the detectability of HIFU treatments photoacoustically, PA detection was performed at 720 and 845 nm on seven HIFU-treated tissue samples. Within each tissue sample, PA signals were acquired from 22 locations equally divided between two regions of interest within two volumes in tissue – a HIFU-treated volume and an untreated volume. Optical spectroscopy was then carried out on 10 HIFU-treated chicken breast specimens in the wavelength range of 500–900 nm, in 1-nm increments, using a spectrophotometer with an integrating sphere attachment. The authors’ optical spectroscopy raw data (total transmittance and diffuse reflectance) were used to obtain the optical absorption and reduced scattering coefficients of HIFU-induced thermal lesions and native tissues by employing the inverse adding-doubling method. The aforementioned interaction coefficients were subsequently used to calculate the effective attenuation coefficient and light penetration depth of HIFU-treated and native tissues in the wavelength range of 500–900 nm. Results: HIFU-treated tissues produced greater PA signals than native tissues at 720 and 845 nm. At 720 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.68 ± 0.25 (mean ± standard error of the mean). At 845 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.75

  4. DOES ELECTRIC CAR PRODUCE EMISSIONS?

    Directory of Open Access Journals (Sweden)

    Vladimír RIEVAJ

    2017-03-01

    Full Text Available This article focuses on the comparison of the amount of emissions produced by vehicles with a combustion engine and electric cars. The comparison, which is based on the LCA factor results, indicates that an electric car produces more emissions than a vehicle with combustion engine. The implementation of electric cars will lead to an increase in the production of greenhouse gases.

  5. Calculated intensity of high-energy neutron beams

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Back, B.B.

    2004-01-01

    The flux, energy and angular distributions of high-energy neutrons produced by in-flight spallation and fission of a 400 MeV/A 238 U beam and by the break-up of a 400 MeV/A deuteron beam are calculated. In both cases very intense secondary neutron beams are produced, peaking at zero degrees, with a relatively narrow energy spread. Such secondary neutron beams can be produced with the primary beams from the proposed rare isotope accelerator driver linac. The break-up of a 400 kW deuteron beam on a liquid-lithium target can produce a neutron flux of >10 10 neutrons/cm 2 /s at a distance of 10 m from the target

  6. Low-SNR Capacity of MIMO Optical Intensity Channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2017-01-01

    The capacity of the multiple-input multiple-output (MIMO) optical intensity channel is studied, under both average and peak intensity constraints. We focus on low SNR, which can be modeled as the scenario where both constraints proportionally vanish, or where the peak constraint is held constant while the average constraint vanishes. A capacity upper bound is derived, and is shown to be tight at low SNR under both scenarios. The capacity achieving input distribution at low SNR is shown to be a maximally-correlated vector-binary input distribution. Consequently, the low-SNR capacity of the channel is characterized. As a byproduct, it is shown that for a channel with peak intensity constraints only, or with peak intensity constraints and individual (per aperture) average intensity constraints, a simple scheme composed of coded on-off keying, spatial repetition, and maximum-ratio combining is optimal at low SNR.

  7. Low-SNR Capacity of MIMO Optical Intensity Channels

    KAUST Repository

    Chaaban, Anas

    2017-09-18

    The capacity of the multiple-input multiple-output (MIMO) optical intensity channel is studied, under both average and peak intensity constraints. We focus on low SNR, which can be modeled as the scenario where both constraints proportionally vanish, or where the peak constraint is held constant while the average constraint vanishes. A capacity upper bound is derived, and is shown to be tight at low SNR under both scenarios. The capacity achieving input distribution at low SNR is shown to be a maximally-correlated vector-binary input distribution. Consequently, the low-SNR capacity of the channel is characterized. As a byproduct, it is shown that for a channel with peak intensity constraints only, or with peak intensity constraints and individual (per aperture) average intensity constraints, a simple scheme composed of coded on-off keying, spatial repetition, and maximum-ratio combining is optimal at low SNR.

  8. Drift Compression and Final Focus for Intense Heavy Ion Beams with Non-periodic, Time-dependent Lattice

    International Nuclear Information System (INIS)

    Hong Qin; Davidson, Ronald C.; Barnard, John J.; Lee, Edward P.

    2005-01-01

    In the currently envisioned configurations for heavy ion fusion, it is necessary to longitudinally compress the beam bunches by a large factor after the acceleration phase. Because the space-charge force increases as the beam is compressed, the beam size in the transverse direction will increase in a periodic quadrupole lattice. If an active control of the beam size is desired, a larger focusing force is needed to confine the beam in the transverse direction, and a non-periodic quadrupole lattice along the beam path is necessary. In this paper, we describe the design of such a focusing lattice using the transverse envelope equations. A drift compression and final focus lattice should focus the entire beam pulse onto the same focal spot on the target. This is difficult with a fixed lattice, because different slices of the beam may have different perveance and emittance. Four time-dependent magnets are introduced in the upstream of drift compression to focus the entire pulse onto the sam e focal spot. Drift compression and final focusing schemes are developed for a typical heavy ion fusion driver and for the Integrated Beam Experiment (IBX) being designed by the Heavy Ion Fusion Virtual National Laboratory

  9. Interaction of an intense relativistic electron beam with full density air

    International Nuclear Information System (INIS)

    Murphy, D.P.; Pechacek, R.E.; Raleigh, M.; Oliphant, W.F.; Meger, R.A.

    1987-01-01

    The authors report on a study of plasma generation by direct deposition of energy from an intense relativistic electron beam (REB) into full density air. It has been postulated that a sufficiently intense REB can fully ionize the air and produce a 2 eV plasma with Spitzer conductivity. The REB is produced from a field emission diode driven by either the Gamble I or Gamble II generator. Gamble I can produce a 0.60 MV, 300 kA, 50 ns REB and Gamble II can produce a 2.0 MV, 1.0 MA, 50 ns REB. The REB was injected into a short diagnostic cell containing full density air and up to a 14 kG solenoidal magnetic field. The diagnostics include beam and net current measurements, x-ray and visible photography and visible light spectroscopy

  10. Scaled signal intensity of uterine fibroids based on T2-weighted MR images: a potential objective method to determine the suitability for magnetic resonance-guided focused ultrasound surgery of uterine fibroids.

    Science.gov (United States)

    Park, Hyun; Yoon, Sang-Wook; Sokolov, Amit

    2015-12-01

    Magnetic Resonance-guided Focused Ultrasound Surgery (MRgFUS) is a non-invasive method to treat uterine fibroids. To help determine the patient suitability for MRgFUS, we propose a new objective measure: the scaled signal intensity (SSI) of uterine fibroids in T2 weighted MR images (T2WI). Forty three uterine fibroids in 40 premenopausal women were included in this retrospective study. SSI of each fibroid was measured from the screening T2WI by standardizing its mean signal intensity to a 0-100 scale, using reference intensities of rectus abdominis muscle (0) and subcutaneous fat (100). Correlation between the SSI and the non-perfused volume (NPV) ratio (a measure for treatment success) was calculated. Pre-treatment SSI showed a significant inverse-correlation with post treatment NPV ratio (p < 0.05). When dichotomizing NPV ratio at 45 %, the optimal cut off value of the SSI was found to be 16.0. A fibroid with SSI value 16.0 or less can be expected to have optimal responses. The SSI of uterine fibroids in T2WI can be suggested as an objective parameter to help in patient selection for MRgFUS. • Signal intensity of fibroid in MR images predicts treatment response to MRgFUS. • Signal intensity is standardized into scaled form using adjacent tissues as references. • Fibroids with SSI less than 16.0 are expected to have optimal responses.

  11. Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound.

    Science.gov (United States)

    Ding, Ting; Zhang, Siyuan; Fu, Quanyou; Xu, Zhian; Wan, Mingxi

    2014-01-01

    This paper presented an ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin-agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial-temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The design of a focused ultrasound transducer array for the treatment of stroke: a simulation study

    International Nuclear Information System (INIS)

    Pajek, Daniel; Hynynen, Kullervo

    2012-01-01

    High intensity focused ultrasound (HIFU) is capable of mechanically disintegrating blood clots at high pressures. Safe thrombolysis may require frequencies higher than those currently utilized by transcranial HIFU. Since the attenuation and focal distortion of ultrasound in bone increases at higher frequencies, resulting focal pressures are diminished. This study investigated the feasibility of using transcranial HIFU for the non-invasive treatment of ischemic stroke. The use of large aperture, 1.1–1.5 MHz phased arrays in targeting four clinically relevant vessel locations was simulated. Resulting focal sizes decreased with frequency, producing a maximum –3 dB depth of field and lateral width of 2.0 and 1.2 mm, respectively. Mean focal gains above an order of magnitude were observed in three of four targets and transducer intensities required to achieve thrombolysis were determined. Required transducer element counts are about an order of magnitude higher than what currently exists and so, although technically feasible, new arrays would need to be developed to realize this as a treatment modality for stroke. (paper)

  13. Microflow Cytometers with Integrated Hydrodynamic Focusing

    Directory of Open Access Journals (Sweden)

    Martin Schmidt

    2013-04-01

    Full Text Available This study demonstrates the suitability of microfluidic structures for high throughput blood cell analysis. The microfluidic chips exploit fully integrated hydrodynamic focusing based on two different concepts: Two-stage cascade focusing and spin focusing (vortex principle. The sample—A suspension of micro particles or blood cells—is injected into a sheath fluid streaming at a substantially higher flow rate, which assures positioning of the particles in the center of the flow channel. Particle velocities of a few m/s are achieved as required for high throughput blood cell analysis. The stability of hydrodynamic particle positioning was evaluated by measuring the pulse heights distributions of fluorescence signals from calibration beads. Quantitative assessment based on coefficient of variation for the fluorescence intensity distributions resulted in a value of about 3% determined for the micro-device exploiting cascade hydrodynamic focusing. For the spin focusing approach similar values were achieved for sample flow rates being 1.5 times lower. Our results indicate that the performances of both variants of hydrodynamic focusing suit for blood cell differentiation and counting. The potential of the micro flow cytometer is demonstrated by detecting immunologically labeled CD3 positive and CD4 positive T-lymphocytes in blood.

  14. Preliminary safety and efficacy results with robotic high-intensity focused ultrasound : A single center Indian experience

    Directory of Open Access Journals (Sweden)

    Shashikant Mishra

    2011-01-01

    Full Text Available Background : There are no Indian data of high-intensity focused ultrasound (HIFU. Being an alternative, still experimental modality, reporting short-term safety outcome is paramount. Aims : This study was aimed at to assess the safety and short-term outcome in patients with prostate cancer treated by HIFU. Settings and Design : A retrospective study of case records of 30 patients undergoing HIFU between January 2008 to September 2010 was designed and conducted. Materials and Methods : The procedural safety was analyzed at 3 months. Follow-up consisted of 3 monthly prostate-specific antigen (PSA levels and transrectal biopsy if indicated. All the patients had a minimum follow-up of 6 months. Results : A mean prostate volume of 26.9 ± 8.5 cm 3 was treated in a mean time of 115 ± 37.4 min. There was no intraoperative complication. The postoperative pain visual analogue score at day 0 was 2.1 ± 1.9 and at day 1 was 0.4 ± 0.8 on a scale of 1-10. Mean duration of perurethral catheter removal was 3.9 days. The complications after treatment were: LUTS in seven patients, stress incontinence in two, stricture in two, and symptomatic urinary tract infection in five. Average follow-up duration was 10.4 months (range, 6-20 months. Mean time to obtain PSA nadir was 6 ± 3 months with a median PSA nadir value of 0.3 ng/ml. Two patients had positive prostatic biopsy in the localized (high risk group. Conclusions : HIFU was safe in carcinoma prostate patients. The short-term results were efficacious in localized disease. The low complication rates and favorable functional outcome support the planning of further larger studies.

  15. Communication and Decision-Making About End-of-Life Care in the Intensive Care Unit.

    Science.gov (United States)

    Brooks, Laura Anne; Manias, Elizabeth; Nicholson, Patricia

    2017-07-01

    Clinicians in the intensive care unit commonly face decisions involving withholding or withdrawing life-sustaining therapy, which present many clinical and ethical challenges. Communication and shared decision-making are key aspects relating to the transition from active treatment to end-of-life care. To explore the experiences and perspectives of nurses and physicians when initiating end-of-life care in the intensive care unit. The study was conducted in a 24-bed intensive care unit in Melbourne, Australia. An interpretative, qualitative inquiry was used, with focus groups as the data collection method. Intensive care nurses and physicians were recruited to participate in a discipline-specific focus group. Focus group discussions were audio-recorded, transcribed, and subjected to thematic data analysis. Five focus groups were conducted; 17 nurses and 11 physicians participated. The key aspects discussed included communication and shared decision-making. Themes related to communication included the timing of end-of-life care discussions and conducting difficult conversations. Implementation and multidisciplinary acceptance of end-of-life care plans and collaborative decisions involving patients and families were themes related to shared decision-making. Effective communication and decision-making practices regarding initiating end-of-life care in the intensive care unit are important. Multidisciplinary implementation and acceptance of end-of-life care plans in the intensive care unit need improvement. Clear organizational processes that support the introduction of nurse and physician end-of-life care leaders are essential to optimize outcomes for patients, family members, and clinicians. ©2017 American Association of Critical-Care Nurses.

  16. Generation of Ultra-high Intensity Laser Pulses

    International Nuclear Information System (INIS)

    Fisch, N.J.; Malkin, V.M.

    2003-01-01

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10 25 W/cm 2 can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers

  17. Application of the Non-Intervention Principle to Low-Intensity Cyber Operations

    OpenAIRE

    Adamson, Liisi

    2015-01-01

    Present work focuses on the non-intervention principle and low-intensity cyber operations. More specifically, its main question is, whether the principle of non-intervention applies to low-intensity cyber operations and if it does, is the legal framework of non-intervention principle an effective way to regulate peacetime low-intensity cyber operations. Information Age and the rapid development of ICTs have provided hostile actors the opportunity to exploit the advantages cyberspace offe...

  18. Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas

    Science.gov (United States)

    Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Suzuki, Yuhei; Arai, Goki; Dinh, Thanh-Hung; Dunne, Padraig; O'Reilly, Fergal; Sokell, Emma; Liu, Luning; O'Sullivan, Gerry

    2015-08-01

    Extreme ultraviolet spectra of highly-charged rhenium ions were observed in the 1-7 nm region using two Nd:YAG lasers with pulse lengths of 150 ps and 10 ns, respectively, operating at a number of laser power densities. The maximum focused peak power density was 2.6 × 1014 W cm-2 for the former and 5.5 × 1012 W cm-2 for the latter. The Cowan suite of atomic structure codes and unresolved transition array (UTA) approach were used to calculate and interpret the emission properties of the different spectra obtained. The results show that n = 4-n = 4 and n = 4-n = 5 UTAs lead to two intense quasi-continuous emission bands in the 4.3-6.3 nm and 1.5-4.3 nm spectral regions. As a result of the different ion stage distributions in the plasmas induced by ps and ns laser irradiation the 1.5-4.3 nm UTA peak moves to shorter wavelength in the ps laser produced plasma spectra. For the ns spectrum, the most populated ion stage during the lifetime of this plasma that could be identified from the n = 4-n = 5 transitions was Re23+ while for the ps plasma the presence of significantly higher stages was demonstrated. For the n = 4-n = 4 4p64dN-4p54dN+1 + 4p64dN-14f transitions, the 4d-4f transitions contribute mainly in the most intense 4.7-5.5 nm region while the 4p-4d subgroup gives rise to a weaker feature in the 4.3-4.7 nm region. A number of previously unidentified spectral features produced by n = 4-n = 5 transitions in the spectra of Re XVI to Re XXXIX are identified.

  19. THE CRASH INTENSITY EVALUATION USING GENERAL CENTRALITY CRITERIONS AND A GEOGRAPHICALLY WEIGHTED REGRESSION

    Directory of Open Access Journals (Sweden)

    M. Ghadiriyan Arani

    2017-09-01

    Full Text Available Today, one of the social problems influencing on the lives of many people is the road traffic crashes especially the highway ones. In this regard, this paper focuses on highway of capital and the most populous city in the U.S. state of Georgia and the ninth largest metropolitan area in the United States namely Atlanta. Geographically weighted regression and general centrality criteria are the aspects of traffic used for this article. In the first step, in order to estimate of crash intensity, it is needed to extract the dual graph from the status of streets and highways to use general centrality criteria. With the help of the graph produced, the criteria are: Degree, Pageranks, Random walk, Eccentricity, Closeness, Betweenness, Clustering coefficient, Eigenvector, and Straightness. The intensity of crash point is counted for every highway by dividing the number of crashes in that highway to the total number of crashes. Intensity of crash point is calculated for each highway. Then, criteria and crash point were normalized and the correlation between them was calculated to determine the criteria that are not dependent on each other. The proposed hybrid approach is a good way to regression issues because these effective measures result to a more desirable output. R2 values for geographically weighted regression using the Gaussian kernel was 0.539 and also 0.684 was obtained using a triple-core cube. The results showed that the triple-core cube kernel is better for modeling the crash intensity.

  20. Collisional pumping for the production of intense spin-polarized neutral beams: target considerations. Revision

    International Nuclear Information System (INIS)

    Stearns, J.W.; Burrell, C.F.; Kaplan, S.N.; Pyle, R.V.; Ruby, L.; Schlachter, A.S.

    1985-04-01

    Polarized beams at intensity levels heretofore not considered feasible have recently been proposed for heating and fueling fusion plasmas. Polarized-beam fueling could increase fusion rates by 50% as well as allow control of the directionality of the fusion products. A process which we have recently described, and called collisional pumping, promises to produce beams of polarized ions vastly more intense than producible by current methods

  1. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    G. M. Weiss

    2017-12-01

    Full Text Available Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.

  2. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi

    Science.gov (United States)

    Weiss, Gabriella M.; Pfannerstill, Eva Y.; Schouten, Stefan; Sinninghe Damsté, Jaap S.; van der Meer, Marcel T. J.

    2017-12-01

    Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.

  3. The blues broaden, but the nasty narrows: attentional consequences of negative affects low and high in motivational intensity.

    Science.gov (United States)

    Gable, Philip; Harmon-Jones, Eddie

    2010-02-01

    Positive and negative affects high in motivational intensity cause a narrowing of attentional focus. In contrast, positive affects low in motivational intensity cause a broadening of attentional focus. The attentional consequences of negative affects low in motivational intensity have not been experimentally investigated. Experiment 1 compared the attentional consequences of negative affect low in motivational intensity (sadness) relative to a neutral affective state. Results indicated that low-motivation negative affect caused attentional broadening. Experiment 2 found that disgust, a high-motivation negative affect not previously investigated in attentional studies, narrowed attentional focus. These experiments support the conceptual model linking high-motivation affective states to narrowed attention and low-motivation affective states to broadened attention.

  4. Configurations of corporate strategy systems in knowledge-intensive enterprises : an explorative study

    NARCIS (Netherlands)

    Kemp, J.L.C.

    2006-01-01

    This research focuses on the specific contexts of knowledge-intensive enterprises (KIE). Knowledge-intensive enterprises are defined as purposeful, living systems with mainly knowledge workers in the primary process or at least in the technical staff when this has a dominant influence on the

  5. Diagnostic imaging in intensive care patients

    International Nuclear Information System (INIS)

    Afione, Cristina; Binda, Maria del C.

    2004-01-01

    Purpose: To determine the role of imaging diagnostic methods in the location of infection causes of unknown origin in the critical care patient. Material and methods: A comprehensive medical literature search has been done. Recommendations for the diagnostic imaging of septic focus in intensive care patients are presented for each case, with analysis based on evidence. The degree of evidence utilized has been that of Oxford Center for Evidence-based Medicine. Results: Nosocomial infection is the most frequent complication in the intensive care unit (25 to 33%) with high sepsis incidence rate. In order to locate the infection focus, imaging methods play an important role, as a diagnostic tool and to guide therapeutic procedures. The most frequent causes of infection are: ventilation associated pneumonia, sinusitis, intra-abdominal infections and an acute acalculous cholecystitis. This paper analyses the diagnostic imaging of hospital infection, with the evaluation of choice methods for each one and proposes an algorithm to assess the septic patient. Conclusion: There are evidences, with different degrees of recommendation, for the use of diagnostic imaging methods for infectious focuses in critical care patients. The studies have been selected based on their diagnostic precision, on the capacity of the medical team and on the availability of resources, considering the risk-benefit balance for the best safety of the patient. (author)

  6. Neutron spectra characteristics for the intense neutron source, INS

    International Nuclear Information System (INIS)

    Battat, M.; Dierckx, R.; Emigh, C.R.

    1977-01-01

    The Intense Neutron Source, INS, facility is presently under construction at the Los Alamos Scientific Laboratory. Its purpose is to provide a broad base for research work related to the radiation effects produced by 14-MeV neutrons from a D-T burn of a fusion reactor. The INS facility produces a D-T burn-like reaction from the collision of an intense tritium-ion beam with a supersonic jet target of deuterium gas. The reaction produces a typical D-T 14-MeV neutron spectrum. By adding a fission blanket surrounding the D-T ''burn,'' the neutron spectral shape may be tailored to match almost perfectly the anticipated first-wall spectra from presently proposed fusion reactors. With a blanket in place, the total production of neutrons can be as large as 3 x 10 16 n/s and experimental volumes of the order of 1000 cm 3 can be available at flux levels greater than 0.6 x 10 14 n/cm 2 s

  7. Influence of the focal point position on the properties of a laser-produced plasma

    International Nuclear Information System (INIS)

    Kasperczuk, A.; Pisarczyk, T.; Badziak, J.; Miklaszewski, R.; Parys, P.; Rosinski, M.; Wolowski, J.; Stenz, CH.; Ullschmied, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Rohlena, K.; Skala, J.; Pisarczyk, P.

    2007-01-01

    This paper deals with investigations of the influence of the focusing lens focal point position on the properties of a plasma produced by a defocused laser beam. The experiment was carried out at the Prague Asterix Laser System iodine laser [K. Jungwirth, A. Cejnarova, L. Juha, B. Kralikova, J. Krasa, E. Krousky, P. Krupickova, L. Laska, K. Masek, T. Mocek, M. Pfeifer, A. Prag, O. Renner, K. Rohlena, B. Rus, J. Skala, P. Straka, and J. Ullschmied, Phys. Plasmas 8, 2495 (2001)] by using the third harmonic of laser radiation (λ=0.438 μm), laser energy of 70 J, pulse duration of 250 ps (full width at half-maximum), and beam spot radii of 250 and 400 μm. Cu and Ta were chosen as target materials. The experimental data were obtained by means of a three-frame interferometric system, ion collectors, and crater replica techniques. The reported results allow formulating an important hypothesis that the laser-produced plasma modifies strongly the laser intensity distribution. It is shown how such a modification depends on the relative position and distance of the focal point to the target surface. Of particular importance is whether the focal point is located inside or in front of the target. The irradiation geometry is crucial for the possibility of generating plasma jets by laser radiation. Well-formed jet-like plasma structures can be created if an initially homogeneous laser intensity distribution is transformed in the plasma to an annular one

  8. Frequency conversion of high-intensity, femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  9. A Millimetre-Wave Cuboid Solid Immersion Lens with Intensity-Enhanced Amplitude Mask Apodization

    Science.gov (United States)

    Yue, Liyang; Yan, Bing; Monks, James N.; Dhama, Rakesh; Wang, Zengbo; Minin, Oleg V.; Minin, Igor V.

    2018-03-01

    Photonic jet is a narrow, highly intensive, weak-diverging beam propagating into a background medium and can be produced by a cuboid solid immersion lens (SIL) in both transmission and reflection modes. Amplitude mask apodization is an optical method to further improve the spatial resolution of a SIL imaging system via reduction of waist size of photonic jet, but always leading to intensity loss due to central masking of the incoming plane wave. In this letter, we report a particularly sized millimetre-wave cuboid SIL with the intensity-enhanced amplitude mask apodization for the first time. It is able to simultaneously deliver extra intensity enhancement and waist narrowing to the produced photonic jet. Both numerical simulation and experimental verification of the intensity-enhanced apodization effect are demonstrated using a copper-masked Teflon cuboid SIL with 22-mm side length under radiation of a plane wave with 8-mm wavelength. Peak intensity enhancement and the lateral resolution of the optical system increase by about 36.0% and 36.4% in this approach, respectively.

  10. Focus: Digital

    DEFF Research Database (Denmark)

    Technology has been an all-important and defining element within the arts throughout the 20th century, and it has fundamentally changed the ways in which we produce and consume music. With this Focus we investigate the latest developments in the digital domain – and their pervasiveness and rapid...... production and reception of contemporary music and sound art. With ‘Digital’ we present four composers' very different answers to how technology impact their work. To Juliana Hodkinson it has become an integral part of her sonic writing. Rudiger Meyer analyses the relationships between art and design and how...

  11. Producing a True Lignin Depolymerase for Biobleaching Softwood Kraft Pulp

    Energy Technology Data Exchange (ETDEWEB)

    Simo Sarkanen

    2002-02-04

    This project constituted an intensive effort devoted to producing, from the white-rot fungus Tramets Cingulata, a lignin degrading enzyme (lignin depolymerase) that is directly able to biobleach or delignify softwood kraft pulp brownstock. To this end, the solutions in which T. cingulata was grown contained dissolved kraft lignin which fulfilled two functions; it behaved as a lignin deploymerase substrate and it also appeared to act as an inducer of enzyme expression. However, the lignin depolymerase isoenzymes (and other extracellular T. cingulata enzymes) interacted very strongly with both the kraft lignin components and the fungal hypae, so the isolating these proteins from the culture solutions proved to be unexpectedly difficult. Even after extensive experimentation with a variety of protein purification techniques, only one approach appeared to be capable of purifying lignin depolymerases to homogeneity. Unfortunately the procedure was extremely laborious; it involved the iso electric focusing of concentrated buffer-exchanged culture solutions followed by electro-elution of the desired protein bands from the appropriate polyacrylamide gel segments

  12. Ultra-High Intensity Proton Accelerators and their Applications

    International Nuclear Information System (INIS)

    Weng, W. T.

    1997-01-01

    The science and technology of proton accelerators have progressed considerably in the past three decades. Three to four orders of magnitude increase in both peak intensity and average flux have made it possible to construct high intensity proton accelerators for modern applications, such as: spallation neutron sources, kaon factory, accelerator production of tritium, energy amplifier and muon collider drivers. The accelerator design focus switched over from intensity for synchrotrons, to brightness for colliders to halos for spallation sources. An overview of this tremendous progress in both accelerator science and technology is presented, with special emphasis on the new challenges of accelerator physics issues such as: H(-) injection, halo formation and reduction of losses

  13. Psychopathology after cardiac surgery and intensive care treatment

    NARCIS (Netherlands)

    Kok, Lotte

    2018-01-01

    In this thesis, the occurrence of stress-related psychopathology after cardiac surgery and intensive care treatment is assessed. We primarily focused on post-traumatic stress disorder (PTSD) and depression symptomatology, but the effects of benzodiazepine administration, delirium, anxiety, and

  14. Self-focusing of laser beam crossing a laser plasma

    International Nuclear Information System (INIS)

    Bakos, J.S.; Foeldes, I.B.; Ignacz, P.N.; Soerlei, Zs.

    1983-03-01

    A crossed-beam experiment was performed to clarify the mechanism of self-focusing in a laser produced spark. The plasma was created by one beam and self-focusing was observed in the weak probe beam which crossed the plasma. Experimental results show that the cause of self-focusing is the nonuniform heating mechanism. (author)

  15. Health-related quality of life after salvage high-intensity focused ultrasound (HIFU) treatment for locally radiorecurrent prostate cancer

    International Nuclear Information System (INIS)

    Berge, V.; Baco, E.; Dahl, A.A.; Karlsen, S.J.

    2011-01-01

    The objective of this study was to evaluate health-related quality of life (HRQOL) after salvage high-intensity focused ultrasound (HIFU) for locally radiorecurrent prostate cancer (PCa). Since June 2006 we have treated 61 patients consecutively by salvage HIFU. All patients were offered the University of California, Los Angeles Prostate Cancer Index (UCLA-PCI) questionnaire at baseline and at follow-up. Scores ranged from 0 (worst) to 100 (best). Clinically significant changes were defined as a minimum difference of 10 points between the baseline score and the score at follow-up. Fifty-seven patients (93%) had evaluable data at baseline, compared with 46 (75%) after treatment. The mean time lapse between HIFU treatment and questionnaire response was 17.5 months (range 6-29 months). The mean score for urinary function decreased from 79.7±12.1 prior to HIFU to 67.4±17.8 after HIFU (P<0.001). The mean score for sexual function decreased from 32.1±24.1 prior to HIFU to 17.2±17.0 after HIFU (P<0.001). There were no significant effects on bowel function. There was a significant reduction in the mean score for Physical HRQOL, but the mean score for Mental HRQOL was did not change significantly. Treatment of localized radiorecurrent PCa by salvage HIFU is associated with clinically significant reductions in urinary and sexual function domains after a mean follow-up of 17.5 months. (author)

  16. Energy intensities: Prospects and potential

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the previous chapter, the author described how rising activity levels and structural change are pushing toward higher energy use in many sectors and regions, especially in the developing countries. The extent to which more activity leads to greater energy use will depend on the energy intensity of end-use activities. In this chapter, the author presents an overview of the potential for intensity reductions in each sector over the next 10-20 years. It is not the author's intent to describe in detail the various technologies that could be employed to improve energy efficiency, which has been done by others (see, for example, Lovins ampersand Lovins, 1991; Goldembert et al., 1987). Rather, he discusses the key factors that will shape future energy intensities in different parts of the world, and gives a sense for the changes that could be attained if greater attention were given to accelerate efficiency improvement. The prospects for energy intensities, and the potential for reduction, vary among sectors and parts of the world. In the majority of cases, intensities are tending to decline as new equipment and facilities come into use and improvements are made on existing stocks. The effect of stock turnover will be especially strong in the developing countries, where stocks are growing at a rapid pace, and the Former East Bloc, where much of the existing industrial plant will eventually be retired and replaced with more modern facilities. While reductions in energy intensity are likely in most areas, there is a large divergence between the technical and economic potential for reducing energy intensities and the direction in which present trends are moving. In the next chapter, the author presents scenarios that illustrate where trends are pointing, and what could be achieved if improving energy efficiency were a focus of public policies. 53 refs., 4 figs., 2 tabs

  17. Development of intense pulsed heavy ion beam diode using gas puff plasma gun as ion source

    International Nuclear Information System (INIS)

    Ito, H.; Higashiyama, M.; Takata, S.; Kitamura, I.; Masugata, K.

    2006-01-01

    A magnetically insulated ion diode with an active ion source of a gas puff plasma gun has been developed in order to generate a high-intensity pulsed heavy ion beam for the implantation process of semiconductors and the surface modification of materials. The nitrogen plasma produced by the plasma gun is injected into the acceleration gap of the diode with the external magnetic field system. The ion diode is operated at diode voltage approx. =200 kV, diode current approx. =2 kA and pulse duration approx. =150 ns. A new acceleration gap configuration for focusing ion beam has been designed in order to enhance the ion current density. The experimental results show that the ion current density is enhanced by a factor of 2 and the ion beam has the ion current density of 27 A/cm 2 . In addition, the coaxial type Marx generator with voltage 200 kV and current 15 kA has been developed and installed in the focus type ion diode. The ion beam of ion current density approx. =54 A/cm 2 is obtained. To produce metallic ion beams, an ion source by aluminum wire discharge has been developed and the aluminum plasma of ion current density ∼70 A/cm 2 is measured. (author)

  18. Magnetic Resonance-Guided High-Intensity-Focused Ultrasound for Palliation of Painful Skeletal Metastases: A Pilot Study.

    Science.gov (United States)

    Chan, Michael; Dennis, Kristopher; Huang, Yuexi; Mougenot, Charles; Chow, Edward; DeAngelis, Carlo; Coccagna, Jennifer; Sahgal, Arjun; Hynynen, Kullervo; Czarnota, Gregory; Chu, William

    2017-10-01

    Bone is one of the most common sites of metastases, with bone metastases-related pain representing a significant source of morbidity among patients with cancer. Magnetic resonance-guided focused ultrasound is a noninvasive, outpatient modality with the potential for treating painful bone metastases. The aim of this study is to report our initial experience with magnetic resonance-guided focused ultrasound in the treatment of bone metastases and our preliminary analysis of urinary cytokine levels after therapy. This was a single-center pilot study of 10 patients with metastatic cancer to investigate the feasibility of magnetic resonance-guided focused ultrasound for primary pain control in device-accessible skeletal metastases. Treatments were performed on a clinical magnetic resonance-guided focused ultrasound system using a volumetric ablation technique. Primary efficacy was assessed using Brief Pain Inventory scores and morphine equivalent daily dose intake at 3 time points: before, day 14, and day 30 after the magnetic resonance-guided focused ultrasound treatment. Urine cytokines were measured 3 days before treatment and 2 days after the treatment. Of the 10 patients, 8 were followed up 14 days and 6 were followed up 30 days after the treatment. At day 14, 3 patients (37.5%) exhibited partial pain response and 4 patients (50%) exhibited an indeterminate response, and at day 30 after the treatment, 5 patients (83%) exhibited partial pain response. No treatment-related adverse events were recorded. Of the urine cytokines measured, only Transforming growth factor alpha (TGFα) demonstrated an overall decrease, with a trend toward statistical significance ( P = .078). Our study corroborates magnetic resonance-guided focused ultrasound as a feasible and safe modality as a primary, palliative treatment for painful bone metastases and contributes to the limited body of literature using magnetic resonance-guided focused ultrasound for this clinical indication.

  19. Some optical diagnostics for the plasma focus

    International Nuclear Information System (INIS)

    Korzhavin, V.M.

    1980-01-01

    Some aspects of studying plasma focus dynamics are reported. Particular efforts were made to develop an infrared (IR) diagnostics. The plasma focus is formed in a discharge chamber, when shock waves and plasma sheath cumulate on the axis as a result of the break-down of filling gas by the application of high voltage. The current J was measured with a Rogovsky coil, and the voltage U was measured with a capacitor divider. The current derivative was measured with magnetic probes, and X-ray and neutron emission intensities were measured with a plastic scintillator. The total neutron yield were measured by the activation method. The time-integrated soft X-ray pictures of plasma focus were taken with a pin-hole camera. The formation and disruption of plasma focus were studied by multi-picture speed photography. Laser interferometry was used to study the time-space distribution of plasma density. For the study of turbulence phenomena in plasma focus, a new type IR detector was employed. The results of measurements suggest that there exists some superthermal radiation during the second compression of plasma focus, but it is not so strong. (Kato, T.)

  20. Performance summary on a high power dense plasma focus x-ray lithography point source producing 70 nm line features in AlGaAs microcircuits

    International Nuclear Information System (INIS)

    Petr, Rodney; Bykanov, Alexander; Freshman, Jay; Reilly, Dennis; Mangano, Joseph; Roche, Maureen; Dickenson, Jason; Burte, Mitchell; Heaton, John

    2004-01-01

    A high average power dense plasma focus (DPF), x-ray point source has been used to produce ∼70 nm line features in AlGaAs-based monolithic millimeter-wave integrated circuits (MMICs). The DPF source has produced up to 12 J per pulse of x-ray energy into 4π steradians at ∼1 keV effective wavelength in ∼2 Torr neon at pulse repetition rates up to 60 Hz, with an effective x-ray yield efficiency of ∼0.8%. Plasma temperature and electron concentration are estimated from the x-ray spectrum to be ∼170 eV and ∼5·10 19 cm -3 , respectively. The x-ray point source utilizes solid-state pulse power technology to extend the operating lifetime of electrodes and insulators in the DPF discharge. By eliminating current reversals in the DPF head, an anode electrode has demonstrated a lifetime of more than 5 million shots. The x-ray point source has also been operated continuously for 8 h run times at 27 Hz average pulse recurrent frequency. Measurements of shock waves produced by the plasma discharge indicate that overpressure pulses must be attenuated before a collimator can be integrated with the DPF point source

  1. Energy intensity and its determinants in China's regional economies

    International Nuclear Information System (INIS)

    Wu Yanrui

    2012-01-01

    This paper contributes to the existing literature as well as policy debates by examining energy intensity and its determinants in China's regional economies. The analysis is based on a comprehensive database of China's regional energy balance constructed for this project. Through its focus on regional China, this study extends the existing literature, which mainly covers nationwide studies. It is found in this paper that energy intensity declined substantially in China. The main contributing factor is the improvement in energy efficiency. Changes in the economic structure have so far affected energy intensity modestly. Thus there is considerable scope to reduce energy intensity through the structural transformation of the Chinese economy in the future. - Highlights: ► First study examining energy intensity and its determinants using sectoral data in Chinese regions. ► Major findings. ► Decline in energy intensity is due to the rise in energy efficiency. ► Economic structural change has played little role. ► Growth in capital intensity alone would not lead to the decline in energy consumption.

  2. High-quality laser-produced proton beam realized by the application of a synchronous RF electric field

    International Nuclear Information System (INIS)

    Nakamura, Shu; Ikegami, Masahiro; Iwashita, Yoshihisa; Shirai, Toshiyuki; Tongu, Hiromu; Souda, Hikaru; Noda, Akira; Daido, Hiroyuki; Mori, Michiaki; Kado, Masataka; Sagisaka, Akito; Ogura, Koichi; Nishiuchi, Mamiko; Orimo, Satoshi; Hayashi, Yukio; Yogo, Akifumi; Pirozhkov, Alexander S.; Bulanov, Sergei V.; Esirkepov, Timur; Nagashima, Akira; Kimura, Toyoaki; Tajima, Toshiki; Takeuchi, Takeshi; Fukumi, Atsushi; Li, Zhong

    2007-01-01

    A short-pulse (∼210fs) high-power (∼1 TW) laser was focused on a tape target 3 and 5 μm in thickness to a size of 11 x 15 μm 2 with an intensity of 3 x 10 17 W/cm 2 . Protons produced by this laser with an energy spread of 100% were found to be improved to create peaks in the energy distribution with a spread of ∼7% by the application of the RF electric field with an amplitude of ±40kV synchronous to the pulsed laser. This scheme combines the conventional RF acceleration technique with laser-produced protons for the first time. It is possible to be operated up to 10 Hz, and is found to have good reproducibility for every laser shot with the capability of adjusting the peak positions by control of the relative phase between the pulsed laser and the RF electric field. (author)

  3. Simulation Of Gas Focused Liquid Jets

    OpenAIRE

    Zahoor, Rizwan

    2018-01-01

    The main aim of dissertation is to develop an experimentally verified computational fluid dynamic (CFD) model of micron-sized liquid jet, produced by an injection molded Gas Dynamic Virtual Nozzle (GDVN). In these nozzles, liquid jets are efficiently orientedly transporting mass and momentum. They are produced by intelligently projecting hydrodynamic focusing effect from a high-speed stream of a co-flowing lower density and lower viscosity gas on a stream of liquid from a feeding capillary. L...

  4. The proposed INEL intense slow positron source, beam line, and positron microscope facility

    International Nuclear Information System (INIS)

    Makowitz, H.; Denison, A.B.; Brown, B.

    1993-01-01

    A program is currently underway at the Idaho National Engineering Laboratory (INEL) to design and construct an Intense Slow Positron Beam Facility with an associated Positron Microscope. Positron beams have been shown to be valuable research tools and have potential application in industrial processing and nondestructive evaluation (microelectronics, etc.). The limit of resolution or overall usefulness of the technique has been limited because of lack of sufficient intensity. The goal of the INEL positron beam is ≥ 10 12 slow e+/s over a 0.03 cm diameter which represents a 10 3 to 10 4 advancement in beam current over existing beam facilities. The INEL is an ideal site for such a facility because of the nuclear reactors capable of producing intense positron sources and the personnel and facilities capable of handling high levels of radioactivity. A design using 58 Co with moderators and remoderators in conjunction with electrostatic positron beam optics has been reached after numerous computer code studies. Proof-of-principle electron tests have demonstrated the feasibility of the large area source focusing optics. The positron microscope development is occurring in conjunction with the University of Michigan positron microscope group. Such a Beam Facility and associated Intense Slow Positron Source (ISPS) can also be utilized for the generation and study of positron, and positron electron plasmas at ≤ 10 14 particles/cm 3 with plasma temperatures ranging from an eV to many keV, as well as an intense x-ray source via positron channeling radiation. The possibility of a tunable x-ray laser based on channeling positron radiation also exists. In this discussion the authors will present a progress report on various activities associated with the INEL ISPS

  5. Relativistic self-focusing of intense laser beam in thermal collisionless quantum plasma with ramped density profile

    Directory of Open Access Journals (Sweden)

    S. Zare

    2015-04-01

    Full Text Available Propagation of a Gaussian x-ray laser beam has been analyzed in collisionless thermal quantum plasma with considering a ramped density profile. In this density profile due to the increase in the plasma density, an earlier and stronger self-focusing effect is noticed where the beam width oscillates with higher frequency and less amplitude. Moreover, the effect of the density profile slope and the initial plasma density on the laser propagation has been studied. It is found that, by increasing the initial density and the ramp slope, the laser beam focuses faster with less oscillation amplitude, smaller laser spot size and more oscillations. Furthermore, a comparison is made among the laser self-focusing in thermal quantum plasma, cold quantum plasma and classical plasma. It is realized that the laser self-focusing in the quantum plasma becomes stronger in comparison with the classical regime.

  6. Fusion of Range and Intensity Information for View Invariant Gesture Recognition

    DEFF Research Database (Denmark)

    Holte, Michael Boelstoft; Moeslund, Thomas B.; Fihl, Preben

    2008-01-01

    This paper presents a system for view invariant gesture recognition. The approach is based on 3D data from a CSEM SwissRanger SR-2 camera. This camera produces both a depth map as well as an intensity image of a scene. Since the two information types are aligned, we can use the intensity image...

  7. A Deformable Model for Bringing Particles in Focus

    DEFF Research Database (Denmark)

    Dahl, Anders Lindbjerg; Jørgensen, Thomas Martini; Larsen, Rasmus

    2010-01-01

    and intensity, which enables an estimation of the out-of-focus blur of the particle. Using the particle model param- eters in a regression model we are able to infer 3D information about individual particles. Based on the defocus information we are able to infer the true size and shape of the particles. We...

  8. Radiation produced by electrons incident on molecules

    International Nuclear Information System (INIS)

    Moehlman, G.R.

    1977-01-01

    The work described in this thesis deals with light intensity measurements of emission spectra (1850-9000 A) produced by a continuous or pulsed beam of monoenergetic electrons (0 - 2000 eV) incident on a variety of molecular gases like H 2 , D 2 , H 2 O, HCl, NH 3 and several hydrocarbons. The emission spectra are dominated by fluorescence from excited fragments produced via dissociative excitation, besides fluorescence from excited parent molecules themselves. The experimental results thus obtained are expressed in terms of emission cross sections and lifetimes

  9. Scaled signal intensity of uterine fibroids based on T2-weighted MR images: a potential objective method to determine the suitability for magnetic resonance-guided focused ultrasound surgery of uterine fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun [CHA University, Comprehensive Gynecologic Cancer Center, CHA Bundang Medical Center, Gyunggi-do (Korea, Republic of); Yoon, Sang-Wook [CHA University, Department of Diagnostic Radiology, CHA Bundang Medical Center, Sungnam-si, Gyunggi-do (Korea, Republic of); Sokolov, Amit [InSightec Ltd., Haifa (Israel)

    2015-12-15

    Magnetic Resonance-guided Focused Ultrasound Surgery (MRgFUS) is a non-invasive method to treat uterine fibroids. To help determine the patient suitability for MRgFUS, we propose a new objective measure: the scaled signal intensity (SSI) of uterine fibroids in T2 weighted MR images (T2WI). Forty three uterine fibroids in 40 premenopausal women were included in this retrospective study. SSI of each fibroid was measured from the screening T2WI by standardizing its mean signal intensity to a 0-100 scale, using reference intensities of rectus abdominis muscle (0) and subcutaneous fat (100). Correlation between the SSI and the non-perfused volume (NPV) ratio (a measure for treatment success) was calculated. Pre-treatment SSI showed a significant inverse-correlation with post treatment NPV ratio (p < 0.05). When dichotomizing NPV ratio at 45 %, the optimal cut off value of the SSI was found to be 16.0. A fibroid with SSI value 16.0 or less can be expected to have optimal responses. The SSI of uterine fibroids in T2WI can be suggested as an objective parameter to help in patient selection for MRgFUS. (orig.)

  10. Measurements of acoustic pressure at high amplitudes and intensities

    International Nuclear Information System (INIS)

    Crum, L A; Bailey, M R; Kaczkowski, P; McAteer, J A; Pishchalnikov, Y A; Sapozhnikov, O A

    2004-01-01

    In our research group, we desire measurements of the large pressure amplitudes generated by the shock waves used in shock wave lithotripsy (SWL) and the large acoustic intensities used in High Intensity Focused Ultrasound (HIFU). Conventional piezoelectric or PVDF hydrophones can not be used for such measurements as they are damaged either by cavitation, in SWL applications, or heat, in HIFU applications. In order to circumvent these difficulties, we have utilized optical fiber hydrophones in SWL that do not cavitate, and small glass probes and a scattering technique for measurements of large HIFU intensities. Descriptions of these techniques will be given as well as some typical data

  11. Laser ablation in CdZnTe crystal due to thermal self-focusing: Secondary phase hydrodynamic expansion

    Energy Technology Data Exchange (ETDEWEB)

    Medvid’, A., E-mail: mychko@latnet.lv [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia); Mychko, A.; Dauksta, E. [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia); Kosyak, V. [Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy (Ukraine); Grase, L. [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia)

    2016-06-30

    Highlights: • We found two laser induced threshold intensity for CdZnTe crystal. • The laser beam self-focusing lead to increase of intensity of laser radiation at exit surface. • Laser ablation is a result of Te inclusion hydrodynamic expansion. - Abstract: The present paper deals with the laser ablation in CdZnTe crystal irradiated by pulsed infrared laser. Two values of threshold intensities of the laser ablation were determined, namely of about 8.5 and 6.2 MW/cm{sup 2} for the incident and the rear surfaces, correspondingly. Lower intensity of the laser ablation for the rear surface is explained by thermal self-focusing of the laser beam in the CdZnTe crystal due to heating of Te inclusions with a following hydrodynamic expansion.

  12. Simulation of intense short-pulse laser-plasma interaction

    International Nuclear Information System (INIS)

    Yamagiwa, Mitsuru

    2000-01-01

    We have completed the massive parallelization of a 2-dimensional giga-particle code and have achieved a 530-fold acceleration rate with 512 processing elements (PE's). Using this we have implemented a simulation of the interaction of a solid thin film and a high intensity laser and have discovered a phenomenon in which high quality short pulses from the far ultraviolet to soft X-rays are generated at the back surface of the thin layer. We have also introduced the atomic process database code (Hullac) and have the possibility for high precision simulations of X-ray laser radiation. With respect to laser acceleration we have the possibility to quantitatively evaluate relativistic self-focusing assumed to occur in higher intensity fields. Ion acceleration from a solid target and an underdense plasma irradiated by an intense and an ultra intense laser, respectively, has also been studied by particle-in-cell (PIC) simulations. (author)

  13. Simulation of QED effects in ultrahigh intensity laser-plasma interaction

    International Nuclear Information System (INIS)

    Kostyukov, I.; Nerush, E.

    2010-01-01

    Complete text of publication follows. Due to an impressive progress in laser technology, laser pulses with peak intensity of nearly 2 x 10 22 W/cm 2 are now available in laboratory. When the matter is irradiated by so intense laser pulses high energy density plasma is produced. Besides of fundamental interest such plasma is the efficient source of particles and radiation with extreme parameters that opens bright perspectives in developments of advanced particle accelerators, next generation of radiation sources, laboratory modelling of astrophysics phenomena etc. Even high laser intensity the radiation reaction and QED effects become important. One of the QED effects, which recently attracts much attention, is the electron-positron plasma creation in strong laser field. The plasma can be produced via electromagnetic cascades: the seeded charged particles is accelerated in the field of counter-propagating laser pulses, then they emit energetic photons, the photons by turn decay in the laser field and create electron-positron pairs. The pair particles accelerated in the laser field produce new generation of the photons and pairs. For self-consistent study of the electron-positron plasma dynamics in the laser field we develop 2D code based on particle-in-cell and Monte-Carlo methods. The electron, positron and photon dynamics as well as evolution of the plasma and laser fields are calculated by PIC technique while photon emission and pair production are calculated by Monte-Carlo method. We simulate pair production in the field of counter-propagating linearly polarized laser pulses. It is shown that for the laser intensity above threshold the plasma production becomes so intense that the laser pulse are strongly absorbed in the plasma. The laser intensity threshold and the rate of laser field absorption are calculated. Acknowledgements. This work has been supported by federal target 'The scientific and scientific-pedagogical personnel of innovation in Russia' and by

  14. The unexpected challenges of using energy intensity as a policy objective: Examining the debate over the APEC energy intensity goal

    International Nuclear Information System (INIS)

    Samuelson, Ralph D.

    2014-01-01

    Aims: Energy intensity (energy demand per unit of economic output) is one of the most widely used indicators of energy efficiency in energy policy discussions. Yet its application in real-world policymaking can be surprisingly problematical. This paper aims to provide guidance to governments and organizations considering using energy intensity as a policy objective. Scope: In 2007 the APEC community adopted, then in 2011 revised, an APEC region-wide energy intensity improvement goal. This paper presents a case study of that experience, focusing on three key ‘lessons learned’. These lessons are not original findings. However, none of them have received the recognition they deserve, and consequently, they came as a surprise to many of those involved in APEC's policy discussions. Conclusions: The three lessons are as follows: (1) Energy intensity improvement is happening surprisingly quickly, but not quickly enough to meet the world's energy challenges. (2) It is difficult to find a definition of energy intensity that can make it suitable for use as an indicator of regional energy efficiency. (3) Whether the GDP's of individual economies are converted to common currency using market exchange rates or purchasing power parity (PPP) can dramatically change regional energy intensity improvement calculations. - Highlights: • APEC adopted, then subsequently revised, an energy intensity reduction goal. • This is a case study of APEC's use of energy intensity as a policy objective. • Energy intensity is declining more rapidly than many policymakers realized. • The definition of energy intensity adopted can dramatically change the incentives. • Currency conversion methodologies can dramatically change the calculations

  15. Nuclear diagnostics of high intensity laser plasma interactions

    International Nuclear Information System (INIS)

    Krushelnick, K.; Santala, M.I.K.; Beg, F.N.; Clark, E.L.; Dangor, A.E.; Tatarakis, M.; Watts, I.; Wei, M.S.; Zepf, M.; Ledingham, K.W.D.; McCanny, T.; Spencer, I.; Clarke, R.J.; Norreys, P.A.

    2002-01-01

    Nuclear activation has been observed in materials exposed to energetic protons and heavy ions generated from high intensity laser-solid interactions (at focused intensities up to 5x10 19 W/cm 2 ). The energy spectrum of the protons is determined through the use of these nuclear activation techniques and is found to be consistent with other ion diagnostics. Heavy ion fusion reactions and large neutron fluxes from the (p, n) reactions were also observed. The reduction of proton emission and increase in heavy ion energy using heated targets was also observed

  16. Hard X-ray dosimetry of a plasma focus suitable for industrial radiography

    Science.gov (United States)

    Knoblauch, P.; Raspa, V.; Di Lorenzo, F.; Clausse, A.; Moreno, C.

    2018-04-01

    Dosimetric measurements of the hard X-ray emission by a small-chamber 4.7 kJ Mather-type plasma focus device capable of producing neat radiographs of metallic objects, were carried out with a set of thermoluminescent detectors TLD 700 (LiF:Mg,Ti). Measurements of the hard X-ray dose dependence with the angular position relative to the electrodes axis, are presented. The source-detector distance was changed in the range from 50 to 100 cm, and the angular positions were explored between ± 70°, relative to the symmetry axis of the electrodes. On-axis measurements show that the X-ray intensity is uniform within a half aperture angle of 6°, in which the source delivers an average dose of (1.5 ± 0.1) mGy/sr per shot. Monte Carlo calculations suggest that the energy of the electron beam responsible for the X-ray emission ranges 100-600 keV.

  17. Tracheotomy in the intensive care unit: Guidelines from a French expert panel: The French Intensive Care Society and the French Society of Anaesthesia and Intensive Care Medicine.

    Science.gov (United States)

    Trouillet, Jean-Louis; Collange, Olivier; Belafia, Fouad; Blot, François; Capellier, Gilles; Cesareo, Eric; Constantin, Jean-Michel; Demoule, Alexandre; Diehl, Jean-Luc; Guinot, Pierre-Grégoire; Jegoux, Franck; L'Her, Erwan; Luyt, Charles-Edouard; Mahjoub, Yazine; Mayaux, Julien; Quintard, Hervé; Ravat, François; Vergez, Sébastien; Amour, Julien; Guillot, Max

    2018-06-01

    Tracheotomy is widely used in intensive care units, albeit with great disparities between medical teams in terms of frequency and modality. Indications and techniques are, however, associated with variable levels of evidence based on inhomogeneous or even contradictory literature. Our aim was to conduct a systematic analysis of the published data in order to provide guidelines. We present herein recommendations for the use of tracheotomy in adult critically ill patients developed using the grading of recommendations assessment, development and evaluation (GRADE) method. These guidelines were conducted by a group of experts from the French Intensive Care Society (Société de réanimation de langue française) and the French Society of Anesthesia and Intensive Care Medicine (Société francaise d'anesthésie réanimation) with the participation of the French Emergency Medicine Association (Société française de médecine d'urgence), the French Society of Otorhinolaryngology. Sixteen experts and two coordinators agreed to consider questions concerning tracheotomy and its practical implementation. Five topics were defined: indications and contraindications for tracheotomy in intensive care, tracheotomy techniques in intensive care, modalities of tracheotomy in intensive care, management of patients undergoing tracheotomy in intensive care, and decannulation in intensive care. The summary made by the experts and the application of GRADE methodology led to the drawing up of 8 formal guidelines, 10 recommendations, and 3 treatment protocols. Among the 8 formal guidelines, 2 have a high level of proof (Grade 1±) and 6 a low level of proof (Grade 2±). For the 10 recommendations, GRADE methodology was not applicable and instead 10 expert opinions were produced. Copyright © 2018 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.

  18. K and L X-ray emission intensities of some radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Verma, H R; Pal, D [Punjabi Univ., Patiala (India). Dept. of Physics

    1985-01-01

    The K and L x-ray emission intensities per 100 disintegrations have been calculated for some radionuclides using the latest adopted data for gamma-ray intensities, electron capture and internal conversion coefficients for the parent nuclides, fluorescence yield values, Coster-Kronig transition probabilities, average total number of primary L shell vacancies produced in the decay of K shell vacancies and emission rates for various shells and subshells for the daughter nuclei. The results are in good agreement with theoretical and experimental values for the K x-ray intensities. There are no experimental results available to compare with the present calculations for the L x-ray intensities; however, there is a marked discrepancy in the L..cap alpha.. and L..beta.. intensities available on the basis of theoretical estimates.

  19. Energy transport in laser produced plasmas

    International Nuclear Information System (INIS)

    Key, M.H.

    1989-06-01

    The study of energy transport in laser produced plasmas is of great interest both because it tests and develops understanding of several aspects of basic plasma physics and also because it is of central importance in major applications of laser produced plasmas including laser fusion, the production of intense X-ray sources, and X-ray lasers. The three sections cover thermal electrons (energy transport in one dimension, plane targets and lateral transport from a focal spot, thermal smoothing, thermal instabilities), hot electrons (preheating in one dimension, lateral transport from a focal spot) and radiation (preheating in one dimension, lateral transport and smoothing, instabilities). (author)

  20. Suggestions for the New Social Entrepreneurship Initiative: Focus on Building a Body of Research-Proven Programs, Shown to Produce Major Gains in Education, Poverty Reduction, Crime Prevention, and Other Areas

    Science.gov (United States)

    Coalition for Evidence-Based Policy, 2009

    2009-01-01

    This paper outlines a possible approach to implementing the Social Entrepreneurship initiative, focused on building a body of research-proven program models/strategies, and scaling them up, so as to produce major progress in education, poverty reduction, crime prevention, and other areas. The paper summarizes the rationale for this approach, then…