WorldWideScience

Sample records for producing enterotoxigenic escherichia

  1. ANIMAL ENTEROTOXIGENIC ESCHERICHIA COLI

    Science.gov (United States)

    Dubreuil, J. Daniel; Isaacson, Richard E.; Schifferli, Dieter M.

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors; adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17 and F18 fimbriae. Once established in the animal small intestine, ETEC produces enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes; heat-labile toxin that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This chapter describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics and the identification of potential new targets identified by genomics are presented in the context of animal ETEC. PMID:27735786

  2. Structural insight in the inhibition of adherence of F4 fimbriae producing enterotoxigenic Escherichia coli by llama single domain antibodies.

    Science.gov (United States)

    Moonens, Kristof; Van den Broeck, Imke; Okello, Emmanuel; Pardon, Els; De Kerpel, Maia; Remaut, Han; De Greve, Henri

    2015-02-24

    Enterotoxigenic Escherichia coli that cause neonatal and post-weaning diarrhea in piglets express F4 fimbriae to mediate attachment towards host receptors. Recently we described how llama single domain antibodies (VHHs) fused to IgA, produced in Arabidopsis thaliana seeds and fed to piglets resulted in a progressive decline in shedding of F4 positive ETEC bacteria. Here we present the structures of these inhibiting VHHs in complex with the major adhesive subunit FaeG. A conserved surface, distant from the lactose binding pocket, is targeted by these VHHs, highlighting the possibility of targeting epitopes on single-domain adhesins that are non-involved in receptor binding.

  3. Feed Fermentation with Reuteran- and Levan-Producing Lactobacillus reuteri Reduces Colonization of Weanling Pigs by Enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Yang, Yan; Galle, Sandra; Le, Minh Hong Anh; Zijlstra, Ruurd T; Gänzle, Michael G

    2015-09-01

    This study determined the effect of feed fermentation with Lactobacillus reuteri on growth performance and the abundance of enterotoxigenic Escherichia coli (ETEC) in weanling piglets. L. reuteri strains produce reuteran or levan, exopolysaccharides that inhibit ETEC adhesion to the mucosa, and feed fermentation was conducted under conditions supporting exopolysaccharide formation and under conditions not supporting exopolysaccharide formation. Diets were chosen to assess the impact of organic acids and the impact of viable L. reuteri bacteria. Fecal samples were taken throughout 3 weeks of feeding; at the end of the 21-day feeding period, animals were euthanized to sample the gut digesta. The feed intake was reduced in pigs fed diets containing exopolysaccharides; however, feed efficiencies did not differ among the diets. Quantification of L. reuteri by quantitative PCR (qPCR) detected the two strains used for feed fermentation throughout the intestinal tract. Quantification of E. coli and ETEC virulence factors by qPCR demonstrated that fermented diets containing reuteran significantly (P reuteri reduced the level of colonization of weaning piglets with ETEC, and feed fermentation supplied concentrations of reuteran that may specifically contribute to the effect on ETEC. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Structural and functional insight into the carbohydrate receptor binding of F4 fimbriae-producing enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Moonens, Kristof; Van den Broeck, Imke; De Kerpel, Maia; Deboeck, Francine; Raymaekers, Hanne; Remaut, Han; De Greve, Henri

    2015-03-27

    Enterotoxigenic Escherichia coli (ETEC) strains are important causes of intestinal disease in humans and lead to severe production losses in animal farming. A range of fimbrial adhesins in ETEC strains determines host and tissue tropism. ETEC strains expressing F4 fimbriae are associated with neonatal and post-weaning diarrhea in piglets. Three naturally occurring variants of F4 fimbriae (F4ab, F4ac, and F4ad) exist that differ in the primary sequence of their major adhesive subunit FaeG, and each features a related yet distinct receptor binding profile. Here the x-ray structure of FaeGad bound to lactose provides the first structural insight into the receptor specificity and mode of binding by the poly-adhesive F4 fimbriae. A small D'-D″-α1-α2 subdomain grafted on the immunoglobulin-like core of FaeG hosts the carbohydrate binding site. Two short amino acid stretches Phe(150)-Glu(152) and Val(166)-Glu(170) of FaeGad bind the terminal galactose in the lactosyl unit and provide affinity and specificity to the interaction. A hemagglutination-based assay with E. coli expressing mutant F4ad fimbriae confirmed the elucidated co-complex structure. Interestingly, the crucial D'-α1 loop that borders the FaeGad binding site adopts a different conformation in the two other FaeG variants and hints at a heterogeneous binding pocket among the FaeG serotypes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Single Chain Variable Fragments Produced in Escherichia coli against Heat-Labile and Heat-Stable Toxins from Enterotoxigenic E. coli.

    Directory of Open Access Journals (Sweden)

    Christiane Y Ozaki

    Full Text Available Diarrhea is a prevalent pathological condition frequently associated to the colonization of the small intestine by enterotoxigenic Escherichia coli (ETEC strains, known to be endemic in developing countries. These strains can produce two enterotoxins associated with the manifestation of clinical symptoms that can be used to detect these pathogens. Although several detection tests have been developed, minimally equipped laboratories are still in need of simple and cost-effective methods. With the aim to contribute to the development of such diagnostic approaches, we describe here two mouse hybridoma-derived single chain fragment variable (scFv that were produced in E. coli against enterotoxins of ETEC strains.Recombinant scFv were developed against ETEC heat-labile toxin (LT and heat-stable toxin (ST, from previously isolated hybridoma clones. This work reports their design, construction, molecular and functional characterization against LT and ST toxins. Both antibody fragments were able to recognize the cell-interacting toxins by immunofluorescence, the purified toxins by ELISA and also LT-, ST- and LT/ST-producing ETEC strains.The developed recombinant scFvs against LT and ST constitute promising starting point for simple and cost-effective ETEC diagnosis.

  6. GLYCOSYLATED YGHJ POLYPEPTIDES FROM ENTEROTOXIGENIC ESCHERICHIA COLI (ETEC)

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to glycosylated YghJ polypeptides from or derived from enterotoxigenic Escherichia coli (ETEC) that are immunogenic. In particular, the present invention relates to compositions or vaccines comprising the polypeptides and their application in immunization, vaccination...

  7. Prevalence and behavior of multidrug-resistant shiga toxin-producing Escherichia coli, enteropathogenic E. coli and enterotoxigenic E. coli on coriander.

    Science.gov (United States)

    Gómez-Aldapa, Carlos A; Segovia-Cruz, Jesús A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Salas-Rangel, Laura P; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-10-01

    The prevalence and behavior of multidrug-resistant diarrheagenic Escherichia coli pathotypes on coriander was determined. One hundred coriander samples were collected from markets. Generic E. coli were determined using the most probable number procedure. Diarrheagenic E. coli pathotypes (DEPs) were identified using two multiplex polymerase chain reaction procedures. Susceptibility to sixteen antibiotics was tested for the isolated DEPs strains by standard test. The behavior of multidrug-resistant DEPs isolated from coriander was determined on coriander leaves and chopped coriander at 25°± 2 °C and 3°± 2 °C. Generic E. coli and DEPs were identified, respectively, in 43 and 7% of samples. Nine DEPs strains were isolated from positive coriander samples. The identified DEPs included Shiga toxin-producing E. coli (STEC, 4%) enterotoxigenic E. coli (ETEC, 2%) and enteropathogenic E. coli (EPEC, 1%). All isolated DEPs strains exhibited multi-resistance to antibiotics. On inoculated coriander leaves stored at 25°± 2 °C or 3°± 2 °C, no growth was observed for multidrug-resistant DEPs strains. However, multidrug-resistant DEPs strains grew in chopped coriander: after 24 h at 25° ± 2 °C, DEPs strains had grown to approximately 3 log CFU/g. However, at 3°± 2 °C the bacterial growth was inhibited. To the best of our knowledge, this is the first report of the presence and behavior of multidrug-resistant STEC, ETEC and EPEC on coriander and chopped coriander. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Complete Genome Sequence of Enterotoxigenic Escherichia coli Siphophage Seurat.

    Science.gov (United States)

    Doan, Dung P; Lessor, Lauren E; Hernandez, Adriana C; Kuty Everett, Gabriel F

    2015-02-26

    Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea in developing countries. Bacteriophage therapy has the potential to aid in the prevention and treatment of ETEC-related illness. To that end, we present here the complete genome of ETEC siphophage Seurat and describe its major features. Copyright © 2015 Doan et al.

  9. Presence of non-O157 Shiga toxin-producing Escherichia coli, enterotoxigenic E. coli, enteropathogenic E. coli and Salmonella in fresh beetroot (Beta vulgaris L.) juice from public markets in Mexico.

    Science.gov (United States)

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Bautista-De León, Haydee; Castro-Rosas, Javier

    2014-10-01

    Unpasteurized juice has been associated with foodborne illness outbreaks for many years. Beetroot is a vegetable grown all over the world in temperate areas. In Mexico beetroot is consumed cooked in salads or raw as fresh unpasteurized juices. No data about the microbiological quality or safety of unpasteurized beetroot juices are available. Indicator bacteria, diarrheagenic Escherichia coli pathotypes (DEP) and Salmonella frequencies were determined for fresh unpasteurized beetroot juice from restaurants. One hundred unpasteurized beetroot juice samples were collected from public markets in Pachuca, Mexico. Frequencies in these samples were 100%, 75%, 53%, 9% and 4% of positive samples, for coliform bacteria, fecal coliforms, E. coli, DEP and Salmonella, respectively. Identified DEP included enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC) and non-O157 Shiga toxin-producing E. coli (STEC). Identified Salmonella serotypes included Typhimurium and Enteritidis. This is the first report of microbiological quality and atypical EPEC, ETEC, non-O157 STEC and Salmonella isolation from fresh raw beetroot juice in Mexico. Fresh raw beetroot juice from markets is very probably an important factor contributing to the endemicity of atypical EPEC, ETEC, non-O157 STEC and Salmonella-related gastroenteritis in Mexico. © 2014 Society of Chemical Industry.

  10. Serum Antibodies Protect against Intraperitoneal Challenge with Enterotoxigenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xinghong Yang

    2011-01-01

    Full Text Available To assess whether anticolonization factor antigen I (CFA/I fimbriae antibodies (Abs from enterotoxigenic Escherichia coli (ETEC can protect against various routes of challenge, BALB/c mice were immunized with a live attenuated Salmonella vaccine vector expressing CFA/I fimbriae. Vaccinated mice elicited elevated systemic IgG and mucosal IgA Abs, unlike mice immunized with the empty Salmonella vector. Mice were challenged with wild-type ETEC by the oral, intranasal (i.n., and intraperitoneal (i.p. routes. Naïve mice did not succumb to oral challenge, but did to i.n. challenge, as did immunized mice; however, vaccinated mice were protected against i.p. ETEC challenge. Two intramuscular (i.m. immunizations with CFA/I fimbriae without adjuvant conferred 100% protection against i.p. ETEC challenge, while a single 30 μg dose conferred 88% protection. Bactericidal assays showed that ETEC is highly sensitive to anti-CFA/I sera. These results suggest that parenteral immunization with purified CFA/I fimbriae can induce protective Abs and may represent an alternative method to elicit protective Abs for passive immunity to ETEC.

  11. Binding of collagens to an enterotoxigenic strain of Escherichia coli

    International Nuclear Information System (INIS)

    Visai, L.; Speziale, P.; Bozzini, S.

    1990-01-01

    An enterotoxigenic strain of Escherichia coli, B34289c, has been shown to bind the N-terminal region of fibronectin with high affinity. We now report that this strain also binds collagen. The binding of 125I-labeled type II collagen to bacteria was time dependent and reversible. Bacteria expressed a limited number of collagen receptors (2.2 x 10(4) per cell) and bound collagen with a Kd of 20 nM. All collagen types tested (I to V) as well as all tested cyanogen bromide-generated peptides [alpha 1(I)CB2, alpha 1(I)CB3, alpha 1(I)CB7, alpha 1(I)CB8, and alpha 2(I)CB4] were recognized by bacterial receptors, as demonstrated by the ability of these proteins to inhibit the binding of 125I-labeled collagen to bacteria. Of several unlabeled proteins tested in competition experiments, fibronectin and its N-terminal region strongly inhibited binding of the radiolabeled collagen to E. coli cells. Conversely, collagen competed with an 125I-labeled 28-kilodalton fibronectin fragment for bacterial binding. Collagen bound to bacteria could be displaced by excess amounts of either unlabeled fibronectin or its N-terminal fragment. Similarly, collagen could displace 125I-labeled N-terminal peptide of fibronectin bound to the bacterial cell surface. Bacteria grown at 41 degrees C or in the presence of glucose did not express collagen or fibronectin receptors. These results indicate the presence of specific binding sites for collagen on the surface of E. coli cells and furthermore that the collagen and fibronectin binding sites are located in close proximity, possibly on the same structure

  12. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells

    NARCIS (Netherlands)

    Roubos-van den Hil, P.J.; Nout, M.J.R.; Beumer, R.R.; Meulen, van der J.; Zwietering, M.H.

    2009-01-01

    Aims: This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and

  13. Vaccines for preventing enterotoxigenic Escherichia coli (ETEC) diarrhoea.

    Science.gov (United States)

    Ahmed, Tanvir; Bhuiyan, Taufiqur R; Zaman, K; Sinclair, David; Qadri, Firdausi

    2013-07-05

    Infection with enterotoxigenic Escherichia coli (ETEC) bacteria is a common cause of diarrhoea in adults and children in developing countries and is a major cause of 'travellers' diarrhoea' in people visiting or returning from endemic regions. A killed whole cell vaccine (Dukoral®), primarily designed and licensed to prevent cholera, has been recommended by some groups to prevent travellers' diarrhoea in people visiting endemic regions. This vaccine contains a recombinant B subunit of the cholera toxin that is antigenically similar to the heat labile toxin of ETEC. This review aims to evaluate the clinical efficacy of this vaccine and other vaccines designed specifically to protect people against diarrhoea caused by ETEC infection. To evaluate the efficacy, safety, and immunogenicity of vaccines for preventing ETEC diarrhoea. We searched the Cochrane Infectious Disease Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, LILACS, and http://clinicaltrials.gov up to December 2012. Randomized controlled trials (RCTs) and quasi-RCTs comparing use of vaccines to prevent ETEC with use of no intervention, a control vaccine (either an inert vaccine or a vaccine normally given to prevent an unrelated infection), an alternative ETEC vaccine, or a different dose or schedule of the same ETEC vaccine in healthy adults and children living in endemic regions, intending to travel to endemic regions, or volunteering to receive an artificial challenge of ETEC bacteria. Two authors independently assessed each trial for eligibility and risk of bias. Two independent reviewers extracted data from the included studies and analyzed the data using Review Manager (RevMan) software. We reported outcomes as risk ratios (RR) with 95% confidence intervals (CI). We assessed the quality of the evidence using the GRADE approach. Twenty-four RCTs, including 53,247 participants, met the inclusion criteria. Four studies assessed the protective

  14. Cloned polynucleotide and synthetic oligonucleotide probes used in colony hybridization are equally efficient in the identification of enterotoxigenic Escherichia coli

    International Nuclear Information System (INIS)

    Sommerfelt, H.; Kalland, K.H.; Raj, P.; Moseley, S.L.; Bhan, M.K.; Bjorvatn, B.

    1988-01-01

    Restriction endonuclease-generated polynucleotide and synthetically produced oligonucleotide gene probes used in colony hybridization assays proved to be efficient for the detection and differentiation of enterotoxigenic Escherichia coli. To compare their relative efficiencies, these two sets of probes were radiolabeled with 32 P and were applied to 74 strains of E. coli with known enterotoxin profiles and to 156 previously unexamined E. coli isolates. The enterotoxigenic bacteria Vibrio cholerae O1, Vibrio cholerae non-O1 (NAG), Yersinia enterocolitica, and E. coli harboring the plasmid vectors of the polynucleotide gene probes were examined for further evaluation of probe specificity. The two classes of probes showed a perfect concordance in their specific detection and differentiation of enterotoxigenic E. coli. In the analysis of six strains, the signal strength on autoradiography after hybridization with oligonucleotides was weaker than that obtained after hybridization with polynucleotide probes. The probes did not hybridize with DNA from V. cholerae O1, V. cholerae non-O1 (NAG), or Y. enterocolitica. The strains of E. coli harboring the plasmid vectors of the polynucleotide gene probes were, likewise, negative in the hybridization assays

  15. Cloned polynucleotide and synthetic oligonucleotide probes used in colony hybridization are equally efficient in the identification of enterotoxigenic Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Sommerfelt, H.; Kalland, K.H.; Raj, P.; Moseley, S.L.; Bhan, M.K.; Bjorvatn, B.

    1988-11-01

    Restriction endonuclease-generated polynucleotide and synthetically produced oligonucleotide gene probes used in colony hybridization assays proved to be efficient for the detection and differentiation of enterotoxigenic Escherichia coli. To compare their relative efficiencies, these two sets of probes were radiolabeled with /sup 32/P and were applied to 74 strains of E. coli with known enterotoxin profiles and to 156 previously unexamined E. coli isolates. The enterotoxigenic bacteria Vibrio cholerae O1, Vibrio cholerae non-O1 (NAG), Yersinia enterocolitica, and E. coli harboring the plasmid vectors of the polynucleotide gene probes were examined for further evaluation of probe specificity. The two classes of probes showed a perfect concordance in their specific detection and differentiation of enterotoxigenic E. coli. In the analysis of six strains, the signal strength on autoradiography after hybridization with oligonucleotides was weaker than that obtained after hybridization with polynucleotide probes. The probes did not hybridize with DNA from V. cholerae O1, V. cholerae non-O1 (NAG), or Y. enterocolitica. The strains of E. coli harboring the plasmid vectors of the polynucleotide gene probes were, likewise, negative in the hybridization assays.

  16. Epithelial Cell Adherence Mediated by the Enterotoxigenic Escherichia coli Tia Protein

    OpenAIRE

    Mammarappallil, Joseph G.; Elsinghorst, Eric A.

    2000-01-01

    In vitro studies have shown that enterotoxigenic Escherichia coli (ETEC) strains are capable of invading cultured epithelial cells derived from the human ileum and colon. Two separate invasion loci (tia and tib) have previously been isolated from the classical ETEC strain H10407. The tia locus has been shown to direct the synthesis of Tia, a 25-kDa outer membrane protein. Tia is sufficient to confer the adherence and invasion phenotypes on laboratory stains of E. coli, suggesting that this pr...

  17. A general procedure for small-scale purification of fimbriae expressed by porcine enterotoxigenic Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Ana Cristina Campal Espinosa

    2008-01-01

    Full Text Available Fimbriae expression by enterotoxigenic Escherichia coli strains is a complex process which is controlled by global and local transcriptional regulators and post-transcriptional control. It is influenced by factors such as bacterial growth rate, culture medium composition, pH and temperature. Fimbrial expression could thus frequently become lost. Bacterial culture procedures favouring fimbrial expression are thus needed. The fimbriated bacterial population was therefore enriched by static culture in Mueller–Hinton broth. Fimbrial expression was then maintained by making it grow consecutively in agar CFA and Minca or minimal broth according to the fimbrial serotype. Maximum fimbrial expression was reached after 4h or 5h in culture. The fimbriae were extracted by heat -shock treatment and precipitated with 40% ammonium sulphate. Further purification was carried out by molecular exclusion and sodium deoxycholate treatment. This methodology integrates known procedures in a simple and reproducible process for obtaining F4, F5, F6 and F41 fimbriae in sufficient quantities for their subsequent use in producing antibodies, immunoassays and other studies (at laboratory level requiring high-purity preparations (80% to maintain their native structure. Key words: Enterotoxigenic Escherichia coli; fimbriae; Minca; minimal medium; CFA.

  18. Clinical trial to evaluate safety and immunogenicity of an oral inactivated enterotoxigenic Escherichia coli prototype vaccine containing CFA/I overexpressing bacteria and recombinantly produced LTB/CTB hybrid protein.

    Science.gov (United States)

    Lundgren, A; Leach, S; Tobias, J; Carlin, N; Gustafsson, B; Jertborn, M; Bourgeois, L; Walker, R; Holmgren, J; Svennerholm, A-M

    2013-02-06

    We have developed a new oral vaccine against enterotoxigenic Escherichia coli (ETEC) diarrhea containing killed recombinant E. coli bacteria expressing increased levels of ETEC colonization factors (CFs) and a recombinant protein (LCTBA), i.e. a hybrid between the binding subunits of E. coli heat labile toxin (LTB) and cholera toxin (CTB). We describe a randomized, comparator controlled, double-blind phase I trial in 60 adult Swedish volunteers of a prototype of this vaccine. The safety and immunogenicity of the prototype vaccine, containing LCTBA and an E. coli strain overexpressing the colonization factor CFA/I, was compared to a previously developed oral ETEC vaccine, consisting of CTB and inactivated wild type ETEC bacteria expressing CFA/I (reference vaccine). Groups of volunteers were given two oral doses of either the prototype or the reference vaccine; the prototype vaccine was administered at the same or a fourfold higher dosage than the reference vaccine. The prototype vaccine was found to be safe and equally well-tolerated as the reference vaccine at either dosage tested. The prototype vaccine induced mucosal IgA (fecal secretory IgA and intestine-derived IgA antibody secreting cell) responses to both LTB and CFA/I, as well as serum IgA and IgG antibody responses to LTB. Immunization with LCTBA resulted in about twofold higher mucosal and systemic IgA responses against LTB than a comparable dose of CTB. The higher dose of the prototype vaccine induced significantly higher fecal and systemic IgA responses to LTB and fecal IgA responses to CFA/I than the reference vaccine. These results demonstrate that CF over-expression and inclusion of the LCTBA hybrid protein in an oral inactivated ETEC vaccine does not change the safety profile when compared to a previous generation of such a vaccine and that the prototype vaccine induces significant dose dependent mucosal immune responses against CFA/I and LTB. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Genotypic and Phenotypic Characterization of Enterotoxigenic Escherichia coli Strains Isolated from Peruvian Children ▿

    Science.gov (United States)

    Rivera, F. P.; Ochoa, T. J.; Maves, R. C.; Bernal, M.; Medina, A. M.; Meza, R.; Barletta, F.; Mercado, E.; Ecker, L.; Gil, A. I.; Hall, E. R.; Huicho, L.; Lanata, C. F.

    2010-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of childhood diarrhea. The present study sought to determine the prevalence and distribution of toxin types, colonization factors (CFs), and antimicrobial susceptibility of ETEC strains isolated from Peruvian children. We analyzed ETEC strains isolated from Peruvian children between 2 and 24 months of age in a passive surveillance study. Five E. coli colonies per patient were studied by multiplex real-time PCR to identify ETEC virulence factors. ETEC-associated toxins were confirmed using a GM1-based enzyme-linked immunosorbent assay. Confirmed strains were tested for CFs by dot blot assay using 21 monoclonal antibodies. We analyzed 1,129 samples from children with diarrhea and 744 control children and found ETEC in 5.3% and 4.3%, respectively. ETEC was more frequently isolated from children >12 months of age than from children <12 months of age (P < 0.001). Fifty-two percent of ETEC isolates from children with diarrhea and 72% of isolates from controls were heat-labile enterotoxin (LT) positive and heat-stable enterotoxin (ST) negative; 25% and 19%, respectively, were LT negative and ST positive; and 23% and 9%, respectively, were LT positive and ST positive. CFs were identified in 64% of diarrheal samples and 37% of control samples (P < 0.05). The most common CFs were CS6 (14% and 7%, respectively), CS12 (12% and 4%, respectively), and CS1 (9% and 4%, respectively). ST-producing ETEC strains caused more severe diarrhea than non-ST-producing ETEC strains. The strains were most frequently resistant to ampicillin (71%) and co-trimoxazole (61%). ETEC was thus found to be more prevalent in older infants. LT was the most common toxin type; 64% of strains had an identified CF. These data are relevant in estimating the burden of disease due to ETEC and the potential coverage of children in Peru by investigational vaccines. PMID:20631096

  20. Structural characterization of CFA/III and Longus type IVb pili from enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Kolappan, Subramaniapillai; Roos, Justin; Yuen, Alex S W; Pierce, Owen M; Craig, Lisa

    2012-05-01

    The type IV pili are helical filaments found on many Gram-negative pathogenic bacteria, with multiple diverse roles in pathogenesis, including microcolony formation, adhesion, and twitching motility. Many pathogenic enterotoxigenic Escherichia coli (ETEC) isolates express one of two type IV pili belonging to the type IVb subclass: CFA/III or Longus. Here we show a direct correlation between CFA/III expression and ETEC aggregation, suggesting that these pili, like the Vibrio cholerae toxin-coregulated pili (TCP), mediate microcolony formation. We report a 1.26-Å resolution crystal structure of CofA, the major pilin subunit from CFA/III. CofA is very similar in structure to V. cholerae TcpA but possesses a 10-amino-acid insertion that replaces part of the α2-helix with an irregular loop containing a 3(10)-helix. Homology modeling suggests a very similar structure for the Longus LngA pilin. A model for the CFA/III pilus filament was generated using the TCP electron microscopy reconstruction as a template. The unique 3(10)-helix insert fits perfectly within the gap between CofA globular domains. This insert, together with differences in surface-exposed residues, produces a filament that is smoother and more negatively charged than TCP. To explore the specificity of the type IV pilus assembly apparatus, CofA was expressed heterologously in V. cholerae by replacing the tcpA gene with that of cofA within the tcp operon. Although CofA was synthesized and processed by V. cholerae, no CFA/III filaments were detected, suggesting that the components of the type IVb pilus assembly system are highly specific to their pilin substrates.

  1. Comparative Genomics and Characterization of Hybrid Shigatoxigenic and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains.

    Science.gov (United States)

    Nyholm, Outi; Halkilahti, Jani; Wiklund, Gudrun; Okeke, Uche; Paulin, Lars; Auvinen, Petri; Haukka, Kaisa; Siitonen, Anja

    2015-01-01

    Shigatoxigenic Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) cause serious foodborne infections in humans. These two pathogroups are defined based on the pathogroup-associated virulence genes: stx encoding Shiga toxin (Stx) for STEC and elt encoding heat-labile and/or est encoding heat-stable enterotoxin (ST) for ETEC. The study investigated the genomics of STEC/ETEC hybrid strains to determine their phylogenetic position among E. coli and to define the virulence genes they harbor. The whole genomes of three STEC/ETEC strains possessing both stx and est genes were sequenced using PacBio RS sequencer. Two of the strains were isolated from the patients, one with hemolytic uremic syndrome, and one with diarrhea. The third strain was of bovine origin. Core genome analysis of the shared chromosomal genes and comparison with E. coli and Shigella spp. reference genomes was performed to determine the phylogenetic position of the STEC/ETEC strains. In addition, a set of virulence genes and ETEC colonization factors were extracted from the genomes. The production of Stx and ST were studied. The human STEC/ETEC strains clustered with strains representing ETEC, STEC, enteroaggregative E. coli, and commensal and laboratory-adapted E. coli. However, the bovine STEC/ETEC strain formed a remote cluster with two STECs of bovine origin. All three STEC/ETEC strains harbored several other virulence genes, apart from stx and est, and lacked ETEC colonization factors. Two STEC/ETEC strains produced both toxins and one strain Stx only. This study shows that pathogroup-associated virulence genes of different E. coli can co-exist in strains originating from different phylogenetic lineages. The possibility of virulence genes to be associated with several E. coli pathogroups should be taken into account in strain typing and in epidemiological surveillance. Development of novel hybrid E. coli strains may cause a new public health risk, which challenges the traditional diagnostics

  2. Porcine aminopeptidase N binds to F4+ enterotoxigenic Escherichia coli fimbriae.

    Science.gov (United States)

    Xia, Pengpeng; Wang, Yiting; Zhu, Congrui; Zou, Yajie; Yang, Ying; Liu, Wei; Hardwidge, Philip R; Zhu, Guoqiang

    2016-02-09

    F4(+) enterotoxigenic Escherichia coli (ETEC) strains cause diarrheal disease in neonatal and post-weaned piglets. Several different host receptors for F4 fimbriae have been described, with porcine aminopeptidase N (APN) reported most recently. The FaeG subunit is essential for the binding of the three F4 variants to host cells. Here we show in both yeast two-hybrid and pulldown assays that APN binds directly to FaeG, the major subunit of F4 fimbriae, from three serotypes of F4(+) ETEC. Modulating APN gene expression in IPEC-J2 cells affected ETEC adherence. Antibodies raised against APN or F4 fimbriae both reduced ETEC adherence. Thus, APN mediates the attachment of F4(+) E. coli to intestinal epithelial cells.

  3. Survival study of enterotoxigenic Escherichia colistrain in seawater and wastewater microcosms.

    Science.gov (United States)

    Boukef Ben Omrane, I; El Bour, M; Mejri, S; Mraouna, R; Got, P; Troussellier, M; Boudabous, A

    2011-01-01

    In order to survey osmotic and oligotrophic stress consequence on pathogenic enterobacteria discharged in marine areas, we examined enterotoxigenic Escherichia coli (ETEC) and a reference (Ecoli O126:B16) strains during their survival (47 days) in wastewater microcosms, submerged in natural seawater and maintained in laboratory conditions. The results revealed that the survival time for the two strains was prolonged when bacterial cells were previously incubated in wastewater, with less cellular membrane damage. In addition, the wild clinical E. coli strain showed a better survival capacity than the reference E. coli strain one. For both, we noted some modifications in biochemical profiles relatively to the initial state, notably when they were previously incubated in wastewater microcosm.

  4. Comparative Genomics and Characterization of Hybrid Shigatoxigenic and Enterotoxigenic Escherichia coli (STEC/ETEC Strains.

    Directory of Open Access Journals (Sweden)

    Outi Nyholm

    Full Text Available Shigatoxigenic Escherichia coli (STEC and enterotoxigenic E. coli (ETEC cause serious foodborne infections in humans. These two pathogroups are defined based on the pathogroup-associated virulence genes: stx encoding Shiga toxin (Stx for STEC and elt encoding heat-labile and/or est encoding heat-stable enterotoxin (ST for ETEC. The study investigated the genomics of STEC/ETEC hybrid strains to determine their phylogenetic position among E. coli and to define the virulence genes they harbor.The whole genomes of three STEC/ETEC strains possessing both stx and est genes were sequenced using PacBio RS sequencer. Two of the strains were isolated from the patients, one with hemolytic uremic syndrome, and one with diarrhea. The third strain was of bovine origin. Core genome analysis of the shared chromosomal genes and comparison with E. coli and Shigella spp. reference genomes was performed to determine the phylogenetic position of the STEC/ETEC strains. In addition, a set of virulence genes and ETEC colonization factors were extracted from the genomes. The production of Stx and ST were studied.The human STEC/ETEC strains clustered with strains representing ETEC, STEC, enteroaggregative E. coli, and commensal and laboratory-adapted E. coli. However, the bovine STEC/ETEC strain formed a remote cluster with two STECs of bovine origin. All three STEC/ETEC strains harbored several other virulence genes, apart from stx and est, and lacked ETEC colonization factors. Two STEC/ETEC strains produced both toxins and one strain Stx only.This study shows that pathogroup-associated virulence genes of different E. coli can co-exist in strains originating from different phylogenetic lineages. The possibility of virulence genes to be associated with several E. coli pathogroups should be taken into account in strain typing and in epidemiological surveillance. Development of novel hybrid E. coli strains may cause a new public health risk, which challenges the

  5. Resistance Pattern and Molecular Characterization of Enterotoxigenic Escherichia coli (ETEC Strains Isolated in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Yasmin A Begum

    Full Text Available Enterotoxigenic Escherichia coli (ETEC is a common cause of bacterial infection leading to acute watery diarrhea in infants and young children as well as in travellers to ETEC endemic countries. Ciprofloxacin is a broad-spectrum antimicrobial agent nowadays used for the treatment of diarrhea. This study aimed to characterize ciprofloxacin resistant ETEC strains isolated from diarrheal patients in Bangladesh.A total of 8580 stool specimens from diarrheal patients attending the icddr,b Dhaka hospital was screened for ETEC between 2005 and 2009. PCR and Ganglioside GM1- Enzyme Linked Immuno sorbent Assay (ELISA was used for detection of Heat labile (LT and Heat stable (ST toxins of ETEC. Antimicrobial susceptibilities for commonly used antibiotics and the minimum inhibitory concentration (MIC of nalidixic acid, ciprofloxacin and azithromycin were examined. DNA sequencing of representative ciprofloxacin resistant strains was performed to analyze mutations of the quinolone resistance-determining region of gyrA, gyrB, parC and parE. PCR was used for the detection of qnr, a plasmid mediated ciprofloxacin resistance gene. Clonal variations among ciprofloxacin resistant (CipR and ciprofloxacin susceptible (CipS strains were determined by Pulsed-field gel electrophoresis (PFGE.Among 1067 (12% ETEC isolates identified, 42% produced LT/ST, 28% ST and 30% LT alone. Forty nine percent (n = 523 of the ETEC strains expressed one or more of the 13 tested colonization factors (CFs as determined by dot blot immunoassay. Antibiotic resistance of the ETEC strains was observed as follows: ampicillin 66%, azithromycin 27%, ciprofloxacin 27%, ceftriazone 13%, cotrimaxazole 46%, doxycycline 44%, erythromycin 96%, nalidixic acid 83%, norfloxacin 27%, streptomycin 48% and tetracycline 42%. Resistance to ciprofloxacin increased from 13% in 2005 to 34% in 2009. None of the strains was resistant to mecillinam. The MIC of the nalidixic acid and ciprofloxacin of representative

  6. Comparative analysis of antimicrobial resistance in enterotoxigenic Escherichia coli isolates from two paediatric cohort studies in Lima, Peru.

    Science.gov (United States)

    Medina, Anicia M; Rivera, Fulton P; Pons, Maria J; Riveros, Maribel; Gomes, Cláudia; Bernal, María; Meza, Rina; Maves, Ryan C; Huicho, Luis; Chea-Woo, Elsa; Lanata, Claudio F; Gil, Ana I; Ochoa, Theresa J; Ruiz, Joaquim

    2015-08-01

    Antibiotic resistance is increasing worldwide, being of special concern in low- and middle-income countries. The aim of this study was to determine the antimicrobial susceptibility and mechanisms of resistance in 205 enterotoxigenic Escherichia coli (ETEC) isolates from two cohort studies in children Peru. ETEC were identified by an in-house multiplex real-time PCR. Susceptibility to 13 antimicrobial agents was tested by disk diffusion; mechanisms of resistance were evaluated by PCR. ETEC isolates were resistant to ampicillin (64%), cotrimoxazole (52%), tetracycline (37%); 39% of the isolates were multidrug-resistant. Heat-stable toxin producing (ETEC-st) (48%) and heat-labile toxin producing ETEC (ETEC-lt) (40%) had higher rates of multidrug resistance than isolates producing both toxins (ETEC-lt-st) (21%), pPeru. However, further development of resistance should be closely monitored. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Comparative genomics and transcriptomics of Escherichia coli isolates carrying virulence factors of both enteropathogenic and enterotoxigenic E. coli.

    Science.gov (United States)

    Hazen, Tracy H; Michalski, Jane; Luo, Qingwei; Shetty, Amol C; Daugherty, Sean C; Fleckenstein, James M; Rasko, David A

    2017-06-14

    Escherichia coli that are capable of causing human disease are often classified into pathogenic variants (pathovars) based on their virulence gene content. However, disease-associated hybrid E. coli, containing unique combinations of multiple canonical virulence factors have also been described. Such was the case of the E. coli O104:H4 outbreak in 2011, which caused significant morbidity and mortality. Among the pathovars of diarrheagenic E. coli that cause significant human disease are the enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC). In the current study we use comparative genomics, transcriptomics, and functional studies to characterize isolates that contain virulence factors of both EPEC and ETEC. Based on phylogenomic analysis, these hybrid isolates are more genomically-related to EPEC, but appear to have acquired ETEC virulence genes. Global transcriptional analysis using RNA sequencing, demonstrated that the EPEC and ETEC virulence genes of these hybrid isolates were differentially-expressed under virulence-inducing laboratory conditions, similar to reference isolates. Immunoblot assays further verified that the virulence gene products were produced and that the T3SS effector EspB of EPEC, and heat-labile toxin of ETEC were secreted. These findings document the existence and virulence potential of an E. coli pathovar hybrid that blurs the distinction between E. coli pathovars.

  8. Outbreaks of cholera-like diarrhoea caused by enterotoxigenic Escherichia coli in the Brazilian Amazon Rainforest.

    Science.gov (United States)

    Vicente, Ana C P; Teixeira, Luiz F M; Iniguez-Rojas, L; Luna, M G; Silva, L; Andrade, J R C; Guth, B E C

    2005-09-01

    The relationship between enteropathogens and severe diarrhoea in the Brazilian Amazon is poorly understood. In 1998, outbreaks of acute diarrhoea clinically diagnosed as cholera occurred in two small villages localized far from the main cholera route in the Brazilian rainforest. PCR was performed on some enteropathogens and heat-labile (LT) and/or heat-stable (STh) toxin genes, the virulence determinants of enterotoxigenic Escherichia coli (ETEC), were detected. Further characterization of ETEC isolates revealed the presence of two clones, one from each outbreak. One presenting serotype O167:H5 harboured LT-I and STh toxin genes and expressed the CS5CS6 colonization factor. The other, a non-typeable serotype, was positive for the LT-I gene and expressed the CS7 colonization factor. The current study demonstrates the importance of molecular diagnosis in regions such as the Amazon basin, where the enormous distances and local support conditions make standard laboratory diagnosis difficult. Here we also show that the mis-identified cholera cases were in fact associated with ETEC strains. This is the first report of ETEC, molecularly characterized as the aetiological agent of severe diarrhoea in children and adults in the Brazilian Amazon Rainforest.

  9. A Role for Salivary Peptides in the Innate Defense Against Enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Brown, Jeffrey W; Badahdah, Arwa; Iticovici, Micah; Vickers, Tim J; Alvarado, David M; Helmerhorst, Eva J; Oppenheim, Frank G; Mills, Jason C; Ciorba, Matthew A; Fleckenstein, James M; Bullitt, Esther

    2018-04-11

    Diarrheal disease from enterotoxigenic Escherichia coli (ETEC) causes significant worldwide morbidity and mortality in young children residing in endemic countries and is the leading cause of traveler's diarrhea. As ETEC enters the body through the oral cavity and cotransits the digestive tract with salivary components, we hypothesized that the antimicrobial activity of salivary proteins might extend beyond the oropharynx into the proximal digestive tract. Here, we show that the salivary peptide histatin-5 binds colonization factor antigen I pili, thereby blocking adhesion of ETEC to intestinal epithelial cells. Mechanistically, we demonstrate that histatin-5 stiffens the typically dynamic pili, abolishing their ability to function as spring-like shock absorbers, thereby inhibiting colonization within the turbulent vortices of chyme in the gastrointestinal tract. Our data represent the first report of a salivary component exerting specific antimicrobial activity against an enteric pathogen and suggest that histatin-5 and related peptides might be exploited for prophylactic and/or therapeutic uses. Numerous viruses, bacteria, and fungi traverse the oropharynx to cause disease, so there is considerable opportunity for various salivary components to neutralize these pathogens prior to arrival at their target organ. Identification of additional salivary components with unexpectedly broad antimicrobial spectra should be a priority.

  10. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells.

    Science.gov (United States)

    Roubos-van den Hil, P J; Nout, M J R; Beumer, R R; van der Meulen, J; Zwietering, M H

    2009-03-01

    This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and to clarify the mechanism of action. Tempe was prepared at controlled laboratory scale using Rhizopus microsporus var. microsporus as the inoculum. Extracts of raw, soaked and cooked soya beans reduced ETEC adhesion to brush border cells by 40%. Tempe extracts reduced adhesion by 80% or more. ETEC adhesion to Caco-2 cells reduced by 50% in the presence of tempe extracts. ETEC K88 bacteria were found to interact with soya bean extracts, and this may contribute to the observed decrease of ETEC adhesion to intestinal epithelial cells. Fermented soya beans (tempe) reduce the adhesion of ETEC to intestinal epithelial cells of pig and human origin. This reduced adhesion is caused by an interaction between ETEC K88 bacteria and soya bean compounds. The results strengthen previous observations on the anti-diarrhoeal effect of tempe. This effect indicates that soya-derived compounds may reduce adhesion of ETEC to intestinal cells in pigs as well as in humans and prevent against diarrhoeal diseases.

  11. Binding determinants in the interplay between porcine aminopeptidase N and enterotoxigenic Escherichia coli F4 fimbriae.

    Science.gov (United States)

    Xia, Pengpeng; Quan, Guomei; Yang, Yi; Zhao, Jing; Wang, Yiting; Zhou, Mingxu; Hardwidge, Philip R; Zhu, Jianzhong; Liu, Siguo; Zhu, Guoqiang

    2018-02-26

    The binding of F4 + enterotoxigenic Escherichia coli (ETEC) and the specific receptor on porcine intestinal epithelial cells is the initial step in F4 + ETEC infection. Porcine aminopeptidase N (APN) is a newly discovered receptor for F4 fimbriae that binds directly to FaeG adhesin, which is the major subunit of the F4 fimbriae variants F4ab, F4ac, and F4ad. We used overlapping peptide assays to map the APN-FaeG binding sites, which has facilitated in the identifying the APN-binding amino acids that are located in the same region of FaeG variants, thereby limiting the major binding regions of APN to 13 peptides. To determine the core sequence motif, a panel of FaeG peptides with point mutations and FaeG mutants were constructed. Pull-down and binding reactivity assays using piglet intestines determined that the amino acids G159 of F4ab, N209 and L212 of F4ac, and A200 of F4ad were the critical residues for APN binding of FaeG. We further show using ELISA and confocal microscopy assay that amino acids 553-568, and 652-670 of the APN comprise the linear epitope for FaeG binding in all three F4 fimbriae variants.

  12. Receptor for the F4 fimbriae of enterotoxigenic Escherichia coli (ETEC).

    Science.gov (United States)

    Xia, Pengpeng; Zou, Yajie; Wang, Yiting; Song, Yujie; Liu, Wei; Francis, David H; Zhu, Guoqiang

    2015-06-01

    Infection with F4(+) enterotoxigenic Escherichia coli (ETEC) responsible for diarrhea in neonatal and post-weaned piglets leads to great economic losses in the swine industry. These pathogenic bacteria express either of three fimbrial variants F4ab, F4ac, and F4ad, which have long been known for their importance in host infection and initiating protective immune responses. The initial step in infection for the bacterium is to adhere to host enterocytes through fimbriae-mediated recognition of receptors on the host cell surface. A number of receptors for ETEC F4 have now been described and characterized, but their functions are still poorly understood. The current review summarizes the latest research addressing the characteristics of F4 fimbriae receptors and the interactions of F4 fimbriae and their receptors on host cells. These include observations that as follows: (1) FaeG mediates the binding activities of F4 and is an essential component of the F4 fimbriae, (2) the F4 fimbrial receptor gene is located in a region of chromosome 13, (3) the biochemical properties of F4 fimbrial receptors that form the binding site of the bacterium are now recognized, and (4) specific receptors confer susceptibility/resistance to ETEC F4 infection in pigs. Characterizing the host-pathogen interaction will be crucial to understand the pathogenicity of the bacteria, provide insights into receptor activation of the innate immune system, and develop therapeutic strategies to prevent this illness.

  13. Susceptibility of multidrug resistant enterotoxigenic escherichia coli to saponin extract from phyllanthus niruri

    International Nuclear Information System (INIS)

    Ajibade, V.A.; Famurewa, O.

    2013-01-01

    Escherichia coli were isolated from 140 samples of blood, urine, stool and water made up of 15.7%, 42.9% and 30.0% and 25.7% respectively. From the samples, 71.9% enterotoxigenic E. coli (ETEC), 14.3% enteropathogenic E. coli (EPEC), 7.1% enterohemorrhagic E. coil (EHEC) and 7.1% enteroinvasive E. coli (EIEC) occurred as diarrheagenic E. coli. Of the ETEC (240) isolates tested for susceptibility to eight conventional antibiotics. 110 (46.0%) showed resistance to all the tested antimicrobial agents. However, of the resistant strains; 24 (22.0%) were multidrug resistant. These were tested against 3.0 mg/mL of saponin extract from phyllanthus niruri and 13 (55.0%) of these were susceptible to the saponin. The antimicrobial activities of saponin from P. niruri are of interest since the crude extract was effective at concentration of 3.0 mg/ml to multiple resistant isolates of EEC. (author)

  14. An assessment of enterotoxigenic Escherichia coli and Shigella vaccine candidates for infants and children.

    Science.gov (United States)

    Walker, Richard I

    2015-02-18

    Despite improvements to water quality, sanitation, and the implementation of current prevention and treatment interventions, diarrhea remains a major cause of illness and death, especially among children less than five years of age in the developing world. Rotavirus vaccines have already begun making a real impact on diarrhea, but several more enteric vaccines will be necessary to achieve broader reductions of illness and death. Among the many causes of diarrheal disease, enterotoxigenic Escherichia coli (ETEC) and Shigella are the two most important bacterial pathogens for which there are no currently licensed vaccines. Vaccines against these two pathogens could greatly reduce the impact of disease caused by these infections. This review describes the approaches to ETEC and Shigella vaccines that are currently under development, including a range of both cellular and subunit approaches for each pathogen. In addition, the review discusses strategies for maximizing the potential benefit of these vaccines, which includes the feasibility of co-administration, consolidation, and combination of vaccine candidates, as well as issues related to effective administration of enteric vaccines to infants. Recent impact studies indicate that ETEC and Shigella vaccines could significantly benefit global public health. Either vaccine, particularly if they could be combined together or with another enteric vaccine, would be an extremely valuable tool for saving lives and promoting the health of infants and children in the developing world, as well as potentially providing protection to travelers and military personnel visiting endemic areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Allele Variants of Enterotoxigenic Escherichia coli Heat-Labile Toxin Are Globally Transmitted and Associated with Colonization Factors

    KAUST Repository

    Joffré, Enrique

    2015-01-15

    Enterotoxigenic Escherichia coli (ETEC) is a significant cause of morbidity and mortality in the developing world. ETEC-mediated diarrhea is orchestrated by heat-labile toxin (LT) and heat-stable toxins (STp and STh), acting in concert with a repertoire of more than 25 colonization factors (CFs). LT, the major virulence factor, induces fluid secretion after delivery of a monomeric ADP-ribosylase (LTA) and its pentameric carrier B subunit (LTB). A study of ETEC isolates from humans in Brazil reported the existence of natural LT variants. In the present study, analysis of predicted amino acid sequences showed that the LT amino acid polymorphisms are associated with a geographically and temporally diverse set of 192 clinical ETEC strains and identified 12 novel LT variants. Twenty distinct LT amino acid variants were observed in the globally distributed strains, and phylogenetic analysis showed these to be associated with different CF profiles. Notably, the most prevalent LT1 allele variants were correlated with major ETEC lineages expressing CS1 + CS3 or CS2 + CS3, and the most prevalent LT2 allele variants were correlated with major ETEC lineages expressing CS5 + CS6 or CFA/I. LTB allele variants generally exhibited more-stringent amino acid sequence conservation (2 substitutions identified) than LTA allele variants (22 substitutions identified). The functional impact of LT1 and LT2 polymorphisms on virulence was investigated by measuring total-toxin production, secretion, and stability using GM1-enzyme-linked immunosorbent assays (GM1-ELISA) and in silico protein modeling. Our data show that LT2 strains produce 5-fold more toxin than LT1 strains (P < 0.001), which may suggest greater virulence potential for this genetic variant. Our data suggest that functionally distinct LT-CF variants with increased fitness have persisted during the evolution of ETEC and have spread globally.

  16. Allele Variants of Enterotoxigenic Escherichia coli Heat-Labile Toxin Are Globally Transmitted and Associated with Colonization Factors

    KAUST Repository

    Joffré , Enrique; von Mentzer, Astrid; Abd El Ghany, Moataz; Oezguen, Numan; Savidge, Tor; Dougan, Gordon; Svennerholm, Ann-Mari; Sjö ling, Å sa

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a significant cause of morbidity and mortality in the developing world. ETEC-mediated diarrhea is orchestrated by heat-labile toxin (LT) and heat-stable toxins (STp and STh), acting in concert with a repertoire of more than 25 colonization factors (CFs). LT, the major virulence factor, induces fluid secretion after delivery of a monomeric ADP-ribosylase (LTA) and its pentameric carrier B subunit (LTB). A study of ETEC isolates from humans in Brazil reported the existence of natural LT variants. In the present study, analysis of predicted amino acid sequences showed that the LT amino acid polymorphisms are associated with a geographically and temporally diverse set of 192 clinical ETEC strains and identified 12 novel LT variants. Twenty distinct LT amino acid variants were observed in the globally distributed strains, and phylogenetic analysis showed these to be associated with different CF profiles. Notably, the most prevalent LT1 allele variants were correlated with major ETEC lineages expressing CS1 + CS3 or CS2 + CS3, and the most prevalent LT2 allele variants were correlated with major ETEC lineages expressing CS5 + CS6 or CFA/I. LTB allele variants generally exhibited more-stringent amino acid sequence conservation (2 substitutions identified) than LTA allele variants (22 substitutions identified). The functional impact of LT1 and LT2 polymorphisms on virulence was investigated by measuring total-toxin production, secretion, and stability using GM1-enzyme-linked immunosorbent assays (GM1-ELISA) and in silico protein modeling. Our data show that LT2 strains produce 5-fold more toxin than LT1 strains (P < 0.001), which may suggest greater virulence potential for this genetic variant. Our data suggest that functionally distinct LT-CF variants with increased fitness have persisted during the evolution of ETEC and have spread globally.

  17. Molecular characterization and antibiotic resistance of enterotoxigenic and entero-aggregative Escherichia coli isolated from raw milk and unpasteurized cheeses

    Directory of Open Access Journals (Sweden)

    Mojtaba Bonyadian

    2014-04-01

    Full Text Available The aim of this study was to determine the occurrence of enterotoxigenic and enteroaggregative Escherichia coli strains and antibiotic resistance of the isolates in raw milk and unpasteurized cheese. Out of 200 samples of raw milk and 50 samples of unpasteurized cheeses, 96 and 24 strains of E. coli were isolated, respectively. Polymerase chain reaction (PCR was used to detect the genes encoding heat-stable enterotoxin a (STa, heat-stable enterotoxin b (STb, heat labile toxin (LT and enteroaggregative heat-stable toxin1 (EAST1. Twelve out of 120 (10.00% isolates harbored the gene for EAST1, 2(1.66% isolates were detected as producing STb and LT toxins and 12 (10.00% strains contained STb and EAST1 genes. None of the strains contain the STa gene. All of the strains were tested for antibiotic resistance by disk diffusion method. Disks included: ciprofloxacin (CFN, trimetoprim-sulfamethoxazole (TSX, oxytetracycline (OTC, gentamicin (GMN, cephalexin (CPN, nalidixic acid (NDA and nitrofurantoin (NFN, ampicillin (AMP, neomycin (NEO and streptomycin (STM. Among 120 isolated strains of E. coli, the resistance to each antibiotics were as follows: OTC100%, CPN 86.00%, NDA 56.00%, NFN 42.00%, GMN 30.00%, TSX 28.00%, CFN 20%, AM 23.40% and STM 4.25%. None of the isolates were resistant to NEO. The present data indicate that different resistant E. coli pathogens may be found in raw milk and unpasteurized cheese. It poses an infection risk for human and transferring the resistant factors to microflora of the consumers gut.

  18. Pilot study of whole-blood gamma interferon response to the Vibrio cholerae toxin B subunit and resistance to enterotoxigenic Escherichia coli-associated diarrhea.

    Science.gov (United States)

    Flores, Jose; DuPont, Herbert L; Paredes-Paredes, Mercedes; Aguirre-Garcia, M Magdalena; Rojas, Araceli; Gonzalez, Alexei; Okhuysen, Pablo C

    2010-05-01

    Enterotoxigenic Escherichia coli (ETEC), which produces heat-labile toxin (LT), is a common cause of travelers' diarrhea (TD). The B subunit of ETEC LT is immunologically related to the B subunit of Vibrio cholerae toxin (CT). In this pilot study we evaluated the whole-blood gamma interferon response to CT B in 17 U.S. adults traveling to Mexico. Only one of nine subjects who demonstrated a cellular immune response as determined by whole-blood gamma interferon production to CT B on arrival to Mexico developed diarrhea, whereas five of eight without a cellular response developed diarrhea. Markers of the cellular immune response to ETEC LT could help in identifying individuals immune to ETEC LT, and these markers deserve additional study.

  19. Enterotoxigenic Escherichia coli Subclinical Infection in Pigs: Bacteriological and Genotypic Characterization and Antimicrobial Resistance Profiles.

    Science.gov (United States)

    Moredo, Fabiana A; Piñeyro, Pablo E; Márquez, Gabriela C; Sanz, Marcelo; Colello, Rocío; Etcheverría, Analía; Padola, Nora L; Quiroga, María A; Perfumo, Carlos J; Galli, Lucía; Leotta, Gerardo A

    2015-08-01

    Enterotoxigenic Escherichia coli (ETEC) is the major pathogen responsible for neonatal diarrhea, postweaning diarrhea, and edema disease in pigs. Although it can be harmless, ETEC is also present in the intestines of other animal species and humans, causing occasional diarrhea outbreaks. The evaluation of this pathogen's presence in food sources is becoming an increasingly important issue in human health. In order to determine the prevalence of ETEC in nondiarrheic pigs, 990 animals from 11 pig farms were sampled. Using end-time polymerase chain reaction (PCR), eltA, estI genes, or both, were detected in 150 (15.2%) animals. From the positive samples, 40 (26.6%) ETEC strains were isolated, showing 19 antibiotic-resistance patterns; 52.5% of these strains had multiple antibiotic resistances, and 17.5% carried the intI2 gene. The most prevalent genotypes were rfb(O157)/estII/aidA (32.5%) and estI/estII (25.0%). The estII gene was identified most frequently (97.5%), followed by estI (37.5%), astA (20.0%), and eltA (12.5%). The genes coding the fimbriae F5, F6, and F18 were detected in three single isolates. The aidA gene was detected in 20 ETEC strains associated with the estII gene. Among the isolated ETEC strains, stx(2e)/estI, stx(2e)/estI/estII, and stx(2e)/estI/estII/intI2 genotypes were identified. The ETEC belonged to 12 different serogroups; 37.5% of them belonged to serotype O157:H19. Isolates were grouped by enterobacterial repetitive intergenic consensus-PCR into 5 clusters with 100.0% similarity. In this study, we demonstrated that numerous ETEC genotypes cohabit and circulate in swine populations without clinical manifestation of neonatal diarrhea, postweaning diarrhea, or edema disease in different production stages. The information generated is important not only for diagnostic and epidemiological purposes, but also for understanding the dynamics and ecology of ETEC in pigs in different production stages that can be potentially transmitted to humans

  20. Erythrocyte and porcine intestinal glycosphingolipids recognized by F4 fimbriae of enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Coddens, Annelies; Valis, Erik; Benktander, John; Ångström, Jonas; Breimer, Michael E; Cox, Eric; Teneberg, Susann

    2011-01-01

    Enterotoxigenic F4-fimbriated Escherichia coli is associated with diarrheal disease in neonatal and postweaning pigs. The F4 fimbriae mediate attachment of the bacteria to the pig intestinal epithelium, enabling an efficient delivery of diarrhea-inducing enterotoxins to the target epithelial cells. There are three variants of F4 fimbriae designated F4ab, F4ac and F4ad, respectively, having different antigenic and adhesive properties. In the present study, the binding of isolated F4ab, F4ac and F4ad fimbriae, and F4ab/ac/ad-fimbriated E. coli, to glycosphingolipids from erythrocytes and from porcine small intestinal epithelium was examined, in order to get a comprehensive view of the F4-binding glycosphingolipids involved in F4-mediated hemagglutination and adhesion to the epithelial cells of porcine intestine. Specific interactions between the F4ab, F4ac and F4ad fimbriae and both acid and non-acid glycosphingolipids were obtained, and after isolation of binding-active glycosphingolipids and characterization by mass spectrometry and proton NMR, distinct carbohydrate binding patterns were defined for each fimbrial subtype. Two novel glycosphingolipids were isolated from chicken erythrocytes, and characterized as GalNAcα3GalNAcß3Galß4Glcß1Cer and GalNAcα3GalNAcß3Galß4GlcNAcß3Galß4Glcß1Cer. These two compounds, and lactosylceramide (Galß4Glcß1Cer) with phytosphingosine and hydroxy fatty acid, were recognized by all three variants of F4 fimbriae. No binding of the F4ad fimbriae or F4ad-fimbriated E. coli to the porcine intestinal glycosphingolipids occurred. However, for F4ab and F4ac two distinct binding patterns were observed. The F4ac fimbriae and the F4ac-expressing E. coli selectively bound to galactosylceramide (Galß1Cer) with sphingosine and hydroxy 24:0 fatty acid, while the porcine intestinal glycosphingolipids recognized by F4ab fimbriae and the F4ab-fimbriated bacteria were characterized as galactosylceramide, sulfatide (SO(3)-3Galß1Cer), sulf

  1. Lactobacillus zeae protects Caenorhabditis elegans from enterotoxigenic Escherichia coli-caused death by inhibiting enterotoxin gene expression of the pathogen.

    Directory of Open Access Journals (Sweden)

    Mengzhou Zhou

    Full Text Available BACKGROUND: The nematode Caenorhabditis elegans has become increasingly used for screening antimicrobials and probiotics for pathogen control. It also provides a useful tool for studying microbe-host interactions. This study has established a C. elegans life-span assay to preselect probiotic bacteria for controlling K88(+ enterotoxigenic Escherichia coli (ETEC, a pathogen causing pig diarrhea, and has determined a potential mechanism underlying the protection provided by Lactobacillus. METHODOLOGY/PRINCIPAL FINDINGS: Life-span of C. elegans was used to measure the response of worms to ETEC infection and protection provided by lactic acid-producing bacteria (LAB. Among 13 LAB isolates that varied in their ability to protect C. elegans from death induced by ETEC strain JG280, Lactobacillus zeae LB1 offered the highest level of protection (86%. The treatment with Lactobacillus did not reduce ETEC JG280 colonization in the nematode intestine. Feeding E. coli strain JFF4 (K88(+ but lacking enterotoxin genes of estA, estB, and elt did not cause death of worms. There was a significant increase in gene expression of estA, estB, and elt during ETEC JG280 infection, which was remarkably inhibited by isolate LB1. The clone with either estA or estB expressed in E. coli DH5α was as effective as ETEC JG280 in killing the nematode. However, the elt clone killed only approximately 40% of worms. The killing by the clones could also be prevented by isolate LB1. The same isolate only partially inhibited the gene expression of enterotoxins in both ETEC JG280 and E. coli DH5α in-vitro. CONCLUSIONS/SIGNIFICANCE: The established life-span assay can be used for studies of probiotics to control ETEC (for effective selection and mechanistic studies. Heat-stable enterotoxins appeared to be the main factors responsible for the death of C. elegans. Inhibition of ETEC enterotoxin production, rather than interference of its intestinal colonization, appears to be the

  2. Control of Virulence Gene Expression by the Master Regulator, CfaD, in the Prototypical Enterotoxigenic Escherichia coli Strain, H10407

    Directory of Open Access Journals (Sweden)

    Carla Hodson

    2017-08-01

    Full Text Available Enterotoxigenic Escherichia coli (ETEC is the most common bacterial cause of diarrhea in children in developing countries, as well as in travelers to these countries. To cause disease, ETEC needs to produce a series of virulence proteins including enterotoxins, colonization factors and secretion pathways, which enable this pathogen to colonize the human small intestine and deliver enterotoxins to epithelial cells. Previously, a number of studies have demonstrated that CfaD, an AraC-like transcriptional regulator, plays a key role in virulence gene expression by ETEC. In this study, we carried out a transcriptomic analysis of ETEC strain, H10407, grown under different conditions, and determined the complete set of genes that are regulated by CfaD. In this way, we identified a number of new target genes, including rnr-1, rnr-2, etpBAC, agn43, flu, traM and ETEC_3214, whose expression is strongly activated by CfaD. Using promoter-lacZ reporters, primer extension and electrophoretic mobility shift assays, we characterized the CfaD-mediated activation of several selected target promoters. We also showed that the gut-associated environmental signal, sodium bicarbonate, stimulates CfaD-mediated upregulation of its virulence target operons. Finally, we screened a commercial small molecule library and identified a compound (CH-1 that specifically inhibited the regulatory function of CfaD, and by 2-D analoging, we identified a second inhibitor (CH-2 with greater potency.

  3. Effect of chicken egg anti-F4 antibodies on performance and diarrhea incidences in enterotoxigenic Escherichia coli K88+-challenged piglets.

    Science.gov (United States)

    Aluko, Kolawole; Velayudhan, Deepak E; Khafipour, Ehsan; Fang, Lin; Nyachoti, Martin

    2017-12-01

    The aim was to evaluate the effects of dietary supplementation of spay-dried whole egg containing anti-F4 antibodies (SDWE) against recombinantly produced F4 antigens in enterotoxigenic Escherichia coli K88 + (ETEC)-challenged piglets. Twenty-seven 21-d-old and individually housed piglets were randomly allotted to 3 treatments consisting of a wheat-soybean meal basal diet containing either 0 (control egg powder; CEP), 0.1% (SDWE1) or 0.4% (SDWE2) SDWE. After a 7-d adaptation period, blood samples were collected from all pigs, and pigs were weighed and orally challenged with an ETEC inoculum. Blood was sampled at 24 and 48 h post-challenge, and diarrhea incidences and scores were recorded. On d 14, all pigs were weighed and then euthanized to obtain intestinal tissue samples for histomorphology measurement. During the pre-challenge period, pigs fed the SDWE showed a linear improvement ( P  < 0.05) in average daily gain (ADG) and gain to feed ratio (G:F), but there were no differences among treatments in growth performance during the post-challenge period. Diarrhea incidences and scores, fecal shedding of ETEC, plasma urea nitrogen content and intestinal histomorphology were similar among treatments. The results show that 0.4% SDWE supported greater piglet performance before challenge although such benefits were not evident during the post-challenge period at either 0.1% or 0.4% supplementation.

  4. Construction and expression of immunogenic hybrid enterotoxigenic Escherichia coli CFA/I and CS2 colonization fimbriae for use in vaccines.

    Science.gov (United States)

    Tobias, Joshua; Svennerholm, Ann-Mari; Holmgren, Jan; Lebens, Michael

    2010-07-01

    Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrheal morbidity in developing countries, especially in children and also of traveler's diarrhea. Colonization factors (CFs) of ETEC, like CFA/I and CS2 which are genetically and structurally related, play a substantial role in pathogenicity, and since intestinal-mucosal immune responses against CFs appear to be protective, much effort has focused on the development of a CF-based ETEC vaccine. We have constructed hybrid operons in which the major CS2 subunit-encoding cotA gene was inserted into the CFA/I operon, either replacing (hybrid I) or being added to the major CFA/I subunit-encoding cfaB gene (hybrid II). Using specific monoclonal antibodies against the major subunits of CFA/I and CS2, high levels of surface expression of both fimbrial subunits were shown in E. coli carrying the hybrid II operon. Oral immunization of mice with formalin-killed bacteria expressing hybrid II fimbriae induced strong CFA/I- and CS2-specific serum IgG + IgM and fecal IgA antibody responses, which were higher than those achieved by similar immunization with the reference strains. Bacteria expressing hybrid fimbriae are potential candidate strains in an oral-killed CF-ETEC vaccine, and the approach represents an attractive and novel means of producing a broad-spectrum ETEC vaccine.

  5. Clathrin-mediated endocytosis and transcytosis of enterotoxigenic Escherichia coli F4 fimbriae in porcine intestinal epithelial cells.

    Science.gov (United States)

    Rasschaert, Kristien; Devriendt, Bert; Favoreel, Herman; Goddeeris, Bruno M; Cox, Eric

    2010-10-15

    Enterotoxigenic Escherichia coli (ETEC) cause severe diarrhea in neonatal and recently weaned piglets. Previously, we demonstrated that oral immunization of F4 receptor positive piglets with purified F4 fimbriae induces a protective F4-specific intestinal immune response. However, in F4 receptor negative animals no F4-specific immune response can be elicited, indicating that the induction of an F4-specific mucosal immune response upon oral immunisation is receptor-dependent. Although F4 fimbriae undergo transcytosis across the intestinal epithelium in vivo, the endocytosis pathways used remain unknown. In the present study, we characterized the internalization of F4 fimbriae in the porcine intestinal epithelial cell line IPEC-J2. The results in the present study demonstrate that F4 fimbriae are internalized through a clathrin-dependent pathway. Furthermore, our results suggest that F4 fimbriae are transcytosed across differentiated IPEC-J2 cells. This receptor-dependent transcytosis of F4 fimbriae may explain the immunogenicity of these fimbriae upon oral administration in vivo. (c) 2010 Elsevier B.V. All rights reserved.

  6. Adjuvant effect of Gantrez®AN nanoparticles during oral vaccination of piglets against F4+enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Vandamme, Katrien; Melkebeek, Vesna; Vesna, Melkebeek; Cox, Eric; Eric, Cox; Remon, Jean Paul; Paul, Remon Jean; Vervaet, Chris; Chris, Vervaet

    2011-02-15

    In this study, the adjuvanticity of methylvinylether-co-maleic anhydride (Gantrez(®)AN) nanoparticles (NP) was investigated in an oral immunisation experiment of pigs against F4+enterotoxigenic Escherichia coli (F4+ETEC). In addition, Wheat Germ Agglutinin (WGA)-coating of the nanoparticles was tested for enterocyte-targeting. Pigs were either vaccinated with F4 fimbriae, F4 encapsulated in Gantrez(®)AN NP, F4 encapsulated in Gantrez(®)AN NP coated with WGA or F4 fimbriae mixed with empty Gantrez(®)AN NP. Only vaccination with the combination of F4 mixed with empty Gantrez(®)AN NP improved protection against F4+ETEC infection. In addition, vaccination with this formulation also resulted in an F4-specific serum antibody response prior to F4+ETEC challenge. Encapsulation of F4 in Gantrez(®)AN NP only raised the serum antibody response after F4+ETEC challenge compared to soluble F4, but did not improve protection, whereas WGA-coating almost completely abolished the serum antibody response. These data indicate that nanoparticle effects after F4 encapsulation were of lesser importance for the adjuvant effect of Gantrez(®)AN NP, contrarily to the reactivity of the Gantrez(®)AN polymer used to prepare the nanoparticles. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. CfaE tip mutations in enterotoxigenic Escherichia coli CFA/I fimbriae define critical human intestinal binding sites.

    Science.gov (United States)

    Baker, K K; Levine, M M; Morison, J; Phillips, A; Barry, E M

    2009-05-01

    Enterotoxigenic Escherichia coli (ETEC) use colonization factors to attach to the human intestinal mucosa, followed by enterotoxin expression that induces net secretion and diarrhoeal illness. ETEC strain H10407 expresses CFA/I fimbriae, which are composed of multiple CfaB structural subunits and a CfaE tip subunit. Currently, the contribution of these individual fimbrial subunits in intestinal binding remains incompletely defined. To identify the role of CfaE in attachment in the native ETEC background, an R181A single-amino-acid substitution was introduced by recombination into the H10407 genome. The substitution of R181A eliminated haemagglutination and binding of intestinal mucosa biopsies in in vitro organ culture assays, without loss of CFA/I fimbriae expression. Wild-type in trans plasmid-expressed cfaE restored the binding phenotype. In contrast, in trans expression of cfaE containing amino acid 181 substitutions with similar amino acids, lysine, methionine and glutamine did not restore the binding phenotype, indicating that the loss of the binding phenotype was due to localized areas of epitope disruption. R181 appears to have an irreplaceable role in the formation of a receptor-binding feature on CFA/I fimbriae. The results specifically indicate that the CfaE tip protein is a required binding factor in CFA/I-mediated ETEC colonization, making it a potentially important vaccine antigen. © 2009 Blackwell Publishing Ltd.

  8. Hybrids of Shigatoxigenic and Enterotoxigenic Escherichia coli (STEC/ETEC) Among Human and Animal Isolates in Finland.

    Science.gov (United States)

    Nyholm, O; Heinikainen, S; Pelkonen, S; Hallanvuo, S; Haukka, K; Siitonen, A

    2015-11-01

    Diarrhoeagenic Escherichia coli (DEC) cause serious foodborne infections in humans. Total of 450 Shigatoxigenic E. coli (STEC) strains isolated from humans, animals and environment in Finland were examined by multiplex PCR targeting the virulence genes of various DEC pathogroups simultaneously. One per cent (3/291) of the human STEC and 14% (22/159) of the animal and environmental STEC had genes typically present in enterotoxigenic E. coli (ETEC). The strains possessed genes encoding both Shiga toxin 1 and/or 2 (stx1 and/or stx2 ) and ETEC-specific heat-stable (ST) enterotoxin Ia (estIa). The identified stx subtypes were stx1a, stx1c, stx2a, stx2d and stx2g. The three human STEC/ETEC strains were isolated from the patients with haemolytic uraemic syndrome and diarrhoea and from an asymptomatic carrier. The animal STEC/ETEC strains were isolated from cattle and moose. The human and animal STEC/ETEC strains belonged to 11 serotypes, of which O2:H27, O15:H16, O101:H-, O128:H8 and O141:H8 have previously been described to be associated with human disease. Identification of multiple virulence genes offers further information for assessing the virulence potential of STEC and other DEC. The emergence of novel hybrid pathogens should be taken into account in the patient care and epidemiological surveillance. © 2015 Blackwell Verlag GmbH.

  9. Disruption the Outer Membrane of Enteropathogenic and Enterotoxigenic Escherichia coli using Proanthocyanidins

    Science.gov (United States)

    American cranberry (Vaccinium macrocarpon) proanthocyanidins (PACs) have been reported as a natural antibacterial agent to suppress the growth of pathogenic Escherichia coli. The objective of this study was to investigate the efficacy of cranberry-derived proanthocyanidins on destabilizing the outer...

  10. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model

    OpenAIRE

    Zhang, Wei; Zhu, Yao-Hong; Yang, Jin-Cai; Yang, Gui-Yan; Zhou, Dong; Wang, Jiu-Feng

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2) were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but t...

  11. Reflection of serum immunoglobulin isotypes in the egg yolk of laying hens immunized with enterotoxigenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Nagendra Nath Barman

    2014-09-01

    Full Text Available Aim: The aim was to study the seroconversion and development of egg yolk immunoglobulins in adult laying White Leghorn hens immunized against an isolate of enterotoxigenic Escherichia coli (ETEC bearing K91 and K88ac antigens, obtained from diarrheic piglet. Materials and Methods: Adult laying White Leghorn hens were immunized with inactivated enterotoxic E. coli strain isolated originally from a case of piglet diarrhea following recommended schedule. The development of whole antibodies and isotype-specific antibodies in serum and egg yolk were measured using indirect enzyme-linked immunosorbent assay (ELISA. Piglets suffering from diarrhea with fecal samples positive for ETEC were fed with egg yolk and compared with diarrheic control group. Results: The serum and egg yolk ELISA antibody titer against E. coli strain used in the present study was as high as 2666.66±307.92 and 933.33±203.67 respectively on 50 day-post-vaccination (DPV. The immunoglobulin Y (IgY was the predominant isotype in serum and egg yolk, which reached the peak titer of 2200±519.61 in serum on 40 DPV and 800±244.94 in egg yolk on 50 DPV. IgM titer in serum and egg yolk was found to be meager, and no IgA could be detected. Diarrheic piglets fed with the egg yolk suspension from immunized hens showed a promising result in controlling diarrhea. Conclusion: Egg yolk antibodies are considered a suitable immunotherapeutic alternative to conventional antibiotic therapy. High titer of egg yolk antibodies raised in the immunized hen against an isolate of ETEC holds the potential to be used for passive protection of diarrheic piglets during their most susceptible period of infection.

  12. Administration of probiotics influences F4 (K88)-positive enterotoxigenic Escherichia coli attachment and intestinal cytokine expression in weaned pigs.

    Science.gov (United States)

    Daudelin, Jean-François; Lessard, Martin; Beaudoin, Frédéric; Nadeau, Eric; Bissonnette, Nathalie; Boutin, Yvan; Brousseau, Jean-Philippe; Lauzon, Karoline; Fairbrother, John Morris

    2011-05-23

    This study evaluated the effect of the probiotics Pediococcus acidilactici and Saccharomyces cerevisiae boulardii on the intestinal colonization of O149 enterotoxigenic Escherichia coli harbouring the F4 (K88) fimbriae (ETEC F4) and on the expression of ileal cytokines in weaned pigs. At birth, different litters of pigs were randomly assigned to one of the following treatments: 1) control without antibiotics or probiotics (CTRL); 2) reference group in which chlortetracycline and tiamulin were added to weanling feed (ATB); 3) P. acidilactici; 4) S. cerevisiae boulardii; or 5) P. acidilactici + S. cerevisiae boulardii. Probiotics were administered daily (1 × 10(9) CFU per pig) during the lactation period and after weaning (day 21). At 28 days of age, all pigs were orally challenged with an ETEC F4 strain, and a necropsy was performed 24 h later. Intestinal segments were collected to evaluate bacterial colonization in the small intestine and ileal cytokine expressions. Attachment of ETEC F4 to the intestinal mucosa was significantly reduced in pigs treated with P. acidilactici or S. cerevisiae boulardii in comparison with the ATB group (P = 0.01 and P = 0.03, respectively). In addition, proinflammatory cytokines, such as IL-6, were upregulated in ETEC F4 challenged pigs treated with P. acidilactici alone or in combination with S. cerevisiae boulardii compared with the CTRL group. In conclusion, the administration of P. acidilactici or S. cerevisiae boulardii was effective in reducing ETEC F4 attachment to the ileal mucosa, whereas the presence of P. acidilactici was required to modulate the expression of intestinal inflammatory cytokines in pigs challenged with ETEC F4.

  13. Administration of probiotics influences F4 (K88-positive enterotoxigenic Escherichia coli attachment and intestinal cytokine expression in weaned pigs

    Directory of Open Access Journals (Sweden)

    Daudelin Jean-François

    2011-05-01

    Full Text Available Abstract This study evaluated the effect of the probiotics Pediococcus acidilactici and Saccharomyces cerevisiae boulardii on the intestinal colonization of O149 enterotoxigenic Escherichia coli harbouring the F4 (K88 fimbriae (ETEC F4 and on the expression of ileal cytokines in weaned pigs. At birth, different litters of pigs were randomly assigned to one of the following treatments: 1 control without antibiotics or probiotics (CTRL; 2 reference group in which chlortetracycline and tiamulin were added to weanling feed (ATB; 3 P. acidilactici; 4 S. cerevisiae boulardii; or 5 P. acidilactici + S. cerevisiae boulardii. Probiotics were administered daily (1 × 109 CFU per pig during the lactation period and after weaning (day 21. At 28 days of age, all pigs were orally challenged with an ETEC F4 strain, and a necropsy was performed 24 h later. Intestinal segments were collected to evaluate bacterial colonization in the small intestine and ileal cytokine expressions. Attachment of ETEC F4 to the intestinal mucosa was significantly reduced in pigs treated with P. acidilactici or S. cerevisiae boulardii in comparison with the ATB group (P = 0.01 and P = 0.03, respectively. In addition, proinflammatory cytokines, such as IL-6, were upregulated in ETEC F4 challenged pigs treated with P. acidilactici alone or in combination with S. cerevisiae boulardii compared with the CTRL group. In conclusion, the administration of P. acidilactici or S. cerevisiae boulardii was effective in reducing ETEC F4 attachment to the ileal mucosa, whereas the presence of P. acidilactici was required to modulate the expression of intestinal inflammatory cytokines in pigs challenged with ETEC F4.

  14. Volunteer Challenge With Enterotoxigenic Escherichia coli That Express Intestinal Colonization Factor Fimbriae CS17 and CS19

    Science.gov (United States)

    2011-07-01

    Serotype was determined by classic serological methods at the Universidad Nacional Aut6noma de Mexico [UNAMl. H- indrcates non-motility. b CF...Levine MM, Merson MM. Serologic differentiation between antitoxin responses to infection with Vibrio cholerae and enterotoxin-producing Escherichia coli...prototype cholera B subunit-colonization factor antigen cnterotoxigenic Escherichia coli vaccine. Vaccine 1993; 1[:929-34. 15. Levine MM, Nalin DR

  15. A Commensal Gone Bad: Complete Genome Sequence of the Prototypical Enterotoxigenic Escherichia coli Strain H10407

    Science.gov (United States)

    2010-11-01

    and Escherichia ferguso- . TABLE 2. General characteristics of the plasm ids from ETEC strains H10407 and E1392/75 Value in E. c·oli: Characteristic...0352). consetved proteins with unknown func- tions (CDSs 0673 to 0678), a flavoprotein electron transfer system (CDSs 1730 to 1734), the colanic...mediating diarrhea are not chromosomally encoded. indicating that the essential virulence factors are encoded on the plasm ids (61 ). Potentia l

  16. (ESBL) producing Escherichia coli and Klebsiella pneumoniae

    African Journals Online (AJOL)

    use

    2011-11-21

    Nov 21, 2011 ... the most common serious bacterial infections in infants ... UTI is a common cause of morbidity .... of ESBL and non-ESBL producing Escherichia coli and Klebsiella pneumonia. ... in hospital and community acquired infections.

  17. Clonal relatedness of enterotoxigenic Escherichia coli (ETEC) strains expressing LT and CS17 isolated from children with diarrhoea in La Paz, Bolivia.

    Science.gov (United States)

    Rodas, Claudia; Klena, John D; Nicklasson, Matilda; Iniguez, Volga; Sjöling, Asa

    2011-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of traveller's and infantile diarrhoea in the developing world. ETEC produces two toxins, a heat-stable toxin (known as ST) and a heat-labile toxin (LT) and colonization factors that help the bacteria to attach to epithelial cells. In this study, we characterized a subset of ETEC clinical isolates recovered from Bolivian children under 5 years of age using a combination of multilocus sequence typing (MLST) analysis, virulence typing, serotyping and antimicrobial resistance test patterns in order to determine the genetic background of ETEC strains circulating in Bolivia. We found that strains expressing the heat-labile (LT) enterotoxin and colonization factor CS17 were common and belonged to several MLST sequence types but mainly to sequence type-423 and sequence type-443 (Achtman scheme). To further study the LT/CS17 strains we analysed the nucleotide sequence of the CS17 operon and compared the structure to LT/CS17 ETEC isolates from Bangladesh. Sequence analysis confirmed that all sequence type-423 strains from Bolivia had a single nucleotide polymorphism; SNP(bol) in the CS17 operon that was also found in some other MLST sequence types from Bolivia but not in strains recovered from Bangladeshi children. The dominant ETEC clone in Bolivia (sequence type-423/SNP(bol)) was found to persist over multiple years and was associated with severe diarrhoea but these strains were variable with respect to antimicrobial resistance patterns. The results showed that although the LT/CS17 phenotype is common among ETEC strains in Bolivia, multiple clones, as determined by unique MLST sequence types, populate this phenotype. Our data also appear to suggest that acquisition and loss of antimicrobial resistance in LT-expressing CS17 ETEC clones is more dynamic than acquisition or loss of virulence factors.

  18. Clonal Relatedness of Enterotoxigenic Escherichia coli (ETEC) Strains Expressing LT and CS17 Isolated from Children with Diarrhoea in La Paz, Bolivia

    Science.gov (United States)

    Rodas, Claudia; Klena, John D.; Nicklasson, Matilda; Iniguez, Volga; Sjöling, Åsa

    2011-01-01

    Background Enterotoxigenic Escherichia coli (ETEC) is a major cause of traveller's and infantile diarrhoea in the developing world. ETEC produces two toxins, a heat-stable toxin (known as ST) and a heat-labile toxin (LT) and colonization factors that help the bacteria to attach to epithelial cells. Methodology/Principal Findings In this study, we characterized a subset of ETEC clinical isolates recovered from Bolivian children under 5 years of age using a combination of multilocus sequence typing (MLST) analysis, virulence typing, serotyping and antimicrobial resistance test patterns in order to determine the genetic background of ETEC strains circulating in Bolivia. We found that strains expressing the heat-labile (LT) enterotoxin and colonization factor CS17 were common and belonged to several MLST sequence types but mainly to sequence type-423 and sequence type-443 (Achtman scheme). To further study the LT/CS17 strains we analysed the nucleotide sequence of the CS17 operon and compared the structure to LT/CS17 ETEC isolates from Bangladesh. Sequence analysis confirmed that all sequence type-423 strains from Bolivia had a single nucleotide polymorphism; SNPbol in the CS17 operon that was also found in some other MLST sequence types from Bolivia but not in strains recovered from Bangladeshi children. The dominant ETEC clone in Bolivia (sequence type-423/SNPbol) was found to persist over multiple years and was associated with severe diarrhoea but these strains were variable with respect to antimicrobial resistance patterns. Conclusion/Significance The results showed that although the LT/CS17 phenotype is common among ETEC strains in Bolivia, multiple clones, as determined by unique MLST sequence types, populate this phenotype. Our data also appear to suggest that acquisition and loss of antimicrobial resistance in LT-expressing CS17 ETEC clones is more dynamic than acquisition or loss of virulence factors. PMID:22140423

  19. F4+ enterotoxigenic Escherichia coli (ETEC) adhesion mediated by the major fimbrial subunit FaeG.

    Science.gov (United States)

    Xia, Pengpeng; Song, Yujie; Zou, Yajie; Yang, Ying; Zhu, Guoqiang

    2015-09-01

    The FaeG subunit is the major constituent of F4(+) fimbriae, associated with glycoprotein and/or glycolipid receptor recognition and majorly contributes to the pathogen attachment to the host cells. To investigate the key factor involved in the fimbrial binding of F4(+) Escherichia coli, both the recombinant E. coli SE5000 strains carrying the fae operon gene clusters that express the different types of fimbriae in vitro, named as rF4ab, rF4ac, and rF4ad, respectively, corresponding to the fimbrial types F4ab, F4ac, and F4ad, and the three isogenic in-frame faeG gene deletion mutants were constructed. The adhesion assays and adhesion inhibition assays showed that ΔfaeG mutants had a significant reduction in the binding to porcine brush border as well as the intestinal epithelial cell lines, while the complemented strain ΔfaeG/pfaeG restored the adhesion function. The recombinant bacterial strains rF4ab, rF4ac, and rF4ad have the same binding property as wild-type F4(+) E. coli strains do and improvement in terms of binding to porcine brush border and the intestinal epithelial cells, and the adherence was blocked by the monoclonal antibody anti-F4 fimbriae. These data demonstrate that the fimbrial binding of F4(+) E. coli is directly mediated by the major FaeG subunit. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Occurrence and characterization of Shiga toxin-producing Escherichia coli O157:H7 and other non-sorbitol-fermenting E. coli in cattle and humans in urban areas of Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Lupindu, Athumani M; Olsen, John Elmerdahl; Ngowi, Helena A

    2014-01-01

    Escherichia coli strains such as Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli, enterotoxigenic, attaching, and effacing E. coli, and enteroinvasive E. coli cause diarrhea in humans. Although other serotypes exist, the most commonly reported STEC in outbreaks is O157:H7. A cross-...

  1. Crystallization and preliminary X-ray diffraction analysis of CfaE, the adhesive subunit of the CFA/I fimbriae from human enterotoxigenic Escherichia coli

    International Nuclear Information System (INIS)

    Li, Yong-Fu; Poole, Steven; Rasulova, Fatima; Esser, Lothar; Savarino, Stephen J.; Xia, Di

    2006-01-01

    The adhesin CfaE of the CFA/I fimbriae from human enterotoxigenic E. coli has been crystallized. CfaE crystals diffracted X-rays to better than 2.4 Å and phasing was solved by the SIRAS method. Enterotoxigenic Escherichia coli (ETEC) represents a formidable food and waterborne diarrheal disease threat of global importance. The first step in ETEC pathogenesis is bacterial attachment to small-intestine epithelial cells via adhesive fimbriae, many of which are genetically related to the prototype colonization factor antigen I (CFA/I). The minor fimbrial subunit CfaE is required for initiation of CFA/I fimbrial assembly and mediates bacterial attachment to host cell-surface receptors. A donor-strand complemented variant of CfaE (dscCfaE) was expressed with a hexahistidine tag, purified to homogeneity and crystallized using the hanging-drop vapor-diffusion method. X-ray diffraction data sets were collected to 2.4 Å resolution for both native and derivatized crystals and showed the symmetry of space group P6 2 22, with unit-cell parameters a = b = 142.9, c = 231.9 Å. Initial phases were derived from the SIRAS approach and electron density showed two molecules in the crystallographic asymmetric unit. Sequence assignments were aided by anomalous signals from the selenium of an SeMet-derivatized crystal and from S atoms of a native crystal

  2. An outbreak of enterotoxigenic Escherichia coli (ETEC) infection in Norway, 2012: a reminder to consider uncommon pathogens in outbreaks involving imported products.

    Science.gov (United States)

    MacDonald, E; Møller, K E; Wester, A L; Dahle, U R; Hermansen, N O; Jenum, P A; Thoresen, L; Vold, L

    2015-02-01

    We investigated an outbreak of gastroenteritis following a Christmas buffet served on 4-9 December 2012 to ~1300 hotel guests. More than 300 people were reported ill in initial interviews with hotel guests. To identify possible sources of infection we conducted a cohort investigation through which we identified 214 probable cases. Illness was associated with consumption of scrambled eggs (odds ratio 9·07, 95% confidence interval 5·20-15·84). Imported chives added fresh to the scrambled eggs were the suspected source of the outbreak but were unavailable for testing. Enterotoxigenic Escherichia coli (ETEC) infection was eventually confirmed in 40 hotel guests. This outbreak reinforces that ETEC should be considered in non-endemic countries when the clinical picture is consistent and common gastrointestinal pathogens are not found. Following this outbreak, the Norwegian Food Safety Authority recommended that imported fresh herbs should be heat-treated before use in commercial kitchens.

  3. Flagellin and F4 fimbriae have opposite effects on biofilm formation and quorum sensing in F4ac+ enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Zhou, Mingxu; Guo, Zhiyan; Yang, Yang; Duan, Qiangde; Zhang, Qi; Yao, Fenghua; Zhu, Jun; Zhang, Xinjun; Hardwidge, Philip R; Zhu, Guoqiang

    2014-01-10

    Bacteria that form biofilms are often highly resistant to antibiotics and are capable of evading the host immune system. To evaluate the role of flagellin and F4 fimbriae on biofilm formation by enterotoxigenic Escherichia coli (ETEC), we deleted the fliC (encoding the major flagellin protein) and/or the faeG (encoding the major subunit of F4 fimbriae) genes from ETEC C83902. Biofilm formation was reduced in the fliC mutant but increased in the faeG mutant, as compared with the wild-type strain. The expression of AI-2 quorum sensing associated genes was regulated in the fliC and faeG mutants, consistent with the biofilm formation of these strains. But, deleting fliC and/or faeG also inhibited AI-2 quorum sensing activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. [Expression of enterotoxigenic Bacteroides fragilis and polyketide synthase gene-expressing Escherichia coli in colorectal adenoma patients].

    Science.gov (United States)

    Xie, L L; Wu, N; Zhu, Y M; Qiu, X Y; Chen, G D; Zhang, L M; Liu, Y L

    2016-03-29

    To investigate the distribution of various bacteria in adenoma tissue of colorectal adenoma (T/CRA), normal colonic mucosa tissue adjacent to the adenoma (N/CRA), and healthy colonic mucosa tissue (N/H) by comparing the number of total bacteria, Bacteroides fragilis (BF), enterotoxigenic Bacteroides fragilis (ETBF), polyketide synthase (pks) gene-expressing Escherichia coli(E.coli)(pks(+) E. coli)among the above 3 types of tissues. A total of 36 patients diagnosed with colorectal adenoma by colonoscopy and pathology in Department of Gastroenterology, Peking University People's Hospital from September 2011 to September 2013 were selected into this study. T/CRA and N/CRA tissues from the 36 patients and N/H tissues from 18 healthy controls were collected for DNA extraction. The number of total bacteria, BF, ETBF, pks(+) E. coli was detected by quantitative real time PCR, and their correlation with colorectal adenoma was analyzed. (1) The number of total bacteria decreased gradually from N/H, N/CRA, to T/CRA, with the median values being 3.18×10(8,) 1.57×10(8,) and 7.91×10(7) copies/g, respectively, and with significant difference among the three groups and between each two groups (all PCRA, to T/CRA, the median values being 6.03×10(5,) 4.28×10(4,) and 5.48×10(3) copies/g, respectively, and with significant difference among the three groups and between each two groups (all PCRA, to T/CRA, the relative expression being 1.73±0.30, 6.15±1.52, and 8.54±1.80, respectively. Significant difference was found between the T/CRA and N/H tissue (P=0.003), but not between any other two groups. (4) The expression of clbB in pks(+) E.coli was highest in T/CRA colonic tissue (2.96±0.28), followed by the N/CRA (2.79±0.19) and N/H tissue (1.06±0.08). Significant difference was found between T/CRA and N/H tissues, as well as between N/CRA and N/H tissues (both PCRA and N/CRA tissues. The number of total bacteria is markedly reduced in the colonic mucosa of CRA patients

  5. Immunogenicity and protective efficacy of a single-dose live non-pathogenic Escherichia coli oral vaccine against F4-positive enterotoxigenic Escherichia coli challenge in pigs.

    Science.gov (United States)

    Fairbrother, John Morris; Nadeau, Éric; Bélanger, Louise; Tremblay, Cindy-Love; Tremblay, Danielle; Brunelle, Mélanie; Wolf, Regina; Hellmann, Klaus; Hidalgo, Álvaro

    2017-01-05

    Enterotoxigenic Escherichia coli strains expressing F4 (K88) fimbriae (F4-ETEC) are one of the most important causes of post-weaning diarrhea (PWD) in pigs. F4, a major antigen, plays an important role in the early steps of the infection. Herein, the efficacy of a live oral vaccine consisting of a non-pathogenic E. coli strain expressing F4 for protection of pigs against PWD was evaluated. Three blinded, placebo-controlled, block design, parallel-group confirmatory experiments were conducted, using an F4-ETEC PWD challenge model, each with a different vaccination-challenge interval (3, 7, and 21days). The pigs were vaccinated via the drinking water with a single dose of the Coliprotec® F4 vaccine one day post-weaning. Efficacy was assessed by evaluating diarrhea, clinical observations, intestinal fluid accumulation, weight gain, intestinal colonization and fecal shedding of F4-ETEC. The immune response was evaluated by measuring serum and intestinal F4-specific antibodies. The administration of the vaccine resulted in a significant reduction of the incidence of moderate to severe diarrhea, ileal colonization by F4-ETEC, and fecal shedding of F4-ETEC after the heterologous challenge at 7 and 21days post-vaccination. The 7-day onset of protection was associated with an increase of serum anti-F4 IgM whereas the 21-day duration of protection was associated with an increase of both serum anti-F4 IgM and IgA. Significant correlations between levels of serum and intestinal secretory anti-F4 antibodies were detected. Maternally derived F4-specific serum antibodies did not interfere with the vaccine efficacy. The evaluation of protection following a challenge three days after vaccination showed a reduction of the severity and the duration of diarrhea and of fecal shedding of F4-ETEC. The 7-day onset and the 21-day duration of protection induced by Coliprotec® F4 vaccine administered once in drinking water to pigs of at least 18days of age were confirmed by protection

  6. Lactobacillus reuteri strains protect epithelial barrier integrity of IPEC-J2 monolayers from the detrimental effect of enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Karimi, Shokoufeh; Jonsson, Hans; Lundh, Torbjörn; Roos, Stefan

    2018-01-01

    Lactobacillus reuteri is an inhabitant of the gastrointestinal (GI) tract of mammals and birds and several strains of this species are known to be effective probiotics. The mechanisms by which L. reuteri confers its health-promoting effects are far from being fully understood, but protection of the mucosal barrier is thought to be important. Leaky gut is a state of abnormal intestinal permeability with implications for the pathophysiology of various gastrointestinal disorders. Enterotoxigenic Escherichia coli (ETEC) can invade the intestinal mucosa and induce changes in barrier function by producing enterotoxin or by direct invasion of the intestinal epithelium. Our hypothesis was that L. reuteri can protect the mucosal barrier, and the goal of the study was to challenge this hypothesis by monitoring the protective effect of L. reuteri strains on epithelial dysfunction caused by ETEC. Using an infection model based on the porcine intestinal cell line IPEC-J2, it was demonstrated that pretreatment of the cells with human-derived L. reuteri strains (ATCC PTA 6475, DSM 17938 and 1563F) and a rat strain (R2LC) reduced the detrimental effect of ETEC in a dose-dependent manner, as monitored by permeability of FITC-dextran and transepithelial electrical resistance (TEER). Moreover, the results revealed that ETEC upregulated proinflammatory cytokines IL-6 and TNFα and decreased expression of the shorter isoform of ZO-1 (187 kDa) and E-cadherin. In contrast, pretreatment with L. reuteri DSM 17938 and 1563F downregulated expression of IL-6 and TNFα, and led to an increase in production of the longer isoform of ZO-1 (195 kDa) and maintained E-cadherin expression. Interestingly, expression of ZO-1 (187 kDa) was preserved only when the infected cells were pretreated with strain 1563F. These findings demonstrate that L. reuteri strains exert a protective effect against ETEC-induced mucosal integrity disruption. © 2018 The Authors. Physiological Reports published by

  7. Crystal Structure of the Minor Pilin CofB, the Initiator of CFA/III Pilus Assembly in Enterotoxigenic Escherichia coli*

    Science.gov (United States)

    Kolappan, Subramania; Ng, Dixon; Yang, Guixiang; Harn, Tony; Craig, Lisa

    2015-01-01

    Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system. PMID:26324721

  8. Crystal Structure of the Minor Pilin CofB, the Initiator of CFA/III Pilus Assembly in Enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Kolappan, Subramania; Ng, Dixon; Yang, Guixiang; Harn, Tony; Craig, Lisa

    2015-10-23

    Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Crystallization and preliminary X-ray diffraction analyses of several forms of the CfaB major subunit of enterotoxigenic Escherichia coli CFA/I fimbriae

    International Nuclear Information System (INIS)

    Li, Yong-Fu; Poole, Steven; Rasulova, Fatima; McVeigh, Annette L.; Savarino, Stephen J.; Xia, Di

    2009-01-01

    Three fusion proteins were generated in order to resolve the atomic structure of the CFA/I fimbriae of enterotoxigenic E. coli. CfaEB is a fusion of the minor and major CFA/I subunits, while CfaBB and CfaBBB are tandem fusions of two and three repeats, respectively, of the major subunit. Each protein was crystallized and the crystal structures of each of these fusions were determined successively by the molecular-replacement method using the CfaE crystal structure as an initial phasing model. Enterotoxigenic Escherichia coli (ETEC), a major global cause of diarrhea, initiates the pathogenic process via fimbriae-mediated attachment to the small intestinal epithelium. A common prototypic ETEC fimbria, colonization factor antigen I (CFA/I), consists of a tip-localized minor adhesive subunit CfaE and the stalk-forming major subunit CfaB, both of which are necessary for fimbrial assembly. To elucidate the structure of CFA/I at atomic resolution, three recombinant proteins were generated consisting of fusions of the minor and major subunits (CfaEB) and of two (CfaBB) and three (CfaBBB) repeats of the major subunit. Crystals of CfaEB diffracted X-rays to 2.1 Å resolution and displayed the symmetry of space group P2 1 . CfaBB exhibited a crystal diffraction limit of 2.3 Å resolution and had the symmetry of space group P2 1 2 1 2. CfaBBB crystallized in the monoclinic space group C2 and diffracted X-rays to 2.3 Å resolution. These structures were determined using the molecular-replacement method

  10. 77 FR 9888 - Shiga Toxin-Producing Escherichia coli

    Science.gov (United States)

    2012-02-21

    ... Toxin-Producing Escherichia coli in Certain Raw Beef Products AGENCY: Food Safety and Inspection Service... toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145). This new date..., that are contaminated with Shiga toxin-producing Escherichia coli (STEC) O26, O45, O103, O111, O121...

  11. A novel mass spectrometric strategy "BEMAP" reveals Extensive O-linked protein glycosylation in Enterotoxigenic Escherichia coli

    DEFF Research Database (Denmark)

    Boysen, Anders; Palmisano, Giuseppe; Krogh, Thøger Jensen

    2016-01-01

    The attachment of sugars to proteins via side-chain oxygen atoms (O-linked glycosylation) is seen in all three domains of life. However, a lack of widely-applicable analytical tools has restricted the study of this process, particularly in bacteria. In E. coli, only four O-linked glycoproteins have...... previously been characterized. Here we present a glycoproteomics technique, termed BEMAP, which is based on the beta-elimination of O-linked glycans followed by Michael-addition of a phosphonic acid derivative, and subsequent titanium dioxide enrichment. This strategy allows site-specific mass......-spectrometric identification of proteins with O-linked glycan modifications in a complex biological sample. Using BEMAP we identified cell surface-associated and membrane vesicle glycoproteins from Enterotoxigenic E. coli (ETEC) and non-pathogenic E. coli K-12. We identified 618 glycosylated Serine and Threonine residues...

  12. Induction of Th1 polarized immune responses by thiolated Eudragit-coated F4 and F18 fimbriae of enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Lee, Won-Jung; Cha, Seungbin; Shin, Minkyoung; Islam, Mohammad Ariful; Cho, Chong-su; Yoo, Han Sang

    2011-10-01

    Diarrhea in newborn and weaned piglets is mainly induced by enterotoxigenic Escherichia coli (ETEC) with fimbriae F4 (K88) and F18 (F107). In this study, we evaluated F4 and F18 coated with thiolated Eudragit microspheres (TEMS) as a candidate for an oral vaccine. The average particle sizes of TEMS, F4-loaded TEMS, and F18-loaded TEMS were measured as 4.2±0.75 μm, 4.7±0.50 μm, and 4.5±0.37 μm, respectively. F4 is more efficiently encapsulated than F18 in the loading with TEMS. In the release test, F4 and F18 fimbriae were protected in acidic circumstances, whereas most were released at pH 7.4 of intestine circumstances. Production of TNF-α and NO from RAW 264.7 cells was increased in a time-dependent manner after exposure to all groups, whereas only F4- or F18-loaded TEMS-stimulated IL-6 secretion. The levels of IFN-γ from mouse splenocytes after exposure to F4 or F18 were increased while IL-4 was not detectable. These results suggest that F4- and F18-loaded TEMS may effectively induce immune response with the efficient release of antigens to appropriate target sites. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Both flagella and F4 fimbriae from F4ac+ enterotoxigenic Escherichia coli contribute to attachment to IPEC-J2 cells in vitro.

    Science.gov (United States)

    Zhou, Mingxu; Duan, Qiangde; Zhu, Xiaofang; Guo, Zhiyan; Li, Yinchau; Hardwidge, Philip R; Zhu, Guoqiang

    2013-05-13

    The role of flagella in the pathogenesis of F4ac+ Enterotoxigenic Escherichia coli (ETEC) mediated neonatal and post-weaning diarrhea (PWD) is not currently understood. We targeted the reference C83902 ETEC strain (O8:H19:F4ac+ LT+ STa+ STb+), to construct isogenic mutants in the fliC (encoding the major flagellin protein), motA (encoding the flagella motor), and faeG (encoding the major subunit of F4 fimbriae) genes. Both the ΔfliC and ΔfaeG mutants had a reduced ability to adhere to porcine intestinal epithelial IPEC-J2 cells. F4 fimbriae expression was significantly down-regulated after deleting fliC, which revealed that co-regulation exists between flagella and F4 fimbriae. However, there was no difference in adhesion between the ΔmotA mutant and its parent strain. These data demonstrate that both flagella and F4 fimbriae are required for efficient F4ac+ ETEC adhesion in vitro.

  14. Increased number of intestinal villous M cells in levamisole - pretreated weaned pigs experimentally infected with F4ac+ enterotoxigenic Escherichia coli strain

    Directory of Open Access Journals (Sweden)

    H. Valpotić

    2010-07-01

    Full Text Available Immunoprophylaxis of porcine postweaning colibacillosis (PWC caused by enterotoxigenic Escherichia coli (ETEC expressing F4 fimbriae is an unsolved problem. Just as ETEC strains can exploit intestinal microfold (M cells as the entry portal for infection, their high transcytotic ability make them an attractive target for mucosally delivered vaccines, adjuvants and therapeutics. We have developed a model of parenteral/oral immunization of 4-weeks-old pigs with either levamisole or vaccine candidate F4ac+ non-ETEC strain to study their effects on de novo differentiation of antigen-sampling M cells. Identification, localization and morphometric quantification of cytokeratin 18 positive M cells in the ileal mucosa of 6-weeks-old pigs revealed that they were: 1 exclusively located within villous epithelial layer, 2 significantly numerous (P< 0.01 in levamisole pretreated/challenged pigs, and 3 only slightly, but not significantly numerous in vaccinated/challenged pigs compared with non-pretreated/challenged control pigs. The fact that levamisole may affect the M cells frequency by increasing their numbers, makes it an interesting adjuvant to study development of an effective M cell-targeted vaccine against porcine PWC.

  15. Binding of CFA/I Pili of Enterotoxigenic Escherichia coli to Asialo-GM1 Is Mediated by the Minor Pilin CfaE.

    Science.gov (United States)

    Madhavan, T P Vipin; Riches, James D; Scanlon, Martin J; Ulett, Glen C; Sakellaris, Harry

    2016-05-01

    CFA/I pili are representatives of a large family of related pili that mediate the adherence of enterotoxigenic Escherichia coli to intestinal epithelial cells. They are assembled via the alternate chaperone-usher pathway and consist of two subunits, CfaB, which makes up the pilus shaft and a single pilus tip-associated subunit, CfaE. The current model of pilus-mediated adherence proposes that CFA/I has two distinct binding activities; the CfaE subunit is responsible for binding to receptors of unknown structure on erythrocyte and intestinal epithelial cell surfaces, while CfaB binds to various glycosphingolipids, including asialo-GM1. In this report, we present two independent lines of evidence that, contrary to the existing model, CfaB does not bind to asialo-GM1 independently of CfaE. Neither purified CfaB subunits nor CfaB assembled into pili bind to asialo-GM1. Instead, we demonstrate that binding activity toward asialo-GM1 resides in CfaE and this is essential for pilus binding to Caco-2 intestinal epithelial cells. We conclude that the binding activities of CFA/I pili for asialo-GM1, erythrocytes, and intestinal cells are inseparable, require the same amino acid residues in CfaE, and therefore depend on the same or very similar binding mechanisms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of CofB, the minor pilin subunit of CFA/III from human enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Kawahara, Kazuki; Oki, Hiroya; Fukakusa, Shunsuke; Maruno, Takahiro; Kobayashi, Yuji; Motooka, Daisuke; Taniguchi, Tooru; Honda, Takeshi; Iida, Tetsuya; Nakamura, Shota; Ohkubo, Tadayasu

    2015-06-01

    Colonization factor antigen III (CFA/III) is one of the virulence factors of human enterotoxigenic Escherichia coli (ETEC) that forms the long, thin, proteinaceous fibres of type IV pili through assembly of its major and minor subunits CofA and CofB, respectively. The crystal structure of CofA has recently been reported; however, the lack of structural information for CofB, the largest among the known type IV pilin subunits, hampers a comprehensive understanding of CFA/III pili. In this study, constructs of wild-type CofB with an N-terminal truncation and the corresponding SeMet derivative were cloned, expressed, purified and crystallized. The crystals belonged to the rhombohedral space group R32, with unit-cell parameters a = b = 103.97, c = 364.57 Å for the wild-type construct and a = b = 103.47, c = 362.08 Å for the SeMet-derivatized form. Although the diffraction quality of these crystals was initially very poor, dehydration of the crystals substantially improved the resolution limit from ∼ 4.0 to ∼ 2.0 Å. The initial phase was solved by the single-wavelength anomalous dispersion (SAD) method using a dehydrated SeMet CofB crystal, which resulted in an interpretable electron-density map.

  17. A Chimeric protein of CFA/I, CS6 subunits and LTB/STa toxoid protects immunized mice against enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Zeinalzadeh, Narges; Salmanian, Ali Hatef; Goujani, Goli; Amani, Jafar; Ahangari, Ghasem; Akhavian, Asal; Jafari, Mahyat

    2017-07-01

    Enterotoxigenic Escherichia Coli (ETEC) strains are the commonest bacteria causing diarrhea in children in developing countries and travelers to these areas. Colonization factors (CFs) and enterotoxins are the main virulence determinants in ETEC pathogenesis. Heterogeneity of CFs is commonly considered the bottleneck to developing an effective vaccine. It is believed that broad spectrum protection against ETEC would be achieved by induced anti-CF and anti-enterotoxin immunity simultaneously. Here, a fusion antigen strategy was used to construct a quadrivalent recombinant protein called 3CL and composed of CfaB, a structural subunit of CFA/I, and CS6 structural subunits, LTB and STa toxoid of ETEC. Its anti-CF and antitoxin immunogenicity was then assessed. To achieve high-level expression, the 3CL gene was synthesized using E. coli codon bias. Female BALB/C mice were immunized with purified recombinant 3CL. Immunized mice developed antibodies that were capable of detecting each recombinant subunit in addition to native CS6 protein and also protected the mice against ETEC challenge. Moreover, sera from immunized mice also neutralized STa toxin in a suckling mouse assay. These results indicate that 3CL can induce anti-CF and neutralizing antitoxin antibodies along with introducing CFA/I as a platform for epitope insertion. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  18. In Vitro Evaluation of Swine-Derived Lactobacillus reuteri: Probiotic Properties and Effects on Intestinal Porcine Epithelial Cells Challenged with Enterotoxigenic Escherichia coli K88.

    Science.gov (United States)

    Wang, Zhilin; Wang, Li; Chen, Zhuang; Ma, Xianyong; Yang, Xuefen; Zhang, Jian; Jiang, Zongyong

    2016-06-28

    Probiotics are considered as the best effective alternatives to antibiotics. The aim of this study was to characterize the probiotic potential of lactobacilli for use in swine farming by using in vitro evaluation methods. A total of 106 lactic acid bacterial isolates, originating from porcine feces, were first screened for the capacity to survive stresses considered important for putative probiotic strains. Sixteen isolates showed notable acid and bile resistance, antibacterial activity, and adherence to intestinal porcine epithelial cells (IPEC-1). One isolate, LR1, identified as Lactobacillus reuteri, was selected for extensive study of its probiotic and functional properties in IPEC-1 cell models. L. reuteri LR1 exhibited good adhesion to IPEC-1 cells and could inhibit the adhesion of enterotoxigenic Escherichia coli (ETEC) to IPEC-1 cells. L. reuteri LR1 could also modulate transcript and protein expression of cytokines involved in inflammation in IPEC-1 cells; the Lactobacillus strain inhibited the ETEC-induced expression of proinflammatory transcripts (IL-6 and TNF-α) and protein (IL-6), and increased the level of anti-inflammatory cytokine (IL-10). Measurement of the permeation of FD-4 showed that L. reuteri LR1 could maintain barrier integrity in monolayer IPEC-1 cells exposed to ETEC. Immunolocalization experiments showed L. reuteri LR1 could also prevent ETEC-induced tight junction ZO-1 disruption. Together, these results indicate that L. reuteri LR1 exhibits desirable probiotic properties and could be a potential probiotic for use in swine production.

  19. Expression of colonization factor CS5 of enterotoxigenic Escherichia coli (ETEC is enhanced in vivo and by the bile component Na glycocholate hydrate.

    Directory of Open Access Journals (Sweden)

    Matilda Nicklasson

    Full Text Available Enterotoxigenic Escherichia coli (ETEC is an important cause of acute watery diarrhoea in developing countries. Colonization factors (CFs on the bacterial surface mediate adhesion to the small intestinal epithelium. Two of the most common CFs worldwide are coli surface antigens 5 and 6 (CS5, CS6. In this study we investigated the expression of CS5 and CS6 in vivo, and the effects of bile and sodium bicarbonate, present in the human gut, on the expression of CS5. Five CS5+CS6 ETEC isolates from adult Bangladeshi patients with acute diarrhoea were studied. The level of transcription from the CS5 operon was approximately 100-fold higher than from the CS6 operon in ETEC bacteria recovered directly from diarrhoeal stool without sub-culturing (in vivo. The glyco-conjugated primary bile salt sodium glycocholate hydrate (NaGCH induced phenotypic expression of CS5 in a dose-dependent manner and caused a 100-fold up-regulation of CS5 mRNA levels; this is the first description of NaGCH as an enteropathogenic virulence inducer. The relative transcription levels from the CS5 and CS6 operons in the presence of bile or NaGCH in vitro were similar to those in vivo. Another bile salt, sodium deoxycholate (NaDC, previously reported to induce enteropathogenic virulence, also induced expression of CS5, whereas sodium bicarbonate did not.

  20. Efficacy of thiolated eudragit microspheres as an oral vaccine delivery system to induce mucosal immunity against enterotoxigenic Escherichia coli in mice.

    Science.gov (United States)

    Lee, Won-Jung; Cha, Seungbin; Shin, Minkyoung; Jung, Myunghwan; Islam, Mohammad Ariful; Cho, Chong-su; Yoo, Han Sang

    2012-05-01

    A vaccine delivery system based on thiolated eudragit microsphere (TEMS) was studied in vivo for its ability to elicit mucosal immunity against enterotoxigenic Escherichia coli (ETEC). Groups of mice were orally immunized with F4 or F18 fimbriae of ETEC and F4 or F18 loaded in TEMS. Mice that were orally administered with F4 or F18 loaded TEMS showed higher antigen-specific IgG antibody responses in serum and antigen-specific IgA in saliva and feces than mice that were immunized with antigens only. In addition, oral vaccination of F4 or F18 loaded TEMS resulted in higher numbers of IgG and IgA antigen-specific antibody secreting cells in the spleen, lamina propria, and Peyer's patches of immunized mice than other groups. Moreover, TEMS administration loaded with F4 or F18 induced mixed Th1 and Th2 type responses based on similarly increased levels of IgG1 and IgG2a. These results suggest that F4 or F18 loaded TEMS may be a promising candidate for an oral vaccine delivery system to elicit systemic and mucosal immunity against ETEC. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Association of vitamin D status with incidence of enterotoxigenic, enteropathogenic and enteroaggregative Escherichia coli diarrhoea in children of urban Bangladesh.

    Science.gov (United States)

    Ahmed, A M S; Soares Magalhaes, R J; Long, K Z; Ahmed, T; Alam, Md A; Hossain, Md I; Islam, Md M; Mahfuz, M; Mondal, D; Haque, R; Mamun, A A

    2016-08-01

    To evaluate the association between vitamin D status and diarrhoeal episodes by enterotoxigenic (ETEC), enteropathogenic (EPEC) and enteroaggregative (EAEC) E. coli in underweight and normal-weight children aged 6-24 months in urban Bangladesh. Cohorts of 446 normal-weight and 466 underweight children were tested separately for ETEC, EPEC and EAEC from diarrhoeal stool samples collected during 5 months of follow-up while considering vitamin D status at enrolment as the exposure. Cox proportional hazards models with unordered failure events of the same type were used to determine diarrhoeal risk factors after adjusting for sociodemographic and concurrent micronutrient status. Vitamin D status was not independently associated with the risk of incidence of ETEC, EPEC and EAEC diarrhoea in underweight children, but moderate-to-severe retinol deficiency was associated with reduced risk for EPEC diarrhoea upon adjustment. Among normal-weight children, insufficient vitamin D status and moderate-to-severe retinol deficiency were independently associated with 44% and 38% reduced risk of incidence of EAEC diarrhoea, respectively. These children were at higher risk of ETEC diarrhoea with vitamin D deficiency status when adjusted for micronutrient status only. This study demonstrates for the first time that normal-weight children with insufficient vitamin D status have a reduced risk of EAEC diarrhoea than children with sufficient status. Moderate-to-severe deficiency of serum retinol is associated with reduced risk of EPEC and EAEC diarrhoea in underweight and normal-weight children. © 2016 John Wiley & Sons Ltd.

  2. Maillard neoglycans as inhibitors for in vitro adhesion of F4+ enterotoxigenic Escherichia coli to piglet intestinal cells.

    Science.gov (United States)

    Sarabia-Sainz, Héctor Manuel; Mata Haro, Verónica; Sarabia Sainz, José Andre-I; Vázquez-Moreno, Luz; Montfort, Gabriela Ramos-Clamont

    2017-01-01

    Adhesion of enterotoxigenic (ETEC) E. coli to host intestinal cells is mediated by lectin-like fimbriae that bind to specific glycan moieties on the surfaces of enterocytes. To prevent in vitro binding of E. coli F4 fimbriae (F4 ETEC + ) to piglet enterocytes, neoglycans were synthesized by the Maillard reaction conjugating lactose (Lac), galacto-oligosaccharides (GOS) or chitin oligosaccharides (Ochit) to porcine serum albumin (PSA). Neoglycans were characterized by SDS-PAGE, intrinsic tryptophan fluorescence and recognition by plant lectins, as well as by F4 ETEC variants. Electrophoretic patterns suggested the binding to PSA of 63, 13 and 2 molecules of Lac, GOS and Ochit, respectively. All neoglycans displayed quenching of tryptophan fluorescence consistent with the degree of glycation estimated by SDS-PAGE. Plant lectins recognized the neoglycans according to their specificity, whereas antigenic variants of F4 ETEC (ab, ac and ad) recognized PSA-Ochit and PSA-Lac with higher affinity than that for GOS. Neoglycans partially hindered the in vitro binding of F4 + ETEC to piglet enterocytes in a dose-dependent manner. The most effective blocking was observed with PSA-Lac that partially inhibited the adhesion of bacteria to enterocytes in a dose dependent manner, as quantified by flow cytometry. Increased production of the cytokines IL-6 and TNF-α was observed in response to F4 + ETEC infection of enterocytes and production was reduced in the presence of PSA-Ochit and PSA-GOS. These results suggest that neoglycans synthesized by the Maillard reaction could be useful in the prophylaxis of diarrhea in piglets.

  3. Immunologic Control of Diarrheal Disease Due to Enterotoxigenic Escherichia coli: Reactogenicity, Immunogenicity, and Efficacy Studies of Pili Vaccines

    Science.gov (United States)

    1981-09-01

    bacterial hemagglutination teLhnique for detection of Shigella antibodies. J. Bacteriol. 91:463, 1966. -25- Appendix A 20. Levine, M.M. Legai and ethical...Gotschlich. E.C. Type 1 Escherichia coli pill: characterization of binding to monkey kidney cells. J. Exp. Med. 146:1132, 1977. 40. Santini, R., Jr., Sheehy

  4. Effect of bovine colostrum feeding in comparison with milk replacer and natural feeding on the immune responses and colonisation of enterotoxigenic Escherichia coli in the intestinal tissue of piglets

    DEFF Research Database (Denmark)

    Sugiharto, Sugiharto; Poulsen, Ann-Sofie Riis; Canibe, Nuria

    2015-01-01

    The present study investigated the effect of feeding bovine colostrum (BC) to piglets in comparison with feeding a milk replacer (MR) and conventional rearing by the sow on the intestinal immune system and number of enterotoxigenic Escherichia coli (ETEC) colonising the intestinal tissue. Piglets......-fed and Sow-Milk groups. The expression level of IL-2 was higher (P≤ 0·051) in piglets from the MR-fed group than in those from the other treatment groups. In conclusion, feeding BC rather than MR to the piglets reduced the colonisation of intestine by ETEC and modulated the intestinal immune system, whereas...

  5. Alkaline pH Is a signal for optimal production and secretion of the heat labile toxin, LT in enterotoxigenic Escherichia coli (ETEC.

    Directory of Open Access Journals (Sweden)

    Lucia Gonzales

    Full Text Available Enterotoxigenic Escherichia coli (ETEC cause secretory diarrhea in children and travelers to endemic areas. ETEC spreads through the fecal-oral route. After ingestion, ETEC passes through the stomach and duodenum before it colonizes the lower part of the small intestine, exposing bacteria to a wide range of pH and environmental conditions. This study aimed to determine the impact of external pH and activity of the Cyclic AMP receptor protein (CRP on the regulation of production and secretion of heat labile (LT enterotoxin. ETEC strain E2863wt and its isogenic mutant E2863ΔCRP were grown in LBK media buffered to pH 5, 7 and 9. GM1 ELISA, cDNA and cAMP analyses were carried out on bacterial pellet and supernatant samples derived from 3 and 5 hours growth and from overnight cultures. We confirm that CRP is a repressor of LT transcription and production as has been shown before but we show for the first time that CRP is a positive regulator of LT secretion both in vitro and in vivo. LT secretion increased at neutral to alkaline pH compared to acidic pH 5 where secretion was completely inhibited. At pH 9 secretion of LT was optimal resulting in 600 percent increase of secreted LT compared to unbuffered LBK media. This effect was not due to membrane leakage since the bacteria were viable at pH 9. The results indicate that the transition to the alkaline duodenum and/or exposure to high pH close to the epithelium as well as activation of the global transcription factor CRP are signals that induce secretion of the LT toxin in ETEC.

  6. Effect of Lactobacillus salivarius on growth performance, diarrhea incidence, fecal bacterial population and intestinal morphology of suckling pigs challenged with F4+ enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Sayan, Harutai; Assavacheep, Pornchalit; Angkanaporn, Kris; Assavacheep, Anongnart

    2018-04-12

    Gut health improvements were monitored with respect to growth performance, diarrhea incidence, fecal bacterial population and intestinal morphology of suckling pigs orally supplemented with live Lactobacillus salivarius oral suspensions and challenged with F4+ enterotoxigenic Escherichia coli (ETEC). Two groups of newborn pigs from 18 multiparous sows were randomly designated as non-supplemented (control: n=114 piglets) and L. salivarius supplemented groups (treatment: n=87 piglets). Treatment pigs were orally administered with 2 ml of 109 CFU/ml L. salivarius on days 1 - 3, then they were orally administered with 5 ml of 109 CFU/ml L. salivarius on days 4 - 10, while those in control group received an equal amount of phosphate buffered saline solution (PBS). On day 24 (2 weeks post supplementation), one pig per replicate of both groups was orally administered with 108 CFU/ml F4+ ETEC, then they were euthanized on day 29 of experiment. Results revealed that pigs in treatment group had statistically significant in average daily gain (ADG), body weight and weight gain, and tended to lower diarrhea throughout the study. Numbers of Lactobacillus population in feces of treatment pigs were higher than control pigs, especially on day 10 of study. Numbers of total bacteria in intestinal contents of control pigs were also increased, but not Coliform and Lactobacillus populations. Histological examination revealed statistically significant improvement of villous height and villous/crypt ratio of duodenum, proximal jejunum and distal jejunum parts of treatment pigs better than control. Duodenal pH of treatment group was significantly decreased. Oral supplementation of live L. salivarius during the first 10 days of suckling pig promoted growth performance and guts health, reduced diarrhea incidence, and increased fecal Lactobacillus populations, and improved intestinal morphology.

  7. The oral, live attenuated enterotoxigenic Escherichia coli vaccine ACE527 reduces the incidence and severity of diarrhea in a human challenge model of diarrheal disease.

    Science.gov (United States)

    Darsley, Michael J; Chakraborty, Subhra; DeNearing, Barbara; Sack, David A; Feller, Andrea; Buchwaldt, Charlotte; Bourgeois, A Louis; Walker, Richard; Harro, Clayton D

    2012-12-01

    An oral, live attenuated, three-strain recombinant bacterial vaccine, ACE527, was demonstrated to generate strong immune responses to colonization factor and toxin antigens of enterotoxigenic Escherichia coli (ETEC) in human volunteers. The vaccine was safe and well tolerated at doses of up to 10(11) CFU, administered in each of two doses given 21 days apart. These observations have now been extended in a phase 2b study with a total of 70 subjects. Fifty-six of these subjects were challenged 28 days after the second dose of vaccine with the highly virulent ETEC strain H10407 to obtain preliminary indicators of efficacy against disease and to support further development of the vaccine for both travelers and infants in countries where ETEC is endemic. The vaccine had a significant impact on intestinal colonization by the challenge strain, as measured by quantitative fecal culture 2 days after challenge, demonstrating the induction of a functional immune response to the CFA/I antigen. The incidence and severity of diarrhea were also reduced in vaccinees as measured by a number of secondary and ad hoc endpoints, although the 27% reduction seen in the primary endpoint, moderate to severe diarrhea, was not statistically significant. Together, these observations support the hypothesis that the ACE527 vaccine has a dual mode of action, targeting both colonization factors and the heat-labile enterotoxin (LT), and suggest that it should be further developed for more advanced trials to evaluate its impact on the burden of ETEC disease in field settings.

  8. Biofilm formation and binding specificities of CFA/I, CFA/II and CS2 adhesions of enterotoxigenic Escherichia coli and Cfae-R181A mutant.

    Science.gov (United States)

    Liaqat, Iram; Sakellaris, Harry

    2012-07-01

    Enterotoxigenic Escherichia coli (ETEC) strains are leading causes of childhood diarrhea in developing countries. Adhesion is the first step in pathogenesis of ETEC infections and ETEC pili designated colonization factor antigens (CFAs) are believed to be important in the biofim formation, colonization and host cell adhesions. As a first step, we have determined the biofilm capability of ETEC expressing various types of pili (CFA/I, CfaE-R181A mutant/CfaE tip mutant, CFA/II and CS2). Further, enzyme-linked immunosorbent assay (ELISA) assay were developed to compare the binding specificity of CFA/I, CFA/II (CS1 - CS3) and CS2 of ETEC, using extracted pili and piliated bacteria. CFA/II strain (E24377a) as well as extracted pili exhibited significantly higher binding both in biofilm and ELISA assays compared to non piliated wild type E24377a, CFA/I and CS2 strains. This indicates that co-expression of two or more CS2 in same strain is more efficient in increasing adherence. Significant decrease in binding specificity of DH5αF'lacI (q)/∆cotD (CS2) strain and MC4100/pEU2124 (CfaE-R181A) mutant strain indicated the important contribution of tip proteins in adherence assays. However, CS2 tip mutant strain (DH5αF'lacI (q)/pEU5881) showed that this specific residue may not be important as adhesions in these strains. In summary, our data suggest that pili, their minor subunits are important for biofilm formation and adherence mechanisms. Overall, the functional reactivity of strains co expressing various antigens, particularly minor subunit antigen observed in this study suggest that fewer antibodies may be required to elicit immunity to ETEC expressing a wider array of related pili.

  9. Preliminary X-ray diffraction analysis of CfaA, a molecular chaperone essential for the assembly of CFA/I fimbriae of human enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Bao, Rui; Esser, Lothar; Poole, Steven; McVeigh, Annette; Chen, Yu Xing; Savarino, Stephen J; Xia, Di

    2014-02-01

    Understanding of pilus bioassembly in Gram-negative bacteria stems mainly from studies of P pili and type 1 fimbriae of uropathogenic Escherichia coli, which are mediated by the classic chaperone-usher pathway (CUP). However, CFA/I fimbriae, a class 5 fimbria and intestinal colonization factor for enterotoxigenic E. coli (ETEC), are proposed to assemble via the alternate chaperone pathway (ACP). Both CUP and ACP fimbrial bioassembly pathways require the function of a periplasmic chaperone, but their corresponding proteins share very low similarity in primary sequence. Here, the crystallization of the CFA/I periplasmic chaperone CfaA by the hanging-drop vapor-diffusion method is reported. X-ray diffraction data sets were collected from a native CfaA crystal to 2 Å resolution and to 1.8 and 2.8 Å resolution, respectively, from a lead and a platinum derivative. These crystals displayed the symmetry of space group C2, with unit-cell parameters a = 103.6, b = 28.68, c = 90.60 Å, β = 119.7°. Initial phases were derived from multiple isomorphous replacement with anomalous scattering experiments using the data from the platinum and lead derivatives. This resulted in an interpretable electron-density map showing one CfaA molecule in an asymmetric unit. Sequence assignments were aided by anomalous signals from the heavy-atom derivatives. Refinement of the atomic model of CfaA is ongoing, which is expected to further understanding of the essential aspects and allowable variations in tertiary structure of the greater family of chaperones involved in chaperone-usher mediated bioassembly.

  10. Effects of lng Mutations on LngA Expression, Processing, and CS21 Assembly in Enterotoxigenic Escherichia coli E9034A

    Science.gov (United States)

    Saldaña-Ahuactzi, Zeus; Rodea, Gerardo E.; Cruz-Córdova, Ariadnna; Rodríguez-Ramírez, Viridiana; Espinosa-Mazariego, Karina; González-Montalvo, Martín A.; Ochoa, Sara A.; González-Pedrajo, Bertha; Eslava-Campos, Carlos A.; López-Villegas, Edgar O.; Hernández-Castro, Rigoberto; Arellano-Galindo, José; Patiño-López, Genaro; Xicohtencatl-Cortes, Juan

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of morbidity in children under 5 years of age in low- and middle-income countries and a leading cause of traveler's diarrhea worldwide. The ability of ETEC to colonize the intestinal epithelium is mediated by fimbrial adhesins, such as CS21 (Longus). This adhesin is a type IVb pilus involved in adherence to intestinal cells in vitro and bacterial self-aggregation. Fourteen open reading frames have been proposed to be involved in CS21 assembly, hitherto only the lngA and lngB genes, coding for the major (LngA) and minor (LngB) structural subunit, have been characterized. In this study, we investigated the role of the LngA, LngB, LngC, LngD, LngH, and LngP proteins in the assembly of CS21 in ETEC strain E9034A. The deletion of the lngA, lngB, lngC, lngD, lngH, or lngP genes, abolished CS21 assembly in ETEC strain E9034A and the adherence to HT-29 cells was reduced 90%, compared to wild-type strain. Subcellular localization prediction of CS21 proteins was similar to other well-known type IV pili homologs. We showed that LngP is the prepilin peptidase of LngA, and that ETEC strain E9034A has another peptidase capable of processing LngA, although with less efficiency. Additionally, we present immuno-electron microscopy images to show that the LngB protein could be localized at the tip of CS21. In conclusion, our results demonstrate that the LngA, LngB, LngC, LngD, LngH, and LngP proteins are essential for CS21 assembly, as well as for bacterial aggregation and adherence to HT-29 cells. PMID:27536289

  11. Comparison of one commercial and two in-house TaqMan multiplex real-time PCR assays for detection of enteropathogenic, enterotoxigenic and enteroaggregative Escherichia coli.

    Science.gov (United States)

    Hahn, Andreas; Luetgehetmann, Marc; Landt, Olfert; Schwarz, Norbert Georg; Frickmann, Hagen

    2017-11-01

    Enteropathogenic, enterotoxigenic and enteroaggregative Escherichia coli (EPEC, ETEC, EAEC) are among the most frequent causes of diarrhoea during travel or on military deployments. Cost-efficient and reliable real-time multiplex PCR (mPCR) assays are desirable for surveillance or point prevalence studies in remote and resource-limited tropical settings. We compared one commercial PCR kit and two in-house assays without using a gold standard to estimate sensitivity and specificity of each assay. Residual materials from nucleic acid extractions of stool samples from two groups with presumably different prevalences and increased likelihood of being infected or colonised by diarrhoeagenic E. coli were included in the assessment. One group comprised samples from returnees from tropical deployments, the second group was of migrants and study participants from high-endemicity settings. Each sample was assessed with all of the PCR assays. Cycle threshold (Ct) values were descriptively compared. The calculated sensitivities for the commercial test vs. the in-house tests were for EPEC 0.84 vs. 0.89 and 0.96, for ETEC 0.83 vs. 0.76 and 0.61, and for EAEC 0.69 vs. 0.54 and 0.69. False positive results were rare - specificity was 0.94 and 0.97 for two EPEC tests and 1.0 for all other tests. Most positive samples had late Ct values corresponding to low quantities of pathogens. Discordant test results were associated with late Ct values. As commercial and in-house assays showed comparable results, in-house tests can be assumed to be safe while affording considerable savings, making them a valuable alternative for surveillance testing in resource-limited tropical areas. © 2017 John Wiley & Sons Ltd.

  12. PCR detection and serotyping of enterotoxigenic and shigatoxigenic Escherichia coli isolates obtained from chicken meat in Mumbai, India

    Directory of Open Access Journals (Sweden)

    R. J. Zende,

    2013-08-01

    Full Text Available Aim: Present study was undertaken to find out the frequency of few virulent genes and prevalence of related strains of Escherichia coli isolated from chicken meat obtained from chicken retail shops by Polymerase Chain Reaction (PCR.Materials and Methods: 66 samples of freshly slaughtered chicken meat were collected from 22 identified retail shops located at Mumbai city, randomly. Processed meat samples were cultured in EMB agar and presumptive colonies were confirmed by various biochemical tests. PCR method was accustomed for identification of the genes coding for heat-stable enterotoxin a (STa, heat labile enterotoxin (LT, shiga-like toxins 1 and 2 (SLT1 and SLT2. E. coli isolates were sent to National Salmonella and Escherichia Centre, CRI, Kasauli, HP, India for serotyping.Results: 11 (16.67% E. coli strains were isolated from 66 chicken meat samples. 3 (27.27% out of 11 harbored the gene for SLT2, and 2 (18.18% for STa. None of the strain contains SLT1 and LT genes. Serotypes detected were rough, O2, O20, O22, O102 each for one isolate and 6 isolates were untypable (UT.Conclusion: The results concluded that chicken meat samples analysed harbored genes for shiga like toxins and enterotoxins and different serotypes of E. coli. These findings indicating that regular monitoring of chicken meat is essential for this pathogen to prevent potential public health problems.

  13. (ESBL) producing Escherichia coli and Klebsiella pneumoniae

    African Journals Online (AJOL)

    Emerging antibiotic resistance due to extended spectrum β-lactamase (ESBL) production limited the use of β-lactam antibiotics against Escherichia coli and Klebsiella pneumoniae. This observational study was conducted at the Microbiology department of the Children's Hospital, Lahore Pakistan, from June, 2009 to ...

  14. Lactobacillus plantarum BSGP201683 Isolated from Giant Panda Feces Attenuated Inflammation and Improved Gut Microflora in Mice Challenged with Enterotoxigenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2017-09-01

    Full Text Available In this work, we searched for an effective probiotic that can help control intestinal infection, particularly enterotoxigenic Escherichia coli K88 (ETEC invasion, in giant panda (Ailuropoda melanoleuca. As a potential probiotic strain, Lactobacillus plantarum BSGP201683 (L. plantarum G83 was isolated from the feces of giant panda and proven beneficial in vitro. This study was aimed to evaluate the protective effect of L. plantarum G83 in mice challenged with ETEC. The mice were orally administered with 0.2 mL of PBS containing L. plantarum G83 at 0 colony-forming units (cfu mL−1 (control; negative control, ETEC group, 5.0 × 108 cfu mL−1 (LDLP, 5.0 × 109 cfu mL−1 (MDLP, and 5.0 × 1010 cfu mL−1 (HDLP for 14 consecutive days. At day 15, the mice (LDLP, MDLP, HDLP, and ETEC groups were challenged with ETEC and assessed at 0, 24, and 144 h. Animal health status; chemical and biological intestinal barriers; and body weight were measured. Results showed that L. plantarum G83 supplementation protected the mouse gut mainly by attenuating inflammation and improving the gut microflora. Most indices significantly changed at 24 h after challenge compared to those at 0 and 144 h. All treatment groups showed inhibited plasma diamine oxidase activity and D-lactate concentration. Tight-junction protein expression was down-regulated, and interleukin (IL-1β, IL-6, IL-8, TLR4, and MyD88 levels were up-regulated in the jejunum in the LDLP and MDLP groups. The number of the Enterobacteriaceae family and the heat-labile enterotoxin (LT gene decreased (P < 0.05 in the colons in the LDLP and MDLP groups. All data indicated that L. plantarum G83 could attenuate acute intestinal inflammation caused by ETEC infection, and the low and intermediate doses were superior to the high dose. These findings suggested that L. plantarum G83 may serve as a protective probiotic for intestinal disease and merits further investigation.

  15. Lactobacillus plantarum BSGP201683 Isolated from Giant Panda Feces Attenuated Inflammation and Improved Gut Microflora in Mice Challenged with Enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Liu, Qian; Ni, Xueqin; Wang, Qiang; Peng, Zhirong; Niu, Lili; Wang, Hengsong; Zhou, Yi; Sun, Hao; Pan, Kangcheng; Jing, Bo; Zeng, Dong

    2017-01-01

    In this work, we searched for an effective probiotic that can help control intestinal infection, particularly enterotoxigenic Escherichia coli K88 (ETEC) invasion, in giant panda ( Ailuropoda melanoleuca ). As a potential probiotic strain, Lactobacillus plantarum BSGP201683 ( L. plantarum G83) was isolated from the feces of giant panda and proven beneficial in vitro . This study was aimed to evaluate the protective effect of L. plantarum G83 in mice challenged with ETEC. The mice were orally administered with 0.2 mL of PBS containing L. plantarum G83 at 0 colony-forming units (cfu) mL -1 (control; negative control, ETEC group), 5.0 × 10 8 cfu mL -1 (LDLP), 5.0 × 10 9 cfu mL -1 (MDLP), and 5.0 × 10 10 cfu mL -1 (HDLP) for 14 consecutive days. At day 15, the mice (LDLP, MDLP, HDLP, and ETEC groups) were challenged with ETEC and assessed at 0, 24, and 144 h. Animal health status; chemical and biological intestinal barriers; and body weight were measured. Results showed that L. plantarum G83 supplementation protected the mouse gut mainly by attenuating inflammation and improving the gut microflora. Most indices significantly changed at 24 h after challenge compared to those at 0 and 144 h. All treatment groups showed inhibited plasma diamine oxidase activity and D -lactate concentration. Tight-junction protein expression was down-regulated, and interleukin (IL)-1β, IL-6, IL-8, TLR4, and MyD88 levels were up-regulated in the jejunum in the LDLP and MDLP groups. The number of the Enterobacteriaceae family and the heat-labile enterotoxin (LT) gene decreased ( P < 0.05) in the colons in the LDLP and MDLP groups. All data indicated that L. plantarum G83 could attenuate acute intestinal inflammation caused by ETEC infection, and the low and intermediate doses were superior to the high dose. These findings suggested that L. plantarum G83 may serve as a protective probiotic for intestinal disease and merits further investigation.

  16. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Enterotoxigenic Escherichia coli (ETEC are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2 were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial

  17. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model.

    Science.gov (United States)

    Zhang, Wei; Zhu, Yao-Hong; Yang, Jin-Cai; Yang, Gui-Yan; Zhou, Dong; Wang, Jiu-Feng

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2) were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR) was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial cell activation in

  18. Persistent Transmissible Gastroenteritis Virus Infection Enhances Enterotoxigenic Escherichia coli K88 Adhesion by Promoting Epithelial-Mesenchymal Transition in Intestinal Epithelial Cells.

    Science.gov (United States)

    Xia, Lu; Dai, Lei; Yu, Qinghua; Yang, Qian

    2017-11-01

    Transmissible gastroenteritis virus (TGEV) is a coronavirus characterized by diarrhea and high morbidity rates, and the mortality rate is 100% in piglets less than 2 weeks old. Pigs infected with TGEV often suffer secondary infection by other pathogens, which aggravates the severity of diarrhea, but the mechanisms remain unknown. Here, we hypothesized that persistent TGEV infection stimulates the epithelial-mesenchymal transition (EMT), and thus enterotoxigenic Escherichia coli (ETEC) can more easily adhere to generating cells. Intestinal epithelial cells are the primary targets of TGEV and ETEC infections. We found that TGEV can persistently infect porcine intestinal columnar epithelial cells (IPEC-J2) and cause EMT, consistent with multiple changes in key cell characteristics. Infected cells display fibroblast-like shapes; exhibit increases in levels of mesenchymal markers with a corresponding loss of epithelial markers; have enhanced expression levels of interleukin-1β (IL-1β), IL-6, IL-8, transforming growth factor β (TGF-β), and tumor necrosis factor alpha (TNF-α) mRNAs; and demonstrate increases in migratory and invasive behaviors. Additional experiments showed that the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) signaling pathways via TGF-β is critical for the TGEV-mediated EMT process. Cellular uptake is also modified in cells that have undergone EMT. TGEV-infected cells have higher levels of integrin α5 and fibronectin and exhibit enhanced ETEC K88 adhesion. Reversal of EMT reduces ETEC K88 adhesion and inhibits the expression of integrin α5 and fibronectin. Overall, these results suggest that TGEV infection induces EMT in IPEC-J2 cells, increasing the adhesion of ETEC K88 in the intestine and facilitating dual infection. IMPORTANCE Transmissible gastroenteritis virus (TGEV) causes pig diarrhea and is often followed by secondary infection by other pathogens. In this study, we showed

  19. The first 30 years of Shiga toxin-producing Escherichia coli in cattle production: Incidence, preharvest ecology, and management

    Science.gov (United States)

    Of the 700 serotypes of Escherichia coli, most are commensal; however, some range from mildly to highly pathogenic and can cause death. The disease-causing enterovirulent E. coli are classified as: Enterotoxigenic E. coli (ETEC), Enteropathogenic E. coli (EPEC), Enteroinvasive E. coli (EIEC), and ...

  20. Dietary specific antibodies in spray-dried immune plasma prevent enterotoxigenic Escherichia coli F4 (ETEC) post weaning in diarrhoea in piglets

    NARCIS (Netherlands)

    Niewold, T.A.; Dijk, van A.D.J.; Geenen, P.L.; Roodink, H.; Margry, R.; Meulen, van der J.

    2007-01-01

    In order to establish the mechanism of spray dried plasma powder (SDPP) in improving pig health and performance, a diet containing either 8% SDPP, spray dried immune plasma powder (SDIPP), or control protein (soybean and whey) ration was fed to piglets in an experimental model of enterotoxigenic

  1. Preliminary X-ray diffraction analysis of CfaA, a molecular chaperone essential for the assembly of CFA/I fimbriae of human enterotoxigenic Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Rui; Esser, Lothar; Poole, Steven; McVeigh, Annette; Chen, Yu-xing; Savarino, Stephen J.; Xia, Di, E-mail: xiad@mail.nih.gov

    2014-01-21

    The molecular chaperone CfaA plays a critical role in the bioassembly of the surface-adhesive CFA/I fimbriae of enterotoxigenic E. coli. Purified CfaA was crystallized and the phase solution was determined by the multiple isomorphous replacement coupled with anomalous scattering method.

  2. New vaccine strategies against enterotoxigenic Escherichia coli: II: Enhanced systemic and secreted antibody responses against the CFA/I fimbriae by priming with DNA and boosting with a live recombinant Salmonella vaccine

    Directory of Open Access Journals (Sweden)

    M.O. Lásaro

    1999-02-01

    Full Text Available The induction of systemic (IgG and mucosal (IgA antibody responses against the colonization factor I antigen (CFA/I of enterotoxigenic Escherichia coli (ETEC was evaluated in mice primed with an intramuscularly delivered CFA/I-encoding DNA vaccine followed by two oral immunizations with a live recombinant Salmonella typhimurium vaccine strain expressing the ETEC antigen. The booster effect induced by the oral immunization was detected two weeks and one year after the administration of the DNA vaccine. The DNA-primed/Salmonella-boosted vaccination regime showed a synergistic effect on the induced CFA/I-specific systemic and secreted antibody levels which could not be attained by either immunization strategy alone. These results suggest that the combined use of DNA vaccines and recombinant Salmonella vaccine strains can be a useful immunization strategy against enteric pathogens.

  3. Determination of the optimum standardised ileal digestible sulphur amino acids to lysine ratio in weaned pigs challenged with enterotoxigenic Escherichia coli

    DEFF Research Database (Denmark)

    Capozzalo, M. M.; Resink, J. W.; Htoo, J. K.

    2017-01-01

    This experiment tested the hypothesis that pigs challenged with an enterotoxigenic strain of E. coli (ETEC) would require a higher sulphur amino acids (SAA) to Lys ratio (SAA:Lys). Pigs (n = 120) weighing 7.4 ± 0.52 kg (mean ± SD) and weaned at 27 d (Pietrain genotype, mixed sex) were stratified...

  4. Development and accuracy of quantitative real-time polymerase chain reaction assays for detection and quantification of enterotoxigenic Escherichia coli (ETEC) heat labile and heat stable toxin genes in travelers' diarrhea samples.

    Science.gov (United States)

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC), the leading bacterial pathogen of travelers' diarrhea, is routinely detected by an established DNA hybridization protocol that is neither sensitive nor quantitative. Quantitative real-time polymerase chain reaction (qPCR) assays that detect the ETEC toxin genes eltA, sta1, and sta2 in clinical stool samples were developed and tested using donor stool inoculated with known quantities of ETEC bacteria. The sensitivity of the qPCR assays is 89%, compared with 22% for the DNA hybridization assay, and the limits of detection are 10,000-fold lower than the DNA hybridization assays performed in parallel. Ninety-three clinical stool samples, previously characterized by DNA hybridization, were tested using the new ETEC qPCR assays. Discordant toxin profiles were observed for 22 samples, notably, four samples originally typed as ETEC negative were ETEC positive. The qPCR assays are unique in their sensitivity and ability to quantify the three toxin genes in clinical stool samples.

  5. ESBL-Producing Escherichia coli

    DEFF Research Database (Denmark)

    Hertz, Frederik Boetius

    Urinary tract infection (UTI) is one the most common bacterial infections and is regularly treated in primary health care. The most common cause of UTI is extraintestinal pathogenic Escherichia coli (ExPEC) already present in the intestinal microflora, often as the dominating strain. Resistance...... in E.coli is increasing and especially isolates producing Extended-Spectrum Beta-Lactamases (ESBL) have been reported worldwide. Treatment of UTI is usually initiated by the general practitioners and a significant proportion of clinical isolates are now resistant to first line antibiotics. The global...... to investigate (i) antibiotics involved in selection of ESBL-producing E.coli, in an experimental mouse model in vivo, (ii) risk factors for UTI with ESBL-producing E.coli and (iii) to describe the phylogenetic composition of E.coli populations with different resistance patterns. We found that different...

  6. Determination of the optimum standardised ileal digestible sulphur amino acids to lysine ratio in weaned pigs challenged with enterotoxigenic Escherichia coli

    DEFF Research Database (Denmark)

    Capozzalo, M. M.; Resink, J. W.; Htoo, J. K.

    2017-01-01

    This experiment tested the hypothesis that pigs challenged with an enterotoxigenic strain of E. coli (ETEC) would require a higher sulphur amino acids (SAA) to Lys ratio (SAA:Lys). Pigs (n = 120) weighing 7.4 ± 0.52 kg (mean ± SD) and weaned at 27 d (Pietrain genotype, mixed sex) were stratified...... into 1 of 6 treatments based on weaning weight, sex and genotype for the F4 fimbria receptor (n = 20). Five diets were formulated with increasing ratios of standardised ileal digestible (SID) sulphurSAA:Lys. Pigs were housed in pens of 4 during an adaptation period of 6 d after which time pigs were...... housed individually. Pigs fed different SID SAA:Lys levels were infected with ETEC (5 mL, 1.13 × 108 CFU/mL, serotype O149:K91:K88) on d 8, 9, and 10 after weaning. The sixth diet, which contained 0.55 SID SAA:Lys and corresponded to current NRC recommendations, was allocated to 2 groups of pigs either...

  7. Antibiotic treatment of verocytotoxin-producing Escherichia coli (VTEC) infection

    DEFF Research Database (Denmark)

    Agger, Morten; Scheutz, Flemming; Villumsen, Steen

    2015-01-01

    OBJECTIVES: A consensus has existed on not to treat verocytotoxin-producing Escherichia coli (VTEC)-infected individuals with antibiotics because of possible subsequent increased risk of developing haemolytic uraemic syndrome (HUS). The aim of this systematic review is to clarify the risk...... associated with antibiotic treatment during acute VTEC infection and in chronic VTEC carrier states. METHODS: A systematic search in PubMed identified 1 meta-analysis, 10 clinical studies and 22 in vitro/in vivo studies. RESULTS: Four clinical studies found an increased risk of HUS, four studies found...... no altered risk of HUS and two studies found a protective effect of antibiotics. In vitro and clinical studies suggest that DNA synthesis inhibitors should be avoided, whereas evidence from in vitro studies indicates that certain protein and cell wall synthesis inhibitors reduce the release of toxins from...

  8. Structure of the CFA/III major pilin subunit CofA from human enterotoxigenic Escherichia coli determined at 0.90 Å resolution by sulfur-SAD phasing.

    Science.gov (United States)

    Fukakusa, Shunsuke; Kawahara, Kazuki; Nakamura, Shota; Iwashita, Takaki; Baba, Seiki; Nishimura, Mitsuhiro; Kobayashi, Yuji; Honda, Takeshi; Iida, Tetsuya; Taniguchi, Tooru; Ohkubo, Tadayasu

    2012-10-01

    CofA, a major pilin subunit of colonization factor antigen III (CFA/III), forms pili that mediate small-intestinal colonization by enterotoxigenic Escherichia coli (ETEC). In this study, the crystal structure of an N-terminally truncated version of CofA was determined by single-wavelength anomalous diffraction (SAD) phasing using five sulfurs in the protein. Given the counterbalance between anomalous signal strength and the undesired X-ray absorption of the solvent, diffraction data were collected at 1.5 Å resolution using synchrotron radiation. These data were sufficient to elucidate the sulfur substructure at 1.38 Å resolution. The low solvent content (29%) of the crystal necessitated that density modification be performed with an additional 0.9 Å resolution data set to reduce the phase error caused by the small sulfur anomalous signal. The CofA structure showed the αβ-fold typical of type IVb pilins and showed high structural homology to that of TcpA for toxin-coregulated pili of Vibrio cholerae, including spatial distribution of key residues critical for pilin self-assembly. A pilus-filament model of CofA was built by computational docking and molecular-dynamics simulation using the previously reported filament model of TcpA as a structural template. This model revealed that the CofA filament surface was highly negatively charged and that a 23-residue-long loop between the α1 and α2 helices filled the gap between the pilin subunits. These characteristics could provide a unique binding epitope for the CFA/III pili of ETEC compared with other type IVb pili.

  9. Toxicity and immunogenicity of Enterotoxigenic Escherichia coli heat-labile and heat-stable toxoid fusion 3xSTa(A14Q-LT(S63K/R192G/L211A in a murine model.

    Directory of Open Access Journals (Sweden)

    Chengxian Zhang

    Full Text Available Diarrhea is the second leading cause of death to young children. Enterotoxigenic Escherichia coli (ETEC are the most common bacteria causing diarrhea. Adhesins and enterotoxins are the virulence determinants in ETEC diarrhea. Adhesins mediate bacterial attachment and colonization, and enterotoxins including heat-labile (LT and heat-stable type Ib toxin (STa disrupt fluid homeostasis in host cells that leads to fluid hyper-secretion and diarrhea. Thus, adhesins and enterotoxins have been primarily targeted in ETEC vaccine development. A recent study reported toxoid fusions with STa toxoid (STa(P13F fused at the N- or C-terminus, or inside the A subunit of LT(R192G elicited neutralizing antitoxin antibodies, and suggested application of toxoid fusions in ETEC vaccine development (Liu et al., Infect. Immun. 79:4002-4009, 2011. In this study, we generated a different STa toxoid (STa(A14Q and a triple-mutant LT toxoid (LT(S63K/R192G/L211A, tmLT, constructed a toxoid fusion (3xSTa(A14Q-tmLT that carried 3 copies of STa(A14Q for further facilitation of anti-STa immunogenicity, and assessed antigen safety and immunogenicity in a murine model to explore its potential for ETEC vaccine development. Mice immunized with this fusion antigen showed no adverse effects, and developed antitoxin antibodies particularly through the IP route. Anti-LT antibodies were detected and were shown neutralizing against CT in vitro. Anti-STa antibodies were also detected in the immunized mice, and serum from the IP immunized mice neutralized STa toxin in vitro. Data from this study indicated that toxoid fusion 3xSTa(A14Q-tmLT is safe and can induce neutralizing antitoxin antibodies, and provided helpful information for vaccine development against ETEC diarrhea.

  10. Lactobacillus delbrueckii TUA4408L and its extracellular polysaccharides attenuate enterotoxigenic Escherichia coli-induced inflammatory response in porcine intestinal epitheliocytes via Toll-like receptor-2 and 4.

    Science.gov (United States)

    Wachi, Satoshi; Kanmani, Paulraj; Tomosada, Yohsuke; Kobayashi, Hisakazu; Yuri, Toshihito; Egusa, Shintaro; Shimazu, Tomoyuki; Suda, Yoshihito; Aso, Hisashi; Sugawara, Makoto; Saito, Tadao; Mishima, Takashi; Villena, Julio; Kitazawa, Haruki

    2014-10-01

    Immunobiotics are known to modulate intestinal immune responses by regulating Toll-like receptor (TLR) signaling pathways, which are responsible for the induction of cytokines and chemokines in response to microbial-associated molecular patterns. However, little is known about the immunomodulatory activity of compounds or molecules from immunobiotics. We evaluated whether Lactobacillus delbrueckii subsp. delbrueckii TUA4408L (Ld) or its extracellular polysaccharide (EPS): acidic EPS (APS) and neutral EPS (NPS), modulated the response of porcine intestinal epitheliocyte (PIE) cells against Enterotoxigenic Escherichia coli (ETEC) 987P. The roles of TLR2, TLR4, and TLR negative regulators in the immunoregulatory effects were also studied. ETEC-induced inflammatory cytokines were downregulated when PIE cells were prestimulated with both Ld or EPSs. Ld, APS, and NPS inhibited ETEC mediated mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) activation by upregulating TLR negative regulators. The capability of Ld to suppress inflammatory cytokines was diminished when PIE cells were blocked with anti-TLR2 antibody, while APS failed to suppress inflammatory cytokines when cells were treated with anti-TLR4 antibody. Induction of Ca²⁺ fluxes in TLR knockdown cells confirmed that TLR2 plays a principal role in the immunomodulatory action of Ld, while the activity of APS is mediated by TLR4. In addition, NPS activity depends on both TLR4 and TLR2. Ld and its EPS have the potential to be used for the development of anti-inflammatory functional foods to prevent intestinal diseases in both humans and animals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Antibodies derived from an enterotoxigenic Escherichia coli (ETEC) adhesin tip MEFA (multiepitope fusion antigen) against adherence of nine ETEC adhesins: CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA.

    Science.gov (United States)

    Nandre, Rahul M; Ruan, Xiaosai; Duan, Qiangde; Sack, David A; Zhang, Weiping

    2016-06-30

    Diarrhea continues to be a leading cause of death in children younger than 5 years in developing countries. Enterotoxigenic Escherichia coli (ETEC) is a leading bacterial cause of children's diarrhea and travelers' diarrhea. ETEC bacteria initiate diarrheal disease by attaching to host receptors at epithelial cells and colonizing in small intestine. Therefore, preventing ETEC attachment has been considered the first line of defense against ETEC diarrhea. However, developing vaccines effectively against ETEC bacterial attachment encounters challenge because ETEC strains produce over 23 immunologically heterogeneous adhesins. In this study, we applied MEFA (multiepitope fusion antigen) approach to integrate epitopes from adhesin tips or adhesive subunits of CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA adhesins and to construct an adhesin tip MEFA peptide. We then examined immunogenicity of this tip MEFA in mouse immunization, and assessed potential application of this tip MEFA for ETEC vaccine development. Data showed that mice intraperitoneally immunized with this adhesin tip MEFA developed IgG antibody responses to all nine ETEC adhesins. Moreover, ETEC and E. coli bacteria expressing these nine adhesins, after incubation with serum of the immunized mice, exhibited significant reduction in attachment to Caco-2 cells. These results indicated that anti-adhesin antibodies induced by this adhesin tip MEFA blocked adherence of the most important ETEC adhesins, suggesting this multivalent tip MEFA may be useful for developing a broadly protective anti-adhesin vaccine against ETEC diarrhea. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Colonization of Enteroaggregative Escherichia coli and Shiga toxin-producing Escherichia coli in chickens and humans in southern Vietnam

    NARCIS (Netherlands)

    Trung, Nguyen Vinh; Nhung, Hoang Ngoc; Carrique-Mas, Juan J.; Mai, Ho Huynh; Tuyen, Ha Thanh; Campbell, James; Nhung, Nguyen Thi; van Minh, Pham; Wagenaar, Jaap A.; Mai, Nguyen Thi Nhu; Hieu, Thai Quoc; Schultsz, Constance; Hoa, Ngo Thi

    2016-01-01

    Enteroaggregative (EAEC) and Shiga-toxin producing Escherichia coli (STEC) are a major cause of diarrhea worldwide. E. coli carrying both virulence factors characteristic for EAEC and STEC and producing extended-spectrum beta-lactamase caused severe and protracted disease during an outbreak of E.

  13. Multiplex PCR Assay for Identification of Human Diarrheagenic Escherichia coli

    OpenAIRE

    Toma, Claudia; Lu, Yan; Higa, Naomi; Nakasone, Noboru; Chinen, Isabel; Baschkier, Ariela; Rivas, Marta; Iwanaga, Masaaki

    2003-01-01

    A multiplex PCR assay for the identification of human diarrheagenic Escherichia coli was developed. The targets selected for each category were eae for enteropathogenic E. coli, stx for Shiga toxin-producing E. coli, elt and est for enterotoxigenic E. coli, ipaH for enteroinvasive E. coli, and aggR for enteroaggregative E. coli. This assay allowed the categorization of a diarrheagenic E. coli strain in a single reaction tube.

  14. Beta-Lactamase Producing Escherichia coli Isolates in Imported and Locally Produced Chicken Meat from Ghana

    DEFF Research Database (Denmark)

    Rasmussen, Mette Marie; Opintan, Japheth A; Frimodt-Møller, Niels

    2015-01-01

    whether imported chicken meat and meat from locally reared chicken are potential sources for human exposure to multi resistant Escherichia coli isolates. 188 samples from imported and locally produced chicken meat were sampled and analyzed. 153 bacteria isolates were successfully cultured and identified...... phenotypically confirmed on all isolates showing resistance to cefpodoxime. Beta-lactamase producing (BLP) E. coli meat isolates were further genotyped. Antimicrobial resistance to four antibiotic markers with highest resistance was detected more frequently in isolates from local chickens compared to imported......The use of antibiotics in food animals is of public health concern, because resistant zoonotic pathogens can be transmitted to humans. Furthermore, global trade with food may rapidly spread multi-resistant pathogens between countries and even continents. The purpose of the study was to investigate...

  15. Differential protection by cell wall components of Lactobacillus amylovorus DSM 16698Tagainst alterations of membrane barrier and NF-kB activation induced by enterotoxigenic F4+ Escherichia coli on intestinal cells.

    Science.gov (United States)

    Roselli, Marianna; Finamore, Alberto; Hynönen, Ulla; Palva, Airi; Mengheri, Elena

    2016-09-29

    The role of Lactobacillus cell wall components in the protection against pathogen infection in the gut is still largely unexplored. We have previously shown that L. amylovorus DSM 16698 T is able to reduce the enterotoxigenic F4 + Escherichia coli (ETEC) adhesion and prevent the pathogen-induced membrane barrier disruption through the regulation of IL-10 and IL-8 expression in intestinal cells. We have also demonstrated that L. amylovorus DSM 16698 T protects host cells through the inhibition of NF-kB signaling. In the present study, we investigated the role of L. amylovorus DSM 16698 T cell wall components in the protection against F4 + ETEC infection using the intestinal Caco-2 cell line. Purified cell wall fragments (CWF) from L. amylovorus DSM 16698 T were used either as such (uncoated, U-CWF) or coated with S-layer proteins (S-CWF). Differentiated Caco-2/TC7 cells on Transwell filters were infected with F4 + ETEC, treated with S-CWF or U-CWF, co-treated with S-CWF or U-CWF and F4 + ETEC for 2.5 h, or pre-treated with S-CWF or U-CWF for 1 h before F4 + ETEC addition. Tight junction (TJ) and adherens junction (AJ) proteins were analyzed by immunofluorescence and Western blot. Membrane permeability was determined by phenol red passage. Phosphorylated p65-NF-kB was measured by Western blot. We showed that both the pre-treatment with S-CWF and the co- treatment of S-CWF with the pathogen protected the cells from F4 + ETEC induced TJ and AJ injury, increased membrane permeability and activation of NF-kB expression. Moreover, the U-CWF pre-treatment, but not the co-treatment with F4 + ETEC, inhibited membrane damage and prevented NF-kB activation. The results indicate that the various components of L. amylovorus DSM 16698 T cell wall may counteract the damage caused by F4 + ETEC through different mechanisms. S-layer proteins are essential for maintaining membrane barrier function and for mounting an anti-inflammatory response against F4 + ETEC infection. U-CWF are

  16. Incidence of enterotoxigenic staphylococci and their toxins in foods.

    Science.gov (United States)

    Soriano, J M; Font, G; Rico, H; Moltó, J C; Mañes, J

    2002-05-01

    Of 504 food samples collected from cafeterias, 19 (3.8%) yielded strains of enterotoxigenic staphylococci, and 10 (52.6%), 4 (21.1%), 3 (15.8%), and 2 (10.5%) of these strains produced enterotoxins C (SEC), D (SED), B (SEB), and A (SEA), respectively. Moreover, SEA, SEB, and SEC were isolated from three hamburger samples. Of 181 food samples collected from four restaurants before the implementation of the hazard analysis and critical control point (HACCP) system, 7 (3.9%) were found to contain enterotoxigenic strains, and SED, SEC, and SEA were produced by 4 (57.1%), 2 (28.6%), and 1 (14.3%) of these strains, respectively. One meatball sample with SEC was detected in a restaurant. After the implementation of the HACCP system in four restaurants, neither enterotoxigenic staphylococci nor enterotoxins were detected in 196 studied samples.

  17. Isolation, genotyping, and antimicrobial resistance of zoonotic shiga toxin-producing escherichia coli

    Science.gov (United States)

    Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen linked to outbreaks of human gastroenteritis with diverse clinical spectra. Traditional culture and isolation methods, including selective enrichment and differential plating, have enabled the effective recovery of STEC. Ruminants ...

  18. Pathogenic Escherichia coli producing Extended-Spectrum β-Lactamases isolated from surface water and wastewater.

    Science.gov (United States)

    Franz, Eelco; Veenman, Christiaan; van Hoek, Angela H A M; de Roda Husman, Ana; Blaak, Hetty

    2015-09-24

    To assess public health risks from environmental exposure to Extended-Spectrum β-Lactamases (ESBL)-producing bacteria, it is necessary to have insight in the proportion of relative harmless commensal variants and potentially pathogenic ones (which may directly cause disease). In the current study, 170 ESBL-producing E. coli from Dutch wastewater (n = 82) and surface water (n = 88) were characterized with respect to ESBL-genotype, phylogenetic group, resistance phenotype and virulence markers associated with enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), extraintesinal E. coli (ExPEC), and Shiga toxin-producing E. coli (STEC). Overall, 17.1% of all ESBL-producing E. coli were suspected pathogenic variants. Suspected ExPECs constituted 8.8% of all ESBL-producing variants and 8.3% were potential gastrointestinal pathogens (4.1% EAEC, 1.8% EPEC, 1.2% EIEC, 1.2% ETEC, no STEC). Suspected pathogens were significantly associated with ESBL-genotype CTX-M-15 (X(2) = 14.7, P antibiotics. In conclusion, this study demonstrates that the aquatic environment is a potential reservoir of E. coli variants that combine ESBL-genes, a high level of multi-drug resistance and virulence factors, and therewith pose a health risk to humans upon exposure.

  19. Enterotoxigenic Escherichia coli Adhesin-Toxoid Multiepitope Fusion Antigen CFA/I/II/IV-3xSTaN12S-mnLTG192G/L211A-Derived Antibodies Inhibit Adherence of Seven Adhesins, Neutralize Enterotoxicity of LT and STa Toxins, and Protect Piglets against Diarrhea.

    Science.gov (United States)

    Nandre, Rahul; Ruan, Xiaosai; Lu, Ti; Duan, Qiangde; Sack, David; Zhang, Weiping

    2018-03-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of children's diarrhea and travelers' diarrhea. Vaccines inducing antibodies to broadly inhibit bacterial adherence and to neutralize toxin enterotoxicity are expected to be effective against ETEC-associated diarrhea. 6×His-tagged adhesin-toxoid fusion proteins were shown to induce neutralizing antibodies to several adhesins and LT and STa toxins (X. Ruan, D. A. Sack, W. Zhang, PLoS One 10:e0121623, 2015, https://doi.org/10.1371/journal.pone.0121623). However, antibodies derived from His-tagged CFA/I/II/IV-2xSTa A14Q -dmLT or CFA/I/II/IV-2xSTa N12S -dmLT protein were less effective in neutralizing STa enterotoxicity and were not evaluated in vivo for efficacy against ETEC diarrhea. Additionally, His-tagged proteins are considered less desirable for human vaccines. In this study, we produced a tagless adhesin-toxoid MEFA (multiepitope fusion antigen) protein, enhanced anti-STa immunogenicity by including a third copy of STa toxoid STa N12S , and examined antigen immunogenicity in a murine model. Moreover, we immunized pregnant pigs with the tagless adhesin-toxoid MEFA protein and evaluated passive antibody protection against STa + or LT + ETEC infection in a pig challenge model. Results showed that tagless adhesin-toxoid MEFA CFA/I/II/IV-3xSTa N12S -mnLT R192G/L211A induced broad antiadhesin and antitoxin antibody responses in the intraperitoneally immunized mice and the intramuscularly immunized pigs. Mouse and pig serum antibodies significantly inhibited adherence of seven colonization factor antigen (CFA) adhesins (CFA/I and CS1 to CS6) and effectively neutralized both toxins. More importantly, suckling piglets born to the immunized mothers acquired antibodies and were protected against STa + ETEC and LT + ETEC diarrhea. These results indicated that tagless CFA/I/II/IV-3xSTa N12S -mnLT R192G/L211A induced broadly protective antiadhesin and antitoxin antibodies and demonstrate that this adhesin

  20. Beta-Lactamase Producing Escherichia coli Isolates in Imported and Locally Produced Chicken Meat from Ghana.

    Science.gov (United States)

    Rasmussen, Mette Marie; Opintan, Japheth A; Frimodt-Møller, Niels; Styrishave, Bjarne

    2015-01-01

    The use of antibiotics in food animals is of public health concern, because resistant zoonotic pathogens can be transmitted to humans. Furthermore, global trade with food may rapidly spread multi-resistant pathogens between countries and even continents. The purpose of the study was to investigate whether imported chicken meat and meat from locally reared chicken are potential sources for human exposure to multi resistant Escherichia coli isolates. 188 samples from imported and locally produced chicken meat were sampled and analyzed. 153 bacteria isolates were successfully cultured and identified as E. coli using MALDI-ToF. Of these 109 isolates were from meat whereas the remaining 44 were isolated from the cloaca of locally reared live chickens. Antimicrobial susceptibility test was done on the identified E. coli isolates. Additionally, beta-lactamases production (ESBL and/or AmpC) were phenotypically confirmed on all isolates showing resistance to cefpodoxime. Beta-lactamase producing (BLP) E. coli meat isolates were further genotyped. Antimicrobial resistance to four antibiotic markers with highest resistance was detected more frequently in isolates from local chickens compared to imported chickens (tetracycline 88.9% vs. 57.5%, sulphonamide 75.0% vs. 46.6%, ampicillin 69.4% vs. 61.6% and trimethoprim 66.7% vs. 38.4%). Beta-lactamase production was found in 29 E. coli meat isolates, with 56.9% of them being multiple drug resistant (≥ 3). The predominant phylogroup identified was B1 followed by A and D, with similar distribution among the isolates from meat of locally reared chickens and imported chickens. Beta-lactamase producing genotype blaCTX-M-15 (50%; 10/20) was the most frequently drug resistant gene detected. More BLP E. coli isolates were found in imported chicken meat compared to locally reared chickens, demonstrating that these isolates may be spreading through food trade. In conclusion, both imported and locally produced chicken meats are potential

  1. Beta-Lactamase Producing Escherichia coli Isolates in Imported and Locally Produced Chicken Meat from Ghana.

    Directory of Open Access Journals (Sweden)

    Mette Marie Rasmussen

    Full Text Available The use of antibiotics in food animals is of public health concern, because resistant zoonotic pathogens can be transmitted to humans. Furthermore, global trade with food may rapidly spread multi-resistant pathogens between countries and even continents. The purpose of the study was to investigate whether imported chicken meat and meat from locally reared chicken are potential sources for human exposure to multi resistant Escherichia coli isolates. 188 samples from imported and locally produced chicken meat were sampled and analyzed. 153 bacteria isolates were successfully cultured and identified as E. coli using MALDI-ToF. Of these 109 isolates were from meat whereas the remaining 44 were isolated from the cloaca of locally reared live chickens. Antimicrobial susceptibility test was done on the identified E. coli isolates. Additionally, beta-lactamases production (ESBL and/or AmpC were phenotypically confirmed on all isolates showing resistance to cefpodoxime. Beta-lactamase producing (BLP E. coli meat isolates were further genotyped. Antimicrobial resistance to four antibiotic markers with highest resistance was detected more frequently in isolates from local chickens compared to imported chickens (tetracycline 88.9% vs. 57.5%, sulphonamide 75.0% vs. 46.6%, ampicillin 69.4% vs. 61.6% and trimethoprim 66.7% vs. 38.4%. Beta-lactamase production was found in 29 E. coli meat isolates, with 56.9% of them being multiple drug resistant (≥ 3. The predominant phylogroup identified was B1 followed by A and D, with similar distribution among the isolates from meat of locally reared chickens and imported chickens. Beta-lactamase producing genotype blaCTX-M-15 (50%; 10/20 was the most frequently drug resistant gene detected. More BLP E. coli isolates were found in imported chicken meat compared to locally reared chickens, demonstrating that these isolates may be spreading through food trade. In conclusion, both imported and locally produced chicken meats

  2. Pigs experimentally infected with an enterotoxigenic strain of Escherichia coli have improved feed efficiency and indicators of inflammation with dietary supplementation of tryptophan and methionine in the immediate post-weaning period

    DEFF Research Database (Denmark)

    Capozzalo, Meeka M; Kim, Jae Cheol; Htoo, J.K.

    2017-01-01

    This experiment tested the hypothesis that pigs challenged with an enterotoxigenic strain of E. coli (ETEC) will improve performance by dietary supplementation of sulfur amino acids (SAA) and tryptophan (Trp) above the current recommended levels in the immediate post-weaning period. Male pigs (n ...... of inflammation and SAA supplementation decreased the pro-inflammatory interferon-gamma response and improved protein utilisation, as measured by PU, whereas supplementation with both Trp and SAA improved feed conversion ratio....... interferon-gamma regardless of dietary Trp or day of sampling (P = 0.043). Increasing dietary SAA decreased plasma urea (PU) levels on Days 5, 8 and 14 (P

  3. Passive immunity in cattle against enterotoxigenic Escherichia coli: serologic evaluation of a bacterin containing K99 and F41 fimbriae in colostrum of vaccinated females and calf serum Imunidade passiva contra Escherichia coli enterotoxigênica: avaliação sorológica de uma bacterina contendo as fímbrias K99 e F41 no colostro de fêmeas vacinadas e no soro de bezerros

    Directory of Open Access Journals (Sweden)

    H.C.P. Figueiredo

    2004-08-01

    Full Text Available A bacterin from enterotoxigenic Escherichia coli (ETEC, containing fimbriae K99 and F41, was produced and its capacity to induce anti-K99 and anti-F41 antibodies in colostrum of vaccinated cows and in calf serum, and the persistence of these antibodies in neonates were determined. Three experiments were performed on two commercial farms. In all experiments animals were allotted randomly to the blocks, each block consisting of two pregnant females (a vaccinated one and a control one and their respective calves. In experiment A (farm 1, comprised of 18 blocks, the animals received a vaccine dose 30 days before delivery. In experiment B (farm 1, consisted of 26 blocks, the animals received two vaccine doses (60 and 30 days before delivery. In experiment C (farm 2, consisted of 22 blocks, the animals received two vaccine doses (60 and 30 days before delivery. In experiments A and B pregnant cows and heifers were used and colostrum and serum from 24- to 36-hour-old calves were collected. In experiment C, pregnant embryo-recipient heifers were used and colostrum and sera from calves at 7, 14, 28 and 42 days of age were collected. Anti-K99 and anti-F41 antibodies were detected by ELISA using purified K99 and F41 fimbrial antigens. In experiment A no difference between treated and control groups was observed for the concentration of anti-K99 and anti-F41 antibodies in colostrum and calf serum. In experiment B a difference (PProduziu-se uma bacterina de Escherichia coli enterotoxigênica (ETEC contendo as fímbrias K99 e F41 e avaliaram-se a capacidade de indução de anticorpos anti-K99 e anti F-41 no colostro de vacas vacinadas e no soro de bezerros e a persistência dos anticorpos nos neonatos. Três experimentos foram realizados em duas fazendas comerciais. Os animais foram aleatoriamente alocados em blocos, de duas fêmeas prenhes (uma vacinada e outra controle e seus respectivos bezerros. No experimento A (fazenda 1, com 18 blocos, os animais

  4. Metabolic evolution of Escherichia coli strains that produce organic acids

    Science.gov (United States)

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  5. Detection and characterization of verocytotoxin-producing Escherichia coli by automated 5 ' nuclease PCR assay

    DEFF Research Database (Denmark)

    Nielsen, Eva Møller; Andersen, Marianne Thorup

    2003-01-01

    In recent years increased attention has been focused on infections caused by isolates of verocytotoxin-producing Escherichia coli (VTEC) serotypes other than O157. These non-O157 VTEC isolates are commonly present in food and food production animals. Easy detection, isolation, and characterizatio...

  6. Shiga toxin-producing Escherichia coli in humans and the food chain in Bangladesh

    NARCIS (Netherlands)

    Islam, M.A.

    2009-01-01

    Shiga toxin-producing Escherichia coli (STEC) are significant pathogenic bacteria that can cause severe gastrointestinal diseases and also the hemolytic-uremic syndrome. Domestic ruminants appear to be the main reservoirs of these organisms. Although Bangladesh is an endemic zone for diarrhea caused

  7. Classification of shiga toxin-producing escherichia coli (STEC) serotypes with hyperspectral microscope imagery

    Science.gov (United States)

    Non-O157:H7 Shiga toxin-producing Escherichia coli (STEC) strains such as O26, O45, O103, O111, O121 and O145 are recognized as serious outbreak to cause human illness due to their toxicity. Since a conventional microbiological method for cell counting is laborious and time-consuming process, optica...

  8. Phylogeny and disease association of Shiga toxin-producing Escherichia coli O91

    NARCIS (Netherlands)

    Mellmann, Alexander; Fruth, Angelika; Friedrich, Alexander W; Wieler, Lothar H; Harmsen, Dag; Werber, Dirk; Middendorf, Barbara; Bielaszewska, Martina; Karch, Helge

    The diversity and relatedness of 100 Shiga toxin-producing Escherichia coli O91 isolates from different patients were examined by multilocus sequence typing. We identified 10 specific sequence types (ST) and 4 distinct clonal groups. ST442 was significantly associated with hemolytic uremic syndrome.

  9. Evaluation of beef trim sampling methods for detection of Shiga toxin-producing Escherichia coli (STEC)

    Science.gov (United States)

    Presence of Shiga toxin-producing Escherichia coli (STEC) is a major concern in ground beef. Several methods for sampling beef trim prior to grinding are currently used in the beef industry. The purpose of this study was to determine the efficacy of the sampling methods for detecting STEC in beef ...

  10. Genetic Relatedness Among Shiga Toxin-Producing Escherichia coli Isolated Along the Animal Food Supply Chain and in Gastroenteritis Cases in Qatar Using Multilocus Sequence Typing.

    Science.gov (United States)

    Palanisamy, Srikanth; Chang, YuChen; Scaria, Joy; Penha Filho, Rafael Antonio Casarin; Peters, Kenlyn E; Doiphode, Sanjay H; Sultan, Ali; Mohammed, Hussni O

    2017-06-01

    Pathogenic Escherichia coli has been listed among the most important bacteria associated with foodborne illnesses around the world. We investigated the genetic relatedness among Shiga toxin-producing E. coli (STEC) isolated along the animal food supply chain and from humans diagnosed with gastroenteritis in Qatar. Samples were collected from different sources along the food supply chain and from patients admitted to the hospital with complaints of gastroenteritis. All samples were screened for the presence of E. coli O157:H7 and non-O157 STEC using a combination of bacterial enrichment and molecular detection techniques. A proportional sampling approach was used to select positive samples from each source for further multilocus sequence typing (MLST) analysis. Seven housekeeping genes described for STEC were amplified by polymerase chain reaction, sequenced, and analyzed by MLST. Isolates were characterized by allele composition, sequence type (ST) and assessed for epidemiologic relationship within and among different sources. Nei's genetic distance was calculated at the allele level between sample pools in each site downstream. E. coli O157:H7 occurred at a higher rate in slaughterhouse and retail samples than at the farm or in humans in our sampling. The ST171, an ST common to enterotoxigenic E. coli and atypical enteropathogenic E. coli, was the most common ST (15%) in the food supply chain. None of the genetic distances among the different sources was statistically significant. Enterohemorrhagic E. coli pathogenic strains are present along the supply chain at different levels and with varying relatedness. Clinical isolates were the most diverse, as expected, considering the polyclonal diversity in the human microbiota. The high occurrence of these food adulterants among the farm products suggests that implementation of sanitary measures at that level might reduce the risk of human exposure.

  11. Escherichia coli producing CMY-2 β-lactamase in bovine mastitis milk.

    Science.gov (United States)

    Endimiani, Andrea; Bertschy, Isabelle; Perreten, Vincent

    2012-01-01

    An Escherichia coli isolate producing the CMY-2 β-lactamase was found in the milk of a cow with recurrent subclinical mastitis. The isolate was resistant to the antibiotics commonly used for intramammary mastitis treatment, such as penicillins, cephalosporins, β-lactam/β-lactamase inhibitor combinations, aminoglycosides, tetracyclines, and sulfonamides. This is the first report of a plasmid-mediated AmpC-producing Enterobacteriaceae in bovine milk.

  12. Timeliness of Surveillance during Outbreak of Shiga Toxin–producing Escherichia coli Infection, Germany, 2011

    OpenAIRE

    Altmann, Mathias; Wadl, Maria; Altmann, Doris; Benzler, Justus; Eckmanns, Tim; Krause, Gérard; Spode, Anke; an der Heiden, Matthias

    2011-01-01

    In the context of a large outbreak of Shiga toxin–producing Escherichia coli O104:H4 in Germany, we quantified the timeliness of the German surveillance system for hemolytic uremic syndrome and Shiga toxin–producing E. coli notifiable diseases during 2003–2011. Although reporting occurred faster than required by law, potential for improvement exists at all levels of the information chain.

  13. Timeliness of Surveillance during Outbreak of Shiga Toxin–producing Escherichia coli Infection, Germany, 2011

    Science.gov (United States)

    Wadl, Maria; Altmann, Doris; Benzler, Justus; Eckmanns, Tim; Krause, Gérard; Spode, Anke; an der Heiden, Matthias

    2011-01-01

    In the context of a large outbreak of Shiga toxin–producing Escherichia coli O104:H4 in Germany, we quantified the timeliness of the German surveillance system for hemolytic uremic syndrome and Shiga toxin–producing E. coli notifiable diseases during 2003–2011. Although reporting occurred faster than required by law, potential for improvement exists at all levels of the information chain. PMID:22000368

  14. Enterotoxigenic and non-enterotoxigenic Bacteroides fragilis from fecal microbiota of children

    Directory of Open Access Journals (Sweden)

    Aline Ignacio

    2015-01-01

    Full Text Available Enterotoxigenic Bacteroides fragilis (ETBF is an important part of the human and animal intestinal microbiota and is commonly associated with diarrhea. ETBF strains produce an enterotoxin encoded by the bft gene located in the B. fragilispathogenicity island (BfPAI. Non-enterotoxigenic B. fragilis(NTBF strains lack the BfPAI and usually show two different genetic patterns, II and III, based on the absence or presence of a BfPAI-flanking region, respectively. The incidence of ETBF and NTBF strains in fecal samples isolated from children without acute diarrhea or any other intestinal disorders was determined. All 84 fecal samples evaluated were B. fragilis-positive by PCR, four of them harbored the bft gene, 27 contained the NTBF pattern III DNA sequence, and 52 were considered to be NTBF pattern II samples. One sample was positive for both ETBF and NTBF pattern III DNA sequences. All 19 B. fragilis strains isolated by the culture method were bft-negative, 9 belonged to pattern III and 10 to pattern II. We present an updated overview of the ETBF and NTBF incidence in the fecal microbiota of children from Sao Paulo City, Brazil.

  15. The Epidemiology of Travelers’ Diarrhea in Incirlik, Turkey: A Region with a Predominance of Heat-Stabile Toxin Producing Enterotoxigenic Escherichia coli

    Science.gov (United States)

    2010-01-01

    Clyptosporidium parvum, Giardia Iamblia, and Entamoeba histolytica, a colorimetric immunoassay was used-Triage (Biosite, San Diego, CA) (Sharp et al...confined to quarters (placed on bed rest) after clinical evaluation. Inability to work was more common in subjects with Campylobacter sp . only than in...subjects with Campylohacter sp . only. There were no clinical failures during the course of the study. A total of 121 (59.9%) subjects met the

  16. Inactivation of shiga toxin-producing Escherichia coli in lean ground beef by gamma irradiation

    Science.gov (United States)

    Non-O157 serovars of Shiga Toxin-producing Escherichia coli (STEC) are now responsible for over 60% of STEC induced illnesses. The majority of illnesses caused by non-O157:H7 STEC have been due to serogroups O26, O121, O103, O45, O111, and O145, “the big/top six”, which are now considered adulterant...

  17. Detection, Characterization and Typing of Shiga toxin-producing Escherichia coli.

    OpenAIRE

    Brendon David Parsons; Nathan eZelyas; Byron M Berenger; Linda eChui; Linda eChui

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) are responsible for gastrointestinal diseases reported in numerous outbreaks around the world. Given the public health importance of STEC, effective detection, characterization and typing is critical to any medical laboratory system. While non-O157 serotypes account for the majority of STEC infections, frontline microbiology laboratories may only screen for STEC using O157-specific agar-based methods. As a result, non-O157 STEC infections are sign...

  18. Pigs experimentally infected with an enterotoxigenic strain of Escherichia coli have improved feed efficiency and indicators of inflammation with dietary supplementation of tryptophan and methionine in the immediate post-weaning period

    DEFF Research Database (Denmark)

    Capozzalo, Meeka M; Kim, Jae Cheol; Htoo, J.K.

    2017-01-01

    This experiment tested the hypothesis that pigs challenged with an enterotoxigenic strain of E. coli (ETEC) will improve performance by dietary supplementation of sulfur amino acids (SAA) and tryptophan (Trp) above the current recommended levels in the immediate post-weaning period. Male pigs (n...... arrangement of treatments with two levels of SID SAA : Lys ratio (0.52 vs 0.60) and two levels of SID Trp : Lys ratio (0.16 vs 0.24). Diets did not contain any antimicrobial compounds. Pigs were individually housed and were fed diets for 14 days after weaning. Pigs were infected with ETEC (3.44 × 108 CFU....../mL, serotype O149 : K91 : K88) on Days 5, 6, and 7 after weaning. Pigs were bled on Days 5, 8 and 14 and subsequently analysed for plasma levels of acute-phase proteins, urea, cytokines (Days 5 and 8 only) and amino acids (Days 5 and 8 only). Increasing Trp (P = 0.036) and SAA (P = 0.028) improved feed...

  19. Verocytotoxin-producing Escherichia coli in wild birds and rodents in close proximity to farms

    DEFF Research Database (Denmark)

    Nielsen, Eva Møller; Skov, Marianne; Madsen, Jesper J.

    2004-01-01

    Wild animals living close to cattle and pig farms (four each) were examined for verocytotoxin-producing Escherichia coli (VTEC; also known as Shiga toxin-producing E. coli). The prevalence of VTEC among the 260 samples from wild animals was generally low. However, VTEC isolates from a starling...... (Sturnus vulgaris) and a Norway rat (Rattus norvegicus) were identical to cattle isolates from the corresponding farms with respect to serotype, virulence profile, and pulsed-field gel electrophoresis type. This study shows that wild birds and rodents may become infected from farm animals or vice versa...

  20. Extended-spectrum β-lactamase-producing Escherichia coli isolated from poultry

    DEFF Research Database (Denmark)

    Olsen, Rikke Heidemann; Bisgaard, Magne; Löhren, Ulrich

    2014-01-01

    Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli has been documented in humans as well as in food-producing birds, including chickens, and for unknown reasons the prevalence has increased significantly during the last decade. With E. coli as a major opportunistic pathogen in chickens...... and with a potential for zoonotic transfer to human beings, ESBL-producing E. coli represents a major risk both to poultry production and to human health. This review presents some of the current problems with ESBL-producing E. coli in relation to poultry production, with a focus on chickens. To illustrate issues...... in relation to screening and typing, two case studies are included where one collection of ESBL-producing E. coli isolates was obtained from asymptomatic carrier chickens while the other was obtained from lesions in chickens. Pulsed-field gel electrophoresis and multi-locus sequence typing revealed a highly...

  1. The revolving door between hospital and community: extended-spectrum beta-lactamase-producing Escherichia coli in Dublin.

    LENUS (Irish Health Repository)

    Burke, L

    2012-07-01

    Escherichia coli that produce extended-spectrum beta-lactamases (ESBLs) are an increasing cause of healthcare-associated infection, and community healthcare facilities may be a reservoir for important epidemic clones.

  2. Stimulation of mucosal immune response following oral administration of enterotoxigenic Escherichia coli fimbriae (CFA/I) entrapped in liposomes in conjunction with inactivated whole-cell Vibrio cholerae vaccine.

    Science.gov (United States)

    Dima, V F; Ionescu, M D; Palade, R; Balotescu, C; Becheanu, G; Dima, S V

    2001-01-01

    In this study, we have searched for an effective mucosal vaccine. An oral enterotoxigenic E. coli vaccine containing colonization factor antigen (CFA/I) associated with inactivated whole-cell V. cholerae vaccine (WCV) has been tested for safety and immunogenicity in animals. Five groups of animals were used. The results showed the following: (a) vaccine containing CFA/I antigen entrapped in liposomes and associated with WCV (batch C) had increased titers of specific antibodies to CFA/I antigen in 15 to 18 (83.3%) animals; (b) specific Peyer's patches (PP), lymph nodes (LN) and spleen (SPL) lymphocytes proliferation was detected following in vitro restimulation with CFA/I antigen or WCV. This response gradually increased to the highest value by the 35th postimmunization day. Moreover, lower PP, LN and spleen (SPL) proliferation was observed in rabbits receiving soluble CFA/I antigen (S-CFA/I) or free liposomes (F-L) alone; (c) adhesion of E. coli H10407 strain labelled with 3H-leucine in immunized and control animals revealed the following local effects: (i) protection of rabbit intestinal mucosa against virulent E. coli cells; (ii) inhibition of adhesion of ETEC bacteria to intestinal mucosa and (iii) significantly faster release of E. coli H 10407 strain labelled with 3H-leucine from the intestinal tract of immunized animals. The histopathological and electron microscope findings confirmed the above results. The experimental results point out an efficient protection against infection with E. coli strains (ETEC), after mucosal vaccination with CFA/I antigen entrapped in liposomes associated with inactivated whole-cell Vibrio cholerae as immunological adjuvant.

  3. Breeding of tryptophanase-producing Escherichia coli by use of N+ ion beam implantation

    International Nuclear Information System (INIS)

    Pang Min; Yao Jianming

    2009-01-01

    In this paper, the mutation breeding on Escherichia coli producing tryptophanase was studied after low energy N + ion beam implantation. Parameters in the N + ion beam implantation were firstly determined. It has been indicated that a high mutation rate of E.coli could be obtained by N + implantation with 10 keV and 13 x 10 14 N + /cm 2 when glycerin at 15 % concentration used as protector. After continuous mutagenicity a high-yield tryptophanase-producing strain has been screened out and both of its biomass and enzymatic activity are higher than the previous levels respectively. The results of scale-up production show that the biomass could be reach 8.2 g ww ·L -1 and 110 g L-tryptophan could be formed in the volume of 1L enzymatic reaction system. In addition, the characteristics of its stable descend ability and easy operation make it a promising strain for industrialization. (authors)

  4. Detection of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Market-Ready Chickens in Zambia.

    Science.gov (United States)

    Chishimba, K; Hang'ombe, B M; Muzandu, K; Mshana, S E; Matee, M I; Nakajima, C; Suzuki, Y

    2016-01-01

    The frequent administering of antibiotics in the treatment of poultry diseases may contribute to emergence of antimicrobial-resistant strains. The objective of this study was to detect the presence of extended-spectrum β-lactamase- (ESBL-) producing Escherichia coli in poultry in Zambia. A total of 384 poultry samples were collected and analyzed for ESBL-producing Escherichia coli. The cultured E. coli isolates were subjected to antimicrobial susceptibility tests and the polymerase chain reaction for detection of bla CTX-M, bla SHV, and bla TEM genes. Overall 20.1%, 77/384, (95% CI; 43.2-65.5%) of total samples analyzed contained ESBL-producing Escherichia coli. The antimicrobial sensitivity test revealed that 85.7% (66/77; CI: 75.7-92) of ESBL-producing E. coli isolates conferred resistance to beta-lactam and other antimicrobial agents. These results indicate that poultry is a potential reservoir for ESBL-producing Escherichia coli. The presence of ESBL-producing Escherichia coli in poultry destined for human consumption requires strengthening of the antibiotic administering policy. This is important as antibiotic administration in food animals is gaining momentum for improved animal productivity in developing countries such as Zambia.

  5. Detection of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Market-Ready Chickens in Zambia

    Directory of Open Access Journals (Sweden)

    K. Chishimba

    2016-01-01

    Full Text Available The frequent administering of antibiotics in the treatment of poultry diseases may contribute to emergence of antimicrobial-resistant strains. The objective of this study was to detect the presence of extended-spectrum β-lactamase- (ESBL- producing Escherichia coli in poultry in Zambia. A total of 384 poultry samples were collected and analyzed for ESBL-producing Escherichia coli. The cultured E. coli isolates were subjected to antimicrobial susceptibility tests and the polymerase chain reaction for detection of blaCTX-M, blaSHV, and blaTEM genes. Overall 20.1%, 77/384, (95% CI; 43.2–65.5% of total samples analyzed contained ESBL-producing Escherichia coli. The antimicrobial sensitivity test revealed that 85.7% (66/77; CI: 75.7–92 of ESBL-producing E. coli isolates conferred resistance to beta-lactam and other antimicrobial agents. These results indicate that poultry is a potential reservoir for ESBL-producing Escherichia coli. The presence of ESBL-producing Escherichia coli in poultry destined for human consumption requires strengthening of the antibiotic administering policy. This is important as antibiotic administration in food animals is gaining momentum for improved animal productivity in developing countries such as Zambia.

  6. Incidence of temonera, sulphuhydryl variables and cefotaximase genes associated with ?-lactamase producing escherichia coli in clinical isolates

    OpenAIRE

    Isaiah, Ibeh Nnana; Nche, Bikwe Thomas; Nwagu, Ibeh Georgina; Nwagu, Ibeh Isaiah

    2011-01-01

    Background: The occurrence of the different types of Extended spectrum beta Lactamase producing Escherichia coli with the, Sulphurhydryl variable, Temonera and the Cefotaximase have been on the rise Aim: The study was to determine the prevalence of extended spectrum beta lactamase gene resistance across the clinical isolates of hospitalized patients. Materials and Method: Three hundred and fifty isolates of Escherichia coli were received from different clinical specimens. The susceptibility p...

  7. Nitrofurantoin and Fosfomycin for Extended Spectrum Beta-lactamases Producing Escherichia coli and Klebsiella pneumoniae

    Directory of Open Access Journals (Sweden)

    Neeraj Kumar Tulara

    2018-01-01

    Full Text Available Urinary tract infection (UTI is a common and painful human illness that, unfortunately not responsive to commonly used antibiotics in current practice. The role of fosfomycin and nitrofurantoin in the era of growing bacteria resistance has been widely discussed. In this study, we aimed to know the local antimicrobial susceptibilities, fosfomycin and nitrofurantoin susceptibility in particular, for urinary extended-spectrum-beta-lactamase-producing Escherichia coli and Escherichia pneumoniae (ESBL-EC and ESBL-KP isolates in our hospital. We collected 464 urine isolates, including 384 ESBL-EC and 80 ESBL-KP isolates. Of 464 urine isolates culture positive ESBL-UTIs, EC caused 384 (82.75%, followed by Klebsiella in 80 (17.24%. Carbapenems and Colistin seems to remain as the first line therapy for the majority of ESBL-UTIs in the local setting. Colistin and fosfomycin remains the most sensitive antibiotic while nitrofurantoin still preserves the good sensitivity against ESBL and found to be an only oral sensitive antibiotic.

  8. Influence of Host Interleukin-10 Polymorphisms on Development of Traveler's Diarrhea Due to Heat-Labile Enterotoxin-Producing Escherichia coli in Travelers from the United States Who Are Visiting Mexico▿

    Science.gov (United States)

    Flores, Jose; DuPont, Herbert L.; Lee, Stephanie A.; Belkind-Gerson, Jaime; Paredes, Mercedes; Mohamed, Jamal A.; Armitige, Lisa Y.; Guo, Dong-Chuan; Okhuysen, Pablo C.

    2008-01-01

    Up to 60% of U.S. visitors to Mexico develop traveler's diarrhea (TD), mostly due to enterotoxigenic Escherichia coli (ETEC) strains that produce heat-labile (LT) and/or heat-stable (ST) enterotoxins. Distinct single-nucleotide polymorphisms (SNPs) within the interleukin-10 (IL-10) promoter have been associated with high, intermediate, or low production of IL-10. We conducted a prospective study to investigate the association of SNPs in the IL-10 promoter and the occurrence of TD in ETEC LT-exposed travelers. Sera from U.S. travelers to Mexico collected on arrival and departure were studied for ETEC LT seroconversion by using cholera toxin as the antigen. Pyrosequencing was performed to genotype IL-10 SNPs. Stools from subjects who developed diarrhea were also studied for other enteropathogens. One hundred twenty-one of 569 (21.3%) travelers seroconverted to ETEC LT, and among them 75 (62%) developed diarrhea. Symptomatic seroconversion was more commonly seen in subjects who carried a genotype producing high levels of IL-10; it was seen in 83% of subjects with the GG genotype versus 54% of subjects with the AA genotype at IL-10 gene position −1082 (P, 0.02), in 71% of those with the CC genotype versus 33% of those with the TT genotype at position −819 (P, 0.005), and in 71% of those with the CC genotype versus 38% of those with the AA genotype at position −592 (P, 0.02). Travelers with the GCC haplotype were more likely to have symptomatic seroconversion than those with the ATA haplotype (71% versus 38%; P, 0.002). Travelers genetically predisposed to produce high levels of IL-10 were more likely to experience symptomatic ETEC TD. PMID:18579697

  9. Influence of host interleukin-10 polymorphisms on development of traveler's diarrhea due to heat-labile enterotoxin-producing Escherichia coli in travelers from the United States who are visiting Mexico.

    Science.gov (United States)

    Flores, Jose; DuPont, Herbert L; Lee, Stephanie A; Belkind-Gerson, Jaime; Paredes, Mercedes; Mohamed, Jamal A; Armitige, Lisa Y; Guo, Dong-Chuan; Okhuysen, Pablo C

    2008-08-01

    Up to 60% of U.S. visitors to Mexico develop traveler's diarrhea (TD), mostly due to enterotoxigenic Escherichia coli (ETEC) strains that produce heat-labile (LT) and/or heat-stable (ST) enterotoxins. Distinct single-nucleotide polymorphisms (SNPs) within the interleukin-10 (IL-10) promoter have been associated with high, intermediate, or low production of IL-10. We conducted a prospective study to investigate the association of SNPs in the IL-10 promoter and the occurrence of TD in ETEC LT-exposed travelers. Sera from U.S. travelers to Mexico collected on arrival and departure were studied for ETEC LT seroconversion by using cholera toxin as the antigen. Pyrosequencing was performed to genotype IL-10 SNPs. Stools from subjects who developed diarrhea were also studied for other enteropathogens. One hundred twenty-one of 569 (21.3%) travelers seroconverted to ETEC LT, and among them 75 (62%) developed diarrhea. Symptomatic seroconversion was more commonly seen in subjects who carried a genotype producing high levels of IL-10; it was seen in 83% of subjects with the GG genotype versus 54% of subjects with the AA genotype at IL-10 gene position -1082 (P, 0.02), in 71% of those with the CC genotype versus 33% of those with the TT genotype at position -819 (P, 0.005), and in 71% of those with the CC genotype versus 38% of those with the AA genotype at position -592 (P, 0.02). Travelers with the GCC haplotype were more likely to have symptomatic seroconversion than those with the ATA haplotype (71% versus 38%; P, 0.002). Travelers genetically predisposed to produce high levels of IL-10 were more likely to experience symptomatic ETEC TD.

  10. Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective

    Science.gov (United States)

    Bayramoglu, Bihter; Toubiana, David; van Vliet, Simon; Inglis, R. Fredrik; Shnerb, Nadav; Gillor, Osnat

    2017-02-01

    Production of public goods in biological systems is often a collaborative effort that may be detrimental to the producers. It is therefore sustainable only if a small fraction of the population shoulders the cost while the majority reap the benefits. We modelled this scenario using Escherichia coli populations producing colicins, an antibiotic that kills producer cells’ close relatives. Colicin expression is a costly trait, and it has been proposed that only a small fraction of the population actively expresses the antibiotic. Colicinogenic populations were followed at the single-cell level using time-lapse microscopy, and showed two distinct, albeit dynamic, subpopulations: the majority silenced colicin expression, while a small fraction of elongated, slow-growing cells formed colicin-expressing hotspots, placing a significant burden on expressers. Moreover, monitoring lineages of individual colicinogenic cells showed stochastic switching between expressers and non-expressers. Hence, colicin expressers may be engaged in risk-reducing strategies—or bet-hedging—as they balance the cost of colicin production with the need to repel competitors. To test the bet-hedging strategy in colicin-mediated interactions, competitions between colicin-sensitive and producer cells were simulated using a numerical model, demonstrating a finely balanced expression range that is essential to sustaining the colicinogenic population.

  11. Simultaneous thigh muscle metastasis from lung cancer and Escherichia coli gas producing myonecrosis

    International Nuclear Information System (INIS)

    Martinez, Gonzalo E.; Coursey, Courtney A.; Martinez, Salutario; Dodd, Leslie

    2008-01-01

    We present the case of a 41-year-old man with known large cell lung cancer who had undergone left pneumonectomy 7 months prior and who presented with a large intramuscular mass involving the posterior left thigh and upper calf. This thigh mass was ultimately surgically explored, and specimens yielded both Escherichia coli organisms and cells reflecting a skeletal muscle metastasis from the patient's known lung cancer. The patient was also found to have a rectal metastasis from his lung cancer. Intramuscular abscesses produced by gastrointestinal tract flora are a well-known presentation of colon cancer. To our knowledge, this is the first case report of the simultaneous occurrence of a skeletal muscle metastasis and an E. coli abscess in the same anatomic location. We believe the patient's rectal metastasis may have been the intermediate step in this process. (orig.)

  12. Simultaneous thigh muscle metastasis from lung cancer and Escherichia coli gas producing myonecrosis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Gonzalo E. [Hospital Italiano, Department of Radiology, Cordoba (Argentina); Coursey, Courtney A.; Martinez, Salutario [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Dodd, Leslie [Duke University Medical Center, Department of Pathology, Durham, NC (United States)

    2008-08-15

    We present the case of a 41-year-old man with known large cell lung cancer who had undergone left pneumonectomy 7 months prior and who presented with a large intramuscular mass involving the posterior left thigh and upper calf. This thigh mass was ultimately surgically explored, and specimens yielded both Escherichia coli organisms and cells reflecting a skeletal muscle metastasis from the patient's known lung cancer. The patient was also found to have a rectal metastasis from his lung cancer. Intramuscular abscesses produced by gastrointestinal tract flora are a well-known presentation of colon cancer. To our knowledge, this is the first case report of the simultaneous occurrence of a skeletal muscle metastasis and an E. coli abscess in the same anatomic location. We believe the patient's rectal metastasis may have been the intermediate step in this process. (orig.)

  13. An outbreak of Vero cytotoxin producing Escherichia coli O157 infection associated with takeaway sandwiches.

    LENUS (Irish Health Repository)

    McDonnell, R J

    1997-12-12

    An outbreak of food poisoning due to Escherichia coli O157 phage type 2 Vero cytotoxin 2 affected 26 people in southern counties of England in May and June 1995. The organism was isolated from faecal specimens from 23 patients, 16 of whom lived in Dorset and seven in Hampshire. Isolates were indistinguishable by phage typing, Vero cytotoxin gene typing, restriction fragment length polymorphism, and pulsed field gel electrophoresis. Three associated cases, linked epidemiologically to the outbreak, were confirmed serologically by detection of antibodies to E. coli O157 lipopolysaccharide. Twenty-two of the 26 patients were adults: four were admitted to hospital with haemorrhagic colitis. Four cases were children: two were admitted to hospital with haemolytic uraemic syndrome (HUS). There were no deaths. Although E. coli O157 was not isolated from any food samples, illness was associated with having eaten cold meats in sandwiches bought from two sandwich producers, in Weymouth and in Portsmouth. Both shops were supplied by the same wholesaler, who kept no records and obtained cooked meats from several sources in packs that did not carry adequate identification marks. It was, therefore, impossible to trace back to the original producer or to investigate further to determine the origin of contamination with E. coli O157. To protect the public health it is essential that all wholesale packs of ready-to-eat food carry date codes and the producer\\'s identification mark. Detailed record keeping should be part of hazard analysis critical control point (HACCP) systems and should be maintained throughout the chain of distribution from the producer to retail outlets.

  14. Simultaneous gut colonisation and infection by ESBL-producing Escherichia coli in hospitalised patients.

    Science.gov (United States)

    Asir, Johny; Nair, Shashikala; Devi, Sheela; Prashanth, Kenchappa; Saranathan, Rajagopalan; Kanungo, Reba

    2015-01-01

    Extended spectrum betalactamase (ESBL)-producing organisms are a major cause of hospital-acquired infections. ESBL-producing Escherichia coli (E. coli) have been recovered from the hospital environment. These drug-resistant organisms have also been found to be present in humans as commensals. The present investigation intended to isolate ESBL-producing E. coli from the gut of already infected patients; to date, only a few studies have shown evidence of the gut microflora as a major source of infection. This study aimed to detect the presence of ESBL genes in E.coli that are isolated from the gut of patients who have already been infected with the same organism. A total of 70 non-repetitive faecal samples were collected from in-patients of our hospital. These in-patients were clinically diagnosed and were culture-positive for ESBL-producing E. coli either from blood, urine, or pus. Standard microbiological methods were used to detect ESBL from clinical and gut isolates. Genes coding for major betalactamase enzymes such as bla CTX-M , bla TEM, and bla SHV were investigated by polymerase chain reaction (PCR). ESBL-producing E. coli was isolated from 15 (21 per cent) faecal samples of the 70 samples that were cultured. PCR revealed that out of these 15 isolates, the bla CTX-M gene was found in 13 (86.6 per cent) isolates, the bla TEM was present in 11 (73.3 per cent) isolates, and bla SHV only in eight (53.3 per cent) isolates. All 15 clinical and gut isolates had similar phenotypic characters and eight of the 15 patients had similar pattern of genes (bla TEM, bla CTX-M, and bla SHV) in their clinical and gut isolates. Strains with multiple betalactamase genes that colonise the gut of hospitalised patients are a potential threat and it may be a potential source of infection.

  15. Comparative genomics and stx phage characterization of LEE-negative Shiga toxin-producing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Susan Renee Steyert

    2012-11-01

    Full Text Available Infection by Escherichia coli and Shigella species are among the leading causes of death due to diarrheal disease in the world. Shiga toxin producing Escherichia coli (STEC that do not encode the locus of enterocyte effacement (LEE-negative STEC often possess Shiga toxin gene variants and have been isolated from humans and a variety of animal sources. In this study, we compare the genomes of nine LEE-negative STEC harboring various stx alleles with four complete reference LEE-positive STEC isolates. Compared to a representative collection of prototype E. coli and Shigella isolates representing each of the pathotypes, the whole genome phylogeny demonstrated that these isolates are diverse. Whole genome comparative analysis of the 13 genomes revealed that in addition to the absence of the LEE pathogenicity island, phage encoded genes including non-LEE encoded effectors, were absent from all nine LEE-negative STEC genomes. Several plasmid-encoded virulence factors reportedly identified in LEE-negative STEC isolates were identified in only a subset of the nine LEE-negative isolates further confirming the diversity of this group. In combination with whole genome analysis, we characterized the lambdoid phages harboring the various stx alleles and determined their genomic insertion sites. Although the integrase gene sequence corresponded with genomic location, it was not correlated with stx variant, further highlighting the mosaic nature of these phages. The transcription of these phages in different genomic backgrounds was examined. Expression of the Shiga toxin genes, stx1 and/or stx2, as well as the Q genes, were examined with quantitative reverse transcriptase polymerase chain reaction (qRT-PCR assays. A wide range of basal and induced toxin induction was observed. Overall, this is a first significant foray into the genome space of this unexplored group of emerging and divergent pathogens.

  16. Characteristics of Clinical Shiga Toxin-Producing Escherichia coli Isolated from British Columbia

    Directory of Open Access Journals (Sweden)

    Kevin J. Allen

    2013-01-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC are significant public health threats. Although STEC O157 are recognized foodborne pathogens, non-O157 STEC are also important causes of human disease. We characterized 10 O157:H7 and 15 non-O157 clinical STEC derived from British Columbia (BC. Eae, hlyA, and stx were more frequently observed in STEC O157, and 80 and 100% of isolates possessed stx1 and stx2, respectively. In contrast, stx1 and stx2 occurred in 80 and 40% of non-O157 STEC, respectively. Comparative genomic fingerprinting (CGF revealed three distinct clusters (C. STEC O157 was identified as lineage I (LI; LSPA-6 111111 and clustered as a single group (C1. The cdi gene previously observed only in LII was seen in two LI O157 isolates. CGF C2 strains consisted of diverse non-O157 STEC while C3 included only O103:H25, O118, and O165 serogroup isolates. With the exception of O121 and O165 isolates which were similar in virulence gene complement to STEC O157, C1 O157 STEC produced more Stx2 than non-O157 STEC. Antimicrobial resistance (AMR screening revealed resistance or reduced sensitivity in all strains, with higher levels occurring in non-O157 STEC. One STEC O157 isolate possessed a mobile blaCMY-2 gene transferrable across genre via conjugation.

  17. Detection and characterization of Shiga toxin-producing Escherichia coli from seagulls.

    Science.gov (United States)

    Makino, S; Kobori, H; Asakura, H; Watarai, M; Shirahata, T; Ikeda, T; Takeshi, K; Tsukamoto, T

    2000-08-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) strains isolated from a seagull in Japan were examined. A total of 50 faecal samples was collected on a harbour bank in Hokkaido, Japan, in July 1998. Two different STEC strains, whose serotypes were O136:H16 and O153:H-, were isolated from the same individual by PCR screening; both of them were confirmed by ELISA and Vero cell cytotoxicity assay to be producing active Stx2 and Stx1, respectively. They harboured large plasmids, but did not carry the haemolysin or eaeA genes of STEC O157:H7. Based on their plasmid profiles, antibiotic resistance patterns, pulsed-field gel electrophoresis analysis (PFGE), and the stx genes sequences, the isolates were different. Phylogenic analysis of the deduced Stx amino acid sequences demonstrated that the Stx toxins of seagull-origin STEC were closely associated with those of the human-origin, but not those of other animal-origin STEC. In addition, Stx2phi-K7 phage purified from O136 STEC resembled Stx2phi-II from human-origin O157:H7, and was able to convert non-toxigenic E. coli to STEC. These results suggest that birds may be one of the important carriers in terms of the distribution of STEC.

  18. Characterization of Multidrug Resistant ESBL-Producing Escherichia coli Isolates from Hospitals in Malaysia

    Directory of Open Access Journals (Sweden)

    King-Ting Lim

    2009-01-01

    Full Text Available The emergence of Escherichia coli that produce extended spectrum β-lactamases (ESBLs and are multidrug resistant (MDR poses antibiotic management problems. Forty-seven E. coli isolates from various public hospitals in Malaysia were studied. All isolates were sensitive to imipenem whereas 36 were MDR (resistant to 2 or more classes of antibiotics. PCR detection using gene-specific primers showed that 87.5% of the ESBL-producing E. coli harbored the blaTEM gene. Other ESBL-encoding genes detected were blaOXA, blaSHV, and blaCTX-M. Integron-encoded integrases were detected in 55.3% of isolates, with class 1 integron-encoded intI1 integrase being the majority. Amplification and sequence analysis of the 5′CS region of the integrons showed known antibiotic resistance-encoding gene cassettes of various sizes that were inserted within the respective integrons. Conjugation and transformation experiments indicated that some of the antibiotic resistance genes were likely plasmid-encoded and transmissible. All 47 isolates were subtyped by PFGE and PCR-based fingerprinting using random amplified polymorphic DNA (RAPD, repetitive extragenic palindromes (REPs, and enterobacterial repetitive intergenic consensus (ERIC. These isolates were very diverse and heterogeneous. PFGE, ERIC, and REP-PCR methods were more discriminative than RAPD in subtyping the E. coli isolates.

  19. OXA-244-Producing Escherichia coli Isolates, a Challenge for Clinical Microbiology Laboratories.

    Science.gov (United States)

    Hoyos-Mallecot, Yannick; Naas, Thierry; Bonnin, Rémy A; Patino, Rafael; Glaser, Philippe; Fortineau, Nicolas; Dortet, Laurent

    2017-09-01

    OXA-244 is a single-point-mutant derivative of OXA-48 displaying reduced carbapenemase activity. Here, we report the microbiological features of seven OXA-244-producing Escherichia coli isolates. Only one isolate grew on ChromID Carba Smart medium (bioMérieux), but six of the seven isolates grew on ChromID extended-spectrum-β-lactamase (ESBL) medium (bioMérieux), as they coproduced an ESBL and/or a plasmid-encoded cephalosporinase. The production of a carbapenemase was detected in 57.1%, 71.4%, 71.4%, and 100% of the E. coli isolates using the Carba NP test, the Rapidec Carba NP test (bioMérieux), a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) hydrolysis assay (Bruker), and the OXA-48 K-SeT assay (Coris BioConcept), respectively. Our results indicate that OXA-244-producing E. coli isolates are difficult to detect, which may lead to their silent spread. Copyright © 2017 American Society for Microbiology.

  20. Immunogenicity of recombinant Lactobacillus casei-expressing F4 (K88) fimbrial adhesin FaeG in conjunction with a heat-labile enterotoxin A (LTAK63) and heat-labile enterotoxin B (LTB) of enterotoxigenic Escherichia coli as an oral adjuvant in mice.

    Science.gov (United States)

    Yu, M; Qi, R; Chen, C; Yin, J; Ma, S; Shi, W; Wu, Y; Ge, J; Jiang, Y; Tang, L; Xu, Y; Li, Y

    2017-02-01

    The aims of this study were to develop an effective oral vaccine against enterotoxigenic Escherichia coli (ETEC) infection and to design new and more versatile mucosal adjuvants. Genetically engineered Lactobacillus casei strains expressing F4 (K88) fimbrial adhesin FaeG (rLpPG-2-FaeG) and either co-expressing heat-labile enterotoxin A (LTA) subunit with an amino acid mutation associated with reduced virulence (LTAK63) and a heat-labile enterotoxin B (LTB) subunit of E. coli (rLpPG-2-LTAK63-co-LTB) or fused-expressing LTAK63 and LTB (rLpPG-2-LTAK63-fu-LTB) were constructed. The immunogenicity of rLpPG-2-FaeG in conjunction with rLpPG-2-LTAK63-co-LTB or rLpPG-2-LTAK63-fu-LTB as an orally administered mucosal adjuvant in mice was evaluated. Results showed that the levels of FaeG-specific serum IgG and mucosal sIgA, as well as the proliferation of lymphocytes, were significantly higher in mice orally co-administered rLpPG-2-FaeG and rLpPG-2-LTAK63-fu-LTB compared with those administered rLpPG-2-FaeG alone, and were lower than those co-administered rLpPG-2-FaeG and rLpPG-2-LTAK63-co-LTB. Moreover, effective protection was observed after challenge with F4+ ETEC strain CVCC 230 in mice co-administered rLpPG-2-FaeG and rLpPG-2-LTAK63-co-LTB or rLpPG-2-FaeG and rLpPG-2-LTAK63-fu-LTB group compared with those that received rLpPG-2-FaeG alone. rLpPG-2-FaeG showed greater immunogenicity in combination with LTAK63 and LTB as molecular adjuvants. Recombinant Lactobacillus provides a promising platform for the development of vaccines against F4+ ETEC infection. © 2016 The Society for Applied Microbiology.

  1. Genetic fusions of a CFA/I/II/IV MEFA (multiepitope fusion antigen) and a toxoid fusion of heat-stable toxin (STa) and heat-labile toxin (LT) of enterotoxigenic Escherichia coli (ETEC) retain broad anti-CFA and antitoxin antigenicity.

    Science.gov (United States)

    Ruan, Xiaosai; Sack, David A; Zhang, Weiping

    2015-01-01

    Immunological heterogeneity has long been the major challenge in developing broadly effective vaccines to protect humans and animals against bacterial and viral infections. Enterotoxigenic Escherichia coli (ETEC) strains, the leading bacterial cause of diarrhea in humans, express at least 23 immunologically different colonization factor antigens (CFAs) and two distinct enterotoxins [heat-labile toxin (LT) and heat-stable toxin type Ib (STa or hSTa)]. ETEC strains expressing any one or two CFAs and either toxin cause diarrhea, therefore vaccines inducing broad immunity against a majority of CFAs, if not all, and both toxins are expected to be effective against ETEC. In this study, we applied the multiepitope fusion antigen (MEFA) strategy to construct ETEC antigens and examined antigens for broad anti-CFA and antitoxin immunogenicity. CFA MEFA CFA/I/II/IV [CVI 2014, 21(2):243-9], which carried epitopes of seven CFAs [CFA/I, CFA/II (CS1, CS2, CS3), CFA/IV (CS4, CS5, CS6)] expressed by the most prevalent and virulent ETEC strains, was genetically fused to LT-STa toxoid fusion monomer 3xSTaA14Q-dmLT or 3xSTaN12S-dmLT [IAI 2014, 82(5):1823-32] for CFA/I/II/IV-STaA14Q-dmLT and CFA/I/II/IV-STaN12S-dmLT MEFAs. Mice intraperitoneally immunized with either CFA/I/II/IV-STa-toxoid-dmLT MEFA developed antibodies specific to seven CFAs and both toxins, at levels equivalent or comparable to those induced from co-administration of the CFA/I/II/IV MEFA and toxoid fusion 3xSTaN12S-dmLT. Moreover, induced antibodies showed in vitro adherence inhibition activities against ETEC or E. coli strains expressing these seven CFAs and neutralization activities against both toxins. These results indicated CFA/I/II/IV-STa-toxoid-dmLT MEFA or CFA/I/II/IV MEFA combined with 3xSTaN12S-dmLT induced broadly protective anti-CFA and antitoxin immunity, and suggested their potential application in broadly effective ETEC vaccine development. This MEFA strategy may be generally used in multivalent

  2. Genetic fusions of a CFA/I/II/IV MEFA (multiepitope fusion antigen and a toxoid fusion of heat-stable toxin (STa and heat-labile toxin (LT of enterotoxigenic Escherichia coli (ETEC retain broad anti-CFA and antitoxin antigenicity.

    Directory of Open Access Journals (Sweden)

    Xiaosai Ruan

    Full Text Available Immunological heterogeneity has long been the major challenge in developing broadly effective vaccines to protect humans and animals against bacterial and viral infections. Enterotoxigenic Escherichia coli (ETEC strains, the leading bacterial cause of diarrhea in humans, express at least 23 immunologically different colonization factor antigens (CFAs and two distinct enterotoxins [heat-labile toxin (LT and heat-stable toxin type Ib (STa or hSTa]. ETEC strains expressing any one or two CFAs and either toxin cause diarrhea, therefore vaccines inducing broad immunity against a majority of CFAs, if not all, and both toxins are expected to be effective against ETEC. In this study, we applied the multiepitope fusion antigen (MEFA strategy to construct ETEC antigens and examined antigens for broad anti-CFA and antitoxin immunogenicity. CFA MEFA CFA/I/II/IV [CVI 2014, 21(2:243-9], which carried epitopes of seven CFAs [CFA/I, CFA/II (CS1, CS2, CS3, CFA/IV (CS4, CS5, CS6] expressed by the most prevalent and virulent ETEC strains, was genetically fused to LT-STa toxoid fusion monomer 3xSTaA14Q-dmLT or 3xSTaN12S-dmLT [IAI 2014, 82(5:1823-32] for CFA/I/II/IV-STaA14Q-dmLT and CFA/I/II/IV-STaN12S-dmLT MEFAs. Mice intraperitoneally immunized with either CFA/I/II/IV-STa-toxoid-dmLT MEFA developed antibodies specific to seven CFAs and both toxins, at levels equivalent or comparable to those induced from co-administration of the CFA/I/II/IV MEFA and toxoid fusion 3xSTaN12S-dmLT. Moreover, induced antibodies showed in vitro adherence inhibition activities against ETEC or E. coli strains expressing these seven CFAs and neutralization activities against both toxins. These results indicated CFA/I/II/IV-STa-toxoid-dmLT MEFA or CFA/I/II/IV MEFA combined with 3xSTaN12S-dmLT induced broadly protective anti-CFA and antitoxin immunity, and suggested their potential application in broadly effective ETEC vaccine development. This MEFA strategy may be generally used in

  3. Enteroaggregative, Shiga Toxin-Producing Escherichia coli O111:H2 Associated with an Outbreak of Hemolytic-Uremic Syndrome

    Science.gov (United States)

    Morabito, Stefano; Karch, Helge; Mariani-Kurkdjian, Patrizia; Schmidt, Herbert; Minelli, Fabio; Bingen, Edouard; Caprioli, Alfredo

    1998-01-01

    Shiga toxin-producing Escherichia coli O111:H2 strains from an outbreak of hemolytic-uremic syndrome showed aggregative adhesion to HEp-2 cells and harbored large plasmids which hybridized with the enteroaggregative E. coli probe PCVD432. These strains present a novel combination of virulence factors and might be as pathogenic to humans as the classic enterohemorrhagic E. coli. PMID:9508328

  4. Mathematical modeling of growth of non-O157 Shiga Toxin-producing Escherichia coli in raw ground beef

    Science.gov (United States)

    The objective of this study was to investigate the growth of Shiga toxin-producing Escherichia coli (STEC, including serogroups O45, O103, O111, O121, and O145) in raw ground beef and to develop mathematical models to describe the bacterial growth under different temperature conditions. Three prima...

  5. Carbon nanoparticles in lateral flow methods to detect genes encoding virulence factors of Shiga toxin-producing Escherichia coli

    NARCIS (Netherlands)

    Noguera, P.; Posthuma-Trumpie, G.A.; Tuil, van M.; Wal, van der F.J.; Boer, de A.; Moers, A.P.H.A.; Amerongen, van A.

    2011-01-01

    The use of carbon nanoparticles is shown for the detection and identification of different Shiga toxin-producing Escherichia coli virulence factors (vt1, vt2, eae and ehxA) and a 16S control (specific for E. coli) based on the use of lateral flow strips (nucleic acid lateral flow immunoassay,

  6. Outbreak of Non-O157 Shiga Toxin-Producing Escherichia coli Infection from Consumption of Beef Sausage

    DEFF Research Database (Denmark)

    Ethelberg, S.; Smith, B.; Torpdahl, M.

    2009-01-01

    We describe an outbreak of Shiga toxin-producing Escherichia coli O26: H11 infection in 20 patients (median age, 2 years). The source of the infection was an organic fermented beef sausage. The source was discovered by using credit card information to obtain and compare customer transaction records...

  7. Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the enviroment

    NARCIS (Netherlands)

    Dorado-Garcia, Alejandro; Smid, J.H.; Pelt, Van Wilfrid; Bonten, M.J.M.; Fluit, A.C.; Bunt, van den Gerrita; Wagenaar, J.A.; Hordijk, J.; Dierikx, C.M.; Veldman, K.T.; Koeijer, de A.A.; Dohmen, W.; Schmitt, H.; Liakopoulos, A.; Pacholewicz, Ewa; Lam, T.J.G.M.; Velthuis, Annet; Heuvelink, A.; Gonggrijp, Maaike; Duijkeren, van E.; Hoek, van A.H.A.M.; Roda Husman, de A.N.; Blaak, H.; Havelaar, A.H.; Mevius, D.J.; Heederik, D.J.J.

    2018-01-01

    Background: In recent years, ESBL/AmpC-producing Escherichia coli ESBL/AmpC-EC) have been isolated with increasing frequency from animals, food, environmental sources and humans. With incomplete and scattered evidence, the contribution to the human carriage burden from these reservoirs remains

  8. Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the environment : a pooled analysis

    NARCIS (Netherlands)

    Dorado-García, Alejandro|info:eu-repo/dai/nl/372621023; Smid, Joost H|info:eu-repo/dai/nl/313996458; van Pelt, Wilfrid; Bonten, Marc J M; Fluit, Ad C; van den Bunt, Gerrita; Wagenaar, Jaap A|info:eu-repo/dai/nl/126613354; Hordijk, Joost|info:eu-repo/dai/nl/314839542; Dierikx, Cindy M; Veldman, Kees T; de Koeijer, Aline; Dohmen, Wietske|info:eu-repo/dai/nl/333690451; Schmitt, Heike|info:eu-repo/dai/nl/304831042; Liakopoulos, Apostolos; Pacholewicz, Ewa; Lam, Theo J G M|info:eu-repo/dai/nl/14686820X; Velthuis, Annet G J; Heuvelink, Annet; Gonggrijp, Maaike A; van Duijkeren, Engeline; van Hoek, Angela H A M; de Roda Husman, Ana Maria|info:eu-repo/dai/nl/139498281; Blaak, Hetty; Havelaar, Arie H|info:eu-repo/dai/nl/072306122; Mevius, Dik J|info:eu-repo/dai/nl/079677347; Heederik, Dick J J|info:eu-repo/dai/nl/072910542

    Background: In recent years, ESBL/AmpC-producing Escherichia coli (ESBL/AmpC-EC) have been isolated with increasing frequency from animals, food, environmental sources and humans. With incomplete and scattered evidence, the contribution to the human carriage burden from these reservoirs remains

  9. Classification of non-O157 shiga toxin-producing escherichia coli(STEC) serotypes with hyperspectral microscope imaging

    Science.gov (United States)

    Non-O157 Shiga toxin-producing Escherichia coli (STEC) strains such as O26, O45, O103, O111, O121 and O145 are recognized as serious outbreak to cause human illness due to their toxicity. A conventional microbiological method for cell counting is laborious and needs long time for the results. Since ...

  10. Prevalence and characteristics of Shiga toxin-producing Escherichia coli in finishing pigs: implications on public health

    Science.gov (United States)

    Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens, which can cause serious illnesses, including hemorrhagic colitis and hemolytic uremic syndrome. To examine if pigs are potential animal reservoirs for human STEC infections, we conducted a longitudinal cohort study in ...

  11. Distribution and detection of Shiga toxin-producing Escherichia coli (STEC) during an industrial grinding process of beef trim

    Science.gov (United States)

    During the grinding and packaging processes, it is important to understand how Shiga toxin-producing Escherichia coli (STEC) would be distributed and how well it could be detected in beef trim. This study is important because it shows what would happen if contaminated meat is allowed into a commerc...

  12. Shiga toxin-producing Escherichia coli in meat: a preliminary simulation study on detection capabilities for three sampling methods

    Science.gov (United States)

    The objective of this simulation study is to determine which sampling method (Cozzini core sampler, core drill shaving, and N-60 surface excision) will better detect Shiga Toxin-producing Escherichia coli (STEC) at varying levels of contamination when present in the meat. 1000 simulated experiments...

  13. Presence of ESBL/AmpC-producing Escherichia coli in the broiler production pyramid: a descriptive study.

    NARCIS (Netherlands)

    Dierikx, C.M.; Goot, van der J.A.; Smith, H.E.; Kant, A.; Mevius, D.J.

    2013-01-01

    Broilers and broiler meat products are highly contaminated with extended spectrum beta-lactamase (ESBL) or plasmid-mediated AmpC beta-lactamase producing Escherichia coli and are considered to be a source for human infections. Both horizontal and vertical transmission might play a role in the

  14. Inactivation of a diverse set of shiga toxin-producing Escherichia coli in ground beef by high pressure processing

    Science.gov (United States)

    Shiga Toxin-Producing Escherichia coli (STEC) are frequently implicated in foodborne illness outbreaks and recalls of ground beef. In this study we determined the High Pressure Processing (HPP) D-10 value (the processing conditions needed to reduce the microbial population by 1 log) of 39 individua...

  15. The Functional Quality of Soluble Recombinant Polypeptides Produced in Escherichia coli Is Defined by a Wide Conformational Spectrum▿

    Science.gov (United States)

    Martínez-Alonso, Mónica; González-Montalbán, Nuria; García-Fruitós, Elena; Villaverde, Antonio

    2008-01-01

    We have observed that a soluble recombinant green fluorescent protein produced in Escherichia coli occurs in a wide conformational spectrum. This results in differently fluorescent protein fractions in which morphologically diverse soluble aggregates abound. Therefore, the functional quality of soluble versions of aggregation-prone recombinant proteins is defined statistically rather than by the prevalence of a canonical native structure. PMID:18836021

  16. The Gene tia, Harbored by the Subtilase-Encoding Pathogenicity Island, Is Involved in the Ability of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains To Invade Monolayers of Epithelial Cells

    Science.gov (United States)

    Chiani, Paola; Michelacci, Valeria; Minelli, Fabio; Caprioli, Alfredo; Morabito, Stefano

    2017-01-01

    ABSTRACT Locus of enterocyte effacement (LEE)-negative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are human pathogens that lack the LEE locus, a pathogenicity island (PAI) involved in the intimate adhesion of LEE-positive strains to the host gut epithelium. The mechanism used by LEE-negative STEC strains to colonize the host intestinal mucosa is still not clear. The cell invasion determinant tia, previously described in enterotoxigenic E. coli strains, has been identified in LEE-negative STEC strains that possess the subtilase-encoding pathogenicity island (SE-PAI). We evaluated the role of the gene tia, present in these LEE-negative STEC strains, in the invasion of monolayers of cultured cells. We observed that these strains were able to invade Caco-2 and HEp-2 cell monolayers and compared their invasion ability with that of a mutant strain in which the gene tia had been inactivated. Mutation of the gene tia resulted in a strong reduction of the invasive phenotype, and complementation of the tia mutation with a functional copy of the gene restored the invasion activity. Moreover, we show that the gene tia is overexpressed in bacteria actively invading cell monolayers, demonstrating that tia is involved in the ability to invade cultured monolayers of epithelial cells shown by SE-PAI-positive E. coli, including STEC, strains. However, the expression of the tia gene in the E. coli K-12 strain JM109 was not sufficient, in its own right, to confer to this strain the ability to invade cell monolayers, suggesting that at least another factor must be involved in the invasion ability displayed by the SE-PAI-positive strains. PMID:28893912

  17. The Gene tia, Harbored by the Subtilase-Encoding Pathogenicity Island, Is Involved in the Ability of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains To Invade Monolayers of Epithelial Cells.

    Science.gov (United States)

    Bondì, Roslen; Chiani, Paola; Michelacci, Valeria; Minelli, Fabio; Caprioli, Alfredo; Morabito, Stefano

    2017-12-01

    Locus of enterocyte effacement (LEE)-negative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are human pathogens that lack the LEE locus, a pathogenicity island (PAI) involved in the intimate adhesion of LEE-positive strains to the host gut epithelium. The mechanism used by LEE-negative STEC strains to colonize the host intestinal mucosa is still not clear. The cell invasion determinant tia , previously described in enterotoxigenic E. coli strains, has been identified in LEE-negative STEC strains that possess the subtilase-encoding pathogenicity island (SE-PAI). We evaluated the role of the gene tia , present in these LEE-negative STEC strains, in the invasion of monolayers of cultured cells. We observed that these strains were able to invade Caco-2 and HEp-2 cell monolayers and compared their invasion ability with that of a mutant strain in which the gene tia had been inactivated. Mutation of the gene tia resulted in a strong reduction of the invasive phenotype, and complementation of the tia mutation with a functional copy of the gene restored the invasion activity. Moreover, we show that the gene tia is overexpressed in bacteria actively invading cell monolayers, demonstrating that tia is involved in the ability to invade cultured monolayers of epithelial cells shown by SE-PAI-positive E. coli , including STEC, strains. However, the expression of the tia gene in the E. coli K-12 strain JM109 was not sufficient, in its own right, to confer to this strain the ability to invade cell monolayers, suggesting that at least another factor must be involved in the invasion ability displayed by the SE-PAI-positive strains. Copyright © 2017 American Society for Microbiology.

  18. Metabolic Engineering of Escherichia coli for Producing Astaxanthin as the Predominant Carotenoid

    Directory of Open Access Journals (Sweden)

    Qian Lu

    2017-09-01

    Full Text Available Astaxanthin is a carotenoid of significant commercial value due to its superior antioxidant potential and wide applications in the aquaculture, food, cosmetic and pharmaceutical industries. A higher ratio of astaxanthin to the total carotenoids is required for efficient astaxanthin production. β-Carotene ketolase and hydroxylase play important roles in astaxanthin production. We first compared the conversion efficiency to astaxanthin in several β-carotene ketolases from Brevundimonas sp. SD212, Sphingomonas sp. DC18, Paracoccus sp. PC1, P. sp. N81106 and Chlamydomonas reinhardtii with the recombinant Escherichia coli cells that synthesize zeaxanthin due to the presence of the Pantoea ananatis crtEBIYZ. The B. sp. SD212 crtW and P. ananatis crtZ genes are the best combination for astaxanthin production. After balancing the activities of β-carotene ketolase and hydroxylase, an E. coli ASTA-1 that carries neither a plasmid nor an antibiotic marker was constructed to produce astaxanthin as the predominant carotenoid (96.6% with a specific content of 7.4 ± 0.3 mg/g DCW without an addition of inducer.

  19. Improved traceability of Shiga-toxin-producing Escherichia coli using CRISPRs for detection and typing.

    Science.gov (United States)

    Delannoy, Sabine; Beutin, Lothar; Fach, Patrick

    2016-05-01

    Among strains of Shiga-toxin-producing Escherichia coli (STEC), seven serogroups (O26, O45, O103, O111, O121, O145, and O157) are frequently associated with severe clinical illness in humans. The development of methods for their reliable detection from complex samples such as food has been challenging thus far, and is currently based on the PCR detection of the major virulence genes stx1, stx2, and eae, and O-serogroup-specific genes. However, this approach lacks resolution. Moreover, new STEC serotypes are continuously emerging worldwide. For example, in May 2011, strains belonging to the hitherto rarely detected STEC serotype O104:H4 were identified as causative agents of one of the world's largest outbreak of disease with a high incidence of hemorrhagic colitis and hemolytic uremic syndrome in the infected patients. Discriminant typing of pathogens is crucial for epidemiological surveillance and investigations of outbreaks, and especially for tracking and tracing in case of accidental and deliberate contamination of food and water samples. Clustered regularly interspaced short palindromic repeats (CRISPRs) are composed of short, highly conserved DNA repeats separated by unique sequences of similar length. This distinctive sequence signature of CRISPRs can be used for strain typing in several bacterial species including STEC. This review discusses how CRISPRs have recently been used for STEC identification and typing.

  20. Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results

    Directory of Open Access Journals (Sweden)

    Joanna M Los

    2013-01-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC may cause bloody diarrhea and hemorrhagic colitis, with subsequent systemic disease. Since genes coding for Shiga toxins (stx genes are located on lambdoid prophages, their effective production occurs only after prophage induction. Such induction and subsequent lytic development of Shiga toxin-converting bacteriophages results not only in production of toxic proteins, but also in the lysis (and thus, the death of the host cell. Therefore, one may ask the question: what is the benefit for bacteria to produce the toxin if they die due to phage production and subsequent cell lysis? Recently, a hypothesis was proposed (simultaneously but independently by two research groups that STEC may benefit from Shiga toxin production as a result of toxin-dependent killing of eukaryotic cells such as unicellular predators or human leukocytes. This hypothesis could make sense only if we assume that prophage induction (and production of the toxin occurs only in a small fraction of bacterial cells, thus, a few members of the population are sacrificed for the benefit of the rest, providing an example of ‘bacterial altruism’. However, various reports indicating that the frequency of spontaneous induction of Shiga toxin-converting prophages is higher than that of other lambdoid prophages might seem to contradict the for-mentioned model. On the other hand, analysis of recently published results, discussed here, indicated that the efficiency of prophage excision under conditions that may likely occur in the natural habitat of STEC is sufficiently low to ensure survival of a large fraction of the bacterial host. A molecular mechanism by which partial prophage induction may occur is proposed. We conclude that the published data supports the proposed model of bacterial ‘altruism’ where prophage induction occurs at a low enough frequency to render toxin production a positive selective force on the general STEC population.

  1. Contribution of Urease to Colonization by Shiga Toxin-Producing Escherichia coli

    Science.gov (United States)

    Steyert, Susan R.

    2012-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen with a low infectious dose that colonizes the colon in humans and can cause severe clinical manifestations such as hemolytic-uremic syndrome. The urease enzyme, encoded in the STEC chromosome, has been demonstrated to act as a virulence factor in other bacterial pathogens. The NH3 produced as urease hydrolyzes urea can aid in buffering bacteria in acidic environments as well as provide an easily assimilated source of nitrogen that bacteria can use to gain a metabolic advantage over intact microflora. Here, we explore the role of urease in STEC pathogenicity. The STEC urease enzyme exhibited maximum activity near neutral pH and during the stationary-growth phase. Experiments altering growth conditions performed with three phylogenetically distinct urease-positive strains demonstrated that the STEC ure gene cluster is inducible by neither urea nor pH but does respond to nitrogen availability. Quantitative reverse transcription-PCR (qRT-PCR) data indicate that nitrogen inhibits the transcriptional response. The deletion of the ure gene locus was constructed in STEC strain 88-0643, and the ure mutant was used with the wild-type strain in competition experiments in mouse models to examine the contribution of urease. The wild-type strain was twice as likely to survive passage through the acidic stomach and demonstrated an enhanced ability to colonize the intestinal tract compared to the ure mutant strain. These in vivo experiments reveal that, although the benefit STEC gains from urease expression is modest and not absolutely required for colonization, urease can contribute to the pathogenicity of STEC. PMID:22665380

  2. Construction and Characterization of an Escherichia coli Mutant Producing Kdo2-Lipid A

    Directory of Open Access Journals (Sweden)

    Jianli Wang

    2014-03-01

    Full Text Available 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo2-lipid A is the conserved structure domain of lipopolysaccharide found in most Gram-negative bacteria, and it is believed to stimulate the innate immune system through the TLR4/MD2 complex. Therefore, Kdo2-lipid A is an important stimulator for studying the mechanism of the innate immune system and for developing bacterial vaccine adjuvants. Kdo2-lipid A has not been chemically synthesized to date and could only be isolated from an Escherichia coli mutant strain, WBB06. WBB06 cells grow slowly and have to grow in the presence of tetracycline. In this study, a novel E. coli mutant strain, WJW00, that could synthesize Kdo2-lipid A was constructed by deleting the rfaD gene from the genome of E. coli W3110. The rfaD gene encodes ADP-l-glycero-d-manno-heptose-6-epimerase RfaD. Based on the analysis by SDS-PAGE, thin layer chromatography (TLC and electrospray ionization mass spectrometry (ESI/MS, WJW00 could produce similar levels of Kdo2-lipid A to WBB06. WJW00 cells grow much better than WBB06 cells and do not need to add any antibiotics during growth. Compared with the wild-type strain, W3110, WJW00 showed increased hydrophobicity, higher cell permeability, greater autoaggregation and decreased biofilm-forming ability. Therefore, WJW00 could be a more suitable strain than WBB06 for producing Kdo2-lipid A and a good base strain for developing lipid A adjuvants.

  3. Novel sequence types of extended-spectrum and acquired AmpC beta-lactamase producing Escherichia coli and Escherichia clade V isolated from wild mammals.

    Science.gov (United States)

    Alonso, Carla Andrea; Alcalá, Leticia; Simón, Carmen; Torres, Carmen

    2017-08-01

    The closer contact with wildlife due to the growing human population and the destruction of natural habitats emphasizes the need of gaining insight into the role of animals as source of antimicrobial resistance. Here, we aim at characterizing the antimicrobial resistance genes and phylogenetic distribution of commensal Escherichia coli from 62 wild mammals. Isolates exhibiting resistance to ≥1 antibiotic were detected in 25.8% of the animals and 6.4% carried an extended-spectrum beta-lactamase (ESBL)/AmpC-producing E. coli. Genetic mechanisms involved in third-generation cephalosporin resistance were as follows: (i) hyperproduction of chromosomal AmpC (hedgehog), (ii) production of acquired CMY-2 β-lactamase (hedgehog), (iii) production of SHV-12 and CTX-M-14 ESBLs (n = 2, mink and roe-deer). ESBL genes were transferable by conjugation, and blaCMY-2 was mobilized by a 95kb IncI1 plasmid. The distribution of the phylogenetic groups in the E. coli collection studied was B1 (44.6%), B2 (24.6%), E (15.4%), A (4.6%) and F (3.1%). Five isolates (7.7%) were cryptic Escherichia clades (clade IV, 4 mice; clade V, 1 mink). ESBL/AmpC-E. coli isolates showed different sequence types (STs): ST1128/B1, ST4564/B1 (new), ST4996/B1 (new) and a non-registered ST. This study contributes to better understand the E. coli population and antimicrobial resistance flow in wildlife and reports new AmpC-E. coli STs and a first described ESBL-producing Escherichia clade V isolate. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Shiga toxin-producing Escherichia coli in slaughtered pigs and pork products

    Directory of Open Access Journals (Sweden)

    Lia Bardasi

    2017-05-01

    Full Text Available During the years 2015-2016, 83 faecal samples were collected at slaughter from pigs reared in farms located in Central- Northern Italy. During the years 2014-2016 a total of 562 pork products [465 not-ready-to-eat (NRTE and 97 ready-to-eat (RTE products] were collected from retail outlets, large retailers and processing plants. The samples were analysed according to ISO TS 13136:2012. Out of 83 swine faecal samples, 77 (92.8% resulted stx-positive by real time polymerase chain reaction (PCR, 5 stx2+ and 1 stx1+ Shiga toxin-producing Escherichia coli (STEC strains were isolated. Among the 465 NRTE samples, 65 (14.0% resulted stx-positive by real time PCR and 7 stx2+ STEC strains were isolated. The stx2 gene was detected more frequently than the stx1 gene both in faecal samples (90.4 vs 8.4% and in NRTE pork products (13.3 vs 1.3%. All the RTE samples included in the analysis resulted stxnegative. Among the samples resulted positive for stx and eae genes, serogroup-associated genes were detected at high frequency: O26 resulted the most frequent in faecal samples (81.3% and O145 in pork products (88.1%. The O157 serogroup resulted positive in 83.3 and 78.1% of pork products and faecal samples, respectively. Despite the frequent detection by real time PCR of genes indicating the possible presence of STEC strains belonging to the six serogroups, the bacteriological step did not confirm the isolation of any such strains.

  5. Simplified Method to Produce Human Bioactive Leukemia Inhibitory Factor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Houman Kahroba

    2016-07-01

    Full Text Available Background Human leukemia inhibitory factor (hLIF is a poly functional cytokine with numerous regulatory effects on different cells. Main application of hLIF is maintaining pluripotency of embryonic stem cells. hLIF indicated effective work in implantation rate of fertilized eggs and multiple sclerosis (MS treatment. Low production of hLIF in eukaryotic cells and prokaryotic host’s problems for human protein production convinced us to develop a simple way to reach high amount of this widely used clinical and research factor. Objectives In this study we want to purify recombinant human leukemia inhibitory factor in single simple method. Materials and Methods This is an experimental study, gene expression: human LIF gene was codon optimized for expression in Escherichia coli and attached his-tag tail to make it extractable. After construction and transformation of vector to E. coli, isopropyl β-D-1-thiogalactopyranoside (IPTG used for induction. Single step immobilized metal affinity chromatography (IMAC used for purification confirmed by Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE and western blotting. Bioactivity of the hLIF were tested by MTT assay with TF-1 cells and CISH gene stimulation in monocyte and TF-1 by real-time PCR. Induction by 0.4 mM of IPTG in 25°C for 3 hours indicated best result for soluble expression. SPSS indicated P ˂ 0.05 that is significant for our work. Results Cloning, expression, and extraction of bio active rhLIF was successfully achieved according MTT assay and real time PCR after treatment of TF-1 and monocyte cell lines. Conclusions We developed an effective single step purification method to produce bioactive recombinant hLIF in E. coli. For the first time we used CISH gene stimulating for bioactivity test for qualifying of recombinant hLIF for application.

  6. Isolation of Shiga toxin-producing Escherichia coli harboring variant Shiga toxin genes from seafood

    Directory of Open Access Journals (Sweden)

    Sreepriya Prakasan

    2018-03-01

    Full Text Available Background and Aim: Shiga toxin-producing Escherichia coli (STEC are important pathogens of global significance. STEC are responsible for numerous food-borne outbreaks worldwide and their presence in food is a potential health hazard. The objective of the present study was to determine the incidence of STEC in fresh seafood in Mumbai, India, and to characterize STEC with respect to their virulence determinants. Materials and Methods: A total of 368 E. coli were isolated from 39 fresh seafood samples (18 finfish and 21 shellfish using culture-based methods. The isolates were screened by polymerase chain reaction (PCR for the genes commonly associated with STEC. The variant Shiga toxin genes were confirmed by Southern blotting and hybridization followed by DNA sequencing. Results: One or more Shiga toxins genes were detected in 61 isolates. Of 39 samples analyzed, 10 (25.64% samples harbored STEC. Other virulence genes, namely, eaeA (coding for an intimin and hlyA (hemolysin A were detected in 43 and 15 seafood isolates, respectively. The variant stx1 genes from 6 isolates were sequenced, five of which were found to be stx1d variants, while one sequence varied considerably from known stx1 sequences. Southern hybridization and DNA sequence analysis suggested putative Shiga toxin variant genes (stx2 in at least 3 other isolates. Conclusion: The results of this study showed the occurrence of STEC in seafood harboring one or more Shiga toxin genes. The detection of STEC by PCR may be hampered due to the presence of variant genes such as the stx1d in STEC. This is the first report of stx1d gene in STEC isolated from Indian seafood.

  7. Wild ungulates as disseminators of Shiga toxin-producing Escherichia coli in urban areas.

    Directory of Open Access Journals (Sweden)

    Alan B Franklin

    Full Text Available BACKGROUND: In 2008, children playing on a soccer field in Colorado were sickened with a strain of Shiga toxin-producing Escherichia coli (STEC O157:H7, which was ultimately linked to feces from wild Rocky Mountain elk. We addressed whether wild cervids were a potential source of STEC infections in humans and whether STEC was ubiquitous throughout wild cervid populations in Colorado. METHODOLOGY/PRINCIPAL FINDINGS: We collected 483 fecal samples from Rocky Mountain elk and mule deer in urban and non-urban areas. Samples testing positive for STEC were higher in urban (11.0% than non-urban (1.6% areas. Elk fecal samples in urban areas had a much higher probability of containing STEC, which increased in both urban and non-urban areas as maximum daily temperature increased. Of the STEC-positive samples, 25% contained stx1 strains, 34.3% contained stx2, and 13% contained both stx1 and stx2. Additionally, eaeA genes were detected in 54.1% of the positive samples. Serotypes O103, and O146 were found in elk and deer feces, which also have the potential to cause human illness. CONCLUSIONS/SIGNIFICANCE: The high incidence of stx2 strains combined with eaeA and E-hyl genes that we found in wild cervid feces is associated with severe human disease, such as hemolytic uremic syndrome. This is of concern because there is a very close physical interface between elk and humans in urban areas that we sampled. In addition, we found a strong relationship between ambient temperature and incidence of STEC in elk feces, suggesting a higher incidence of STEC in elk feces in public areas on warmer days, which in turn may increase the likelihood that people will come in contact with infected feces. These concerns also have implications to other urban areas where high densities of coexisting wild cervids and humans interact on a regular basis.

  8. Strain-Level Discrimination of Shiga Toxin-Producing Escherichia coli in Spinach Using Metagenomic Sequencing.

    Directory of Open Access Journals (Sweden)

    Susan R Leonard

    Full Text Available Consumption of fresh bagged spinach contaminated with Shiga toxin-producing Escherichia coli (STEC has led to severe illness and death; however current culture-based methods to detect foodborne STEC are time consuming. Since not all STEC strains are considered pathogenic to humans, it is crucial to incorporate virulence characterization of STEC in the detection method. In this study, we assess the comprehensiveness of utilizing a shotgun metagenomics approach for detection and strain-level identification by spiking spinach with a variety of genomically disparate STEC strains at a low contamination level of 0.1 CFU/g. Molecular serotyping, virulence gene characterization, microbial community analysis, and E. coli core gene single nucleotide polymorphism (SNP analysis were performed on metagenomic sequence data from enriched samples. It was determined from bacterial community analysis that E. coli, which was classified at the phylogroup level, was a major component of the population in most samples. However, in over half the samples, molecular serotyping revealed the presence of indigenous E. coli which also contributed to the percent abundance of E. coli. Despite the presence of additional E. coli strains, the serotype and virulence genes of the spiked STEC, including correct Shiga toxin subtype, were detected in 94% of the samples with a total number of reads per sample averaging 2.4 million. Variation in STEC abundance and/or detection was observed in replicate spiked samples, indicating an effect from the indigenous microbiota during enrichment. SNP analysis of the metagenomic data correctly placed the spiked STEC in a phylogeny of related strains in cases where the indigenous E. coli did not predominate in the enriched sample. Also, for these samples, our analysis demonstrates that strain-level phylogenetic resolution is possible using shotgun metagenomic data for determining the genomic relatedness of a contaminating STEC strain to other

  9. Epidemiological importance of humans and domestic animals as reservoirs of verocytotoxin-producing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Lazić Srđan

    2006-01-01

    Full Text Available Background/Aim. A "new" pathogenic agent, verocytotoxin - producing Escherichia coli (VTEC emerged in the last 20 years, causing an increased number of sporadic cases, as well as of outbreaks of diarrhoeal diseases. Humans and animals can be infected with VTEC, but their epidemiological importance as a reservoir of this agent is not quite clear, especially in the Balkan region. Therefore, the aim of this study was to investigate the frequency of isolation of VTEC from the intestinal tract of humans and animals and to determine the serogroups of the isolated strains. Methods. A total of, 3 401 stool samples from humans and 2 660 samples from five different species of domestic animals were tested for the presence of this pathogen. Results. VTEC was isolated from 20 (0.6% humans stools and from 431 (16.2% animal fecal samples (p < 0.001. Only 15 (3.3% VTEC strains belonged to human infection-associated serogroups (O26, O55, O111, O128 and O 157, designated as enterohaemorrhagic E. coli (EHEC. The most known serogroup- O157 was identified in 6 (1.3% of the isolated VTEC strains; of them, 1 (5% was of human origin and 5 (1.2% were animal strains. Conclusion. This study revealed that domestic animals were a more important reservoir of VTEC than humans, and that the isolated VTEC strains rarely belonged to O157, as well as to other EHEC serogroups that might explain rare sporadic cases and the absence of epidemic occurrence of diarrhoeal diseases caused by VTEC in this geographic region.

  10. Taxonomy Meets Public Health: The Case of Shiga Toxin-Producing Escherichia coli.

    Science.gov (United States)

    Scheutz, Flemming

    2014-06-01

    To help assess the clinical and public health risks associated with different Shiga toxin-producing Escherichia coli (STEC) strains, an empirical classification scheme was used to classify STEC into five "seropathotypes" (seropathotype A [high risk] to seropathotypes D and E [minimal risk]). This definition is of considerable value in cases of human infection but is also problematic because not all STEC infections are fully characterized and coupled to reliable clinical information. Outbreaks with emerging hybrid strains continuously challenge our understanding of virulence potential and may result in incorrect classification of specific pathotypes; an example is the hybrid strain that caused the 2011 outbreak in Germany, STEC/EAggEC O104:H4, which may deserve an alternative seropathotype designation. The integration of mobile virulence factors in the stepwise and parallel evolution of pathogenic lineages of STEC collides with the requirements of a good taxonomy, which separates elements of each group into subgroups that are mutually exclusive, unambiguous, and, together, include all possibilities. The concept of (sero)-pathotypes is therefore challenged, and the need to identify factors of STEC that absolutely predict the potential to cause human disease is obvious. Because the definition of hemolytic-uremic syndrome (HUS) is distinct, a basic and primary definition of HUS-associated E. coli (HUSEC) for first-line public health action is proposed: stx2 in a background of an eae- or aggR-positive E. coli followed by a second-line subtyping of stx genes that refines the definition of HUSEC to include only stx2a and stx2d. All other STEC strains are considered "low-risk" STEC.

  11. Role of climate in the spread of shiga toxin-producing Escherichia coli infection among children

    Science.gov (United States)

    Acquaotta, Fiorella; Ardissino, Gianluigi; Fratianni, Simona; Perrone, Michela

    2017-09-01

    Haemolytic-uraemic syndrome (HUS) is a rare disease mainly affecting children that develops as a complication of shiga toxin-producing Escherichia coli (STEC) infection. It is characterised by acute kidney injury, platelet consumption and mechanical destruction of red blood cells (haemolysis). In order to test the working hypothesis that the spread of the infection is influenced by specific climatic conditions, we analysed all of the identified cases of infection occurring between June 2010 and December 2013 in four provinces of Lombardy, Italy (Milano, Monza Brianza, Varese and Brescia), in which a STEC surveillance system has been developed as part of a preventive programme. In the selected provinces, we recorded in few days a great number of cases and clusters which are unrelated for spatially distant or for the disease are caused by different STEC serotypes. In order to investigate a common factor that favoured the onset of infection, we have analysed in detail the weather conditions of the areas. The daily series of temperature, rain and relative humidity were studied to show the common climate peculiarities whilst the correlation coefficient and the principal component analysis (PCA) were used to point out the meteorological variable, maximum temperature, as the principal climate element in the onset of the infection. The use of distributed lag non-linear models (DLNM) and the climate indices characterising heat waves (HWs) has allowed to identify the weather conditions associated with STEC infection. The study highlighted a close temporal correlation between STEC infection in children and the number, duration and frequency of heat waves. In particular, if the maximum temperature is greater than 90th percentile, days classified as very hot, for 3 or more consecutive days, the risk of infection is increasing.

  12. Detection, Characterization, and Typing of Shiga Toxin-Producing Escherichia coli.

    Science.gov (United States)

    Parsons, Brendon D; Zelyas, Nathan; Berenger, Byron M; Chui, Linda

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) are responsible for gastrointestinal diseases reported in numerous outbreaks around the world. Given the public health importance of STEC, effective detection, characterization and typing is critical to any medical laboratory system. While non-O157 serotypes account for the majority of STEC infections, frontline microbiology laboratories may only screen for STEC using O157-specific agar-based methods. As a result, non-O157 STEC infections are significantly under-reported. This review discusses recent advances on the detection, characterization and typing of STEC with emphasis on work performed at the Alberta Provincial Laboratory for Public Health (ProvLab). Candidates for the detection of all STEC serotypes include chromogenic agars, enzyme immunoassays (EIA) and quantitative real time polymerase chain reaction (qPCR). Culture methods allow further characterization of isolates, whereas qPCR provides the greatest sensitivity and specificity, followed by EIA. The virulence gene profiles using PCR arrays and stx gene subtypes can subsequently be determined. Different non-O157 serotypes exhibit markedly different virulence gene profiles and a greater prevalence of stx1 than stx2 subtypes compared to O157:H7 isolates. Finally, recent innovations in whole genome sequencing (WGS) have allowed it to emerge as a candidate for the characterization and typing of STEC in diagnostic surveillance isolates. Methods of whole genome analysis such as single nucleotide polymorphisms and k-mer analysis are concordant with epidemiological data and standard typing methods, such as pulsed-field gel electrophoresis and multiple-locus variable number tandem repeat analysis while offering additional strain differentiation. Together these findings highlight improved strategies for STEC detection using currently available systems and the development of novel approaches for future surveillance.

  13. Detection, Characterization and Typing of Shiga toxin-producing Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Brendon David Parsons

    2016-04-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC are responsible for gastrointestinal diseases reported in numerous outbreaks around the world. Given the public health importance of STEC, effective detection, characterization and typing is critical to any medical laboratory system. While non-O157 serotypes account for the majority of STEC infections, frontline microbiology laboratories may only screen for STEC using O157-specific agar-based methods. As a result, non-O157 STEC infections are significantly under-reported. This review discusses recent advances on the detection, characterization and typing of STEC with emphasis on work performed at the Alberta Provincial Laboratory for Public Health (ProvLab. Candidates for the detection of all STEC serotypes include chromogenic agars, enzyme immunoassays (EIA and real-time polymerase chain reaction (qPCR. Culture methods allow further characterization of isolates, whereas qPCR provides the greatest sensitivity and specificity, followed by EIA. The virulence gene profiles using PCR arrays and stx gene subtypes can subsequently be determined. Different non-O157 serotypes exhibit markedly different virulence gene profiles and a greater prevalence of stx1 than stx2 subtypes compared to O157:H7 isolates. Finally, recent innovations in whole genome sequencing (WGS have allowed it to emerge as a candidate for the characterization and typing of STEC in diagnostic surveillance isolates. Methods of whole genome analysis such as single nucleotide polymorphisms and k-mer analysis are concordant with epidemiological data and standard typing methods, such as pulsed-field gel electrophoresis and multiple-locus variable number tandem repeat analysis while offering additional strain differentiation. Together these findings highlight improved strategies for STEC detection using currently available systems and the development of novel approaches for future surveillance.

  14. Effects of zinc supplementation on Shiga toxin 2e-producing Escherichia coli in vitro.

    Science.gov (United States)

    Uemura, Ryoko; Katsuge, Tomoko; Sasaki, Yosuke; Goto, Shinya; Sueyoshi, Masuo

    2017-10-07

    Swine edema disease is caused by Shiga toxin (Stx) 2e-producing Escherichia coli (STEC). Addition of highly concentrated zinc formulations to feed has been used to treat and prevent the disease, but the mechanism of the beneficial effect is unknown. The purpose of the present study was to investigate the effects of highly concentrated zinc formulations on bacterial growth, hemolysin production, and an Stx2e release by STEC in vitro. STEC strain MVH269 isolated from a piglet with edema disease was cultured with zinc oxide (ZnO) or with zinc carbonate (ZnCO 3 ), each at up to 3,000 ppm. There was no effect of zinc addition on bacterial growth. Nonetheless, the cytotoxic activity of Stx2e released into the supernatant was significantly attenuated in the zinc-supplemented media compared to that in the control, with the 50% cytotoxic dose values of 163.2 ± 12.7, 211.6 ± 33.1 and 659.9 ± 84.2 after 24 hr of growth in the presence of ZnO, ZnCO 3 , or no supplemental zinc, respectively. The hemolytic zones around colonies grown on sheep blood agar supplemented with zinc were significantly smaller than those of colonies grown on control agar. Similarly, hemoglobin absorbance after exposure to the supernatants of STEC cultures incubated in sheep blood broth supplemented with zinc was significantly lower than that resulting from exposure to the control supernatant. These in vitro findings indicated that zinc formulations directly impair the factors associated with the virulence of STEC, suggesting a mechanism by which zinc supplementation prevents swine edema disease.

  15. Molecular Characterization of Enterotoxin-Producing Escherichia coli Collected in 2011-2012, Russia.

    Directory of Open Access Journals (Sweden)

    Nikolay N Kartsev

    Full Text Available Enterotoxin-producing Escherichia coli (ETEC are one of the main causative agents of diarrhea in children especially in developing countries and travel diarrhoea in adults. Pathogenic properties of ETEC associated with their ability to produce a heat-stable (ST and/or heat-labile (LT enterotoxins, as well as adhesins providing bacterial adhesion to intestinal epithelial cells. This study presents the molecular characterization of the ETEC isolates collected from the Central and Far-Eastern regions of Russia in 2011-2012. It was shown that all ETEC under study (n=18 had the heat-labile enterotoxin-coding operon elt, and had no the genes of the heat-stable enterotoxin operon est. DNA sequencing revealed two types of nucleotide exchanges in the eltB gene coding subunit B of LT in isolates collected from Cherepovets city (Central region, Russia and Vladivostok city (Far-East region, Russia. Only one ETEC strain carried genes cfaA, cfaB, cfaC and cfaD coding adhesion factor CFA/I. Expression of LT in four ETEC isolates in the agglutination reaction was detected using a latex test-system. The isolates were assigned to serogroups O142 (n = 6, О6 (n = 4, О25 (n = 5, О26 (n = 2, and O115 (n = 1. Genotyping showed that they belonged to an earlier described sequence-type ST4 (n = 3 as well as to 11 novel sequence-types ST1043, ST1312, ST3697, ST3707, ST3708, ST3709, ST3710, ST3755, ST3756, ST3757 and ST4509. The ETEC isolates displayed different levels of antimicrobial resistance. Eight isolates were resistant to only one drug, three isolates-to two drugs, one isolate-to three drugs, two isolates-to four antibacterials, and only one isolate to each of the five, six and ten antibacterials simultaneously. Genetic determinants of the resistance to beta-lactams and other classes of antibacterials on the ETEC genomes were identified. There are blaTEM (n = 10, blaCTX-M-15 (n = 1, class 1 integron (n = 3 carrying resistance cassettes to aminoglycosides and

  16. Molecular Characterization of Enterotoxin-Producing Escherichia coli Collected in 2011-2012, Russia.

    Science.gov (United States)

    Kartsev, Nikolay N; Fursova, Nadezhda K; Pachkunov, Dmitry M; Bannov, Vasiliy A; Eruslanov, Boris V; Svetoch, Edward A; Dyatlov, Ivan A

    2015-01-01

    Enterotoxin-producing Escherichia coli (ETEC) are one of the main causative agents of diarrhea in children especially in developing countries and travel diarrhoea in adults. Pathogenic properties of ETEC associated with their ability to produce a heat-stable (ST) and/or heat-labile (LT) enterotoxins, as well as adhesins providing bacterial adhesion to intestinal epithelial cells. This study presents the molecular characterization of the ETEC isolates collected from the Central and Far-Eastern regions of Russia in 2011-2012. It was shown that all ETEC under study (n=18) had the heat-labile enterotoxin-coding operon elt, and had no the genes of the heat-stable enterotoxin operon est. DNA sequencing revealed two types of nucleotide exchanges in the eltB gene coding subunit B of LT in isolates collected from Cherepovets city (Central region, Russia) and Vladivostok city (Far-East region, Russia). Only one ETEC strain carried genes cfaA, cfaB, cfaC and cfaD coding adhesion factor CFA/I. Expression of LT in four ETEC isolates in the agglutination reaction was detected using a latex test-system. The isolates were assigned to serogroups O142 (n = 6), О6 (n = 4), О25 (n = 5), О26 (n = 2), and O115 (n = 1). Genotyping showed that they belonged to an earlier described sequence-type ST4 (n = 3) as well as to 11 novel sequence-types ST1043, ST1312, ST3697, ST3707, ST3708, ST3709, ST3710, ST3755, ST3756, ST3757 and ST4509. The ETEC isolates displayed different levels of antimicrobial resistance. Eight isolates were resistant to only one drug, three isolates-to two drugs, one isolate-to three drugs, two isolates-to four antibacterials, and only one isolate to each of the five, six and ten antibacterials simultaneously. Genetic determinants of the resistance to beta-lactams and other classes of antibacterials on the ETEC genomes were identified. There are blaTEM (n = 10), blaCTX-M-15 (n = 1), class 1 integron (n = 3) carrying resistance cassettes to aminoglycosides and

  17. Occurrence and quantification of Shiga toxin-producing Escherichia coli from food matrices

    Directory of Open Access Journals (Sweden)

    C. Sethulekshmi

    2018-02-01

    Full Text Available Aim: The objective of the study was to detect Shiga toxin-producing Escherichia coli (STEC and develop a quantitative polymerase chain reaction (qPCR assay to quantify the bacterial DNA present in different food matrices. Materials and Methods: A total of 758 samples were collected during a period from January 2015 to December 2016 from Kozhikode, Thrissur, and Alappuzha districts of Kerala. The samples consisted of raw milk (135, pasteurized milk (100, beef (132, buffalo meat (130, chevon (104, beef kheema (115, and beef sausage (42. All the samples collected were subjected to isolation and identification of STEC by conventional culture technique. Confirmation of virulence genes was carried out using PCR. For the quantification of STEC in different food matrices, a qPCR was standardized against stx1 gene of STEC by the construction of standard curve using SYBR green chemistry. Results: The overall occurrence of STEC in raw milk (n=135, beef (n=132, buffalo meat (n=130, chevon (n=104, and beef kheema (n=115 samples collected from Kozhikode, Thrissur, and Alappuzha districts of Kerala was 19.26%, 41.6%, 16.92%, 28.85%, and 41.74%, respectively. PCR revealed the presence of stx1 and stx2 genes in 88.46 and 83.64 and 30.77 and 40.00% of STEC isolates from raw milk and beef samples, respectively, while 100% of the STEC isolates from buffalo beef and beef kheema samples carried stx1 gene. Real-time qPCR assay was used to quantify the bacterial cells present in different food matrices. The standard curve was developed, and the slopes, intercept, and R2 of linear regression curves were -3.10, 34.24, and 0.99, respectively. Conclusion: The considerably high occurrence of STEC in the study confirms the importance of foods of animal origin as a vehicle of infection to humans. In the present study, on comparing the overall occurrence of STEC, the highest percentage of occurrence was reported in beef kheema samples. The study shows the need for rigid food

  18. Genotypes and phenotypes of Shiga toxin-producing Escherichia coli (STEC in Abeokuta, Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Olowe OA

    2014-10-01

    Full Text Available Olugbenga Adekunle Olowe,1 Bukola W Aboderin,1,2 Olayinka O Idris,3 Victor O Mabayoje,4 Oluyinka O Opaleye,1 O Catherine Adekunle,1 Rita Ayanbolade Olowe,1 Paul Akinniyi Akinduti,5 Olusola Ojurongbe1 1Department of Medical Microbiology and Parasitology, College of Health Sciences, Osogbo, Osun State, Nigeria; 2Medical Microbiology Unit, Pathology Department, Federal Medical Centre, Abeokuta, Nigeria; 3Department of Microbiology, College of Sciences, Afe Babalola University, Ado Ekiti, Nigeria; 4Department of Haematology, College of Health Sciences, Ladoke Akintola University, Osogbo, Osun State, Nigeria; 5Department of Medical Microbiology and Parasitology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria Purpose: To characterize the prevalence of hemolytic Shiga toxin-producing Escherichia coli (STEC with a multidrug-resistant pattern in different age groups in Abeokuta, Nigeria. Methods: Nonrepetitive E. coli isolates were collected from 202 subjects with or without evidence of diarrhea. Each isolate was biochemically identified and antimicrobial susceptibility testing was performed using the disk diffusion method. A sorbitol fermentation test of all the E. coli isolates was done and the minimum inhibitory concentration of suspected STEC was measured by the standard broth microdilution method to determine antibiotic resistance. The genotypes of stx1, stx2, and hlyA were determined by polymerase chain reaction assay. Results: The majority of subjects were aged ≥40 years (41.6% and were female (61.9%. Of the 202 subjects, 86.1% had STEC isolates (P<0.05. A high rate of STEC isolates resistant to amoxicillin (90.6%, cefotaxime (77.7%, and cefuroxime (75.7% was observed. Resistance to amoxicillin, gentamicin, and cefotaxime was demonstrated with a minimum inhibitory concentration >16 µg/mL in 13.9%, 11.4%, and 10.4% of the isolates, respectively. The prevalence of stx1, stx2, and hlyA was 13.9%, 6.9%, and 2.0%, respectively; 5.5% of

  19. Characterization and zoonotic impact of Shiga toxin producing Escherichia coli in some wild bird species

    Directory of Open Access Journals (Sweden)

    Hanaa Mohamed Fadel

    2017-09-01

    Full Text Available Aim: Wild birds are considered silent vectors of some zoonotic water and food borne pathogens of public health significance. Owing to the importance of Shiga toxin producing Escherichia coli (STEC as the most pathogenic among the emerging diarrheagenic E. coli groups that can infect man; the present study was designed to detect the occurrence of STEC among wild birds in Egypt. Materials and Methods: A total of 177 intestinal content swab samples originating from five wild bird species were investigated for the presence of E. coli and STEC by standard culture methods. Suspect STEC isolates were further characterized by serotyping, random amplified polymorphic DNA polymerase chain reaction (RAPD PCR, antimicrobial resistance pattern and PCR detection of stx1, stx2, and eae genes. Results: A total of 30 suspect STEC isolates from 30 positive birds' samples were detected and identified on STEC CHROMagar (semi-captive pigeons, 15; house crows, 8; cattle egrets, 3; moorhens, 2; and house teals, 2. 25 isolates were grouped into 13 serogroups (O:20, O:25, O:26, O:27, O:63, O:78, O:111, O:114, O:125, O:128, O:142, O:153, and O:158, while five were rough strains. The distribution of STEC virulence genes among wild birds was as follows: 16 birds carried stx1 gene only (nine pigeons [28.1%], six crows [7.1%], and one cattle egret [5.6%]. stx1 and stx2 genes together were detected in four birds (one cattle egret [5.6%], two moorhens [6.1%], and one house teal, [10%]. Only one pigeon (3.1% possessed the three alleles. Disk diffusion test results showed that cefixime was the most effective against STEC serotypes with (93.3% sensitivity, followed by gentamycin (56.7%, and amoxicillin (50%. On the other hand, all the recovered STEC isolates were resistant to cefotaxime, doxycycline, cephalothin, and sulfisoxazole. RAPD fingerprinting using primers OPA-2 and OPA-9 showed that STEC isolates were heterogeneous; they yielded 30 and 27 different clusters

  20. Epidemiology of Shiga toxin producing Escherichia coli in Australia, 2000-2010

    Directory of Open Access Journals (Sweden)

    Vally Hassan

    2012-01-01

    Full Text Available Abstract Background Shiga toxin-producing Escherichia coli (STEC are an important cause of gastroenteritis in Australia and worldwide and can also result in serious sequelae such as haemolytic uraemic syndrome (HUS. In this paper we describe the epidemiology of STEC in Australia using the latest available data. Methods National and state notifications data, as well as data on serotypes, hospitalizations, mortality and outbreaks were examined. Results For the 11 year period 2000 to 2010, the overall annual Australian rate of all notified STEC illness was 0.4 cases per 100,000 per year. In total, there were 822 STEC infections notified in Australia over this period, with a low of 1 notification in the Australian Capital Territory (corresponding to a rate of 0.03 cases per 100,000/year and a high of 413 notifications in South Australia (corresponding to a rate of 2.4 cases per 100,000/year, the state with the most comprehensive surveillance for STEC infection in the country. Nationally, 71.2% (504/708 of STEC infections underwent serotype testing between 2001 and 2009, and of these, 58.0% (225/388 were found to be O157 strains, with O111 (13.7% and O26 (11.1% strains also commonly associated with STEC infections. The notification rate for STEC O157 infections Australia wide between 2001-2009 was 0.12 cases per 100,000 per year. Over the same 9 year period there were 11 outbreaks caused by STEC, with these outbreaks generally being small in size and caused by a variety of serogroups. The overall annual rate of notified HUS in Australia between 2000 and 2010 was 0.07 cases per 100,000 per year. Both STEC infections and HUS cases showed a similar seasonal distribution, with a larger proportion of reported cases occurring in the summer months of December to February. Conclusions STEC infections in Australia have remained fairly steady over the past 11 years. Overall, the incidence and burden of disease due to STEC and HUS in Australia appears

  1. Integrons in Escherichia coli from food-producing animals in The Netherlands

    NARCIS (Netherlands)

    Box, A.T.; Mevius, D.J.; Schellen, P.; Verhoef, J.; Fluit, A.C.

    2005-01-01

    The presence and character of class 1 integrons in multidrug-resistant Escherichia coli from slaughter animals and meat was determined by integrase-specific PCR and conserved segment PCR-restriction fragment length polymorphism (RFLP). At least five different class 1 integron types were found and

  2. A sustainable route to produce the scytonemin precursor using Escherichia coli

    DEFF Research Database (Denmark)

    Malla, Sailesh; Sommer, Morten O. A.

    2014-01-01

    moiety of scytonemin from tryptophan and tyrosine in Escherichia coli. We heterologously expressed the biosynthetic pathway from Nostoc punctiforme and discovered that only three enzymes from N. punctiforme are required for the in vivo production of the monomer moiety of scytonemin in E. coli. We also...

  3. TEM-145 and TEM-146 β-lactamases produced by Escherichia coli ...

    African Journals Online (AJOL)

    GREGO

    2007-03-05

    Mar 5, 2007 ... Key words: Escherichia coli, plasmid-mediated, TEM β-lactamase. ... Enterobacteriaceae, the most prevalent mechanism of resistance to ... the production of a relatively inhibitor-resistant OXA-type β-lactamase .... and 8.6 as transcripts of the E. coli chromosomal AmpC .... Mode of action and mechanisms of.

  4. Fatal necrotizing fasciitis due to necrotic toxin-producing Escherichia coli strain

    Directory of Open Access Journals (Sweden)

    C. Gallois

    2015-11-01

    Full Text Available We report a fatal case of necrotizing soft tissues infection caused by an Escherichia coli strain belonging to phylogenetic group C and harbouring numerous virulence factors reported to be part of a pathogenicity island (PAI such as PAI IIJ96 and conserved virulence plasmidic region.

  5. Characterization, Genome Sequence, and Analysis of Escherichia Phage CICC 80001, a Bacteriophage Infecting an Efficient L-Aspartic Acid Producing Escherichia coli.

    Science.gov (United States)

    Xu, Youqiang; Ma, Yuyue; Yao, Su; Jiang, Zengyan; Pei, Jiangsen; Cheng, Chi

    2016-03-01

    Escherichia phage CICC 80001 was isolated from the bacteriophage contaminated medium of an Escherichia coli strain HY-05C (CICC 11022S) which could produce L-aspartic acid. The phage had a head diameter of 45-50 nm and a tail of about 10 nm. The one-step growth curve showed a latent period of 10 min and a rise period of about 20 min. The average burst size was about 198 phage particles per infected cell. Tests were conducted on the plaques, multiplicity of infection, and host range. The genome of CICC 80001 was sequenced with a length of 38,810 bp, and annotated. The key proteins leading to host-cell lysis were phylogenetically analyzed. One protein belonged to class II holin, and the other two belonged to the endopeptidase family and N-acetylmuramoyl-L-alanine amidase family, respectively. The genome showed the sequence identity of 82.7% with that of Enterobacteria phage T7, and carried ten unique open reading frames. The bacteriophage resistant E. coli strain designated CICC 11021S was breeding and its L-aspartase activity was 84.4% of that of CICC 11022S.

  6. Carriage of Escherichia coli Producing CTX-M-Type Extended-Spectrum β-Lactamase in Healthy Vietnamese Individuals.

    Science.gov (United States)

    Bui, Thi Mai Huong; Hirai, Itaru; Ueda, Shuhei; Bui, Thi Kim Ngan; Hamamoto, Kouta; Toyosato, Takehiko; Le, Danh Tuyen; Yamamoto, Yoshimasa

    2015-10-01

    Healthy carriage of CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli was examined by thrice collecting fecal samples from the same 199 healthy Vietnamese subjects every 6 months. Using pulsed-field gel electrophoresis (PFGE), identical PFGE patterns throughout the three samplings were not observed, although prevalence of E. coli in the subjects was around 50% in the three samplings. Our results suggested a short carriage period of the CTX-M-type ESBL-producing E. coli in healthy Vietnamese subjects. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. High rates of multidrug resistance among uropathogenic Escherichia coli in children and analyses of ESBL producers from Nepal

    Directory of Open Access Journals (Sweden)

    Narayan Prasad Parajuli

    2017-01-01

    Full Text Available Abstract Background Emergence of Extended-spectrum beta-lactamase producing Escherichia coli causing urinary tract infections (UTI among pediatric patients is an increasing problem worldwide. However, very little is known about pediatric urinary tract infections and antimicrobial resistance trend from Nepal. This study was conducted to assess the current antibiotic resistance rate and ESBL production among uropathogenic Escherichia coli in pediatric patients of a tertiary care teaching hospital of Nepal. Methods A total of 5,484 urinary tract specimens from children suspected with UTI attending a teaching hospital of Nepal over a period of one year were processed for the isolation of bacterial pathogens and their antimicrobial susceptibility testing. Escherichia coli (n = 739, the predominant isolate in pediatric UTI, was further selected for the detection of ESBL-production by phenotypic combination disk diffusion test. Results Incidence of urinary tract infection among pediatric patients was found to be 19.68% and E coli (68.4% was leading pathogen involved. Out of 739 E coli isolates, 64.9% were multidrug resistant (MDR and 5% were extensively drug resistant (XDR. Extended spectrum beta lactamase (ESBL was detected in 288 (38.9% of the E coli isolates. Conclusion Alarming rate of drug resistance among pediatric uropathogens and high rate of ESBL-producing E. coli was observed. It is extremely necessary to routinely investigate the drug resistance among all isolates and formulate strict antibiotics prescription policy in our country.

  8. Occurrence and characterization of Shiga toxin-producing Escherichia coli O157:H7 and other non-sorbitol-fermenting E. coli in cattle and humans in urban areas of Morogoro, Tanzania.

    Science.gov (United States)

    Lupindu, Athumani M; Olsen, John E; Ngowi, Helena A; Msoffe, Peter L M; Mtambo, Madundo M; Scheutz, Flemming; Dalsgaard, Anders

    2014-07-01

    Escherichia coli strains such as Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli, enterotoxigenic, attaching, and effacing E. coli, and enteroinvasive E. coli cause diarrhea in humans. Although other serotypes exist, the most commonly reported STEC in outbreaks is O157:H7. A cross-sectional study was conducted to isolate and characterize non-sorbitol-fermenting (NSF) E. coli O157:H7 from urban and periurban livestock settings of Morogoro, Tanzania. Human stool, cattle feces, and soil and water samples were collected. Observations and questionnaire interview studies were used to gather information about cattle and manure management practices in the study area. E. coli were isolated on sorbitol MacConkey agar and characterized by conventional biochemical tests. Out of 1049 samples, 143 (13.7%) yielded NSF E. coli. Serological and antimicrobial tests and molecular typing were performed to NSF E. coli isolates. These procedures detected 10 (7%) pathogenic E. coli including STEC (n=7), enteropathogenic E. coli (EPEC) (n=2), and attaching and effacing E. coli (A/EEC) (n=1) strains. The STEC strains had the ability to produce VT1 and different VT2 toxin subtypes that caused cytopathic effects on Vero cells. The prevalence of STEC in cattle was 1.6%, out of which 0.9% was serotype O157:H7 and the overall prevalence of diarrheagenic E. coli in cattle was 2.2%. The serotypes O157:H7, O142:H34, O113:H21, O+:H-, O+:H16, and O25:H4 were identified. One ESBL-producing isolate showed the MLST type ST131. To our knowledge, this is the first finding in Tanzania of this recently emerged worldwide pandemic clonal group, causing widespread antimicrobial-resistant infections, and adds knowledge of the geographical distribution of ST131. Cattle manure was indiscriminately deposited within residential areas, and there was direct contact between humans and cattle feces during manure handling. Cattle and manure management practices expose humans, animals, and the environment

  9. Antimicrobial-resistant faecal Escherichia coli in wild mammals in central Europe: multiresistant Escherichia coli producing extended-spectrum ß-lactamases in wild boars

    DEFF Research Database (Denmark)

    Literak, I.; Dolejska, Monika; Radimersky, T.

    2010-01-01

    Aims: To determine the presence of antibiotic-resistant faecal Escherichia coli in populations of wild mammals in the Czech Republic and Slovakia. Methods and Results: Rectal swabs or faeces collected during 2006-2008 from wild mammals were spread on MacConkey agar and MacConkey agar containing 2...... mg l-1 of cefotaxime. From plates with positive growth, one isolate was recovered and identified as E. coli. Susceptibility to 12 antibiotics was tested using the disk diffusion method. Resistance genes, class 1 and 2 integrons and gene cassettes were detected in resistant isolates by polymerase...... of resistant isolates was 6%. Class 1 and 2 integrons with various gene cassettes were recorded in resistant isolates. From wild boars, five (2%, n(rectal smears) = 293) multiresistant isolates producing ESBL were recovered: one isolate with bla(CTX-M-1) + bla(TEM-1), three with bla(CTX-M-1) and one with bla...

  10. Growth of Escherichia coli O157:H7, Non-O157 Shiga Toxin-Producing Escherichia coli , and Salmonella in Water and Hydroponic Fertilizer Solutions.

    Science.gov (United States)

    Shaw, Angela; Helterbran, Kara; Evans, Michael R; Currey, Christopher

    2016-12-01

    The desire for local, fresh produce year round is driving the growth of hydroponic growing systems in the United States. Many food crops, such as leafy greens and culinary herbs, grown within hydroponics systems have their root systems submerged in recirculating nutrient-dense fertilizer solutions from planting through harvest. If a foodborne pathogen were introduced into this water system, the risk of contamination to the entire crop would be high. Hence, this study was designed to determine whether Escherichia coli O157:H7, non-O157 Shiga toxin-producing E. coli , and Salmonella were able to survive and reproduce in two common hydroponic fertilizer solutions and in water or whether the bacteria would be killed or suppressed by the fertilizer solutions. All the pathogens grew by 1 to 6 log CFU/ml over a 24-h period, depending on the solution. E. coli O157:H7 reached higher levels in the fertilizer solution with plants (3.12 log CFU/ml), whereas non-O157 Shiga toxin-producing E. coli and Salmonella reached higher levels in the fertilizer solution without plants (1.36 to 3.77 log CFU/ml). The foodborne pathogens evaluated here survived for 24 h in the fertilizer solution, and populations grew more rapidly in these solutions than in plain water. Therefore, human pathogens entering the fertilizer solution tanks in hydroponic systems would be expected to rapidly propagate and spread throughout the system and potentially contaminate the entire crop.

  11. In vitro activity of three different antimicrobial agents against ESBL producing Escherichia coli and Klebsiella pneumoniae blood isolates.

    Science.gov (United States)

    Kizirgil, Ahmet; Demirdag, Kutbettin; Ozden, Mehmet; Bulut, Yasemin; Yakupogullari, Yusuf; Toraman, Zulal Asci

    2005-01-01

    Extended spectrum beta-lactamases (ESBLs) usually associated with multiple drug resistance, including beta-lactam and non-beta-lactam antibiotics. This resistance can cause Limitation in the choice of drugs appropriate for using in clinical practice, especially in life-threatening infections. In this study we aimed to investigate in vitro activity of meropenem, ciprofloxacine and amikacin against ESBL-producing and non-producing blood isolates of Escherichia coli and Klebsiella pneumoniae strains. Fifty-eight E. coli (21 ESBL-producing, 37 non-ESBL producing) and 99 K. pneumoniae (54 ESBL-producing, 45 non-ESBL producing) strains were included in the study. The presence of ESBL was investigated by double disk synergy test and E-test methods. Antibiotic susceptibility test was done by microdilution method according to NCCLS guideline. In vitro susceptibilities of ESBL producing E. coli and K. pneumoniae strains were found as 100% for meropenem, 33.3% and 25.9% for ciprofloxacine, 94.5% and 83.3% for amikacin. It was observed that; meropenem was equally active agent in both ESBL-producing and non-producing strains, and its activity was not affected by ESBL production. Whereas amikacin activity was minimally affected and ciprofloxacine activity was markedly decreased by ESBL production. In conclusion, meropenem seems to be better choice of antibiotic should be used for ESBL positive life-threatening infections, because of remaining highest activity.

  12. Occurrence of ESBL-Producing Escherichia coli in Livestock and Farm Workers in Mecklenburg-Western Pomerania, Germany.

    Directory of Open Access Journals (Sweden)

    Carmen Dahms

    Full Text Available In recent years, extended-spectrum β-lactamases (ESBL producing bacteria have been found in livestock, mainly as asymptomatic colonizers. The zoonotic risk for people working in close contact to animal husbandry has still not been completely assessed. Therefore, we investigated the prevalence of ESBL-producing Escherichia spp. in livestock animals and workers to determine the potential risk for an animal-human cross-transmission.In Mecklenburg-Western Pomerania, northeast Germany, inguinal swabs of 73 individuals with livestock contact from 23 different farms were tested for ESBL-producing Escherichia spp. Two pooled fecal samples per farm of animal origin from 34 different farms (17 pig farms, 11 cattle farms, 6 poultry farms as well as cloacal swabs of 10 randomly selected broilers or turkeys were taken at each poultry farm. For identification, selective chromogenic agar was used after an enrichment step. Phenotypically ESBL-producing isolates (n = 99 were tested for CTX-M, OXA, SHV and TEM using PCR, and isolates were further characterized using multilocus sequence typing (MLST. In total, 61 diverse isolates from different sources and/or different MLST/PCR results were acquired. Five farm workers (three from cattle farms and two from pig farms harbored ESBL-producing E. coli. All human isolates harbored the CTX-M β-lactamase; TEM and OXA β-lactamases were additionally detected in two, resp. one, isolates. ESBL-producing Escherichia spp. were found in fecal samples at pig (15/17, cattle (6/11 and poultry farms (3/6. In total, 70.6% (24/36 of the tested farms were ESBL positive. Furthermore, 9 out of 60 cloacal swabs turned out to be ESBL positive. All isolated ESBL-producing bacteria from animal sources were E. coli, except for one E. hermanii isolate. CTX-M was the most prevalent β-lactamase at cattle and pig farms, while SHV predominated in poultry. One human isolate shared an identical MLST sequence type (ST 3891 and CTX-M allele to the

  13. MCR-1 and OXA-48 In Vivo Acquisition in KPC-Producing Escherichia coli after Colistin Treatment.

    Science.gov (United States)

    Beyrouthy, Racha; Robin, Frederic; Lessene, Aude; Lacombat, Igor; Dortet, Laurent; Naas, Thierry; Ponties, Valérie; Bonnet, Richard

    2017-08-01

    The spread of mcr-1 -encoding plasmids into carbapenem-resistant Enterobacteriaceae raises concerns about the emergence of untreatable bacteria. We report the acquisition of mcr-1 in a carbapenem-resistant Escherichia coli strain after a 3-week course of colistin in a patient repatriated to France from Portugal. Whole-genome sequencing revealed that the Klebsiella pneumoniae carbapenemase-producing E. coli strain acquired two plasmids, an IncL OXA-48-encoding plasmid and an IncX4 mcr-1 -encoding plasmid. This is the first report of mcr-1 in carbapenemase-encoding bacteria in France. Copyright © 2017 American Society for Microbiology.

  14. Enhancement of crystallinity of cellulose produced by Escherichia coli through heterologous expression of bcsD gene from Gluconacetobacter xylinus.

    Science.gov (United States)

    Sajadi, Elaheh; Babaipour, Valiollah; Deldar, Ali Asghar; Yakhchali, Bagher; Fatemi, Seyed Safa-Ali

    2017-09-01

    To evaluate the crystallinity index of the cellulose produced by Escherichia coli Nissle 1917 after heterologous expression of the cellulose synthase subunit D (bcsD) gene of Gluconacetobacter xylinus BPR2001. The bcsD gene of G. xylinus BPR2001 was expressed in E. coli and its protein product was visualized using SDS-PAGE. FTIR analysis showed that the crystallinity index of the cellulose produced by the recombinants was 0.84, which is 17% more than that of the wild type strain. The increased crystallinity index was also confirmed by X-ray diffraction analysis. The cellulose content was not changed significantly after over-expressing the bcsD. The bcsD gene can improve the crystalline structure of the bacterial cellulose but there is not any significant difference between the amounts of cellulose produced by the recombinant and wild type E. coli Nissle 1917.

  15. Surface Enhanced Raman Scattering for Quantification of p-Coumaric Acid Produced by Escherichia coli

    DEFF Research Database (Denmark)

    Morelli, Lidia; Zor, Kinga; Jendresen, Christian Bille

    2017-01-01

    The number of newly developed genetic variants of microbial cell factories for production of biochemicals has been rapidly growing in recent years, leading to an increased need for new screening techniques. We developed a method based on surface-enhanced Raman scattering (SERS) coupled with liquid......-liquid extraction (LLE) for quantification of p-coumaric acid (pHCA) in the supernatant of genetically engineered Escherichia coli (E. coli) cultures. pHCA was measured in a dynamic range from 1 μM up to 50 μM on highly uniform SERS substrates based on leaning gold-capped nanopillars, which showed an in...

  16. Metabolic impact of an NADH-producing glucose-6-phosphate dehydrogenase in Escherichia coli

    DEFF Research Database (Denmark)

    Olavarria, K.; De Ingeniis, J.; Zielinski, D. C.

    2014-01-01

    In Escherichia coli, the oxidative branch of the pentose phosphate pathway (oxPPP) is one of the major sources of NADPH when glucose is the sole carbon nutrient. However, unbalanced NADPH production causes growth impairment as observed in a strain lacking phosphoglucoisomerase (Δpgi). In this work......PDH(R46E,Q47E). Through homologous recombination, the zwf loci (encoding G6PDH) in the chromosomes of WT and Δpgi E. coli strains were replaced by DNA encoding LmG6PDH(R46E,Q47E). Contrary to some predictions performed with flux balance analysis, the replacements caused a substantial effect...

  17. Virus-like particle of Macrobrachium rosenbergii nodavirus produced in Spodoptera frugiperda (Sf9) cells is distinctive from that produced in Escherichia coli.

    Science.gov (United States)

    Kueh, Chare Li; Yong, Chean Yeah; Masoomi Dezfooli, Seyedehsara; Bhassu, Subha; Tan, Soon Guan; Tan, Wen Siang

    2017-03-01

    Macrobrachium rosenbergii nodavirus (MrNV) is a virus native to giant freshwater prawn. Recombinant MrNV capsid protein has been produced in Escherichia coli, which self-assembled into virus-like particles (VLPs). However, this recombinant protein is unstable, degrading and forming heterogenous VLPs. In this study, MrNV capsid protein was produced in insect Spodoptera frugiperda (Sf9) cells through a baculovirus system. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the recombinant protein produced by the insect cells self-assembled into highly stable, homogenous VLPs each of approximately 40 nm in diameter. Enzyme-linked immunosorbent assay (ELISA) showed that the VLPs produced in Sf9 cells were highly antigenic and comparable to those produced in E. coli. In addition, the Sf9 produced VLPs were highly stable across a wide pH range (2-12). Interestingly, the Sf9 produced VLPs contained DNA of approximately 48 kilo base pairs and RNA molecules. This study is the first report on the production and characterization of MrNV VLPs produced in a eukaryotic system. The MrNV VLPs produced in Sf9 cells were about 10 nm bigger and had a uniform morphology compared with the VLPs produced in E. coli. The insect cell production system provides a good source of MrNV VLPs for structural and immunological studies as well as for host-pathogen interaction studies. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:549-557, 2017. © 2016 American Institute of Chemical Engineers.

  18. Incidence of temonera, sulphuhydryl variables and cefotaximase genes associated with β-lactamase producing escherichia coli in clinical isolates

    Science.gov (United States)

    Isaiah, Ibeh Nnana; Nche, Bikwe Thomas; Nwagu, Ibeh Georgina; Nwagu, Ibeh Isaiah

    2011-01-01

    Background: the occurrence of the different types of Extended spectrum beta Lactamase producing Escherichia coli with the, Sulphurhydryl variable, Temonera and the Cefotaximase have been on the rise Aim: The study was to determine the prevalence of extended spectrum beta lactamase gene resistance across the clinical isolates of hospitalized patients. Materials and Method: Three hundred and fifty isolates of Escherichia coli were received from different clinical specimens. The susceptibility profile of the isolates against 10 different antibiotics was examined, the MICs (Minimum Inhibitory Concentration) for ceftazidime were also determined using micro-broth dilution assay. Isolates showing MIC ≥ 6 μg/ml for ceftazidime were screened for ESBL (PCT)phenotypic confirmatory test and subjected to PCR (polymerase chain reaction) to further. Results: By disk diffusion test, there was resistance to ceftazidime and cefotaxime were 180(51.4%) and 120 (34.2%) respectively. However, all strains were susceptible to imipenem. 250 isolates showed MICs≥ 6 μg/ml for ceftazidime of which 180 (72%) were positive for extended spectrum beta lactamase. The prevalence of Sulphurhydryl variable, Temonera and the Cefotaximase among these isolates were 17.1%, 6.6% and 17%, respectively. Conclusion: For the identification of extended spectrum beta lactamase producing isolates it is recommended that clinical laboratories adopt simple test based on Cinical laboratory standard institute recommendation for confirming extended spectrum beta lactamase production in enterobacteriacea species. PMID:22363078

  19. Automated thermometric enzyme immunoassay of human proinsulin produced by Escherichia coli.

    Science.gov (United States)

    Birnbaum, S; Bülow, L; Hardy, K; Danielsson, B; Mosbach, K

    1986-10-01

    We have determined and monitored the production and release of human proinsulin by genetically engineered Escherichia coli cells. Several M9 media samples were analyzed sequentially after centrifugation with the aid of a rapid automated flow-through thermometric enzyme-linked immunosorbent assay (TELISA) system. The response time was 7 min after sample injection and a single assay was complete after 13 min. Insulin concentrations in the range of 0.1-50 micrograms/ml could be determined. The TELISA method correlated well with conventional radioimmunoassay determinations. Standard curves were reproducible over a period of several days even when the immobilized antibody column was stored at 25 degrees C in the enzyme thermistor unit. Thus, immediate assay start up was possible.

  20. Automated thermometric enzyme immunoassay of human proinsulin produced by Escherichia coli

    International Nuclear Information System (INIS)

    Birnbaum, S.; Buelow, L.; Hardy, K.; Danielsson, B.; Mosbach, K.

    1986-01-01

    The authors have determined and monitored the production and release of human proinsulin by genetically engineered Escherichia coli cells. Several M9 media samples were analyzed sequentially after centrifugation with the aid of a rapid automated flow-through thermometric enzyme-linked immunosorbent assay (TELISA) system. The response time was 7 min after after sample injection and a single assay was complete after 13 min. Insulin concentrations in the range of 0.1-50 μg/ml could be determined. The TELISA method correlated well with conventional radioimmunoassay determinations. Standard curves were reproducible over a period of several days even when the immobilized antibody column was stored at 25 0 C in the enzyme thermistor unit. Thus, immediate assay start up was possible

  1. Whole-Genome Characterization and Strain Comparison of VT2f-Producing Escherichia coli Causing Hemolytic Uremic Syndrome

    Science.gov (United States)

    Michelacci, Valeria; Bondì, Roslen; Gigliucci, Federica; Franz, Eelco; Badouei, Mahdi Askari; Schlager, Sabine; Minelli, Fabio; Tozzoli, Rosangela; Caprioli, Alfredo; Morabito, Stefano

    2016-01-01

    Verotoxigenic Escherichia coli infections in humans cause disease ranging from uncomplicated intestinal illnesses to bloody diarrhea and systemic sequelae, such as hemolytic uremic syndrome (HUS). Previous research indicated that pigeons may be a reservoir for a population of verotoxigenic E. coli producing the VT2f variant. We used whole-genome sequencing to characterize a set of VT2f-producing E. coli strains from human patients with diarrhea or HUS and from healthy pigeons. We describe a phage conveying the vtx2f genes and provide evidence that the strains causing milder diarrheal disease may be transmitted to humans from pigeons. The strains causing HUS could derive from VT2f phage acquisition by E. coli strains with a virulence genes asset resembling that of typical HUS-associated verotoxigenic E. coli. PMID:27584691

  2. Cephem Potentiation by Inactivation of Nonessential Genes Involved in Cell Wall Biogenesis of beta-Lactamase-Producing Escherichia coli

    DEFF Research Database (Denmark)

    Baker, Kristin R.; Sigurdardottir, Helga Høeg; Jana, Bimal

    2017-01-01

    Reversal of antimicrobial resistance is an appealing and largely unexplored strategy in drug discovery. The objective of this study was to identify potential targets for “helper” drugs reversing cephem resistance in Escherichia coli strains producing β-lactamases. A CMY-2-encoding plasmid...... was transferred by conjugation to seven isogenic deletion mutants exhibiting cephem hypersusceptibility. The effect of each mutation was evaluated by comparing the MICs in the wild type and the mutant harboring the same plasmid. Mutation of two genes encoding proteins involved in cell wall biosynthesis, dap...... for all three drugs. Individual deletion of dapF and mrcB in a clinical isolate of CTX-M-15-producing E. coli sequence type 131 (ST131) resulted in partial reversal of ceftazidime and cefepime resistance but did not reduce MICs below susceptibility breakpoints. Growth curve analysis indicated no fitness...

  3. Extended spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae: critical tools for antibiotic resistance pattern.

    Science.gov (United States)

    Padmini, Nagarajan; Ajilda, Antony Alex Kennedy; Sivakumar, Natesan; Selvakumar, Gopal

    2017-06-01

    Drug resistance is a phenomenon where by an organism becomes fully or partially resistant to drugs or antibiotics being used against it. Antibiotic resistance poses an exacting intimidation for people with underlying medical immune conditions or weakened immune systems. Infections caused by the enzyme extended spectrum β-lactamase (ESBL) producing multi drug resistance (MDR) Enterobacteriaceae especially Escherichia coli and Klebsiella pneumoniae are resistant to a broad range of beta lactams, including third generation cephalosporins. Among all the pathogens, these two MDR E. coli and K. pneumoniae have emerged as one of the world's greatest health threats in past two decades. The nosocomial infections caused by these ESBL producing MDR E. coli and K. pneumoniae complicated the therapy and limit treatment options. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Antimicrobial resistance in Escherichia coli and Salmonella spp. isolates from fresh produce and the impact to food safety.

    Science.gov (United States)

    Vital, Pierangeli G; Caballes, Marie Bernadine D; Rivera, Windell L

    2017-09-02

    Foodborne diseases associated with fresh produce consumption have escalated worldwide, causing microbial safety of produce of critical importance. Bacteria that have increasingly been detected in fresh produce are Escherichia coli and Salmonella spp., both of which have been shown to progressively display antimicrobial resistance. The study focused on the assessment of antimicrobial resistance of these enteric bacteria from different kinds of fresh produce from various open air markets and supermarkets in the Philippines. Using the disk diffusion assay on a total of 50 bacterial isolates obtained from 410 fresh produce surveyed, monoresistance to tetracycline was observed to be the most prevalent (38%), followed by multidrug resistance to tetracycline, chloramphenicol, ciprofloxacin, and nalidixic acid (4%), and lastly by dual resistance to tetracycline and chloramphenicol (2%). Using multiplex and simplex polymerase chain reaction (PCR) assays, tetA (75%) and tetB (9%) were found in tetracycline resistant isolates, whereas catI (67%) and catIII (33%) were detected in chloramphenicol resistant isolates. Sequence analysis of gyr and par genes from the ciprofloxacin and nalidixic acid resistant isolates revealed different mutations. Based on the results, fresh produce act as a reservoir of these antibiotic resistant bacteria which may pose health threat to consumers.

  5. Competitive Exclusion Reduces Transmission and Excretion of Extended-Spectrum-β-Lactamase-Producing Escherichia coli in Broilers.

    Science.gov (United States)

    Ceccarelli, Daniela; van Essen-Zandbergen, Alieda; Smid, Bregtje; Veldman, Kees T; Boender, Gert Jan; Fischer, Egil A J; Mevius, Dik J; van der Goot, Jeanet A

    2017-06-01

    Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases (pAmpC) are enzymes able to hydrolyze a large variety of β-lactam antibiotics, including third-generation cephalosporins and monobactams. Broilers and broiler meat products can be highly contaminated with ESBL- and pAmpC-producing Escherichia coli strains, also known as extended-spectrum cephalosporin (ESC)-resistant E. coli strains, and can be a source for human infections. As few data on interventions to reduce the presence of ESC-resistant E. coli in broilers are available, we used transmission experiments to examine the role of competitive exclusion (CE) on reducing transmission and excretion in broilers. A broiler model to study the transmission of ESC-resistant E. coli was set up. Day-old chickens were challenged with an ESBL-producing E. coli strain isolated from healthy broilers in the Netherlands. Challenged and not challenged chicks were housed together in pairs or in groups, and ESBL-producing E. coli transmission was monitored via selective culturing of cloacal swab specimens. We observed a statistically significant reduction in both the transmission and excretion of ESBL-producing E. coli in chicks treated with the probiotic flora before E. coli challenge compared to the transmission and excretion in untreated controls. In conclusion, our results support the use of competitive exclusion as an intervention strategy to control ESC-resistant E. coli in the field. IMPORTANCE Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases are a primary cause of resistance to β-lactam antibiotics among members of the family Enterobacteriaceae in humans, animals, and the environment. Food-producing animals are not exempt from this, with a high prevalence being seen in broilers, and there is evidence pointing to a possible foodborne source for human contamination. We investigated the effect of administration of a commercial probiotic product as an intervention to

  6. Detection of Escherichia coli Shiga toxin-producing in viscera of animals bovine and chicken intended for human consumption

    Directory of Open Access Journals (Sweden)

    Zotta, Claudio Marcelo

    2016-05-01

    Full Text Available Escherichia coli producing-Shiga toxin (STEC is associated with foodborne illness (ETA. It can cause bloody diarrhea, hemorrhagic colitis, hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. The aim of the study was to detect the presence of STEC in samples of organs (offal of bovine animals and chicken intended for human consumption. Between 2008-2009, 76 samples bovine entrails and 22 chicken viscera samples, were processed and underwent, as screening technique, the polymerase chain reaction (PCR for detection of multiple genes coding for the factors virulence: Shiga toxin (stx1, stx2 and rfbO157 gene coding for capsular O157 lipopolysaccharide LPS. Samples from bovine offal development showed 84.2% for coliform bacteria. These isolates showed no virulence factor that characterized as STEC or Escherichia coli O157. The chicken offal samples showed 95.5% of development for coliform bacteria, being negative for the presence of genes encoding the Shiga toxins 1 and 2 (stx1, stx2 and rfbO157 gene. While this work does not STEC was detected, the presence of coliform bacteria in the samples studied makes these foods should be considered as potentially hazardous to consume undercooked with the consequent possibility of filing ETA.

  7. Agitation down-regulates immunoglobulin binding protein EibG expression in Shiga toxin-producing Escherichia coli (STEC.

    Directory of Open Access Journals (Sweden)

    Thorsten Kuczius

    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC carrying eibG synthesize Escherichia coli immunoglobulin binding protein (EibG. EibG nonspecifically binds to immunoglobulins and tends to aggregate in multimers but is poorly expressed in wild-type strains. To study synthesis of the proteins and their regulation in the pathogens, we identified natural growth conditions that increased EibG synthesis. EibG proteins as well as corresponding mRNA were highly expressed under static growth conditions while shearing stress created by agitation during growth repressed protein synthesis. Further regulation effects were driven by reduced oxygen tension, and pH up-regulated EibG expression, but to a lesser extent than growth conditions while decreased temperature down-regulated EibG. Bacteria with increased EibG expression during static growth conditions showed a distinct phenotype with chain formation and biofilm generation, which disappeared with motion. High and low EibG expression was reversible indicating a process with up- and down-regulation of the protein expression. Our findings indicate that shear stress represses EibG expression and might reduce bacterial attachments to cells and surfaces.

  8. Effect of carvacrol on O157 and non-O157 Shiga toxin producing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Alexandros Stratakos

    2017-06-01

    Full Text Available Shiga toxin Escherichia coli (STEC strains are important foodborne bacteria linked to diarrhea, enteritis, hemolytic-uremic syndrome and in some cases death. E. coli O157:H7 is the most common strain amongst STECs however non-O157 STECs have been connected with several outbreaks on an international level.  The use of natural plant extracts to reduce the risk from foodborne pathogens is gaining increasing importance. Therefore in this study, we tested the antibacterial effect of carvacrol, a major component of oregano essential oil, on E. coli serogroups O157, O26, O45, O103, O111, O121, O145 as well as serogroup O104 responsible for the massive outbreak in Germany in 2011. Carvacrol showed antibacterial effect on all strains tested. The relative electric conductivity was assessed in order to investigate the changes in membrane permeability and thus to investigate the antimicrobial mechanism of carvacrol. Results showed that the relative conductivity increased with increasing concentrations of carvacrol which showed that there was an increasing leakage of electrolytes due to disruption of the cell membrane. The data presented here revealed that carvacrol has the potential to be used as a natural antimicrobial against STECs.

  9. Serum from Nipah Virus Patients Recognises Recombinant Viral Proteins Produced in Escherichia coli.

    Science.gov (United States)

    Tiong, Vunjia; Lam, Chui-Wan; Phoon, Wai-Hong; AbuBakar, Sazaly; Chang, Li-Yen

    2017-01-24

    The genes for Nipah virus (NiV) proteins were amplified from viral RNA, cloned into the plasmid pTriEx-3 Hygro, expressed, and purified using immobilized metal affinity chromatography. The recombinant N, F, and G NiV proteins (rNiV-N, rNiV-F, and rNiV-G), were successfully expressed in Escherichia coli and purified with a yield of 4, 16, and 4 mg/L, respectively. All 3 recombinant viral proteins reacted with all 19 samples of NiV-positive human sera. The rNiV-N and rNiV-G proteins were the most immunogenic. The recombinant viral proteins did not react with any of the 12 NiV-negative sera. However, serum from a patient with a late-onset relapsing NiV infection complication was found to be primarily reactive to rNiV-G only. Additionally, there is a distinctive variation in the profile of antigen-reactive bands between the sample from a case of relapsing NiV encephalitis and that of acute NiV infection. The overall findings of this study suggest that the recombinant viral proteins have the potential to be developed further for use in the detection of NiV infection, and continuous biosurveillance of NiV infection in resource-limited settings.

  10. Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Thomas Secher

    Full Text Available Cellular senescence is an irreversible state of proliferation arrest evoked by a myriad of stresses including oncogene activation, telomere shortening/dysfunction and genotoxic insults. It has been associated with tumor activation, immune suppression and aging, owing to the secretion of proinflammatory mediators. The bacterial genotoxin colibactin, encoded by the pks genomic island is frequently harboured by Escherichia coli strains of the B2 phylogenetic group. Mammalian cells exposed to live pks+ bacteria exhibit DNA-double strand breaks (DSB and undergo cell-cycle arrest and death. Here we show that cells that survive the acute bacterial infection with pks+ E. coli display hallmarks of cellular senescence: chronic DSB, prolonged cell-cycle arrest, enhanced senescence-associated β-galactosidase (SA-β-Gal activity, expansion of promyelocytic leukemia nuclear foci and senescence-associated heterochromatin foci. This was accompanied by reactive oxygen species production and pro-inflammatory cytokines, chemokines and proteases secretion. These mediators were able to trigger DSB and enhanced SA-β-Gal activity in bystander recipient cells treated with conditioned medium from senescent cells. Furthermore, these senescent cells promoted the growth of human tumor cells. In conclusion, the present data demonstrated that the E. coli genotoxin colibactin induces cellular senescence and subsequently propel bystander genotoxic and oncogenic effects.

  11. Recombinant L-Asparaginase from Zymomonas mobilis: A Potential New Antileukemic Agent Produced in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Karen Einsfeldt

    Full Text Available L-asparaginase is an enzyme used as a chemotherapeutic agent, mainly for treating acute lymphoblastic leukemia. In this study, the gene of L-asparaginase from Zymomonas mobilis was cloned in pET vectors, fused to a histidine tag, and had its codons optimized. The L-asparaginase was expressed extracellularly and intracellularly (cytoplasmically in Escherichia coli in far larger quantities than obtained from the microorganism of origin, and sufficient for initial cytotoxicity tests on leukemic cells. The in silico analysis of the protein from Z. mobilis indicated the presence of a signal peptide in the sequence, as well as high identity to other sequences of L-asparaginases with antileukemic activity. The protein was expressed in a bioreactor with a complex culture medium, yielding 0.13 IU/mL extracellular L-asparaginase and 3.6 IU/mL intracellular L-asparaginase after 4 h of induction with IPTG. The cytotoxicity results suggest that recombinant L-asparaginase from Z. mobilis expressed extracellularly in E.coli has a cytotoxic and cytostatic effect on leukemic cells.

  12. Thermal inactivation of Escherichia coli 0157:H7 (ECOH) and non-0157 Shiga toxin-producing E.coli (STEC)in mechanically tenderized veal

    Science.gov (United States)

    We quantified thermal destruction of Shiga toxin-producing Escherichia coli O157:H7 (ECOH) and Shiga toxin-producing non-O157 E. coli (STEC) cells within mechanically tenderized veal cutlets following cooking on an electric skillet. For each of five trials, flattened veal cutlets (ca. 71.6 g; ca. 1/...

  13. Prevalence of Extended-spectrum β-Lactamases-producing Escherichia coli from Hospitals in Khartoum State, Sudan

    Directory of Open Access Journals (Sweden)

    Mutasim E. Ibrahim

    2013-03-01

    Full Text Available Objective: This study aimed to determine the prevalence and assess antimicrobial susceptibility of extended- spectrum β-lactamase-producing Escherichia coli isolated from clinical specimens of patients at hospitals in Khartoum State, Sudan.Methods: During April to August 2011, a total of 232 E. coli isolates were collected from various clinical specimens of patients. Isolates were identified, tested for antimicrobial susceptibility and screened for ESBL production as per standard methods. The double-disk diffusion method was used to confirm ESBL production using antimicrobial disks of ceftazidime (30 μg, cefotaxime (30 μg, with or without clavulanic acid (10 μg. A zone difference of >5 mm between disks was considered indicative of ESBL production.Results: Out of 232 E. coli isolates, 70 (30.2% were found to be positive for ESBL by the applied phenotypic methods. ESBL-producing isolates yielded high resistance rates for trimethoprim-sulfamethoxazole (98.6%, tetracycline (88.6%, nalidixic acid (81.4% and ciprofloxacin (81.4%. The highest antimicrobial activities of ESBL-producing isolates were observed for amikacin (95.7%, followed by tobramicin (74.3% and nitrofurantoin (68.6%. Resistance to quinolones, aminoglycosides, trimethoprim-sulfamethoxazole, tetracycline, nitrofurantoin and chloramphenicol was higher in ESBL than non-ESBL isolates (p<0.05. The frequency of ESBL-producing isolates varied among hospitals (18.2% to 45.1%, although a high prevalence was recorded as 45.1% at Khartoum Teaching Hospital. Wound specimens were the most common source of ESBL-producing isolates. The proportion of ESBL-producing E. coli did not differ significantly between adults and children (31% vs. 27%.Conclusion: The prevalence of ESBL-producing E. coli detected in this study is of great concern, which requires sound infection control measures including antimicrobial management and detection of ESBL-producing isolates.

  14. Characterization of biofilms produced by Escherichia coli O157 isolated from cattle hides

    Science.gov (United States)

    Milojević, L.; Velebit, B.; Baltić, T.; Nikolić, A.; Mitrović, R.; Đorđević, V.

    2017-09-01

    This study aimed to investigate possibility E. coli O157 from cattle hides to produced biofilms. We had 28 suspect primoisolates and 17 were confirmed to be E. coli O157. Biofilm production test showed that more than 50% of this isolates did not produce biofilm. From the other half of the isolates, 5 of them were weakly adherent, 3 were moderately adherent. Since E. coli O157 are one of the main foodborne hazards in meat processing industry and the discovery that some of them can produce moderately adherent biofilms, request necessity of strict implementation of HACCP procedures to prevent further expansion this pathogen.

  15. Characteristics of Extended-Spectrum β-Lactamases-Producing Escherichia coli in Fecal Samples of Inpatients of Beijing Tongren Hospital.

    Science.gov (United States)

    Xu, Maoye; Fan, Yanyan; Wang, Mei; Lu, Xinxin

    2017-05-24

    We aimed to investigate the prevalence of extended-spectrum β-lactamases (ESBL)-producing Escherichia coli in Beijing Tongren hospital and to identify a possible relation between colonization and infection. The clinical data on 650 inpatients between March 2012 and July 2012 were retrospectively reviewed. The prevalence of ESBL-producing E. coli among the inpatients was 25.7% (167/650), with the highest level (50.0%) in the rheumatology ward and the lowest (10.0%) in intensive care units. Hospital stay more than 2 years prior to infection, the use of antibiotics within 3 months of infection, and the use of glucocorticoids or immunosuppressive drugs were found to be significantly associated with carriage of ESBL-producing E. coli (P coli was not high. The risk factors of carriage of ESBL-producing E. coli are hospitalization and use of antibiotics, glucocorticoids, or immunosuppressive drugs. ST38, ST10, ST131, and ST167 are the prominent genotypes, but almost 50.0% of STs were scarcely distributed.

  16. Functional properties of the recombinant kringle-2 domain of tissue plasminogen activator produced in Escherichia coli

    International Nuclear Information System (INIS)

    Wilhelm, O.G.; Jaskunas, S.R.; Vlahos, C.J.; Bang, N.U.

    1990-01-01

    The kringle-2 domain (residues 176-262) of tissue-type plasminogen activator (t-PA) was cloned and expressed in Escherichia coli. The recombinant peptide, which concentrated in cytoplasmic inclusion bodies, was isolated, solubilized, chemically refolded, and purified by affinity chromatography on lysine-Sepharose to apparent homogeneity. [35S]Cysteine-methionine-labeled polypeptide was used to study the interactions of kringle-2 with lysine, fibrin, and plasminogen activator inhibitor-1. The kringle-2 domain bound to lysine-Sepharose and to preformed fibrin with a Kd = 104 +/- 6.2 microM (0.86 +/- 0.012 binding site) and a Kd = 4.2 +/- 1.05 microM (0.80 +/- 0.081 binding site), respectively. Competition experiments and direct binding studies showed that the kringle-2 domain is required for the formation of the ternary t-PA-plasminogen-intact fibrin complex and that the association between the t-PA kringle-2 domain and fibrin does not require plasmin degradation of fibrin and exposure of new COOH-terminal lysine residues. We also observed that kringle-2 forms a complex with highly purified guanidine-activated plasminogen activator inhibitor-1, dissociable by 0.2 M epsilon-aminocaproic acid. The kringle-2 polypeptide significantly inhibited tissue plasminogen activator/plasminogen activator inhibitor-1 interaction. The kringle-2 domain bound to plasminogen activator inhibitor-1 in a specific and saturable manner with a Kd = 0.51 +/- 0.055 microM (0.35 +/- 0.026 binding site). Therefore, the t-PA kringle-2 domain is important for the interaction of t-PA not only with fibrin, but also with plasminogen activator inhibitor-1 and thus represents a key structure in the regulation of fibrinolysis

  17. Surveillance of ESBL producing multidrug resistant Escherichia coli in a teaching hospital in India

    Directory of Open Access Journals (Sweden)

    Shakti Rath

    2014-04-01

    Full Text Available Objective: To record nosocomial and community-acquired accounts of antibiotic resistance in Escherichia coli (E. coli strains, isolated from clinical samples of a teaching hospital by surveillance, over a period of 39 months (November 2009-January 2013. Methods: Clinical samples from nosocomial sources, i.e., wards and cabins, intensive care unit (ICU and neonatal intensive care unit (NICU, and community (outpatient department, OPD sources of the hospital, were used for isolating strains of E. coli, which were subjected for testing for production of ‘extended spectrum beta-lactamase’-(ESBL enzyme as well as determining antibiotic sensitivity pattern with 23 antibiotics. Results: Of the total 1642 (100% isolates, 810 (49.33% strains were from OPD and 832 (50.66% were from hospital settings. Occurrence of infectious E. coli strains increased in a mathematical progression in community sources, but in nosocomial infections, such values remained almost constant in each quarter. A total of 395 (24.05% ESBL strains were isolated from the total 810 isolates of community; of the total of 464 (28.25% isolates of wards and cabins, 199 (12.11% were ESBL strains; and among the total of 368 (22.41% isolates of ICU and NICU, ESBLs were 170 (10.35%; the total nosocomial ESBL isolates, 369 (22.47% were from the nosocomial total of 832 (50.66% isolates. Statistically, it was confirmed that ESBL strains were equally distributed in community or hospital units. Antibiogram of 23 antibiotics revealed progressive increases of drug-resistance against each antibiotic with the maximum resistance values were recorded against gentamicin: 92% and 79%, oxacillin: 94% and 69%, ceftriaxone: 85% and 58%, and norfloxacin 97% and 69% resistance, in nosocomial and community isolates, respectively. Conclusions: This study revealed the daunting state of occurrence of multidrug resistant E. coli and its infection dynamics in both community and hospital settings.

  18. Detection & characterization of necrotoxin producing Escherichia coli (NTEC) from patients with urinary tract infection (UTI).

    Science.gov (United States)

    Rahman, Helina; Deka, Manab

    2014-04-01

    Urinary tract infections (UTI) are a serious health problem affecting millions of people each year. Although appreciable work on various aspects of UTI including aetiology per se has been done, information on the emerging pathogens like necrotoxigenic Escherichia coli (NTEC) is largely lacking in India. In the present study E. coli isolates from patients with urinary tract infection from northeastern India were investigated for detection and characterization of NTEC. E. coli isolated and identified from urine samples of patients with UTI were serotyped. Antibiogram was determined by disc diffusion test. Plasmid profile was also determined. Virulence genes of NTEC (cnf1, cnf2, pap, aer, sfa, hly, afa) were detected by PCR assay. E.coli isolates carrying cnf gene (s) were identified as NTEC. A total of 550 E. coli were isolated and tested for the presence of cnf genes. Of these, 84 (15.27%) belonged to NTEC. The cnf1 gene was present in 52 (61.9%) isolates, cnf2 in 23 (27.4%) and 9 (10.7%) carried both cnf1 and cnf2 genes. All the NTEC strains were found to harbour the pap and aer genes. Serogroup O4 was found to be the most common among the 12 serogroups identified amongst the NTEC isolates. Majority of the isolates (96.4%) were sensitive to furazolidone and were highly resistant to ampicillin. NTEC were found to harbour different numbers of plasmids (1 to 7). No association was observed between the number of plasmids and the antibiotic resistance of the isolates. The results of the present study showed that about 15 per cent of E. coli isolates associated with UTI belonged to NTEC. More studies need to be done from other parts of the country.

  19. Prevalence and Characterization of Shiga Toxin-Producing Escherichia coli Isolated from Slaughtered Qurban Animal in Jakarta Province

    Directory of Open Access Journals (Sweden)

    Siti Gusti Ningrum

    2016-08-01

    Full Text Available This study was conducted to investigate the presence of shiga toxin producing Escherichia coli (STEC and the possibility of carrying rfbE gene and H7 flagellar on meat, liver, and stool samples collected from Jakarta Province of Indonesia. A total of 51 samples collected from meat, liver, and stool of slaughtered cattle from qurban festival were tested using conventional culture and multiplex PCR methods. STEC non O157 were detected in meat (5.3% and stool (8.3% with one isolate from stool carried H7 flagellar. However, all isolates were lacking of rfbE gene. In antimicrobial susceptibility tests, the STEC isolates showed antibiotic resistance to erythromycin and oxacillin. Overall, the result shows that meat and liver of this origin activity represents a potential risk to human health.

  20. [Occurrence of Salmonella spp. and shigatoxin-producing escherichia coli (STEC) in horse faeces and horse meat products].

    Science.gov (United States)

    Pichner, Rohtraud; Sander, Andrea; Steinrück, Hartmut; Gareis, Manfred

    2005-01-01

    In order to assess the relevance of horses as a possible reservoir of Salmonella and Shigatoxin-producing Escherichia coli (STEC), 400 samples of horse faeces and 100 samples of horse meat products were examined by PCR-screening methods. Salmonella enterica was not found in any of the samples. One faeces-sample and one horse meat product were proved to be STEC positive. The STEC-strain from faecal origin belonged to the serotype 0113:H21 and had the stx 2c gene and the enterohemolysin gene. The STEC-strain isolated from a horse meat product had the serotype O87:H16 and the stx 2d gene. The results indicate a very low risk for human to get a Salmonella- or EHEC- infection from horses in Germany.

  1. General outbreaks of vero cytotoxin producing Escherichia coli O157 in England and Wales from 1992 to 1994.

    LENUS (Irish Health Repository)

    Wall, P G

    1996-02-02

    We have reviewed all general outbreaks of infection due to Vero cytotoxin producing Escherichia coli (VTEC) O157 reported in England and Wales from 1992 to 1994. One hundred and seventy-three people were affected in 18 outbreaks, compared with 76 people in seven outbreaks in the preceding three years (1989 to 1991). Outbreaks occurred throughout England and Wales. Thirty-eight per cent of cases were admitted to hospital, 21% developed haemolytic uraemic syndrome, and 3% died. VTEC O157 infection causes particular concern because of its serious complications--haemorrhagic colitis and haemolytic uraemic syndrome, its capacity to spread from person to person as well as by food and water, and its reservoir in dairy and beef cattle.

  2. Characteristics of Shiga toxin-producing Escherichia coli from meat and milk products of different origins and association with food producing animals as main contamination sources.

    Science.gov (United States)

    Martin, Annett; Beutin, Lothar

    2011-03-15

    Shiga toxin-producing strains of Escherichia coli (STEC) cause diarrhoea and haemorrhagic colitis in humans. Most human infections are attributed to consumption of STEC contaminated foodstuff. Food producing animals constitute important reservoirs of STEC and serve as source of food contamination. In this study, we have analyzed 593 foodborne STEC strains for their serotypes and for nine virulence genes (stx1, stx1c, stx1d, stx2, stx2b, stx2e, stx2g, E-hly and eae). The 593 STEC strains grouped into 215 serotypes, and 123 serotypes (57.2%) were represented each by only one STEC isolate. Fifteen serotypes (7.0%) were attributed to 198 (33.3%) of the 593 STEC strains. The foodborne STEC were grouped into different categories in relation to the species of the food producing animal (cattle, pigs, sheep, goats, red deer, wild-boar and hare). Univariate and multivariate statistical analyses revealed significant similarities between the animal origin of the food and the virulence markers of foodborne STEC. Significant associations (pfood producing animals. Virulence profiles and serotypes of STEC from food showed remarkable similarities to those of faecal STEC that were from the same animal species. The findings from our study clearly indicate that the food producing animals represent the most important source for the entry of STEC in the food chain. Sound hygiene measures implemented at critical stages of food production (milking, slaughtering, and evisceration) should be most effective in reducing the frequency of STEC contamination of food derived from domestic and wildlife animals. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Isolation and identification of extended-spectrum beta-lactamase (ESBL-producing Escherichia coli from brolier in Erbil, Iraq

    Directory of Open Access Journals (Sweden)

    M.N. Al-Sharook

    2017-06-01

    Full Text Available Extended-spectrum beta-lactamase-producing Escherichia coli isolated from slaughtered broilers in retail market that sell live chickens in Erbil city, Iraq. Forty-one cloacal fecal samples from broiler caecum were investigated from January to April 2016. ESBLs strains were isolated using MacConkey agar supplemented with cefotaxime 1 mg/l and the isolates were identified phynotypically by biochemical tests, TBX agar and VITEK-2 compact system. A total of 34 Escherichia coli and 4 Proteus mirabilis were analysed for determination of ESBL/AmpC by disc diffusion test using antimicrobial 68DC MAST® ESβL discs group including cefpodoxime, cefpodoxime + ESBL inhibitor, cefpodoxime + AmpC inhibitor and cefpodoxime + ESBL inhibitor + AmpC inhibitor and 67DC MAST® ESβL discs group including cefpodoxime, cefpodoxime + clavulanate, ceftazidime, ceftazidime + clavulanate, cefotaxime and cefotaxime + clavulanate. The phenotypic results showed that in group 68DC discs 23.7% E. coli were resistant to cefpodoxime and in group 67DC discs 73.7% of E. coli and 7.9% of P. mirabilis were resistance to one or more of the cefpodoxime, ceftazidime and ceftazidime. Final results revealed that 78.0% of samples were ESBLs/ AmpC positive. This study is the first examination to determine phenorypically E. coli producing ESBLs/AmpC in broiler chickens in Iraq. Conclusion, the healthy broiler can be a major source of ESBLs/AmpC and the possibility that transmitted to humans through the food chain, direct contact and the surrounding environment raises the concerns about public health and safety of poultry meat and the negative consequences of drug therapy that causes the spread of antibiotic resistance.

  4. Genetic characterization of Shiga toxin-producing Escherichia coli (STEC) and atypical enteropathogenic Escherichia coli (EPEC) isolates from goat's milk and goat farm environment.

    Science.gov (United States)

    Álvarez-Suárez, María-Elena; Otero, Andrés; García-López, María-Luisa; Dahbi, Ghizlane; Blanco, Miguel; Mora, Azucena; Blanco, Jorge; Santos, Jesús A

    2016-11-07

    The aim of this study was to characterize a collection of 44 Shiga toxin-producing (STEC) and enteropathogenic Escherichia coli (EPEC) isolated from goat milk and goat farm environment. Of the 19 STEC isolates, five (26.3%) carried the stx1 gene, four (21.1%) the stx2 gene and 10 (52.6%) presented both stx genes. Six (31.6%) STEC strains were eae-positive and belonged to serotypes related to severe human disease (O157:H7 and O5:HNM). Another seven STEC strains were of serotype O146:H21 and three of serotype O166:H28, also linked to human disease. The STEC strains isolated from goat milk were of serotypes potentially pathogenic for humans. All the 25 EPEC isolates were considered atypical (aEPEC) and one aEPEC strain was of serotype O26:H11, a serotype frequently isolated in children with diarrhea. Multilocus sequence typing (MLST) was carried out with seven housekeeping genes and 23 sequence types (ST) were detected, 14 of them newly described. Twelve STs grouped STEC isolates and 11 STs grouped EPEC isolates. Genetic typing by pulsed field gel electrophoresis (PFGE) resulted in 38 patterns which grouped in 10 clusters. Well-defined groups were also observed for strains of pathogenic serotypes. In conclusion, strains of STEC and aEPEC belonging to serotypes related to severe human disease have been detected in goat milk and the goat farm environment. Ruminants are an important reservoir of STEC strains and the role of these animals as carriers of other pathogenic types of E. coli seems to be an emerging concern. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. ESBL-producing Escherichia coli in Swedish gulls-A case of environmental pollution from humans?

    Directory of Open Access Journals (Sweden)

    Clara Atterby

    Full Text Available ESBL-producing bacteria are present in wildlife and the environment might serve as a resistance reservoir. Wild gulls have been described as frequent carriers of ESBL-producing E. coli strains with genotypic characteristics similar to strains found in humans. Therefore, potential dissemination of antibiotic resistance genes and bacteria between the human population and wildlife need to be further investigated. Occurrence and characterization of ESBL-producing E. coli in Swedish wild gulls were assessed and compared to isolates from humans, livestock and surface water collected in the same country and similar time-period. Occurrence of ESBL-producing E. coli in Swedish gulls is about three times higher in gulls compared to Swedish community carriers (17% versus 5% and the genetic characteristics of the ESBL-producing E. coli population in Swedish wild gulls and Swedish human are similar. ESBL-plasmids IncF- and IncI1-type carrying ESBL-genes blaCTX-M-15 or blaCTX-M-14 were most common in isolates from both gulls and humans, but there was limited evidence of clonal transmission. Isolates from Swedish surface water harbored similar genetic characteristics, which highlights surface waters as potential dissemination routes between wildlife and the human population. Even in a low-prevalence country such as Sweden, the occurrence of ESBL producing E. coli in wild gulls and the human population appears to be connected and the occurrence of ESBL-producing E. coli in Swedish gulls is likely a case of environmental pollution.

  6. ESBL-producing Escherichia coli in Swedish gulls-A case of environmental pollution from humans?

    Science.gov (United States)

    Atterby, Clara; Börjesson, Stefan; Ny, Sofia; Järhult, Josef D; Byfors, Sara; Bonnedahl, Jonas

    2017-01-01

    ESBL-producing bacteria are present in wildlife and the environment might serve as a resistance reservoir. Wild gulls have been described as frequent carriers of ESBL-producing E. coli strains with genotypic characteristics similar to strains found in humans. Therefore, potential dissemination of antibiotic resistance genes and bacteria between the human population and wildlife need to be further investigated. Occurrence and characterization of ESBL-producing E. coli in Swedish wild gulls were assessed and compared to isolates from humans, livestock and surface water collected in the same country and similar time-period. Occurrence of ESBL-producing E. coli in Swedish gulls is about three times higher in gulls compared to Swedish community carriers (17% versus 5%) and the genetic characteristics of the ESBL-producing E. coli population in Swedish wild gulls and Swedish human are similar. ESBL-plasmids IncF- and IncI1-type carrying ESBL-genes blaCTX-M-15 or blaCTX-M-14 were most common in isolates from both gulls and humans, but there was limited evidence of clonal transmission. Isolates from Swedish surface water harbored similar genetic characteristics, which highlights surface waters as potential dissemination routes between wildlife and the human population. Even in a low-prevalence country such as Sweden, the occurrence of ESBL producing E. coli in wild gulls and the human population appears to be connected and the occurrence of ESBL-producing E. coli in Swedish gulls is likely a case of environmental pollution.

  7. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in local and imported poultry meat in Ghana.

    Science.gov (United States)

    Eibach, Daniel; Dekker, Denise; Gyau Boahen, Kennedy; Wiafe Akenten, Charity; Sarpong, Nimako; Belmar Campos, Cristina; Berneking, Laura; Aepfelbacher, Martin; Krumkamp, Ralf; Owusu-Dabo, Ellis; May, Jürgen

    2018-04-01

    Antibiotic use in animal husbandry has raised concerns on the spread of resistant bacteria. Currently animal products are traded globally with unprecedented ease, which has been challenging the control of antimicrobial resistance. This study aims to detect and characterize extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae from imported and locally produced poultry products sold in Ghana. Local and imported chicken meat was collected from 94 stores and markets throughout Kumasi (Ghana) and cultured on selective ESBL screening agar. Phenotypic ESBL-producing E. coli and K. pneumoniae isolates were confirmed by combined disc test and further characterized by antibiotic susceptibility testing, amplification of the bla CTX-M , bla TEM and bla SHV genes as well as multilocus sequence typing (MLST) and linked to the country of origin. Out of 200 meat samples, 71 (36%) samples revealed 81 ESBL-producing isolates (46 E. coli and 35 K. pneumoniae), with 44% (30/68) of local poultry and 31% (41/132) of imported products being contaminated. Most ESBL-producing isolates harboured the bla CTX-M-15 gene (61/81, 75%) and the dominant Sequence Types (ST) were ST2570 (7/35, 20%) among K. pneumoniae and ST10 (5/46, 11%) among E. coli. High numbers of ESBL-producing bacteria, particularly on local but also imported poultry meat, represent a potential source for human colonization and infection as well as spread within the community. Surveillance along the poultry production-food-consumer chain would be a valuable tool to identify sources of emerging multidrug resistant pathogens in Ghana. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Presence of ESBL/AmpC-producing Escherichia coli in the broiler production pyramid: a descriptive study.

    Directory of Open Access Journals (Sweden)

    Cindy M Dierikx

    Full Text Available Broilers and broiler meat products are highly contaminated with extended spectrum beta-lactamase (ESBL or plasmid-mediated AmpC beta-lactamase producing Escherichia coli and are considered to be a source for human infections. Both horizontal and vertical transmission might play a role in the presence of these strains in broilers. As not much is known about the presence of these strains in the whole production pyramid, the epidemiology of ESBL/AmpC-producing E. coli in the Dutch broiler production pyramid was examined. Cloacal swabs of Grandparent stock (GPS birds (one-/two-days (breed A and B, 18 and 31 weeks old (breed A, one-day old Parent stock birds (breed A and B and broiler chickens of increasing age (breed A were selectively cultured to detect ESBL/AmpC-producing isolates. ESBL/AmpC-producing isolates were found at all levels in the broiler production pyramid in both broiler breeds examined. Prevalence was already relatively high at the top of the broiler production pyramid. At broiler farms ESBL/AmpC producing E. coli were still present in the environment of the poultry house after cleaning and disinfection. Feed samples taken in the poultry house also became contaminated with ESBL/AmpC producing E. coli after one or more production weeks. The prevalence of ESBL/AmpC-positive birds at broiler farms increased within the first week from 0-24% to 96-100% independent of the use of antibiotics and stayed 100% until slaughter. In GPS breed A, prevalence at 2 days, 18 weeks and 31 weeks stayed below 50% except when beta-lactam antibiotics were administered. In that case prevalence increased to 100%. Interventions minimizing ESBL/AmpC contamination in broilers should focus on preventing horizontal and vertical spread, especially in relation to broiler production farms.

  9. Randomised, double-blind, safety and efficacy of a killed oral vaccine for enterotoxigenic E. Coli diarrhoea of travellers to Guatemala and Mexico.

    Science.gov (United States)

    Sack, David A; Shimko, Janet; Torres, Olga; Bourgeois, August L; Francia, Domingo Sanchez; Gustafsson, Björn; Kärnell, Anders; Nyquist, Iréne; Svennerholm, Ann-Mari

    2007-05-30

    We tested the efficacy of a killed oral vaccine for enterotoxigenic Escherichia coli (ETEC) diarrhoea to determine if two doses of vaccine with colonization factor antigens (CF) and cholera B subunit would protect against ETEC diarrhoea of travellers. Six hundred seventy-two healthy travellers going to Mexico or Guatemala were studied in a prospective, randomised, placebo-controlled trial. The primary outcome was a vaccine preventable outcome (VPO), defined as an episode of ETEC diarrhoea with an ETEC organism producing heat labile toxin (LT) or CF homologous with the vaccine, without other known causes. The vaccine was safe and stimulated anti-heat labile toxin antibodies. There was a significant decrease in more severe VPO episodes (PE=77%, p=0.039) as defined by symptoms that interfered with daily activities or more than five loose stools in a day, although the total number of VPO events did not differ significantly in the vaccine and placebo groups. We conclude that the new oral ETEC vaccine reduces the rate of more severe episodes of traveller's diarrhoea (TD) due to VPO-ETEC, but it did not reduce the overall rate of ETEC diarrhoea or of travellers' diarrhoea due to other causes.

  10. Molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli in the community and hospital in Korea: emergence of ST131 producing CTX-M-15

    Directory of Open Access Journals (Sweden)

    Park Sun

    2012-06-01

    Full Text Available Abstract Background The prevalence of extended-spectrum β-lactamase (ESBL-producing Escherichia coli has been increased not only in the hospital but also in the community worldwide. This study was aimed to characterize ESBL- producing E. coli isolates and to investigate the molecular epidemiology of community isolates in comparison with hospital isolates at a single center in Korea. Methods A total of 142 ESBL-producing E. coli isolates were collected at Daejeon St Mary’s Hospital in Korea from January 2008 to September 2009. The ESBLs were characterized by PCR sequencing using specific primers. The genetic relatedness was determined by pulsed field gel electrophoresis (PFGE and multilocus sequence typing (MLST. Results Of 142 isolates, 139 were positive for CTX-M type ESBLs; CTX-M-14 (n = 69, 49.6 %, CTX-M-15 (n = 53, 38.1 % and both CTX-M-14 and -15 (n = 17, 12.2 %. CTX-M-14 and CTX-M-15 were detected in both community and hospital isolates whereas isolates producing both CTX-M14 and-15 were mainly identified in the hospital. CTX-M producing E. coli isolates were genetically heterogeneous, revealing 75 distinct PFGE types. By MLST, 21 distinctive STs including 5 major STs (ST131, ST405, ST38, ST10, and ST648 were identified. Major STs were distributed in both community and hospital isolates, and ST131 was the predominant clone regardless of the locations of acquisition. No specific major STs were confined to a single type of ESBLs. However, ST131 clones were significantly associated with CTX-M-15 and the majority of them were multidrug-resistant. Distinctively, we identified a hospital epidemic caused by the dissemination of an epidemic strain, ST131-PFGE type 10, characterized by multidrug resistance and co-producing both CTX-Ms with OXA-1 or TEM-1b. Conclusions The epidemiology of ESBL-producing E. coli is a complex and evolving phenomenon attributed to the horizontal transfer of genetic elements and clonal spread of

  11. Extended-spectrum beta-lactamase-producing Escherichia coli in common vampire bats Desmodus rotundus and livestock in Peru.

    Science.gov (United States)

    Benavides, J A; Shiva, C; Virhuez, M; Tello, C; Appelgren, A; Vendrell, J; Solassol, J; Godreuil, S; Streicker, D G

    2018-06-01

    Antibiotic resistance mediated by bacterial production of extended-spectrum beta-lactamase (ESBL) is a global threat to public health. ESBL resistance is most commonly hospital-acquired; however, infections acquired outside of hospital settings have raised concerns over the role of livestock and wildlife in the zoonotic spread of ESBL-producing bacteria. Only limited data are available on the circulation of ESBL-producing bacteria in animals. Here, we report ESBL-producing Escherichia coli in wild common vampire bats Desmodus rotundus and livestock near Lima, Peru. Molecular analyses revealed that most of this resistance resulted from the expression of bla CTX-M-15 genes carried by plasmids, which are disseminating worldwide in hospital settings and have also been observed in healthy children of Peru. Multilocus sequence typing showed a diverse pool of E. coli strains carrying this resistance that were not always host species-specific, suggesting sharing of strains between species or infection from a common source. This study shows widespread ESBL resistance in wild and domestic animals, supporting animal communities as a potential source of resistance. Future work is needed to elucidate the role of bats in the dissemination of antibiotic-resistant strains of public health importance and to understand the origin of the observed resistance. © 2018 Blackwell Verlag GmbH.

  12. CHARACTERIZATION OF EXTENDED-SPECTRUM Β-LACTAMASE-PRODUCING ESCHERICHIA COLI STRAINS ISOLATED FROM DAIRY PRODUCTS

    Directory of Open Access Journals (Sweden)

    Rahem Khoshbakht

    2014-02-01

    Full Text Available Extended-spectrum β-lactamases (ESBLs are enzymes that hydrolyze the β-lactam ring, and ESBL-producing E. coli has rapidly spread worldwide with pose a serious hazard for humans. The aim of this study was to determine the prevalence of ESBL producing E. coli and molecular evaluation of four ESBL-associated genes among E. coli strains isolated from milk and cheese in southern Iran. Antibiotic susceptibility test was carried out for a total of 150 isolates of E. coli, previously collected from dairy products. ESBL production was screened using a double-disc synergy test (DDST and presence of four ESBL genes (PER, VEB, TEM and CTX-M was tested using PCR. Among 150 E. coli strains 57 (38% isolates were identified as ESBL-producing strains. All ESBL positive isolates could be typed for one or more genes and the most prevalent ESBL-associated gene was CTX-M (80.7%. The PER gene was not present among isolates. Isolates showed high susceptibility to imipe¬nem and cefoxitin. The results showed the high prevalence of ESBL producing E. coli strains among dairy products and high occurrence of CTX-M-associated ESBL activity among isolates indicating the hazards of increasing the strains with antibiotic resistance which can transfer to human trough the dairy food products.

  13. Adherence of curli producing Shiga-toxigenic Escherichia coli to baby spinach leaves

    Science.gov (United States)

    Cellular appendages, such as curli fibers have been suggested to be involved in STEC persistence in fresh produce as these curli are critical in biofilm formation and adherence to animal cells. We determined the role of curli in attachment of STEC on spinach leaves. The curli expression by wild-ty...

  14. Antimicrobial Drug-Resistant Shiga Toxin-Producing Escherichia coli Infections, Michigan, USA.

    Science.gov (United States)

    Mukherjee, Sanjana; Mosci, Rebekah E; Anderson, Chase M; Snyder, Brian A; Collins, James; Rudrik, James T; Manning, Shannon D

    2017-09-01

    High frequencies of antimicrobial drug resistance were observed in O157 and non-O157 Shiga toxin-producing E. coli strains recovered from patients in Michigan during 2010-2014. Resistance was more common in non-O157 strains and independently associated with hospitalization, indicating that resistance could contribute to more severe disease outcomes.

  15. An OXA-48-producing Escherichia coli isolated from a Danish patient with no hospitalization abroad

    DEFF Research Database (Denmark)

    Gedebjerg, Anne; Hasman, Henrik; Sorensen, Christian Moller

    2015-01-01

    pOXA-48a carrying the bla(OXA-48) gene isolated from a Danish patient without history of hospitalization abroad. The patient reported tourist travel to Egypt and Turkey. The potential acquisition of carbapenemase-producing organisms by ingestion of contaminated food is discussed....

  16. Prevalence and antimicrobial susceptibility of extended-spectrum beta-lactamase producing urinary isolates of Escherichia coli in outpatients

    Directory of Open Access Journals (Sweden)

    Marković Tatjana

    2013-01-01

    Full Text Available Introduction. In Gram-negative bacteria, the production of beta-lactamases is the most important mechanism of resistance to beta-lactam antibiotics. In the Banja Luka region, there were no extensive researches on the prevalence and antimicrobial resistance of the extended-spectrum beta-lactamase (ESBL producing Escherichia coli (E. coli isolates. Objective. The aim of the present study was to determine the presence of ESBL producing E. coli isolates as the cause of the urinary tract infections in outpatients, the distribution of these ESBL isolates according to age and gender of patients and their susceptibility to antimicrobials. Methods. Urine specimens obtained from outpatients were cultured on chromogenic CPS-ID3 media. All plates showing significant (>105 cfu/ml growth of E. coli in pure culture were further processed. Antimicrobial susceptibility testing was performed on VITEK TWO Compact using AST-GN27 cards for testing Gram negative bacteria and detection of ESBL producers. Results. Out of 2,195 isolates, 177 (8.1% were ESBL producers. Ninety-two isolates were obtained from female patients (5% of E. coli isolated from women and 85 isolates from male patients (23% of E. coli isolated from men. High percentage of ESBL isolates was detected in the infant age group under one year (36.7% and in the age group over 60 years (28.8%. All ESBL isolates were susceptible to imipenem and resistant to ampicillin, piperacillin, cefazolin, cefotaxime, ceftazidime and cefepime. There was a significant resistance to amikacin (79.1%, gentamicin (76.8%, amoxicillin/clavulanate (54.8% and trimethoprim/sulphamethoxazole (45.8%. Resistance to nutrofurantoin was 13.6%. Conclusion. This study has demonstrated the presence of ESBL producing E. coli urinary isolates in outpatients, and their extensive susceptibility to imipenem and nitrofurantoin.

  17. Antimicrobial resistance prevalence of pathogenic and commensal Escherichia coli in food-producing animals in Belgium

    OpenAIRE

    Chantziaras, Ilias; Dewulf, Jeroen; Boyen, Filip; Callens, Benedicte; Butaye, Patrick

    2014-01-01

    In this article, detailed studies on antimicrobial resistance to commensal E. coli (in pigs, meat-producing bovines, broiler chickens and veal calves) and pathogenic E. coli (in pigs and bovines) in Belgium are presented for 2011. Broiler chicken and veal calf isolates of commensal E. coli demonstrated higher antimicrobial resistance prevalence than isolates from pigs and bovines. Fifty percent of E. coli isolates from broiler chickens were resistant to at least five antimicrobials, whereas s...

  18. Molecular epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Catherine Ludden

    2014-09-01

    Full Text Available Objectives: E. coli O25b-ST131 has disseminated worldwide in hospitals and the community. The objective of this study was to determine the extent to which E. coli O25b-ST131 accounts for extended-spectrum beta-lactamase (ESBLproducing E. coli from clinical samples from all sources in this region. Methods: Between January and June 2010 ESBL-producing E. coli were collected from 94 routine samples including 47 from residents of 25 nursing homes, 15 categorized as hospital acquired and 32 others. PCR was performed for detection of bla CTX-M, bla OXA-1, bla TEM, bla SHV and for the identification of members of the E. coli O25b:ST131 clonal group. PFGE was carried out using Xba I in accordance with PulseNet protocols. Results: The majority (97% of isolates harbored a bla CTX-M gene.E. coli O25b-ST131 accounted for 87% of all ESBL-producing E. coliand for 96% of isolates from nursing home residents. Conclusion:The E. coli O25b-ST131 clonal group predominated in the collection of ESBL-producing E. coli, particularly in nursing home isolates. J Microbiol Infect Dis 2014; 4(3: 92-96

  19. Molecular characteristics of travel-related extended-spectrum-beta-lactamase-producing Escherichia coli isolates from the Calgary Health Region.

    Science.gov (United States)

    Pitout, Johann D D; Campbell, Lorraine; Church, Deirdre L; Gregson, Daniel B; Laupland, Kevin B

    2009-06-01

    Extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli has recently emerged as a major risk factor for community-acquired, travel-related infections in the Calgary Health Region. Molecular characterization was done on isolates associated with infections in returning travelers using isoelectric focusing, PCR, and sequencing for bla(CTX-M)s, bla(TEM)s, bla(SHV)s, bla(OXA)s, and plasmid-mediated quinolone resistance determinants. Genetic relatedness was determined with pulsed-field gel electrophoresis using XbaI and multilocus sequence typing (MLST). A total of 105 residents were identified; 6/105 (6%) presented with hospital-acquired infections, 9/105 (9%) with health care-associated community-onset infections, and 90/105 (86%) with community-acquired infections. Seventy-seven of 105 (73%) of the ESBL-producing E. coli isolates were positive for bla(CTX-M) genes; 55 (58%) produced CTX-M-15, 13 (14%) CTX-M-14, six (6%) CTX-M-24, one (1%) CTX-M-2, one (1%) CTX-M-3, and one (1%) CTX-M-27, while 10 (10%) produced TEM-52, three (3%) TEM-26, 11 (11%) SHV-2, and four (4%) produced SHV-12. Thirty-one (30%) of the ESBL-producing E. coli isolates were positive for aac(6')-Ib-cr, and one (1%) was positive for qnrS. The majority of the ESBL-producing isolates (n = 95 [90%]) were recovered from urine samples, and 83 (87%) were resistant to ciprofloxacin. The isolation of CTX-M-15 producers belonging to clone ST131 was associated with travel to the Indian subcontinent (India, Pakistan), Africa, the Middle East, and Europe, while clonally unrelated strains of CTX-M-14 and -24 were associated with travel to Asia. Our study suggested that clone ST131 coproducing CTX-M-15, OXA-1, TEM-1, and AAC(6')-Ib-cr and clonally unrelated CTX-M-14 producers have emerged as important causes of community-acquired, travel-related infections.

  20. Proteomic View of Interactions of Shiga Toxin-Producing Escherichia coli with the Intestinal Environment in Gnotobiotic Piglets.

    Directory of Open Access Journals (Sweden)

    Rembert Pieper

    Full Text Available Shiga toxin (Stx-producing Escherichia coli cause severe intestinal infections involving colonization of epithelial Peyer's patches and formation of attachment/effacement (A/E lesions. These lesions trigger leukocyte infiltration followed by inflammation and intestinal hemorrhage. Systems biology, which explores the crosstalk of Stx-producing Escherichia coli with the in vivo host environment, may elucidate novel molecular pathogenesis aspects.Enterohemorrhagic E. coli strain 86-24 produces Shiga toxin-2 and belongs to the serotype O157:H7. Bacterial cells were scrapped from stationary phase cultures (the in vitro condition and used to infect gnotobiotic piglets via intestinal lavage. Bacterial cells isolated from the piglets' guts constituted the in vivo condition. Cell lysates were subjected to quantitative 2D gel and shotgun proteomic analyses, revealing metabolic shifts towards anaerobic energy generation, changes in carbon utilization, phosphate and ammonia starvation, and high activity of a glutamate decarboxylase acid resistance system in vivo. Increased abundance of pyridine nucleotide transhydrogenase (PntA and PntB suggested in vivo shortage of intracellular NADPH. Abundance changes of proteins implicated in lipopolysaccharide biosynthesis (LpxC, ArnA, the predicted acyltransferase L7029 and outer membrane (OM assembly (LptD, MlaA, MlaC suggested bacterial cell surface modulation in response to activated host defenses. Indeed, there was evidence for interactions of innate immunity-associated proteins secreted into the intestines (GP340, REG3-γ, resistin, lithostathine, and trefoil factor 3 with the bacterial cell envelope.Proteomic analysis afforded insights into system-wide adaptations of strain 86-24 to a hostile intestinal milieu, including responses to limited nutrients and cofactor supplies, intracellular acidification, and reactive nitrogen and oxygen species-mediated stress. Protein and lipopolysaccharide compositions of the OM

  1. Virulence profiles of bacteremic extended-spectrum β-lactamase-producing Escherichia coli: association with epidemiological and clinical features.

    Directory of Open Access Journals (Sweden)

    Jesús Rodríguez-Baño

    Full Text Available There is scarce data about the importance of phylogroups and virulence factors (VF in bloodstream infections (BSI caused by extended-spectrum β-lactamase-producing Escherichia coli (ESBLEC. A prospective multicenter Spanish cohort including 191 cases of BSI due to ESBLEC was studied. Phylogroups and 25 VF genes were investigated by PCR. ESBLEC were classified into clusters according to their virulence profiles. The association of phylogropus, VF, and clusters with epidemiological features were studied using multivariate analysis. Overall, 57.6%, 26.7%, and 15.7% of isolates belonged to A/B1, D and B2 phylogroups, respectively. By multivariate analysis (adjusted OR [95% CI], virulence cluster C2 was independently associated with urinary tract source (5.05 [0.96-25.48]; cluster C4 with sources other than urinary of biliary tract (2.89 [1.05-7.93], and cluster C5 with BSI in non-predisposed patients (2.80 [0.99-7.93]. Isolates producing CTX-M-9 group ESBLs and from phylogroup D predominated among cluster C2 and C5, while CTX-M-1 group of ESBL and phylogroup B2 predominantes among C4 isolates. These results suggest that host factors and previous antimicrobial use were more important than phylogroup or specific VF in the occurrence of BSI due to ESBLEC. However, some associations between virulence clusters and some specific epidemiological features were found.

  2. Structural and functional features of self-assembling protein nanoparticles produced in endotoxin-free Escherichia coli.

    Science.gov (United States)

    Rueda, Fabián; Céspedes, María Virtudes; Sánchez-Chardi, Alejandro; Seras-Franzoso, Joaquin; Pesarrodona, Mireia; Ferrer-Miralles, Neus; Vázquez, Esther; Rinas, Ursula; Unzueta, Ugutz; Mamat, Uwe; Mangues, Ramón; García-Fruitós, Elena; Villaverde, Antonio

    2016-04-08

    Production of recombinant drugs in process-friendly endotoxin-free bacterial factories targets to a lessened complexity of the purification process combined with minimized biological hazards during product application. The development of nanostructured recombinant materials in innovative nanomedical activities expands such a need beyond plain functional polypeptides to complex protein assemblies. While Escherichia coli has been recently modified for the production of endotoxin-free proteins, no data has been so far recorded regarding how the system performs in the fabrication of smart nanostructured materials. We have here explored the nanoarchitecture and in vitro and in vivo functionalities of CXCR4-targeted, self-assembling protein nanoparticles intended for intracellular delivery of drugs and imaging agents in colorectal cancer. Interestingly, endotoxin-free materials exhibit a distinguishable architecture and altered size and target cell penetrability than counterparts produced in conventional E. coli strains. These variant nanoparticles show an eventual proper biodistribution and highly specific and exclusive accumulation in tumor upon administration in colorectal cancer mice models, indicating a convenient display and function of the tumor homing peptides and high particle stability under physiological conditions. The observations made here support the emerging endotoxin-free E. coli system as a robust protein material producer but are also indicative of a particular conformational status and organization of either building blocks or oligomers. This appears to be promoted by multifactorial stress-inducing conditions upon engineering of the E. coli cell envelope, which impacts on the protein quality control of the cell factory.

  3. Antibacterial effect of silver nanoparticles and capsaicin against MDR-ESBL producing Escherichia coli: An in vitro study

    Directory of Open Access Journals (Sweden)

    Debasish Kar

    2016-10-01

    Full Text Available Objective: To evaluate the antibacterial property of silver nanoparticles (AgNPs and capsaicin against multidrug resistant (MDR and extended spectrum beta-lactamase (ESBL producing Escherichia coli of bovine and poultry origin. Methods: Antibacterial efficacy of AgNPs and capsaicin was measured using broth dilution method. Five MDR-ESBL producing E. coli isolates of poultry (PEC4, PEC6, PEC15 and PEC16 and cattle mastitis origin (MEC2 were taken to evaluate the antibacterial effect of AgNPs and capsaicin. Results: At 50 mmol/L AgNPs, the viability of MDR of bacterial pathogens was reduced to almost 80%–90% and at 1000 mmol/L, the viability went down to 0%–3%. The minimum inhibitory concentration (MIC50 of AgNPs against these MDR-ESBL producing isolates was found to vary between 172–218 mmol/L whereas the MIC80 varied between 450–640 mmol/L. Capsaicin showed more prominent bactericidal effect and only at 2.5 mmol/L concentration, the viability was shown to be reduced by 20%–35% whereas at 7.5 mmol/L concentration, there was approximately 60% reduction in viability. Further at 25 mmol/L concentration, the viability was reduced to 0%–8%. The MIC50 and MIC80 of capsaicin against these MDRESBL producing isolates were found to vary between 4.6–7.5 mmol/L and 10.9–16.9 mmol/L, respectively. Conclusions: The results point out that capsaicin and AgNPs could be of use in treating ESBL infection.

  4. Determination of phylogenetic groups and antibiotic resistance pattern of Enterotoxigenic Escherishia coli isolates from diarrheoic cases in Bam City by PCR

    Directory of Open Access Journals (Sweden)

    Hesam Alizade

    2015-04-01

    Full Text Available Background and Aim: Purposes of this study were to determine the phylogenetic groups, prevalence of enterotoxigenic pathotype and antibiotic resistance of Escherichia coli (E. coli isolates from diarrheic cases in Bam city. Materials and Methods: In this study 155 E. coli were isolated from diarrheic samples in Bam city. Phylogenetic groups of isolates and enterotoxigenic pathotype were determined by detection of chuA, yjaA, TspE4C2 and ST, LT genes respectively. Results: One hundred fifty five examined isolates were distributed in phylogenetic groups: A (71.60%, B1 (3.22%, B2 (9.67% and D (15.48%. The genes for enterotoxigenic pathotype were detected in 52 isolates (33.54%, which ST gene were found in 29 isolates, LT in 16 isolates and LT, ST genes in 7 isolates. Twenty nine ST gene positive isolates were distributed in three phylogenetic groups A (48.28%, D (41.38% and B2 (10.34%. According to the antibiotic susceptibility tests maximum and minimum antibiotic resistance rate was against to trimethoprim/sulfamethoxazole (74.19% and ciprofloxacin and gentamycin (9.67%. Fifteen multiple antibiotic resistance patterns were detected in four phylogenetic groups. Conclusions: Escherichia coli isolates from enterotoxigenic pathotype have a considerable antibiotic resistance rate in Bam city and were distributed in different phylogenetic groups. Since a considerable number of isolates were negative for LT and ST genes, it is necessary to study the other virulence genes and their phylogenetic background in E. coli isolates from diarrheic cases in Bam city.

  5. Escherichia coli producing CNF1 and CNF2 cytotoxins in animals with different disorders.

    Science.gov (United States)

    Pohl, P; Oswald, E; Van Muylem, K; Jacquemin, E; Lintermans, P; Mainil, J

    1993-01-01

    Two DNA probes were used for the detection of CNF1- and CNF2-positive E coli strains in a collection of 553 E coli isolates from cattle, sheep, goats, pigs, horses, dogs, cats and poultry. CNF-positive E coli were frequently associated with septicaemia in cattle, dogs, and cats, with diarrhoea in calves, cats and dogs, and with abortion in bovine and porcine species. CNF2-positive strains were observed among adult healthy cattle. They were also found in cases of pneumonia, metritis, mastitis in cattle and in 1 case of metritis of a mare. The physiopathology induced by CNF-positive E coli strains remains to be elucidated. However, the impact of CNF strains on veterinary pathology is clear and the diagnosis of CNF-producing E coli should become routine in veterinary practice.

  6. Mathematical modeling and numerical analysis of the growth of Non-O157 shiga toxin-producing Escherichia coli in spinach leaves

    Science.gov (United States)

    This study was conducted to investigate the growth of non-O157 Shiga toxin-producing Escherichia coli (STEC) in spinach leaves and to develop kinetic models to describe the bacterial growth. Six serogroups of non-O157 STEC, including O26, O45, O103, O111, O121, and O145, were used in the growth stu...

  7. Reduction of extended-spectrum-β-lactamase- and AmpC-β-lactamase-producing Escherichia coli through processing in two broiler chicken slaughterhouses

    NARCIS (Netherlands)

    Pacholewicz, Ewa; Liakopoulos, Apostolos; Swart, Arno; Gortemaker, Betty; Dierikx, Cindy; Havelaar, Arie|info:eu-repo/dai/nl/072306122; Schmitt, Heike|info:eu-repo/dai/nl/304831042

    2015-01-01

    Whilst broilers are recognised as a reservoir of extended-spectrum-β-lactamase (ESBL)- and AmpC-β-lactamase (AmpC)-producing Escherichia coli, there is currently limited knowledge on the effect of slaughtering on its concentrations on poultry meat. The aim of this study was to establish the

  8. Reduction of extended-spectrum-β-lactamase- and AmpC-β-lactamase-producing Escherichia coli through processing in two broiler chicken slaughterhouses

    NARCIS (Netherlands)

    Pacholewicz, Ewa; Liakopoulos, Apostolos; Swart, Arno; Gortemaker, Betty; Dierikx, Cindy; Havelaar, Arie; Schmitt, Heike

    2015-01-01

    Whilst broilers are recognised as a reservoir of extended-spectrum-β-lactamase (ESBL)- and AmpC-β-lactamase (AmpC)-producing Escherichia coli, there is currently limited knowledge on the effect of slaughtering on its concentrations on poultry meat. The aim of this study was to establish the

  9. The effect of deep frying or conventional oven cooking on inactivation of Shiga toxin-producing cells of Escherichia coli (STEC) in meatballs

    Science.gov (United States)

    We investigated the effects deep frying or oven cooking on inactivation of Shiga toxin-producing cells of Escherichia coli (STEC) in meatballs. A finely-ground veal and/or a beef-pork-veal mixture were inoculated (ca. 7.0 log CFU/g) with an eight-strain, genetically-marked cocktail of rifampicin-res...

  10. Occurrence and characterization of shiga toxin-producing Escherichia coli in raw meat, raw milk, and street vended juices in Bangladesh

    NARCIS (Netherlands)

    Islam, M.A.; Mondol, A.S.; Azmi, I.J.; Boer, de E.; Beumer, R.R.; Zwietering, M.H.; Heuvelink, A.E.; Talukder, K.A.

    2010-01-01

    The major objective of this study was to investigate the prevalence of Shiga toxin (Stx)–producing Escherichia coli (STEC) in different types of food samples and to compare their genetic relatedness with STEC strains previously isolated from animal sources in Bangladesh. We investigated a total of

  11. Selection and persistence of CTX-M-producing Escherichia coli in the intestinal flora of pigs treated with amoxicillin, ceftiofur, or cefquinome

    DEFF Research Database (Denmark)

    Cavaco, Lina; Abatih, E.; Aarestrup, Frank Møller

    2008-01-01

    Extended-spectrum beta-lactamases (ESBLs), mainly of the CTX-M family, have been associated with Escherichia coli strains of animal origin in Europe. An in vivo experiment was performed to study the effects of veterinary beta-lactam drugs on the selection and persistence of ESBL-producing E. coli...

  12. Molecular epidemiology over an 11-year period (2000 to 2010) of extended-spectrum β-lactamase-producing Escherichia coli causing bacteremia in a centralized Canadian region

    NARCIS (Netherlands)

    G. Peirano (G.); A.K. van der Bij (Akke); S. Gregson (Simon); J.D.D. Pitout (J. D D)

    2012-01-01

    textabstractA study was designed to assess the importance of sequence types among extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates causing bacteremia over an 11-year period (2000 to 2010) in a centralized Canadian region. A total of 197 patients with incident infections were

  13. Clinical and molecular characteristics of extended-spectrum-β- lactamase-producing Escherichia coli causing bacteremia in the Rotterdam Area, Netherlands

    NARCIS (Netherlands)

    A.K. van der Bij (Akke); G. Peirano (G.); W.H.F. Goessens (Wil); E.R. van der Vorm (Eric); M. van Westreenen (Mireille); J.D.D. Pitout (J. D D)

    2011-01-01

    textabstractWe investigated the clinical and molecular characteristics of bacteremia caused by extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli over a 2-year period (2008 to 2009) in the Rotterdam region (including 1 teaching hospital and 2 community hospitals) of Netherlands. The

  14. Prevalence and risk factors for extended-spectrum β-lactamase or AmpC-producing Escherichia coli in organic dairy herds in the Netherlands

    NARCIS (Netherlands)

    Santman-Berends, I.M.G.A.; Gonggrijp, M.A.; Hage, J.J.; Heuvelink, A.E.; Velthuis, A.; Lam, T.J.G.M.; van Schaik, G.

    Extended-spectrum β-lactamase and AmpC-producing Escherichia coli (ESBL/AmpC) are an emerging problem and are hypothesized to be associated with antimicrobial use (AMU), and more specifically with the use of third- and fourth-generation cephalosporins. Whether ESBL/AmpC also occur in organic dairy

  15. Prevalence and risk factors for extended-spectrum beta-lactamase or AmpC-producing Escherichia coli in organic dairy herds in the Netherlands

    NARCIS (Netherlands)

    Santman - Berends, Inge; Gonggrijp, M A; Heuvelink, A E; Velthuis, A; Lam, T J G M; van Schaik, Gerdien; Hage, J. J.

    2017-01-01

    Extended-spectrum β-lactamase and AmpC-producing Escherichia coli (ESBL/AmpC) are an emerging problem and are hypothesized to be associated with antimicrobial use (AMU), and more specifically with the use of third- and fourth-generation cephalosporins. Whether ESBL/AmpC also occur in organic dairy

  16. Draft genome sequences of Escherichia coli O113:H21 strains recovered from a major produce-production region in California

    Science.gov (United States)

    Shiga toxin-producing Escherichia coli is a foodborne and waterborne pathogen and is responsible for outbreaks of human gastroenteritis. This report documents the draft genome sequences of seven O113:H21 strains recovered from livestock, wildlife, and soil samples collected in a major agricultural r...

  17. Survival and expression of acid resistance genes in Shiga toxin-producing Escherichia coli acid adapted in pineapple juice and exposed to synthetic gastric fluid

    Science.gov (United States)

    Aims: The aim of this research was to examine relative transcriptional expression of acid resistance (AR) genes, rpoS, gadA and adiA, in O157:H7 and non-O157 Shiga toxin-producing Escherichia coli (STEC) serotypes after adaptation to pineapple juice (PJ) and subsequently to determine survival with e...

  18. Carbon nanoparticles as detection labels in antibody microarrays. Detection of genes encoding virulence factors in Shiga toxin-producing Escherichia coli.

    NARCIS (Netherlands)

    Noguera, P.S.; Posthuma-Trumpie, G.A.; Tuil, Van M.; Wal, van der F.J.; Boer, De A.; Moers, A.P.H.A.; Amerongen, Van A.

    2011-01-01

    The present study demonstrates that carbon nanoparticles (CNPs) can be used as labels in microarrays. CNPs were used in nucleic acid microarray immunoassays (NAMIAs) for the detection of different Shiga toxin-producing Escherichia coli (STEC) virulence factors: four genes specific for STEC (vt1,

  19. Effect of high pressure impact on the survival of Shiga Toxin-producing Escherichia coli ('Big Six' and 0157) in ground beef

    Science.gov (United States)

    High pressure processing (HPP) is a safe and effective technology for improving food safety while maintaining food quality attributes. Non-O157:H7 Shiga Toxin-producing Escherichia coli (STEC) have been increasingly implicated in foodborne illness outbreaks and recalls, and the USDA Food Safety Ins...

  20. Emergence of Escherichia coli encoding Shiga toxin 2f in human Shiga toxin-producing E-coli (STEC) infections in the Netherlands, January 2008 to December 2011

    NARCIS (Netherlands)

    Friesema, I.; van der Zwaluw, K.; Schuurman, T.; Kooistra-Smid, M.; Franz, E.; van Duynhoven, Y.; van Pelt, W.

    2014-01-01

    The Shiga toxins of Shiga toxin-producing Escherichia coli (STEC) can be divided into Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) with several sub-variants. Variant Stx(2f) is one of the latest described, but has been rarely associated with symptomatic human infections. In the enhanced STEC

  1. A trial with IgY chicken antibodies to eradicate faecal carriage of Klebsiella pneumoniae and Escherichia coli producing extended-spectrum beta-lactamases

    OpenAIRE

    Jonsson, Anna-Karin; Larsson, Anders; Tängdén, Thomas; Melhus, Åsa; Lannergård, Anders

    2015-01-01

    Background: Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae is an emerging therapeutic challenge, especially in the treatment of urinary tract infections. Following an outbreak of CTX-M-15 Klebsiella pneumoniae in Uppsala, Sweden, an orphan drug trial on IgY chicken antibodies was undertaken in an attempt to eradicate faecal carriage of ESBL-producing K. pneumoniae and Escherichia coli.Methods: Hens were immunised with epitopes from freeze-dried, whole-cell bacteria (ESBL...

  2. N-chlorotaurine, a long-lived oxidant produced by human leukocytes, inactivates Shiga toxin of enterohemorrhagic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Christian Eitzinger

    Full Text Available N-chlorotaurine (NCT, the main representative of long-lived oxidants produced by granulocytes and monocytes, is known to exert broad-spectrum microbicidal activity. Here we show that NCT directly inactivates Shiga toxin 2 (Stx2, used as a model toxin secreted by enterohemorrhagic Escherichia coli (EHEC. Bacterial growth and Stx2 production were both inhibited by 2 mM NCT. The cytotoxic effect of Stx2 on Vero cells was removed by ≥5.5 mM NCT. Confocal microscopy and FACS analyses showed that the binding of Stx2 to human kidney glomerular endothelial cells was inhibited, and no NCT-treated Stx2 entered the cytosol. Mass spectrometry displayed oxidation of thio groups and aromatic amino acids of Stx2 by NCT. Therefore, long-lived oxidants may act as powerful tools of innate immunity against soluble virulence factors of pathogens. Moreover, inactivation of virulence factors may contribute to therapeutic success of NCT and novel analogs, which are in development as topical antiinfectives.

  3. Verocytotoxin-producing Escherichia coli O26 in raw water buffalo (Bubalus bubalis) milk products in Italy.

    Science.gov (United States)

    Lorusso, Vanessa; Dambrosio, Angela; Quaglia, Nicoletta Cristiana; Parisi, Antonio; La Salandra, Giovanna; Lucifora, Giuseppe; Mula, Giuseppina; Virgilio, Sebastiano; Carosielli, Leonardo; Rella, Addolorata; Dario, Marco; Normanno, Giovanni

    2009-08-01

    Escherichia coli 026 is known as a verocytotoxin-producing E. coli (VTEC) organism that causes severe foodborne diseases such as hemorrhagic colitis and hemolytic uremic syndrome. Although cattle are the most important reservoir of VTEC, only a few reports on the role of water buffalo (Bubalus bubalis) as a reservoir of VTEC and on the presence of these organisms in their milk are available. However, in Southern Italy, where water buffalo are intensively reared, an outbreak of hemolytic uremic syndrome due to E. coli 026 has recently been reported, in which the consumption of typical dairy products was considered to be a common risk factor. The aims of this work were to assess the prevalence of E. coli O26 in raw water buffalo milk, to characterize the virulence gene profiles of the isolates, and to evaluate their phenotypic antimicrobial resistance pattern. Of 160 analyzed samples, 1 (0.6%) tested positive for E. coli O26, and the isolate showed the stx1+/stx2+/eae-/hlyA+ genotypic profile. The strain showed resistance against glycopeptides, macrolides, and penicillins. The presence of VTEC organisms in raw water buffalo milk could be considered to be a potential threat to consumers; however, the strict adherence to the processes used in the preparation of the most common buffalo dairy products could strongly mitigate the foodborne risk. To our knowledge, this article reports the first isolation and characterization of E. coli O26 VTEC in raw water buffalo milk.

  4. Molecular screening of bovine raw milk for the presence of Shiga toxin-producing Escherichia coli (STEC on dairy farms

    Directory of Open Access Journals (Sweden)

    Tatiane Vendramin

    2014-09-01

    Full Text Available Milkborne transmission of Shiga toxin- producing Escherichia coli (STEC has raised considerable concern due to recent outbreaks worldwide and poses a threat to public health. The aim of this study was to develop a sensitive and specific multiplex PCR assay to detect the presence of STEC in bovine raw milk. To identify E. coli (ATCC 25922 contamination, the gene uspA was used, and PCR sensitivity and specificity were accessed by testing diluted samples ranging from 2 to 2.0 × 10(6 CFU/mL. To detect STEC, the stx1 and stx2 genes were selected as targets. After reaction standardization, the multiplex assay was tested in raw milk collected from 101 cows on dairy farms. PCR assay for E. coli detection had a specificity of 100% and sensitivity of 79% (P<0.0001, with a lower detection limit of 2 CFU/mL. Multiplex PCR assay had 100% sensitivity for E. coli positive raw milk samples, and 31.1% were contaminated with STEC, 28.3% of stx2, and 1.9% of stx1. The multiplex PCR assay described in the present study can be employed to identify and screen E. coli harboring stx1 and stx2 genes in raw milk on dairy farms and in industries.

  5. Metabolic engineering of Escherichia coli to produce 2'-fucosyllactose via salvage pathway of guanosine 5'-diphosphate (GDP)-l-fucose.

    Science.gov (United States)

    Chin, Young-Wook; Seo, Nari; Kim, Jae-Han; Seo, Jin-Ho

    2016-11-01

    2'-Fucosyllactose (2-FL) is one of the key oligosaccharides in human milk. In the present study, the salvage guanosine 5'-diphosphate (GDP)-l-fucose biosynthetic pathway from fucose was employed in engineered Escherichia coli BL21star(DE3) for efficient production of 2-FL. Introduction of the fkp gene coding for fucokinase/GDP-l-fucose pyrophosphorylase (Fkp) from Bacteroides fragilis and the fucT2 gene encoding α-1,2-fucosyltransferase from Helicobacter pylori allows the engineered E. coli to produce 2-FL from fucose, lactose and glycerol. To enhance the lactose flux to 2-FL production, the attenuated, and deleted mutants of β-galactosidase were employed. Moreover, the 2-FL yield and productivity were further improved by deletion of the fucI-fucK gene cluster coding for fucose isomerase (FucI) and fuculose kinase (FucK). Finally, fed-batch fermentation of engineered E. coli BL21star(DE3) deleting lacZ and fucI-fucK, and expressing fkp and fucT2 resulted in 23.1 g/L of extracellular concentration of 2-FL and 0.39 g/L/h productivity. Biotechnol. Bioeng. 2016;113: 2443-2452. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Detection and characterization of Shiga toxin-producing Escherichia coli in game meat and ready-to-eat meat products.

    Science.gov (United States)

    Díaz-Sánchez, S; Sánchez, S; Sánchez, M; Herrera-León, S; Hanning, I; Vidal, D

    2012-11-15

    A total of 142 samples of game meat and ready-to-eat meat products from red deer and wild boar were analysed in order to assess the presence of Shiga toxin-producing Escherichia coli (STEC). Shiga-toxin encoding genes (stx genes) were detected by PCR in 36 (25.4%) of the samples and STEC was isolated from 8 (5.6%) of the same samples. None of the samples tested positive for E. coli O157:H7. Four different serotypes were found among the 8 STEC isolates, with serotype O27:H30 being predominant (62.5%, 5/8). The PCR assay indicated the presence of the stx2 gene in all of the STEC isolates and further subtyping resulted in detection of three different subtypes: stx2a, stx2b and stx2g. The only stx1-positive isolate was further subtyped as stx1c. The ehxA gene was detected in 3 (37.5%) of the isolates and none of them contained the eae gene. All STEC isolates were sensitive to the 13 antibiotics tested. Some isolates possessed serotypes and virulence gene profiles previously associated with STEC infections in humans. The isolation of a STEC strain carrying the stx2a subtype from a ready-to-eat meat product from deer suggests the role of these products as a potential source of STEC infections in humans. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Enteroaggregative Shiga toxin-producing Escherichia coli of serotype O104:H4 in Belgium and Luxembourg

    Directory of Open Access Journals (Sweden)

    K. De Rauw

    2014-09-01

    Full Text Available In 2011, a large outbreak of infections caused by Shiga toxin-producing Escherichia coli (STEC O104:H4 occurred in Germany. This exceptionally virulent strain combined virulence factors of enteroaggregative E. coli (EAggEC and STEC. After the outbreak only a few sporadic cases of infection with this rare serotype were reported, most of which were related to travel to the Middle East or North Africa. Here we describe two cases of enteroaggregative STEC (Agg-STEC O104:H4 infection that occurred in Belgium in 2012 and 2013 respectively. In both cases travel in a Mediterranean country preceded the infection. The first strain was isolated from the stool of a 42-year-old woman presenting bloody diarrhoea, who had travelled to Tunisia the week before. The second case involves a 14-year-old girl who, upon her return from Turkey to Belgium, suffered from an episode of bloody diarrhoea and haemolytic uraemic syndrome. Extended typing of the isolates with pulsed field gel electrophoresis revealed that the strains were closely related, though not exactly the same as the 2011 outbreak strain. This report supports the previously made hypothesis that Agg-STEC has a human reservoir and might be imported by travellers coming from an area where the pathogen is endemic. Furthermore, it emphasizes the concern that these bacteria may cause future outbreaks as evenly virulent O104:H4 isolates seem to be widespread.

  8. Spread and change in stress resistance of Shiga toxin-producing Escherichia coli O157 on fungal colonies.

    Science.gov (United States)

    Lee, Ken-Ichi; Kobayashi, Naoki; Watanabe, Maiko; Sugita-Konishi, Yoshiko; Tsubone, Hirokazu; Kumagai, Susumu; Hara-Kudo, Yukiko

    2014-11-01

    To elucidate the effect of fungal hyphae on the behaviour of Shiga toxin-producing Escherichia coli (STEC) O157, the spread and change in stress resistance of the bacterium were evaluated after coculture with 11 species of food-related fungi including fermentation starters. Spread distances of STEC O157 varied depending on the co-cultured fungal species, and the motile bacterial strain spread for longer distances than the non-motile strain. The population of STEC O157 increased when co-cultured on colonies of nine fungal species but decreased on colonies of Emericella nidulans and Aspergillus ochraceus. Confocal scanning microscopy visualization of green fluorescent protein-tagged STEC O157 on fungal hyphae revealed that the bacterium colonized in the water film that existed on and between hyphae. To investigate the physiological changes in STEC O157 caused by co-culturing with fungi, the bacterium was harvested after 7 days of co-culturing and tested for acid resistance. After co-culture with eight fungal species, STEC O157 showed greater acid resistance compared to those cultured without fungi. Our results indicate that fungal hyphae can spread the contamination of STEC O157 and can also enhance the stress resistance of the bacteria. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Prevalence of enterotoxigenic Bacillus Cereus and Its enterotoxins ...

    African Journals Online (AJOL)

    Objectives: To determine the prevalence of enterotoxigenic Bacillus cereus (B. cereus) and enterotoxins in milk and milk products. Design: A random sampling of milk products was carried out. Setting: Market milk and milk products were collected from retail shops in Nairobi and analysed for contamination with ...

  10. Anti-bacterial effect of essential oil from Xanthium strumarium against shiga toxin-producing Escherichia coli.

    Science.gov (United States)

    Sharifi-Rad, J; Soufi, L; Ayatollahi, S A M; Iriti, M; Sharifi-Rad, M; Varoni, E M; Shahri, F; Esposito, S; Kuhestani, K; Sharifi-Rad, M

    2016-09-19

    Shiga toxin-producing Escherichia coli (STEC) serotype O157:H7 is one of the most important human pathogenic microorganisms, which can cause life-threatening infections. Xanthium strumarium L. is a plant with anti-bacterial activity against gram-negative and gram-positive bacteria. This study aims to demonstrate in vitro efficacy of the essential oil (EO) extracted from Xanthium strumarium L. against E. coli O157:H7. Using the agar test diffusion, the effect of Xanthium strumarium L. EO (5, 10, 15, 30, 60, and 120 mg/mL) was verified at each of the four different growth phases of E. coli O157:H7. Cell counts of viable cells and colony forming unit (CFU) were determined at regular time points using Breed's method and colony counting method, respectively. No viable cell was detectable after the 1 hour-exposure to X. strumarium EO at 30, 60, and 120 mg/mL concentrations. No bacterial colony was formed after 1 h until the end of the incubation period at 24 h. At lower concentrations, the number of bacteria cells decreased and colonies could be observed only after incubation. At the exponential phase, the EO at 15 mg/mL was only bacteriostatic, while from 30 mg/mL started to be bactericidal. X. strumarium EO antibacterial activity against Shiga toxin-producing E. coli O157:H7 is dependent on EO concentration and physiological state of the microorganisms tested. The best inhibitory activity was achieved during the late exponential and the stationary phases.

  11. Mouldy feed, mycotoxins and Shiga toxin - producing Escherichia coli colonization associated with Jejunal Hemorrhage Syndrome in beef cattle

    Directory of Open Access Journals (Sweden)

    Masson Luke

    2011-06-01

    Full Text Available Abstract Background Both O157 and non-O157 Shiga toxin - producing Escherichia coli (STECs cause serious human disease outbreaks through the consumption of contaminated foods. Cattle are considered the main reservoir but it is unclear how STECs affect mature animals. Neonatal calves are the susceptible age class for STEC infections causing severe enteritis. In an earlier study, we determined that mycotoxins and STECs were part of the disease complex for dairy cattle with Jejunal Hemorrhage Syndrome (JHS. For STECs to play a role in the development of JHS, we hypothesized that STEC colonization should also be evident in beef cattle with JHS. Aggressive medical and surgical therapies are effective for JHS, but rely on early recognition of clinical signs for optimal outcomes suggesting that novel approaches must be developed for managing this disease. The main objective of this study was to confirm that mouldy feeds, mycotoxins and STEC colonization were associated with the development of JHS in beef cattle. Results Beef cattle developed JHS after consuming feed containing several types of mycotoxigenic fungi including Fusarium poae, F. verticillioides, F. sporotrichioides, Penicillium roqueforti and Aspergillus fumigatus. Mixtures of STECs colonized the mucosa in the hemorrhaged tissues of the cattle and no other pathogen was identified. The STECs expressed Stx1 and Stx2, but more significantly, Stxs were also present in the blood collected from the lumen of the hemorrhaged jejunum. Feed extracts containing mycotoxins were toxic to enterocytes and 0.1% of a prebiotic, Celmanax Trademark, removed the cytotoxicity in vitro. The inclusion of a prebiotic in the care program for symptomatic beef calves was associated with 69% recovery. Conclusions The current study confirmed that STECs and mycotoxins are part of the disease complex for JHS in beef cattle. Mycotoxigenic fungi are only relevant in that they produce the mycotoxins deposited in the feed. A

  12. Whole genome sequencing of ESBL-producing Escherichia coli isolated from patients, farm waste and canals in Thailand.

    Science.gov (United States)

    Runcharoen, Chakkaphan; Raven, Kathy E; Reuter, Sandra; Kallonen, Teemu; Paksanont, Suporn; Thammachote, Jeeranan; Anun, Suthatip; Blane, Beth; Parkhill, Julian; Peacock, Sharon J; Chantratita, Narisara

    2017-09-06

    Tackling multidrug-resistant Escherichia coli requires evidence from One Health studies that capture numerous potential reservoirs in circumscribed geographic areas. We conducted a survey of extended β-lactamase (ESBL)-producing E. coli isolated from patients, canals and livestock wastewater in eastern Thailand between 2014 and 2015, and analyzed isolates using whole genome sequencing. The bacterial collection of 149 isolates consisted of 84 isolates from a single hospital and 65 from the hospital sewer, canals and farm wastewater within a 20 km radius. E. coli ST131 predominated the clinical collection (28.6%), but was uncommon in the environment. Genome-based comparison of E. coli from infected patients and their immediate environment indicated low genetic similarity overall between the two, although three clinical-environmental isolate pairs differed by ≤ 5 single nucleotide polymorphisms. Thai E. coli isolates were dispersed throughout a phylogenetic tree containing a global E. coli collection. All Thai ESBL-positive E. coli isolates were multidrug resistant, including high rates of resistance to tobramycin (77.2%), gentamicin (77.2%), ciprofloxacin (67.8%) and trimethoprim (68.5%). ESBL was encoded by six different CTX-M elements and SHV-12. Three isolates from clinical samples (n = 2) or a hospital sewer (n = 1) were resistant to the carbapenem drugs (encoded by NDM-1, NDM-5 or GES-5), and three isolates (clinical (n = 1) and canal water (n = 2)) were resistant to colistin (encoded by mcr-1); no isolates were resistant to both carbapenems and colistin. Tackling ESBL-producing E. coli in this setting will be challenging based on widespread distribution, but the low prevalence of resistance to carbapenems and colistin suggests that efforts are now required to prevent these from becoming ubiquitous.

  13. "Population structure of drug-susceptible, -resistant and ESBL-producing Escherichia coli from community-acquired urinary tract infections"

    DEFF Research Database (Denmark)

    Hertz, Frederik Boetius; Nielsen, Jesper Boye; Schønning, Kristian

    2016-01-01

    BACKGROUND: Escherichia coli is the most common cause of urinary tract infection (UTI). The pathogenic isolates are becoming increasingly resistant to antibiotics; with a worldwide dissemination of resistant sequence types (ST). We characterized three different uropathogenic E. coli populations...

  14. Enterotoxigenic Genes in strains of Staphylococcus spp., isolated from cheese made in Pamplona-Colombia

    Directory of Open Access Journals (Sweden)

    Fanny Herrera A.

    2015-01-01

    Full Text Available Objective. To determine the incidence of coagulase-positive strains of enterotoxigenic Staphylococcus in doble crema (double cream cheese samples produced in Pamplona. Materials and methods. Bacterial isolation was performed following the routine method for coagulase positive Staphylococcus provided by the Colombian Technical Standard 4779, by using Baird Parker medium with confirmation of typical colonies by performing the coagulase test. Detection of genes for principal enterotoxins was done by PCR. Results. The prevalence of coagulase positive Staphylococcus in cheese samples was 31%, with 27% of the samples failing to meet the requirements of the NTC 750. In 24.6% of the studied isolates, genes for enterotoxin production were detected. The presence, in the isolated strains, of genes for SEB, SEA and SED was 18.5%, 4.6% and 3.0%, respectively. Conclusions. The significant presence of enterotoxigenic genes found in the isolates obtained from samples of double cream cheese made in Pamplona, suggests an important hazard to the health of consumers.

  15. Isolation and characteristics of Shiga toxin 2f-producing Escherichia coli among pigeons in Kyushu, Japan.

    Directory of Open Access Journals (Sweden)

    Koichi Murakami

    Full Text Available An increasing number of Shiga toxin 2f-producing Escherichia coli (STEC2f infections in humans are being reported in Europe, and pigeons have been suggested as a reservoir for the pathogen. In Japan, there is very little information regarding carriage of STEC2f by pigeons, prompting the need for further investigation. We collected 549 samples of pigeon droppings from 14 locations in Kyushu, Japan, to isolate STEC2f and to investigate characteristics of the isolates. Shiga toxin stx 2f gene fragments were detected by PCR in 16 (2.9% of the 549 dropping samples across four of the 14 locations. We obtained 23 STEC2f-isolates from seven of the original samples and from three pigeon dropping samples collected in an additional sampling experiment (from a total of seven locations across both sampling periods. Genotypic and phenotypic characteristics were then examined for selected isolates from each of 10 samples with pulsed-field gel electrophoresis profiles. Eight of the stx 2f gene fragments sequenced in this study were homologous to others that were identified in Europe. Some isolates also contained virulence-related genes, including lpfA O26, irp 2, and fyuA, and all of the 10 selected isolates maintained the eae, astA, and cdt genes. Moreover, five of the 10 selected isolates contained sfpA, a gene that is restricted to Shiga toxin-producing E. coli O165:H2 and sorbitol-fermenting Shiga toxin-producing E. coli O157:NM. We document serotypes O152:HNM, O128:HNM, and O145:H34 as STEC2f, which agrees with previous studies on pigeons and humans. Interestingly, O119:H21 was newly described as STEC2f. O145:H34, with sequence type 722, was described in a German study in humans and was also isolated in the current study. These results revealed that Japanese zoonotic STEC2f strains harboring several virulence-related factors may be of the same clonal complexes as some European strains. These findings provide useful information for public health

  16. Conditional Function of Autoaggregative Protein Cah and Common cah Mutations in Shiga Toxin-Producing Escherichia coli.

    Science.gov (United States)

    Carter, Michelle Qiu; Brandl, Maria T; Kudva, Indira T; Katani, Robab; Moreau, Matthew R; Kapur, Vivek

    2018-01-01

    Cah is a calcium-binding autotransporter protein involved in autoaggregation and biofilm formation. Although cah is widespread in Shiga toxin-producing Escherichia coli (STEC), we detected mutations in cah at a frequency of 31.3% in this pathogen. In STEC O157:H7 supershedder strain SS17, a large deletion results in a smaller coding sequence, encoding a protein lacking the C-terminal 71 amino acids compared with Cah in STEC O157:H7 strain EDL933. We examined the function of Cah in biofilm formation and host colonization to better understand the selective pressures for cah mutations. EDL933-Cah played a conditional role in biofilm formation in vitro : it enhanced E. coli DH5α biofilm formation on glass surfaces under agitated culture conditions that prevented autoaggregation but inhibited biofilm formation under hydrostatic conditions that facilitated autoaggregation. This function appeared to be strain dependent since Cah-mediated biofilm formation was diminished when an EDL933 cah gene was expressed in SS17. Deletion of cah in EDL933 enhanced bacterial attachment to spinach leaves and altered the adherence pattern of EDL933 to bovine recto-anal junction squamous epithelial (RSE) cells. In contrast, in trans expression of EDL933 cah in SS17 increased its attachment to leaf surfaces, and in DH5α, it enhanced its adherence to RSE cells. Hence, the ecological function of Cah appears to be modulated by environmental conditions and other bacterial strain-specific properties. Considering the prevalence of cah in STEC and its role in attachment and biofilm formation, cah mutations might be selected in ecological niches in which inactivation of Cah would result in an increased fitness in STEC during colonization of plants or animal hosts. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) harbors genes encoding diverse adhesins, and many of these are known to play an important role in bacterial attachment and host colonization. We demonstrated here that the

  17. Activities of beta-lactam antibiotics against Escherichia coli strains producing extended-spectrum beta-lactamases.

    Science.gov (United States)

    Jacoby, G A; Carreras, I

    1990-01-01

    Seven extended-spectrum beta-lactamases related to TEM and four enzymes derived from SHV-1 were transferred to a common Escherichia coli host so that the activity of a variety of beta-lactams could be tested in a uniform genetic environment. For most derivatives, penicillinase activity was 10% or less than that of strains making TEM-1, TEM-2, or SHV-1 beta-lactamase, suggesting that reduced catalytic efficiency accompanied the broader substrate spectrum. Despite this deficit, resistance to aztreonam, carumonam, cefdinir, cefepime, cefixime, cefmenoxime, cefotaxime, cefotiam, cefpirome, cefpodoxime, ceftazidime, ceftibuten, ceftizoxime, ceftriaxone, cefuroxime, and E1040 was enhanced. For strains producing TEM-type enzymes, however, MICs of carumonam, cefepime, cefmenoxime, cefotiam, cefpirome, and ceftibuten were 8 micrograms/ml or less. Susceptibilities of cefmetazole, cefotetan, cefoxitin, flomoxef, imipenem, meropenem, moxalactam, temocillin, FCE 22101, and Sch 34343 were unaffected. FCE 22101, imipenem, meropenem, and Sch 34343 were inhibitory for all strains at 1 microgram/ml or less. In E. coli an OmpF- porin mutation in combination with an extended-spectrum beta-lactamase enhanced resistance to many of these agents, but generally by only fourfold. Hyperproduction of chromosomal AmpC beta-lactamase increased resistance to 7-alpha-methoxy beta-lactams but not that to temocillin. When tested at 8 micrograms/ml, clavulanate was more potent than sulbactam or tazobactam in overcoming resistance to ampicillin, while cefoperazone-sulbactam was more active than ticarcillin-clavulanate or piperacillin-tazobactam, especially against TEM-type extended-spectrum beta-lactamases. PMID:2193623

  18. In vivo screening platform for shiga toxin-producing Escherichia coli (STEC using Caenorhabditis elegans as a model.

    Directory of Open Access Journals (Sweden)

    Su-Bin Hwang

    Full Text Available Shiga toxin-producing Escherichia coli (STEC strains are the main cause of bacillary dysentery, although STEC strains generally induce milder disease symptoms compared to Shigella species. This study aimed to determine the virulence of STEC using the nematode Caenorhabditis elegans as a model host. Worm killing, fertility and bacterial colonisation assays were performed to examine the potential difference in the virulence of STEC strains compared to that of the control E. coli OP50 strains on which worms were fed. A statistically significant difference in the survival rates of C. elegans was observed in that the STEC strains caused death in 8-10 days and the E. coli OP50 strains caused death in 15 days. STEC strains severely reduced the fertility of the worms. The intestinal load of bacteria in the adult stage nematodes harbouring the E. coli OP50 strains was found to be 3.5 log CFU mL-1. In contrast, the STEC strains E15, E18 and E22 harboured 4.1, 4.2 and 4.7 log CFU ml-1 per nematode, respectively. The heat-killed STEC strains significantly increased the longevity of the worms compared to the non-heated STEC strains. In addition, PCR-based genomic profiling of shiga toxin genes, viz., stx1 and stx2, identified in selected STEC strains revealed that these toxins may be associated with the virulence of the STEC strains. This study demonstrated that C. elegans is an effective model to examine and compare the pathogenicity and virulence variation of STEC strains to that of E. coli OP50 strains.

  19. Characterization of enteropathogenic and Shiga toxin-producing Escherichia coli in cattle and deer in a shared agroecosystem

    Directory of Open Access Journals (Sweden)

    Pallavi eSingh

    2015-04-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC is an important foodborne pathogen. Cattle are suggested to be an important reservoir for STEC; however, these pathogens have also been isolated from other livestock and wildlife. In this study we sought to investigate transmission of STEC, enterohemorrhagic E. coli (EHEC and enteropathogenic E. coli (EPEC between cattle and white-tailed deer in a shared agroecosystem. Cattle feces were collected from 100 animals in a Michigan dairy farm in July 2012, while 163 deer fecal samples were collected during two sampling periods (March and June. The locations of deer fecal pellets were recorded via geographic information system mapping and microsatellite multi-locus genotyping was used to link the fecal samples to individual deer at both time points. Following subculture to sorbitol MacConkey agar and STEC CHROMagar, the pathogens were characterized by serotyping, stx profiling, and PCR-based fingerprinting; multilocus sequence typing (MLST was performed on a subset. STEC and EHEC were cultured from 12% and 16% of cattle, respectively, and EPEC was found in 36%. Deer were significantly less likely to have a pathogen in March versus June where the frequency of STEC, EHEC, and EPEC was 1%, 6% and 22%, respectively. PCR fingerprinting and MLST clustered the cattle- and deer-derived strains together in a phylogenetic tree. Two STEC strains recovered from both animal species shared MLST and fingerprinting profiles, thereby providing evidence of interspecies transmission and highlighting the importance of wildlife species in pathogen shedding dynamics and persistence in the environment and cattle herds.

  20. Shiga Toxin-Producing Escherichia coli in Plateau Pika (Ochotona curzoniae) on the Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Bai, Xiangning; Zhang, Wang; Tang, Xinyuan; Xin, Youquan; Xu, Yanmei; Sun, Hui; Luo, Xuelian; Pu, Ji; Xu, Jianguo; Xiong, Yanwen; Lu, Shan

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) are an emerging group of zoonotic pathogens. Ruminants are the natural reservoir of STEC. In this study we determined the prevalence and characteristics of the STEC in plateau pika (Ochotona curzoniae) on the Qinghai-Tibetan Plateau, China. A total of 1116 pika samples, including 294 intestinal contents samples, 317 fecal samples, and 505 intestinal contents samples, were collected from May to August in the years 2012, 2013, and 2015, respectively. Twenty-one samples (1.88%) yielded at least one STEC isolate; in total, 22 STEC isolates were recovered. Thirteen different O serogroups and 14 serotypes were identified. One stx 1 subtype (stx 1a) and three stx 2 subtypes (stx 2a, stx 2b, and stx 2d) were present in the STEC isolates. Fifteen, fourteen, and three STEC isolates harbored the virulence genes ehxA, subA, and astA, respectively. Adherence-associated genes iha and saa were, respectively, present in 72.73 and 68.18% of the STEC isolates. Twenty antibiotics were active against all the STEC isolates; all strains were resistant to penicillin G, and some to cephalothin or streptomycin. The 22 STEC isolates were divided into 16 pulsed-field gel electrophoresis patterns and 12 sequence types. Plateau pikas may play a role in the ongoing circulation of STEC in the Qinghai-Tibetan plateau. This study provides the first report on STEC in plateau pikas and new information about STEC reservoirs in wildlife. Based on the serotypes, virulence gene profiles and multi-locus sequence typing (MLST) analysis, the majority of these pika STECs may pose a low public health risk.

  1. Incidence of Shiga toxin-producing Escherichia coli strains in beef, pork, chicken, deer, boar, bison, and rabbit retail meat.

    Science.gov (United States)

    Magwedere, Kudakwashe; Dang, Huu Anh; Mills, Edward W; Cutter, Catherine N; Roberts, Elisabeth L; DeBroy, Chitrita

    2013-03-01

    The objective of the current study was to determine the incidence of contamination by the top 7 Shiga toxin-producing Escherichia coli (STEC) O-groups, responsible for the majority of E. coli infections in human beings, in retail meat from different animal species. Samples from ground beef (n = 51), ground pork (n = 16), ground chicken (n = 16), and game meat (deer, wild boar, bison, and rabbit; n = 55) were collected from retail vendors for the detection of 7 STEC O-groups (O26, O45, O103, O111, O121, O145, and O157). Meat samples were tested by using a multiplex polymerase chain reaction assay targeting the wzx gene of O antigen gene clusters of the 7 STEC O-groups. The positive samples were further tested for Shiga toxin genes (stx1 and stx2). Out of a total of 83 ground beef, pork, and chicken samples, 17 (20%) carried O121, 9 (10%) carried O45, 8 (9%) carried O157, 3 (3%) carried O103, and 1 (1%) carried O145. None of the samples were positive for O26, O111, or the stx gene. All 3 white-tailed deer samples (100%) were positive for O45, O103, or both, 2 (10%) out of 20 red deer samples exhibited the presence of O103, and all 3 bison samples were contaminated with either O121, O145, or O157. One sample from ground deer, contaminated with E. coli O45, carried the stx1 gene. This preliminary investigation illustrates the importance of microbiological testing of pathogens in meat products, as well as the recognized need for increased surveillance and research on foodborne pathogens.

  2. Impact of storm runoff on Salmonella and Escherichia coli prevalence in irrigation ponds of fresh produce farms in southern Georgia.

    Science.gov (United States)

    Harris, C S; Tertuliano, M; Rajeev, S; Vellidis, G; Levy, K

    2018-03-01

    To examine Salmonella and Escherichia coli in storm runoff and irrigation ponds used by fresh produce growers, and compare Salmonella serovars with those found in cases of human salmonellosis. We collected water before and after rain events at two irrigation ponds on farms in southern Georgia, USA, and collected storm runoff/storm flow within the contributing watershed of each pond. Salmonella and E. coli concentrations were higher in ponds after rain events by an average of 0·46 (P storm runoff from fields and forests were not significantly higher than in ponds before rain events, but concentrations in storm flow from streams and ditches were higher by an average of 1·22 log 10 MPN per 100 ml (P storm runoff/storm flow and ponds. Seven of the serovars, including five of the shared serovars, were present in cases of human illness in the study region in the same year. However, several serovars most commonly associated with human illness in the study region (e.g. Javiana, Enteritidis, and Montevideo) were not found in any water samples. Salmonella and E. coli concentrations in irrigation ponds were higher, on average, after rain events, but concentrations of Salmonella were low, and the ponds met FDA water quality standards based on E. coli. Some similarities and notable differences were found between Salmonella serovars in water samples and in cases of human illness. This study directly examined storm runoff/storm flow into irrigation ponds and quantified increases in Salmonella and E. coli following rain events, with potential implications for irrigation pond management as well as human health. © 2018 The Society for Applied Microbiology.

  3. In vitro Effectiveness of Commercial Bacteriophage Cocktails on Diverse Extended-Spectrum Beta-Lactamase Producing Escherichia coli Strains.

    Science.gov (United States)

    Gundogdu, Aycan; Bolkvadze, Darajen; Kilic, Huseyin

    2016-01-01

    The objective of this study is to determine the in vitro susceptibility of Georgian bacteriophage cocktails on multidrug resistant (MDR) extended-spectrum beta-lactamase producing Escherichia coli (ESBL-EC) isolated from patients' blood and urine cultures. A total of 615 E. coli isolates were included in this study. Phene Plate (PhP)-typing and phylogenetic grouping were used for the typing. Antimicrobial resistance profiles and ESBL production of all isolates were confirmed according to Clinical and Laboratory Standards Institute (CLSI) criteria. The activities of four bacteriophage cocktails (Enko-phage, SES-bacteriophage, Pyo-bacteriophage, and Intesti-bacteriophage) were determined against 142 ESBL-EC using in vitro spot tests. According to this, Enko-phage were active against 87.3% of the tested strains while that ratio was 81.7% for Intesti-bacteriophage, 81.7% for Pyo-bacteriophage, and 59.2% for SES-bacteriophage cocktails. Based on the contingency tests, the phage cocktails were observed to be statistically significantly ( p < 0.001) more effective on ESBL-EC strains belonging to phylogenetic groups D and B2. The employed phage cocktails were found to be affective against all tested resistant types. These results are promising especially for the infections that are caused by MDR pathogens that are difficult to treat. As this is a preliminary step to the potential clinical trials to be designed for the country, in vitro confirmation of their success on a MDR ESBL-EC collection should be accepted as an initial action, which is encouraging to consider clinical trials of phage therapy especially in countries which are not introduce phage therapy.

  4. in vitro effectiveness of commercial bacteriophage cocktails on diverse extended spectrum beta-lactamase (ESBL producing Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Aycan Gundogdu

    2016-11-01

    Full Text Available The objective of this study is to determine the in vitro susceptibility of Georgian bacteriophage cocktails on multi-drug resistant extended-spectrum β-lactamase producing Escherichia coli (ESBL-EC isolated from patients' blood and urine cultures. 615 E. coli isolates were included in this study. PhP-typing and phylogenetic grouping were used for the typing. Antimicrobial resistance profiles and ESBL production of all isolates were confirmed according to CLSI criteria. The activities of four bacteriophage cocktails (Enko-phage, SES-bacteriophage, Pyo-bacteriophage and Intesti-bacteriophage were determined against 142 ESBL- EC using in vitro spot tests. According to this, Enko-phage were active against 87.3% of the tested strains while that ratio was 81.7% for intesti-bacteriophage, 81.7% for Pyo-bacteriophage and 59.2% for SES-bacteriophage cocktails. Based on the contingency tests, the phage cocktails were observed to be statistically significantly (p<0.001 more effective on ESBL-EC strains belonging to phylogenetic groups D and B2. The employed phage cocktails were found to be affective against all tested resistant types. These results are promising especially for the infections that are caused by multi-drug resistant pathogens that are difficult to treat. As this is a preliminary step to the potential clinical trials to be designed for the country, in vitro confirmation of their success on a multi-drug-resistant ESBL-EC collection should be accepted as an initial action, which is encouraging to consider clinical trials of phage therapy especially in countries which are not introduce phage therapy.

  5. Diarrheagenic Escherichia coli and acute and persistent diarrhea in returned travelers

    NARCIS (Netherlands)

    Schultsz, C.; van den Ende, J.; Cobelens, F.; Vervoort, T.; van Gompel, A.; Wetsteyn, J. C.; Dankert, J.

    2000-01-01

    To determine the role of diarrheagenic Escherichia coli in acute and persistent diarrhea in returned travelers, a case control study was performed. Enterotoxigenic E. coli (ETEC) was detected in stool samples from 18 (10.7%) of 169 patients and 4 (3.7%) of 108 controls. Enteroaggregative E. coli

  6. Multidrug-Resistant and Extended Spectrum Beta-Lactamase-Producing Escherichia coli in Dutch Surface Water and Wastewater.

    Directory of Open Access Journals (Sweden)

    Hetty Blaak

    Full Text Available The goal of the current study was to gain insight into the prevalence and concentrations of antimicrobial resistant (AMR Escherichia coli in Dutch surface water, and to explore the role of wastewater as AMR contamination source.The prevalence of AMR E. coli was determined in 113 surface water samples obtained from 30 different water bodies, and in 33 wastewater samples obtained at five health care institutions (HCIs, seven municipal wastewater treatment plants (mWWTPs, and an airport WWTP. Overall, 846 surface water and 313 wastewater E. coli isolates were analysed with respect to susceptibility to eight antimicrobials (representing seven different classes: ampicillin, cefotaxime, tetracycline, ciprofloxacin, streptomycin, sulfamethoxazole, trimethoprim, and chloramphenicol.Among surface water isolates, 26% were resistant to at least one class of antimicrobials, and 11% were multidrug-resistant (MDR. In wastewater, the proportions of AMR/MDR E. coli were 76%/62% at HCIs, 69%/19% at the airport WWTP, and 37%/27% and 31%/20% in mWWTP influents and effluents, respectively. Median concentrations of MDR E. coli were 2.2×10(2, 4.0×10(4, 1.8×10(7, and 4.1×10(7 cfu/l in surface water, WWTP effluents, WWTP influents and HCI wastewater, respectively. The different resistance types occurred with similar frequencies among E. coli from surface water and E. coli from municipal wastewater. By contrast, among E. coli from HCI wastewater, resistance to cefotaxime and resistance to ciprofloxacin were significantly overrepresented compared to E. coli from municipal wastewater and surface water. Most cefotaxime-resistant E. coliisolates produced ESBL. In two of the mWWTP, ESBL-producing variants were detected that were identical with respect to phylogenetic group, sequence type, AMR-profile, and ESBL-genotype to variants from HCI wastewater discharged onto the same sewer and sampled on the same day (A1/ST23/CTX-M-1, B23/ST131/CTX-M-15, D2/ST405/CTX-M-15.In

  7. Shiga toxin-producing Escherichia coli isolated from chicken meat in Iran: serogroups, virulence factors, and antimicrobial resistance properties.

    Science.gov (United States)

    Momtaz, Hassan; Jamshidi, Alireza

    2013-05-01

    The aim of the current study was to determine the virulence factors, serogroups, and antibiotic resistance properties of Shiga toxin-producing Escherichia coli isolated from chicken meat samples. A total of 422 chicken meat samples were collected from 5 townships of Iran. Specimens were immediately transferred to the laboratory in a cooler with an ice pack. Samples were cultured, and the positive culture samples were analyzed by PCR assays. Finally, the antimicrobial susceptibility test was performed using the disk diffusion method in Mueller-Hinton agar. According to the results, out of 422 samples, 146 (34.59%) were confirmed to be E. coli positive and among E. coli-positive samples, 51 (34.93%) and 31 (21.23%) were from attaching and effacing E. coli (AEEC) and enterohemorrhagic E. coli (EHEC) subgroups, respectively. All of the EHEC-positive samples had all stx1, eaeA, and ehly virulence genes, whereas only 5 (9.80%) of AEEC subgroup had all stx1, stx2, and eaeA genes. As the data revealed, O157 was the most prevalent and O111 was the least prevalent strains in the Shiga toxin-producing E. coli (STEC) population. Among STEC strains, sulI and blaSHV had the highest and lowest incidence rate, respectively. There was a high resistance to tetracycline (76.82%), followed by chloramphenicol (73.17%) and nitrofurantoin (63.41%), but there was low resistance to cephalotine (7.31%) antibiotics in isolated strains. Results shows that the PCR technique has a high performance for detection of serogroups, virulence genes, and antibiotic resistance genes in STEC strains. This study is the first prevalence report of detection of virulence genes, serogroups, and antibiotic resistance properties of STEC strains isolated from chicken meat samples in Iran. Based on the results, chicken meat is one of the main sources of STEC strains and its virulence factors in Iran, so an accurate meat inspection would reduce disease outbreaks.

  8. Risk factors and spatial distribution of extended spectrum ?-lactamase-producing- Escherichia coli at retail poultry meat markets in Malaysia: a cross-sectional study

    OpenAIRE

    Aliyu, A. B.; Saleha, A. A.; Jalila, A.; Zunita, Z.

    2016-01-01

    Background The significant role of retail poultry meat as an important exposure pathway for the acquisition and transmission of extended spectrum ?-lactamase-producing Escherichia coli (ESBL-EC) into the human population warrants understanding concerning those operational practices associated with dissemination of ESBL-EC in poultry meat retailing. Hence, the objective of this study was to determine the prevalence, spatial distribution and potential risk factors associated with the disseminat...

  9. The first occurrence of a CTX-M ESBL-producing Escherichia coli outbreak mediated by mother to neonate transmission in an Irish neonatal intensive care unit.

    LENUS (Irish Health Repository)

    O'Connor, Ciara

    2017-01-05

    Escherichia coli (E. coli) comprise part of the normal vaginal microflora. Transfer from mother to neonate can occur during delivery resulting, sometimes, in neonatal bacterial disease. Here, we aim to report the first outbreak of CTX-M ESBL-producing E. coli with evidence of mother-to-neonate transmission in an Irish neonatal intensive care unit (NICU) followed by patient-to-patient transmission.

  10. Detection of Shiga toxin-producing Escherichia coli by sandwich enzyme-linked immunosorbent assay using chicken egg yolk IgY antibodies

    OpenAIRE

    Parma, Y. R.; Chacana, P. A.; Lucchesi, P. M. A.; Rogé, A.; Granobles Velandia, C. V.; Krüger, A.; Parma, A. E.; Fernández-Miyakawa, M. E.

    2012-01-01

    Enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin producing E. coli (STEC) is associated with a spectrum of diseases that includes diarrhea, hemorrhagic colitis and a life-threatening hemolytic-uremic syndrome (HUS). Regardless of serotype, Shiga toxins (Stx1 and/or Stx2) are uniformly expressed by all EHEC, and so exploitable targets for laboratory diagnosis of these pathogens. In this study, a sandwich ELISA for determination of Shiga toxin (Stx) was developed using anti-St...

  11. Detection of Shiga toxin-producing Escherichia coli by sandwich enzyme-linked immunosorbent assay using chicken egg yolk IgY antibodies

    OpenAIRE

    Yanil R Parma; Pablo A Chacana; Paula María Alejandra Lucchesi; Ariel eRoge; Claudia V Granobles Velandia; Alejandra eKrüger; Alejandra eKrüger; Alberto E. Parma; Mariano Enrique Fernandez Miyakawa

    2012-01-01

    Enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin producing E. coli (STEC) is associated with a spectrum of diseases that includes diarrhea, hemorrhagic colitis and a life-threatening hemolytic uremic syndrome (HUS). Regardless of serotype, Shiga toxins (Stx1 and/or Stx2) are uniformly expressed by all EHEC, and so exploitable targets for laboratory diagnosis of these pathogens. In this study, a sandwich ELISA for determination of Shiga toxin (Stx) was developed using anti-St...

  12. Multicenter retrospective study of cefmetazole and flomoxef for treatment of extended-spectrum-β-lactamase-producing Escherichia coli bacteremia.

    Science.gov (United States)

    Matsumura, Yasufumi; Yamamoto, Masaki; Nagao, Miki; Komori, Toshiaki; Fujita, Naohisa; Hayashi, Akihiko; Shimizu, Tsunehiro; Watanabe, Harumi; Doi, Shoichi; Tanaka, Michio; Takakura, Shunji; Ichiyama, Satoshi

    2015-09-01

    The efficacy of cefmetazole and flomoxef (CF) for the treatment of patients with extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) bacteremia (ESBL-CF group) was compared with that of carbapenem treatment for ESBL-EC patients (ESBL-carbapenem group) and with that of CF treatment in patients with non-ESBL-EC bacteremia (non-ESBL-CF group). Adult patients treated for E. coli bacteremia in four hospitals were retrospectively evaluated. The 30-day mortality rates in patients belonging to the ESBL-CF, ESBL-carbapenem, and non-ESBL-CF groups were compared as 2 (empirical and definitive therapy) cohorts. The adjusted hazard ratios (aHRs) for mortality were calculated using Cox regression models with weighting according to the inverse probability of propensity scores for receiving CF or carbapenem treatment. The empirical-therapy cohort included 104 patients (ESBL-CF, 26; ESBL-carbapenem, 45; non-ESBL-CF, 33), and the definitive-therapy cohort included 133 patients (ESBL-CF, 59; ESBL-carbapenem, 54; non-ESBL-CF, 20). The crude 30-day mortality rates for patients in the ESBL-CF, ESBL-carbapenem, and non-ESBL-CF groups were, respectively, 7.7%, 8.9%, and 3.0% in the empirical-therapy cohort and 5.1%, 9.3%, and 5.0% in the definitve-therapy cohort. In patients without hematological malignancy and neutropenia, CF treatment for ESBL-EC patients was not associated with mortality compared with carbapenem treatment (empirical-therapy cohort: aHR, 0.87; 95% confidence interval [CI], 0.11 to 6.52; definitive therapy cohort: aHR, 1.04; CI, 0.24 to 4.49). CF therapy may represent an effective alternative to carbapenem treatment for patients with ESBL-EC bacteremia for empirical and definitive therapy in adult patients who do not have hematological malignancy and neutropenia. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Shiga toxin-producing Escherichia coli in yaks (Bos grunniens from the Qinghai-Tibetan Plateau, China.

    Directory of Open Access Journals (Sweden)

    Xiangning Bai

    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC are recognized as important human pathogens of public health concern. Many animals are the sources of STEC. In this study we determined the occurrence and characteristics of the STEC in yaks (Bos grunniens from the Qinghai-Tibetan plateau, China. A total of 728 yak fecal samples was collected from June to August, 2012 and was screened for the presence of the stx 1 and stx 2 genes by TaqMan real-time PCR after the sample was enriched in modified Tryptone Soya Broth. Of the 138 (18.96% stx 1 and/or stx 2-positive samples, 85 (61.59% were confirmed to have at least 1 STEC isolate present by culture isolation, from which 128 STEC isolates were recovered. All STEC isolates were serotyped, genotyped by pulsed-field gel electrophoresis (PFGE and characterized for the presence of 16 known virulence factors. Fifteen different O serogroups and 36 different O:H serotypes were identified in the 128 STEC isolates with 21 and 4 untypable for the O and H antigens respectively. One stx 1 subtype (stx 1a and 5 stx 2 subtypes (stx 2a, stx 2b, stx 2c, stx 2d and stx 2g were present in these STEC isolates. Apart from lpfA O157/OI-141, lpfA O157/OI-154, lpfA O113, katP and toxB which were all absent, other virulence factors screened (eaeA, iha, efa1, saa, paa, cnf1, cnf2, astA, subA, exhA and espP were variably present in the 128 STEC isolates. PFGE were successful for all except 5 isolates and separated them into 67 different PFGE patterns. For the 18 serotypes with 2 or more isolates, isolates of the same serotypes had the same or closely related PFGE patterns, demonstrating clonality of these serotypes. This study was the first report on occurrence and characteristics of STEC isolated from yaks (Bos grunniens from the Qinghai-Tibetan plateau, China, and extended the genetic diversity and reservoir host range of STEC.

  14. Shiga toxin-producing Escherichia coli distribution and characterization in a pasture-based cow-calf production system.

    Science.gov (United States)

    Baltasar, Patrícia; Milton, Stewart; Swecker, William; Elvinger, François; Ponder, Monica

    2014-05-01

    Shiga toxin-producing Escherichia coli (STEC) strains are commonly found in cattle gastrointestinal tracts. In this study, prevalence and distribution of E. coli virulence genes (stx1, stx2, hlyA, and eaeA) were assessed in a cow-calf pasture-based production system. Angus cows (n = 90) and their calves (n = 90) were kept in three on-farm locations, and fecal samples were collected at three consecutive times (July, August, and September 2011). After enrichment of samples, stx1, stx2, eaeA, and hlyA were amplified and detected with a multiplex PCR (mPCR) assay. Fecal samples positive for stx genes were obtained from 93.3% (84 of 90) of dams and 95.6% (86 of 90) of calves at one or more sampling times. Age class (dam or calf), spatial distribution of cattle (farm locations B, H, K), and sampling time influenced prevalence and distribution of virulence genes in the herd. From 293 stx-positive fecal samples, 744 E. coli colonies were isolated. Virulence patterns of isolates were determined through mPCR assay: stx1 was present in 41.9% (312 of 744) of the isolates, stx2 in 6.5% (48 of 744), eaeA in 4.2% (31 of 744), and hlyA in 2.4% (18 of 744). Prevalence of non-O157 STEC was high among the isolates: 33.8% (112 of 331) were STEC O121, 3.6% (12 of 331) were STEC O103, and 1.8% (6 of 331) were STEC O113. One isolate (0.3%) was identified as STEC O157. Repetitive element sequence-based PCR (rep-PCR) fingerprinting was used to study genetic diversity of stx-positive E. coli isolates. Overall, rep-PCR fingerprints were highly similar, supporting the hypothesis that strains are transmitted between animals but not necessarily from a dam to its calf. Highly similar STEC isolates were obtained at each sampling time, but isolates obtained from dams were more diverse than those from calves, suggesting that strain differences in transference may exist. Understanding the transfer of E. coli from environmental and animal sources to calves may aid in developing intervention

  15. Assessment of Shiga toxin-producing Escherichia coli isolates from wildlife meat as potential pathogens for humans.

    Science.gov (United States)

    Miko, Angelika; Pries, Karin; Haby, Sabine; Steege, Katja; Albrecht, Nadine; Krause, Gladys; Beutin, Lothar

    2009-10-01

    A total of 140 Shiga toxin-producing Escherichia coli (STEC) strains from wildlife meat (deer, wild boar, and hare) isolated in Germany between 1998 and 2006 were characterized with respect to their serotypes and virulence markers associated with human pathogenicity. The strains grouped into 38 serotypes, but eight O groups (21, 146, 128, 113, 22, 88, 6, and 91) and four H types (21, 28, 2, and 8) accounted for 71.4% and 75.7% of all STEC strains from game, respectively. Eighteen of the serotypes, including enterohemorrhagic E. coli (EHEC) O26:[H11] and O103:H2, were previously found to be associated with human illness. Genes linked to high-level virulence for humans (stx(2), stx(2d), and eae) were present in 46 (32.8%) STEC strains from game. Fifty-four STEC isolates from game belonged to serotypes which are frequently found in human patients (O103:H2, O26:H11, O113:H21, O91:H21, O128:H2, O146:H21, and O146:H28). These 54 STEC isolates were compared with 101 STEC isolates belonging to the same serotypes isolated from farm animals, from their food products, and from human patients. Within a given serotype, most STEC strains were similar with respect to their stx genotypes and other virulence attributes, regardless of origin. The 155 STEC strains were analyzed for genetic similarity by XbaI pulsed-field gel electrophoresis. O103:H2, O26:H11, O113:H21, O128:H2, and O146:H28 STEC isolates from game were 85 to 100% similar to STEC isolates of the same strains from human patients. By multilocus sequence typing, game EHEC O103:H2 strains were attributed to a clonal lineage associated with hemorrhagic diseases in humans. The results from our study indicate that game animals represent a reservoir for and a potential source of human pathogenic STEC and EHEC strains.

  16. Assessment of Shiga Toxin-Producing Escherichia coli Isolates from Wildlife Meat as Potential Pathogens for Humans▿

    Science.gov (United States)

    Miko, Angelika; Pries, Karin; Haby, Sabine; Steege, Katja; Albrecht, Nadine; Krause, Gladys; Beutin, Lothar

    2009-01-01

    A total of 140 Shiga toxin-producing Escherichia coli (STEC) strains from wildlife meat (deer, wild boar, and hare) isolated in Germany between 1998 and 2006 were characterized with respect to their serotypes and virulence markers associated with human pathogenicity. The strains grouped into 38 serotypes, but eight O groups (21, 146, 128, 113, 22, 88, 6, and 91) and four H types (21, 28, 2, and 8) accounted for 71.4% and 75.7% of all STEC strains from game, respectively. Eighteen of the serotypes, including enterohemorrhagic E. coli (EHEC) O26:[H11] and O103:H2, were previously found to be associated with human illness. Genes linked to high-level virulence for humans (stx2, stx2d, and eae) were present in 46 (32.8%) STEC strains from game. Fifty-four STEC isolates from game belonged to serotypes which are frequently found in human patients (O103:H2, O26:H11, O113:H21, O91:H21, O128:H2, O146:H21, and O146:H28). These 54 STEC isolates were compared with 101 STEC isolates belonging to the same serotypes isolated from farm animals, from their food products, and from human patients. Within a given serotype, most STEC strains were similar with respect to their stx genotypes and other virulence attributes, regardless of origin. The 155 STEC strains were analyzed for genetic similarity by XbaI pulsed-field gel electrophoresis. O103:H2, O26:H11, O113:H21, O128:H2, and O146:H28 STEC isolates from game were 85 to 100% similar to STEC isolates of the same strains from human patients. By multilocus sequence typing, game EHEC O103:H2 strains were attributed to a clonal lineage associated with hemorrhagic diseases in humans. The results from our study indicate that game animals represent a reservoir for and a potential source of human pathogenic STEC and EHEC strains. PMID:19700552

  17. Prevalence and characteristics of Shiga toxin-producing Escherichia coli in finishing pigs: Implications on public health.

    Science.gov (United States)

    Cha, Wonhee; Fratamico, Pina M; Ruth, Leah E; Bowman, Andrew S; Nolting, Jacqueline M; Manning, Shannon D; Funk, Julie A

    2018-01-02

    Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens, which can cause serious illnesses, including hemorrhagic colitis and hemolytic uremic syndrome. To study the epidemiology of STEC in finishing pigs and examine the potential risks they pose for human STEC infections, we conducted a longitudinal cohort study in three finishing sites. Six cohorts of pigs (2 cohorts/site, 20 pigs/cohort) were randomly selected, and fecal samples (n=898) were collected every two weeks through their finishing period. Eighty-two pigs (68.3%) shed STEC at least once, and the proportion of STEC-positive pigs varied across sites (50-97.5%) and cohorts (15-100%). Clinically important serotypes, O157:H7 (stx 2c , eae) and O26:H11 (stx 1a , eae), were recovered from two pigs at sites C and A, respectively. The most common serotype isolated was O59:H21 (stx 2e ), which was particularly prevalent in site B as it was recovered from all STEC positive pigs (n=39). Each cohort showed different patterns of STEC shedding, which were associated with the prevalent serotype. The median shedding duration of STEC in pigs was 28days, consistent with our prior study. However, among pigs shedding O59:H21 at least once, pigs in cohort B2 had a significantly longer shedding duration of 42days (P<0.05) compared to other cohorts. Stx2e was the most commonly observed stx variant in finishing pigs (93.9%), in accordance with the previous studies. Stx2e has been reported to be significantly associated with edema disease in pigs, however, the pathogenicity in humans warrants further investigations. Nonetheless, our findings affirm that pigs are an important reservoir for human STEC infections, and that the circulating serotypes in a cohort and site management factors may significantly affect the prevalence of STEC. Molecular characterization of STEC isolates and epidemiological studies to identify risk factors for shedding in pigs are strongly warranted to further address the

  18. Novel Feruloyl Esterase from Lactobacillus fermentum NRRL B-1932 and Analysis of the Recombinant Enzyme Produced in Escherichia coli.

    Science.gov (United States)

    Liu, Siqing; Bischoff, Kenneth M; Anderson, Amber M; Rich, Joseph O

    2016-09-01

    A total of 33 Lactobacillus strains were screened for feruloyl esterase (FE) activity using agar plates containing ethyl ferulate as the sole carbon source, and Lactobacillus fermentum NRRL B-1932 demonstrated the strongest FE activity among a dozen species showing a clearing zone on the opaque plate containing ethyl ferulate. FE activities were monitored using high-performance liquid chromatography with an acetonitrile-trifluoroacetic acid gradient. To produce sufficient purified FE from L. fermentum strain NRRL B-1932 (LfFE), the cDNA encoding LfFE (Lffae) was amplified and cloned by using available closely related genome sequences and overexpressed in Escherichia coli A 29.6-kDa LfFE protein was detected from the protein extract of E. coli BL21(pLysS) carrying pET28bLffae upon IPTG (isopropyl-β-d-thiogalactopyranoside) induction. The recombinant LfFE containing a polyhistidine tag was purified by nickel-nitrilotriacetic acid affinity resin. The purified LfFE showed strong activities against several artificial substrates, including p-nitrophenyl acetate and 4-methylumbelliferyl p-trimethylammoniocinnamate chloride. The optimum pH and temperature of the recombinant LfFE were around 6.5 and 37°C, respectively, as determined using either crude or purified recombinant LfFE. This study will be essential for the production of the LfFE in E. coli on a larger scale that could not be readily achieved by L. fermentum fermentation. The production of feruloyl esterase (FE) from Lactobacillus fermentum NRRL B-1932 reported in this study will have immense potential commercial applications not only in biofuel production but also in pharmaceutical, polymer, oleo chemical, cosmetic additive, and detergent industries, as well as human health-related applications, including food flavoring, functional foods, probiotic agents, preventive medicine, and animal feed. Given the essential role FE plays in the production of hydroxycinnamic acids and ferulic acid, plus the generally

  19. House Flies in the Confined Cattle Environment Carry Non-O157 Shiga Toxin-Producing Escherichia coli.

    Science.gov (United States)

    Puri-Giri, R; Ghosh, A; Thomson, J L; Zurek, L

    2017-05-01

    Cattle manure is one of the primary larval developmental habitats of house flies, Musca domestica (L.). Cattle serve as asymptomatic reservoirs of Shiga toxin-producing Escherichia coli (STEC), and bacteria are released into the environment in cattle feces. The USDA-FSIS declared seven STEC serogroups (O157, O26, O45, O103, O145, O121, and O111) as adulterants in beef products. In addition, the serogroup O104 was a culprit of a large outbreak in Germany in 2011. Our study aimed to assess the prevalence of seven non-O157 STEC (O26, O45, O145, O103, O121, O111, and O104) serogroups in adult house flies. Flies (n = 463) were collected from nine feedlots and three dairy farms in six states in the United States and individually processed. This involved a culturing approach with immunomagnetic separation followed by multiplex polymerase chain reactions for detection of individual serogroups and virulence traits. The concentration of bacteria on modified Possé agar ranged between 1.0 × 101 and 7.0 × 107 (mean: 1.5 ± 0.3 × 106) CFU/fly. Out of 463 house flies, 159 (34.3%) carried one or more of six E. coli serogroups of interest. However, STEC was found in 1.5% of house flies from feedlots only. These were E. coli O103 and O104 harboring stx1 and ehxA and E. coli O45 with stx1, eae, and ehxA. This is the first study reporting the isolation of non-O157 STEC in house flies from the confined cattle environment and indicating a potential role of this insect as a vector and reservoir of non-O157 STEC in confined beef cattle. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Whole-Genome Characterization and Strain Comparison of VT2f-Producing Escherichia coli Causing Hemolytic Uremic Syndrome.

    NARCIS (Netherlands)

    Grande, Laura; Michelacci, Valeria; Bondì, Roslen; Gigliucci, Federica; Franz, Eelco; Badouei, Mahdi Askari; Schlager, Sabine; Minelli, Fabio; Tozzoli, Rosangela; Caprioli, Alfredo; Morabito, Stefano

    2016-01-01

    Verotoxigenic Escherichia coli infections in humans cause disease ranging from uncomplicated intestinal illnesses to bloody diarrhea and systemic sequelae, such as hemolytic uremic syndrome (HUS). Previous research indicated that pigeons may be a reservoir for a population of verotoxigenic E. coli

  1. Adaptive responses to cefotaxime treatment in ESBL-producing Escherichia coli and the possible use of significantly regulated pathways as novel secondary targets

    DEFF Research Database (Denmark)

    Møller, Thea S. B.; Rau, Martin Holm; Bonde, Charlotte S

    2016-01-01

    The aim of the study was to determine how ESBL-producing Escherichia coli change the expression of metabolic and biosynthesis genes when adapting to inhibitory concentrations of cefotaxime. Secondly, it was investigated whether significantly regulated pathways constitute putative secondary targets......-fold). Inhibition and/or mutations in other genes that were significantly regulated, belonging to energy synthesis, purine synthesis, proline uptake or potassium uptake, also rendered the resistant bacteria more susceptible to cefotaxime. The results show that ESBL-producing E. coli adapt to treatment...

  2. Comparison of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Drinking Well Water and Pit Latrine Wastewater in a Rural Area of China

    Directory of Open Access Journals (Sweden)

    Hongna Zhang

    2016-01-01

    Full Text Available The present study was conducted to gain insights into the occurrence and characteristics of extended-spectrum beta-lactamase- (ESBL- producing Escherichia coli (E. coli from drinking well water in the rural area of Laiwu, China, and to explore the role of the nearby pit latrine as a contamination source. ESBL-producing E. coli from wells were compared with isolates from pit latrines in the vicinity. The results showed that ESBL-producing E. coli isolates, with the same antibiotic resistance profiles, ESBL genes, phylogenetic group, plasmid replicon types, and enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR fingerprints, were isolated from well water and the nearby pit latrine in the same courtyard. Therefore, ESBL-producing E. coli in the pit latrine may be a likely contributor to the presence of ESBL-producing E. coli in rural well water.

  3. Growth of enterotoxigenic Staphylococcus aureus in povi masima, a traditional Pacific island food.

    Science.gov (United States)

    Wong, T L; Whyte, R J; Graham, C G; Saunders, D; Schumacher, J; Hudson, J A

    2004-01-01

    To obtain preliminary data on the microbiology and hurdles to pathogen growth in the traditional Pacific Island food, povi masima, which is essentially beef brisket cured in brine. Six containers of povi masima were prepared and two were inoculated with five enterotoxigenic strains of Staphyloccocus aureus. The povi masima were divided into two lots each containing two uninoculated control and an inoculated container. Lot 1 was incubated at room temperature (20 degrees C) and lot 2 under refrigeration (4-5 degrees C) for up to 98 days. During storage, samples were removed and tested for aerobic plate count, coagulase-producing Staphylococci, Clostridium perfringens, staphylococcal enterotoxin and various chemical parameters of the food. Coagulase-producing Staphylococci and aerobic plate counts grew to high levels in both the inoculated and uninoculated lots stored at room temperature, but enterotoxin was only detected at one time point in these lots and this may represent a false positive result. The concentration of NaCl in the meat increased with time as concentrations equilibrated, and nitrite was rapidly lost in those lots stored at room temperature. Storage at 4-5 degrees C prevented proliferation of coagulase-producing Staphylococci. For safe curing and storage, this food should be kept under refrigeration as this prevented growth of staphylococci. Optimum storage would also be achieved with improved attempts to ensure equal distribution of NaCl prior to storage. Under conditions traditionally used to cure and store this food, enterotoxigenic staphylococci can grow to numbers where toxigenesis might occur, especially during the early stages of curing where the salt has not diffused from the brine into the meat.

  4. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets

    NARCIS (Netherlands)

    Konstantinov, S.R.; Smidt, H.; Akkermans, A.D.L.; Casini, L.; Trevisi, P.; Mazzoni, M.; Filippi, de S.; Bosi, P.; Vos, de W.M.

    2008-01-01

    The microbial community in the guts of mammals is often seen as an important potential target in therapeutic and preventive interventions. The aim of the present study was to determine whether enterotoxigenic Escherichia coli (ETEC) F4 infection in young animals might be counteracted by a probiotic

  5. FREQUENCY AND DISTRIBUTION OF DIARRHOEAGENIC ESCHERICHIA COLI STRAINS ISOLATED FROM PEDIATRIC PATIENTS WITH DIARRHOEA IN BOSNIA AND HERZEGOVINA

    OpenAIRE

    Dedeić-Ljubović, AmeLa; Hukić, Mirsada; Bekić, DaRia; Zvizdić, AmrA

    2009-01-01

    Diarrhoeal disease is a major cause of illness and death among infants and young children worldwide. Among the Escherichia coli (E. coli) causing intestinal diseases, there are six well-described categories: enteroaggregative E. coli (EAEC), diffusely adherent E. coli (DAEC), enteroinvasive E. coli (EIEC), entero-pathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC) and enterotoxigenic E. coli (ETEC).

  6. Conjugative IncFI plasmids carrying CTX-M-15 among Escherichia coli ESBL producing isolates at a University hospital in Germany

    Directory of Open Access Journals (Sweden)

    Hain Torsten

    2009-06-01

    Full Text Available Abstract Background Multi-drug-resistant, extended-spectrum β-lactamase (ESBL-producing Enterobacteriaceae, constitute an emerging public-health concern. Little data on the molecular epidemiology of ESBL producing Escherichia coli is available in Germany. Here we describe the prevalence and molecular epidemiology of ESBL producing-Escherichia coli isolates at a German University hospital. Methods We analysed 63 non-duplicate clinical ESBL isolates obtained over an 8-month period using PCR and sequence-based ESBL allele typing, plasmid replicon typing, phylogenetic group typing. Pulsed-field gel electrophoresis (PFGE based genotyping and plasmid profiling was performed, as well as confirmatory DNA-based hybridization assays. Results Examination of the 63 Escherichia coli isolates revealed an almost equal distribution among the E. coli phylogenetic groups A, B1, B2 and D. High prevalence (36/63 of the CTX-M-15 gene was observed and an analysis of PFGE-based patterns revealed the presence of this CTX-M allele in multiple clones. Resistance to cefotaxime was a transferable trait and a commonly occurring 145.5 kb conjugative IncFI plasmid was detected in 65% of E. coli carrying the CTX-M-15 allele. The rate of transferable antibiotic resistances for GM, SXT, TET, GM-SXT-TET, SXT-TET and GM-TET was 33%, 61%, 61%, 27%, 44% and 11%, respectively. The remaining strains did not have a common IncFI plasmid but harboured transferable IncFI plasmids with sizes that ranged from 97 to 242.5 kb. Conclusion Our data demonstrate the presence of IncFI plasmids within the prevailing E. coli population in a hospital setting and suggest that the dissemination of CTX-M-15 allele is associated to lateral transfer of these well-adapted, conjugative IncFI plasmids among various E. coli genotypes.

  7. Risk factors associated with faecal shedding of verocytotoxin-producing Escherichia coli O157 in eight known-infected Danish dairy herds

    DEFF Research Database (Denmark)

    Rugbjerg, Helene; Nielsen, Eva Møller; Andersen, Jens Strodl

    2003-01-01

    A risk-factor study was performed in eight dairy herds found to excrete verocytotoxin-producing Escherichia coli (VTEC) O157 in a former prevalence study. Associations between excretion of VTEC O157 and management factors such as housing and feeding were analysed in a generalised linear mixed mod...... days with the mother after calving. Calves aged 5-24 months that had been moved within the last 2 weeks had a higher risk, but risk was reduced if fed barley silage. Cows fed grain or molasses had a higher risk of excreting VTEC O157....

  8. An abbreviated MLVA identifies Escherichia coli ST131 as the major extended-spectrum β-lactamase-producing lineage in the Copenhagen area

    DEFF Research Database (Denmark)

    Nielsen, J B; Albayati, A; Jørgensen, Rikke Lind

    2013-01-01

    with multilocus sequence typing (MLST) for typing cefpodoxime-resistant Escherichia coli (E. coli). Further, we identified the causative resistance mechanisms and epidemiological type of infection for isolates producing extended-spectrum β-lactamases (ESBLs). A collection of E. coli resistant to cefpodoxime...... community-onset infections (COI), regardless of the ST. Patients with COI were significantly more often of female gender and younger age compared to healthcare-associated infections (HCAI) and hospital-onset infections (HOI). In conclusion, the modified MLVA is a useful tool for the rapid typing of E. coli...

  9. Prevalence of Class D Carbapenemases among Extended-Spectrum β-Lactamases Producing Escherichia coli Isolates from Educational Hospitals in Shahrekord

    Science.gov (United States)

    Damavandi, Mohammad-Sadegh; Latif Pour, Mohammad

    2016-01-01

    Introduction Extended-spectrum β-lactamases (ESBLs) are a set of plasmid-borne, various and quickly evolving enzymes that are a main therapeutic issue now-a-days for inpatient and outpatient treatment. Aim The aim of this study was to determine multi-drug resistance (MDR) and ESBLs producing E. coli strains, prevalence of class D Carbapenemases among ESBLs producing Escherichia coli isolates from educational hospitals in Shahrekord, Iran. Materials and Methods Uropathogenic Escherichia coli strains were isolated from patients with Urinary Tract Infections (UTIs). The agar disc diffusion test was used to characterize the antimicrobial sensitivity of the E. coli isolates. The ESBL positive strains were identified by phenotypic double-disk synergy test, by third-generation cephalosporin in combination with or without clavulanic acid. Multiplex PCR was carried out for detection of the three families of OXA-type carbapenamases including OXA-23, OXA-24, and OXA-48 in E. coli strains. Results All bacterial isolates were susceptible to meropenem. Ninety isolates produced ESBL, 55 E. coli isolates from inpatients, and 35 isolates from outpatients, with a significant association (presistance in E. coli isolates. PMID:27462579

  10. Prevalence and Characterization of Cephalosporin Resistance in Nonpathogenic Escherichia coli from Food-Producing Animals Slaughtered in Poland

    DEFF Research Database (Denmark)

    Wasyl, Dariusz; Hasman, Henrik; Cavaco, Lina

    2012-01-01

    The prevalence of Escherichia coli with putative extended-spectrum cephalosporin resistance was assessed in cattle, pigs, broilers, layers, and turkey slaughtered in Poland. The occurrence of random E. coli isolates recovered from MacConkey agar plates with non–wild-type minimal inhibitory...... concentrations for cefotaxime and ceftazidime reached 0.6% in layers, 2.3% in turkey, and 4.7% in broilers, whereas all cattle and pigs isolates fell into the wild-type subpopulation. The use of MacConkey agar supplemented with cefotaxime (2 mg/L) increased the recovery of resistant strains up to 33...

  11. Synthesis of silver nanoparticles using the Streptomyces coelicolor klmp33 pigment: An antimicrobial agent against extended-spectrum beta-lactamase (ESBL) producing Escherichia coli

    International Nuclear Information System (INIS)

    Manikprabhu, Deene; Lingappa, K.

    2014-01-01

    The increasing emergence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (E. coli) occurred mainly due to continuous persistent exposure to antibiotics causing high morbidity and mortality so studies in controlling this infection are required. In the present investigation, we developed a synthesis for silver nanoparticles employing a pigment produced by Streptomyces coelicolor klmp33, and assessed the antimicrobial activity of these nanoparticles against ESBL producing E. coli. The ESBL producing E. coli were isolated from urine samples collected from the Gulbarga region in India. As can been seen from our studies, the silver nanoparticles having irregular shapes and size of 28–50 nm showed remarkable antimicrobial activity and moreover the synthesis time is just 20 min and thus the same can be used for formulating pharmaceutical remedies. - Highlights: • Silver nanoparticle synthesis by photo-irradiation method in just 20 min • Isolation of ESBL producing E. coli from urine samples from the Gulbarga region. • Antimicrobial activity of silver nanoparticles against ESBL producing E. coli • The minimum inhibitory concentration of silver nanoparticles against ESBL producing E. coli was 40 μL

  12. Antibiotic Susceptibilities and Genetic Characteristics of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Stools of Pediatric Diarrhea Patients in Surabaya, Indonesia.

    Science.gov (United States)

    Bagus Wasito, Eddy; Shigemura, Katsumi; Osawa, Kayo; Fardah, Alpha; Kanaida, Akiho; Raharjo, Dadik; Kuntaman, K; Hadi, Usman; Harijono, Sugeng; Marto Sudarmo, Subijanto; Nakamura, Tatsuya; Shibayama, Keigo; Fujisawa, Masato; Shirakawa, Toshiro

    2017-07-24

    The purpose of this study was to investigate extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates from pediatric (aged 0 to 3 years) diarrhea patients in Surabaya, Indonesia, where this kind of survey is rare; our study included assessment of their antibiotic susceptibilities, as well as ESBL typing, multilocus sequence typing (MLST), and diarrheagenic E. coli (DEC)-typing. ESBL-producing E. coli were detected in 18.8% of all the samples. Many ESBL-producing E. coli had significantly lower susceptibility to gentamicin (p < 0.0001) and the quinolones nalidixic acid (p=0.004) and ciprofloxacin (p < 0.0001) than non-producers. In ESBL-producing E. coli, 84.0% of strains expressed CTX-M-15 alone or in combination with other ESBL types. MLST revealed that 24.0% of ESBL-producers had sequence type 617, all of which expressed the CTX-M-15 gene; we also detected expression of 3 DEC-related genes: 2 enteroaggregative E. coli genes and 1 enteropathogenic E. coli gene. In conclusion, CTX-M-15-type ESBL-producing E. coli ST617 appear to have spread to Indonesia.

  13. Synthesis of silver nanoparticles using the Streptomyces coelicolor klmp33 pigment: An antimicrobial agent against extended-spectrum beta-lactamase (ESBL) producing Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Manikprabhu, Deene; Lingappa, K., E-mail: lingappak123@gmail.com

    2014-12-01

    The increasing emergence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (E. coli) occurred mainly due to continuous persistent exposure to antibiotics causing high morbidity and mortality so studies in controlling this infection are required. In the present investigation, we developed a synthesis for silver nanoparticles employing a pigment produced by Streptomyces coelicolor klmp33, and assessed the antimicrobial activity of these nanoparticles against ESBL producing E. coli. The ESBL producing E. coli were isolated from urine samples collected from the Gulbarga region in India. As can been seen from our studies, the silver nanoparticles having irregular shapes and size of 28–50 nm showed remarkable antimicrobial activity and moreover the synthesis time is just 20 min and thus the same can be used for formulating pharmaceutical remedies. - Highlights: • Silver nanoparticle synthesis by photo-irradiation method in just 20 min • Isolation of ESBL producing E. coli from urine samples from the Gulbarga region. • Antimicrobial activity of silver nanoparticles against ESBL producing E. coli • The minimum inhibitory concentration of silver nanoparticles against ESBL producing E. coli was 40 μL.

  14. Triosephosphate isomerase is a common crystallization contaminant of soluble His-tagged proteins produced in Escherichia coli

    International Nuclear Information System (INIS)

    Kozlov, Guennadi; Vinaik, Roohi; Gehring, Kalle

    2013-01-01

    Crystals of E. coli triosephosphate isomerase were obtained as a contaminant and its structure was determined to 1.85 Å resolution. Attempts to crystallize several mammalian proteins overexpressed in Escherichia coli revealed a common contaminant, triosephosphate isomerase, a protein involved in glucose metabolism. Even with triosephosphate isomerase present in very small amounts, similarly shaped crystals appeared in the crystallization drops in a number of polyethylene glycol-containing conditions. All of the target proteins were His-tagged and their purification involved immobilized metal-affinity chromatography (IMAC), a step that was likely to lead to triosephosphate isomerase contamination. Analysis of the triosephosphate isomerase crystals led to the structure of E. coli triosephosphate isomerase at 1.85 Å resolution, which is a significant improvement over the previous structure

  15. Characteristics of cytotoxic necrotizing factor and cytolethal distending toxin producing Escherichia coli strains isolated from meat samples in Northern Ireland.

    Science.gov (United States)

    Kadhum, H J; Ball, H J; Oswald, E; Rowe, M T

    2006-08-01

    Swabs collected from pig, lamb and beef carcasses and samples of pork, lamb and beef mince were cultured for Escherichia coli strains. Strains harbouring cytotoxic necrotizing factors (CNF1 and 2) and cytolethal distending toxins (CDT-I,-II,-III and -IV) were identified in plate cultures of the isolates by colony hybridization with labelled probes and multiplex PCR assays. Simplex and multiplex PCR assays were used to further characterize the isolates to determine the presence of P, S and F17 fimbriae as well as afimbrial adhesins and haemolysin. The serotype was also determined where possible. Thirty strains with the capacity to code for CNF (4), CDT (24) or both (2) were isolated and characterized, and a wide range of associated factor patterns was observed. The methods utilized were successful in demonstrating the detection of viable strains with potentially significant pathogenic factors from human food sources.

  16. Quantification of plasmid DNA reference materials for Shiga toxin-producing Escherichia coli based on UV, HR-ICP-MS and digital PCR.

    Science.gov (United States)

    Liang, Wen; Xu, Li; Sui, Zhiwei; Li, Yan; Li, Lanying; Wen, Yanli; Li, Chunhua; Ren, Shuzhen; Liu, Gang

    2016-01-01

    The accuracy and metrology traceability of DNA quantification is becoming a critical theme in many fields, including diagnosis, forensic analysis, microorganism detection etc. Thus the research of DNA reference materials (RMs) and consistency of DNA quantification methods has attracted considerable research interest. In this work, we developed 3 plasmid candidate RMs, containing 3 target genes of Escherichia coli O157:H7 (E. coli O157:H7) and other Shiga toxin-producing Escherichia coli (STEC): stx1, stx2, and fliC (h7) respectively. Comprehensive investigation of the plasmid RMs was performed for their sequence, purity, homogeneity and stability, and then the concentration was quantified by three different methods: ultraviolet spectrophotometer (UV), high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and digital PCR. As a routinely applied method for DNA analysis, UV was utilized for the quantification (OD260) and purity analysis for the plasmids. HR-ICP-MS quantified the plasmid DNA through analysing the phosphorus in DNA molecules. Digital PCR distributed the DNA samples onto a microarray chip containing thousands of reaction chambers, and quantified the DNA copy numbers by analysing the number of positive signals without any calibration curves needed. Based on the high purification of the DNA reference materials and the optimization of dPCR analysis, we successfully achieved good consistency between UV, HR-ICP-MS and dPCR, with relative deviations lower than 10 %. We then performed the co-quantification of 3 DNA RMs with three different methods together, and the uncertainties of their concentration were evaluated. Finally, the certified values and expanded uncertainties for 3 DNA RMs (pFliC, pStx1 and pStx2) were (1.60 ± 0.10) × 10(10) copies/μL, (1.53 ± 0.10) × 10(10) copies/μL and (1.70 ± 0.11) × 10(10) copies/μL respectively.Graphical abstractWe developed 3 plasmid candidate RMs, containing 3 target genes of

  17. Prevalence and characterization of Listeria monocytogenes, Salmonella and Shiga toxin-producing Escherichia coli isolated from small Mexican retail markets of queso fresco.

    Science.gov (United States)

    Soto Beltran, Marcela; Gerba, Charles P; Porto Fett, Anna; Luchansky, John B; Chaidez, Cristobal

    2015-01-01

    Queso fresco (QF) is a handmade cheese consumed and produced in Latin America. In Mexico, QF production is associated with a microbiological risk. The aim of the study was to determine the incidence and characterization of Listeria monocytogenes, Salmonella spp., and Shiga toxin-producing Escherichia coli (STEC) in QF from retail markets of the north-western State of Sinaloa, Mexico, and to assess the effect of physicochemical parameters on Listeria presence. A total of 75 QF samples were obtained. L. monocytogenes, E. coli, and coliforms were detected in 9.3, 94, and 100%, respectively. Salmonella was not detected. STEC isolates showed virulence genes. Microbial loads were above the maximum values recommended by the Official Mexican Standards. Physicochemical parameters such as water activity (aw), moisture content, pH, and salinity played a role in Listeria prevalence in QF. Rigorous control in QF made in Culiacan, Mexico is needed to reduce the risk of foodborne pathogens.

  18. Spread of Extended Spectrum Cephalosporinase-Producing Escherichia coli Clones and Plasmids from Parent Animals to Broilers and to Broiler Meat in a Production Without Use of Cephalosporins

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Jensen, Jacob Dyring; Hasman, Henrik

    2014-01-01

    Objectives: This study investigated the occurrence of extended spectrum cephalosporinase (ESC)–producing Escherichia coli in a broiler production with no cephalosporin use and a low use of antimicrobials in general. Furthermore, it investigated whether the current consumption of aminopenicillins....... Isolates with blaCMY-2 were subtyped by pulsed-field gel electrophoresis (PFGE), phylotyping, and antimicrobial susceptibility testing. Selected isolates were used as donors in filter-mating experiments, multilocus sequence typing (MLST), and plasmid replicons were typed. Aminopenicillin use at the farm...... (not flock) level was obtained from VetStat, a database for mandatory registration of veterinary prescriptions in Denmark. Results: ESC-producing E. coli occurred in 93% (27/29) of broiler parent farms in 2011, 27% (53/197) of broiler flocks in 2010, and 3.3% (4/121) of Danish retail broiler meat...

  19. Prevalence and Antibiotic Susceptibility Patterns of Extended-Spectrum ß-Lactamase and Metallo-ß-Lactamase-Producing Uropathogenic Escherichia coli Isolates.

    Science.gov (United States)

    Ghadiri, Hamed; Vaez, Hamid; Razavi-Azarkhiavi, Kamal; Rezaee, Ramin; Haji-Noormohammadi, Mehdi; Rahimi, Ali Asghar; Vaez, Vahid; Kalantar, Enayatollah

    2014-01-01

    Healthcare professionals worldwide have expressed concern over infections by extended-spectrum ß-lactamase (ESBL) and metallo-ß-lactamase (MBL)-producing bacteria. We evaluated the prevalence of ESBL- and MBL-producing Escherichia coli (E. coli) isolated from community-acquired urinary tract infections (UTIs) and their antibiotic-resistance profiles at 3 private laboratories in Tehran, Iran. E. coli isolates were mostly susceptible to meropenem (90.4%) and imipenem (90.0%), followed by amikacin (89.0%) and gentamicin (84.7%). Moreover, we detected that, of the E. coli isolates, 67 (22.3%) were ESBL producers and 21 (7.0%) of E. coli isolates were MBL positive via the imipenem-ethylenediaminetetraacetic acid (EDTA) combined disc test. This report is the first, to our knowledge, on the prevalence of MBL-producing uropathogenic E. coli (UPEC) strains in Iran. The antibiotic resistance of E. coli isolates revealed that 122 (40.7%) were multidrug resistant. The high number of antibiotic-resistant and ß-lactamase-producing UPEC strains necessitates further attention and consideration, particularly MBL-producing strains. Copyright© by the American Society for Clinical Pathology (ASCP).

  20. Characterization of Multidrug Resistant Extended-Spectrum Beta-Lactamase-Producing Escherichia coli among Uropathogens of Pediatrics in North of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Rezai

    2015-01-01

    Full Text Available Escherichia coli remains as one of the most important bacteria causing infections in pediatrics and producing extended-spectrum beta-lactamases (ESBLs making them resistant to beta-lactam antibiotics. In this study we aimed to genotype ESBL-producing E. coli isolates from pediatric patients for ESBL genes and determine their association with antimicrobial resistance. One hundred of the E. coli isolates were initially considered ESBL producing based on their MIC results. These isolates were then tested by polymerase chain reaction (PCR for the presence or absence of CTX, TEM, SHV, GES, and VEB beta-lactamase genes. About 30.5% of isolated E. coli was ESBL-producing strain. The TEM gene was the most prevalent (49% followed by SHV (44%, CTX (28%, VEB (8%, and GES (0% genes. The ESBL-producing E. coli isolates were susceptible to carbapenems (66% and amikacin (58% and showed high resistance to cefixime (99%, colistin (82%, and ciprofloxacin (76%. In conclusion, carbapenems were the most effective antibiotics against ESBl-producing E. coli in urinary tract infection in North of Iran. The most prevalent gene is the TEM-type, but the other resistant genes and their antimicrobial resistance are on the rise.

  1. Carbapenem MICs in Escherichia coli and Klebsiella Species Producing Extended-Spectrum β-Lactamases in Critical Care Patients from 2001 to 2009.

    Science.gov (United States)

    Johnson, J Kristie; Robinson, Gwen L; Pineles, Lisa L; Ajao, Adebola O; Zhao, LiCheng; Albrecht, Jennifer S; Harris, Anthony D; Thom, Kerri A; Furuno, Jon P

    2017-04-01

    Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae strains are increasing in prevalence worldwide. Carbapenem antibiotics are used as a first line of therapy against ESBL-producing Enterobacteriaceae We examined a cohort of critical care patients for gastrointestinal colonization with carbapenem-resistant ESBL-producing strains (CR-ESBL strains). We cultured samples from this cohort of patients for ESBL-producing Klebsiella spp. and Escherichia coli and then tested the first isolate from each patient for susceptibility to imipenem, doripenem, meropenem, and ertapenem. Multilocus sequence typing was performed on isolates that produced an ESBL and that were carbapenem resistant. Among all patients admitted to an intensive care unit (ICU), 4% were positive for an ESBL-producing isolate and 0.64% were positive for a CR-ESBL strain on surveillance culture. Among the first ESBL-producing E. coli and Klebsiella isolates from the patients' surveillance cultures, 11.2% were carbapenem resistant. Sequence type 14 (ST14), ST15, ST42, and ST258 were the dominant sequence types detected in this cohort of patients, with ST15 and ST258 steadily increasing in prevalence from 2006 to 2009. Patients colonized by a CR-ESBL strain were significantly more likely to receive antipseudomonal and anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) therapy prior to ICU admission than patients colonized by carbapenem-susceptible ESBL-producing strains. They were also significantly more likely to have received a cephalosporin or a carbapenem antibiotic than patients colonized by carbapenem-susceptible ESBL-producing strains. In conclusion, in a cohort of patients residing in intensive care units within the United States, we found that 10% of the isolates were resistant to at least one carbapenem antibiotic. The continued emergence of carbapenem-resistant ESBL-producing strains is of significant concern, as infections due to these organisms are notoriously difficult to

  2. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development.

    Science.gov (United States)

    Yang, Shih-Chun; Lin, Chih-Hung; Aljuffali, Ibrahim A; Fang, Jia-You

    2017-08-01

    Food contamination by pathogenic microorganisms has been a serious public health problem and a cause of huge economic losses worldwide. Foodborne pathogenic Escherichia coli (E. coli) contamination, such as that with E. coli O157 and O104, is very common, even in developed countries. Bacterial contamination may occur during any of the steps in the farm-to-table continuum from environmental, animal, or human sources and cause foodborne illness. To understand the causes of the foodborne outbreaks by E. coli and food-contamination prevention measures, we collected and investigated the past 10 years' worldwide reports of foodborne E. coli contamination cases. In the first half of this review article, we introduce the infection and symptoms of five major foodborne diarrheagenic E. coli pathotypes: enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli/enterohemorrhagic E. coli (STEC/EHEC), Shigella/enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC), and enterotoxigenic E. coli (ETEC). In the second half of this review article, we introduce the foodborne outbreak cases caused by E. coli in natural foods and food products. Finally, we discuss current developments that can be applied to control and prevent bacterial food contamination.

  3. Prevalence and characterization of extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in ready-to-eat vegetables.

    Science.gov (United States)

    Kim, Hong-Seok; Chon, Jung-Whan; Kim, Young-Ji; Kim, Dong-Hyeon; Kim, Mu-sang; Seo, Kun-Ho

    2015-08-17

    The objective of this investigation was to determine the prevalence and characteristics of extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae in ready-to-eat (RTE) vegetables. A total of 189 RTE vegetable samples (91 sprouts and 98 mixed salads) were collected in a retail market in South Korea from October 2012 to February 2013. The prevalence of ESBL-producing E. coli and K. pneumoniae was 10.1%. Of these, 94.7% were from the sprout samples. All isolates were resistant to cefotaxime, and many of the ESBL producers were also resistant to non-β-lactam antibiotics, including gentamicin, trimethoprim/sulfamethoxazole, and ciprofloxacin (73.7%, 63.2%, and 26.3% respectively). TEM-1, SHV-1, -2, -11, -12, -27, -28 and -61, and CTX-M-14, -15 and -55 β-lactamases were detected alone or in combination. The genetic platforms of all CTX-M producing isolates were ISEcp1-blaCTX-M-orf477 and ISEcp1-blaCTX-M-IS903 in CTX-M groups 1 and 9, respectively. To our knowledge, this is the first report of the prevalence and characterization of ESBL-producing E. coli and K. pneumoniae isolated from RTE vegetables. The results of this study indicate that RTE vegetables, sprouts, in particular, may play a role in spreading antimicrobial resistant bacteria and ESBL genes to humans. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Prevalence of Staphylococcus aureus Isolated From Various Foods of Animal Origin in Kırşehir, Turkey and Their Enterotoxigenicity

    Directory of Open Access Journals (Sweden)

    M. Dilek Avşaroğlu

    2016-12-01

    Full Text Available The aim of this study was to detect Staphylococcus aureus contamination to different types of animal origin foods collected in the Kırşehir province of Turkey and to examine their enterotoxin production ability. Out of 120 food samples 38 suspected colonies were obtained and 23 of them were identified as S. aureus by biochemical and molecular analyses. Other species detected were S. chromogenes, S. cohnii ssp. cohnii, S. hominis, S. lentus, S. warneri, and S. xylosus. The isolates were also analysed with regard to carry mecA gene. None of them was found to have mecA gene indicating susceptibility to methicillin. To determine the enterotoxigenic ability of the isolates phenotypically, reversed-passive-latex-agglutination test against SEA-SED was used. Six out of 23 S. aureus isolates were determined to produce SEA, SEC and SED. Three of them had only one enterotoxin production, whereas others had SEA and SED production together. The results of phenotypic analyses were confirmed by PCR based examination. None of the coagulase-negative staphylococci were found to be enterotoxigenic by both phenotypical and PCR-based analyses. In conclusion, enterotoxigenic S. aureus is a risk in foods of animal origin in Kırşehir and its counties.

  5. Purification of inclusion bodies using PEG precipitation under denaturing conditions to produce recombinant therapeutic proteins from Escherichia coli.

    Science.gov (United States)

    Chen, Huanhuan; Li, Ninghuan; Xie, Yueqing; Jiang, Hua; Yang, Xiaoyi; Cagliero, Cedric; Shi, Siwei; Zhu, Chencen; Luo, Han; Chen, Junsheng; Zhang, Lei; Zhao, Menglin; Feng, Lei; Lu, Huili; Zhu, Jianwei

    2017-07-01

    It has been documented that the purification of inclusion bodies from Escherichia coli by size exclusion chromatography (SEC) may benefit subsequent refolding and recovery of recombinant proteins. However, loading volume and the high cost of the column limits its application in large-scale manufacturing of biopharmaceutical proteins. We report a novel process using polyethylene glycol (PEG) precipitation under denaturing conditions to replace SEC for rapid purification of inclusion bodies containing recombinant therapeutic proteins. Using recombinant human interleukin 15 (rhIL-15) as an example, inclusion bodies of rhIL-15 were solubilized in 7 M guanidine hydrochloride, and rhIL-15 was precipitated by the addition of PEG 6000. A final concentration of 5% (w/v) PEG 6000 was found to be optimal to precipitate target proteins and enhance recovery and purity. Compared to the previously reported S-200 size exclusion purification method, PEG precipitation was easier to scale up and achieved the same protein yields and quality of the product. PEG precipitation also reduced manufacturing time by about 50 and 95% of material costs. After refolding and further purification, the rhIL-15 product was highly pure and demonstrated a comparable bioactivity with a rhIL-15 reference standard. Our studies demonstrated that PEG precipitation of inclusion bodies under denaturing conditions holds significant potential as a manufacturing process for biopharmaceuticals from E. coli protein expression systems.

  6. Molecular characterization and antimicrobial susceptibility profile of New Delhi metallo-beta-lactamase-1-producing Escherichia coli among hospitalized patients

    Directory of Open Access Journals (Sweden)

    Anjali Agarwal

    2018-01-01

    CONCLUSION: There is an increased prevalence of NDM-1 gene-producing E. coli isolates. These carbapenemase-producing isolates are more resistant to other group of antibiotics (aminoglycosides, fluoroquinolones along with β-lactam group. Early detection of bla NDM-1 gene can help in choosing the effective treatment options for hospitalized patients in time, thereby reducing the risk of mortality.

  7. Effect of high pressure treatment on the survival of Shiga-Toxin producing Escherichia coli in strawberries

    Science.gov (United States)

    Most fresh produce, such as strawberries, receives minimal processing and is often eaten raw. Contamination of produce with pathogenic bacteria may occur during growth, harvest, processing, transportation, and storage and presents a serious public health risk. Strawberries have been implicated in ...

  8. Clinical and bacteriological effects of pivmecillinam for ESBL-producing Escherichia coli or Klebsiella pneumoniae in urinary tract infections

    DEFF Research Database (Denmark)

    Jansåker, Filip; Frimodt-Møller, Niels; Sjögren, Ingegerd

    2014-01-01

    The prevalence of urinary tract infections (UTIs) caused by extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is increasing and the therapeutic options are limited, especially in primary care. Recent indications have suggested pivmecillinam to be a suitable option. Here, we...... evaluated the clinical and bacteriological effects of pivmecillinam in UTIs caused by ESBL-producing Enterobacteriaceae....

  9. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE) : a prospective, multinational study

    NARCIS (Netherlands)

    Grundmann, Hajo; Glasner, Corinna; Albiger, Barbara; Aanensen, David M.; Tomlinson, Chris T.; Andrasevic, Arjana Tambic; Canton, Rafael; Carmeli, Yehuda; Friedrich, Alexander W.; Giske, Christian G.; Glupczynski, Youri; Gniadkowski, Marek; Livermore, David M.; Nordmann, Patrice; Poirel, Laurent; Rossolini, Gian M.; Seifert, Harald; Vatopoulos, Alkiviadis; Walsh, Timothy; Woodford, Neil; Monnet, Dominique L.

    Background Gaps in the diagnostic capacity and heterogeneity of national surveillance and reporting standards in Europe make it difficult to contain carbapenemase-producing Enterobacteriaceae. We report the development of a consistent sampling framework and the results of the first structured survey

  10. Escherichia coli F4 fimbriae specific lama single-domain antibody fragments effectively inhibit bacterial adhesion in vitro but poorly protect against diarrhea

    NARCIS (Netherlands)

    Harmsen, M.M.; Solt, van C.B.; Hoogendoorn, A.; Zijderveld, van F.G.; Niewold, T.A.; Meulen, van der J.

    2005-01-01

    Oral administration of polyclonal antibodies directed against enterotoxigenic Escherichia coli (ETEC) F4 fimbriae is used to protect against piglet post-weaning diarrhoea. For cost reasons, we aim to replace these polyclonal antibodies by recombinant llama single-domain antibody fragments (VHHs)

  11. Limited Dissemination of Extended-Spectrum β-Lactamase- and Plasmid-Encoded AmpC-Producing Escherichia coli from Food and Farm Animals, Sweden.

    Science.gov (United States)

    Börjesson, Stefan; Ny, Sofia; Egervärn, Maria; Bergström, Jakob; Rosengren, Åsa; Englund, Stina; Löfmark, Sonja; Byfors, Sara

    2016-04-01

    Extended-spectrum β-lactamase (ESBL)- and plasmid-encoded ampC (pAmpC)-producing Enterobacteriaceae might spread from farm animals to humans through food. However, most studies have been limited in number of isolates tested and areas studied. We examined genetic relatedness of 716 isolates from 4,854 samples collected from humans, farm animals, and foods in Sweden to determine whether foods and farm animals might act as reservoirs and dissemination routes for ESBL/pAmpC-producing Escherichia coli. Results showed that clonal spread to humans appears unlikely. However, we found limited dissemination of genes encoding ESBL/pAmpC and plasmids carrying these genes from foods and farm animals to healthy humans and patients. Poultry and chicken meat might be a reservoir and dissemination route to humans. Although we found no evidence of clonal spread of ESBL/pAmpC-producing E. coli from farm animals or foods to humans, ESBL/pAmpC-producing E. coli with identical genes and plasmids were present in farm animals, foods, and humans.

  12. Biologically active and C-amidated hinnavinII-38-Asn produced from a Trx fusion construct in Escherichia coli.

    Science.gov (United States)

    Kang, Chang Soo; Son, Seung-Yeol; Bang, In Seok

    2008-12-01

    The cabbage butterfly (Artogeia rapae) antimicrobial peptide hinnavinII as a member of cecropin family is synthesized as 37 residues in size with an amidated lysine at C-terminus and shows the humoral immune response to a bacterial invasion. In this work, a synthetic gene for hinnavinII-38-Asn (HIN) with an additional amino acid asparagine residue containing amide group at C-terminus was cloned into pET-32a(+) vector to allow expression of HIN as a Trx fusion protein in Escherichia coli strain BL21 (DE3) pLysS. The resulting expression level of the fusion protein Trx-HIN could reach 15-20% of the total cell proteins and more than 70% of the target proteins were in soluble form. The fusion protein could be purified successfully by HiTrap Chelating HP column and a high yield of 15 mg purified fusion protein was obtained from 80 ml E. coli culture. Recombinant HIN was readily obtained by enterokinase cleavage of the fusion protein followed by FPLC chromatography, and 3.18 mg pure active recombinant HIN was obtained from 80 ml culture. The molecular mass of recombinant HIN determined by MALDI-TOF mass spectrometer is 4252.084 Da which matches the theoretical mass (4252.0 Da) of HIN. Comparing the antimicrobial activities of the recombinant hinnavinII with C-amidated terminus to that without an amidated C-terminus, we found that the amide of asparagine at C-terminus of hinnavinII improved its potency on certain microorganism such as E. coli, Enterobacter cloacae, Bacillus megaterium, and Staphylococcus aureus.

  13. Predicting the concentration of verotoxin-producing Escherichia coli bacteria during processing and storage of fermented raw-meat sausages.

    Science.gov (United States)

    Quinto, E J; Arinder, P; Axelsson, L; Heir, E; Holck, A; Lindqvist, R; Lindblad, M; Andreou, P; Lauzon, H L; Marteinsson, V Þ; Pin, C

    2014-05-01

    A model to predict the population density of verotoxigenic Escherichia coli (VTEC) throughout the elaboration and storage of fermented raw-meat sausages (FRMS) was developed. Probabilistic and kinetic measurement data sets collected from publicly available resources were completed with new measurements when required and used to quantify the dependence of VTEC growth and inactivation on the temperature, pH, water activity (aw), and concentration of lactic acid. Predictions were compared with observations in VTEC-contaminated FRMS manufactured in a pilot plant. Slight differences in the reduction of VTEC were predicted according to the fermentation temperature, 24 or 34°C, with greater inactivation at the highest temperature. The greatest reduction was observed during storage at high temperatures. A population decrease greater than 6 decimal logarithmic units was observed after 66 days of storage at 25°C, while a reduction of only ca. 1 logarithmic unit was detected at 12°C. The performance of our model and other modeling approaches was evaluated throughout the processing of dry and semidry FRMS. The greatest inactivation of VTEC was predicted in dry FRMS with long drying periods, while the smallest reduction was predicted in semidry FMRS with short drying periods. The model is implemented in a computing tool, E. coli SafeFerment (EcSF), freely available from http://www.ifr.ac.uk/safety/EcoliSafeFerment. EcSF integrates growth, probability of growth, and thermal and nonthermal inactivation models to predict the VTEC concentration throughout FRMS manufacturing and storage under constant or fluctuating environmental conditions.

  14. Prevalence of extended-spectrum cephalosporinase (ESC)-producing Escherichia coli in Danish slaughter pigs and retail meat identified by selective enrichment and association with cephalosporin usage

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Aarestrup, Frank Møller; Pedersen, Karl

    2012-01-01

    OBJECTIVES: To investigate the prevalence of extended-spectrum cephalosporinase (ESC)-producing Escherichia coli in pigs at slaughter and retail meat, and possible associations with the consumption of third- and fourth-generation cephalosporins. METHODS: During 2009, faecal samples from Danish pigs...... (n = 786) were collected at slaughter, and 866 meat samples [Danish: pork (153), broiler meat (121) and beef (142); and imported: pork (173), broiler meat (193) and beef (84)] were randomly collected in retail stores and outlets. E. coli was isolated after enrichment in MacConkey broth.......7%–3.3% in other meat types. ESC E. coli from imported broiler meat (n = 69) contained blaCMY-2 (48%), blaCTX-M-1 (25%) and blaSHV-12 (16%). Without selective enrichment, no ESC E. coli from pigs and only 4.1% from imported broiler meat were found. CONCLUSIONS: The usage of cephalosporins for slaughter pigs may...

  15. Characterization of ESBL-producing Escherichia coli and Klebsiella pneumoniae strains isolated from urine of nonhospitalized patients in the Zagreb region

    Directory of Open Access Journals (Sweden)

    Branka Bedenić,

    2010-02-01

    Full Text Available Aim To determine the prevalence of ESBL-producing Escherichia coli and Klebsiella pneumoniae strains isolated from urine of nonhospitalized patients during a three-year period, to determine their antibiotic susceptibility, investigate the transfer of ESBL genes with cotransfer of resistance and to characterize isolated beta-lactamases. Methods Antimicrobial susceptibility was determined by disk diffusion and broth microdilution methods. The double-disk test was used for ESBL detection. Transfer of resistance was performed by broth mating method and characterization of isolated beta-lactamases by polymerase chain reaction. Results The prevalence of ESBL-producing E. coli was 1.5% and of K. pneumoniae 4.1% with its different distribution according to patients`age and gender. ESBL-producing K. pneumoniae showed high resistance rates to aminoglycosides, cotrimoxazole, nitrofurantoin and quinolones while ESBL-producing E. coli isolates, with exception of high aminoglycoside resistance, showed low resistance rates to other antibiotics. Successful conjugation of ESBL genes was obtained with 25% E. coli and 76.2% K. pneumoniae strains. Comparing to E. coli, K. pneumoniae strains showed higher rates of aminoglycosideand cotrimoxazole resistance cotransfer. Beta-lactamases of investigated strains belonged to TEM, SHV and CTX-M families.Conclusion The existence of multiple-resistant ESBL-producing E. coli and K. pneumoniae strains was confirmed in observed outpatient population. ESBL-producing K. pneumoniae isolates, in contrast toESBL-producing E. coli, showed higher resistance rates to non-beta-lactam antibiotics, probably caused by cotransfer of resistance genes located on the same plasmid as ESBL genes. It is important to monitor the prevalence of such strains and their possible spreading in the outpatient population of the Zagreb region

  16. Evaluation of MLVA for epidemiological typing and outbreak detection of ESBL-producing Escherichia coli in Sweden.

    Science.gov (United States)

    Helldal, Lisa; Karami, Nahid; Welinder-Olsson, Christina; Moore, Edward R B; Åhren, Christina

    2017-01-06

    To identify the spread of nosocomial infections and halt outbreak development caused by Escherichia coli that carry multiple antibiotic resistance factors, such as extended-spectrum beta-lactamases (ESBLs) and carbapenemases, is becoming demanding challenges due to the rapid global increase and constant and increasing influx of these bacteria from the community to the hospital setting. Our aim was to assess a reliable and rapid typing protocol for ESBL-E. coli, with the primary focus to screen for possible clonal relatedness between isolates. All clinical ESBL-E. coli isolates, collected from hospitals (n = 63) and the community (n = 41), within a single geographical region over a 6 months period, were included, as well as clinical isolates from a polyclonal outbreak (ST131, n = 9, and ST1444, n = 3). The sporadic cases represented 36 STs, of which eight STs dominated i.e. ST131 (n = 33 isolates), ST648 (n = 10), ST38 (n = 9), ST12 and 69 (each n = 4), ST 167, 405 and 372 (each n = 3). The efficacy of multiple-locus variable number tandem repeat analysis (MLVA) was evaluated using three, seven or ten loci, in comparison with that of pulsed-field gel electrophoresis (PFGE) and multi locus sequence typing (MLST). MLVA detected 39, 55 and 60 distinct types, respectively, using three (GECM-3), seven (GECM-7) or ten (GECM-10) loci. For GECM-7 and -10, 26 STs included one type and eleven STs each included several types, the corresponding numbers for GECM-3 were 29 and 8. The highest numbers were seen for ST131 (7,7 and 8 types, respectively), ST38 (5,5,8) and ST648 (4,5,5). Good concordance was observed with PFGE and GECM-7 and -10, despite fewer types being identified with MLVA; 78 as compared to 55 and 60 types. The lower discriminatory power of MLVA was primarily seen within the O25b-ST131 lineage (n = 34) and its H30-Rx subclone (n = 21). Epidemiologically unrelated O25b-ST131 isolates were clustered with O25b-ST131

  17. Diversity and enterotoxigenicity of Staphylococcus spp. associated with domiati cheese.

    Science.gov (United States)

    El-Sharoud, Walid M; Spano, Giuseppe

    2008-12-01

    A total of 87 samples of fresh and stored Domiati cheese (an Egyptian soft cheese) were examined for the presence of Staphylococcus spp. Fifteen Staphylococcus isolates identified as S. aureus (2 isolates), S. xylosus (4), S. caprae (4), and S. chromogenes (5) were recovered from 15 cheese samples. The S. aureus isolates were resistant to penicillin G and ampicillin, and one isolate was also resistant to tetracycline. S. aureus isolates harbored classical staphylococcal enterotoxin (SE) genes (sea and seb) and recently characterized SE-like genes (selg, seli, selm, and selo). One S. aureus isolate contained a single SE gene (sea), whereas another isolate contained five SE genes (seb, selg, seli, selm, and selo). These results suggest that Domiati cheese is a source for various Staphylococcus species, including S. aureus strains that could be enterotoxigenic.

  18. Risk factors for extended-spectrum b-lactamases-producing Escherichia coli urinary tract infections in a tertiary hospital

    Directory of Open Access Journals (Sweden)

    María Dolores Alcántar-Curiel

    2015-09-01

    Full Text Available Objective. To assess the risks factors for urinary tract infections (UTIs caused by Extended-Spectrum Beta-Lactamases (ESBLs-producing E. coli and the molecular characterization of ESBLs. Materials and methods. A case-control study was performed to identify risk factors in consecutively recruited patients with UTIs caused by ESBLs or non-ESBLs-producing E. coli in a tertiary hospital in Mexico. Results. ESBLs-producing E. coli were isolated from 22/70 (31% patients with E. coli UTIs over a three month period. All isolates were resistant to cephalosporins and quinolones but susceptible to carbapenems, amikacin and nitrofurantoin. Prior antibiotic treatment with more than two antibiotic families (OR=6.86; 95%CI 1.06-157.70; p=0.028, recurrent symptomatic UTIs (OR=5.60; 95%CI 1.88-17.87; p=0.001 and previous hospitalization (OR=5.06; 95%CI 1.64-17.69;p=0.002 were significant risk factors. Sixteen isolates harbored the beta-lactamase (blaCTX-M-15 gene and five the blaTEM-1 gene. Conclusions. One of every three patients presented UTIs with ESBLs-producing beta-lactams and fluoroquinolone resistant E. coli. Risk factors and resistance patterns must be taken into account for developing antibiotic use policies in these settings

  19. Molecular characterization of extended spectrum β-lactamase-producing Escherichia coli in a university hospital in Morocco, North Africa

    Directory of Open Access Journals (Sweden)

    M.C. El bouamri

    2015-09-01

    Conclusion: The results of this work report, for the first time in the Marrakech region, the ESBL production pattern with CTX-M being most common among the ESBL-producing urinary E. coli. Moreover, a major finding is the production of multiple ESBL types by some urinary E. coli isolates.

  20. Antibacterial effect evaluation of moxalactam against extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae with in vitro pharmacokinetics/pharmacodynamics simulation

    Directory of Open Access Journals (Sweden)

    Huang C

    2018-01-01

    Full Text Available Chen Huang,1,* Beiwen Zheng,1,* Wei Yu,2 Tianshui Niu,1 Tingting Xiao,1 Jing Zhang,1 Yonghong Xiao1 1State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; 2Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, Hangzhou, China *These authors contributed equally to this work Objectives: The aim of this study was to evaluate the bactericidal effects of moxalactam (MOX, cefotaxime (CTX, and cefoperazone/sulbactam (CFZ/SBT against extended-spectrum β-lactamase (ESBL producing Escherichia coli and Klebsiella pneumoniae, using an in vitro pharmacokinetics (PK/pharmacodynamics model.Methods: Two clinical ESBL-producing strains (blaCTX-M-15 positive E. coli 3376 and blaCTX-M-14 positive K. pneumoniae 2689 and E. coli American Type Culture Collection (ATCC25922 were used in the study. The PK Auto Simulation System 400 was used to simulate the human PK procedures after intravenous administration of different doses of MOX, CTX, and CFZ/SBT. Bacterial growth recovery time (RT and the area between the control growth curve and bactericidal curves (IE were employed to assess the antibacterial efficacies of all the agents.Results: The minimum inhibitory concentrations of MOX, CTX, and CFZ/SBT against E. coli ATCC25922, 3376, and 2689 strains were 0.5, 0.5, 0.25; 0.06, >256, 256; and 0.5/0.5, 16/16, 32/32 mg/L. All the agents demonstrated outstanding bactericidal effects against E. coli ATCC25922 (RT >24 h and IE >120 log10 CFU/mL·h−1 with simulating PK procedures, especially in the multiple dose administration models. Against ESBL producers, CTX and CFZ/SBT displayed only weak bactericidal effects, and subsequent regrowth was evident. MOX exhibited potent antibacterial activity against all the strains tested. The values of effective parameters of

  1. Molecular epidemiology of Escherichia coli producing extended-spectrum {beta}-lactamases in Lugo (Spain): dissemination of clone O25b:H4-ST131 producing CTX-M-15.

    Science.gov (United States)

    Blanco, Miguel; Alonso, Maria Pilar; Nicolas-Chanoine, Marie-Hélène; Dahbi, Ghizlane; Mora, Azucena; Blanco, Jesús E; López, Cecilia; Cortés, Pilar; Llagostera, Montserrat; Leflon-Guibout, Véronique; Puentes, Beatriz; Mamani, Rosalía; Herrera, Alexandra; Coira, María Amparo; García-Garrote, Fernando; Pita, Julia María; Blanco, Jorge

    2009-06-01

    Having shown that the Xeral-Calde Hospital in Lugo (Spain) has been concerned by Escherichia coli clone O25:H4-ST131 producing CTX-M-15 (Nicolas-Chanoine et al. J Antimicrob Chemother 2008; 61: 273-81), the present study was carried out to evaluate the prevalence of this clone among the extended-spectrum beta-lactamase (ESBL)-producing E. coli isolates and also to molecularly characterize the E. coli isolates producing ESBL other than CTX-M-15. In the first part of this study, 105 ESBL-producing E. coli isolates (February 2006 to March 2007) were characterized with regard to ESBL enzymes, serotypes, virulence genes, phylogenetic groups, multilocus sequence typing (MLST) and PFGE. In the second part of this study, 249 ESBL-producing E. coli isolates (April 2007 to May 2008) were investigated only for the detection of clone O25b:H4-ST131 producing CTX-M-15 using a triplex PCR developed in this study and based on the detection of the new operon afa FM955459 and the targets rfbO25b and 3' end of the bla(CTX-M-15) gene. Of the 105 ESBL-producing E. coli isolates, 60 (57.1%) were positive for CTX-M-14, 23 (21.9%) for CTX-M-15, 10 (9.5%) for SHV-12 and 7 (6.7%) for CTX-M-32. Serotypes, virulence genes, phylogenetic groups and molecular typing by PFGE demonstrated high homogeneity within those producing CTX-M-15 and high diversity within E. coli producing CTX-M-14 and other ESBLs. By PFGE, CTX-M-15-producing E. coli isolates O25b:H4 belonging to the phylogenetic group B2 and MLST profile ST131 were grouped in the same cluster. The epidemic strain of clone O25b:H4-ST131 represented 23.1%, 22.5% and 20.0% of all ESBL-producing E. coli isolated in 2006, 2007 and 2008, respectively. CTX-M-type ESBLs, primarily CTX-M-14 and CTX-M-15, have emerged as the predominant types of ESBL produced by E. coli isolates in Lugo. In view of the reported findings, long-term care facilities for elderly people may represent a significant reservoir for E. coli clone O25b:H4-ST131 producing CTX

  2. Inoculum effect on the efficacies of amoxicillin-clavulanate, piperacillin-tazobactam, and imipenem against extended-spectrum β-lactamase (ESBL)-producing and non-ESBL-producing Escherichia coli in an experimental murine sepsis model.

    Science.gov (United States)

    Docobo-Pérez, F; López-Cerero, L; López-Rojas, R; Egea, P; Domínguez-Herrera, J; Rodríguez-Baño, J; Pascual, A; Pachón, J

    2013-05-01

    Escherichia coli is commonly involved in infections with a heavy bacterial burden. Piperacillin-tazobactam and carbapenems are among the recommended empirical treatments for health care-associated complicated intra-abdominal infections. In contrast to amoxicillin-clavulanate, both have reduced in vitro activity in the presence of high concentrations of extended-spectrum β-lactamase (ESBL)-producing and non-ESBL-producing E. coli bacteria. Our goal was to compare the efficacy of these antimicrobials against different concentrations of two clinical E. coli strains, one an ESBL-producer and the other a non-ESBL-producer, in a murine sepsis model. An experimental sepsis model {~5.5 log10 CFU/g [low inoculum concentration (LI)] or ~7.5 log(10) CFU/g [high inoculum concentration (HI)]} using E. coli strains ATCC 25922 (non-ESBL producer) and Ec1062 (CTX-M-14 producer), which are susceptible to the three antimicrobials, was used. Amoxicillin-clavulanate (50/12.5 mg/kg given intramuscularly [i.m.]), piperacillin-tazobactam (25/3.125 mg/kg given intraperitoneally [i.p.]), and imipenem (30 mg/kg i.m.) were used. Piperacillin-tazobactam and imipenem reduced spleen ATCC 25922 strain concentrations (-2.53 and -2.14 log10 CFU/g [P imipenem, and amoxicillin-clavulanate, respectively, although imipenem and amoxicillin-clavulanate were more efficacious than piperacillin-tazobactam). An adapted imipenem treatment (based on the time for which the serum drug concentration remained above the MIC obtained with a HI of the ATCC 25922 strain) improved its efficacy to -1.67 log10 CFU/g (P imipenem treatment of infections caused by ESBL- and non-ESBL-producing E. coli strains in patients with therapeutic failure with piperacillin-tazobactam.

  3. Plasmid-mediated AmpC beta-lactamase-producing Escherichia coli causing urinary tract infection in the Auckland community likely to be resistant to commonly prescribed antimicrobials.

    Science.gov (United States)

    Drinkovic, Dragana; Morris, Arthur J; Dyet, Kristin; Bakker, Sarah; Heffernan, Helen

    2015-03-13

    To estimate the prevalence and characterise plasmid-mediated AmpC beta-lactamase (PMACBL)- producing Escherichia coli in the Auckland community. All cefoxitin non-susceptible (NS) E. coli identified at the two Auckland community laboratories between 1 January and 31 August 2011 were referred to ESR for boronic acid double-disc synergy testing, to detect the production of AmpC beta-lactamase, and polymerase chain reaction (PCR) to identify the presence of PMACBL genes. PMACBL-producing isolates were typed using pulsed-field gel electrophoresis (PFGE), and PCR was used to determine their phylogenetic group and to identify multilocus sequence type (ST)131. Antimicrobial susceptibility testing and detection of extended-spectrum beta-lactamases (ESBLs) were performed according to the Clinical and Laboratory Standards Institute recommendations. 101 (51%) and 74 (37%) of 200 non-duplicate cefoxitin-NS E. coli were PMACBL producers or assumed hyper-producers of chromosomal AmpC beta-lactamase, respectively. The prevalence of PMACBL-producing E. coli was 0.4%. PMACBL-producing E. coli were significantly less susceptible to norfloxacin, trimethoprim and nitrofurantoin than E. coli that produced neither a PMACBL nor an ESBL. Very few (4%) PMACBL-producing E. coli co-produced an ESBL. Most (88%) of the PMACBL-producing isolates had a CMY-2-like PMACBL. The PMACBL-producing E. coli isolates were diverse based on their PFGE profiles, 44% belonged to phylogenetic group D, and only four were ST131. 100 of the 101 PMACBL-producing E. coli were cultured from urine, and were causing urinary tract infection (UTI) in the majority of patients. The median patient age was 56 years and most (94%) of the patients were women. A greater proportion of patients with community-acquired UTI caused by PMACBL-producing E. coli received a beta-lactam antimicrobial than patients with community-acquired UTI caused by other non-AmpC, non-ESBL-producing E. coli. Thirty-six (43%) patients with community

  4. A trial with IgY chicken antibodies to eradicate faecal carriage of Klebsiella pneumoniae and Escherichia coli producing extended-spectrum beta-lactamases

    Directory of Open Access Journals (Sweden)

    Anna-Karin Jonsson

    2015-11-01

    Full Text Available Background: Extended-spectrum beta-lactamase (ESBL-producing Enterobacteriaceae is an emerging therapeutic challenge, especially in the treatment of urinary tract infections. Following an outbreak of CTX-M-15 Klebsiella pneumoniae in Uppsala, Sweden, an orphan drug trial on IgY chicken antibodies was undertaken in an attempt to eradicate faecal carriage of ESBL-producing K. pneumoniae and Escherichia coli. Methods: Hens were immunised with epitopes from freeze-dried, whole-cell bacteria (ESBL-producing K. pneumoniae and E. coli and recombinant proteins of two K. pneumoniae fimbriae subunits (fimH and mrkD. The egg yolks were processed according to good manufacturing practice and the product was stored at−20°C until used. Using an internal database from the outbreak and the regular laboratory database, faecal carriers were identified and recruited from May 2005 to December 2013. The participants were randomised in a placebo-controlled 1:1 manner. Results: From 749 eligible patients, 327 (44% had deceased, and only 91 (12% were recruited and signed the informed consent. In the initial screening performed using the polymerase chain reaction, 24 participants were ESBL positive and subsequently randomised and treated with either the study drug or a placebo. The study was powered for 124 participants. Because of a very high dropout rate, the study was prematurely terminated. From the outbreak cohort (n=247, only eight patients were screened, and only one was positive with the outbreak strain in faeces. Conclusions: The present study design, using IgY chicken antibodies for the eradication of ESBL-producing K. pneumonia and E. coli, was ineffective in reaching its goal due to high mortality and other factors resulting in a low inclusion rate. Spontaneous eradication of ESBL-producing bacteria was frequently observed in recruited participants, which is consistent with previous reports.

  5. CTX-M-producing Escherichia coli in a maternity ward: a likely community importation and evidence of mother-to-neonate transmission.

    Science.gov (United States)

    Dubois, Véronique; De Barbeyrac, Bertille; Rogues, Anne-Marie; Arpin, Corinne; Coulange, Laure; Andre, Catherine; M'zali, Fatima; Megraud, Francis; Quentin, Claudine

    2010-07-01

    To investigate the high prevalence of extended-spectrum beta-lactamase (ESBL)-producing strains of Escherichia coli (4%, 10/250 consecutive isolates) recovered during a 5 month period in the maternity ward of the University Hospital of Bordeaux, France. beta-Lactam resistance transfer was analysed by conjugation and transformation. ESBLs were characterized by isoelectric focusing, PCR amplification and sequencing. The relatedness of the strains was examined by PFGE and phylogenetic group determination. Plasmids were characterized by incompatibility group and restriction analysis. Ten ESBL-producing E. coli were isolated from urinary or genital samples of eight mothers and from gastric fluids of two newborns of carrier mothers. The patients were hospitalized in five different units of the maternity ward. Transconjugants, obtained for 7 of the 10 strains, and wild-type strains exhibited various antibiotypes. Different CTX-M enzymes were characterized: CTX-M-1 (n = 4); CTX-M-14 (n = 3); CTX-M-32 (n = 2); and CTX-M-28 (n = 1). The strains recovered from two mothers and their respective babies were identical. All the other strains were epidemiologically unrelated. Furthermore, various plasmids were identified. Environmental samples from the common echographic and sampling rooms did not reveal the presence of ESBL-producing enterobacteria. The data argue against the occurrence of a nosocomial outbreak and support the hypothesis of an importation of community-acquired ESBL-producing strains into the hospital through colonized/infected patients. At present, not only patients transferred from other hospitals or long-term care facilities are at risk of carrying ESBL-producing enterobacteria on hospital admission, but also community patients.

  6. Meta-analysis of the Effects of Sanitizing Treatments on Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes Inactivation in Fresh Produce

    Science.gov (United States)

    Prado-Silva, Leonardo; Cadavez, Vasco; Gonzales-Barron, Ursula; Rezende, Ana Carolina B.

    2015-01-01

    The aim of this study was to perform a meta-analysis of the effects of sanitizing treatments of fresh produce on Salmonella spp., Escherichia coli O157:H7, and Listeria monocytogenes. From 55 primary studies found to report on such effects, 40 were selected based on specific criteria, leading to more than 1,000 data on mean log reductions of these three bacterial pathogens impairing the safety of fresh produce. Data were partitioned to build three meta-analytical models that could allow the assessment of differences in mean log reductions among pathogens, fresh produce, and sanitizers. Moderating variables assessed in the meta-analytical models included type of fresh produce, type of sanitizer, concentration, and treatment time and temperature. Further, a proposal was done to classify the sanitizers according to bactericidal efficacy by means of a meta-analytical dendrogram. The results indicated that both time and temperature significantly affected the mean log reductions of the sanitizing treatment (P vegetables (for example, 3.04 mean log reductions [2.32 to 3.76] obtained for carrots). Among the pathogens, E. coli O157:H7 was more resistant to ozone (1.6 mean log reductions), while L. monocytogenes and Salmonella presented high resistance to organic acids, such as citric acid, acetic acid, and lactic acid (∼3.0 mean log reductions). With regard to the sanitizers, it has been found that slightly acidic electrolyzed water, acidified sodium chlorite, and the gaseous chlorine dioxide clustered together, indicating that they possessed the strongest bactericidal effect. The results reported seem to be an important achievement for advancing the global understanding of the effectiveness of sanitizers for microbial safety of fresh produce. PMID:26362982

  7. Antimicrobial susceptibility and mechanisms of fosfomycin resistance in extended-spectrum β-lactamase-producing Escherichia coli strains from urinary tract infections in Wenzhou, China.

    Science.gov (United States)

    Bi, Wenzi; Li, Bin; Song, Jiangning; Hong, Youliang; Zhang, Xiaoxiao; Liu, Haiyang; Lu, Hong; Zhou, Tieli; Cao, Jianming

    2017-07-01

    Fosfomycin in combination with various antibiotics represents an excellent clinically efficacious regimen for the treatment of urinary tract infections (UTIs) caused by extended-spectrum β-lactamase (ESBL)-producing Escherichia coli. Underlying mechanisms of fosfomycin resistance remain largely uncharacterised. To investigate the antibacterial efficacy of fosfomycin against ESBL-producing E. coli, 356 non-repetitive ESBL-producing E. coli clinical isolates were collected from urine specimens from patients with UTI in Wenzhou, China, from January 2011 to December 2015. Antimicrobial sensitivity testing indicated that 6.7% (24/356) of the ESBL-producing E. coli strains were resistant to fosfomycin. The fosA3 gene encoding a fosfomycin-modifying enzyme was detected in 20 isolates by PCR and sequencing, alone or in combination with other ESBL determinants. Conjugation experiments and Southern blotting demonstrated that 70% (14/20) of the fosA3-positive isolates possessed transferable plasmids (ca. 54.2 kb) co-harbouring the ESBL resistance gene bla CTX-M and the fosfomycin resistance gene fosA3. Among the four fosfomycin-resistant fosA3-negative E. coli isolates, three contained amino acid substitutions (Ile28Asn and Phe30Leu in MurA and Leu297Phe in GlpT). The results indicate that presence of the fosA3 gene is the primary mechanism of fosfomycin resistance in ESBL-producing E. coli isolates in Wenzhou, China. In addition, a plasmid (ca. 54.2 kb) co-harbouring fosA3 and bla CTX-M genes is horizontally transferable. Furthermore, a low degree of homology in the fosfomycin-resistant E. coli was confirmed using multilocus sequence typing (MLST), suggesting that there is no obvious phenomenon of clonal dissemination. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  8. A trial with IgY chicken antibodies to eradicate faecal carriage of Klebsiella pneumoniae and Escherichia coli producing extended-spectrum beta-lactamases

    Science.gov (United States)

    Jonsson, Anna-Karin; Larsson, Anders; Tängdén, Thomas; Melhus, Åsa; Lannergård, Anders

    2015-01-01

    Background Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae is an emerging therapeutic challenge, especially in the treatment of urinary tract infections. Following an outbreak of CTX-M-15 Klebsiella pneumoniae in Uppsala, Sweden, an orphan drug trial on IgY chicken antibodies was undertaken in an attempt to eradicate faecal carriage of ESBL-producing K. pneumoniae and Escherichia coli. Methods Hens were immunised with epitopes from freeze-dried, whole-cell bacteria (ESBL-producing K. pneumoniae and E. coli) and recombinant proteins of two K. pneumoniae fimbriae subunits (fimH and mrkD). The egg yolks were processed according to good manufacturing practice and the product was stored at−20°C until used. Using an internal database from the outbreak and the regular laboratory database, faecal carriers were identified and recruited from May 2005 to December 2013. The participants were randomised in a placebo-controlled 1:1 manner. Results From 749 eligible patients, 327 (44%) had deceased, and only 91 (12%) were recruited and signed the informed consent. In the initial screening performed using the polymerase chain reaction, 24 participants were ESBL positive and subsequently randomised and treated with either the study drug or a placebo. The study was powered for 124 participants. Because of a very high dropout rate, the study was prematurely terminated. From the outbreak cohort (n=247), only eight patients were screened, and only one was positive with the outbreak strain in faeces. Conclusions The present study design, using IgY chicken antibodies for the eradication of ESBL-producing K. pneumonia and E. coli, was ineffective in reaching its goal due to high mortality and other factors resulting in a low inclusion rate. Spontaneous eradication of ESBL-producing bacteria was frequently observed in recruited participants, which is consistent with previous reports. PMID:26560861

  9. Factors affecting radiation D-values (D₁₀) of an Escherichia coli cocktail and Salmonella Typhimurium LT2 inoculated in fresh produce.

    Science.gov (United States)

    Moreira, Rosana G; Puerta-Gomez, Alex F; Kim, Jongsoon; Castell-Perez, M Elena

    2012-04-01

    This study evaluated the effect of produce type, resuspension medium, dose uniformity ratio (DUR), and sample preparation conditions (tissue exposure, MAP, anoxia) on the D₁₀ -value of an Escherichia coli cocktail (BAA-1427, BAA-1428, and BAA-1430) and Salmonella Typhimurium LT2 inoculated on the surfaces of tomato, cantaloupe, romaine lettuce, and baby spinach. Produce at room temperature were irradiated using a 1.35 MeV Van de Graaf electron beam accelerator at 0.2 to 0.9 kGy. The D₁₀-values for E. coli and Salmonella were 0.20 ± 0.01 kGy and 0.14 ± 0.01 kGy, respectively. Bacterial inactivation was not affected by produce type as long as the samples were irradiated in unsealed bags, the bacteria were suspended in broth, and the sample tissue was exposed. Sample location in front of the e-beam source during exposure is crucial. A 20% increase in DUR yielded a 53% change in the D₁₀- values. Variations in sample preparation, microbiological methods and irradiation set-up, result in variable D₁₀-values for different microorganisms on fresh produce. Most irradiation studies disregard the effect of sample handling and processing parameters on the determination of the D₁₀-value of different microorganisms in fresh and fresh-cut produce. This study shows the importance of exposure of sample, resuspension medium, available oxygen, and dose uniformity ratio. D₁₀-values can differ by 35% to 53% based on these factors, leading to considerable under- or over-estimation of the irradiation treatment. Results from this study will help to lay firm groundwork for future studies on D₁₀-values determination for different pathogens on fruits and vegetables. © 2012 Institute of Food Technologists®

  10. Efficacy of non-carbapenem antibiotics for pediatric patients with first febrile urinary tract infection due to extended-spectrum beta-lactamase-producing Escherichia coli.

    Science.gov (United States)

    Abe, Yoshifusa; Inan-Erdogan, Işil; Fukuchi, Kunihiko; Wakabayashi, Hitomi; Ogawa, Yasuha; Hibino, Satoshi; Sakurai, Shunsuke; Matsuhashi, Kazuhiko; Watanabe, Yoshitaka; Hashimoto, Kaori; Ugajin, Kazuhisa; Itabashi, Kazuo

    2017-08-01

    Although carbapenem is the recommended for urinary tract infection (UTI) caused by extended-spectrum beta-lactamase (ESBL)-producing organisms, non-carbapenems have been reported to be effective for adult patients with UTI caused by ESBL-producing organisms. The purpose of this study was to evaluate the efficacy of non-carbapenems for pediatric patients with UTI due to ESBL-producing Escherichia coli (E. coli) based on the microbiologic and clinical outcomes. Fifteen children, who were treated for first febrile UTI caused by ESBL-producing E. coli were enrolled in this study. Antimicrobial susceptibilities and ESBL production were determined according to the Clinical and Laboratory Standards Institute guidelines. To detect CTX-M genes, polymerase chain reaction was performed with specific primers for bla CTX-M detection. Of the 15 enrolled patients, 10 (66.7%) were boys and 5 (33.3%) were girls, with a median age of four months. VUR was detected in six patients (40%). For detection of bla CTX-M by PCR, CTX-M-3, CTX-M-8, CTX-M-14, and CTX-M-15 were detected in five, one, eight, and one patient, respectively. Overall, 14 of the 15 isolates (93.3%) were susceptible for fosfomycin (FOM), and all isolates were susceptible for cefmetazole (CMZ), flomoxef (FMOX), and imipenem/cilastatin (IPM/CS). Of the 15 patients, 12 (80%) clinically improved without the use of carbapenems. In conclusion, even if isolates of ESBL-producing E. coli are multidrug resistant based on MIC assessment, clinical susceptibility to non-carbapenems, such as CMZ, FMOX, and FOM, is possible. Accordingly, carbapenems may not be required all the time for treatment of pediatric UTI in clinical practice. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Prevalence of sorbitol non-fermenting Shiga toxin-producing Escherichia coli in Black Bengal goats on smallholdings.

    Science.gov (United States)

    Das Gupta, M; Das, A; Islam, M Z; Biswas, P K

    2016-09-01

    A cross-sectional survey was carried out in Bangladesh with the sampling of 514 Black Bengal goats on smallholdings to determine the presence of sorbitol non-fermenting (SNF) Shiga toxin-producing E. coli (STEC). Swab samples collected from the recto-anal junction were plated onto cefixime and potassium tellurite added sorbitol MacConkey (CT-SMAC) agar, a selective medium for STEC O157 serogroup, where this serogroup and other SNF STEC produce colourless colonies. The SNF E. coli (SNF EC) isolates obtained from the survey were investigated by PCR for the presence of Shiga toxin-producing genes, stx1 and stx2, and two other virulence genes, eae and hlyA that code for adherence factor (intimin protein) and pore-forming cytolysin, respectively. The SNF EC isolates were also assessed for the presence of the rfbO157 gene to verify their identity to O157 serogroup. The results revealed that the proportions of goats carrying SNF EC isolates and stx1 and stx2 genes were 6·2% (32/514) [95% confidence interval (CI) 4·4-8·7)], 1·2% (95% CI 0·5-2·6) and 1·2% (95% CI 0·5-2·6), respectively. All the SNF STEC tested negative for rfbO157, hlyA and eae genes. The risk for transmission of STEC from Black Bengal goats to humans is low.

  12. Rapid detection of Shigella and enteroinvasive Escherichia coli in produce enrichments by a conventional multiplex PCR assay.

    Science.gov (United States)

    Binet, Rachel; Deer, Deanne M; Uhlfelder, Samantha J

    2014-06-01

    Faster detection of contaminated foods can prevent adulterated foods from being consumed and minimize the risk of an outbreak of foodborne illness. A sensitive molecular detection method is especially important for Shigella because ingestion of as few as 10 of these bacterial pathogens can cause disease. The objectives of this study were to compare the ability of four DNA extraction methods to detect Shigella in six types of produce, post-enrichment, and to evaluate a new and rapid conventional multiplex assay that targets the Shigella ipaH, virB and mxiC virulence genes. This assay can detect less than two Shigella cells in pure culture, even when the pathogen is mixed with background microflora, and it can also differentiate natural Shigella strains from a control strain and eliminate false positive results due to accidental laboratory contamination. The four DNA extraction methods (boiling, PrepMan Ultra [Applied Biosystems], InstaGene Matrix [Bio-Rad], DNeasy Tissue kit [Qiagen]) detected 1.6 × 10(3)Shigella CFU/ml post-enrichment, requiring ∼18 doublings to one cell in 25 g of produce pre-enrichment. Lower sensitivity was obtained, depending on produce type and extraction method. The InstaGene Matrix was the most consistent and sensitive and the multiplex assay accurately detected Shigella in less than 90 min, outperforming, to the best of our knowledge, molecular assays currently in place for this pathogen. Published by Elsevier Ltd.

  13. Escherichia coli Sequence Type 131 H30 Is the Main Driver of Emerging Extended-Spectrum-β-Lactamase-Producing E. coli at a Tertiary Care Center.

    Science.gov (United States)

    Johnson, James R; Johnston, Brian; Thuras, Paul; Launer, Bryn; Sokurenko, Evgeni V; Miller, Loren G

    2016-01-01

    The H 30 strain of Escherichia coli sequence type 131 (ST131- H 30) is a recently emerged, globally disseminated lineage associated with fluoroquinolone resistance and, via its H 30Rx subclone, the CTX-M-15 extended-spectrum beta-lactamase (ESBL). Here, we studied the clonal background and resistance characteristics of 109 consecutive recent E. coli clinical isolates (2015) and 41 historical ESBL-producing E. coli blood isolates (2004 to 2011) from a public tertiary care center in California with a rising prevalence of ESBL-producing E. coli isolates. Among the 2015 isolates, ST131, which was represented mainly by ST131- H 30, was the most common clonal lineage (23% overall). ST131- H 30 accounted for 47% (8/17) of ESBL-producing, 47% (14/30) of fluoroquinolone-resistant, and 33% (11/33) of multidrug-resistant isolates. ST131- H 30 also accounted for 53% (8/14) of dually fluoroquinolone-resistant, ESBL-producing isolates, with the remaining 47% comprised of diverse clonal groups that contributed a single isolate each. ST131- H 30Rx, with CTX-M-15, was the major ESBL producer (6/8) among ST131- H 30 isolates. ST131- H 30 and H 30Rx also dominated (46% and 37%, respectively) among the historical ESBL-producing isolates (2004 to 2011), without significant temporal shifts in relative prevalence. Thus, this medical center's recently emerging ESBL-producing E. coli strains, although multiclonal, are dominated by ST131- H 30 and H 30Rx, which are the only clonally expanded fluoroquinolone-resistant, ESBL-producing lineages. Measures to rapidly and effectively detect, treat, and control these highly successful lineages are needed. IMPORTANCE The ever-rising prevalence of resistance to first-line antibiotics among clinical Escherichia coli isolates leads to worse clinical outcomes and higher health care costs, thereby creating a need to discover its basis so that effective interventions can be developed. We found that the H 30 subset within E. coli sequence type 131

  14. VIABILIDADE DE Escherichia coli PRODUTORA DE TOXINA SHIGA (STEC NÃO-O157 EM QUEIJO TIPO MINAS FRESCAL. VIABILITY OF NON-O157 SHIGA TOXIN-PRODUCING Escherichia coli (STEC IN MINAS FRESCAL CHEESE

    Directory of Open Access Journals (Sweden)

    Tammy Priscila Chioda

    2009-07-01

    Full Text Available Escherichia coli, produtora de toxina Shiga (STEC, um patógeno emergente capaz de causar diarreia, colite hemorrágica e síndrome hemolítica urêmica em humanos, representa um grave problema de saúde pública em todo o mundo. O principal reservatório de STEC são os bovinos. STEC são transmitidas aos humanos, principalmente através de alimentos contaminados, destacando-se aqueles de origem bovina como carne, leite e seus derivados. O objetivo deste trabalho foi avaliar a viabilidade de STEC não-O157 em queijo minas frescal preparado com leite artificialmente contaminado com diferentes cepas dessas bactérias. Os queijos foram mantidos a 4°C e analisados no 1º, 2º, 4º, 6º e 10º dias de estocagem. As cepas de STEC mantiveram-se viáveis em 100% (32/32 dos queijos mantidos sob refrigeração por até dez dias. Os resultados mostram que o queijo minas pode ser veículo de transmissão de STEC. Recomenda-se a adoção de métodos higiênicos e sanitários desde a ordenha até o processo de produção do queijo para reduzir a possibilidade de contaminação com STEC.

    PALAVRAS-CHAVES: PCR, queijo minas, segurança alimentar, STEC.

    Shiga toxin-producing Escherichia coli (STEC an emergent foodborne pathogen that cause diarrhea, hemorrhagic colitis and haemolytic uremic syndrome in humans, represents a public health problem all over the world. Cattle are the main source of STEC. STEC are transmitted to humans by contaminated food, mainly those of bovine origin as meat and dairy products. This study aimed evaluates the non-O157 STEC viability of artificially inoculated in the milk used for the Minas Frescal cheese’s production. The cheese was kept at 4°C and analyzed at 1st, 2nd, 4th, 6th and 10th days after its production. 100% (32/32 of the cheese storad under refrigeration during 10 days had been the STEC strains viable. These results show that minas frescal cheese can transmit STEC. The adoption of good

  15. Shiga toxin-producing Escherichia coli (STEC: principal virulence factors and epidemiology Escherichia coli produtora de toxina shiga (STEC: principais fatores de virulência e dados epidemiológicos

    Directory of Open Access Journals (Sweden)

    Halha Ostrensky Saridakis

    2007-10-01

    Full Text Available Shiga toxin producing Escherichia coli is an important food borne pathogen, mainly beef products, and is associated to mild and severe bloody diarrhea. In some individuals, STEC infection can progress to hemolytic-uremic syndrome (HUS, a sequela characterized by renal failure, and thrombotic thrombocytopenic purpura (TTP, with possible central nervous system involvement. Cattle, usually healthy, is the principal reservoir of STEC, although these strains have also been isolated from other domestic animals: sheep, goats, dogs, cats and pigs. The principal virulence feature, the production of Shiga toxins, is not enough to cause diseases, and other factors are considered important, as enterohemolysin and fimbrial and afimbrial adhesions production. Although human diseases associated to STEC have not been frequently reported in Brazil, their presence is frequent in cattle, as well as the correlation between serotypes found in these animals and human patients. Escherichia coli produtora de toxina Shiga (STEC é um importante patógeno veiculado por alimentos, principalmente produtos derivados de carne bovina e está associado a quadros de diarréias leves a severas e sanguinolentas. Em alguns indivíduos, a infecção por STEC pode progredir para a síndrome hemolítico-urêmica (HUS, seqüela caracterizada pela falência renal e a púrpura trombocitopênica trombótica (TTP, com possível envolvimento do sistema nervoso central. O gado bovino, geralmente saudável, é o principal reservatório de STEC, embora estas cepas também tenham sido isoladas de outros animais domésticos: ovelhas, cabras, cães, gatos e suínos. A principal característica de virulência, a produção de toxinas Shiga, não é suficiente para causar doenças e outros fatores são considerados relevantes, como a produção de enterohemolisina e de adesinas fimbriais e afimbriais. Embora as doenças humanas associadas a STEC sejam pouco descritas no Brasil, podemos observar

  16. Diarrheagenic Escherichia coli Markers and Phenotypes among Fecal E. coli Isolates Collected from Nicaraguan Infants ▿

    OpenAIRE

    Reyes, Daniel; Vilchez, Samuel; Paniagua, Margarita; Colque-Navarro, Patricia; Weintraub, Andrej; Möllby, Roland; Kühn, Inger

    2010-01-01

    We analyzed the prevalence of diarrheagenic Escherichia coli (DEC) markers and common phenotypes in 2,164 E. coli isolates from 282 DEC-positive samples. Enteropathogenic E. coli (EPEC) and enteroaggregative E. coli (EAEC) were very diverse and were not correlated with diarrhea. Enterotoxigenic E. coli (ETEC) estA and enterohemorrhagic E. coli (EHEC) belonged to a few phenotypes and were significantly correlated with diarrhea.

  17. The F4 fimbrial antigen of Escherichia coli and its receptors.

    NARCIS (Netherlands)

    Van den Broeck, W; Cox, E; Oudega, B.; Goddeeris, B

    2000-01-01

    F4 or K88 fimbriae are long filamentous polymeric surface proteins of enterotoxigenic Escherichia coli (ETEC), consisting of so-called major (FaeG) and minor (FaeF, FaeH, FaeC, and probably FaeI) subunits. Several serotypes of F4 have been described, namely F4ab, F4ac, and F4ad. The F4 fimbriae

  18. Adherence of Enterohemorrhagic Escherichia coli to Human Epithelial Cells: The Role of Intimin

    Science.gov (United States)

    1995-04-28

    mucosa (e.g., enterotoxigenic E. coli, Vibrio cholerae , and Boroetella pertussis); ii) damage to the epithelial cell microvilli induced by the...diarrhea in Mayan childm in Mexico . J. Infect. Dis. 163, 507-513. G6mez-Ouarte, O.G. and Kaper, J.B. (1995). A plasmid-encoded regulartory region...de la Cabaca, F., and Garibay, E.V. (1987). Enteroadherent Escherichia coli as a cause of diarrhea among children in Mexico . J . Clin. Microbiol. 25

  19. Epidemiological analysis of a cluster within the outbreak of Shiga toxin-producing Escherichia coli serotype O104:H4 in Northern Germany, 2011.

    Science.gov (United States)

    Scharlach, Martina; Diercke, Michaela; Dreesman, Johannes; Jahn, Nicola; Krieck, Manuela; Beyrer, Konrad; Claußen, Katja; Pulz, Matthias; Floride, Regina

    2013-06-01

    In May 2011 one of the worldwide largest outbreaks of haemolytic uraemic syndrome (HUS) and bloody diarrhoea caused by Shiga toxin-producing Escherichia coli (STEC) serotype O104:H4 occurred in Germany. One of the most affected federal states was Lower Saxony. We present the investigation of a cluster of STEC and HUS cases within this outbreak by means of a retrospective cohort study. After a 70th birthday celebration which took place on 7th of May 2011 among 72 attendants seven confirmed cases and four probable cases were identified, two of them developed HUS. Median incubation period was 10 days. Only 35 persons (48.6%) definitely answered the question whether they had eaten the sprouts that were used for garnishing the salad. Univariable analysis revealed different food items, depending on the case definition, with Odds Ratio (OR)>1 indicating an association with STEC infection, but multivariable logistic regression showed no increased risk for STEC infection for any food item and any case definition. Sprouts as the source for the infection had to be assumed based on the results of a tracing back of the delivery ways from the catering company to the sprouts producer who was finally identified as the source of the entire German outbreak. In this large outbreak several case-control studies failed to identify the source of infection. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. Impact of empirical treatment in extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp. bacteremia. A multicentric cohort study

    Directory of Open Access Journals (Sweden)

    Peralta Galo

    2012-10-01

    Full Text Available Abstract Background The objective of this study is to analyze the factors that are associated with the adequacy of empirical antibiotic therapy and its impact in mortality in a large cohort of patients with extended-spectrum β-lactamase (ESBL - producing Escherichia coli and Klebsiella spp. bacteremia. Methods Cases of ESBL producing Enterobacteriaceae (ESBL-E bacteremia collected from 2003 through 2008 in 19 hospitals in Spain. Statistical analysis was performed using multivariate logistic regression. Results We analyzed 387 cases ESBL-E bloodstream infections. The main sources of bacteremia were urinary tract (55.3%, biliary tract (12.7%, intra-abdominal (8.8% and unknown origin (9.6%. Among all the 387 episodes, E. coli was isolated from blood cultures in 343 and in 45.71% the ESBL-E was multidrug resistant. Empirical antibiotic treatment was adequate in 48.8% of the cases and the in hospital mortality was 20.9%. In a multivariate analysis adequacy was a risk factor for death [adjusted OR (95% CI: 0.39 (0.31-0.97; P = 0.04], but not in patients without severe sepsis or shock. The class of antibiotic used empirically was not associated with prognosis in adequately treated patients. Conclusion ESBL-E bacteremia has a relatively high mortality that is partly related with a low adequacy of empirical antibiotic treatment. In selected subgroups the relevance of the adequacy of empirical therapy is limited.

  1. Effect of antibiotics on cellular stress generated in Shiga toxin-producing Escherichia coli O157:H7 and non-O157 biofilms.

    Science.gov (United States)

    Angel Villegas, Natalia; Baronetti, José; Albesa, Inés; Etcheverría, Analía; Becerra, M Cecilia; Padola, Nora L; Paraje, M Gabriela

    2015-10-01

    Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens, with the main virulence factor of this bacterium being its capacity to secrete Shiga toxins (Stxs). Therefore, the use of certain antibiotics for the treatment of this infection, which induces the liberation of Stxs, is controversial. Reactive oxygen and nitrogen species are also involved in the pathogenesis of different diseases. The purpose of this study was to analyze the effects of antibiotics on biofilms of STEC and the relationships between cellular stress and the release of Stx. To this end, biofilms of reference and clinical strains were treated with antibiotics (ciprofloxacin, fosfomycin and rifaximin) and the production of oxidants, the antioxidant defense system and toxin release were evaluated. Ciprofloxacin altered the prooxidant-antioxidant balance, with a decrease of oxidant metabolites and an increase of superoxide dismutase and catalase activity, being associated with high-levels of Stx production. Furthermore, inhibition of oxidative stress by exogenous antioxidants was correlated with a reduction in the liberation of Stx, indicating the participation of this phenomenon in the release of this toxin. In contrast, fosfomycin and rifaximin produced less alteration with a minimal production of Stx. Our data show that treatment of biofilm-STEC with these antibiotics induces oxidative stress-mediated release of Stx. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Control of the Biofilms Formed by Curli- and Cellulose-Expressing Shiga Toxin-Producing Escherichia coli Using Treatments with Organic Acids and Commercial Sanitizers.

    Science.gov (United States)

    Park, Yoen Ju; Chen, Jinru

    2015-05-01

    Biofilms are a mixture of bacteria and extracellular products secreted by bacterial cells and are of great concern to the food industry because they offer physical, mechanical, and biological protection to bacterial cells. This study was conducted to quantify biofilms formed by different Shiga toxin-producing Escherichia coli (STEC) strains on polystyrene and stainless steel surfaces and to determine the effectiveness of sanitizing treatments in control of these biofilms. STEC producing various amounts of cellulose (n = 6) or curli (n = 6) were allowed to develop biofilms on polystyrene and stainless steel surfaces at 28°C for 7 days. The biofilms were treated with 2% acetic or lactic acid and manufacturer-recommended concentrations of acidic or alkaline sanitizers, and residual biofilms were quantified. Treatments with the acidic and alkaline sanitizers were more effective than those with the organic acids for removing the biofilms. Compared with their counterparts, cells expressing a greater amount of cellulose or curli formed more biofilm mass and had greater residual mass after sanitizing treatments on polystyrene than on stainless steel. Research suggests that the organic acids and sanitizers used in the present study differed in their ability to control biofilms. Bacterial surface components and cell contact surfaces can influence both biofilm formation and the efficacy of sanitizing treatments. These results provide additional information on control of biofilms formed by STEC.

  3. Novel comprehensive multidimensional liquid chromatography approach for elucidation of the microbosphere of shikimate-producing Escherichia coli SP1.1/pKD15.071 strain.

    Science.gov (United States)

    Cacciola, Francesco; Mangraviti, Domenica; Rigano, Francesca; Donato, Paola; Dugo, Paola; Mondello, Luigi; Cortes, Hernan J

    2018-06-01

    Shikimic acid is a intermediate of aromatic amino acid biosynthesis and the preferred starting material for production of the most commonly prescribed anti-influenza drug, Tamiflu. Its six-membered carbocyclic ring is adorned with several chiral centers and various functionalities, making shikimic acid a valuable chiral synthon. When microbially-produced, in addition to shikimic acid, numerous other metabolites are exported out of the cytoplasm and accumulate in the culture medium. This extracellular matrix of metabolites is referred to as the microbosphere. Due to the high sample complexity, in this study, the microbosphere of shikimate-producing Escherichia coli SP1.1/pKD15.071 was analyzed by liquid chromatography and comprehensive two-dimensional liquid chromatography coupled to photodiode array and mass spectrometry detection. GC analysis of the trimethylsilyl derivatives was also carried out in order to support the elucidation of the selected metabolites in the microbosphere. The elucidation of the metabolic fraction of this bacterial strain might be of valid aid for improving, through genetic changes, the concentration and yield of shikimic acid synthesized from glucose. Graphical abstract.

  4. Effect of gamma radiation on the reduction of Salmonella strains, Listeria monocytogenes, and Shiga toxin-producing Escherichia coli and sensory evaluation of minimally processed spinach (Tetragonia expansa).

    Science.gov (United States)

    Rezende, Ana Carolina B; Igarashi, Maria Crystina; Destro, Maria Teresa; Franco, Bernadette D G M; Landgraf, Mariza

    2014-10-01

    This study evaluated the effects of irradiation on the reduction of Shiga toxin-producing Escherichia coli (STEC), Salmonella strains, and Listeria monocytogenes, as well as on the sensory characteristics of minimally processed spinach. Spinach samples were inoculated with a cocktail of three strains each of STEC, Salmonella strains, and L. monocytogenes, separately, and were exposed to gamma radiation doses of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 kGy. Samples that were exposed to 0.0, 1.0, and 1.5 kGy and kept under refrigeration (4°C) for 12 days were submitted to sensory analysis. D10 -values ranged from 0.19 to 0.20 kGy for Salmonella and from 0.20 to 0.21 for L. monocytogenes; for STEC, the value was 0.17 kGy. Spinach showed good acceptability, even after exposure to 1.5 kGy. Because gamma radiation reduced the selected pathogens without causing significant changes in the quality of spinach leaves, it may be a useful method to improve safety in the fresh produce industry.

  5. Risk Factors for Salmonella, Shiga Toxin-Producing Escherichia coli and Campylobacter Occurrence in Primary Production of Leafy Greens and Strawberries

    Directory of Open Access Journals (Sweden)

    Siele Ceuppens

    2015-08-01

    Full Text Available The microbiological sanitary quality and safety of leafy greens and strawberries were assessed in the primary production in Belgium, Brazil, Egypt, Norway and Spain by enumeration of Escherichia coli and detection of Salmonella, Shiga toxin-producing E. coli (STEC and Campylobacter. Water samples were more prone to containing pathogens (54 positives out of 950 analyses than soil (16/1186 and produce on the field (18/977 for leafy greens and 5/402 for strawberries. The prevalence of pathogens also varied markedly according to the sampling region. Flooding of fields increased the risk considerably, with odds ratio (OR 10.9 for Salmonella and 7.0 for STEC. A significant association between elevated numbers of generic E. coli and detection of pathogens (OR of 2.3 for STEC and 2.7 for Salmonella was established. Generic E. coli was found to be a suitable index organism for Salmonella and STEC, but to a lesser extent for Campylobacter. Guidelines on frequency of sampling and threshold values for E. coli in irrigation water may differ from region to region.

  6. Transcriptional Alterations of Virulence-Associated Genes in Extended Spectrum Beta-Lactamase (ESBL-Producing Uropathogenic Escherichia coli during Morphologic Transitions Induced by Ineffective Antibiotics

    Directory of Open Access Journals (Sweden)

    Isak Demirel

    2017-06-01

    Full Text Available It is known that an ineffective antibiotic treatment can induce morphological shifts in uropathogenic Escherichia coli (UPEC but the virulence properties during these shifts remain to be studied. The present study examines changes in global gene expression patterns and in virulence factor-associated genes in an extended spectrum beta-lactamase (ESBL-producing UPEC (ESBL019 during the morphologic transitions induced by an ineffective antibiotic and in the presence of human primary bladder epithelial cells. Microarray results showed that the different morphological states of ESBL019 had significant transcriptional alterations of a large number of genes (Transition; 7%, Filamentation; 32%, and Reverted 19% of the entities on the array. All three morphological states of ESBL019 were associated with a decreased energy metabolism, altered iron acquisition systems and altered adhesion expression. In addition, genes associated with LPS synthesis and bacterial motility was also altered in all the morphological states. Furthermore, the transition state induced a significantly higher release of TNF-α from bladder epithelial cells compared to all other morphologies, while the reverted state was unable to induce TNF-α release. Our findings show that the morphological shifts induced by ineffective antibiotics are associated with significant transcriptional virulence alterations in ESBL-producing UPEC, which may affect survival and persistence in the urinary tract.

  7. Behaviour of four diarrheagenic Escherichia coli pathotypes on carrots and in unpasteurized carrot juice.

    Science.gov (United States)

    Gómez-Aldapa, C A; Torres-Vitela, M Del R; Acevedo-Sandoval, O A; Rangel-Vargas, E; Villarruel-López, A; Castro-Rosas, J

    2013-12-01

    The behaviours of Shiga toxin-producing Escherichia coli (STEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC) strains on raw carrots at 3 ± 1 and 30 ± 1°C, and in unpasteurized carrot juice at 3 ± 1, 12 ± 1, 20 ± 1, 30 ± 1°C and 37 ± 1°C were determined. Raw carrots were purchased in a local market. Fresh juice was obtained from raw carrots in the laboratory. On whole carrots stored at 30 ± 1 or 3 ± 1°C, no growth was observed for any of the diarrheagenic E. coli pathotype (DEPs) strains studied. After 15 days at 30 ± 1°C, the tested DEPs had decreased from an initial inoculum level of approximately 6 log colony-forming units (CFU) to approximately 3·5 log CFU on whole carrots, while at 3 ± 1°C, they decreased from approximately 2·4 log to 1·6 log CFU. All these DEPs grew in fresh carrot juice at 12 ± 1, 20 ± 1, 30 ± 1 and 37 ± 1°C, reaching counts of approximately 4·2 log, 5·8 log, 6·7 log and 7·5 log CFU ml(-1) , respectively, after 24 h. At 3 ± 1°C, the DEP growth was inhibited at least during 7 days. Thus, storage of carrot juice at unrefrigerated temperatures can result in DEP growth to levels likely to represent a risk to consumers. The information presented shows the potential of Shiga toxin-producing Escherichia coli, enteroinvasive E. coli, enteropathogenic E. coli and enterotoxigenic E. coli strains for survival on carrots and growth in carrot juice at warmer temperatures. The information can help food processors in plants and restaurants understand the importance of the implementation of hazard analysis and critical control point (HACCP) strategies for preventing potential diarrheagenic E. coli pathotypes (DEPs) contamination and growth in carrot juice. This is the first report regarding the behaviour these DEPs on carrots and in carrot juice. © 2013 The Society for Applied Microbiology.

  8. Comparative evaluation of the Ridascreen Verotoxin enzyme immunoassay for detection of Shiga-toxin producing strains of Escherichia coli (STEC) from food and other sources.

    Science.gov (United States)

    Beutin, L; Steinrück, H; Krause, G; Steege, K; Haby, S; Hultsch, G; Appel, B

    2007-03-01

    To evaluate the suitability of the commercially distributed Ridascreen Verotoxin enzyme immunoassay (EIA) for detection of known genetic types of the Vero (Shiga) toxins 1 (Stx1) and 2 (Stx2) families and to determine its relative sensitivity and specificity. The Ridascreen-EIA was compared with the Vero cell assay, a P(1)-glycoprotein receptor EIA and with stx gene-specific PCs for detection of Stx with 43 Shiga toxin-producing strains of Escherichia coli (STEC) reference strains and with 241 test strains. The Ridascreen-EIA detects strains producing Stx1 and variants Stx1c and Stx1d, as well as Stx2 and variants Stx2d1, Stx2d2, Stx2e, Stx2d, Stx2-O118 (Stx2d-ount), Stx2-NV206, Stx2f and Stx2g. The assay showed a relative sensitivity of 95.7% and a relative specificity of 98.7%. Some of the Stx2-O118-, Stx2e- and Stx2g-producing STEC were not detected with the Ridascreen-EIA probably because of low amount of toxin produced by these strains. The Ridascreen-EIA is able to detect all known types of Stx and is applicable for routine screening of bacterial isolates owing to its high specificity. It is less applicable for testing samples where low amounts of Stx are expected, such as mixed cultures and certain Stx2 variants. This study presents a first comprehensive evaluation of the Ridascreen-EIA, a rapid standardized STEC screening test for routine diagnostic laboratories. Data are presented on the type of the spectrum of Stx that are detected with this immunoassay and its advantages and limits for practical use.

  9. Prevalence of shiga toxin producing Escherichia coli, Salmonella enterica, and Listeria monocytogenes at public access watershed sites in a California Central Coast agricultural region.

    Science.gov (United States)

    Cooley, Michael B; Quiñones, Beatriz; Oryang, David; Mandrell, Robert E; Gorski, Lisa

    2014-01-01

    Produce contaminated with enteric pathogens is a major source of foodborne illness in the United States. Lakes, streams, rivers, and ponds were sampled with Moore swabs bi-monthly for over 2 years at 30 locations in the vicinity of a leafy green growing region on the Central California Coast and screened for Shiga toxin producing Escherichia coli (STEC), Salmonella enterica, and Listeria monocytogenes to evaluate the prevalence and persistence of pathogen subtypes. The prevalence of STEC from 1386 samples was 11%; 110 samples (8%) contained E. coli O157:H7 with the highest prevalence occurring close to cattle operations. Non-O157 STEC isolates represented major clinical O-types and 57% contained both shiga toxin types 1 and 2 and intimin. Multiple Locus Variable Number Tandem Repeat Analysis of STEC isolates indicated prevalent strains during the period of study. Notably, Salmonella was present at high levels throughout the sampling region with 65% prevalence in 1405 samples resulting in 996 isolates with slightly lower prevalence in late autumn. There were 2, 8, and 14 sites that were Salmonella-positive over 90, 80, and 70% of the time, respectively. The serotypes identified most often were 6,8:d:-, Typhimurium, and Give. Interestingly, analysis by Pulsed Field Gel Electrophoresis indicated persistence and transport of pulsotypes in the region over several years. In this original study of L. monocytogenes in the region prevalence was 43% of 1405 samples resulting in 635 individual isolates. Over 85% of the isolates belonged to serotype 4b with serotypes 1/2a, 1/2b, 3a, 4d with 4e representing the rest, and there were 12 and 2 sites that were positive over 50 and 80% of the time, respectively. Although surface water is not directly used for irrigation in this region, transport to the produce can occur by other means. This environmental survey assesses initial contamination levels toward an understanding of transport leading to produce recalls or outbreaks.

  10. Extended spectrum beta-lactamase-producing Escherichia coli forms filaments as an initial response to cefotaxime treatment

    DEFF Research Database (Denmark)

    Kjeldsen, Thea S. B.; Sommer, Morten Otto Alexander; Olsen, John E.

    2015-01-01

    Background: beta-lactams target the peptidoglycan layer in the bacterial cell wall and most beta-lactam antibiotics cause filamentation in susceptible Gram-negative bacteria at low concentrations. The objective was to determine the initial morphological response of cephalosporin resistant CTX-M-1......-producing E. coli to cefotaxime and to determine whether the response depended on the growth phase of the bacterium and the concentration of antibiotic. Results: Two antibiotic resistant strains carrying bla(CTX-M-1) on the chromosome and on an IncI1 plasmid and three sensitive strains were used...... to cefotaxime. The filament formation was restricted to early growth phases and the time the cells grew as filaments was antibiotic concentration dependent. This indicates that antibiotic resistant E. coli undergo the same morphological changes as sensitive bacteria in the presence of beta-lactam antibiotic...

  11. Immunoconcentration of Shiga toxin-producing Escherichia coli O157 from animal faeces and raw meats by using Dynabeads anti-E. coli O157 and the VIDAS system

    NARCIS (Netherlands)

    Islam, M.A.; Heuvelink, A.E.; Talukder, K.A.; Boer, de E.

    2006-01-01

    To identify the reservoirs and routes of transmission of Shiga toxin-producing Escherichia coli (STEC) O157, sensitive detection and isolation methods are necessary. The sensitivity of traditional culture methods can be improved significantly by the inclusion of an immunoconcentration step,

  12. In vitro activity of flomoxef and comparators against Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis producing extended-spectrum β-lactamases in China.

    Science.gov (United States)

    Yang, Qiwen; Zhang, Hui; Cheng, Jingwei; Xu, Zhipeng; Xu, Yingchun; Cao, Bin; Kong, Haishen; Ni, Yuxing; Yu, Yunsong; Sun, Ziyong; Hu, Bijie; Huang, Wenxiang; Wang, Yong; Wu, Anhua; Feng, Xianju; Liao, Kang; Shen, Dingxia; Hu, Zhidong; Chu, Yunzhuo; Lu, Juan; Su, Jianrong; Gui, Bingdong; Duan, Qiong; Zhang, Shufang; Shao, Haifeng

    2015-05-01

    The objective of this study was to better understand the in vitro activity of flomoxef against clinical extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. A total of 401 ESBL-producing isolates, including 196 Escherichia coli, 124 Klebsiella pneumoniae and 81 Proteus mirabilis, were collected consecutively from 21 hospitals in China in 2013. Minimum inhibitory concentrations (MICs) were determined by broth microdilution methods. Phenotypic identification of ESBL production was detected as recommended by the Clinical and Laboratory Standards Institute (CLSI). ESBL genes were detected by PCR and sequencing. Flomoxef, doripenem, meropenem, ertapenem, cefmetazole and piperacillin/tazobactam exhibited good activity against ESBL-producing isolates, with susceptibility rates >90%. Tigecycline showed good activity against E. coli and K. pneumoniae (100% and 97.6%, respectively). Cefotaxime and cefepime showed very low activities against ESBL-producing isolates, with susceptibility rates of 0-0.8% and 1.0-13.6%, respectively. blaCTX-M were the major ESBL genes, with occurrence in 99.5% of E. coli, 91.1% of K. pneumoniae and 97.5% of P. mirabilis. blaCTX-M-14 was the predominant ESBL gene, detected in 46.9% (188/401) of the isolates, followed by blaCTX-M-15 (21.4%), blaCTX-M-55 (17.2%), blaCTX-M-65 (12.7%) and blaCTX-M-3 (6.7%). Flomoxef exhibited excellent activity against the different CTX-M-type ESBL-producing isolates, with MIC50 and MIC90 values of 0.064-0.125μg/mL and 0.25-0.5μg/mL, respectively. Against the isolates solely producing CTX-M-14, -15, -55, -3 or -65, flomoxef showed susceptibility rates of 98.6%, 98.0%, 98.1%, 100.0% and 97.4%, respectively. In conclusion, flomoxef showed good activity against ESBL-producing Enterobacteriaceae and may be a choice to treat infections caused by these isolates in China. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  13. High Prevalence of Escherichia coli-Producing CTX-M-15 Extended-Spectrum Beta-Lactamases in Poultry and Human Clinical Isolates in Romania.

    Science.gov (United States)

    Maciuca, Iuliana E; Williams, Nicola J; Tuchilus, Cristina; Dorneanu, Olivia; Guguianu, Eleonora; Carp-Carare, Catalin; Rimbu, Cristina; Timofte, Dorina

    2015-12-01

    Use of antibiotics in food animals may contribute to development and spread of resistant organisms, particularly so in some countries. The aim of this study was two-fold; first, to establish the prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in chicken production in a region within Romania. Second, to study the relatedness of ESBL-producing E. coli isolates recovered from broilers, abattoir workers where the chickens were slaughtered and from the human clinical specimens from two regional hospitals. The results indicated a very high (69%) rate of carriage of ESBL and AmpC-producing E. coli in chickens with 36% CTX-M producers. Sequencing showed that chickens in Romania have the highest worldwide prevalence (53%) of blaCTX-M-15 reported in poultry E. coli isolates. The majority (53%) of the extended-spectrum cephalosporin-resistant E. coli carried plasmid-mediated blaampC genes, mostly blaCMY-2 type, one of the highest prevalences reported in Europe. The predominant CTX-M type found in the human clinical E. coli isolates was blaCTX-M-15 and most isolates coharbored blaOXA-1, blaTEM, and aac(6')-ib-cr. The majority (60%) of the human clinical isolates belonged to the pandemic virulent clone B2-ST131. The clonal relationship between broiler and the human CTX-M-producing E. coli isolates was assessed by macrorestriction pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST), which indicated strain diversity with no common STs found between human and poultry isolates. Moreover, IncI1 was the most prevalent replicon found in broiler ESBL-producing E. coli isolates and also in transconjugants, indicating that plasmids and not clonal spread may play a role in the transfer of blaCTX-M genes. This study identifies a high prevalence of ESBL-producing E. coli from broiler chickens in Romania with a high occurrence incidence of blaCTX-M-15, which reflects the main ESBL type found in human E. coli infections in this

  14. From farm to table: follow-up of Shiga toxin-producing Escherichia coli throughout the pork production chain in Argentina

    Directory of Open Access Journals (Sweden)

    Rocío eColello

    2016-02-01

    Full Text Available Pigs are important reservoirs of Shiga toxin-producing Escherichia coli (STEC. The entrance of these strains into the food chain implies a risk to consumers because of the severity of hemolytic uremic syndrome. This study reports the prevalence and characterization of Shiga toxin-producing Escherichia coli (STEC throughout the pork production chain. From 764 samples, 31 (4.05% were stx positive by PCR screening. At farms, 2.86% of samples were stx positive; at slaughter, 4.08% of carcasses were stx positive and at boning rooms, 6% of samples were stx positive. These percentages decreased in pork meat ready for sale at sales markets (4.59%. From positive samples, 50 isolates could be characterized. At farms 37.5% of the isolates carried stx1/stx2 genes, 37.5% possessed stx2e and 25%, carried only stx2. At slaughter we detected 50% of isolates positive for stx2, 33% for stx2e and 16% for stx1/stx2. At boning rooms 59% of the isolates carried stx1/stx2, 14% stx2e and 5% stx1/stx2/stx2e. At retail markets 66% of isolates were positive for stx2, 17% stx2e and 17% stx1/stx2. For the other virulence factors, ehxA and saa were not detected and eae gene was detected in 12% of the isolates. Concerning putative adhesins, agn43 was detected in 72%, ehaA in 26%, aida in 8% and iha in 6% of isolates. The strains were typed into 14 E. coli O groups (O1, O2, O8, O15, O20, O35, O69, O78, O91, O121, O138, O142, O157, O180 and ten H groups (H9, H10, H16, H21, H26, H29, H30, H32, H45, H46. This study reports the prevalence and characterization of STEC strains through the chain pork suggesting the vertical transmission. STEC contamination originates in the farms and is transferred from pigs to carcasses in the slaughter process and increase in meat pork at boning rooms and sales markets. These results highlight the need to implement an integrated STEC control system based on good management practices on the farm and critical control point systems in the food chain.

  15. Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli.

    Science.gov (United States)

    Deng, Yu; Ma, Ning; Zhu, Kangjia; Mao, Yin; Wei, Xuetuan; Zhao, Yunying

    2018-03-01

    The glyoxylate shunt is a branch of the tricarboxylic acid (TCA) cycle which directly determines the synthesis of glycolate, and the balance between the glyoxylate shunt and TCA cycle is very important for the growth of Escherichia coli. In order to accumulate glycolate at high yield and titer, strategies for over-expressing glycolate pathway enzymes including isocitrate lyase (AceA), isocitrate dehydrogenase kinase/phosphatase (AceK) and glyoxylate reductase (YcdW) were analyzed. The genes encoding these three enzymes were transcribed under the control of promoter pTrc on pTrc99A, to form pJNU-3, which was harbored by strain Mgly1, resulting in strain Mgly13. Strain Mgly13 produced glycolate with 0.385 g/g-glucose yield (45.2% of the theoretical yield). Citrate synthase (GltA) converted excess acetyl-CoA and oxaloacetate to citrate and was over-expressed by pJNU-4 (pCDFDuet-1 backbone). Thus, the resulting strain Mgly134 produced glycolate with a 0.504 g/g-glucose yield (59.3% of the theoretical yield). We then eliminated the pathways involved in the degradation of glycolate, resulting in strain Mgly434, which produced glycolate with 92.9% of the theoretical yield. Following optimization of fermentation, the maximum glycolate titer from strain Mgly434 was 65.5 g/L. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. Detection of Healthcare-Related Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Transmission Events Using Combined Genetic and Phenotypic Epidemiology.

    Directory of Open Access Journals (Sweden)

    Anne F Voor In 't Holt

    Full Text Available Since the year 2000 there has been a sharp increase in the prevalence of healthcare-related infections caused by extended-spectrum beta-lactamase (ESBL-producing Escherichia coli. However, the high community prevalence of ESBL-producing E. coli isolates means that many E. coli typing techniques may not be suitable for detecting E. coli transmission events. Therefore, we investigated if High-throughput MultiLocus Sequence Typing (HiMLST and/or Raman spectroscopy were suitable techniques for detecting recent E. coli transmission events.This study was conducted from January until December 2010 at Erasmus University Medical Center, Rotterdam, the Netherlands. Isolates were typed using HiMLST and Raman spectroscopy. A genetic cluster was defined as two or more patients carrying identical isolates. We used predefined definitions for epidemiological relatedness to assess healthcare-related transmission.We included 194 patients; strains of 112 patients were typed using HiMLST and strains of 194 patients were typed using Raman spectroscopy. Raman spectroscopy identified 16 clusters while HiMLST identified 10 clusters. However, no healthcare-related transmission events were detected. When combining data from both typing techniques, we identified eight clusters (n = 34 patients, as well as 78 patients with a non-cluster isolate. However, we could not detect any healthcare-related transmission in these 8 clusters.Although clusters were genetically detected using HiMLST and Raman spectroscopy, no definite epidemiological relationships could be demonstrated which makes the possibility of healthcare-related transmission events highly unlikely. Our results suggest that typing of ESBL-producing E. coli using HiMLST and/or Raman spectroscopy is not helpful in detecting E. coli healthcare-related transmission events.

  17. Detection of Shiga toxin-producing Escherichia coli by sandwich enzyme-linked immunosorbent assay using chicken egg yolk IgY antibodies

    Directory of Open Access Journals (Sweden)

    Yanil R Parma

    2012-06-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC, a subset of Shiga toxin producing E. coli (STEC is associated with a spectrum of diseases that includes diarrhea, hemorrhagic colitis and a life-threatening hemolytic uremic syndrome (HUS. Regardless of serotype, Shiga toxins (Stx1 and/or Stx2 are uniformly expressed by all EHEC, and so exploitable targets for laboratory diagnosis of these pathogens. In this study, a sandwich ELISA for determination of Shiga toxin (Stx was developed using anti-Stx2 B subunit antibodies and its performance was compared with that of the Vero cell assay and a commercial immunoassay kit. Chicken IgY was used as capture antibody and a HRP-conjugated rabbit IgG as the detection antibody. The anti-Stx2B IgY was harvested from eggs laid by hens immunized with a recombinant protein fragment. Several parameters were tested in order to optimize the sandwich ELISA assay, including concentration of antibodies, type and concentration of blocking agent, and incubation temperatures. Supernatants from 42 STEC strains of different serotypes and stx variants, including stx2EDL933, stx2vha, stx2vhb, stx2g, stx1EDL933 and stx1d were tested. All Stx variants were detected by the sandwich ELISA, with a detection limit of 400 ng /ml Stx2. Twenty three strains negative for stx genes, including different bacteria species, showed no activity in Vero cell assay and produced negative results in ELISA, except for 2 strains. Our results show that anti-Stx2B IgY sandwich ELISA could be used in routine diagnosis as a rapid, specific and economic method for detection of Shiga toxin-producing E. coli.

  18. Detection of Shiga toxin-producing Escherichia coli by sandwich enzyme-linked immunosorbent assay using chicken egg yolk IgY antibodies

    Science.gov (United States)

    Parma, Y. R.; Chacana, P. A.; Lucchesi, P. M. A.; Rogé, A.; Granobles Velandia, C. V.; Krüger, A.; Parma, A. E.; Fernández-Miyakawa, M. E.

    2012-01-01

    Enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin producing E. coli (STEC) is associated with a spectrum of diseases that includes diarrhea, hemorrhagic colitis and a life-threatening hemolytic-uremic syndrome (HUS). Regardless of serotype, Shiga toxins (Stx1 and/or Stx2) are uniformly expressed by all EHEC, and so exploitable targets for laboratory diagnosis of these pathogens. In this study, a sandwich ELISA for determination of Shiga toxin (Stx) was developed using anti-Stx2B subunit antibodies and its performance was compared with that of the Vero cell assay and a commercial immunoassay kit. Chicken IgY was used as capture antibody and a HRP-conjugated rabbit IgG as the detection antibody. The anti-Stx2B IgY was harvested from eggs laid by hens immunized with a recombinant protein fragment. Several parameters were tested in order to optimize the sandwich ELISA assay, including concentration of antibodies, type and concentration of blocking agent, and incubation temperatures. Supernatants from 42 STEC strains of different serotypes and stx variants, including stx2EDL933, stx2vha, stx2vhb, stx2g, stx1EDL933, and stx1d were tested. All Stx variants were detected by the sandwich ELISA, with a detection limit of 115 ng/ml Stx2. Twenty three strains negative for stx genes, including different bacteria species, showed no activity in Vero cell assay and produced negative results in ELISA, except for two strains. Our results show that anti-Stx2B IgY sandwich ELISA could be used in routine diagnosis as a rapid, specific and economic method for detection of Shiga toxin-producing E. coli. PMID:22919675

  19. Insect cells are superior to Escherichia coli in producing malaria proteins inducing IgG targeting PfEMP1 on infected erythrocytes

    Directory of Open Access Journals (Sweden)

    Joergensen Louise

    2010-11-01

    Full Text Available Abstract Background The PFD1235w Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1 antigen is associated with severe malaria in children and can be expressed on the surface of infected erythrocytes (IE adhering to ICAM1. However, the exact three-dimensional structure of this PfEMP1 and its surface-exposed epitopes are unknown. An insect cell and Escherichia coli based system was used to express single and double domains encoded by the pfd1235w var gene. The resulting recombinant proteins have been evaluated for yield and purity and their ability to induce rat antibodies, which react with the native PFD1235w PfEMP1 antigen expressed on 3D7PFD1235w-IE. Their recognition by human anti-malaria antibodies from previously infected Tanzanian donors was also analysed. Methods The recombinant proteins were run on SDS-PAGE and Western blots for quantification and size estimation. Insect cell and E. coli-produced recombinant proteins were coupled to a bead-based Luminex assay to measure the plasma antibody reactivity of 180 samples collected from Tanzanian individuals. The recombinant proteins used for immunization of rats and antisera were also tested by flow cytometry for their ability to surface label 3D7PFD1235w-IE. Results All seven pAcGP67A constructs were successfully expressed as recombinant protein in baculovirus-infected insect cells and subsequently produced to a purity of 60-97% and a yield of 2-15 mg/L. By comparison, only three of seven pET101/D-TOPO constructs expressed in the E. coli system could be produced at all with purity and yield ranging from 3-95% and 6-11 mg/L. All seven insect cell, but only two of the E. coli produced proteins induced antibodies reactive with native PFD1235w expressed on 3D7PFD1235w-IE. The recombinant proteins were recognized in an age- and transmission intensity-dependent manner by antibodies from 180 Tanzanian individuals in a bead-based Luminex assay. Conclusions The baculovirus based insect cell

  20. Prevalence and characterization of Shiga Toxin-producing and enteropathogenic Escherichia coli in shellfish-harvesting areas and their watersheds

    Directory of Open Access Journals (Sweden)

    Balière eCharlotte

    2015-12-01

    Full Text Available During a two-year study, the presence of Shiga-toxin producing E. coli (STEC and enteropathogenic E. coli (EPEC was investigated in shellfish (n=238, seawater (n=12 and surface sediment (n=39 collected from three French coastal shellfish-harvesting areas and freshwaters (n=216 in their watersheds. PCR detection of Shiga toxin- (stx1/stx2 and intimin- (eae genes following enrichment from these samples revealed the presence of least one of the stx genes in 30.3% of shellfish batches, 85.9% of freshwater, 41.7% of seawater, and 28.2% of sediment samples, while the eae gene was observed in 74.8%, 100%, 100%, and 43.6% of shellfish batches, freshwater, seawater, and sediment samples, respectively. Twenty-eight STEC and 89 EPEC strains were isolated and analyzed in order to determine their serotype, phylogroup, and genetic relatedness and to evaluate the presence of the saa and ehxA genes encoding the STEC autoagglutinating adhesin and the enterohemolysin A, respectively. Finally, the ability to form biofilms and antimicrobial susceptibility were investigated for a selection of strains. Eighteen serotypes were identified among the STEC isolates and 57 among the EPEC isolates. A high diversity was observed within these strains, as 79 different PFGE patterns and 48 distinguishable sequence types were identified. Strains were found to belong mainly to phylogroups B1 and B2 and virulence was observed to be low as more than 85% of the strains possessed only stx1, stx2 or eae genes. One STEC and several EPEC strains belonged to three of the five highly pathogenic serogroups (i.e., O26, O103, and O145. The subset of strains tested for their capacity to form biofilms was mainly strongly to moderately adherent and more strains formed a strong biofilm at 18°C than at 30°C. Finally, more than 85% of analyzed strains were found to be sensitive to the 16 tested antibiotics. These data suggest the low risk of human infection by STEC if shellfish from these

  1. Reduction of extended-spectrum-β-lactamase- and AmpC-β-lactamase-producing Escherichia coli through processing in two broiler chicken slaughterhouses.

    Science.gov (United States)

    Pacholewicz, Ewa; Liakopoulos, Apostolos; Swart, Arno; Gortemaker, Betty; Dierikx, Cindy; Havelaar, Arie; Schmitt, Heike

    2015-12-23

    Whilst broilers are recognised as a reservoir of extended-spectrum-β-lactamase (ESBL)- and AmpC-β-lactamase (AmpC)-producing Escherichia coli, there is currently limited knowledge on the effect of slaughtering on its concentrations on poultry meat. The aim of this study was to establish the concentration of ESBL/AmpC producing E. coli on broiler chicken carcasses through processing. In addition the changes in ESBL/AmpC producing E. coli concentrations were compared with generic E. coli and Campylobacter. In two slaughterhouses, the surface of the whole carcasses was sampled after 5 processing steps: bleeding, scalding, defeathering, evisceration and chilling. In total, 17 batches were sampled in two different slaughterhouses during the summers of 2012 and 2013. ESBL/AmpC producing E. coli was enumerated on MacConkey agar with 1mg/l cefotaxime, and the ESBL/AmpC phenotypes and genotypes were characterised. The ESBL/AmpC producing E. coli concentrations varied significantly between the incoming batches in both slaughterhouses. The concentrations on broiler chicken carcasses were significantly reduced during processing. In Slaughterhouse 1, all subsequent processing steps reduced the concentrations except evisceration which led to a slight increase that was statistically not significant. The changes in concentration between processing steps were relatively similar for all sampled batches in this slaughterhouse. In contrast, changes varied between batches in Slaughterhouse 2, and the overall reduction through processing was higher in Slaughterhouse 2. Changes in ESBL/AmpC producing E. coli along the processing line were similar to changes in generic E. coli in both slaughterhouses. The effect of defeathering differed between ESBL/AmpC producing E. coli and Campylobacter. ESBL/AmpC producing E. coli decreased after defeathering, whereas Campylobacter concentrations increased. The genotypes of ESBL/AmpC producing E. coli (blaCTX-M-1, blaSHV-12, blaCMY-2, blaTEM-52c

  2. Efficacy of a Blend of Sulfuric Acid and Sodium Sulfate against Shiga Toxin-Producing Escherichia coli, Salmonella, and Nonpathogenic Escherichia coli Biotype I on Inoculated Prerigor Beef Surface Tissue.

    Science.gov (United States)

    Scott-Bullard, Britteny R; Geornaras, Ifigenia; Delmore, Robert J; Woerner, Dale R; Reagan, James O; Morgan, J Bred; Belk, Keith E

    2017-12-01

    A study was conducted to investigate the efficacy of a sulfuric acid-sodium sulfate blend (SSS) against Escherichia coli O157:H7, non-O157 Shiga toxin-producing E. coli (STEC), Salmonella, and nonpathogenic E. coli biotype I on prerigor beef surface tissue. The suitability of using the nonpathogenic E. coli as a surrogate for in-plant validation studies was also determined by comparing the data obtained for the nonpathogenic inoculum with those for the pathogenic inocula. Prerigor beef tissue samples (10 by 10 cm) were inoculated (ca. 6 log CFU/cm 2 ) on the adipose side in a laboratory-scale spray cabinet with multistrain mixtures of E. coli O157:H7 (5 strains), non-O157 STEC (12 strains), Salmonella (6 strains), or E. coli biotype I (5 strains). Treatment parameters evaluated were two SSS pH values (1.5 and 1.0) and two spray application pressures (13 and 22 lb/in 2 ). Untreated inoculated beef tissue samples served as controls for initial bacterial populations. Overall, the SSS treatments lowered inoculated (6.1 to 6.4 log CFU/cm 2 ) bacterial populations by 0.6 to 1.5 log CFU/cm 2 (P SSS was applied to samples inoculated with any of the tested E. coli inocula; however, solution pH did have a significant effect (P SSS was applied to samples inoculated with Salmonella. Results indicated that the response of the nonpathogenic E. coli inoculum to the SSS treatments was similar (P ≥ 0.05) to that of the pathogenic inocula tested, making the E. coli biotype I strains viable surrogate organisms for in-plant validation of SSS efficacy on beef. The application of SSS at the tested parameters to prerigor beef surface tissue may be an effective intervention for controlling pathogens in a commercial beef harvest process.

  3. Characteristics of Shigatoxin-Producing Escherichia coli Strains Isolated during 2010–2014 from Human Infections in Switzerland

    Directory of Open Access Journals (Sweden)

    Lisa Fierz

    2017-08-01

    Full Text Available Objectives: The aim of this study was to characterize a collection of 95 Shigatoxin-producing E.coli (STEC isolated from human patients in Switzerland during 2010–2014.Methods: We performed O and H serotyping and molecular subtyping.Results: The five most common serogroups were O157, O145, O26, O103, and O146. Of the 95 strains, 35 (36.8% carried stx1 genes only, 43 strains (45.2% carried stx2 and 17 (17.9% harbored combinations of stx1 and stx2 genes. Stx1a (42 strains and stx2a (32 strains were the most frequently detected stx subtypes. Genes for intimin (eae, hemolysin (hly, iron-regulated adhesion (iha, and the subtilase cytotoxin subtypes subAB1, subAB2-1, subAB2-2, or subAB2-3 were detected in 70.5, 83.2, 74.7, and 20% of the strains, respectively. Multilocus sequence typing assigned the majority (58.9% of the isolates to five different clonal complexes (CC, 11, 32, 29, 20, and 165, respectively. CC11 included all O157:[H7] and O55:[H7] isolates. CC32 comprised O145:[H28] isolates, and O145:[H25] belonged to sequence type (ST 342. CC29 contained isolates of the O26:[H11], O111:[H8] and O118:[Hnt] serogroups, and CC20 encompassed isolates of O51:H49/[Hnt] and O103:[H2]. CC165 included isolates typed O80:[H2]-ST301, all harboring stx2d, eae-ξ, hly, and 66.7% additionally harboring iha. All O80:[H2]-ST301 strains harbored at least 7 genes carried by pS88, a plasmid associated with extraintestinal virulence. Compared to data from Switzerland from the years 2000–2009, an increase of the proportion of non-O157 STEC infections was observed as well as an increase of infections due to STEC O146. By contrast, the prevalence of the highly virulent German clone STEC O26:[H11]-ST29 decreased from 11.3% during 2000–2009 to 1.1% for the time span 2010–2014. The detection of O80:[H2]-ST301 harboring stx2d, eae-ξ, hly, iha, and pS88 related genes suggests an ongoing emergence in Switzerland of an unusual, highly pathogenic STEC serotype

  4. Loop-Mediated Isothermal Amplification Assay for Detection of Generic and Verocytotoxin-Producing Escherichia coli among Indigenous Individuals in Malaysia

    Directory of Open Access Journals (Sweden)

    Cindy Shuan Ju Teh

    2014-01-01

    Full Text Available We have successfully developed a Loop-mediated isothermal amplification (LAMP assay that could specifically detect generic Escherichia coli (E. coli. This assay was tested on 85 bacterial strains and successfully identified 54 E. coli strains (average threshold time, Tt = 21.26. The sensitivity of this assay was evaluated on serial dilutions of bacterial cultures and spiked faeces. The assay could detect 102 CFU/mL for bacterial culture with Tt = 33.30 while the detection limit for spiked faeces was 103 CFU/mL (Tt = 31.12. We have also detected 46 generic E. coli from 50 faecal samples obtained from indigenous individuals with 16% of the positive samples being verocytotoxin-producing E. coli (VTEC positive. VT1/VT2 allele was present in one faecal sample while the ratio of VT1 to VT2 was 6 : 1. Overall, our study had demonstrated high risk of VTEC infection among the indigenous community and most of the asymptomatic infection occurred among those aged below 15 years. The role of asymptomatic human carriers as a source of dissemination should not be underestimated. Large scale screening of the VTEC infection among indigenous populations and the potential contamination sources will be possible and easy with the aid of this newly developed rapid and simple LAMP assay.

  5. Association of clustered regularly interspaced short palindromic repeat (CRISPR) elements with specific serotypes and virulence potential of shiga toxin-producing Escherichia coli.

    Science.gov (United States)

    Toro, Magaly; Cao, Guojie; Ju, Wenting; Allard, Marc; Barrangou, Rodolphe; Zhao, Shaohua; Brown, Eric; Meng, Jianghong

    2014-02-01

    Shiga toxin-producing Escherichia coli (STEC) strains (n = 194) representing 43 serotypes and E. coli K-12 were examined for clustered regularly interspaced short palindromic repeat (CRISPR) arrays to study genetic relatedness among STEC serotypes. A subset of the strains (n = 81) was further analyzed for subtype I-E cas and virulence genes to determine a possible association of CRISPR elements with potential virulence. Four types of CRISPR arrays were identified. CRISPR1 and CRISPR2 were present in all strains tested; 1 strain also had both CRISPR3 and CRISPR4, whereas 193 strains displayed a short, combined array, CRISPR3-4. A total of 3,353 spacers were identified, representing 528 distinct spacers. The average length of a spacer was 32 bp. Approximately one-half of the spacers (54%) were unique and found mostly in strains of less common serotypes. Overall, CRISPR spacer contents correlated well with STEC serotypes, and identical arrays were shared between strains with the same H type (O26:H11, O103:H11, and O111:H11). There was no association identified between the presence of subtype I-E cas and virulence genes, but the total number of spacers had a negative correlation with potential pathogenicity (P CRISPR-cas system and potential virulence needs to be determined on a broader scale, and the biological link will need to be established.

  6. Assessment of Consumer Exposure to Salmonella spp., Campylobacter spp., and Shiga Toxin-Producing Escherichia coli in Meat Products at Retail in the City of Sao Paulo, Brazil.

    Science.gov (United States)

    Ristori, Christiane Asturiano; Rowlands, Ruth Estela Gravato; Martins, Cecília Geraldes; Barbosa, Maria Luisa; Dos Santos, Luis Fernando; Jakabi, Miyoko; de Melo Franco, Bernadette Dora Gombossy

    2017-08-01

    Meat products may be vehicles of bacterial pathogens to humans, and Salmonella spp., Campylobacter spp., and Shiga toxin-producing Escherichia coli (STEC) are the most relevant. The aim of this study was to generate data on prevalence of these three pathogens in 552 samples of meat products (hot dogs, pork sausages, raw ground beef, and raw chicken legs) sold at retail in the city of Sao Paulo, Brazil. Salmonella spp. was detected in 5.8% (32/552) of samples, comprising pork sausages 62.5% (20/32) and chicken legs 37.5% (12/32). The counts of Salmonella spp. were low, ranging from Salmonella Typhimurium (28.1%), Salmonella I 4,[5],12:i:- (15.6%), Salmonella Enteritidis (12.5%), Salmonella Derby, and Salmonella Brandenburg (9.4%). Campylobacter spp. was detected in 33 samples (6.0%), comprising chicken legs (82%) and ground beef (18%). All samples were negative for STEC. These results suggest that meat products when subjected to inadequate cooking and/or cross-contamination with other products ready for consumption can lead to occurrence of outbreaks, highlighting the risks associated with them.

  7. [Stx2a-producing enteroaggregative Escherichia coli O104:H4-ST678. Microbiological diagnostic already, for this and other STEC/VTEC serotypes!].

    Science.gov (United States)

    Blanco, Jorge

    2012-02-01

    A Stx2a-producing Escherichia coli (STEC) strain belonging to serotype O104:H4, with virulence features common to the enteroaggregative E. coli pathotype, was reported as the cause of the recent 2011 outbreak in Germany. In addition, the German outbreak strain was found to possess several virulence factors of extra-intestinal pathogenic E. coli and to have acquired resistance to numerous antibiotics, including third-generation cephalosporins, owing to several plasmid-borne genes encoding TEM-1 and CTX-M-15 β-lactamases. There are only a few reports of serotype O104:H4, which is very rare in humans, and has never been detected in animals or food. Once the serotype of the German outbreak strain became known, specific molecular methods were developed for its detection based on conventional and real-time PCR. Data from Galicia suggest that, per year in Spain, STEC O157:H7 is responsible for more than 500 cases of infection, and non-O157 for more than 2,000. A microbiological diagnosis for O104:H4, O157:H7 and other STEC serotypes is required in Spanish hospitals. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  8. Outbreak of extended-spectrum β-lactamase-producing Escherichia coli transmitted through breast milk sharing in a neonatal intensive care unit.

    Science.gov (United States)

    Nakamura, K; Kaneko, M; Abe, Y; Yamamoto, N; Mori, H; Yoshida, A; Ohashi, K; Miura, S; Yang, T T; Momoi, N; Kanemitsu, K

    2016-01-01

    Routine surveillance in a neonatal intensive care unit (NICU) showed an increased detection of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-E. coli) in August 2012, following nearly a year without detection. To describe the investigation and interventions by a hospital infection control team of an outbreak of ESBL-E. coli in a NICU. Six neonates with positive cultures of ESBL-E. coli (five with respiratory colonization, one with a urinary tract infection), control infants who were negative for ESBL-E. coli during the study period, and mothers who donated their breast milk were included. A case-control study was performed to identify possible risk factors for positive ESBL-E. coli cultures and molecular typing of isolated strains by pulsed-field gel electrophoresis. The odds ratio for ESBL-E. coli infection after receiving shared unpasteurized breast milk during the study period was 49.17 (95% confidence interval: 6.02-354.68; P milk of a particular donor. After ceasing the breast milk sharing, the outbreak was successfully terminated. This outbreak indicates that contamination of milk packs can result in transmission of a drug-resistant pathogen to newborn infants. Providers of human breast milk need to be aware of the necessity for low-temperature pasteurization and bacterial cultures, which should be conducted before and after freezing, before prescribing to infants. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  9. How different is the proteome of the extended spectrum β-lactamase producing Escherichia coli strains from seagulls of the Berlengas natural reserve of Portugal?

    Science.gov (United States)

    Monteiro, R; Hébraud, M; Chafsey, I; Poeta, P; Igrejas, G

    2016-08-11

    β-Lactam antibiotics like cefotaxime are the most commonly used antibacterial agents. Escherichia coli strains 5A, 10A, 12A and 23B isolated from Seagulls feces, are cefotaxime-resistant strains that produces extended-spectrum beta-lactamases. Bacterial resistance to these antibiotics occurs predominantly through structural modification on the penicillin-binding proteins and enzymatic inactivation by extended-spectrum β-lactamases. Using classical proteomic techniques (2D-GE) coupled to mass spectrometry and bioinformatics extended analysis, in this study, we report several significant differences in cytoplasmic proteins expression when the strains were submitted to antibiotic stress and when the resistant strains were compared with a non-resistant strain. A total of 79 differentially expressed spots were collected for protein identification. Significant level of expression was found in antibiotic resistant proteins like β-lactamase CTX-M-1 and TEM and also in proteins related with oxidative stress. This approach might help us understand which pathways form barriers for antibiotics, another possible new pathways involved in antibiotic resistance to devise appropriate strategies for their control already recognized by the World Health Organization and the European Commission. This study highlights the protein differences when a resistant strain is under antibiotic pressure and how different can be a sensible and resistant strain at the protein level. This survey might help us to understand the specifics barriers for antibiotics and which pathways are involved in its resistance crosswise the wildlife. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. DNA fingerprinting of Shiga-toxin producing Escherichia coli O157 based on Multiple-Locus Variable-Number Tandem-Repeats Analysis (MLVA

    Directory of Open Access Journals (Sweden)

    Vardund Traute

    2003-12-01

    Full Text Available Abstract Background The ability to react early to possible outbreaks of Escherichia coli O157:H7 and to trace possible sources relies on the availability of highly discriminatory and reliable techniques. The development of methods that are fast and has the potential for complete automation is needed for this important pathogen. Methods In all 73 isolates of shiga-toxin producing E. coli O157 (STEC were used in this study. The two available fully sequenced STEC genomes were scanned for tandem repeated stretches of DNA, which were evaluated as polymorphic markers for isolate identification. Results The 73 E. coli isolates displayed 47 distinct patterns and the MLVA assay was capable of high discrimination between the E. coli O157 strains. The assay was fast and all the steps can be automated. Conclusion The findings demonstrate a novel high discriminatory molecular typing method for the important pathogen E. coli O157 that is fast, robust and offers many advantages compared to current methods.

  11. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae

    Science.gov (United States)

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S.; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-04-01

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm-1 for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls.

  12. Genetic characterization of Shiga toxin-producing Escherichia coli O26:H11 strains isolated from animal, food, and clinical samples

    Science.gov (United States)

    Krüger, Alejandra; Lucchesi, Paula M. A.; Sanso, A. Mariel; Etcheverría, Analía I.; Bustamante, Ana V.; Burgán, Julia; Fernández, Luciana; Fernández, Daniel; Leotta, Gerardo; Friedrich, Alexander W.; Padola, Nora L.; Rossen, John W. A.

    2015-01-01

    The Shiga-toxin producing Escherichia coli (STEC) may cause serious illness in human. Here we analyze O26:H11 strains known to be among the most reported STEC strains causing human infections. Genetic characterization of strains isolated from animal, food, and clinical specimens in Argentina showed that most carried either stx1a or stx2a subtypes. Interestingly, stx2a-positive O26:H11 rarely isolated from cattle in other countries showed to be an important proportion of O26:H11 strains circulating in cattle and food in our region. Seventeen percent of the isolates harbored more than one gene associated with antimicrobial resistance. In addition to stx, all strains contained the virulence genes eae-β, tir, efa, iha, espB, cif, espA, espF, espJ, nleA, nleB, nleC, and iss; and all except one contained ehxA, espP, and cba genes. On the other hand, toxB and espI genes were exclusively observed in stx2-positive isolates, whereas katP was only found in stx1a-positive isolates. Our results show that O26:H11 STEC strains circulating in Argentina, including those isolated from humans, cattle, and meat products, present a high pathogenic potential, and evidence that cattle can be a reservoir of O26:H11 strains harboring stx2a. PMID:26539413

  13. Short-term evolution of Shiga toxin-producing Escherichia coli O157:H7 between two food-borne outbreaks.

    Science.gov (United States)

    Cowley, Lauren A; Dallman, Timothy J; Fitzgerald, Stephen; Irvine, Neil; Rooney, Paul J; McAteer, Sean P; Day, Martin; Perry, Neil T; Bono, James L; Jenkins, Claire; Gally, David L

    2016-09-01

    Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a public health threat and outbreaks occur worldwide. Here, we investigate genomic differences between related STEC O157:H7 that caused two outbreaks, eight weeks apart, at the same restaurant. Short-read genome sequencing divided the outbreak strains into two sub-clusters separated by only three single-nucleotide polymorphisms in the core genome while traditional typing identified them as separate phage types, PT8 and PT54. Isolates did not cluster with local strains but with those associated with foreign travel to the Middle East/North Africa. Combined long-read sequencing approaches and optical mapping revealed that the two outbreak strains had undergone significant microevolution in the accessory genome with prophage gain, loss and recombination. In addition, the PT54 sub-type had acquired a 240 kbp multi-drug resistance (MDR) IncHI2 plasmid responsible for the phage type switch. A PT54 isolate had a general fitness advantage over a PT8 isolate in rich medium, including an increased capacity to use specific amino acids and dipeptides as a nitrogen source. The second outbreak was considerably larger and there were multiple secondary cases indicative of effective human-to-human transmission. We speculate that MDR plasmid acquisition and prophage changes have adapted the PT54 strain for human infection and transmission. Our study shows the added insights provided by combining whole-genome sequencing approaches for outbreak investigations.

  14. A Review of Current Research and Knowledge Gaps in the Epidemiology of Shiga Toxin-Producing Escherichia coli and Salmonella spp. in Trinidad and Tobago

    Directory of Open Access Journals (Sweden)

    Anil K. Persad

    2018-04-01

    Full Text Available Salmonella and Shiga toxin-producing Escherichia coli are two of the main causes of foodborne disease globally, and while they have been implicated as possible causes of foodborne disease within the Caribbean region, the actual incidence is unknown. Trinidad and Tobago, one of the larger countries in the Caribbean, has an estimated annual foodborne disease burden of over 100,000 cases and, similar to other countries, the etiology of most of these cases is unknown. Both pathogens can reside as part of the normal gastrointestinal microflora of many wild and domestic animals, with animals acting as reservoirs, spillover hosts, or dead-end hosts. Carriage in animal species can be asymptomatic or, in the case of Salmonella in particular, there may be clinical manifestation in animals, which resemble the disease seen in humans. In this review, we will focus on the epidemiology of these two foodborne pathogens in Trinidad and Tobago and identify any knowledge gaps in the published literature. The filling of this critical knowledge void is essential for the development and implementation of appropriate mechanisms to reduce the dissemination and transmission of these pathogens, not only in Trinidad and Tobago, but also in the wider Caribbean.

  15. A Review of Current Research and Knowledge Gaps in the Epidemiology of Shiga Toxin-Producing Escherichia coli and Salmonella spp. in Trinidad and Tobago.

    Science.gov (United States)

    Persad, Anil K; LeJeune, Jeffrey

    2018-04-17

    Salmonella and Shiga toxin-producing Escherichia coli are two of the main causes of foodborne disease globally, and while they have been implicated as possible causes of foodborne disease within the Caribbean region, the actual incidence is unknown. Trinidad and Tobago, one of the larger countries in the Caribbean, has an estimated annual foodborne disease burden of over 100,000 cases and, similar to other countries, the etiology of most of these cases is unknown. Both pathogens can reside as part of the normal gastrointestinal microflora of many wild and domestic animals, with animals acting as reservoirs, spillover hosts, or dead-end hosts. Carriage in animal species can be asymptomatic or, in the case of Salmonella in particular, there may be clinical manifestation in animals, which resemble the disease seen in humans. In this review, we will focus on the epidemiology of these two foodborne pathogens in Trinidad and Tobago and identify any knowledge gaps in the published literature. The filling of this critical knowledge void is essential for the development and implementation of appropriate mechanisms to reduce the dissemination and transmission of these pathogens, not only in Trinidad and Tobago, but also in the wider Caribbean.

  16. Escherichia coli-producing extended-spectrum beta-lactamase CTX-M-15 in a captive South American tapir (Tapirus terrestris).

    Science.gov (United States)

    Klimes, Jiri; Machalkova, Marketa; Dolejska, Monika; Cizek, Alois; Janoszowska, Dagmar; Alexa, Pavel; Albrechtova, Katerina; Vojtech, Jiri; Literak, Ivan

    2013-03-01

    Only a few reports exist on the occurrence of resistant bacteria in zoo animals. Therefore, an isolation of multiresistant Escherichia coli from the lungs of a captive South American tapir (Tapirus terrestris) lead to its characterization and further investigation of samples from animals inhabiting the same paddock and from the shared environment. The tapir suffered from an intermandibular abscess and pneumonia and was euthanatized after unsuccessful therapy, including administration of antibiotics. The authors performed selective isolation of extended-spectrum beta-lactamase (ESBL)-positive E. coli strains and identification of resistance genes using polymerase chain reaction. Seven multiresistant, ESBL-producing E. coli isolates were obtained, all belonging to the B2 phylogenetic group and showing identical profile on pulsed-field gel electrophoresis. These isolates carried several resistance genes, including the gene bla(CTX-M-15). This case demonstrates the transmission of related epidemiologically important E. coli isolates whose potential transmission to other animals and zoo staff can be assumed.

  17. Growth and Survival of Acid-Resistant and Non-Acid-Resistant Shiga-Toxin-Producing Escherichia coli Strains during the Manufacture and Ripening of Camembert Cheese.

    Science.gov (United States)

    Montet, M P; Jamet, E; Ganet, S; Dizin, M; Miszczycha, S; Dunière, L; Thevenot, D; Vernozy-Rozand, C

    2009-01-01

    Growth and survival of acid-resistant (AR) and non-acid-resistant (NAR) Shiga-toxin-producing Escherichia coli (STEC) strains were investigated during the manufacture and ripening of microfiltered milk Camembert cheeses. The induction of acid resistance of the STEC strains in cheeses was also studied. Six different mixtures of AR and/or NAR STEC strains were inoculated separately into microfiltered milk at a level of 10(3) CFU mL(-1). The STEC counts (AR and NAR) initially increased by 1 to 2 log(10) CFU g(-1) during cheese-making. Thereafter, the populations stabilized during salting/drying and then decreased during the early stages of ripening. Exposing the STEC strains in artificially inoculated cheeses to simulated gastric fluid (SGF - pH: 2.0) reduced the number of NAR strains to undetectable levels within 40 minutes, versus 120 minutes for the AR STEC strains. AR and NAR STEC were able to survive during the manufacture and ripening of Camembert cheese prepared from microfiltered milk with no evidence of induced acid tolerance in NAR STEC strains.

  18. Growth and Survival of Acid-Resistant and Non-Acid-Resistant Shiga-Toxin-Producing Escherichia coli Strains during the Manufacture and Ripening of Camembert Cheese

    Directory of Open Access Journals (Sweden)

    M. P. Montet

    2009-01-01

    Full Text Available Growth and survival of acid-resistant (AR and non-acid-resistant (NAR Shiga-toxin-producing Escherichia coli (STEC strains were investigated during the manufacture and ripening of microfiltered milk Camembert cheeses. The induction of acid resistance of the STEC strains in cheeses was also studied. Six different mixtures of AR and/or NAR STEC strains were inoculated separately into microfiltered milk at a level of 103 CFU mL−1. The STEC counts (AR and NAR initially increased by 1 to 2 log⁡10 CFU g−1 during cheese-making. Thereafter, the populations stabilized during salting/drying and then decreased during the early stages of ripening. Exposing the STEC strains in artificially inoculated cheeses to simulated gastric fluid (SGF - pH: 2.0 reduced the number of NAR strains to undetectable levels within 40 minutes, versus 120 minutes for the AR STEC strains. AR and NAR STEC were able to survive during the manufacture and ripening of Camembert cheese prepared from microfiltered milk with no evidence of induced acid tolerance in NAR STEC strains.

  19. Real-time genomic investigation underlying the public health response to a Shiga toxin-producing Escherichia coli O26:H11 outbreak in a nursery.

    Science.gov (United States)

    Moran-Gilad, J; Rokney, A; Danino, D; Ferdous, M; Alsana, F; Baum, M; Dukhan, L; Agmon, V; Anuka, E; Valinsky, L; Yishay, R; Grotto, I; Rossen, J W A; Gdalevich, M

    2017-10-01

    Shiga toxin-producing Escherichia coli (STEC) is a significant cause of gastrointestinal infection and the haemolytic-uremic syndrome (HUS). STEC outbreaks are commonly associated with food but animal contact is increasingly being implicated in its transmission. We report an outbreak of STEC affecting young infants at a nursery in a rural community (three HUS cases, one definite case, one probable case, three possible cases and five carriers, based on the combination of clinical, epidemiological and laboratory data) identified using culture-based and molecular techniques. The investigation identified repeated animal contact (animal farming and petting) as a likely source of STEC introduction followed by horizontal transmission. Whole genome sequencing (WGS) was used for real-time investigation of the incident and revealed a unique strain of STEC O26:H11 carrying stx2a and intimin. Following a public health intervention, no additional cases have occurred. This is the first STEC outbreak reported from Israel. WGS proved as a useful tool for rapid laboratory characterization and typing of the outbreak strain and informed the public health response at an early stage of this unusual outbreak.

  20. The impact of meteorology on the occurrence of waterborne outbreaks of vero cytotoxin-producing Escherichia coli (VTEC): a logistic regression approach.

    Science.gov (United States)

    O'Dwyer, Jean; Morris Downes, Margaret; Adley, Catherine C

    2016-02-01

    This study analyses the relationship between meteorological phenomena and outbreaks of waterborne-transmitted vero cytotoxin-producing Escherichia coli (VTEC) in the Republic of Ireland over an 8-year period (2005-2012). Data pertaining to the notification of waterborne VTEC outbreaks were extracted from the Computerised Infectious Disease Reporting system, which is administered through the national Health Protection Surveillance Centre as part of the Health Service Executive. Rainfall and temperature data were obtained from the national meteorological office and categorised as cumulative rainfall, heavy rainfall events in the previous 7 days, and mean temperature. Regression analysis was performed using logistic regression (LR) analysis. The LR model was significant (p < 0.001), with all independent variables: cumulative rainfall, heavy rainfall and mean temperature making a statistically significant contribution to the model. The study has found that rainfall, particularly heavy rainfall in the preceding 7 days of an outbreak, is a strong statistical indicator of a waterborne outbreak and that temperature also impacts waterborne VTEC outbreak occurrence.

  1. Comparison of Escherichia coli Isolates from humans, food, and farm and companion animals for presence of Shiga toxin-producing E. coli virulence markers.

    Science.gov (United States)

    Murinda, Shelton E; Nguyen, Lien T; Landers, Tippi L; Draughon, F Ann; Mathew, Alan G; Hogan, Joseph S; Smith, K Larry; Hancock, Dale D; Oliver, Stephen P

    2004-01-01

    The objective of this study was to characterize Escherichia coli isolates from dairy cows/feedlots, calves, mastitis, pigs, dogs, parrot, iguana, human disease, and food products for prevalence of Shiga toxin-producing E. coli (STEC) virulence markers. The rationale of the study was that, isolates of the same serotypes that were obtained from different sources and possessed the same marker profiles, could be cross-species transmissible. Multiplex polymerase chain reaction (PCR) was used to detect presence of genes encoding Shiga toxin 1 and 2 (stx1 and stx2), H7 flagella (flicC), enterohemolysin (hly) and intimin (eaeA) in E. coli isolates (n = 400). Shiga toxin-producing isolates were tested for production of Shiga toxins (Stx1 and Stx2 and enterohemolysin. Of the E. coli O157:H7/H- strains, 150 of 164 (mostly human, cattle, and food) isolates were stx+. Sixty-five percent of O157 STEC produced both Stx1 and Stx2; 32% and 0.7% produced Stx2 or Stx1, respectively. Ninety-eight percent of O157 STEC had sequences for genes encoding intimin and enterohemolysin. Five of 20 E. coli O111, 4 of 14 O128 and 4 of 10 O26 were stx+ . Five of 6 stx+ O26 and O111 produced Stx1, however, stx+ O128 were Stx-negative. Acid resistance (93.3%) and tellurite resistance (87.3%) were common attributes of O157 STEC, whereas, non-O157 stx+ strains exhibited 38.5% and 30.8% of the respective resistances. stx-positive isolates were mostly associated with humans and cattle, whereas, all isolates from mastitis (n = 105), and pigs, dogs, parrot and iguanas (n = 48) were stx-negative. Multiplex PCR was an effective tool for characterizing STEC pathogenic profiles and distinguished STEC O157:H7 from other STEC. Isolates from cattle and human disease shared similar toxigenic profiles, whereas isolates from other disease sources had few characteristics in common with the former isolates. These data suggest interspecies transmissibility of certain serotypes, in particular, STEC O157:H7, between

  2. Prevalence and Characterization of Shiga Toxin-Producing Escherichia coli in Swine Feces Recovered in the National Animal Health Monitoring System's Swine 2000 Study

    Science.gov (United States)

    Fratamico, Pina M.; Bagi, Lori K.; Bush, Eric J.; Solow, Barbara T.

    2004-01-01

    A study was conducted to determine the prevalence of Shiga toxin-producing Escherichia coli (STEC) in swine feces in the United States as part of the National Animal Health Monitoring System's Swine 2000 study. Fecal samples collected from swine operations from 13 of the top 17 swine-producing states were tested for the presence of STEC. After enrichment of swine fecal samples in tryptic soy broth, the samples were tested for the presence of stx1 and stx2 by use of the TaqMan E. coli STX1 and STX2 PCR assays. Enrichments of samples positive for stx1 and/or stx2 were plated, and colony hybridization was performed using digoxigenin-labeled probes complementary to the stx1 and stx2 genes. Positive colonies were picked and confirmed by PCR for the presence of the stx1, stx2, or stx2e genes, and the isolates were serotyped. Out of 687 fecal samples tested using the TaqMan assays, 70% (484 of 687) were positive for Shiga toxin genes, and 54% (370 of 687), 64% (436 of 687), and 38% (261 of 687) were positive for stx1, stx2, and both toxin genes, respectively. Out of 219 isolates that were characterized, 29 (13%) produced stx1, 14 (6%) produced stx2, and 176 (80%) produced stx2e. Twenty-three fecal samples contained at least two STEC strains that had different serotypes but that had the same toxin genes or included a strain that possessed stx1 in addition to a strain that possessed stx2 or stx2e. The STEC isolates belonged to various serogroups, including O2, O5, O7, O8, O9, OX10, O11, O15, OX18, O20, O57, O65, O68, O69, O78, O91, O96, O100, O101, O120, O121, O152, O159, O160, O163, and O untypeable. It is noteworthy that no isolates of serogroup O157 were recovered. Results of this study indicate that swine in the United States harbor STEC that can potentially cause human illness. PMID:15574914

  3. [Risk factors associated with the isolation of extended spectrum betalactamases producing Escherichia coli or Klebsiella pneumoniae in a tertiary care hospital in Colombia].

    Science.gov (United States)

    Jiménez, Adriana; Alvarado, Alejandra; Gómez, Felipe; Carrero, Germán; Fajardo, Claudia

    2014-04-01

    Extended-spectrum beta-lactamases (ESBL) are an emerging resistance phenomenon with particular incidence in Latin America. In Colombia there is very little information regarding the risk factors associated with its acquisition. To determine the risk factors that are associated with infection or colonization by Escherichia coli or Klebsiella pneumoniae producing ESBL in patients older than 18 years. A case-control study, ratio 1:1, in patients with an isolate from any sample of E. coli or K. pneumoniae producing ESBL in the period from January 2009 to November 2011 at San José University Hospital in Bogotá (Colombia). We studied 110 cases and 110 controls, 62.7% were E. coli and 37.3% K. pneumoniae . In the multivariate analysis the independent risk factors found were: chronic renal failure (odds ratio [OR] 2.99, confidence interval 95% [95% CI] 1.10-8.11, p=0.031), urologic surgery (OR 4.78 95% CI 1.35 to 16.87, p=0.015), history of antibiotic use in the previous three months (OR 2.24, 95% CI 1.09 – 4.60, p=0.028), nosocomial origin of infection (OR=2.92 95% CI 1.39 – 6.13, p=0.004) and previous hospitalization (OR 1,59, 95% CI=1.03 – 2.46, p=0,036). Anticipating the resistance pattern of the organism infecting a patient based on risk factors may allow the choice of appropriate empirical antibiotic therapy, which will have an impact on reducing patients' morbidity and mortality.

  4. Multiplex real-time PCR assays for detection of eight Shiga toxin-producing Escherichia coli in food samples by melting curve analysis.

    Science.gov (United States)

    Singh, Prashant; Mustapha, Azlin

    2015-12-23

    Shiga toxin-producing Escherichia coli (STEC) are pathogenic strains of E. coli that can cause bloody diarrhea and kidney failure. Seven STEC serogroups, O157, O26, O45, O103, O111, O121 and O145 are responsible for more than 71% of the total infections caused by this group of pathogens. All seven serogroups are currently considered as adulterants in non-intact beef products in the U.S. In this study, two multiplex melt curve real-time PCR assays with internal amplification controls (IACs) were standardized for the detection of eight STEC serogroups. The first multiplex assay targeted E. coli serogroups O145, O121, O104, and O157; while the second set detected E. coli serogroups O26, O45, O103 and O111. The applicability of the assays was tested using 11 different meat and produce samples. For food samples spiked with a cocktail of four STEC serogroups with a combined count of 10 CFU/25 g food, all targets of the multiplex assays were detected after an enrichment period of 6h. The assays also worked efficiently when 325 g of food samples were spiked with 10 CFU of STECs. The assays are not dependent on fluorescent-labeled probes or immunomagnetic beads, and can be used for the detection of eight STEC serogroups in less than 11h. Routine preliminary screening of STECs in food samples is performed by testing for the presence of STEC virulence genes. The assays developed in this study can be useful as a first- or second-tier test for the identification of the eight O serogroup-specific genes in suspected food samples. Copyright © 2015. Published by Elsevier B.V.

  5. A polyclonal antibody based immunoassay detects seven subtypes of Shiga toxin 2 produced by Escherichia coli in human and environmental samples.

    Directory of Open Access Journals (Sweden)

    Xiaohua He

    Full Text Available BACKGROUND: Shiga toxin-producing Escherichia coli (STEC are frequent causes of severe human diseases ranging from diarrhea to hemolytic uremic syndrome. The existing strategy for detection of STEC relies on the unique sorbitol-negative fermentation property of the O157 strains, the most commonly identified serotype has been E. coli O157. It is becoming increasingly evident, however, that numerous non-O157 STEC serotypes also cause outbreaks and severe illnesses. It is necessary to have new methods that are capable of detecting all STEC strains. METHODS AND FINDINGS: Here we describe the development of a sandwich ELISA assay for detecting both O157 and non-O157 STECs by incorporating a novel polyclonal antibody (pAb against Stx2. The newly established immunoassay was capable of detecting Stx2a spiked in environmental samples with a limit of detection between 10 and 100 pg/mL in soil and between 100 and 500 pg/mL in feces. When applied to 36 bacterial strains isolated from human and environmental samples, this assay detected Stx2 in all strains that were confirmed to be stx2-positive by real-time PCR, demonstrating a 100% sensitivity and specificity. CONCLUSIONS: The sandwich ELISA developed in this study will enable any competent laboratory to identify and characterize Stx2-producing O157 and non-O157 strains in human and environmental samples, resulting in rapid diagnosis and patient care. The results of epitope mapping from this study will be useful for further development of a peptide-based antibody and vaccine.

  6. Application of swine manure on agricultural fields contributes to extended-spectrum β-lactamase-producing Escherichia coli spread in Tai’an, China

    Directory of Open Access Journals (Sweden)

    Lili eGao

    2015-04-01

    Full Text Available The prevalence of extended-spectrum beta-lactamase (ESBL-producing Escherichia coli (E. coli is increasing rapidly in both hospital environments and animal farms. A lot of animal manure has been directly applied into arable fields in the developing countries. But the impact of ESBL-positive bacteria from animal manure on the agricultural fields is sparse, especially in the rural regions of Tai’an, China. Here, we collected 29, 3, and 10 ESBL-producing E. coli from pig manure, compost, and soil samples, respectively. To track ESBL-harboring E. coli from agricultural soil, these isolates of different sources were analyzed with regard to antibiotic resistance profiles, ESBL genes, plasmid replicons, and enterobacterial repetitive intergenic consensus (ERIC-polymerase chain reaction (PCR typing. The results showed that all the isolates exhibited multi-drug resistance. CTX-M gene was the predominant ESBL gene in the isolates from pig farm samples (30/32, 93.8% and soil samples (7/10, 70.0%, but no SHV gene was detected. 25 isolates contained the IncF-type replicon of plasmid, including 18 strains (18/32, 56.3% from the pig farm and 7 (7/10, 70.0% from the soil samples. ERIC-PCR demonstrated that 3 isolates from the soil had above 90% genetic similarity with strains from pig farm samples. In conclusion, application of animal manure carrying drug-resistant bacteria on agricultural fields is a likely contributor to antibiotic resistance gene spread.

  7. Immunologic Control by Oral Vaccines of Diarrheal Disease Due to Enterotoxigenic Escherichia coli and shigella

    Science.gov (United States)

    1986-09-01

    Clements UL, Lanata C, Sears, S, Honda T, Young CR, Finkelstein RA. Evaluation in humans of attenuated Vibrio cholerae El Tor Ogawa Strain Texas Star...DE, Bareett TJ, YouW (CR, Levine WM, Blake PA. Impact of epidemic cholera in a previously uninfected island population: evaluation of a new...Sack, D.A., Wells, J.G., Feeley, J.C., Sack, R.B., Creech, W.M., Kapikian, A.Z., Gangarosa, E.J. 1976. Traveler’s flarrhea in Mexico . A Prospective

  8. Genotypic and Phenotypic Characterization of Enterotoxigenic Escherichia coli Strains Isolated from Peruvian Children

    Science.gov (United States)

    2010-09-01

    adhesion, ETEC elabo- rates one or both of two enterotoxins: heat-labile toxin (LT), a protein multimer which shares many features with cholera toxin...pathogens (Shigella, Salmonella. Vibrio , Campylo/Jacter, Gi- ardia Iamblia, Cryptosporidium, and rotavirus) by conventional methods. Five lactose...studies performed in developing coun- tries: 38% in children ɚ years of age in Nicaragua (19), 33% in children ə year of age in Mexico (6), and 18% in

  9. Genotypic Characterization of Egypt Enterotoxigenic Escherichia coli Isolates Expressing Coli Surface Antigen 6

    Science.gov (United States)

    2013-02-01

    with either CS4 or CS5 (n = 10, 48%). SXT resistance was Table 2. Antibiotic resistance of CS6 isolates Ampicillin (AMP) Ampicillin...treatment of diarrhoea with antimicrobial agents is generally restricted to severe cases or the immunocompromised , at least one travel clinic has...A, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45: 493-496. 26

  10. The detection of K88, K99 fimbrial antigen and enterotoxin genes of Escherichia coli isolated from piglets and calves with diarrhoea in Indonesia

    Directory of Open Access Journals (Sweden)

    Supar

    1996-03-01

    Full Text Available Enterotoxigenic Escherichia coli (ETEC strains cause diarrhoeal disease in piglets and calves in Indonesia. These strains possess two virulence factors namely attachment and enterotoxin antigens . These factors could be detected phenotypically and genetically. Haemolytic Escherichia coli (E coli isolates possessing K88 fimbrial antigen associated with 0-group 108 and 149. They were positive for K88 gene and demonstrated their ability to produce heat labile enterotoxin (LT and genetically were all positive for LT gene . Seventeen isolates ofE coli K88 which associated with 0-group 149 were positive forSTb gene, other O-serotypes were negative . Ten isolates of Ecoli K88 which associated with 0-group 108 possessed K88, K99, LT and STa genes, but negative for STb gene . However, phenotypically the K99 antigen and STa toxin were not expressed under laboratory conditions, the reason was not well understood . E. coli K99 strains isolated from calves wit h diarrhoea were all associated with 0-group 9 and produced STa toxin when tested by suckling mousse bioassay. The E. coli K99 calf isolates were all hybridized with K99 and STa gene only . It is likely that K99 gene is associated with STa gene . The DNA hybridization technique is more convenience to be used for confirmation diagnosis of colibacillosis, however, not all veterinary laboratories could perform these tests .

  11. [Prevalence and risk factors for extended-spectrum β-lactamase-producing Escherichia coli causing community-onset urinary tract infections in Colombia].

    Science.gov (United States)

    Blanco, Victor M; Maya, Juan J; Correa, Adriana; Perenguez, Marcela; Muñoz, Juan S; Motoa, Gabriel; Pallares, Christian J; Rosso, Fernando; Matta, Lorena; Celis, Yamile; Garzon, Martha; Villegas, María V

    2016-11-01

    Urinary tract infections (UTI) are common in the community. However, information of resistant isolates in this context is limited in Latin America. This study aims to determine the prevalence and risk factors associated with community-onset UTI (CO-UTI) caused by extended-spectrum β-lactamase (ESBL)-Producing Escherichia coli in Colombia. A case-control study was conducted between August and December of 2011 in three Colombian tertiary-care institutions. All patients who were admitted to the Emergency Department with a probable diagnosis of CO-UTI were invited to participate. All participating patients were asked for a urine sample. ESBL confirmatory test, antibiotic susceptibility, and molecular epidemiology were performed in these E.coli isolates (Real Time-PCR for bla genes, repetitive element palindromic PCR [rep-PCR], multilocus sequence typing [MLST] and virulence factors by PCR). Clinical and epidemiological information was recorded, and a statistical analysis was performed. Of the 2124 recruited patients, 629 had a positive urine culture, 431 of which grew E.coli; 54 were positive for ESBL, of which 29 were CTX-M-15. The majority of ESBL isolates were susceptible to ertapenem, phosphomycin and amikacin. Complicated UTI was strongly associated with ESBL-producing E.coli infections (OR=3.89; 95%CI: 1.10-13.89; P=.03). CTX-M-15-producing E.coli showed 10 different pulsotypes, 65% were PT1 or PT4, and corresponded to ST131. Most of these isolates had 8 out of the 9 analysed virulence factors. E.coli harbouring bla CTX-M-15 associated with ST131 is still frequent in Colombia. The presence of complicated CO-UTI increases the risk of ESBL-producing E.coli, and must be taken into account in order to provide an adequate empirical therapy. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  12. QnrS1- and Aac(6’-Ib-cr-producing Escherichia coli among isolates from animals of different sources: susceptibility and genomic characterization

    Directory of Open Access Journals (Sweden)

    Daniela eJones-Dias

    2016-05-01

    Full Text Available Salmonella enterica and Escherichia coli can inhabit humans and animals from multiple origins. These bacteria are often associated with gastroenteritis in animals, being a frequent cause of resistant zoonotic infections. In fact, bacteria from animals can be transmitted to humans through the food chain and direct contact. In this study, we aimed to assess the antibiotic susceptibility of a collection of S. enterica and E. coli recovered from animals of different sources, performing a genomic comparison of the plasmid-mediated quinolone resistance (PMQR-producing isolates detected.Antibiotic susceptibility testing revealed a high number of non wild-type isolates for fluoroquinolones among S. enterica recovered from poultry isolates. In turn, the frequency of non-wild-type E. coli to nalidixic acid and ciprofloxacin was higher in food-producing animals than in companion or zoo animals. Globally, we detected two qnrS1 and two aac(6’-Ib-cr in E. coli isolates recovered from animals of different origins. The genomic characterization of QnrS1-producing E. coli showed high genomic similarity (O86:H12 and ST2297, although they have been recovered from a healthy turtle dove from a Zoo Park, and from a dog showing symptoms of infection. The qnrS1 gene was encoded in a IncN plasmid, also carrying blaTEM-1-containing Tn3. Isolates harboring aac(6’-Ib-cr were detected in two captive bottlenose dolphins, within a time span of two years. The additional antibiotic resistance genes of the two aac(6’-Ib-cr-positive isolates (blaOXA-1, blaTEM-1, blaCTX-M-15, catB3, aac(3-IIa and tetA were enclosed in IncFIA plasmids that differed in a single transposase and 60 single nucleotide variants. The isolates could be assigned to the same genetic sublineage – ST131 fimH30-Rx (O25:H4, confirming clonal spread. PMQR-producing isolates were associated with symptomatic and asymptomatic hosts, which highlight the aptitude of E. coli to act as silent vehicles, allowing

  13. "Population structure of drug-susceptible, -resistant and ESBL-producing Escherichia coli from community-acquired urinary tract infections"

    DEFF Research Database (Denmark)

    Hertz, Frederik Boetius; Nielsen, Jesper Boye; Schønning, Kristian

    2016-01-01

    BACKGROUND: Escherichia coli is the most common cause of urinary tract infection (UTI). The pathogenic isolates are becoming increasingly resistant to antibiotics; with a worldwide dissemination of resistant sequence types (ST). We characterized three different uropathogenic E. coli populations...

  14. Occurrence and molecular characteristics of ESBL/AmpC-producing Escherichia coli in faecal samples from horses in an equine clinic.

    Science.gov (United States)

    Apostolakos, Ilias; Franz, Eelco; van Hoek, Angela H A M; Florijn, Alice; Veenman, Christiaan; Sloet-van Oldruitenborgh-Oosterbaan, Marianne M; Dierikx, Cindy; van Duijkeren, Engeline

    2017-07-01

    To investigate the occurrence and characteristics of ESBL/AmpC-producing Escherichia coli in faecal samples from horses at one equine clinic in the Netherlands. A total of 91 horses, including residents and patients, were sampled. ESBL/AmpC-producing E. coli were identified by a combination disc diffusion test. Phylogenetic groups and MLST were determined. ESBL/AmpC genes were analysed using PCR and sequencing. Plasmids were characterized by transformation and PCR-based replicon typing. Subtyping of plasmids was done by plasmid MLST. At least one E. coli isolate with a confirmed ESBL/AmpC gene was found in samples from 76 horses (84%). Although phylogenetic group B1 E. coli bla CTX-M-1 predominated, a diverse E. coli population was found, indicating that clonal nosocomial spread was not the only reason for the high occurrence found. MLST analysis revealed the presence of 47 E. coli STs, organized in four clusters of genetically related strains. ST10, ST641, ST1079 and ST1250 were most commonly found. With regard to the genes, bla CTX-M-1 was most prevalent ( n  =   91), followed by bla CTX-M-2 ( n  =   26). The most frequently found plasmid type was IncHI1, but plasmids belonging to the IncF, IncI1 and IncN groups were also identified. A high occurrence of ESBL-producing E. coli in faecal samples was found among horses in an equine clinic and the variety of STs, ESBL genes and plasmid types suggests nosocomial transmission. ESBL E. coli can cause difficult-to-treat infections in horses and prudent use of antimicrobials is warranted. A further assessment of the risks of transmission to persons in close contact with horses, such as caretakers or veterinarians, is crucial. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Imported chicken meat as a potential source of quinolone-resistant Escherichia coli producing extended-spectrum beta-lactamases in the UK.

    Science.gov (United States)

    Warren, R E; Ensor, V M; O'Neill, P; Butler, V; Taylor, J; Nye, K; Harvey, M; Livermore, D M; Woodford, N; Hawkey, P M

    2008-03-01

    Escherichia coli producing CTX-M-15 enzyme began to rapidly spread in the UK from around 2003 but other types also occur, notably CTX-M-14. We examined breasts from UK-reared (n = 62) and imported (n = 27) chickens as potential sources of quinolone-resistant E. coli with bla(CTX-M) genes. A further 40 samples for which the country of rearing could not be identified were examined. During 2006, 129 fresh and frozen chicken breast fillets were purchased from retail outlets in the West Midlands. These were cultured for E. coli on CLED agar containing 8 mg/L ciprofloxacin and carrying a 10 microg cefpodoxime disc. Resistant isolates were identified and typed by RAPD fingerprinting; bla(CTX-M) was identified by PCR and genotyped by reverse-line hybridization. The country of rearing was identified from the packaging for 89 of 129 purchased samples. Only one of the 62 UK-reared chicken samples carried E. coli producing a CTX-M-1 enzyme, whereas 10 of 27 samples reared overseas had E. coli with CTX-M enzymes. Specifically, 4/10 Brazilian, 3/4 Brazilian/Polish/French, and 2/2 Dutch samples had E. coli with CTX-M-2 enzymes. Six of 40 samples for which the country of rearing was not known had producers of CTX-M enzymes, 5 of them with CTX-M-14. Quinolone-resistant E. coli with various CTX-M beta-lactamase genes that are common in human infections worldwide were found in imported chicken breasts, indicating a possible source for gut colonization. Samples from Brazil were commonly positive for E. coli with CTX-M-2, the dominant bla(CTX-M) genotype from human infections in South America, which is currently rare in clinical infections in the UK. CTX-M-15, the dominant CTX-M type in human infections in the UK, was not found in chicken isolates, suggesting that the UK-reared chickens are not a reservoir of CTX-M-15.

  16. OI-57, a Genomic Island of Escherichia coli O157, Is Present in Other Seropathotypes of Shiga Toxin-Producing E. coli Associated with Severe Human Disease▿

    Science.gov (United States)

    Imamovic, Lejla; Tozzoli, Rosangela; Michelacci, Valeria; Minelli, Fabio; Marziano, Maria Luisa; Caprioli, Alfredo; Morabito, Stefano

    2010-01-01

    Strains of Shiga toxin-producing Escherichia coli (STEC) are a heterogeneous E. coli group that may cause severe disease in humans. STEC have been categorized into seropathotypes (SPTs) based on their phenotypic and molecular characteristics and the clinical features of the associated diseases. SPTs range from A to E, according to a decreasing rank of pathogenicity. To define the virulence gene asset (“virulome”) characterizing the highly pathogenic SPTs, we used microarray hybridization to compare the whole genomes of STEC belonging to SPTs B, C, and D with that of STEC O157 (SPT A). The presence of the open reading frames (ORFs) associated with SPTs A and B was subsequently investigated by PCR in a larger panel of STEC and in other E. coli strains. A genomic island termed OI-57 was present in SPTs A and B but not in the other SPTs. OI-57 harbors the putative virulence gene adfO, encoding a factor enhancing the adhesivity of STEC O157, and ckf, encoding a putative killing factor for the bacterial cell. PCR analyses showed that OI-57 was present in its entirety in the majority of the STEC genomes examined, indicating that it represents a stable acquisition of the positive clonal lineages. OI-57 was also present in a high proportion of the human enteropathogenic E. coli genomes assayed, suggesting that it could be involved in the attaching-and-effacing colonization of the intestinal mucosa. In conclusion, OI-57 appears to be part of the virulome of pathogenic STEC and further studies are needed to elucidate its role in the pathogenesis of STEC infections. PMID:20823207

  17. Phenotypic and genotypic characteristics of Shiga toxin-producing Escherichia coli isolated from surface waters and sediments in a Canadian urban-agricultural landscape

    Directory of Open Access Journals (Sweden)

    Stephanie eNadya

    2016-04-01

    Full Text Available A hydrophobic grid membrane filtration – Shiga toxin immunoblot method was used to examine the prevalence of Shiga toxin-producing Escherichia coli (STEC in four watersheds located in the Lower Mainland of British Columbia, Canada, a region characterized by rapid urbanization and intensive agricultural activity. STEC were recovered from 21.6, 23.2, 19.5 and 9.2 % of surface water samples collected monthly from five sites in each watershed over a period of one year. Overall prevalence was subject to seasonal variation however, ranging between 13.3 % during fall months and 34.3 % during winter months. STEC were also recovered from 23.8 % of sediment samples collected in one randomly selected site. One hundred distinct STEC isolates distributed among 29 definitive and 4 ambiguous or indeterminate serotypes were recovered from water and sediments, including isolates from Canadian priority serogroups O157 (3, O26 (4, O103 (5 and O111 (7. Forty seven isolates were further characterized by analysis of whole genome sequences to detect Shiga toxin gene (stx 1 and stx 2, intimin gene (eaeA allelic variants and acquired virulence factors. These analyses collectively showed that surface waters from the region support highly diverse STEC populations that include strains with virulence factors commonly associated with human pathotypes. The present work served to characterize the microbiological hazard implied by STEC to support future assessments of risks to public health arising from non-agricultural and agricultural uses of surface water resources in the region.

  18. Shiga toxin-producing Escherichia coli (STEC) O22:H8 isolated from cattle reduces E. coli O157:H7 adherence in vitro and in vivo.

    Science.gov (United States)

    Martorelli, L; Albanese, A; Vilte, D; Cantet, R; Bentancor, A; Zolezzi, G; Chinen, I; Ibarra, C; Rivas, M; Mercado, E C; Cataldi, A

    2017-09-01

    Shiga toxin-producing Escherichia coli (STEC) are a group of bacteria responsible for food-associated diseases. Clinical features include a wide range of symptoms such as diarrhea, hemorrhagic colitis and the hemolytic uremic syndrome (HUS), a life-threatening condition. Our group has observed that animals naturally colonized with STEC strains of unknown serotype were not efficiently colonized with E. coli O157:H7 after experimental infection. In order to assess the basis of the interference, three STEC strains were isolated from STEC persistently-colonized healthy cattle from a dairy farm in Buenos Aires, Argentina. The three isolated strains are E. coli O22:H8 and carry the stx1 and stx2d genes. The activatable activity of Stx2d was demonstrated in vitro. The three strains carry the adhesins iha, ehaA and lpf O113 . E. coli O22:H8 formed stronger biofilms in abiotic surface than E. coli O157:H7 (eae+, stx2+) and displayed a more adherent phenotype in vitro towards HeLa cells. Furthermore, when both serotypes were cultured together O22:H8 could reduce O157:H7 adherence in vitro. When calves were intragastrically pre-challenged with 10 8 CFU of a mixture of the three STEC strains and two days later challenged with the same dose of the strain E. coli O157:H7 438/99, the shedding of the pathogen was significantly reduced. These results suggest that E. coli O22:H8, a serotype rarely associated with human illness, might compete with O157:H7 at the bovine recto-anal junction, making non-O157 carrying-calves less susceptible to O157:H7 colonization and shedding of the bacteria to the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Spatial molecular epidemiology of carbapenem-resistant and New Delhi metallo beta-lactamase (blaNDM)-producing Escherichia coli in the piglets of organized farms in India.

    Science.gov (United States)

    Pruthvishree, B S; Vinodh Kumar, O R; Sinha, D K; Malik, Y P S; Dubal, Z B; Desingu, P A; Shivakumar, M; Krishnaswamy, N; Singh, B R

    2017-06-01

    A cross-sectional study was conducted in 10 government-organized pig farms between 2014 and 2016 representing seven states of India to understand the epidemiology of carbapenem resistance in the Escherichia coli. In this study, fecal sample (n = 673) from non-diarrheic (n = 501) and diarrheic (n = 172) piglets were processed for isolation of carbapenem resistant E. coli. Of 673, E. coli isolate (n = 112) was genotyped for confirming the carbapenem resistance and associated virulence factors. Of the 112 isolates, 23 were phenotypically resistant to carbapenem and 8 were carrying the New Delhi metallo beta-lactamase (blaNDM) gene. The carbapenem-resistant isolates also produced extended spectrum beta-lactamases and were multidrug resistant. The PCR-based pathotyping revealed the presence of stx1, stx2, eae and hlyA genes. The enterobacterial repetitive intergenic consensus PCR dendrogram analysis of the isolates yielded three distinct clusters. The statistical analysis revealed no association between carriages of carbapenem-resistant E. coli in different breed of piglets however, location, sex, health status of piglets and age showed significant difference. The spatial analysis with SaTScan helped in identification of carbapenem-resistant clusters. The presence of carbapenem resistant E. coli isolates with virulence genes in the piglet poses a potential public health risk through possible access and spread via the food chain and environment. Efflux pump may also play an important role in carbapenem resistance in piglet E. coli isolates. Furthermore, identification of risk factors in relation to spatial clusters will help in designing preventive strategies for reducing the risk of spread of carbapenem resistant bacteria. 1. Piglets harbor carbapenem resistant E. coli and have great public health significance. 2. Apart from carbapenemase, efflux pump is also important for carbapenem resistance. 3. This is the first report of blaNDM in the piglets from India. © 2017

  20. Genetic makeup of Shiga toxin-producing Escherichia coli in relation to clinical symptoms and duration of shedding: a microarray analysis of isolates from Swedish children.

    Science.gov (United States)

    Matussek, A; Jernberg, C; Einemo, I-M; Monecke, S; Ehricht, R; Engelmann, I; Löfgren, S; Mernelius, S

    2017-08-01

    Shiga toxin (Stx)-producing Escherichia coli (STECs) cause non-bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome, and are the primary cause of acute renal failure in children worldwide. This study investigated the correlation of genetic makeup of STEC strains as revealed by DNA microarray to clinical symptoms and the duration of STEC shedding. All STEC isolated (n = 96) from patients <10 years of age in Jönköping County, Sweden from 2003 to 2015 were included. Isolates were characterized by DNA microarray, including almost 280 genes. Clinical data were collected through a questionnaire and by reviewing medical records. Of the 96 virulence genes (including stx) in the microarray, 62 genes were present in at least one isolate. Statistically significant differences in prevalence were observed for 21 genes when comparing patients with bloody diarrhea (BD) and with non-bloody stool (18 of 21 associated with BD). Most genes encode toxins (e.g., stx2 alleles, astA, toxB), adhesion factors (i.e. espB_O157, tir, eae), or secretion factors (e.g., espA, espF, espJ, etpD, nleA, nleB, nleC, tccP). Seven genes were associated with prolonged stx shedding; the presence of three genes (lpfA, senB, and stx1) and the absence of four genes (espB_O157, espF, astA, and intI1). We found STEC genes that might predict severe disease outcome already at diagnosis. This can be used to develop diagnostic tools for risk assessment of disease outcome. Furthermore, genes associated with the duration of stx shedding were detected, enabling a possible better prediction of length of STEC carriage after infection.

  1. Evidence of non-O157 Shiga toxin-producing Escherichia coli in the feces of meat goats at a U.S. slaughter plant.

    Science.gov (United States)

    Jacob, M E; Foster, D M; Rogers, A T; Balcomb, C C; Shi, X; Nagaraja, T G

    2013-09-01

    Shiga toxin-producing Escherichia coli (STEC) are important human pathogens, and attention to non-O157 serogroups has increased in recent years. Although cattle are normally considered the primary reservoir for STEC, recent illnesses associated with goat contact have indicated that these animals are important potential reservoirs for the organisms. The prevalence of STEC, particularly non-O157 serogroups, in U.S. goats has not been well described. Our objective was to determine the prevalence of six major non-O157 STEC serogroups in the feces of meat goats. Rectal contents from 296 goats were collected postevisceration at a slaughter plant in the southeastern United States over 9 days during a 12-week period from August through October 2012. Samples were enriched in E. coli broth, and DNA was extracted and used as template in an 11-gene multiplex PCR that detected six non-O157 serogroups (O26, O45, O103, O121, O111, and O145) and virulence genes. Samples were considered positive when at least one non-O157 STEC serotype was present with either stx₁ or stx₂. All six non-O157 serogroups were detected by PCR in our samples, and 14.5% of samples were positive for at least one serogroup. Prevalence of O26 was highest, with 6.4% of goat fecal samples positive. The prevalence of O45 was 3.4%, O103 was 4.4%, O111 was 4.1%, O121 was 1.4%, and O145 was 3.0%. Twenty-two (7.4%) of 296 fecal samples had more than one non-O157 serogroup detected in the feces. Two samples had evidence of three non-O157 STEC serogroups. Goats appear to be an important reservoir for non-O157 STEC, and further work to understand the characteristics, epidemiology, and ecology of STEC in these animals is warranted.

  2. Risk factors and spatial distribution of extended spectrum β-lactamase-producing- Escherichia coli at retail poultry meat markets in Malaysia: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    A. B. Aliyu

    2016-08-01

    Full Text Available Abstract Background The significant role of retail poultry meat as an important exposure pathway for the acquisition and transmission of extended spectrum β-lactamase-producing Escherichia coli (ESBL-EC into the human population warrants understanding concerning those operational practices associated with dissemination of ESBL-EC in poultry meat retailing. Hence, the objective of this study was to determine the prevalence, spatial distribution and potential risk factors associated with the dissemination of ESBL-EC in poultry meat retail at wet-markets in Selangor, Malaysia. Methods Poultry meat (breast, wing, thigh, and keel as well as the contact surfaces of weighing scales and cutting boards were sampled to detect ESBL-EC by using culture and disk combination methods and polymerase chain reaction assays. Besides, questionnaire was used to obtain data and information pertaining to those operational practices that may possibly explain the occurrence of ESBL-EC. The data were analysed using logistic regression analysis at 95 % CI. Results The overall prevalence of ESBL-EC was 48.8 % (95 % CI, 42 – 55 %. Among the risk factors that were explored, type of countertop, sanitation of the stall environment, source of cleaning water, and type of cutting board were found to be significantly associated with the presence of ESBL-EC. Conclusions Thus, in order to prevent or reduce the presence of ESBL-EC and other contaminants at the retail-outlet, there is a need to design a process control system based on the current prevailing practices in order to reduce cross contamination, as well as to improve food safety and consumer health.

  3. Risk factors and spatial distribution of extended spectrum β-lactamase-producing- Escherichia coli at retail poultry meat markets in Malaysia: a cross-sectional study.

    Science.gov (United States)

    Aliyu, A B; Saleha, A A; Jalila, A; Zunita, Z

    2016-08-02

    The significant role of retail poultry meat as an important exposure pathway for the acquisition and transmission of extended spectrum β-lactamase-producing Escherichia coli (ESBL-EC) into the human population warrants understanding concerning those operational practices associated with dissemination of ESBL-EC in poultry meat retailing. Hence, the objective of this study was to determine the prevalence, spatial distribution and potential risk factors associated with the dissemination of ESBL-EC in poultry meat retail at wet-markets in Selangor, Malaysia. Poultry meat (breast, wing, thigh, and keel) as well as the contact surfaces of weighing scales and cutting boards were sampled to detect ESBL-EC by using culture and disk combination methods and polymerase chain reaction assays. Besides, questionnaire was used to obtain data and information pertaining to those operational practices that may possibly explain the occurrence of ESBL-EC. The data were analysed using logistic regression analysis at 95 % CI. The overall prevalence of ESBL-EC was 48.8 % (95 % CI, 42 - 55 %). Among the risk factors that were explored, type of countertop, sanitation of the stall environment, source of cleaning water, and type of cutting board were found to be significantly associated with the presence of ESBL-EC. Thus, in order to prevent or reduce the presence of ESBL-EC and other contaminants at the retail-outlet, there is a need to design a process control system based on the current prevailing practices in order to reduce cross contamination, as well as to improve food safety and consumer health.

  4. Molecular characterization and genetic diversity of ESBL-producing Escherichia coli colonizing the migratory Franklin's gulls (Leucophaeus pipixcan) in Antofagasta, North of Chile.

    Science.gov (United States)

    Báez, John; Hernández-García, Marta; Guamparito, Constanza; Díaz, Sofía; Olave, Abdon; Guerrero, Katherine; Cantón, Rafael; Baquero, Fernando; Gahona, Joselyne; Valenzuela, Nicomedes; Del Campo, Rosa; Silva, Juan

    2015-02-01

    The role of wild animals, particularly migratory birds, in the dissemination of antibiotic-resistant bacteria between geographically distant ecosystems is usually underestimated. The aim of this work was to characterize the Escherichia coli population from Franklin's gull feces, focusing on the extended-spectrum β-lactamase (ESBL)-producing strains. In the summer of 2011, 124 fecal swabs from seagulls (1 of each) migrating from the United States and Canada to the coast of Antofagasta, north of Chile, were collected. Samples were seeded on MacConkey agar supplemented with 2 μg/ml of cefotaxime and a single colony from each plate was tested for ESBL production by the double-disk ESBL synergy test. Antibiotic susceptibility was determined by the disk diffusion method and blaESBL genes were amplified and sequenced. The genetic diversity of isolates was explored by pulsed-field gel electrophoresis (PFGE)-XbaI and multilocus sequence typing. A total of 91 E. coli isolates with high rates of antibiotic resistance were identified. Carbapenemase production was not detected, whereas 67 of the 91 (54%) isolates exhibited an ESBL phenotype due to the presence of CTX-M-15 (61.3%), CTX-M-2 (19.3%), CTX-M-22 (16.1%), and CTX-M-3 (1.6%) coding genes. High genetic diversity was observed, with 30 PFGE patterns and 23 sequence types (STs), including ST131 (18%), ST44 (15%), ST617 (9%), and ST10 (9%). Results presented here are complementary to those previously reported by Hernández et al. in the same gull species, but located in the Central Region of Chile. Differences observed between gulls from both areas lead us to hypothesize that gulls from the northern location retain, as gut carriers, those resistant bacteria acquired in the United States and/or Canada.

  5. Frequent use of colistin-based drug treatment to eliminate extended-spectrum beta-lactamase-producing Escherichia coli in backyard chicken farms in Thai Binh Province, Vietnam.

    Science.gov (United States)

    Nakayama, Tatsuya; Jinnai, Michio; Kawahara, Ryuji; Diep, Khong Thi; Thang, Nguyen Nam; Hoa, Tran Thi; Hanh, Le Kieu; Khai, Pham Ngoc; Sumimura, Yoshinori; Yamamoto, Yoshimasa

    2017-01-01

    Reports of livestock infections with extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E) are increasing. Based on interviews conducted over a 6-month period, we found that veterinarians in the Vietnamese province of Thai Binh prefer to prescribe colistin-based drugs (CBD) in chicken farms. We aimed to clarify whether CBD use selects for strains of colistin-resistant ESBL-E. With the cooperation of seven local households, we detected ESBL-E in chickens' feces after treating chickens with CBD. Phylogenetic groupings and the presence of CTX-M/AmpC genes were determined, and the multi-antibiotic susceptibility of isolates was analyzed. Our results showed that ESBL-E presented in seven chickens' feces from two households. Seventy-two percent of ESBL-E isolates harbored CTX-M9 and the phylogenetic group A; the colistin minimum inhibitory concentration (MIC) of all isolated ESBL-E ranged from 0.064 to 1 μg mL -1 . Moreover, ESBL-E isolates were used to experimentally select for colistin resistance, and the effect of commercial CBD on ESBL-E was investigated. The results showed that an ESBL-E strain with a colistin MIC of 4 μg mL -1 was able to grow in media with CBD. Although CBD treatment was effective, in vitro experiments demonstrated that ESBL-E can easily acquire colistin resistance. Therefore, restrictions on colistin use are necessary to prevent the emergence of colistin-resistant bacteria.

  6. [Genetic diversity of extraintestinal Escherichia coli strains producers of beta-lactamases TEM, SHV and CTX-M associated with healthcare].

    Science.gov (United States)

    Varela, Yasmin; Millán, Beatriz; Araque, María

    2017-06-01

    There are few reports from Venezuela describing the genetic basis that sustains the pathogenic potential and phylogenetics of Escherichia coli extraintestinal strains isolated in health care units. To establish the genetic diversity of extraintestinal E. coli strains producers of betalactamases TEM, SHV and CTX-M associated with healthcare. We studied a collection of 12 strains of extraintestinal E. coli with diminished sensitivity to broad-spectrum cephalosporins. Antimicrobial susceptibility was determined by minimum inhibitory concentration. We determined the phylogenetic groups, virulence factors and genes encoding antimicrobial resistance using PCR, and clonal characterization by repetitive element palindromic-PCR rep-PCR. All strains showed resistance to cephalosporins and joint resistance to quinolones and aminoglycosides. The phylogenetic distribution showed that the A and B1 groups were the most frequent, followed by D and B2. We found all the virulence factors analyzed in the B2 group, and fimH gene was the most frequent among them. We found blaCTX-M in all strains,with a higher prevalence of blaCTX-M-8; two of these strains showed coproduction of blaCTX-M-9 and were genetically identified as blaCTXM-65 and blaCTX-M-147 by sequencing. The strains under study showed genetic diversity, hosting a variety of virulence genes, as well as antimicrobial resistance with no particular phylogroup prevalence. This is the first report of blaCTX-M alleles in Venezuela and in the world associated to non-genetically related strains isolated in health care units, a situation that deserves attention, as well as the rationalization of antimicrobials use.

  7. Occurrence and characterization of Shiga toxin-producing Escherichia coli in raw meat, raw milk, and street vended juices in Bangladesh.

    Science.gov (United States)

    Islam, Mohammad A; Mondol, Abdus S; Azmi, Ishrat J; de Boer, Enne; Beumer, Rijkelt R; Zwietering, Marcel H; Heuvelink, Annet E; Talukder, Kaisar A

    2010-11-01

    The major objective of this study was to investigate the prevalence of Shiga toxin (Stx)-producing Escherichia coli (STEC) in different types of food samples and to compare their genetic relatedness with STEC strains previously isolated from animal sources in Bangladesh. We investigated a total of 213 food samples, including 90 raw meat samples collected from retail butcher shops, 20 raw milk samples from domestic cattle, and 103 fresh juice samples from street vendors in Dhaka city. We found that more than 68% (n = 62) of the raw meat samples were positive for the stx gene(s); 34% (n = 21) of buffalo meats and 66% (n = 41) of beef. Approximately 10% (n = 2) of the raw milk and 8% (n = 8) of the fresh juice samples were positive for stx. We isolated STEC O157 from seven meat samples (7.8%), of which two were from buffalo meats and five from beef; and no other STEC serotypes could be isolated. We could not isolate STEC from any of the stx-positive raw milk and juice samples. The STEC O157 isolates from raw meats were positive for the stx(2), eae, katP, etpD, and enterohemorrhagic E. coli hly virulence genes, and they belonged to three different phage types: 8 (14.3%), 31 (42.8%), and 32 (42.8%). Pulsed-field gel electrophoresis (PFGE) typing revealed six distinct patterns among seven isolates of STEC O157, suggesting a heterogeneous clonal diversity. Of the six PFGE patterns, one was identical and the other two were ≥90% related to PFGE patterns of STEC O157 strains previously isolated from animal feces, indicating that raw meats are readily contaminated with fecal materials. This study represents the first survey of STEC in the food chain in Bangladesh.

  8. Molecular characterisation of human Shiga toxin-producing Escherichia coli O26 strains: results of an outbreak investigation, Romania, February to August 2016.

    Science.gov (United States)

    Usein, Codruţa-Romaniţa; Ciontea, Adriana Simona; Militaru, Cornelia Mãdãlina; Condei, Maria; Dinu, Sorin; Oprea, Mihaela; Cristea, Daniela; Michelacci, Valeria; Scavia, Gaia; Zota, Lavinia Cipriana; Zaharia, Alina; Morabito, Stefano

    2017-11-01

    IntroductionAt the beginning of 2016, an increase in paediatric haemolytic uremic syndrome (HUS) cases was observed in Romania. The microbiological investigations allowed isolation of Shiga toxin-producing Escherichia coli (STEC) O26 as the causative agent from most cases. Methods: An enhanced national surveillance of HUS and severe diarrhoea was established across the country following the identification of the first cases and was carried out until August 2016. A total of 15 strains were isolated from 10 HUS and five diarrhoea cases. Strains were characterised by virulence markers (i.e. stx type/subtype, eae , ehxA genes), phylogroup, genetic relatedness and clonality using PCR-based assays, PFGE and multilocus sequence typing (MLST). The first six strains were further characterised by whole genome sequencing (WGS). Results: Five PCR-defined genotypes were distinguished. All strains from HUS cases harboured stx2a and eae , with or without stx1a , while strains from diarrhoea cases carried exclusively stx1a and eae genes. PFGE resolved strains into multiple pulsotypes, compatible with a certain geographic segregation of the cases, and strains were assigned to phylogroup B1 and sequence type (ST) 21. WGS confirmed the results of conventional molecular methods, brought evidence of O26:H11 serotype, and complemented the virulence profiles. Discussion/conclusion: This first description of STEC O26 strains from cases in Romania showed that the isolates belonged to a diverse population. The virulence content of most strains highlighted a high risk for severe outcome in infected patients. Improving the national surveillance strategy for STEC infections in Romania needs to be further considered.

  9. Diversity of Shiga Toxin-Producing Escherichia coli (STEC) O26:H11 Strains Examined via stx Subtypes and Insertion Sites of Stx and EspK Bacteriophages

    Science.gov (United States)

    Bonanno, Ludivine; Loukiadis, Estelle; Mariani-Kurkdjian, Patricia; Oswald, Eric; Garnier, Lucille; Michel, Valérie

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen that may be responsible for severe human infections. Only a limited number of serotypes, including O26:H11, are involved in the majority of serious cases and outbreaks. The main virulence factors, Shiga toxins (Stx), are encoded by bacteriophages. Seventy-four STEC O26:H11 strains of various origins (including human, dairy, and cattle) were characterized for their stx subtypes and Stx phage chromosomal insertion sites. The majority of food and cattle strains possessed the stx1a subtype, while human strains carried mainly stx1a or stx2a. The wrbA and yehV genes were the main Stx phage insertion sites in STEC O26:H11, followed distantly by yecE and sbcB. Interestingly, the occurrence of Stx phages inserted in the yecE gene was low in dairy strains. In most of the 29 stx-negative E. coli O26:H11 strains also studied here, these bacterial insertion sites were vacant. Multilocus sequence typing of 20 stx-positive or stx-negative E. coli O26:H11 strains showed that they were distributed into two phylogenetic groups defined by sequence type 21 (ST21) and ST29. Finally, an EspK-carrying phage was found inserted in the ssrA gene in the majority of the STEC O26:H11 strains but in only a minority of the stx-negative E. coli O26:H11 strains. The differences in the stx subtypes and Stx phage insertion sites observed in STEC O26:H11 according to their origin might reflect that strains circulating in cattle and foods are clonally distinct from those isolated from human patients. PMID:25819955

  10. Comparative Genomics of Recent Shiga Toxin-Producing Escherichia coli O104:H4: Short-Term Evolution of an Emerging Pathogen

    Science.gov (United States)

    Grad, Yonatan H.; Godfrey, Paul; Cerquiera, Gustavo C.; Mariani-Kurkdjian, Patricia; Gouali, Malika; Bingen, Edouard; Shea, Terrence P.; Haas, Brian J.; Griggs, Allison; Young, Sarah; Zeng, Qiandong; Lipsitch, Marc; Waldor, Matthew K.; Weill, François-Xavier; Wortman, Jennifer R.; Hanage, William P.

    2013-01-01

    ABSTRACT The large outbreak of diarrhea and hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli O104:H4 in Europe from May to July 2011 highlighted the potential of a rarely identified E. coli serogroup to cause severe disease. Prior to the outbreak, there were very few reports of disease caused by this pathogen and thus little known of its diversity and evolution. The identification of cases of HUS caused by E. coli O104:H4 in France and Turkey after the outbreak and with no clear epidemiological links raises questions about whether these sporadic cases are derived from the outbreak. Here, we report genome sequences of five independent isolates from these cases and results of a comparative analysis with historical and 2011 outbreak isolates. These analyses revealed that the five isolates are not derived from the outbreak strain; however, they are more closely related to the outbreak strain and each other than to isolates identified prior to the 2011 outbreak. Over the short time scale represented by these closely related organisms, the majority of genome variation is found within their mobile genetic elements: none of the nine O104:H4 isolates compared here contain the same set of plasmids, and their prophages and genomic islands also differ. Moreover, the presence of closely related HUS-associated E. coli O104:H4 isolates supports the contention that fully virulent O104:H4 isolates are widespread and emphasizes the possibility of future food-borne E. coli O104:H4 outbreaks. PMID:23341549

  11. Characterization of novel bacteriophage phiC119 capable of lysing multidrug-resistant Shiga toxin-producing Escherichia coli O157:H7

    Directory of Open Access Journals (Sweden)

    Luis Amarillas

    2016-09-01

    Full Text Available Background Shiga toxin-producing Escherichia coli (STEC is one of the most common and widely distributed foodborne pathogens that has been frequently implicated in gastrointestinal and urinary tract infections. Moreover, high rates of multiple antibiotic-resistant E. coli strains have been reported worldwide. Due to the emergence of antibiotic-resistant strains, bacteriophages are considered an attractive alternative to biocontrol pathogenic bacteria. Characterization is a preliminary step towards designing a phage for biocontrol. Methods In this study, we describe the characterization of a bacteriophage designated phiC119, which can infect and lyse several multidrug-resistant STEC strains and some Salmonella strains. The phage genome was screened to detect the stx-genes using PCR, morphological analysis, host range was determined, and genome sequencing were carried out, as well as an analysis of the cohesive ends and identification of the type of genetic material through enzymatic digestion of the genome. Results Analysis of the bacteriophage particles by transmission electron microscopy showed that it had an icosahedral head and a long tail, characteristic of the family Siphoviridae. The phage exhibits broad host range against multidrug-resistant and highly virulent E. coli isolates. One-step growth experiments revealed that the phiC119 phage presented a large burst size (210 PFU/cell and a latent period of 20 min. Based on genomic analysis, the phage contains a linear double-stranded DNA genome with a size of 47,319 bp. The phage encodes 75 putative proteins, but lysogeny and virulence genes were not found in the phiC119 genome. Conclusion These results suggest that phage phiC119 may be a good biological control agent. However, further studies are required to ensure its control of STEC and to confirm the safety of phage use.

  12. Randomized controlled trial of piperacillin-tazobactam, cefepime and ertapenem for the treatment of urinary tract infection caused by extended-spectrum beta-lactamase-producing Escherichia coli.

    Science.gov (United States)

    Seo, Yu Bin; Lee, Jacob; Kim, Young Keun; Lee, Seung Soon; Lee, Jeong-A; Kim, Hyo Youl; Uh, Young; Kim, Han-Sung; Song, Wonkeun

    2017-06-07

    Due to limited therapeutic options, the spread of extended-spectrum beta-lactamases (ESBLs) have become a major public health concern. We conducted a prospective, randomized, open-label comparison of the therapeutic efficacy of piperacillin-tazobactam (PTZ), cefepime, and ertapenem in febrile nosocomial urinary tract infection with ESBL-producing Escherichia coli (ESBL-EC). This study was conducted at three university hospitals between January 2013 and August 2015. Hospitalized adult patients presenting with fever were screened for healthcare-associated urinary tract infection (HA-UTI). When ESBL-EC was solely detected and susceptible to a randomized antibiotic in vitro, the case was included in the final analysis. Participants were treated for 10-14 days with PTZ, cefepime, or ertapenem. A total of 66 participants were evenly assigned to the PTZ and ertapenem treatment groups. After the recruitment of six participants, assignment to the cefepime treatment group was stopped because of an unexpectedly high treatment failure rate. The baseline characteristics of these participants did not differ from participants in other treatment groups. The clinical and microbiological response to PTZ treatment was estimated to be 94% and was similar to the response to ertapenem treatment. The efficacy of cefepime was 33.3%. In the cefepime group, age, Charlson comorbidity index, genotype, and minimal inhibitory concentration (MIC) did not significantly affect the success of treatment. Similarly, genotype seemed to be irrelevant with respect to clinical outcome in the PTZ group. Expired cases tended to involve septic shock with a high Charlson comorbidity index and high MIC. Results from this study suggest that PTZ is effective in the treatment of urinary tract infection caused by ESBL-EC when the in vitro test indicates susceptibility. In addition, cefepime should not be used as an alternative treatment for urinary tract infection caused by ESBL-EC. The trial was registered with

  13. The evolutionary divergence of Shiga toxin-producing Escherichia coli is reflected in clustered regularly interspaced short palindromic repeat (CRISPR) spacer composition.

    Science.gov (United States)

    Yin, Shuang; Jensen, Mark A; Bai, Jiawei; Debroy, Chitrita; Barrangou, Rodolphe; Dudley, Edward G

    2013-09-01

    The Shiga toxin-producing Escherichia coli (STEC) strains, including those of O157:H7 and the "big six" serogroups (i.e., serogroups O26, O45, O103, O111, O121, and O145), are a group of pathogens designated food adulterants in the United States. The relatively conserved nature of clustered regularly interspaced short palindromic repeats (CRISPRs) in phylogenetically related E. coli strains makes them potential subtyping markers for STEC detection, and a quantitative PCR (qPCR)-based assay was previously developed for O26:H11, O45:H2, O103:H2, O111:H8, O121:H19, O145:H28, and O157:H7 isolates. To better evaluate the sensitivity and specificity of this qPCR method, the CRISPR loci of 252 O157 and big-six STEC isolates were sequenced and analyzed along with 563 CRISPR1 and 624 CRISPR2 sequences available in GenBank. General conservation of spacer content and order was observed within each O157 and big-six serogroup, validating the qPCR method. Meanwhile, it was found that spacer deletion, the presence of an insertion sequence, and distinct alleles within a serogroup are sources of false-negative reactions. Conservation of CRISPR arrays among isolates expressing the same flagellar antigen, specifically, H7, H2, and H11, suggested that these isolates share an ancestor and provided an explanation for the false positives previously observed in the qPCR results. An analysis of spacer distribution across E. coli strains provided limited evidence for temporal spacer acquisition. Conversely, comparison of CRISPR sequences between strains along the stepwise evolution of O157:H7 from its O55:H7 ancestor revealed that, over this ∼7,000-year span, spacer deletion was the primary force generating CRISPR diversity.

  14. Real-time PCR and enzyme-linked fluorescent assay methods for detecting Shiga-toxin-producing Escherichia coli in mincemeat samples.

    Science.gov (United States)

    Stefan, A; Scaramagli, S; Bergami, R; Mazzini, C; Barbanera, M; Perelle, S; Fach, P

    2007-03-01

    This work aimed to compare real-time polymerase chain reaction (PCR) with the commercially available enzyme-linked fluorescent assay (ELFA) VIDAS ECOLI O157 for detecting Escherichia coli O157 in mincemeat. In addition, a PCR-based survey on Shiga-toxin-producing E. coli (STEC) in mincemeat collected in Italy is presented. Real-time PCR assays targeting the stx genes and a specific STEC O157 sequence (SILO157, a small inserted locus of STEC O157) were tested for their sensitivity on spiked mincemeat samples. After overnight enrichment, the presence of STEC cells could be clearly determined in the 25 g samples containing 10 bacterial cells, while the addition of five bacteria provided equivocal PCR results with Ct values very close to or above the threshold of 40. The PCR tests proved to be more sensitive than the ELFA-VIDAS ECOLI O157, whose detection level started from 50 bacterial cells/25 g of mincemeat. The occurrence of STEC in 106 mincemeat (bovine, veal) samples collected from September to November 2004 at five different points of sale in Italy (one point of sale in Arezzo, Tuscany, central Italy, two in Mantova, Lombardy, Northern Italy, and two in Bologna, Emilia-Romagna, upper-central Italy) was less than 1%. Contamination by the main STEC O-serogroups representing a major public health concern, including O26, O91, O111, O145, and O157, was not detected. This survey indicates that STEC present in these samples are probably not associated with pathogenesis in humans.

  15. Detection and Characterization of Shiga Toxin Producing Escherichia coli, Salmonella spp., and Yersinia Strains from Human, Animal, and Food Samples in San Luis, Argentina

    Science.gov (United States)

    Favier, Gabriela Isabel; Lucero Estrada, Cecilia; Cortiñas, Teresa Inés; Escudero, María Esther

    2014-01-01

    Shiga toxin producing Escherichia coli (STEC), Salmonella spp., and Yersinia species was investigated in humans, animals, and foods in San Luis, Argentina. A total of 453 samples were analyzed by culture and PCR. The antimicrobial susceptibility of all the strains was studied, the genomic relationships among isolates of the same species were determined by PFGE, and the potencial virulence of Y. enterocolitica strains was analyzed. Yersinia species showed higher prevalence (9/453, 2.0%, 95% CI, 0.7–3.3%) than STEC (4/453, 0.9%, 95% CI, 0–1.8%) and Salmonella spp. (3/453, 0.7%, 95% CI, 0–1.5%). Y. enterocolitica and Y. intermedia were isolated from chicken carcasses (6/80, 7.5%, 95% CI, 1.5–13.5%) and porcine skin and bones (3/10, 30%, 95% CI, 0–65%). One STEC strain was recovered from human feces (1/70, 1.4%, 95% CI, 0–4.2%) and STEC stx1/stx2 genes were detected in bovine stools (3/129, 2.3%, 95% CI, 0–5.0%). S. Typhimurium was isolated from human feces (1/70, 1.4%, 95% CI, 0–4.2%) while one S. Newport and two S. Gaminara strains were recovered from one wild boar (1/3, 33%, 95% CI, 0–99%). The knowledge of prevalence and characteristics of these enteropathogens in our region would allow public health services to take adequate preventive measures. PMID:25177351

  16. Profile of Shiga toxin-producing Escherichia coli strains isolated from dogs and cats and genetic relationships with isolates from cattle, meat and humans.

    Science.gov (United States)

    Bentancor, A; Rumi, M V; Carbonari, C; Gerhardt, E; Larzábal, M; Vilte, D A; Pistone-Creydt, V; Chinen, I; Ibarra, C; Cataldi, A; Mercado, E C

    2012-05-04

    Pets can be reservoirs of Shiga toxin-producing Escherichia coli (STEC) strains. The aim of this study was to examine nine strains belonging to several serotypes (O91:H21, O91:H16, O178:H19, O8:H19, O22:H8, O22:HNT, ONT:H8), previously recovered from cats or dogs. To this end, we assessed a set of additional virulence genes (stx(2) subtype, subAB, ehxA, eae and saa), cytotoxic activity, and genetic relationships with strains isolated from cattle, meat and humans using pulsed-field gel electrophoresis (PFGE). Most of the isolates carried the stx(2) and/or stx(2vh-b) sequences, while only the O91:H21 isolate presented the mucus-activatable stx(2d) variant, as confirmed by sequencing the genes of subunits A and B. All the strains showed cytotoxic activity in cultured cells. One of the two O178:H19, selected for its high level of cytotoxicity in Vero cells, showed the ability to cause functional alterations in the human colon mucosa in vitro. None of the strains possessed the subAB, eae or saa genes and only the strains belonging to serotype O8:H19 carried the ehxA gene. The isolates shared 90-100% similarity by PFGE to epidemiologically unrelated strains of the corresponding serotypes recovered from cattle, meat or humans. Our results demonstrate that dogs and cats may have a role in the infection of humans by STEC, probably serving as a vehicle for bovine strains in the cycle of human infection, and thus emphasize the health risks for owners and their families. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Canonical Single Nucleotide Polymorphisms (SNPs for High-Resolution Subtyping of Shiga-Toxin Producing Escherichia coli (STEC O157:H7.

    Directory of Open Access Journals (Sweden)

    Sean M Griffing

    Full Text Available The objective of this study was to develop a canonical, parsimoniously-informative SNP panel for subtyping Shiga-toxin producing Escherichia coli (STEC O157:H7 that would be consistent with epidemiological, PFGE, and MLVA clustering of human specimens. Our group had previously identified 906 putative discriminatory SNPs, which were pared down to 391 SNPs based on their prevalence in a test set. The 391 SNPs were screened using a high-throughput form of TaqMan PCR against a set of clinical isolates that represent the most diverse collection of O157:H7 isolates from outbreaks and sporadic cases examined to date. Another 30 SNPs identified by others were also screened using the same method. Two additional targets were tested using standard TaqMan PCR endpoint analysis. These 423 SNPs were reduced to a 32 SNP panel with the almost the same discriminatory value. While the panel partitioned our diverse set of isolates in a manner that was consistent with epidemiological data and PFGE and MLVA phylogenies, it resulted in fewer subtypes than either existing method and insufficient epidemiological resolution in 10 of 47 clusters. Therefore, another round of SNP discovery was undertaken using comparative genomic resequencing of pooled DNA from the 10 clusters with insufficient resolution. This process identified 4,040 potential SNPs and suggested one of the ten clusters was incorrectly grouped. After its removal, there were 2,878 SNPs, of which only 63 were previously identified and 438 occurred across multiple clusters. Among highly clonal bacteria like STEC O157:H7, linkage disequilibrium greatly limits the number of parsimoniously informative SNPs. Therefore, it is perhaps unsurprising that our panel accounted for the potential discriminatory value of numerous other SNPs reported in the literature. We concluded published O157:H7 SNPs are insufficient for effective epidemiological subtyping. However, the 438 multi-cluster SNPs we identified may provide

  18. Variation in the Distribution of Putative Virulence and Colonization Factors in Shiga Toxin-Producing Escherichia coli Isolated from Different Categories of Cattle

    Directory of Open Access Journals (Sweden)

    Analía I. Etcheverría

    2017-04-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC are pathogens of significant public health concern. Several studies have confirmed that cattle are the main reservoir of STEC in Argentina and other countries. Although Shiga toxins represent the primary virulence factors of STEC, the adherence and colonization of the gut are also important in the pathogenesis of the bacteria. The aim of this study was to analyze and to compare the presence of putative virulence factors codified in plasmid -katP, espP, subA, stcE- and adhesins involved in colonization of cattle -efa1, iha- in 255 native STEC strains isolated from different categories of cattle from different production systems. The most prevalent gene in all strains was espP, and the less prevalent was stcE. katP was highly detected in strains isolated from young and rearing calves (33.3%, while subA was predominant in those isolated from adults (71.21%. Strains from young calves showed the highest percentage of efa1 (72.46%, while iha showed a high distribution in strains from rearing calves and adults (87.04 and 98.48% respectively. It was observed that espP and iha were widely distributed throughout all strains, whereas katP, stcE, and efa1 were more associated with the presence of eae and subA with the eae-negative strains. A great proportion of eae-negative strains were isolated from adults -dairy and grazing farms- and from rearing calves -dairy and feedlot-, while mostly of the eae-positive strains were isolated from dairy young calves. Data exposed indicate a correlation between the category of the animal and the production systems with the presence or absence of several genes implicated in adherence and virulence of STEC.

  19. Enterotoxigenic coagulase positive Staphylococcus in milk and milk products, lben and jben, in northern Morocco.

    Science.gov (United States)

    Bendahou, Abdrezzak; Abid, Mohammed; Bouteldoun, Nadine; Catelejine, Dierick; Lebbadi, Mariam

    2009-04-30

    The aim of this research was to determine the prevalence of enterotoxin genes (sea-seo) in Coagulase Positive Staphylococcus (CPS) isolated from unpasteurized milk and milk products. These results were compared with the results obtained by using the detection kit SET-RPLA for the specific detection of staphylococcal enterotoxins (SEA-SED). Eighty-one samples of milk and milk products were analyzed for the presence of Staphylococcus strains. Forty-six coagulase positive Staphylococcus isolates were tested for the production of staphylococcal enterotoxins (SEA-SED) by using the reversed passive latex agglutination method. The strains were also tested for the presence of se genes (sea-seo) by polymerase chain reaction. One or more classical enterotoxin products (SEA-SED) were observed in 39% of the strains tested, while se genes were detected in 56.5%. SEA and sea were most commonly detected. For newly discovered se genes among CPS isolates tested in this study, except the seh gene which was revealed in four isolates (8.7 %), none of the strains harbored any of the other se genes (see, seg, sei, sej, sek, sel, sem, seo and sen). The finding of a pathogen such as staphylococci-producing SEs and containing se genes in milk and milk products in northern Morocco may indicate a problem for public health in this region. The presence of enterotoxigenic strains in food does not always necessarily mean that the toxin will be produced. For that reason, the combination of both methods (RPLA and PCR) is a guarantee for success in diagnostic analysis tests.

  20. Molecular detection and antimicrobial resistance of diarrheagenic Escherichia coli strains isolated from diarrheal cases

    International Nuclear Information System (INIS)

    Aslani, Mehdi M.; Salmanzadeh-Ahrabi, S.; Jafari, F.; Zali, Reza M.; Mani, M.; Alikhani, Yousef M.

    2008-01-01

    Objective was to identify and classify Iranian isolates of diarrheagenic Escherichia coli (E. coli) on the basis of presence of virulence genes and to determine antibiotic susceptibility of isolated strains. The current cross-sectional study was conducted in 2005 at the Pasteur Institute, Tehran, Iran. One hundred and ninety-three diarrheagenic E. coli isolated from diarrheal patients in different regions of Iran were included in current study. Virulence factors genees for diarrheagenic E. coli were detected by polymerase chain reaction. Of the 193 diarrheagenic E. coli detected by PCR, 86(44.5%) were Shiga toxin-producing E. coli (STEC), 74 (38.4%) enteropathogenic E. coli (EPEC), 19 (9.8%) enteroaggregative E. coli and 14 (7.3%) enterotoxigenic E. coli isolates. Susceptibility to 12 clinically important antimicrobial agents was determined for 193 strains of diarrhheagenic E. coli. A high incidence of resistance to tetracycline (63%), ampicillin (62%), streptomycin (56%), amoxicillin/clavulanic acid (44.5%), trimetoprim/sulphamethoxazole (39.5%) and cephalothin (37%) was observed. The STEC and EPEC strains with high resistance to tetracycline and ampicillin but highly susceptible to quinolones are among the most important causative agent of diarrhea in Iran. This study suggests that antimicrobial resistance is wide spread among E. coli strains colonizing Iranian patients. Guidelines for appropriate use of antibiotics in developing countries require updating. (author)

  1. Detection of virulence genes and the phylogenetic groups of Escherichia coli isolated from dogs in Brazil

    Directory of Open Access Journals (Sweden)

    Fernanda Morcatti Coura

    2018-02-01

    Full Text Available ABSTRACT: This study identified the virulence genes, pathovars, and phylogenetic groups of Escherichia coli strains obtained from the feces of dogs with and without diarrhea. Virulence genes and phylogenetic group identification were studied using polymerase chain reaction. Thirty-seven E. coli isolates were positive for at least one virulence factor gene. Twenty-one (57.8% of the positive isolates were isolated from diarrheal feces and sixteen (43.2% were from the feces of non-diarrheic dogs. Enteropathogenic E. coli (EPEC were the most frequently (62.2% detected pathovar in dog feces and were mainly from phylogroup B1 and E. Necrotoxigenic E. coli were detected in 16.2% of the virulence-positive isolates and these contained the cytotoxic necrotizing factor 1 (cnf1 gene and were classified into phylogroups B2 and D. All E. coli strains were negative for the presence of enterotoxigenic E. coli (ETEC enterotoxin genes, but four strains were positive for ETEC-related fimbriae 987P and F18. Two isolates were Shiga toxin-producing E. coli strains and contained the toxin genesStx2 or Stx2e, both from phylogroup B1. Our data showed that EPEC was the most frequent pathovar and B1 and E were the most common phylogroups detected in E. coli isolated from the feces of diarrheic and non-diarrheic dogs.

  2. Diarrhoeagenic Escherichia coli are not a significant cause of diarrhoea in hospitalised children in Kuwait

    Directory of Open Access Journals (Sweden)

    Pacsa Alexander S

    2009-03-01

    Full Text Available Abstract Background The importance of diarrhoeagenic Escherichia coli (DEC infections in the Arabian Gulf including Kuwait is not known. The prevalence of DEC (enterotoxigenic [ETEC], enteropathogenic [EPEC], enteroinvasive [EIEC], enterohemorrhagic [EHEC] and enteroaggregative [EAEC] was studied in 537 children ≤ 5 years old hospitalised with acute diarrhoea and 113 matched controls from two hospitals during 2005–07 by PCR assays using E. coli colony pools. Results The prevalence of DEC varied from 0.75% for EHEC to 8.4% for EPEC (mostly atypical variety in diarrhoeal children with no significant differences compared to that in control children (P values 0.15 to 1.00. Twenty-seven EPEC isolates studied mostly belonged to non-traditional serotypes and possessed β and θ intimin subtypes. A total of 54 DEC isolates from diarrhoeal children and 4 from controls studied for antimicrobial susceptibility showed resistance for older antimicrobials, ampicillin (0 to 100%, tetracycline (33 to 100% and trimethoprim (22.2 to 100%; 43.1% of the isolates were multidrug-resistant (resistant to 3 or more agents. Six (10.4% DEC isolates produced extended spectrum β-lactamases and possessed genetic elements (blaCTX-M, blaTEM and ISEcp1 associated with them. Conclusion We speculate that the lack of significant association of DEC with diarrhoea in children in Kuwait compared to countries surrounding the Arabian Gulf Region may be attributable to high environmental and food hygiene due to high disposable income in Kuwait.

  3. Virulence factors of Escherichia coli in relation to the importance of vaccination in pigs

    Directory of Open Access Journals (Sweden)

    Daniele Araujo Pereira

    2016-08-01

    Full Text Available ABSTRACT: Enterotoxigenic Escherichia coli (ETEC is the major cause of diarrhea in newborn and weaned pigs. Bacteria adhesion to the host cell is considered a specific phenomenon among fimbrial and non-fimbrial adhesins with their respective receptors on enterocytes. Enteric disorders are related with the fimbriae F4 (K88, F5 (K99, F6 (987P, F41, and F18. In addition to ETEC, another category of E. coli , porcine pathogenic E. coli (PEPEC,can cause diarrhea in pigs; it produces the porcine attaching and effacing-associated (Paa adhesin in, which is capable to cause a typical lesion known as an attaching and effacing (A/E lesion. Immunization of sows with adhesin is important to stimulate the production of antibodies and their subsequent transfer to piglets through colostrum. The aim of this paper is to illustrate the main impacts of enteric diseases caused by E. coli in swine production and to highlight the importance of continuing research on this bacterium to improve disease prevention through vaccination.

  4. Clinical and microbiologic characteristics of adult patients with recurrent bacteraemia caused by extended-spectrum β-lactamase-producing Escherichia coli or Klebsiella pneumoniae.

    Science.gov (United States)

    Lee, C-H; Su, L-H; Chen, F-J; Tang, Y-F; Chien, C-C; Liu, J-W

    2015-12-01

    The characteristics of patients with recurrent bacteraemia caused by extended-spectrum β-lactamase (ESBL)-producing Escherichia coli or Klebsiella pneumoniae (EK) are rarely described. Flomoxef belongs to the cephamycins group and demonstrates in vitro activity against ESBL-producing organisms. Whether flomoxef may be used for the treatment of such infections remains controversial. This retrospective case-control study enrolled adult patients who had bacteraemia caused by ESBL-EK during 2005-2011. Case patients were those who had more than one episode of ESBL-EK bacteraemia. Controls were those who were matched for age and interval time of blood sampling and had only one episode of ESBL-EK bacteraemia with subsequent bacteraemia episodes caused by other non-ESBL-EK bacteria. Pulsed-field gel electrophoresis and microbiologic profiles of the initial and subsequent ESBL-EK isolates were analysed. During the study period, 424 patients were found to have at least one positive blood culture after the first ESBL-EK bacteraemia episode, and 67 (15.8%) had a second episode of ESBL-EK bacteraemia. Bacteraemia resulting from vascular catheter-related infection (odds ratio, 3.24; 95% confidence interval, 1.31-8.05), and definitive therapy with flomoxef (odds ratio, 2.99; 95% confidence interval, 1.10-8.15) were both independent risk factors for the recurrence. Among the 56 patients with available ESBL-EK isolates for analysis, 38 (67.8%) were infected by genetically similar strains. In three of these 38 recurrent ESBL-EK bacteraemia cases caused by an identical strain, the minimum inhibitory concentrations of carbapenem for the subsequent K. pneumoniae isolates were fourfold or higher than the initial isolates. Recurrent bacteraemia was not uncommon in our patients with ESBL-EK bacteraemia, and most of the episodes were caused by identical strains. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights

  5. Isolation and characterization of non-O157 Shiga toxin-producing Escherichia coli from beef carcasses, cuts and trimmings of abattoirs in Argentina

    Science.gov (United States)

    Brusa, Victoria; Restovich, Viviana; Galli, Lucía; Teitelbaum, David; Signorini, Marcelo; Brasesco, Hebe; Londero, Alejandra; García, Diego; Padola, Nora Lía; Superno, Valeria; Sanz, Marcelo; Petroli, Sandra; Costa, Magdalena; Bruzzone, Mariana; Sucari, Adriana; Ferreghini, Marcela; Linares, Luciano; Suberbie, Germán; Rodríguez, Ricardo

    2017-01-01

    Several foods contaminated with Shiga toxin-producing Escherichia coli (STEC) are associated with human diseases. Some countries have established microbiological criteria for non-O157 STEC, thus, the absence of serogroups O26, O45, O103, O104, O111, O121, and O145 in sprouts from the European Union or ground beef and beef trimmings from the United States is mandatory. While in Argentina screening for O26, O103, O111, O145 and O121 in ground beef, ready-to-eat food, sausages and vegetables is mandatory, other countries have zero-tolerance for all STEC in chilled beef. The aim of this study was to provide data on the prevalence of non-O157 STEC isolated from beef processed in eight Argentinean cattle slaughterhouses producing beef for export and local markets, and to know the non-O157 STEC profiles through strain characterization and genotypic analysis. Samples (n = 15,965) from 3,205 beef carcasses, 9,570 cuts and 3,190 trimmings collected between March and September 2014 were processed in pools of five samples each. Pools of samples (n = 3,193) from 641 carcasses, 1,914 cuts and 638 trimming were analyzed for non-O157 STEC isolation according to ISO/CEN 13136:2012. Of these, 37 pools of carcasses (5.8%), 111 pools of cuts (5.8%) and 45 pools of trimmings (7.0%) were positive for non-O157 STEC. STEC strains (n = 200) were isolated from 193 pools of samples. The most prevalent serotypes were O174:H21, O185:H7, O8:H19, O178:H19 and O130:H11, and the most prevalent genotypes were stx2c(vh-b) and stx2a/saa/ehxA. O103:H21 strain was eae-positive and one O178:H19 strain was aggR/aaiC-positive. The prevalence of non-O157 STEC in beef carcasses reported here was low. None of the non-O157 STEC strains isolated corresponded to the non-O157 STEC serotypes and virulence profiles isolated from human cases in Argentina in the same study period. The application of microbiological criteria for each foodstuff should be determined by risk analysis in order to have a stringent

  6. Free water surface constructed wetlands limit the dissemination of extended-spectrum beta-lactamase producing Escherichia coli in the natural environment.

    Science.gov (United States)

    Vivant, Anne-Laure; Boutin, Catherine; Prost-Boucle, Stéphanie; Papias, Sandrine; Hartmann, Alain; Depret, Géraldine; Ziebal, Christine; Le Roux, Sophie; Pourcher, Anne-Marie

    2016-11-01

    The fates of Escherichia coli and extended-spectrum beta-lactamase-producing E. coli (ESBL E. coli) were studied over a period of one year in a free water surface constructed wetland (FWS CW) with a succession of open water zones and vegetation ponds (Typha or Phragmites), that received the effluent from a wastewater treatment plant. ESBL E. coli were detected and isolated from all sampling areas of the FWS CW throughout the study period. They represented 1‰ of the total E. coli population regardless of the origin of samples. Two main factors affected the log removal of E. coli and of ESBL E. coli: the season and the presence of vegetation. Between the inlet and the outlet of the FWS CW, the log removal of E. coli ranged from 1.5 in the warmer season (summer and fall) to 3.0 in the colder season (winter and spring). The concentrations of E. coli decreased significantly in the vegetated areas during the colder season, but increased in the warmer season, suggesting an effect of the plant growth stage on the survival of E. coli. Among the 369 ESBL E. coli isolates collected during our study, 84% harbored the CTX-M-ESBL type and 55.3% carried bla genes on plasmid DNA. Furthermore, 93% of the ESBL E. coli isolates were multidrug resistant but the proportion of resistant strains did not change significantly along the FWS CW. ESBL E. coli were characterized by MLST analysis using the 7 genes based Achtman Scheme. ESBL E. coli isolated from water, sediments, roots and feces of myocastors collected in the FWS CW and in the recipient river were genotypically related, suggesting persistence and circulation of the ESBL producing E. coli throughout the FWS CW and in the receiving river. Overall, these observations show that FWS CW could be an efficient treatment for ESBL E. coli disinfection of wastewater and could limit their dissemination in the aquatic environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Occurrence and characteristics of extended-spectrum β-lactamases producing Escherichia coli in foods of animal origin and human clinical samples in Chhattisgarh, India

    Directory of Open Access Journals (Sweden)

    Bhoomika

    2016-09-01

    Full Text Available Aim: To assess the prevalence of antimicrobial resistance producing extended-spectrum β-lactamases (ESBL (blaTEM, blaSHV, and blaCTX-M genes in Escherichia coli isolated from chicken meat, chevon meat, raw milk, and human urine and stool samples collected from tribal districts of Chhattisgarh, viz., Jagdalpur, Dantewada, Kondagaon, and Kanker. Materials and Methods: A total of 330 samples, comprising 98 chicken meat, 82 chevon meat, 90 raw milk, and 60 human urine and stool samples, were processed for isolation of E. coli. Isolates were confirmed biochemically and further tested against commonly used antibiotics to know their resistant pattern. The resistant isolates were tested for ESBL production by phenotypic method followed by characterization with molecular method using multiplex-polymerase chain reaction technique. Results: Overall 57.87% (191/330 samples were found positive for E. coli, which include 66.32% (65/98 chicken meat, 46.34% (38/82 chevon meat, 81.11% (73/90 raw milk, and 25% (15/60 human urine and stool samples. Isolates showed the highest resistance against cefotaxime (41.36% followed by oxytetracycline (34.03%, ampicillin (29.31%, cephalexin (24.60%, cefixime (16.75%, and ceftazidime (13.08%. Phenotypic method detected 10.99% (21/191 isolates as presumptive ESBL producers, however, molecular method detected 3.66% (7/191, 2.09% (4/191, and 0.00% (0/191 prevalence of blaTEM, blaCTX-M, and blaSHV, respectively. Conclusion: The present study indicates a high prevalence of E. coli in raw chicken meat, chevon meat, and milk due to poor hygienic practices. The antibiotic susceptibility test detected the presence of the resistance pattern against ESBL in E. coli isolated from raw chicken meat, chevon meat, milk, and also in human clinical samples is of great concern. The appearance of E. coli in the human food chain is alarming and requires adaptation of hygienic practices and stipulate use of antibiotics.

  8. Isolation and characterization of non-O157 Shiga toxin-producing Escherichia coli from beef carcasses, cuts and trimmings of abattoirs in Argentina.

    Directory of Open Access Journals (Sweden)

    Victoria Brusa

    Full Text Available Several foods contaminated with Shiga toxin-producing Escherichia coli (STEC are associated with human diseases. Some countries have established microbiological criteria for non-O157 STEC, thus, the absence of serogroups O26, O45, O103, O104, O111, O121, and O145 in sprouts from the European Union or ground beef and beef trimmings from the United States is mandatory. While in Argentina screening for O26, O103, O111, O145 and O121 in ground beef, ready-to-eat food, sausages and vegetables is mandatory, other countries have zero-tolerance for all STEC in chilled beef. The aim of this study was to provide data on the prevalence of non-O157 STEC isolated from beef processed in eight Argentinean cattle slaughterhouses producing beef for export and local markets, and to know the non-O157 STEC profiles through strain characterization and genotypic analysis. Samples (n = 15,965 from 3,205 beef carcasses, 9,570 cuts and 3,190 trimmings collected between March and September 2014 were processed in pools of five samples each. Pools of samples (n = 3,193 from 641 carcasses, 1,914 cuts and 638 trimming were analyzed for non-O157 STEC isolation according to ISO/CEN 13136:2012. Of these, 37 pools of carcasses (5.8%, 111 pools of cuts (5.8% and 45 pools of trimmings (7.0% were positive for non-O157 STEC. STEC strains (n = 200 were isolated from 193 pools of samples. The most prevalent serotypes were O174:H21, O185:H7, O8:H19, O178:H19 and O130:H11, and the most prevalent genotypes were stx2c(vh-b and stx2a/saa/ehxA. O103:H21 strain was eae-positive and one O178:H19 strain was aggR/aaiC-positive. The prevalence of non-O157 STEC in beef carcasses reported here was low. None of the non-O157 STEC strains isolated corresponded to the non-O157 STEC serotypes and virulence profiles isolated from human cases in Argentina in the same study period. The application of microbiological criteria for each foodstuff should be determined by risk analysis in order to have a

  9. Mutations in the Histone-like Nucleoid Structuring Regulatory Gene (hns) Decrease the Adherence of Shiga Toxin-producing Escherichia coli 091:H21 Strain B2F1 to Human Colonic Epithelial Cells and Increase the Production of Hemolysin

    Science.gov (United States)

    1999-10-19

    osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170:2575-2583. Mobley, H. L., D. M. Green...produced by ETEC organisms is homologous to the toxin encoded by Y: cholerae . These toxins are the primary cause of the watery diarrhea associated with ETEC...Escherichia coli as a cause ofdiarrhea among children in Mexico . J. Clin. Microbiol. 25:1913-1919. Maurelli, A. T., and P. J. Sansonetti. 1988

  10. Enterotoxigenicity and Antimicrobial Resistance of Staphylococcus aureus Isolated from Retail Food in China

    Science.gov (United States)

    Wang, Wei; Baloch, Zulqarnain; Jiang, Tao; Zhang, Cunshan; Peng, Zixin; Li, Fengqin; Fanning, Séamus; Ma, Aiguo; Xu, Jin

    2017-01-01

    Staphylococcus aureus is one of the most common causes of zoonotic agent in the world, which are attributable to the contamination of food with enterotoxins. In this study, a total of 1,150 S. aureus isolates were cultured from 27,000 retail foods items from 203 cities of 24 provinces in China in 2015 and were test for antimicrobial susceptibility. Additionally, the role of the genes responsible for the staphylococcal enterotoxins (SEA to SEE), methicillin resistance (mecA) and the toxigenic capabilities were also assessed. The results showed that 4.3% retail foods were contaminated with S. aureus, and 7.9% retail foods isolates were mecA positive. Some 97.6% of S. aureus isolates were resistant to at least one antimicrobial compound, and 57.5% of these were multi drug resistant (MDR). Resistance to penicillin (83.7%, 963/1,150), was common, followed by linezolid (67.7%, 778/1,150) and erythromycin (52.1%, 599/1,150). The isolates cultured from raw meats showed high levels of resistant to tetracycline (42.8%), ciprofloxacin (17.4%), and chloramphenicol (12.0%) and expressed a MDR phenotype (62.4%). A total of 29.7% S. aureus isolates harbored the classical SEs genes (sea, seb, sec, and sed). The sea and seb genes were the most frequent SEs genes detected. Of note, 22% of the SEs genes positive S. aureus harbored two or three SEs genes, and 16 isolates were confirmed with the capacity to simultaneously produce two or three enterotoxin types. Moreover, nearly 50% of the MRSA isolates were positive for at least one SE gene in this study. Therefore, it is important to monitor the antimicrobial susceptibility and enterotoxigenicity of MDR S. aureus and MRSA in the food chain and to use these data to develop food safety measures, designed to reduce the contamination and transmission of this bacterium. PMID:29209290

  11. Pathogenic Escherichia coli and food handlers in luxury hotels in Nairobi, Kenya.

    Science.gov (United States)

    Onyango, Abel O; Kenya, Eucharia U; Mbithi, John J N; Ng'ayo, Musa O

    2009-11-01

    The epidemiology and virulence properties of pathogenic Escherichia coli among food handlers in tourist destination hotels in Kenya are largely uncharacterized. This cross-sectional study among consenting 885 food handlers working in nine luxurious tourist hotels in Nairobi, Kenya determined the epidemiology, virulence properties, antibiotics susceptibility profiles and conjugation abilities of pathogenic Escherichia coli. Pathogenic Escherichia coli was detected among 39 (4.4%) subjects, including 1.8% enteroaggregative Escherichia coli (EAEC) harboring aggR genes, 1.2% enterotoxigenic Escherichia coli (ETEC) expressing both LT and STp toxins, 1.1% enteropathogenic Escherichia coli (EPEC) and 0.2% Shiga-like Escherichia coli (EHEC) both harboring eaeA and stx2 genes respectively. All the pathotypes had increased surface hydrophobicity. Using multivariate analyses, food handlers with loose stools were more likely to be infected with pathogenic Escherichia coli. Majority 53.8% of the pathotypes were resistant to tetracycline with 40.2% being multi-drug resistant. About 85.7% pathotypes trans-conjugated with Escherichia coli K12 F(-) NA(r) LA. The carriage of multi-drug resistant, toxin expressing pathogenic Escherichia coli by this population is of public health concern because exposure to low doses can result in infection. Screening food handlers and implementing public awareness programs is recommended as an intervention to control transmission of enteric pathogens.

  12. Detection and Molecular Characterization of Escherichia coli Strains Producers of Extended-Spectrum and CMY-2 Type Beta-Lactamases, Isolated from Turtles in Mexico.

    Science.gov (United States)

    Cortés-Cortés, Gerardo; Lozano-Zarain, Patricia; Torres, Carmen; Castañeda, Miguel; Sánchez, Gabriela Moreno; Alonso, Carla A; López-Pliego, Liliana; Mayen, María G Gutiérrez; Martínez-Laguna, Ygnacio; Rocha-Gracia, Rosa Del Carmen

    2016-09-01

    Multidrug-resistant bacteria are a growing problem in different environments and hosts, but scarce information exists about their prevalence in reptiles. The aim of this study was to analyze the resistance mechanisms, molecular typing, and plasmid content of cefotaxime-resistant (CTX(R)) Escherichia coli isolates recovered from cloacal samples of 71 turtles sheltered in a herpetarium in Mexico. CTX(R)-E. coli were recovered in 11 of 71 samples (15.5%), and one isolate/sample was characterized. Extended-spectrum β-lactamase (ESBL)-producing E. coli isolates were detected in four samples (5.6%): two strains carried the blaCTX-M-2 gene (phylogroup D and ST2732) and two contained the blaCTX-M-15 gene (phylogroup B1 and lineages ST58 and ST156). The blaCMY-2 gene was detected by PCR in E. coli isolates of eight samples (9.8%) (one of them also carried blaCTX-M-2); these isolates were distributed into phylogroups A (n = 1), B1 (n = 6), and D (n = 1) and typed as ST155, ST156, ST2329, and ST2732. Plasmid-mediated quinolone resistance (PMQR) genes were detected in five isolates [aac(6')Ib-cr, qnrA, qnrB19, and oqxB]. From three to five replicon plasmids were detected among the strains, being IncFIB, IncI1, IncFrep, and IncK the most prevalent. ESBL or pAmpC genes were transferred by conjugation in four strains, and the blaCTX-M-15 and blaCMY-2 genes were localized in IncFIB or IncI1 plasmids by Southern blot hybridization assays. Class 1 and/or class 2 integrons were detected in eight strains with six different structures of gene cassette arrays. Nine pulsed-field gel electrophoresis patterns were found among the 11 studied strains. To our knowledge, this is the first detection of ESBL, CMY-2, PMQR, and mobile determinants of antimicrobial resistance in E. coli of turtle origin, highlighting the potential dissemination of multidrug-resistant bacteria from these animals to other environments and hosts, including humans.

  13. Escherichia coli Probiotic Strain ED1a in Pigs Has a Limited Impact on the Gut Carriage of Extended-Spectrum-β-Lactamase-Producing E. coli

    Science.gov (United States)

    Mourand, G.; Paboeuf, F.; Fleury, M. A.; Jouy, E.; Bougeard, S.; Denamur, E.

    2016-01-01

    ABSTRACT Four trials were conducted to evaluate the impact of Escherichia coli probiotic strain ED1a administration to pigs on the gut carriage or survival in manure of extended-spectrum-β-lactamase-producing E. coli. Groups of pigs were orally inoculated with strain E. coli M63 carrying the blaCTX-M-1 gene (n = 84) or used as a control (n = 26). In the first two trials, 24 of 40 E. coli M63-inoculated pigs were given E. coli ED1a orally for 6 days starting 8 days after oral inoculation. In the third trial, 10 E. coli M63-inoculated pigs were given either E. coli ED1a or probiotic E. coli Nissle 1917 for 5 days. In the fourth trial, E. coli ED1a was given to a sow and its 12 piglets, and these 12 piglets plus 12 piglets that had not received E. coli ED1a were then inoculated with E. coli M63. Fecal shedding of cefotaxime-resistant Enterobacteriaceae (CTX-RE) was studied by culture, and blaCTX-M-1 genes were quantified by PCR. The persistence of CTX-RE in manure samples from inoculated pigs or manure samples inoculated in vitro with E. coli M63 with or without probiotics was studied. The results showed that E. coli M63 and ED1a were good gut colonizers. The reduction in the level of fecal excretion of CTX-RE in E. coli ED1a-treated pigs compared to that in nontreated pigs was usually less than 1 log10 CFU and was mainly observed during the probiotic administration period. The results obtained with E. coli Nissle 1917 did not differ significantly from those obtained with E. coli ED1a. CTX-RE survival did not differ significantly in manure samples with or without probiotic treatment. In conclusion, under our experimental conditions, E. coli ED1a and E. coli Nissle 1917 could not durably prevent CTX-RE colonization of the pig gut. PMID:27795372

  14. Associations Between Hydration Status, Intravenous Fluid Administration, and Outcomes of Patients Infected With Shiga Toxin-Producing Escherichia coli: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Grisaru, Silviu; Xie, Jianling; Samuel, Susan; Hartling, Lisa; Tarr, Phillip I; Schnadower, David; Freedman, Stephen B

    2017-01-01

    The associations between hydration status, intravenous fluid administration, and outcomes of patients infected with Shiga toxin-producing Escherichia coli (STEC) remain unclear. To determine the relationship between hydration status, the development and severity of hemolytic uremic syndrome (HUS), and adverse outcomes in STEC-infected individuals. MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials via the OvidSP platform, PubMed via the National Library of Medicine, CINAHL Plus with full text, Scopus, Web of Science, ClinicalTrials.gov, reference lists, and gray literature were systematically searched. Two reviewers independently identified studies that included patients with hydration status documentation, proven or presumed STEC infection, and some form of HUS that developed. No language restrictions were applied. Two reviewers independently extracted individual study data, including study characteristics, population, and outcomes. Risk of bias was assessed using the Newcastle-Ottawa Scale; strength of evidence was adjudicated using the Grading of Recommendations Assessment, Development, and Evaluation method. Meta-analyses were conducted using random-effects models. Development of HUS, complications (ie, oligoanuric renal failure, involvement of the central nervous system, or death), and interventions (ie, renal replacement therapy). Eight studies comprising 1511 patients (all children) met eligibility criteria. Unpublished data were provided by the authors of 7 published reports. The median risk-of-bias score was 7.5 (range, 6-9). No studies evaluated the effect of hydration during STEC infections on the risk for HUS. A hematocrit value greater than 23% as a measure of hydration status at presentation with HUS was associated with the development of oligoanuric HUS (OR, 2.38 [95% CI, 1.30-4.35]; I2 = 2%), renal replacement therapy (OR, 1.90 [95% CI, 1.25-2.90]; I2 = 17%), and death (OR, 5.13 [95% CI, 1.50-17.57]; I2 = 55%). Compared with

  15. Identification of human-pathogenic strains of Shiga toxin-producing Escherichia coli from food by a combination of serotyping and molecular typing of Shiga toxin genes.

    Science.gov (United States)

    Beutin, Lothar; Miko, Angelika; Krause, Gladys; Pries, Karin; Haby, Sabine; Steege, Katja; Albrecht, Nadine

    2007-08-01

    We examined 219 Shiga toxin-producing Escherichia coli (STEC) strains from meat, milk, and cheese samples collected in Germany between 2005 and 2006. All strains were investigated for their serotypes and for genetic variants of Shiga toxins 1 and 2 (Stx1 and Stx2). stx(1) or variant genes were detected in 88 (40.2%) strains and stx(2) and variants in 177 (80.8%) strains. Typing of stx genes was performed by stx-specific PCRs and by analysis of restriction fragment length polymorphisms (RFLP) of PCR products. Major genotypes of the Stx1 (stx(1), stx(1c), and stx(1d)) and the Stx2 (stx(2), stx(2d), stx(2-O118), stx(2e), and stx(2g)) families were detected, and multiple types of stx genes coexisted frequently in STEC strains. Only 1.8% of the STEC strains from food belonged to the classical enterohemorrhagic E. coli (EHEC) types O26:H11, O103:H2, and O157:H7, and only 5.0% of the STEC strains from food were positive for the eae gene, which is a virulence trait of classical EHEC. In contrast, 95 (43.4%) of the foo