WorldWideScience

Sample records for producing cellulosic ethanol

  1. Method for producing ethanol and co-products from cellulosic biomass

    Science.gov (United States)

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  2. Cellulosic ethanol

    DEFF Research Database (Denmark)

    Lindedam, Jane; Bruun, Sander; Jørgensen, Henning

    2010-01-01

    Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2.......5, 5 and 10 FPU g-1 dm pretreated straw) and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could...... be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher...

  3. The feasibility of producing adequate feedstock for year–round cellulosic ethanol production in an intensive agricultural fuelshed

    Science.gov (United States)

    Uden, Daniel R.; Mitchell, Rob B.; Allen, Craig R.; Guan, Qingfeng; McCoy, Tim D.

    2013-01-01

    To date, cellulosic ethanol production has not been commercialized in the United States. However, government mandates aimed at increasing second-generation biofuel production could spur exploratory development in the cellulosic ethanol industry. We conducted an in-depth analysis of the fuelshed surrounding a starch-based ethanol plant near York, Nebraska that has the potential for cellulosic ethanol production. To assess the feasibility of supplying adequate biomass for year-round cellulosic ethanol production from residual maize (Zea mays) stover and bioenergy switchgrass (Panicum virgatum) within a 40-km road network service area of the existing ethanol plant, we identified ∼14,000 ha of marginally productive cropland within the service area suitable for conversion from annual rowcrops to switchgrass and ∼132,000 ha of maize-enrolled cropland from which maize stover could be collected. Annual maize stover and switchgrass biomass supplies within the 40-km service area could range between 429,000 and 752,000 metric tons (mT). Approximately 140–250 million liters (l) of cellulosic ethanol could be produced, rivaling the current 208 million l annual starch-based ethanol production capacity of the plant. We conclude that sufficient quantities of biomass could be produced from maize stover and switchgrass near the plant to support year-round cellulosic ethanol production at current feedstock yields, sustainable removal rates and bioconversion efficiencies. Modifying existing starch-based ethanol plants in intensive agricultural fuelsheds could increase ethanol output, return marginally productive cropland to perennial vegetation, and remove maize stover from productive cropland to meet feedstock demand.

  4. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.

    Science.gov (United States)

    Kim, Soo Rin; Skerker, Jeffrey M; Kong, In Iok; Kim, Heejin; Maurer, Matthew J; Zhang, Guo-Chang; Peng, Dairong; Wei, Na; Arkin, Adam P; Jin, Yong-Su

    2017-03-01

    Many desired phenotypes for producing cellulosic biofuels are often observed in industrial Saccharomyces cerevisiae strains. However, many industrial yeast strains are polyploid and have low spore viability, making it difficult to use these strains for metabolic engineering applications. We selected the polyploid industrial strain S. cerevisiae ATCC 4124 exhibiting rapid glucose fermentation capability, high ethanol productivity, strong heat and inhibitor tolerance in order to construct an optimal yeast strain for producing cellulosic ethanol. Here, we focused on developing a general approach and high-throughput screening method to isolate stable haploid segregants derived from a polyploid parent, such as triploid ATCC 4124 with a poor spore viability. Specifically, we deleted the HO genes, performed random sporulation, and screened the resulting segregants based on growth rate, mating type, and ploidy. Only one stable haploid derivative (4124-S60) was isolated, while 14 other segregants with a stable mating type were aneuploid. The 4124-S60 strain inherited only a subset of desirable traits present in the parent strain, same as other aneuploids, suggesting that glucose fermentation and specific ethanol productivity are likely to be genetically complex traits and/or they might depend on ploidy. Nonetheless, the 4124-60 strain did inherit the ability to tolerate fermentation inhibitors. When additional genetic perturbations known to improve xylose fermentation were introduced into the 4124-60 strain, the resulting engineered strain (IIK1) was able to ferment a Miscanthus hydrolysate better than a previously engineered laboratory strain (SR8), built by making the same genetic changes. However, the IIK1 strain showed higher glycerol and xylitol yields than the SR8 strain. In order to decrease glycerol and xylitol production, an NADH-dependent acetate reduction pathway was introduced into the IIK1 strain. By consuming 2.4g/L of acetate, the resulting strain (IIK1A

  5. Bioethanol Production From Cellulose by Candida tropicalis, as An Alternative Microbial Agent to Produce Ethanol from Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Hermansyah

    2016-04-01

    Full Text Available Abstract: Candida tropicalis isolated from Tuak is a potentially useful microorganism for the ethanol production from lignocellulosic biomass and it can be alterbative agent replacing Saccharomyces cerevisae for fermentation process. Although C.tropicalis could not convert all carbohydrates content of lignocellulosic into bioethanol, however it is able to grow on medium in the presence of either xylose or arabinose as carbon source. Our result showed that fermentation of 10 % (w/v cellulosic as sole carbon source produced 2.88% (v/v ethanol by C.tropicalis. This ethanol production was lower than usage of 10% (w/v dextrose as sole carbon source medium which producing 5.51% (v/v ethanol. Based upon our expreiment indicated that C.tropicalis is able to conduct two main process in converting of cellulosic material- to ethanol which is hydrolysis the degradation of cellulose into glucose, and fermentation the process the conversion glucose into bioethanol. Keywords : Candida tropicalis, bioethanol, fermentation, cellulosic Abstrak (Indonesian: Candida tropicalis yang diisiolasi dari Tuak adalah agen yang berpotensi dalam produksi etanol dari biomasa lignoselulosa dan dapat dijadikan agen alternatif menggantikan Saccharomyces cerevisiae pada proses fernentasi. Walaupun C.tropicalis tidak dapat mengkonversi semua kandungan karbohidrat lignoselulosamenjadi etanol, akan tetapi C.tropicalis mampu tumbuh pada media dengan xilosa atau arabinosa sebagaisumber karbon. Hasil kami menunjukkan bahwa dengan mengguankan C.tropicalis fermentasi 10% (w/v selulosa sebagai satu-satunya sumber karbon menghasilkan 2,88% (v/v etanol, Produksi etanol ini lebih rendah jika menggunakan 10% (w/v dekstrosa sebagai satu satunya sumber karbon yang menghasilkan 5,51% (v/v etanol. Berdasarkan percobaan menunjukkan bahwa C.tropicalis mampu melakukan dua proses utama dalam mengkonversi material selulosa menjadi etanol yaitu hidrolisis degradasi selulosa menjadi glukosa, dan

  6. Production of ethanol from cellulose (sawdust)

    OpenAIRE

    Otulugbu, Kingsley

    2012-01-01

    The production of ethanol from food such as corn, cassava etc. is the most predominate way of producing ethanol. This has led to a shortage in food, inbalance in food chain, increased food price and indirect land use. This thesis thus explores using another feed for the production of ethanol- hence ethanol from cellulose. Sawdust was used to carry out the experiment from the production of ethanol and two methods were considered: SHF (Separate Hydrolysis and Fermentation) and SSF (Simultaneous...

  7. Overall process considerations for using dilute acid cellulose hydrolysis technology to produce ethanol from biomass

    International Nuclear Information System (INIS)

    Elander, R.; Ibsen, K.; Hayward, T.; Nagle, N.; Torget, R.

    1997-01-01

    Recent advances in reactors, designed for the dilute acid thermochemical treatment of biomass, have resulted in the development of process alternatives in which both cellulose and hemicellulose are hydrolyzed to soluble sugars in high yields. The optimal extent of cellulose hydrolysis will depend on both the performance and economics of the thermochemical treatment operation, and on subsequent unit operations in the bioethanol production process. Examples of subsequent unit operation interactions include the extent to which cellulase enzymes are used to hydrolyze any remaining cellulose, kinetics and conditions of a largely soluble mixed sugar cofermentation, and the extent to which removal of compounds that inhabit fermenting microorganisms is required. In addition, a number of process operation and economic considerations affect the ultimate economic viability of this type of biomass hydrolysis process. These considerations include reactor design issues to accommodate the kinetic parameters of the various hydrolysis and sugar degradation reactions, liquid volume requirements to achieve acceptable sugar yields, sugar concentrations that result from such a process and their impact on subsequent fermentation volumes and ethanol recovery operations, potential co-product opportunities that result from solubilized lignin, and process steam requirements. Several potential whole-process configurations are presented and key process and economic issues for each are discussed. (author)

  8. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol.

    Science.gov (United States)

    Kim, Soo Rin; Ha, Suk-Jin; Wei, Na; Oh, Eun Joong; Jin, Yong-Su

    2012-05-01

    The lack of microbial strains capable of fermenting all sugars prevalent in plant cell wall hydrolyzates to ethanol is a major challenge. Although naturally existing or engineered microorganisms can ferment mixed sugars (glucose, xylose and galactose) in these hydrolyzates sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Therefore, numerous metabolic engineering approaches have been attempted to construct optimal microorganisms capable of co-fermenting mixed sugars simultaneously. Here, we present recent findings and breakthroughs in engineering yeast for improved ethanol production from mixed sugars. In particular, this review discusses new sugar transporters, various strategies for simultaneous co-fermentation of mixed sugars, and potential applications of co-fermentation for producing fuels and chemicals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Enzymatic hydrolysis of pretreated cellulosic wastes by the cellulase complex of Myceliophthora thermophila D-14 to produce ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S K; Sadhukhan, R; Raha, S K; Chakrabarty, S L [Bose Institute, Calcutta (India). Dept. of Microbiology

    1991-06-01

    Pretreatment of different cellulosic wastes and their subsequent saccharification by thermostable cellulase from a thermophilic fungus Myceliophthora thermophila D-14 was investigated. Alkali treatment was found to be most effective. Carboxymethyl cellulose and untreated materials were used as controls. Significant inhibition of the cellulase activity was observed in the presence of glucose, but with ethanol no such effect was detected. The conversion of sugar to ethanol varied from 21-50% depending on the nature of substrate used. 14 refs., 2 figs., 4 tabs.

  10. [Insights into engineering of cellulosic ethanol].

    Science.gov (United States)

    Yue, Guojun; Wu, Guoqing; Lin, Xin

    2014-06-01

    For energy security, air pollution concerns, coupled with the desire to sustain the agricultural sector and revitalize the rural economy, many countries have applied ethanol as oxygenate or fuel to supplement or replace gasoline in transportation sector. Because of abundant feedstock resources and effective reduction of green-house-gas emissions, the cellulosic ethanol has attracted great attention. With a couple of pioneers beginning to produce this biofuel from biomass in commercial quantities around the world, it is necessary to solve engineering problems and complete the economic assessment in 2015-2016, gradually enter the commercialization stage. To avoid "competing for food with humans and competing for land with food", the 1st generation fuel ethanol will gradually transit to the 2nd generation cellulosic ethanol. Based on the overview of cellulosic ethanol industrialization from domestic and abroad in recent years, the main engineering application problems encountered in pretreatment, enzymes and enzymatic hydrolysis, pentose/hexose co-fermentation strains and processes, equipment were discussed from chemical engineering and biotechnology perspective. The development direction of cellulosic ethanol technology in China was addressed.

  11. The Role of Cellulosic Ethanol in Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Neilson, Jr.

    2007-10-01

    Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

  12. Fulton Cellulosic Ethanol Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Sumait, Necy [BlueFire Ethanol, Irvine, CA (United States); Cuzens, John [BlueFire Ethanol, Irvine, CA (United States); Klann, Richard [BlueFire Ethanol, Irvine, CA (United States)

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  13. Experimental study on the liquefaction of cellulose in supercritical ethanol

    Science.gov (United States)

    Peng, Jinxing; Liu, Xinyuan; Bao, Zhenbo

    2018-03-01

    Cellulose is the major composition of solid waste for producing biofuel; cellulose liquefaction is helpful for realizing biomass supercritical liquefaction process. This paper is taking supercritical ethanol as the medium, liquefied cellulose with the intermittence installation of high press cauldron. Experiments have studied technical condition and the technology parameter of cellulose liquefaction in supercritical ethanol, and the pyrolysis mechanism was analysed based on the pyrolysis product. Results show that cellulose can be liquefied, can get good effect through appropriate technology condition. Under not catalyst, highest liquefaction rate of cellulose can reach 73.5%. The composition of the pyrolysis product was determined by GC-MS.

  14. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Science.gov (United States)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  15. Cellulosic ethanol: status and innovation

    Energy Technology Data Exchange (ETDEWEB)

    Lynd, Lee R.; Liang, Xiaoyu; Biddy, Mary J.; Allee, Andrew; Cai, Hao; Foust, Thomas; Himmel, Michael E.; Laser, Mark S.; Wang, Michael; Wyman, Charles E.

    2017-06-01

    Although the purchase price of cellulosic feedstocks is competitive with petroleum on an energy basis, the cost of lignocellulose conversion to ethanol using today’s technology is high. Cost reductions can be pursued via either in-paradigm or new-paradigm innovation. As an example of new-paradigm innovation, consolidated bioprocessing using thermophilic bacteria combined with milling during fermentation (cotreatment) is analyzed. Acknowledging the nascent state of this approach, our analysis indicates potential for radically improved cost competitiveness and feasibility at smaller scale compared to current technology, arising from (a) R&D-driven advances (consolidated bioprocessing with cotreatment in lieu of thermochemical pretreatment and added fungal cellulase), and (b) configurational changes (fuel pellet coproduction instead of electricity, gas boiler(s) in lieu of a solid fuel boiler).

  16. Bioconversion of cellulose to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B; Mandenius, C F; Mattiasson, B; Nilsson, B; Axelsson, J P; Hagander, P

    1985-06-20

    Enzymatic hydrolysis of steam pretreated sallow gives highest yields of soluble sugars when hemicellulose is degraded already in the pretreatment step. The steam pretreatment equipment is rebuilt so that 75 g (dry matter) material instead of 7 g can be treated each time. The cellulose production has been increased 123% by the utilization of aqueous two-phase systems as compared to regular growth medium. The cellulase activity per gram of cellulose has been increased from 42 FPU in regular growth medium to 156 FPU in aqueous two-phase systems. Crude dextran can be used for enzyme production. Enzyme recovery up to 75% has been achieved by combining aqueous two-phase technique with membrane technique. Using the enzyme glucose isomerase in combination with S. cerevisiae theoretical yields in pentose fermentations have been achieved, with a product concentration of 60 g/L and a productivity of 2 g/L x h. Yeast and enzyme can be recirculated using membrane technique. Computer simulation shows that the rate equation for enzymatic hydrolysis with respect to inhibiting sugar concentrations can be used to interpolate with respect to sugar concentrations. Computer simulations show that hydrolysis experiments should focus on high substrate concentrations (>10%) using fed-batch technique and enzyme concentrations in the range of 2-8% in relation to substrate dry matter. The combined 'flow injection analysis', FIA, and enzyme reactor probe has been adapted to enzymatic saccarifications of sodium hydroxide pretreated sallow. The gas membrane sensor for ethanol has been utilized in simultaneous saccharification and fermentation of sodium hydroxide pretreated sallow. A literature study concerning pervaporation for ethanol up-grading has been made.(Author).

  17. Cellulosic ethanol. Potential, technology and development status

    Energy Technology Data Exchange (ETDEWEB)

    Rarbach, M. [Sued-Chemie AG, Muenchen (Germany)

    2012-07-01

    In times of rising oil prices and a growing energy demand, sustainable alternative energy sources are needed. Cellulosic ethanol is a sustainable biofuel, made from lignocellulosic feedstock such as agricultural residues (corn stover, cereal straw, bagasse) or dedicated energy crops. Its production is almost carbon neutral, doesn't compete with food or feed production and induces no land use changes. It constitutes a new energy source using an already existing renewable feedstock without needing any further production capacity and can thus play a major role on the way to more sustainability in transport and the chemical industry and reducing the dependence on the import of fossil resources. The potential for cellulosic ethanol is huge: In the US, the annual production of agricultural residues (cereal straw and corn stover) reached almost 384 million tons in 2009 and Brazil alone produced more than 670 million tons of sugar cane in 2009 yielding more than 100 million tons of bagasse (dry basis). And alone in the European Union, almost 300 million tons of crop straw are produced annually. The last years have seen success in the development and deployment in the field of cellulosic ethanol production. The main challenge thereby remains to demonstrate that the technology is economically feasible for the up-scaling to industrial scale. Clariant has developed the sunliquid {sup registered} process, a proprietary cellulosic ethanol technology that reaches highest greenhouse gas (GHG) emission savings while cutting production costs to a minimum. The sunliquid {sup registered} process for cellulosic ethanol matches the ambitious targets for economically and ecologically sustainable production and greenhouse gas reduction. It was developed using an integrated design concept. Highly optimized, feedstock and process specific biocatalysts and microorganisms ensure a highly efficient process with improved yields and feedstock-driven production costs. Integrated, on

  18. African perspective on cellulosic ethanol production

    DEFF Research Database (Denmark)

    Bensah, Edem Cudjoe; Kemausuor, Francis; Miezah, Kodwo

    2015-01-01

    A major challenge to commercial production of cellulosic ethanol pertains to the cost-effective breakdown of the complex and recalcitrant structure of lignocellulose into its components via pretreatment, the cost of enzymes for hydrolysis and fermentation, and the conversion rate of C5 sugars...... to ethanol, among others. While the industrialized and some emerging countries are gradually breaking grounds in cellulosic ethanol, most African countries have made little effort in research and development even though the continent is rich in lignocellulosic biomass. The paper estimates residues from...... widely available crops and municipal waste and determines their respective theoretical ethanol potential (around 22 billion litres annually). It further reviews stages involved in the production of cellulosic ethanol, focussing on processing methods that can be adapted to current situation in most...

  19. Grain and cellulosic ethanol: History, economics, and energy policy

    International Nuclear Information System (INIS)

    Solomon, Barry D.; Barnes, Justin R.; Halvorsen, Kathleen E.

    2007-01-01

    The United States (US) and Brazil have been the two leading producers of fuel ethanol since the 1970s. National policies have supported the production and use of ethanol from corn and sugarcane. US support in particular has included exemption from federal gasoline excise taxes, whole or partial exemption from road use (sales) taxes in nine states, a federal production tax credit, and a federal blender's credit. In the last decade the subsidization of grain-based ethanol has been increasingly criticized as economically inefficient and of questionable social benefit. In addition, much greater production of ethanol from corn may conflict with food production needs. A promising development is the acceleration of the technical readiness of cellulosic alcohol fuels, which can be produced from the woody parts of trees and plants, perennial grasses, or residues. This technology is now being commercialized and has greater long-term potential than grain ethanol. Cellulosic ethanol is projected to be much more cost-effective, environmentally beneficial, and have a greater energy output to input ratio than grain ethanol. The technology is being developed in North America, Brazil, Japan and Europe. In this paper, we will review the historical evolution of US federal and state energy policy support for and the currently attractive economics of the production and use of ethanol from biomass. The various energy and economic policies will be reviewed and assessed for their potential effects on cellulosic ethanol development relative to gasoline in the US. (author)

  20. Implications of Industrial Processing Strategy on Cellulosic Ethanol Production at High Solids Concentrations

    DEFF Research Database (Denmark)

    Cannella, David

    The production of cellulosic ethanol is a biochemical process of not edible biomasses which contain the cellulose. The process involves the use of enzymes to hydrolyze the cellulose in fermentable sugars to finally produce ethanol via fermentative microorganisms (i.e. yeasts). These biomasses...... are the leftover of agricultural productions (straws), not edible crops (giant reed) or wood, thus the ethanol so produced is also called second generation (or 2G ethanol), which differs from the first generation produced from starch (sugar beets mostly). In the industrial production of cellulosic ethanol high...... solids strategy resulted critical for its cost effectiveness: high concentration of initial biomass it will lead to high concentration of the final product (ethanol), thus more convenient to isolate. This thesis investigate the implementation of a high solids loading concept into cellulosic ethanol...

  1. Cellulosic ethanol is ready to go

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M. [SunOpta BioProcess Group, Brampton, ON (Canada)

    2006-07-01

    A corporate overview of the SunOpta organization was presented. The organization includes three divisions, notably organic food, industrial minerals, and a bioprocess group. It is a Canadian organization that has experienced over 60 per cent growth per year since 1999. The presentation provided a history of the bioprocess group from 1973 to 2003. The presentation also illustrated the biomass process from wood, straw or corn stover to cellulosic ethanol and acetone and butanol. Several images were presented. The production of xylitol from oat hulls and birch and from ryegrass straw to linerboard was also illustrated. Last, the presentation illustrated the biomass production of cellulose, hemicellulose and lignin extraction as well as the ammonia pretreatment of cellulosics. The presentation also listed several current and future developments such as an expansion plan and implementation of cellulosic ethanol. Economic success was defined as requiring proximity to market; high percentage concentration to distillation; and co-located within existing infrastructure. figs.

  2. Conversion of bagasse cellulose into ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Cuzens, J.E.

    1997-11-19

    The study conducted by Arkenol was designed to test the conversion of feedstocks such as sugar cane bagasse, sorghum, napier grass and rice straw into fermentable sugars, and then ferment these sugars using natural yeasts and genetically engineered Zymomonis mobilis bacteria (ZM). The study did convert various cellulosic feedstocks into fermentable sugars utilizing the patented Arkenol Concentrated Acid Hydrolysis Process and equipment at the Arkenol Technology Center in Orange, California. The sugars produced using this process were in the concentration range of 12--15%, much higher than the sugar concentrations the genetically engineered ZM bacteria had been developed for. As a result, while the ZM bacteria fermented the produced sugars without initial inhibition, the completion of high sugar concentration fermentations was slower and at lower yield than predicted by the National Renewable Energy Laboratory (NREL). Natural yeasts performed as expected by Arkenol, similar to the results obtained over the last four years of testing. Overall, at sugar concentrations in the 10--13% range, yeast produced 850090% theoretical ethanol yields and ZM bacteria produced 82--87% theoretical yields in 96 hour fermentations. Additional commercialization work revealed the ability to centrifugally separate and recycle the ZM bacteria after fermentation, slight additional benefits from mixed culture ZM bacteria fermentations, and successful utilization of defined media for ZM bacteria fermentation nutrients in lieu of natural media.

  3. Adsorption of Saccharomyces cerevisiae onto cellulose and ecteola-cellulose films for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Lueng, K.L.; Joshi, S.; Yamazaki, H.

    1983-05-01

    Epichlorohydrin-triethanolamine (ECTEOLA)-cellulose films (paper and cloth) have been found to bind Saccharomyces cerevisiae cells which were able to develop metabolically active colonies on the surface of the films. Umodified cellulose films also bound the yeast but to a lesser extent. Film fermenters were constructed by coiling a double layer of the cloth and copper screen and vertically placing the resulting cartridge into a column. These film fermenters were able to convert the sugars (14%) in the hydrolysate of a Jerusalem artichoke tuber into ethanol, with 90% of the theoretical yield after 6 hours of fermentation. The bound yeast produced ethanol at a specific rate of 1.0 g ethanol per g cell per hour. (Refs. 4).

  4. Analysis of ethanol production potential from cellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J E

    1982-03-01

    This report provides a comprehensive and scientific overview of results emerging from research on ethanol producton from cellulosic materials and indicates those areas which appear to warrant additional support. Many published economic analyses of production costs are examined, but the emphasis of the report is on research and on its potential for reducing the cost of ethanol production. The author concludes that the uncertainty surrounding the cost of producing ethanol from cellulosic feedstocks via enzymatic hydrolysis will not be resolved until a pilot plant has been built of sufficient size to produce realistic engineering data. He gives five reasons why Canada should build such a pilot plant: Canada's apparent leadership in developing a steam pre-treatment process, the desirability of encouraging developments and building a cadre of experts in biotechnology, the absence of a pilot plant in Canada where the various organisms and biochemical processes involved in ethanol production and by-product utilization can be developed on a reasonably large scale, Canadian expertise in lignin chemistry which might be used to capitalize upon the reactive lignin residue, and research in progress at National Research Council and elsewhere on the conversion of C/sub 5/ sugars to ethanol. 37 refs., 2 figs., 4 tabs.

  5. Biomass Supply Chain and Conversion Economics of Cellulosic Ethanol

    Science.gov (United States)

    Gonzalez, Ronalds W.

    2011-12-01

    Cellulosic biomass is a potential and competitive source for bioenergy production, reasons for such acclamation include: biomass is one the few energy sources that can actually be utilized to produce several types of energy (motor fuel, electricity, heat) and cellulosic biomass is renewable and relatively found everywhere. Despite these positive advantages, issues regarding cellulosic biomass availability, supply chain, conversion process and economics need a more comprehensive understanding in order to identify the near short term routes in biomass to bioenergy production. Cellulosic biomass accounts for around 35% to 45% of cost share in cellulosic ethanol production, in addition, different feedstock have very different production rate, (dry ton/acre/year), availability across the year, and chemical composition that affect process yield and conversion costs as well. In the other hand, existing and brand new conversion technologies for cellulosic ethanol production offer different advantages, risks and financial returns. Ethanol yield, financial returns, delivered cost and supply chain logistic for combinations of feedstock and conversion technology are investigated in six studies. In the first study, biomass productivity, supply chain and delivered cost of fast growing Eucalyptus is simulated in economic and supply chain models to supply a hypothetic ethanol biorefinery. Finding suggests that Eucalyptus can be a potential hardwood grown specifically for energy. Delivered cost is highly sensitive to biomass productivity, percentage of covered area. Evaluated at different financial expectations, delivered cost can be competitive compared to current forest feedstock supply. In the second study, Eucalyptus biomass conversion into cellulosic ethanol is simulated in the dilute acid pretreatment, analysis of conversion costs, cost share, CAPEX and ethanol yield are examined. In the third study, biomass supply and delivered cost of loblolly pine is simulated in economic

  6. Evaluation of ethanol productivity from cellulose by Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Kurose, N; Yagyu, J; Miyazaki, T; Uchida, M; Hanai, S; Obayashi, A

    1986-01-01

    Clostridium thermocellum, a thermophilic anaerobe, directly converts cellulose to EtOH. To estimate its EtOH production from cellulose, we used a new method based on material balance by which the efficiencies of the enzymes that convert cellulose to ethanol were calculated. Using this method, the maximum efficiency of ethanol production of two strains of C. thermocellum was estimated to be 0.05, with 0.67 as the theoretical maximum. 3 references.

  7. Availability of crop cellulosics for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, R.D.

    1982-10-01

    Past estimates of cellulosic resources available from Canadian agriculture totalled over 23 million tonnes of cereal grain straw and corn stover residues surplus to soil and animal requirements. A new much reduced estimate, based on four detailed regional studies that also include previously unassessed resources such as chaff, oilseed hulls, and food processing wastes, is suggested. Eleven million tonnes are currently available from all residue sources for energy conversion by different processes. Only five million tonnes are identified as potentially usable in ethanol production plants were they to be constructed. Additional resource opportunities may become available in future from currently underutilized land, especially saline soils, novel processing techniques of conventional grains and forages, innovative cropping systems that may increase the yield of agricultural biomass, and new food/feed/fuel (i.e. multi-purpose) crops such as kochia, milkweed, and Jerusalem artichoke. 27 refs., 1 fig., 1 tab.

  8. Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Wold; Robert Divers

    2011-06-23

    At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and over 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.

  9. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    International Nuclear Information System (INIS)

    Campiche, Jody L; Bryant, Henry L; Richardson, James W

    2010-01-01

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenue from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. In the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.

  10. Nanofibrillated Cellulose (NFC: A High-Value Co-Product that Improves the Economics of Cellulosic Ethanol Production

    Directory of Open Access Journals (Sweden)

    Qiong Song

    2014-02-01

    Full Text Available Cellulosic ethanol is a sustainable alternative to petroleum as a transportation fuel, which could be made biologically from agricultural and forestry residues, municipal waste, or herbaceous and woody crops. Instead of putting efforts on steps overcoming the natural resistance of plants to biological breakdown, our study proposes a unique pathway to improve the outcome of the process by co-producing high-value nanofibrillated cellulose (NFC, offering a new economic leverage for cellulosic ethanol to compete with fossil fuels in the near future. In this study, glucose has been produced by commercial enzymes while the residual solids are converted into NFC via sonification. Here, we report the morphology of fibers changed through the process and yield of glucose in the enzymatic hydrolysis step.

  11. Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus.

    Science.gov (United States)

    Im, Kyung Hoan; Nguyen, Trung Kien; Choi, Jaehyuk; Lee, Tae Soo

    2016-03-01

    Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously.

  12. Value Chain Structures that Define European Cellulosic Ethanol Production

    Directory of Open Access Journals (Sweden)

    Jay Sterling Gregg

    2017-01-01

    Full Text Available Production of cellulosic ethanol (CE has not yet reached the scale envisaged by the literature and industry. This study explores CE production in Europe to improve understanding of the motivations and barriers associated with this situation. To do this, we conduct a case study-based analysis of CE production plants across Europe from a global value chain (GVC perspective. We find that most CE production plants in the EU focus largely on intellectual property and are therefore only at the pilot or demonstration scale. Crescentino, the largest CE production facility in Europe, is also more interested in technology licensing than producing ethanol. Demonstration-scale plants tend to have a larger variety of feedstocks, whereas forestry-based plants have more diversity of outputs. As scale increases, the diversity of feedstocks and outputs diminishes, and firms struggle with feedstock provisioning, global petroleum markets and higher financial risks. We argue that, to increase CE production, policies should consider value chains, promote the wider bio-economy of products and focus on economies of scope. Whereas the EU and its member states have ethanol quotas and blending targets, a more effective policy would be to seek to reduce the risks involved in financing capital projects, secure feedstock provisioning and support a diversity of end products.

  13. Physical Energy Accounting in California: A Case Study of Cellulosic Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie; Fridley, David

    2008-07-17

    California's target for greenhouse gas reduction in part relies on the development of viable low-carbon fuel alternatives to gasoline. It is often assumed that cellulosic ethanol--ethanol made from the structural parts of a plant and not from the food parts--will be one of these alternatives. This study examines the physical viability of a switchgrass-based cellulosic ethanol industry in California from the point of view of the physical requirements of land, water, energy and other material use. Starting from a scenario in which existing irrigated pastureland and fiber-crop land is converted to switchgrass production, the analysis determines the total acreage and water supply available and the resulting total biofuel feedstock output under different assumed yields. The number and location of cellulosic ethanol biorefineries that can be supported is also determined, assuming that the distance from field to biorefinery would be minimized. The biorefinery energy input requirement, available energy from the fraction of biomass not converted to ethanol, and energy output is calculated at various levels of ethanol yields, making different assumptions about process efficiencies. The analysis shows that there is insufficient biomass (after cellulose separation and fermentation into ethanol) to provide all the process energy needed to run the biorefinery; hence, the purchase of external energy such as natural gas is required to produce ethanol from switchgrass. The higher the yield of ethanol, the more external energy is needed, so that the net gains due to improved process efficiency may not be positive. On 2.7 million acres of land planted in switchgrass in this scenario, the switchgrass outputproduces enough ethanol to substitute for only 1.2 to 4.0percent of California's gasoline consumption in 2007.

  14. Breaking into the Cellulosic Ethanol Market: Capacity and Storage Strategies

    OpenAIRE

    Darby, Paul M.; Mark, Tyler B.; Salassi, Michael E.

    2010-01-01

    This paper examines the possibilities of breaking into the cellulosic ethanol market in south Louisiana via strategic feedstock choices and the leveraging of the area’s competitive advantages. A small plant strategy is devised whereby the first-mover problem might be solved, and several scenarios are tested using Net Present Value analysis.

  15. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hyun Jong; Wi, Seung Gon; Kim, Su Bae; Shin, You Jung; Yi, Ju Hui [Chonnam National University, Bio-Energy Research Institute, Gwangju (Korea, Republic of)

    2010-10-15

    The purpose of this project is optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production. Research scope includes 1) screening of various microorganisms from decayed biomass in order to search for more efficient lignocellulose degrading microorganism, 2) identification and verification of new cell wall degrading cellulase for application cellulose bioconversion process, and 3) identification and characterization of novel genes involved in cellulose degradation. To find good microorganism candidates for lignocellulose degrading, 75 decayed samples from different areas were assayed in triplicate and analyzed. For cloning new cell wall degrading enzymes, we selected microorganisms because it have very good lignocellulose degradation ability. From that microorganisms, we have apparently cloned a new cellulase genes (10 genes). We are applying the new cloned cellulase genes to characterize in lignocellulsoe degradation that are most important to cellulosic biofuels production

  16. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

    International Nuclear Information System (INIS)

    Bae, Hyun Jong; Wi, Seung Gon; Kim, Su Bae; Shin, You Jung; Yi, Ju Hui

    2010-10-01

    The purpose of this project is optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production. Research scope includes 1) screening of various microorganisms from decayed biomass in order to search for more efficient lignocellulose degrading microorganism, 2) identification and verification of new cell wall degrading cellulase for application cellulose bioconversion process, and 3) identification and characterization of novel genes involved in cellulose degradation. To find good microorganism candidates for lignocellulose degrading, 75 decayed samples from different areas were assayed in triplicate and analyzed. For cloning new cell wall degrading enzymes, we selected microorganisms because it have very good lignocellulose degradation ability. From that microorganisms, we have apparently cloned a new cellulase genes (10 genes). We are applying the new cloned cellulase genes to characterize in lignocellulsoe degradation that are most important to cellulosic biofuels production

  17. Influence of the crystalline structure of cellulose on the production of ethanol from lignocellulose biomass

    Science.gov (United States)

    Smuga-Kogut, Małgorzata; Zgórska, Kazimiera; Szymanowska-Powałowska, Daria

    2016-01-01

    In recent years, much attention has been devoted to the possibility of using lignocellulosic biomass for energy. Bioethanol is a promising substitute for conventional fossil fuels and can be produced from straw and wood biomass. Therefore, the aim of this paper was to investigate the effect of 1-ethyl-3-methylimidazolium pretreatment on the structure of cellulose and the acquisition of reducing sugars and bioethanol from cellulosic materials. Material used in the study was rye straw and microcrystalline cellulose subjected to ionic liquid 1-ethyl-3-methylimidazolium pretreatment. The morphology of cellulose fibres in rye straw and microcrystalline cellulose was imaged prior to and after ionic liquid pretreatment. Solutions of ionic liquid-treated and untreated cellulosic materials were subjected to enzymatic hydrolysis in order to obtain reducing sugars, which constituted a substrate for alcoholic fermentation. An influence of the ionic liquid on the cellulose structure, accumulation of reducing sugars in the process of hydrolysis of this material, and an increase in ethanol amount after fermentation was observed. The ionic liquid did not affect cellulolytic enzymes negatively and did not inhibit yeast activity. The amount of reducing sugars and ethyl alcohol was higher in samples purified with 1-ethyl-3-methy-limidazolium acetate. A change in the supramolecular structure of cellulose induced by the ionic liquid was also observed.

  18. Process for producing ethanol from syngas

    Science.gov (United States)

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  19. USE OF IONIC LIQUIDS FOR IMPROVEMENT OF CELLULOSIC ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Qijun Wang

    2011-02-01

    Full Text Available Cellulosic ethanol production has drawn much attention in recent years. However, there remain significant technical challenges before such production can be considered as economically feasible at an industrial scale. Among them, the efficient conversion of carbohydrates in lignocellulosic biomass into fermentable sugars is one of the most challenging technical difficulties in cellulosic ethanol production. Use of ionic liquids has opened new avenues to solve this problem by two different pathways. One is pretreatment of lignocellulosic biomass using ionic liquids to increase its enzymatic hydrolysis efficiency. The other is to transform the hydrolysis process of lignocellulosic biomass from a heterogeneous reaction system to a homogeneous one by dissolving it into ionic liquids, thus improving its hydrolysis efficiency.

  20. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol.

    Science.gov (United States)

    Liu, Gang; Bao, Jie

    2017-12-01

    Energy consumption and wastewater generation in cellulosic ethanol production are among the determinant factors on overall cost and technology penetration into fuel ethanol industry. This study analyzed the energy consumption and wastewater generation by the new biorefining process technology, dry acid pretreatment and biodetoxification (DryPB), as well as by the current mainstream technologies. DryPB minimizes the steam consumption to 8.63GJ and wastewater generation to 7.71tons in the core steps of biorefining process for production of one metric ton of ethanol, close to 7.83GJ and 8.33tons in corn ethanol production, respectively. The relatively higher electricity consumption is compensated by large electricity surplus from lignin residue combustion. The minimum ethanol selling price (MESP) by DryPB is below $2/gal and falls into the range of corn ethanol production cost. The work indicates that the technical and economical gap between cellulosic ethanol and corn ethanol has been almost filled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The production of cellulosic ethanol using SMR. A prefeasibility study for the Italian scenario

    International Nuclear Information System (INIS)

    Locatelli, Giorgio; Mancini, Mauro

    2011-01-01

    Small Medium Reactors (SMR) can play an important role in the global nuclear renaissance coupling the production of Electrical Energy (EE) with by-products useful to increase their economic attractiveness and enhance the public acceptability. Light Water Reactors (LWR) have an average thermal efficiency of about 33%-35%, therefore two third of the thermal energy produced by the nuclear reaction is usually wasted. Nowadays there are industries able to use this thermal energy in an efficient way. Among the other the production of cellulosic ethanol seems one of the most attractive for the coupling with a nuclear power plant. This industry can exploit two by-products of a nuclear reactor: the wide area around the plant (the so called Emergency Planning Zone - EPZ) and the residual thermal energy post turbines. Cellulosic ethanol is a bio-fuel produced from non-edible parts of plants or wood. It is produced from lignocellulose the material composing much of the mass of plants. Production of ethanol (that can be used as a fuel) from lignocellulose can avoid the usage of food grain or precious vegetables usable for the human nutrition, but requires an enormous amount of heat in the production process. A SMR can be the ideal source of this thermal energy. The paper presents a prefeasibility study with the economic and strategic assessment of coupling an SMR and a cellulosic ethanol plant in the north of Italy. After an introduction on the ethanol production the papers describe the market of this product and the production process. Then it provides the cost estimation of coupling the SMR with the production plant. The results point out as this combination can be very attractive to enhance the production of ethanol since is really cost competitive and does not produce any green house gases (GHG). (author)

  2. A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Seunghyun; Karim, Muhammad Nazmul [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemical Engineering

    2011-08-15

    In this research, a recombinant whole cell biocatalyst was developed by expressing three cellulases from Clostridium cellulolyticum - endoglucanase (Cel5A), exoglucanase (Cel9E), and {beta}-glucosidase - on the surface of the Escherichia coli LY01. The modified strain is identified as LY01/pRE1H-AEB. The cellulases were displayed on the surface of the cell by fusing with an anchor protein, PgsA. The developed whole cell biocatalyst was used for single-step ethanol fermentation using the phosphoric acid-swollen cellulose (PASC) and the dilute acid-pretreated corn stover. Ethanol production was 3.59 {+-} 0.15 g/L using 10 g/L of PASC, which corresponds to a theoretical yield of 95.4 {+-} 0.15%. Ethanol production was 0.30 {+-} 0.02 g/L when 1 g/L equivalent of glucose in the cellulosic fraction of the dilute sulfuric acid-pretreated corn stover (PCS) was fermented for 84 h. A total of 0.71 {+-} 0.12 g/L ethanol was produced in 48 h when the PCS was fermented in the simultaneous saccharification and co-fermentation mode using the hemicellulosic (1 g/L of total soluble sugar) and as well as the cellulosic (1 g/L of glucose equivalent) parts of PCS. In a control experiment, 0.48 g/L ethanol was obtained from 1 g/L of hemicellulosic PCS. It was concluded that the whole cell biocatalyst could convert both cellulosic and hemicellulosic substrates into ethanol in a single reactor. The developed C. cellulolyticum-E. coli whole cell biocatalyst also overcame the incompatible temperature problem of the frequently reported fungal-yeast systems. (orig.)

  3. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, Shuhei; Yamada, Ryosuke; Ogino, Chiaki; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering; Hasunuma, Tomohisa; Tanaka, Tsutomu; Fukuda, Hideki [Kobe Univ. (Japan). Organization of Advanced Science and Technology

    2010-09-15

    To exploit cellulosic materials for fuel ethanol production, a microorganism capable of high temperature and simultaneous saccharification-fermentation has been required. However, a major drawback is the optimum temperature for the saccharification and fermentation. Most ethanol-fermenting microbes have an optimum temperature for ethanol fermentation ranging between 28 C and 37 C, while the activity of cellulolytic enzymes is highest at around 50 C and significantly decreases with a decrease in temperature. Therefore, in the present study, a thermotolerant yeast, Kluyveromyces marxianus, which has high growth and fermentation at elevated temperatures, was used as a producer of ethanol from cellulose. The strain was genetically engineered to display Trichoderma reesei endoglucanase and Aspergillus aculeatus {beta}-glucosidase on the cell surface, which successfully converts a cellulosic {beta}-glucan to ethanol directly at 48 C with a yield of 4.24 g/l from 10 g/l within 12 h. The yield (in grams of ethanol produced per gram of {beta}-glucan consumed) was 0.47 g/g, which corresponds to 92.2% of the theoretical yield. This indicates that high-temperature cellulose fermentation to ethanol can be efficiently accomplished using a recombinant K. marxianus strain displaying thermostable cellulolytic enzymes on the cell surface. (orig.)

  4. An energy analysis of ethanol from cellulosic feedstock. Corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lin; Van der Voet, Ester; Huppes, Gjalt [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA, Leiden (Netherlands)

    2009-10-15

    The shift from fossil resources to renewables for energy and materials production has been the driving force for research on energy analysis and environmental impact assessment of bio-based production. This study presents a detailed energy analysis of corn stover based ethanol production using advanced cellulosic technologies. The method used differs from that in LCA and from major studies on the subject as published in Science in two respects. First, it accounts for all the co-products together and so mainly avoids the allocation problems which plague all LCA studies explicitly and other studies implicitly. Second, the system boundaries only involve the content of the energy products used in the system but not the production processes of these energy products, like refining and electricity production. We normalized the six Science studies to this unified method. The resulting values of the total energy product use in both agricultural production and biomass conversion to ethanol are lower than these literature values. LCA-type of values including energy conversion would systematically be higher, in our case study around 45%. The net energy value of cellulosic ethanol production is substantially higher than the ones of the corn-based technologies, and it is similar to incineration and gasification for electricity production. The detailed analysis of energy inputs indicates opportunities to optimize the system. This form of energy analysis helps establishing models for the analysis of more complex systems such as biorefineries. (author)

  5. Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol-Water Solutions.

    Science.gov (United States)

    Yang, Lisha; Yang, Xiaokun; Tian, Elli; Lin, Hongfei

    2016-01-08

    Biomass-derived ethyl lactate is a green solvent with a growing market as the replacement for petroleum-derived toxic organic solvents. Here we report, for the first time, the production of ethyl lactate directly from cellulose with the mesoporous Zr-SBA-15 silicate catalyst in a supercritical mixture of ethanol and water. The relatively strong Lewis and weak Brønsted acid sites on the catalyst, as well as the surface hydrophobicity, were beneficial to the reaction and led to synergy during consecutive reactions, such as depolymerization, retro-aldol condensation, and esterification. Under the optimum reaction conditions, ∼33 % yield of ethyl lactate was produced from cellulose with the Zr-SBA-15 catalyst at 260 °C in supercritical 95:5 (w/w) ethanol/water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    Science.gov (United States)

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  7. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipitis.

    Science.gov (United States)

    Okonkwo, C C; Azam, M M; Ezeji, T C; Qureshi, N

    2016-07-01

    Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L(-1) ethanol with a productivity of 0.17 ± 0.00 g L(-1) h(-1), while xylose plus 3 g L(-1) CaCO3 resulted in the production of 24.68 ± 0.75 g L(-1) ethanol with a productivity of 0.21 ± 0.01 g L(-1) h(-1). Use of xylose plus glucose in combination with 3 g L(-1) CaCO3 resulted in the production of 47.37 ± 0.55 g L(-1) ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L(-1) h(-1). These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L(-1) CaCl2 resulted in the production of 44.84 ± 0.28 g L(-1) ethanol with a productivity of 0.37 ± 0.02 g L(-1) h(-1). Use of glucose plus 3 g L(-1) CaCO3 resulted in the production of 57.39 ± 1.41 g L(-1) ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues.

  8. Value Chain Structures that Define European Cellulosic Ethanol Production

    DEFF Research Database (Denmark)

    Gregg, Jay Sterling; Bolwig, Simon; Hansen, Teis

    2017-01-01

    production plants across Europe from a global value chain (GVC) perspective. We find that most CE production plants in the EU focus largely on intellectual property and are therefore only at the pilot or demonstration scale. Crescentino, the largest CE production facility in Europe, is also more interested...... petroleum markets and higher financial risks. We argue that, to increase CE production, policies should consider value chains, promote the wider bio-economy of products and focus on economies of scope. Whereas the EU and its member states have ethanol quotas and blending targets, a more effective policy......Production of cellulosic ethanol (CE) has not yet reached the scale envisaged by the literature and industry. This study explores CE production in Europe to improve understanding of the motivations and barriers associated with this situation. To do this, we conduct a case study-based analysis of CE...

  9. Combined enzyme mediated fermentation of cellulose and xylose to ethanol by Schizosaccharomyces pombe, cellulase, [beta]-glucosidase, and xylose isomerase

    Science.gov (United States)

    Lastick, S.M.; Mohagheghi, A.; Tucker, M.P.; Grohmann, K.

    1994-12-13

    A process for producing ethanol from mixed sugar streams from pretreated biomass comprising xylose and cellulose using enzymes to convert these substrates to fermentable sugars; selecting and isolating a yeast Schizosaccharomyces pombe ATCC No. 2476, having the ability to ferment these sugars as they are being formed to produce ethanol; loading the substrates with the fermentation mix composed of yeast, enzymes and substrates; fermenting the loaded substrates and enzymes under anaerobic conditions at a pH range of between about 5.0 to about 6.0 and at a temperature range of between about 35 C to about 40 C until the fermentation is completed, the xylose being isomerized to xylulose, the cellulose being converted to glucose, and these sugars being concurrently converted to ethanol by yeast through means of the anaerobic fermentation; and recovering the ethanol. 2 figures.

  10. The Potential of Cellulosic Ethanol Production from Grasses in Thailand

    Directory of Open Access Journals (Sweden)

    Jinaporn Wongwatanapaiboon

    2012-01-01

    Full Text Available The grasses in Thailand were analyzed for the potentiality as the alternative energy crops for cellulosic ethanol production by biological process. The average percentage composition of cellulose, hemicellulose, and lignin in the samples of 18 types of grasses from various provinces was determined as 31.85–38.51, 31.13–42.61, and 3.10–5.64, respectively. The samples were initially pretreated with alkaline peroxide followed by enzymatic hydrolysis to investigate the enzymatic saccharification. The total reducing sugars in most grasses ranging from 500–600 mg/g grasses (70–80% yield were obtained. Subsequently, 11 types of grasses were selected as feedstocks for the ethanol production by simultaneous saccharification and cofermentation (SSCF. The enzymes, cellulase and xylanase, were utilized for hydrolysis and the yeasts, Saccharomyces cerevisiae and Pichia stipitis, were applied for cofermentation at 35°C for 7 days. From the results, the highest yield of ethanol, 1.14 g/L or 0.14 g/g substrate equivalent to 32.72% of the theoretical values was obtained from Sri Lanka ecotype vetiver grass. When the yields of dry matter were included in the calculations, Sri Lanka ecotype vetiver grass gave the yield of ethanol at 1,091.84 L/ha/year, whereas the leaves of dwarf napier grass showed the maximum yield of 2,720.55 L/ha/year (0.98 g/L or 0.12 g/g substrate equivalent to 30.60% of the theoretical values.

  11. Method of producing thin cellulose nitrate film

    International Nuclear Information System (INIS)

    Lupica, S.B.

    1975-01-01

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent

  12. Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers

    Science.gov (United States)

    Junyong Zhu; Ronald Sabo; Xiaolin Luo

    2011-01-01

    This study demonstrates the feasibility of integrating the production of nano-fibrillated cellulose (NFC), a potentially highly valuable biomaterial, with sugar/biofuel (ethanol) from wood fibers. Commercial cellulase enzymes were used to fractionate the less recalcitrant amorphous cellulose from a bleached Kraft eucalyptus pulp, resulting in a highly crystalline and...

  13. Assessing Resource Intensity and Renewability of Cellulosic Ethanol Technologies using Eco-LCA

    Science.gov (United States)

    Recognizing the contributions of natural resources and the lack of their comprehensive accounting in life cycle assessment (LCA) of cellulosic ethanol, an in-depth analysis of the contribution of natural resources in the life cycle of cellulosic ethanol derived from five differen...

  14. Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cervisiae without detoxification

    Science.gov (United States)

    S. Tian; X.L. Luo; X.S. Yang; J.Y. Zhu

    2010-01-01

    This study reports an ethanol yield of 270 L/ton wood from lodgepole pine pretreated with sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) using an adapted strain, Saccharomyces cerevisiae Y5, without detoxification. The enzymatic hydrolysate produced from pretreated cellulosic solids substrate was combined with pretreatment hydrolysate before...

  15. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

    International Nuclear Information System (INIS)

    Bae, Hyeun Jong; Wi, Seung Gon; Lee, Yoon Gyo; Kim, Ho Myung; Kim, Su Bae

    2011-10-01

    The purpose of this project is optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production. The 2nd year Research scope includes: 1) Optimization of pre-treatment conditions for enzymatic hydrolysis of lignocellulosic biomass and 2) Demonstration of enzymatic hydrolysis by recombinant enzymes. To optimize the pretreatment, we applied two processes: a wet process (wet milling + popping), and dry process (popping + dry milling). Out of these, the wet process presented the best glucose yield with a 93.1% conversion, while the dry process yielded 69.6%, and the unpretreated process yielded <20%. The recombinant cellulolytic enzymes showed very high specific activity, about 80-1000 times on CMC and 13-70 times on filter paper at pH 3.5 and 55 .deg. C

  16. Integrated energy, environmental and financial analysis of ethanol production from cellulosic switchgrass

    International Nuclear Information System (INIS)

    Felix, Erika; Tilley, David R.

    2009-01-01

    Ethanol production from cellulosic sources such as switchgrass (Panicum virgatum L.) requires the use of natural resources, fossil fuels, electricity, and human-derived goods and services. We used emergy accounting to integrate the ultimate amount of environmental, fossil fuel, and human-derived energy required to produce ethanol from switchgrass. Emergy is the total amount of energy of one form required directly and indirectly to make another form of energy. Forty-four percent of required emergy came from the environment either directly or embodied in purchased goods, 30% came from fossil fuels either directly or embodied in purchased goods, and 25% came from human-derived services indirectly. Ethanol production per petroleum use (emergy/emergy) was 4.0-to-1 under our Baseline Scenario, but dropped to 0.5-to-1 under a scenario that assumed higher input prices, lower conversion efficiencies and less waste recycling. At least 75% of total emergy was from non-renewable sources. Energy 'hidden' in indirect paths such as goods and services was 65% of the total. Cellulosic-ethanol is not a primary fuel source that substitutes for petroleum because its production relies heavily on non-renewable energy and purchased inputs. It is a means for converting natural resources to liquid fuel. (author)

  17. Process for producing ethanol from plant biomass using the fungus Paecilomyces sp

    Science.gov (United States)

    Wu, J.F.

    1985-08-08

    A process for producing ethanol from plant biomass is disclosed. The process includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces which has the ability to ferment both cellobiose and xylose to ethanol is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate. 5 figs., 3 tabs.

  18. Cellulose gels produced in room temperature ionic liquids by ionizing radiation

    International Nuclear Information System (INIS)

    Kimura, Atsushi; Nagasawa, Naotsugu; Taguchi, Mitsumasa

    2014-01-01

    Cellulose-based gels were produced in room temperature ionic liquids (RTILs) by ionizing radiation. Cellulose was dissolved at the initial concentration of 20 wt% in 1-ethyl-3-methylimidazolium (EMI)-acetate or N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium (DEMA)-formate with a water content of 18 wt%, and irradiated with γ-rays under aerated condition to produce new cellulose gels. The gel fractions of the cellulose gels obtained in EMI-acetate and DEMA-formate at a dose of 10 kGy were 13% and 19%, respectively. The formation of gel fractions was found to depend on the initial concentration of cellulose, water content, and irradiation temperature. The obtained gel readily absorbed water, methanol, ethanol, dichloromethane, N,N-dimethylacetamide, and RTILs. - Highlights: • Cellulose gels were produced in room temperature ionic liquids (RTILs). • Water plays a crucial role in the cross-linking reaction. • Cellulose gels swollen with RTILs show good electronic conductivity (3.0 mS cm −1 )

  19. Cellulosic ethanol production from agricultural residues in Nigeria

    International Nuclear Information System (INIS)

    Iye, Edward; Bilsborrow, Paul

    2013-01-01

    Nigeria′s Biofuels Policy introduced in 2007 mandates a 10% blend (E10) of bioethanol with gasoline. This study investigates the potential for the development of a cellulosic ethanol industry based on the availability of agricultural residues and models the number of commercial processing facilities that could be sited in the six Geo-political zones. The potential for cellulosic ethanol production from agricultural residues in Nigeria is 7556 km 3 per annum exceeding the mandate of 10% renewable fuel required and providing the potential for 12 large- and 11 medium-scale processing facilities based on the use of a single feedstock. Cassava and yam peelings provided in excess of 80% of the process residues available with enough feedstock to supply 10 large-scale facilities with a fairly even distribution across the zones. Sorghum straw, millet straw and maize stalks represented 75% of the potential resource available from field residues with the potential to supply 2 large- and 7 medium-scale processing facilities, all of which would be located in the north of the country. When a multi-feedstock approach is used, this provides the potential for either 29 large- or 58 medium-scale facilities based on outputs of 250 and 125 km 3 per annum respectively. - Highlights: • Nigeria′s Biofuels Policy mandates a 10% blend of bioethanol with gasoline. • Total bioethanol production from agricultural residues was 7556 km 3 per annum. • Process residues offer the greatest potential accounting for 62% of production. • Nigeria has the potential for 12 large- and 11 medium scale commercial. • The use of mixed feedstocks significantly increases the potential for production

  20. Direct conversion of straw to ethanol by Fusarium oxysporum: effect of cellulose crystallinity

    Energy Technology Data Exchange (ETDEWEB)

    Christakopoulos, P.; Koullas, D.P.; Kekos, D.; Koukios, E.G.; Macris, B.J. (Ethnikon Metsovion Polytechneion, Athens (Greece))

    1991-03-01

    Wheat straw was successfully fermented to ethanol by Fusarium oxysporum F3 in a one-step process. Cellulose crystallinity was found to be a major factor in the bioconversion process. Ethanol yields increased linearly with decreasing crystallinity index. Approximately 80% of straw carbohydrates were converted directly to ethanol with a yield of 0.28 g ethanol/g{sup -1} of straw when the crystallinity index was reduced to 23.6%. (author).

  1. Process and utility water requirements for cellulosic ethanol production processes via fermentation pathway

    Science.gov (United States)

    The increasing need of additional water resources for energy production is a growing concern for future economic development. In technology development for ethanol production from cellulosic feedstocks, a detailed assessment of the quantity and quality of water required, and the ...

  2. Process development studies on the bioconversion of cellulose and production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.; Blanch, H.W.

    1978-12-01

    Progress is reported in the following areas: raw materials and process evaluation, enzyme fermentation studies, ethanol fermentation studies, hydrolysis reactor development, and utilization of hemi-cellulose sugars. (MHR)

  3. Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation

    NARCIS (Netherlands)

    Drissen, R.E.T.; Maas, R.H.W.; Tramper, J.; Beeftink, H.H.

    2009-01-01

    In ethanol production from cellulose, enzymatic hydrolysis, and fermentative conversion may be performed sequentially (separate hydrolysis and fermentation, SHF) or in a single reaction vessel (simultaneous saccharification and fermentation, SSF). Opting for either is essentially a trade-off between

  4. Optical Sensor based Chemical Modification as a Porous Cellulose Acetate Film and Its Application for Ethanol Sensor

    Science.gov (United States)

    Mulijani, S.; Iswantini, D.; Wicaksono, R.; Notriawan, D.

    2018-03-01

    A new approach to design and construction of an optical ethanol sensor has been developed by immobilizing a direct dye at a porous cellulosic polymer fllm. This sensor was fabricated by binding Nile Red to a cellulose acetate membrane that had previously been subjected to an exhaustive base hydrolysis. The prepared optical ethanol sensor was enhanced by adding pluronic as a porogen in the membrane. The addition of pluronic surfactant into cellulose acetate membrane increased the hydrophilic and porous properties of membrane. Advantageous features of the design include simple and easy of fabrication. Variable affecting sensor performance of dye concentration have been fully evaluated and optimized. The rapid response results from the porous structure of the polymeric support, which minimizes barriers to mass transport. Signal of optical sensor based on reaction of dye nile red over the membrane with ethanol and will produce the purple colored product. Result was obtained that maximum intensity of dye nile red reacted with alcohol is at 630-640 nm. Linear regression equation (r2), limit of detection, and limit of quantitation of membrane with 2% dye was 0.9625, 0.29%, and 0.97%. Performance of optical sensor was also evaluated through methanol, ethanol and propanol. This study was purposed to measure the polarity and selectivity of optic sensor toward the alcohol derivatives. Fluorescence intensity of optic sensor membrane for methanol 5%, ethanol 5% and propanol 5% was 15113.56, 16573.75 and 18495.97 respectively.

  5. Characteristics of the products of hydrothermal liquefaction combined with cellulosic bio-ethanol process

    International Nuclear Information System (INIS)

    Li, Rundong; Xie, Yinghui; Yang, Tianhua; Li, Bingshuo; Zhang, Yang; Kai, Xingping

    2016-01-01

    The integration utilization of fermentation residues from cellulosic bio-ethanol has attracted a great deal of attention to balance the total cost of bio-ethanol production while simultaneously dealing with bio-ethanol wastewater. A process of hydrothermal liquefaction (HTL) of intact materials from cellulosic bio-ethanol in a batch reactor was proposed. The effects of the reaction temperature and time on the liquefaction characteristics were examined. The optimum condition for liquefaction fermentation residues was 370 °C (21.25 MPa) and 30 min with a bio-oil yield of 40.79 wt%. GC-MS results indicated that the major chemical species in the bio-oil were phenols, ketones, long-chain hydrocarbons and fatty acids. Supercritical conditions (375 °C, 23.50 MPa) was favored for the low-molecular-weight species formation compared to subcritical conditions (370 °C, 21.25 MPa), as some long-chain species decreased. This work thus can provide a novel idea for bio-oil production from HTL of cellulosic bio-ethanol fermentation residues. - Highlights: • Bio-oil production via HTL combined with cellulosic bio-ethanol process was proposed. • Optimum condition for HTL of materials from cellulosic bio-ethanol was 370 °C and 30 min. • Bio-oil contained higher content of hydrocarbons and lower contents of organic acids.

  6. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongchao [ORNL; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Hamilton, Choo Yieng [ORNL; Rodriguez, Jr., Miguel [ORNL; Liao, James C [ORNL; Schadt, Christopher Warren [ORNL; Guss, Adam M [ORNL; Yang, Yunfeng [ORNL; Graham, David E [ORNL

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to

  7. [Pretreatment of oil palm residues by dilute alkali for cellulosic ethanol production].

    Science.gov (United States)

    Zhang, Haiyan; Zhou, Yujie; Li, Jinping; Dai, Lingmei; Liu, Dehua; Zhang, Jian'an; Choo, Yuen May; Loh, Soh Kheang

    2013-04-01

    In the study, we used oil palm residues (empty fruit bunch, EFB) as raw material to produce cellulosic ethanol by pretreatment, enzymatic hydrolysis and fermentation. Firstly, the pretreatment of EFB with alkali, alkali/hydrogen peroxide and the effects on the components and enzymatic hydrolysis of cellulose were studied. The results show that dilute alkali was the suitable pretreatment method and the conditions were first to soak the substrate with 1% sodium hydroxide with a solid-liquid ratio of 1:10 at 40 degrees C for 24 h, and then subjected to 121 degrees C for 30 min. Under the conditions, EFB solid recovery was 74.09%, and glucan, xylan and lignin content were 44.08%, 25.74% and 13.89%, respectively. After separated with alkali solution, the pretreated EFB was washed and hydrolyzed for 72 h with 5% substrate concentration and 30 FPU/g dry mass (DM) enzyme loading, and the conversion of glucan and xylan reached 84.44% and 89.28%, respectively. We further investigated the effects of substrate concentration and enzyme loading on enzymatic hydrolysis and ethanol batch simultaneous saccharification and fermentation (SSF). The results show that when enzyme loading was 30 FPU/g DM and substrate concentration was increased from 5% to 25%, ethanol concentration were 9.76 g/L and 35.25 g/L after 72 h fermentation with Saccharomyces cerevisiae (inoculum size 5%, V/V), which was 79.09% and 56.96% of ethanol theory yield.

  8. Overview of technical barriers and implementation of cellulosic ethanol in the U.S

    International Nuclear Information System (INIS)

    Kim, Tae Hoon; Kim, Tae Hyun

    2014-01-01

    There is mounting concern about the buildup of carbon dioxide (CO 2 ) and other so-called greenhouse gases in the atmosphere. In general, bioethanol production requires minimal fossil fuel input in the conversion step, and ethanol is considered a promising alternative fuel to petroleum-derived products. It is anticipated that ethanol production with second-generation biomass, i.e. lignocellulosic materials, will be possible on a large scale in the near future. Latest efforts have been focused on overcoming technical challenges in bioconversion, particularly pretreatment, and finding the solutions required to implement biorefinery on a large scale. This paper introduces and reviews the current status of research, and of the ethanol industry in the U.S. In addition, other important concepts in biofuels, cellulosic ethanol, and biorefinery in general are reviewed, and the key technical issues in bioconversion of cellulosic ethanol, such as pretreatment and factors affecting bioconversion of biomass are also discussed. - Highlights: • The current status of research, and of the ethanol industry in the U.S. • Important concepts in biofuels, cellulosic ethanol, and biorefinery. • The key technical issues in bioconversion of cellulosic ethanol. • Pretreatment and factors affecting bioconversion of biomass

  9. Ethanol production from cellulose, lactose and xylose using yeasts and enzymes. Gewinnung von Ethanol aus Cellulose, Lactose, und Xylose mit Hilfe von Hefen und Enzymen

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, U

    1986-07-03

    Experiments with mixtures of whey and corn showed that more than 85% of the lactose was degraded into ethanol. The applicability of cellulose was investigated by means of potatoes. Cellulase is inhibited by glucose, which is a fermentation intermediate, as well as by the end product ethanol. A cellulase inhibitor in potatoes was detected and stabilized; this inhibitor could be degraded into neutral components by a suitable enzyme. Saccharification and fermentation experiments showed that the cellulose fraction of potatoes can be reduced efficiently. The effects of non-enzymatic pretreatment on enzymatic degradation of cellulose, combined with fermentation of the degradation products, are illustrated by the example of cellulose treated with acid and alkaline substances. A continuous fermentation system was developed from which the ethanol is withdrawn in vapour form. The system made better use of the cellulase activity and increased the efficiency of a xylose-fermenting yeast. The new method is compared with batch experiments in order to assess its efficiency. The advantages of the continuous process are proved for two yeasts of the species Pachysolu and Pichia. Specific fermentation rates up to 0.08 g/(g x h) and fermentation yields up to 0.42 g ethanol/g xylose were achieved with Pichia stipitis.

  10. Utilization of Bagasse Cellulose for Ethanol Production through Simultaneous Saccharification and Fermentation by Xylanase

    Directory of Open Access Journals (Sweden)

    M Samsuri

    2010-10-01

    Full Text Available Bagasse is a solid residue from sugar cane process, which is not many use it for some product which have more added value. Bagasse, which is a lignosellulosic material, be able to be use for alternative energy resources like bioethanol or biogas. With renewable energy resources a crisis of energy in Republic of Indonesia could be solved, especially in oil and gas. This research has done the conversion of bagasse to bioethanol with xylanase enzyme. The result show that bagasse contains of 52,7% cellulose, 20% hemicelluloses, and 24,2% lignin. Xylanase enzyme and Saccharomyces cerevisiae was used to hydrolyse and fermentation in SSF process. Variation in this research use pH (4, 4,5, and 5, for increasing ethanol quantity, SSF process was done by added chloride acid (HCl with concentration 0.5% and 1% (v/v and also pre-treatment with white rot fungi such as Lentinus edodes (L.edodes as long 4 weeks. The SSF process was done with 24, 48, 72, and 96 hour's incubation time for fermentation. Variation of pH 4, 4,5, and 5 can produce ethanol with concentrations 2,357 g/L, 2,451 g/L, 2,709 g/L. The added chloride acid (HCl with concentration 0.5% and 1% (v/v and L. edodes can increase ethanol yield, The highest ethanol concentration with added chloride acid (HCl concentration 0.5% and 1% consecutively is 2,967 g/L, 3,249 g/L. The highest ethanol concentration with pre-treatment by L. edodes is 3,202 g/L.

  11. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Directory of Open Access Journals (Sweden)

    Li Yongchao

    2012-01-01

    Full Text Available Abstract Background The model bacterium Clostridium cellulolyticum efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering. Results The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh and L-malate dehydrogenase (Ccel_0137; mdh genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway. Conclusions The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox

  12. Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose

    Science.gov (United States)

    2013-01-01

    Background Numerous studies have examined the direct fermentation of cellulosic materials by cellulase-expressing yeast; however, ethanol productivity in these systems has not yet reached an industrial level. Certain microorganisms, such as the cellulolytic fungus Trichoderma reesei, produce expansin-like proteins, which have a cellulose-loosening effect that may increase the breakdown of cellulose. Here, to improve the direct conversion of cellulose to ethanol, yeast Saccharomyces cerevisiae co-displaying cellulase and expansin-like protein on the cell surface were constructed and examined for direct ethanol fermentation performance. Results The cellulase and expansin-like protein co-expressing strain showed 246 mU/g-wet cell of phosphoric acid swollen cellulose (PASC) degradation activity, which corresponded to 2.9-fold higher activity than that of a cellulase-expressing strain. This result clearly demonstrated that yeast cell-surface expressed cellulase and expansin-like protein act synergistically to breakdown cellulose. In fermentation experiments examining direct ethanol production from PASC, the cellulase and expansin-like protein co-expressing strain produced 3.4 g/L ethanol after 96 h of fermentation, a concentration that was 1.4-fold higher than that achieved by the cellulase-expressing strain (2.5 g/L). Conclusions The PASC degradation and fermentation ability of an engineered yeast strain was markedly improved by co-expressing cellulase and expansin-like protein on the cell surface. To our knowledge, this is the first report to demonstrate the synergetic effect of co-expressing cellulase and expansin-like protein on a yeast cell surface, which may be a promising strategy for constructing direct ethanol fermenting yeast from cellulose. PMID:23835302

  13. Isolation and Characterization of Two Cellulose Morphology Mutants of Gluconacetobacter hansenii ATCC23769 Producing Cellulose with Lower Crystallinity

    Science.gov (United States)

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the

  14. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity.

    Directory of Open Access Journals (Sweden)

    Ying Deng

    Full Text Available Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC. These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of

  15. The operable modeling of simultaneous saccharification and fermentation of ethanol production from cellulose.

    Science.gov (United States)

    Shen, Jiacheng; Agblevor, Foster A

    2010-03-01

    An operable batch model of simultaneous saccharification and fermentation (SSF) for ethanol production from cellulose has been developed. The model includes four ordinary differential equations that describe the changes of cellobiose, glucose, yeast, and ethanol concentrations with respect to time. These equations were used to simulate the experimental data of the four main components in the SSF process of ethanol production from microcrystalline cellulose (Avicel PH101). The model parameters at 95% confidence intervals were determined by a MATLAB program based on the batch experimental data of the SSF. Both experimental data and model simulations showed that the cell growth was the rate-controlling step at the initial period in a series of reactions of cellulose to ethanol, and later, the conversion of cellulose to cellobiose controlled the process. The batch model was extended to the continuous and fed-batch operating models. For the continuous operation in the SSF, the ethanol productivities increased with increasing dilution rate, until a maximum value was attained, and rapidly decreased as the dilution rate approached the washout point. The model also predicted a relatively high ethanol mass for the fed-batch operation than the batch operation.

  16. Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw

    DEFF Research Database (Denmark)

    Lindedam, Jane; Andersen, Sven Bode; DeMartini, J.

    2012-01-01

    Optimizing cellulosic ethanol yield depends strongly on understanding the biological variation of feedstocks. Our objective was to study variation in capacity for producing fermentable sugars from straw of winter wheat cultivars with a high-throughput pretreatment and hydrolysis well......-plate technique. This technique enabled us to estimate cultivar-related and environmental correlations between sugar yield, chemical composition, agronomic qualities, and distribution of botanical plant parts of wheat straw cultivars. Straws from 20 cultivars were collected in duplicates on two sites in Denmark....... Following hydrothermal pretreatment (180 °C for 17.6 min) and co-hydrolysis, sugar release and sugar conversion were measured. Up to 26% difference in sugar release between cultivars was observed. Sugar release showed negative cultivar correlation with lignin and ash content, whereas sugar release showed...

  17. Process Design of Wastewater Treatment for the NREL Cellulosic Ethanol Model

    Energy Technology Data Exchange (ETDEWEB)

    Steinwinder, T.; Gill, E.; Gerhardt, M.

    2011-09-01

    This report describes a preliminary process design for treating the wastewater from NREL's cellulosic ethanol production process to quality levels required for recycle. In this report Brown and Caldwell report on three main tasks: 1) characterization of the effluent from NREL's ammonia-conditioned hydrolyzate fermentation process; 2) development of the wastewater treatment process design; and 3) development of a capital and operational cost estimate for the treatment concept option. This wastewater treatment design was incorporated into NREL's cellulosic ethanol process design update published in May 2011 (NREL/TP-5100-47764).

  18. Novel heat–integrated and intensified biorefinery process for cellulosic ethanol production from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Nhien, Le Cao; Long, Nguyen Van Duc; Lee, Moonyong

    2017-01-01

    Highlights: • A compact biorefinery design was proposed for cellulosic ethanol purification. • Actual fermentation broth from lignocellulosic biomass was considered. • Process integration and intensification achieves competitive biorefinery context. • The response surface method optimizes the complex column structure effectively. • The proposed process could save up to 47.6% of total annual cost. - Abstract: Biofuels have the most potential as an alternative to fossil fuels and overcoming global warming, which has become one of the most serious environmental issues over the past few decades. As the world confronts food shortages due to an increase in world population, the development of biofuels from inedible lignocellulosic feedstock may be more sustainable in the long term. Inspired by the NREL conventional process, this paper proposes a novel heat–integrated and intensified biorefinery design for cellulosic ethanol production from lignocellulosic biomass. For the preconcentration section, heat pump assisted distillation and double–effect heat integration were evaluated, while a combination of heat–integrated technique and intensified technique, extractive dividing wall column (EDWC), was applied to enhance the process energy and cost efficiency for the purification section. A biosolvent, glycerol, which can be produced from biodiesel production, was used as the extracting solvent in an EDWC to obtain a high degree of integration in a biorefinery context. All configuration alternatives were simulated rigorously using Aspen Plus were based on the energy requirements, total annual costs (TAC), and total carbon dioxide emissions (TCE). In addition, the structure of the EDWC was optimized using the reliable response surface method, which was carried out using Minitab statistical software. The simulation results showed that the proposed heat–integrated and intensified process can save up to 47.6% and 56.9% of the TAC and TCE for the purification

  19. Removal of the Fermentation Inhibitor, Furfural, Using Activated Carbon in Cellulosic-Ethanol Production

    KAUST Repository

    Zhang, Kuang; Agrawal, Manoj; Harper, Justin; Chen, Rachel; Koros, William J.

    2011-01-01

    Ethanol can be produced from lignocellulosic biomass through fermentation; however, some byproducts from lignocellulosics, such as furfural compounds, are highly inhibitory to the fermentation and can substantially reduce the efficiency of ethanol

  20. An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production.

    Science.gov (United States)

    Mathew, Anil Kuruvilla; Parameshwaran, Binod; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-01-01

    The challenge associated with cellulosic ethanol production is maximizing sugar yield at low cost. Current research is being focused to develop a pretreatment method to overcome biomass recalcitrance in an efficient way. This review is focused on two major pretreatments: dilute acid (DA) and ammonia fiber explosion (AFEX) pretreatment of corn stover and how these pretreatment cause morphological and chemical changes to corn stover in order to overcome the biomass recalcitrance. This review highlights the key differences of these two pretreatments based on compositional analysis, cellulose and its crystallinity, morphological changes, structural changes to lignin, enzymatic reactivity and enzyme adsorption onto pretreated solids and finally cellulosic ethanol production from the hydrolysate of DA and AFEX treated corn stover. Each stage of the process, AFEX pretreated corn stover was superior to DA treated corn stover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis.

    Science.gov (United States)

    Molina-Ramírez, Carlos; Enciso, Carla; Torres-Taborda, Mabel; Zuluaga, Robin; Gañán, Piedad; Rojas, Orlando J; Castro, Cristina

    2018-05-27

    Bacterial cellulose (BC) was produced by Komagataeibacter medellinensis using Hestrin and Schramm modified medium in the presence of alternative energy sources (AES), such as ethanol and acetic acid, to explore the effect of AES on the characteristics and properties of the resulting BC. In this study, the physicochemical and structural characteristics of the obtained BC were determined using Fourier-transform infrared spectroscopy, X-ray diffraction spectrometry, thermogravimetric analysis, and mechanical testing analysis. Ethanol and acetic acid (at 0.1 wt%) were proven to improve the BC yield by K. medellinensis by 279% and 222%, respectively. However, the crystallinity index (%), the degree of polymerization, and maximum rate of degradation temperatures decreased by 9.2%, 36%, and 4.96%, respectively, by the addition of ethanol and by 7.2%, 27%, and 4.21%, respectively, by the addition of acetic acid. The significance of this work, lies on the fact that there is not any report about how BC properties change when substances like ethanol or acetic acid are added to culture medium, and which is the mechanism that provokes those changes, that in our case we could demonstrate the relationship of a higher BC production rate (provoked by ethanol and acetic acid adding) and changes in BC properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiae without detoxification.

    Science.gov (United States)

    Tian, S; Luo, X L; Yang, X S; Zhu, J Y

    2010-11-01

    This study reports an ethanol yield of 270L/ton wood from lodgepole pine pretreated with sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) using an adapted strain, Saccharomyces cerevisiae Y5, without detoxification. The enzymatic hydrolysate produced from pretreated cellulosic solids substrate was combined with pretreatment hydrolysate before fermentation. Detoxification of the pretreatment hydrolysate using overliming or XAD-4 resin before being combined with enzymatic hydrolysate improved ethanol productivity in the first 4h of fermentation and overall fermentation efficiency. However, detoxification did not improve final ethanol yield because of sugar losses. The Y5 strain showed excellent ethanol productivities of 2.0 and 0.8g/L/h averaged over a period of 4 and 24h, respectively, in the undetoxified run. The furan metabolization rates of the Y5 strain were significantly higher for the undetoxified run than those for the detoxidfied runs, suggesting it can tolerate even higher furan concentrations than those studied. Preliminary mass and energy balances were conducted. SPORL produced an excellent monomeric sugar recovery value of about 85% theoretical and a net energy output of 4.05GJ/ton wood with an ethanol energy production efficiency of 178% before distillation.

  3. Production of liquid transport fuel from cellulose material (wood). III Laboratory preparation of wood sugars and fermentation to ethanol and yeast

    Energy Technology Data Exchange (ETDEWEB)

    Whitworth, D A; Harwood, V D

    1977-10-25

    A laboratory procedure is described for hydrolyzing cellulose material to sugars by the use of hot sulfuric acid. The procedure has been used routinely for assessing raw materials. Raw materials used were radiata pine (fresh wood and decayed thinnings), pine needles, sawdust from old dumps, newspaper, cardboard, beech wood, and coconut wood. The neutralized sugar-liquors produced, supplemented with fertilizer grade nutrients, were fermented with bakers' yeast and gave near optimal conversion of hexoses to ethanol and of pentoses to protein biomass. From 100 g radiata pine (wood: bark mix 85:15) 25 ml (20 g) of ethanol and 2 g yeast biomass were routinely produced, although fermentation rates were lower than with pure sugars. The results, however, clearly showed that, by a hot dilute sulfure acid hydrolysis followed by a yeast fermentation process, cellulose resources avaliable in New Zealand are suitable for conversion to ethanol. 5 table, 1 figure.

  4. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production

    Directory of Open Access Journals (Sweden)

    Murthy Ganti S

    2011-09-01

    Full Text Available Abstract Background While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb was used as a model feedstock. Results Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Conclusions Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for

  5. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  6. Bioconversion of paper sludge with low cellulosic content to ethanol ...

    African Journals Online (AJOL)

    The purpose of the present work was to evaluate the possibility of converting paper sludge into ethanol using xylose-fermenting yeast SHY07-1 in separate hydrolysis and fermentation. In the enzymatic hydrolysis step, sludge on 2% (w/v, expressed in terms of total carbohydrate mass) substrate consistency was incubated ...

  7. Ethanol Production from Enzymatically Treated Dried Food Waste Using Enzymes Produced On-Site

    Directory of Open Access Journals (Sweden)

    Leonidas Matsakas

    2015-01-01

    Full Text Available The environmental crisis and the need to find renewable fuel alternatives have made production of biofuels an important priority. At the same time, the increasing production of food waste is an important environmental issue. For this reason, production of ethanol from food waste is an interesting approach. Volumes of food waste are reduced and ethanol production does not compete with food production. In this work, we evaluated the possibility of using source-separated household food waste for the production of ethanol. To minimize the cost of ethanol production, the hydrolytic enzymes that are necessary for cellulose hydrolysis were produced in-house using the thermophillic fungus Myceliophthora thermophila. At the initial stage of the study, production of these thermophilic enzymes was studied and optimized, resulting in an activity of 0.28 FPU/mL in the extracellular broth. These enzymes were used to saccharify household food waste at a high dry material consistency of 30% w/w, followed by fermentation. Ethanol production reached 19.27 g/L with a volumetric productivity of 0.92 g/L·h, whereas only 5.98 g/L of ethanol was produced with a volumetric productivity of 0.28 g/L·h when no enzymatic saccharification was used.

  8. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, John [Dept. of Energy (DOE), Washington DC (United States); Weatherwax, Sharlene [Dept. of Energy (DOE), Washington DC (United States); Ferrell, John [Dept. of Energy (DOE), Washington DC (United States)

    2006-06-07

    The Biomass to Biofuels Workshop, held December 7–9, 2005, was convened by the Department of Energy’s Office of Biological and Environmental Research in the Office of Science; and the Office of the Biomass Program in the Office of Energy Efficiency and Renewable Energy. The purpose was to define barriers and challenges to a rapid expansion of cellulosic-ethanol production and determine ways to speed solutions through concerted application of modern biology tools as part of a joint research agenda. Although the focus was ethanol, the science applies to additional fuels that include biodiesel and other bioproducts or coproducts having critical roles in any deployment scheme.

  9. Modeling and analysing storage systems in agricultural biomass supply chain for cellulosic ethanol production

    International Nuclear Information System (INIS)

    Ebadian, Mahmood; Sowlati, Taraneh; Sokhansanj, Shahab; Townley-Smith, Lawrence; Stumborg, Mark

    2013-01-01

    Highlights: ► Studied the agricultural biomass supply chain for cellulosic ethanol production. ► Evaluated the impact of storage systems on different supply chain actors. ► Developed a combined simulation/optimization model to evaluate storage systems. ► Compared two satellite storage systems with roadside storage in terms of costs and emitted CO 2 . ► SS would lead to a more cost-efficient supply chain compared to roadside storage. -- Abstract: In this paper, a combined simulation/optimization model is developed to better understand and evaluate the impact of the storage systems on the costs incurred by each actor in the agricultural biomass supply chain including farmers, hauling contractors and the cellulosic ethanol plant. The optimization model prescribes the optimum number and location of farms and storages. It also determines the supply radius, the number of farms required to secure the annual supply of biomass and also the assignment of farms to storage locations. Given the specific design of the supply chain determined by the optimization model, the simulation model determines the number of required machines for each operation, their daily working schedule and utilization rates, along with the capacities of storages. To evaluate the impact of the storage systems on the delivered costs, three storage systems are molded and compared: roadside storage (RS) system and two satellite storage (SS) systems including SS with fixed hauling distance (SF) and SS with variable hauling distance (SV). In all storage systems, it is assumed the loading equipment is dedicated to storage locations. The obtained results from a real case study provide detailed cost figures for each storage system since the developed model analyses the supply chain on an hourly basis and considers time-dependence and stochasticity of the supply chain. Comparison of the storage systems shows SV would outperform SF and RS by reducing the total delivered cost by 8% and 6%, respectively

  10. Development of an integrated system for producing ethanol from biomass

    International Nuclear Information System (INIS)

    Foody, B.E.; Foody, K.J.

    1991-01-01

    Enzymatic hydrolysis is one of the leading approaches to producing ethanol from low cost biomass. Recent cost estimates suggest that ethanol produced from biomass could be competitive as a transportation fuel with gasoline at $20-25/BBL oil and less expensive than methanol. The process for making ethanol from biomass involves seven major steps: biomass production, pretreatment, enzyme production, enzymatic hydrolysis, fermentation, distillation, and by-product processing. Pretreatment makes the carbohydrate fraction of the biomass accessible to enzymatic attack. Cellulase enzymes are then used to hydrolyze the carbohydrates in biomass into fermentable sugar. The sugar is then fermented to ethanol and the ethanol purified by distillation. Three major cost estimates are available for making ethanol from biomass using a steam explosion pretreatment and enzymatic hydrolysis. These studies began with very different assumptions and as a result came to dramatically different conclusions about ethanol cost. When they are normalized to the same basis, however, their consensus is an expected ethanol cost of $1.64 ± 0.23/gal using technology implemented at Iogen's pilot plant in 1986. Since that time, technology advances have reduced the expected cost of ethanol to $0.77 ± 0.17/gal. Further technical improvements could reduce the cost by as much as $0.23/gal

  11. A New Proposal Of Cellulosic Ethanol To Boost Sugarcane Biorefineries: Techno-economic Evaluation

    OpenAIRE

    Albarelli J.Q.; Ensinas A.V.; Silva M.A.

    2014-01-01

    Commercial simulator Aspen Plus was used to simulate a biorefinery producing ethanol from sugarcane juice and second generation ethanol production using bagasse fine fraction composed of parenchyma cells (P-fraction). Liquid hot water and steam explosion pretreatment technologies were evaluated. The processes were thermal and water integrated and compared to a biorefinery producing ethanol from juice and sugarcane bagasse. The results indicated that after thermal and water integration, the ev...

  12. Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries.

    Science.gov (United States)

    Silveira, Marcos Henrique Luciano; Morais, Ana Rita C; da Costa Lopes, Andre M; Olekszyszen, Drielly Nayara; Bogel-Łukasik, Rafał; Andreaus, Jürgen; Pereira Ramos, Luiz

    2015-10-26

    Lignocellulosic materials, such as forest, agriculture, and agroindustrial residues, are among the most important resources for biorefineries to provide fuels, chemicals, and materials in such a way to substitute for, at least in part, the role of petrochemistry in modern society. Most of these sustainable biorefinery products can be produced from plant polysaccharides (glucans, hemicelluloses, starch, and pectic materials) and lignin. In this scenario, cellulosic ethanol has been considered for decades as one of the most promising alternatives to mitigate fossil fuel dependence and carbon dioxide accumulation in the atmosphere. However, a pretreatment method is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and to render most, if not all, of the plant cell wall components easily available for conversion into valuable products, including the fuel ethanol. Hence, pretreatment is a key step for an economically viable biorefinery. Successful pretreatment method must lead to partial or total separation of the lignocellulosic components, increasing the accessibility of holocellulose to enzymatic hydrolysis with the least inhibitory compounds being released for subsequent steps of enzymatic hydrolysis and fermentation. Each pretreatment technology has a different specificity against both carbohydrates and lignin and may or may not be efficient for different types of biomasses. Furthermore, it is also desirable to develop pretreatment methods with chemicals that are greener and effluent streams that have a lower impact on the environment. This paper provides an overview of the most important pretreatment methods available, including those that are based on the use of green solvents (supercritical fluids and ionic liquids). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Preparation of carboxymethyl cellulose produced from purun tikus (Eleocharis dulcis)

    Science.gov (United States)

    Sunardi, Febriani, Nina Mutia; Junaidi, Ahmad Budi

    2017-08-01

    Sodium carboxymethyl cellulose (Na-CMC) is one of the important modified cellulose, a water-soluble cellulose, which is widely used in many application of food, pharmaceuticals, detergent, paper coating, dispersing agent, and others. The main raw material of modified cellulose is cellulose from wood and cotton. Recently, much attention has been attracted to the use of various agriculture product and by-product, grass, and residual biomass as cellulose and modified cellulose source for addressing an environmental and economic concern. Eleocharis dulcis, commonly known as purun tikus (in Indonesia), is a native aquatic plant of swamp area (wetland) in Kalimantan, which consists of 30-40% cellulose. It is significantly considered as one of the alternative resources for cellulose. The aims of present study were to isolate cellulose from E. dulcis and then to synthesise Na-CMC from isolated cellulose. Preparation of carboxymethyl cellulose from E. dulcis was carried out by an alkalization and etherification process of isolated cellulose, using various concentration of sodium hydroxide (NaOH) and monochloroacetic acid (MCA). The results indicated that the optimum reaction of alkalization was reached at 20% NaOH and etherification at the mass fraction ratio of MCA to cellulose 1.0. The optimum reaction has the highest solubility and degree of substitution. The carboxymethylation process of cellulose was confirmed by Fourier Transform Infrared spectroscopy (FTIR). In addition, changes in crystallinity of cellulose and Na-CMC were evaluated by X-ray diffraction (XRD).

  14. Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Zhuo; Inokuma, Kentaro; Ho, Shih-Hsin; den Haan, Riaan; van Zyl, Willem H; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-06-01

    Crystalline cellulose is one of the major contributors to the recalcitrance of lignocellulose to degradation, necessitating high dosages of cellulase to digest, thereby impeding the economic feasibility of cellulosic biofuels. Several recombinant cellulolytic yeast strains have been developed to reduce the cost of enzyme addition, but few of these strains are able to efficiently degrade crystalline cellulose due to their low cellulolytic activities. Here, by combining the cellulase ratio optimization with a novel screening strategy, we successfully improved the cellulolytic activity of a Saccharomyces cerevisiae strain displaying four different synergistic cellulases on the cell surface. The optimized strain exhibited an ethanol yield from Avicel of 57% of the theoretical maximum, and a 60% increase of ethanol titer from rice straw. To our knowledge, this work is the first optimization of the degradation of crystalline cellulose by tuning the cellulase ratio in a cellulase cell-surface display system. This work provides key insights in engineering the cellulase cocktail in a consolidated bioprocessing yeast strain. Biotechnol. Bioeng. 2017;114: 1201-1207. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.

    Science.gov (United States)

    Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W

    2016-04-01

    Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Texaco/CPC to produce ethanol for gasohol

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-25

    It is reported that Texaco and CPC international have formed a joint venture to produce ethanol for gasohol. CPC's corn wet milling plant in Pekin, Ill, will be converted to produce 60 million gal/year of ethanol, which will be mixed with gasoline in the proportion of 10% ethanol to 90% gasoline. Meanwhile, a report by Frost and Sullivan describes as''realistic'' the DOE goals to generate 920 million gallons of alcohol fuel by 1982 and 10% of all automotive fuel by the end of the decade.

  17. Liquid fuel resources and prospects for ligno-cellulosic ethanol: An Egyptian case study

    Directory of Open Access Journals (Sweden)

    Shadia R. Tewfik

    2013-12-01

    Full Text Available Fossil fuels (oil, natural gas and coal presently represent about 90% of the world’s total commercial primary energy demand. Yet, they are depletable sources of energy. Growth in the production of easily accessible oil, the main source of high energy liquid transportation fuels, will not match the projected rate of demand growth, especially in developing countries. In the transport sector, today, the only alternative to non-sustainable fossil fuels is biofuels that are produced from biomass, a stored environmentally neutral solar energy. These fuels are compatible with current vehicles and blendable with conventional fuels. Moreover, they share the long-established distribution infrastructure with little, if any, modification of equipment. The main biofuels presently in commercial production are bioethanol and biodiesel. Industrial countries started production of the 1st generation bioethanol and biodiesel from food products (grains and edible oil since a few decades and these fuels are currently available at petrol stations. Second generation bioethanol from ligno-cellulosic materials is on the research, pilot and/or demonstration stage. This paper discusses the current situation regarding liquid fuels in Egypt which are experiencing imbalance between total production and demand for gasoline and diesel fuels. The quantified need for nonconventional sources is presented. Based on a thorough assessment of current and prospective generated agriculture residues as distributed over the political areas, mapping of the number and capacity of plants to be installed for production of bioethanol from available residues namely rice straw, sugar cane residues and cotton stalks has been developed. Annual capacities of 3000, 10,000 and 20,000 tons ethanol/year until year 2021 have been proposed. Capital and operating requirements and economic indicators have been estimated. It has been concluded that at current price of ethanol of about $0.6/kg, the

  18. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome

    Directory of Open Access Journals (Sweden)

    Madan Bhawna

    2011-11-01

    Full Text Available Abstract Background The recalcitrant nature of cellulosic materials and the high cost of enzymes required for efficient hydrolysis are the major impeding steps to their practical usage for ethanol production. Ideally, a recombinant microorganism, possessing the capability to utilize cellulose for simultaneous growth and ethanol production, is of great interest. We have reported recently the use of a yeast consortium for the functional presentation of a mini-cellulosome structure onto the yeast surface by exploiting the specific interaction of different cohesin-dockerin pairs. In this study, we engineered a yeast consortium capable of displaying a functional mini-cellulosome for the simultaneous growth and ethanol production on phosphoric acid swollen cellulose (PASC. Results A yeast consortium composed of four different populations was engineered to display a functional mini-cellulosome containing an endoglucanase, an exoglucanase and a β-glucosidase. The resulting consortium was demonstrated to utilize PASC for growth and ethanol production. The final ethanol production of 1.25 g/L corresponded to 87% of the theoretical value and was 3-fold higher than a similar yeast consortium secreting only the three cellulases. Quantitative PCR was used to enumerate the dynamics of each individual yeast population for the two consortia. Results indicated that the slight difference in cell growth cannot explain the 3-fold increase in PASC hydrolysis and ethanol production. Instead, the substantial increase in ethanol production is consistent with the reported synergistic effect on cellulose hydrolysis using the displayed mini-cellulosome. Conclusions This report represents a significant step towards the goal of cellulosic ethanol production. This engineered yeast consortium displaying a functional mini-cellulosome demonstrated not only the ability to grow on the released sugars from PASC but also a 3-fold higher ethanol production than a similar yeast

  19. Cellulase and alcohol dehydrogenase immobilized in Langmuir and Langmuir-Blodgett films and their molecular-level effects upon contact with cellulose and ethanol.

    Science.gov (United States)

    Rodrigues, Dilmer; Camilo, Fernanda Ferraz; Caseli, Luciano

    2014-02-25

    The key challenges for producing devices based on nanostructured films with control over the molecular architecture are to preserve the catalytic activity of the immobilized biomolecules and to provide a reliable method for determining the intermolecular interactions and the accommodation of molecules at very small scales. In this work, the enzymes cellulase and alcohol dehydrogenase (ADH) were coimmobilized with dipalmitoylphosphatidylcholine (DPPC) as Langmuir-Blodgett (LB) films, and their biological activities were assayed by accommodating the structure formed in contact with cellulose. For this purpose, the polysaccharide was dissolved in an ionic liquid, 1-buthyl-3-methylimidazolium chloride (BMImCl), and dropped on the top of the hybrid cellulase-ADH-DPPC LB film. The interactions between cellulose and ethanol, which are the catalytic substrates of the enzymes as well as important elements in the production of second-generation fuels, were then investigated using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Investigation of the secondary structures of the enzymes was performed using PM-IRRAS, through which the presence of ethanol and cellulose was observed to highly affect the structures of ADH and cellulase, respectively. The detection of products formed from the catalyzed reactions as well as the changes of secondary structure of the enzymes immobilization could be carried out, which opens the possibility to produce a means for producing second-generation ethanol using nanoscale arrangements.

  20. A comparison of cellulose nanofibrils produced from Cladophora glomerata algae and bleached eucalyptus pulp

    Science.gov (United States)

    Zhouyang Xiang; Wenhua Gao; Liheng Chen; Wu Lan; Junyong Zhu; Troy Runge

    2016-01-01

    Cladophora, a fresh-water green macroalgae, has unique cellulose properties and thus may be promising for production of cellulose nanofibrils (CNFs). Cellulose was extracted from Cladophora glomerata and subjected to microfluidization with or without enzymatic hydrolysis pretreatment to produce CNFs. Increasing...

  1. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea.

    Science.gov (United States)

    Dutta, Debasree; Gachhui, Ratan

    2007-02-01

    A few members of the family Acetobacteraceae are cellulose-producers, while only six members fix nitrogen. Bacterial strain RG3T, isolated from Kombucha tea, displays both of these characteristics. A high bootstrap value in the 16S rRNA gene sequence-based phylogenetic analysis supported the position of this strain within the genus Gluconacetobacter, with Gluconacetobacter hansenii LMG 1527T as its nearest neighbour (99.1 % sequence similarity). It could utilize ethanol, fructose, arabinose, glycerol, sorbitol and mannitol, but not galactose or xylose, as sole sources of carbon. Single amino acids such as L-alanine, L-cysteine and L-threonine served as carbon and nitrogen sources for growth of strain RG3T. Strain RG3T produced cellulose in both nitrogen-free broth and enriched medium. The ubiquinone present was Q-10 and the DNA base composition was 55.8 mol% G+C. It exhibited low values of 5.2-27.77 % DNA-DNA relatedness to the type strains of related gluconacetobacters, which placed it within a separate taxon, for which the name Gluconacetobacter kombuchae sp. nov. is proposed, with the type strain RG3T (=LMG 23726T=MTCC 6913T).

  2. Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa.

    Science.gov (United States)

    van Zyl, W H; Chimphango, A F A; den Haan, R; Görgens, J F; Chirwa, P W C

    2011-04-06

    The world is currently heavily dependent on oil, especially in the transport sector. However, rising oil prices, concern about environmental impact and supply instability are among the factors that have led to greater interest in renewable fuel and green chemistry alternatives. Lignocellulose is the only foreseeable renewable feedstock for sustainable production of transport fuels. The main technological impediment to more widespread utilization of lignocellulose for production of fuels and chemicals in the past has been the lack of low-cost technologies to overcome the recalcitrance of its structure. Both biological and thermochemical second-generation conversion technologies are currently coming online for the commercial production of cellulosic ethanol concomitantly with heat and electricity production. The latest advances in biological conversion of lignocellulosics to ethanol with a focus on consolidated bioprocessing are highlighted. Furthermore, integration of cellulosic ethanol production into existing bio-based industries also using thermochemical processes to optimize energy balances is discussed. Biofuels have played a pivotal yet suboptimal role in supplementing Africa's energy requirements in the past. Capitalizing on sub-Saharan Africa's total biomass potential and using second-generation technologies merit a fresh look at the potential role of bioethanol production towards developing a sustainable Africa while addressing food security, human needs and local wealth creation.

  3. A novel marine bacterium Isoptericola sp. JS-C42 with the ability to saccharifying the plant biomasses for the aid in cellulosic ethanol production.

    Science.gov (United States)

    Santhi, Velayudhan Satheeja; Gupta, Ashutosh; Saranya, Somasundaram; Jebakumar, Solomon Robinson David

    2014-06-01

    The ever growing demands for food products such as starch and sugar produces; there is a need to find the sources for saccharification for cellulosic bioethanol production. This study provides the first evidence of the lignocellulolytic and saccharifying ability of a marine bacterium namely Isoptericola sp. JS-C42, a Gram positive actinobacterium with the cocci cells embedded on mycelia isolated from the Arabian Sea, India. It exhibited highest filter paper unit effect, endoglucanase, exoglucanase, cellobiohydrolase, β-glucosidase, xylanase and ligninase effect. The hydrolytic potential of the enzymes displayed the efficient saccharification capability of steam pretreated biomass. It was also found to degrade the paddy, sorghum, Acacia mangium and Ficus religiosa into simple reducing sugars by its efficient lignocellulose enzyme complex with limited consumption of sugars. Production of ethanol was also achieved with the Saccharomyces cerevisiae . Overall, it offers a great potential for the cellulosic ethanol production in an economically reliable and eco-friendly point-of-care.

  4. Immobilization of Cold-Active Cellulase from Antarctic Bacterium and Its Use for Kelp Cellulose Ethanol Fermentation

    Directory of Open Access Journals (Sweden)

    Yi Bin Wang

    2015-01-01

    Full Text Available Immobilization is an effective way to solve the problem associated with the application of cold-active cellulase in industrial processes. In this study, a cold-active cellulase from the Antarctic psychrophilic bacterium Pseudoalteromonas sp. NJ64 was obtained, immobilized, and analyzed for optimal immobilization conditions. Then it was used in kelp cellulose ethanol fermentation, achieving a higher purity level of kelp cellulose ethanol. The enzymatic activity of this cold-active cellulase was 49.7 U/mL. The optimal immobilization process conditions were as follows: sodium alginate, 30 g/L; calcium chloride, 5 g/L; glutaraldehyde, 0.4%; and cross-linking time, 5 h. Under these conditions, the activity recovery rate was 51.58%. The optimum reaction temperature was at 40 °C, the optimum initial pH was 9.0, and the relative enzyme activity was 58.37% after being recovered seven times. A higher purity level of kelp cellulose ethanol has reached (37.37%. Immobilized cold-active cellulase can effectively hydrolyze the cellulose of kelp residue, which is a valuable component of cellulose bio-ethanol production and will have broad implications in the development of the ethanol industry in China.

  5. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498.

    Science.gov (United States)

    Gupta, Rishi; Sharma, Krishna Kant; Kuhad, Ramesh Chander

    2009-02-01

    Prosopis juliflora (Mesquite) is a raw material for long-term sustainable production of cellulosics ethanol. In this study, we used acid pretreatment, delignification and enzymatic hydrolysis to evaluate the pretreatment to produce more sugar, to be fermented to ethanol. Dilute H(2)SO(4) (3.0%,v/v) treatment resulted in hydrolysis of hemicelluloses from lignocellulosic complex to pentose sugars along with other byproducts such as furfural, hydroxymethyl furfural (HMF), phenolics and acetic acid. The acid pretreated substrate was delignified to the extent of 93.2% by the combined action of sodium sulphite (5.0%,w/v) and sodium chlorite (3.0%,w/v). The remaining cellulosic residue was enzymatically hydrolyzed in 0.05 M citrate phosphate buffer (pH 5.0) using 3.0 U of filter paper cellulase (FPase) and 9.0 U of beta-glucosidase per mL of citrate phosphate buffer. The maximum enzymatic saccharification of cellulosic material (82.8%) was achieved after 28 h incubation at 50 degrees C. The fermentation of both acid and enzymatic hydrolysates, containing 18.24 g/L and 37.47 g/L sugars, with Pichia stipitis and Saccharomyces cerevisiae produced 7.13 g/L and 18.52 g/L of ethanol with corresponding yield of 0.39 g/g and 0.49 g/g, respectively.

  6. Cellulosic-based ethanol and the contribution from agriculture and forestry

    Science.gov (United States)

    Robert D. Perlack; Bryce J. Stokes; John Ferrell; Mary Bohman; Kenneth E. Skog; Dennis P. Dykstra; Patricia K. Lebow; Patrick D. Miles

    2008-01-01

    The cellulosic feedstocks (see chapter 2) needed to produce 20 billion gallons per year (BGY) of second-generation and other renewable fuels can come from a wide variety of cropland and forestland sources, including imports. The impact of producing these biofuels on U.S. agriculture and forestry will very much depend on the relative proportions of cropland- and...

  7. Use of Byproduct from Cellulosic Ethanol Production as an Additive for Concrete: A Possible Win-win Strategy?

    Directory of Open Access Journals (Sweden)

    Xiangwei Hao

    2015-08-01

    Full Text Available Technologists are facing increasing demands to achieve ecologically sustainable industrial practices. Currently the concrete industry is a significant contributor to greenhouse gas emissions. On the other hand, the scaling up of cellulosic ethanol technology has not been a very easy task. In this context, the integration of “greener” concrete with cellulosic ethanol technology may open up promising possibilities. The solid byproducts from cellulosic ethanol production process have been demonstrated to increase the strength of concrete structures when used as a partial cement replacement. Such a delicate integration can also lead to reduction in both carbon footprint and product cost. The possible commercialization of the integrated technologies would provide win-win benefits for both industries.

  8. Comparing oxidative and dilute acid wet explosion pretreatment of Cocksfoot grass at high dry matter concentration for cellulosic ethanol production

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2013-01-01

    into cellulose monomeric C6 sugars was achieved for WEx condition AC-E (180°C, 15 min, and 0.2% sulfuric acid). For that condition, the highest ethanol yield of 197 g/kg DM (97% of theoretical maximum value) was achieved for SSF process by Saccharomyces cerevisiae. However, the highest concentration...... of hemicellulose C5 sugars was found for WEx pretreatment condition O2-A (160°C, 15 min, and 6 bar O2) which means that the highest potential ethanol yield was found at this moderate pretreatment condition with oxygen added. Increasing the pretreatment temperature to 180–190°C with addition of oxygen or dilute...... was investigated for cellulosic ethanol production. The biomass raw materials were pretreated using wet explosion (WEx) at 25% dry matter concentration with addition of oxygen or dilute sulfuric acid. The enzymatic hydrolysis of cellulose was significantly improved after pretreatment. The highest conversion...

  9. Can Hawaii Meet Its Renewable Fuel Target? Case Study of Banagrass-Based Cellulosic Ethanol

    Directory of Open Access Journals (Sweden)

    Chinh Tran

    2016-08-01

    Full Text Available Banagrass is a biomass crop candidate for ethanol production in the State of Hawaii. This study examines: (i whether enough banagrass can be produced to meet Hawaii’s renewable fuel target of 20% highway fuel demand produced with renewable sources by 2020 and (ii at what cost. This study proposes to locate suitable land areas for banagrass production and ethanol processing, focusing on the two largest islands in the state of Hawaii—Hawaii and Maui. The results suggest that the 20% target is not achievable by using all suitable land resources for banagrass production on both Hawaii and Maui. A total of about 74,224,160 gallons, accounting for 16.04% of the state’s highway fuel demand, can be potentially produced at a cost of $6.28/gallon. Lower ethanol cost is found when using a smaller production scale. The lowest cost of $3.31/gallon is found at a production processing capacity of about 9 million gallons per year (MGY, which meets about 2% of state demand. This cost is still higher than the average imported ethanol price of $3/gallon. Sensitivity analysis finds that it is possible to produce banagrass-based ethanol on Hawaii Island at a cost below the average imported ethanol price if banagrass yield increases of at least 35.56%.

  10. Characterization of persistent colors and decolorization of effluent from biologically treated cellulosic ethanol production wastewater.

    Science.gov (United States)

    Shan, Lili; Liu, Junfeng; Yu, Yanling; Ambuchi, John J; Feng, Yujie

    2016-05-01

    The high chroma of cellulosic ethanol production wastewater poses a serious environmental concern; however, color-causing compounds are still not fully clear. The characteristics of the color compounds and decolorization of biologically treated effluent by electro-catalytic oxidation were investigated in this study. Excitation-emission matrix (EEM), fourier transform infrared spectrometer (FTIR), UV-Vis spectra, and ultrafiltration (UF) fractionation were used to analyze color compounds. High chroma of wastewater largely comes from humic materials, which exhibited great fluorescence proportion (67.1 %) in the biologically treated effluent. Additionally, the color compounds were mainly distributed in the molecular weight fractions with 3-10 and 10-30 kDa, which contributed 53.5 and 34.6 % of the wastewater color, respectively. Further decolorization of biologically treated effluent by electro-catalytic oxidation was investigated, and 98.3 % of color removal accompanied with 97.3 % reduction of humic acid-like matter was achieved after 180 min. The results presented herein will facilitate the development of a well decolorization for cellulosic ethanol production wastewater and better understanding of the biological fermentation.

  11. Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production

    Science.gov (United States)

    Scown, Corinne D.; Nazaroff, William W.; Mishra, Umakant; Strogen, Bret; Lobscheid, Agnes B.; Masanet, Eric; Santero, Nicholas J.; Horvath, Arpad; McKone, Thomas E.

    2012-03-01

    The Energy Independence and Security Act of 2007 set an annual US national production goal of 39.7 billion l of cellulosic ethanol by 2020. This paper explores the possibility of meeting that target by growing and processing Miscanthus × giganteus. We define and assess six production scenarios in which active cropland and/or Conservation Reserve Program land are used to grow to Miscanthus. The crop and biorefinery locations are chosen with consideration of economic, land-use, water management and greenhouse gas (GHG) emissions reduction objectives. Using lifecycle assessment, the net GHG footprint of each scenario is evaluated, providing insight into the climate costs and benefits associated with each scenario’s objectives. Assuming that indirect land-use change is successfully minimized or mitigated, the results suggest two major drivers for overall GHG impact of cellulosic ethanol from Miscanthus: (a) net soil carbon sequestration or emissions during Miscanthus cultivation and (b) GHG offset credits for electricity exported by biorefineries to the grid. Without these factors, the GHG intensity of bioethanol from Miscanthus is calculated to be 11-13 g CO2-equivalent per MJ of fuel, which is 80-90% lower than gasoline. Including soil carbon sequestration and the power-offset credit results in net GHG sequestration up to 26 g CO2-equivalent per MJ of fuel.

  12. Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production

    International Nuclear Information System (INIS)

    Scown, Corinne D; Nazaroff, William W; Strogen, Bret; Santero, Nicholas J; Horvath, Arpad; Mishra, Umakant; Lobscheid, Agnes B; Masanet, Eric; McKone, Thomas E

    2012-01-01

    The Energy Independence and Security Act of 2007 set an annual US national production goal of 39.7 billion l of cellulosic ethanol by 2020. This paper explores the possibility of meeting that target by growing and processing Miscanthus × giganteus. We define and assess six production scenarios in which active cropland and/or Conservation Reserve Program land are used to grow to Miscanthus. The crop and biorefinery locations are chosen with consideration of economic, land-use, water management and greenhouse gas (GHG) emissions reduction objectives. Using lifecycle assessment, the net GHG footprint of each scenario is evaluated, providing insight into the climate costs and benefits associated with each scenario’s objectives. Assuming that indirect land-use change is successfully minimized or mitigated, the results suggest two major drivers for overall GHG impact of cellulosic ethanol from Miscanthus: (a) net soil carbon sequestration or emissions during Miscanthus cultivation and (b) GHG offset credits for electricity exported by biorefineries to the grid. Without these factors, the GHG intensity of bioethanol from Miscanthus is calculated to be 11–13 g CO 2 -equivalent per MJ of fuel, which is 80–90% lower than gasoline. Including soil carbon sequestration and the power-offset credit results in net GHG sequestration up to 26 g CO 2 -equivalent per MJ of fuel. (letter)

  13. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Derr, Dan [Logos Technologies, Fairfax, VA (United States)

    2013-12-30

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  14. Properties of cellulose derivatives produced from radiation-Modified cellulose pulps

    International Nuclear Information System (INIS)

    Iller, Edward; Stupinska, Halina; Starostka, Pawel

    2007-01-01

    The aim of project was elaboration of radiation methods for properties modification of cellulose pulps using for derivatives production. The selected cellulose pulps were exposed to an electron beam with energy 10 MeV in a linear accelerator. After irradiation pulps underwent the structural and physico-chemical investigations. The laboratory test for manufacturing carboxymethylocellulose (CMC), cellulose carbamate (CC) and cellulose acetate (CA) with cellulose pulps irradiated dose 10 and 15 kGy have been performed. Irradiation of the pulp influenced its depolimerisation degree and resulted in the drop of viscosity of CMC. However, the expected level of cellulose activation expressed as a rise of the substitution degree or increase of the active substance content in the CMC sodium salt was not observed. In the case of cellulose esters (CC, CA) formation, the action of ionising radiation on cellulose pulps with the dose 10 and 15 kGy enables obtaiment of the average values of polimerisation degree as required for CC soluble in aqueous sodium hydroxide solution. The properties of derivatives prepared by means of radiation and classic methods were compared

  15. Chemical elements dynamic in the fermentation process of ethanol producing

    International Nuclear Information System (INIS)

    Nepomuceno, N.; Nadai Fernandes, E.A. de; Bacchi, M.A.

    1994-01-01

    This paper provides useful information about the dynamics of chemical elements analysed by instrumental neutron activation analysis (INAA) and, found in the various segments of the fermentation process of producing ethanol from sugar cane. For this, a mass balance of Ce, Co, Cs, Eu, Fe, Hf, La, Sc, Sm, and Th, terrigenous elements, as well as Br, K, Rb, and Zn, sugar cane plant elements, has been demonstrated for the fermentation vats in industrial conditions of ethanol production. (author). 10 refs, 4 figs, 1 tab

  16. Final report (September, 1999--February, 2002) [Public outreach and information dissemination - cellulosic and corn-based ethanol outreach project

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Jeremy; Werner, Carol

    2002-08-01

    EESI's ''Ethanol, Climate Protection, Oil Reduction'' (ECO) electr[on]ic newsletter reaches out to the environmental and agricultural communities, state/local government officials and other interested parties, and provides a forum for dialogue about ''the potential benefits of ethanol--and particularly the expanded opportunities provided by cellulosic ethanol--with a special focus on climate protection.'' Each issue features expert commentary, excerpts from recent studies about ethanol, a summary of current government activity on ethanol, and ''notable quotables.'' The newsletter is distributed primarily via email and is also posted on EESI's web site. EESI also conducts outreach on the benefits of ethanol and other biofuels by attending and speaking at conferences, meetings and workshops around the country. The 16 issues of the newsletter published through December 2001 are included as attachments.

  17. An oil palm-based biorefinery concept for cellulosic ethanol and phytochemicals production: Sustainability evaluation using exergetic life cycle assessment

    International Nuclear Information System (INIS)

    Ofori-Boateng, Cynthia; Lee, Keat Teong

    2014-01-01

    In this study, thermo-environmental sustainability of an oil palm-based biorefinery concept for the co-production of cellulosic ethanol and phytochemicals from oil palm fronds (OPFs) was evaluated based on exergetic life cycle assessment (ExLCA). For the production of 1 tonne bioethanol, the exergy content of oil palm seeds was upgraded from 236 MJ to 77,999 MJ during the farming process for OPFs production. Again, the high exergy content of the OPFs was degraded by about 62.02% and 98.36% when they were converted into cellulosic ethanol and phenolic compounds respectively. With a total exergy destruction of about 958,606 MJ (internal) and 120,491 MJ (external or exergy of wastes), the biorefinery recorded an overall exergy efficiency and thermodynamic sustainability index (TSI) of about 59.05% and 2.44 per tonne of OPFs' bioethanol respectively. Due to the use of fossil fuels, pesticides, fertilizers and other toxic chemicals during the production, the global warming potential (GWP = 2265.69 kg CO 2 eq.), acidification potential (AP = 355.34 kg SO 2 eq.) and human toxicity potential (HTP = 142.79 kg DCB eq.) were the most significant environmental impact categories for a tonne of bioethanol produced in the biorefinery. The simultaneous saccharification and fermentation (SSF) unit emerged as the most exergetically efficient (89.66%), thermodynamically sustainable (TSI = 9.67) and environmentally friendly (6.59% of total GWP) production system. -- Highlights: • Thermo-environmental sustainability of palm-based biorefinery was assessed. • OPFs' exergy content was degraded when converted into bioethanol and phytochemicals. • Exergy efficiency (59.05%) and TSI (2.44) were recorded for the biorefinery • Global warming potential of 2265.6 kg CO 2 eq. was recorded for the whole biorefinery

  18. Lampung natural zeolite filled cellulose acetate membrane for pervaporation of ethanol-water mixtures

    Science.gov (United States)

    Iryani, D. A.; Wulandari, N. F.; Cindradewi, AW; Ginting, S. Br; Ernawati, E.; Hasanudin, U.

    2018-03-01

    Pervaporation of ethanol–water can be cost-competitive in the production of renewable biomass ethanol. For the purpose of improving the pervaporation performance of polymeric membranes, we prepared cellulose acetate (CA) filled Lampung Natural Zeolite (LNZ) membranes by incorporating LNZ into CA for pervaporation separation of ethanol-water mixtures. The characteristics and performance of these filled membranes in the varied ratio of CA:LNZ (30:0, 30:5, 30:10, 30: 20, 20:20 and 40:10) wt% were investigated. The prepared membranes were characterized for pervaporation membrane performance such as %water content and membrane swelling degree. Further, the permeation flux and selectivity of membrane were also observed. The results of investigation show that water content of membrane tends to increase with increase of LNZ content. However, the swelling degree of membrane decrease compared than that of CA control membrane. The permeation flux and the selectivity of membranes tend to increase continuously. The CA membrane with ratio of CA:LNZ 30:20 shows the highest selectivity of 80.42 with a permeation flux of 0.986 kg/(m2 h) and ethanol concentration of 99.08 wt%.

  19. Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Kazi, F. K.; Fortman, J.; Anex, R.; Kothandaraman, G.; Hsu, D.; Aden, A.; Dutta, A.

    2010-06-01

    A techno-economic analysis on the production of cellulosic ethanol by fermentation was conducted to understand the viability of liquid biofuel production processes within the next 5-8 years. Initially, 35 technologies were reviewed, then a two-step down selection was performed to choose scenarios to be evaluated in a more detailed economic analysis. The lignocellulosic ethanol process was selected because it is well studied and portions of the process have been tested at pilot scales. Seven process variations were selected and examined in detail. Process designs were constrained to public data published in 2007 or earlier, without projecting for future process improvements. Economic analysis was performed for an 'nth plant' (mature technology) to obtain total investment and product value (PV). Sensitivity analysis was performed on PV to assess the impact of variations in process and economic parameters. Results show that the modeled dilute acid pretreatment process without any downstream process variation had the lowest PV of $3.40/gal of ethanol ($5.15/gallon of gasoline equivalent) in 2007 dollars. Sensitivity analysis shows that PV is most sensitive to feedstock and enzyme costs.

  20. Removal of the Fermentation Inhibitor, Furfural, Using Activated Carbon in Cellulosic-Ethanol Production

    KAUST Repository

    Zhang, Kuang

    2011-12-21

    Ethanol can be produced from lignocellulosic biomass through fermentation; however, some byproducts from lignocellulosics, such as furfural compounds, are highly inhibitory to the fermentation and can substantially reduce the efficiency of ethanol production. In this study, commercial and polymer-derived activated carbons were utilized to selectively remove the model fermentation inhibitor, furfural, from water solution during bioethanol production. The oxygen functional groups on the carbon surface were found to influence the selectivity of sorbents between inhibitors and sugars during the separation. After inhibitors were selectively removed from the broth, the cell growth and ethanol production efficiency was recovered noticeably in the fermentation. A sorption/desorption cycle was designed, and the sorbents were regenerated in a fixed-bed column system using ethanol-containing standard solution. Dynamic mass balance was obtained after running four or five cycles, and regeneration results were stable even after twenty cycles. © 2011 American Chemical Society.

  1. Evaluation of mountain beetle-infested lodgepole pine for cellulosic ethanol production by sulfite pretreatment to overcome recalcitrance of lignocellulose

    Science.gov (United States)

    X. Luo; R. Gleisner; S. Tian; J. Negron; W. Zhu; E. Horn; X. J. Pan; J. Y. Zhu

    2010-01-01

    The potentials of deteriorated mountain pine beetle (Dendroctonus ponderosae)-killed lodgepole pine (Pinus contorta) trees for cellulosic ethanol production were evaluated using the sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) process. The trees were harvested from two sites in the United States Arapaho-Roosevelt National Forest, Colorado....

  2. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.

    Science.gov (United States)

    Singh, Nisha; Mathur, Anshu S; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Puri, Munish

    2017-01-01

    Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L -1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L -1 and 82.74% degradation at 10 g L -1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes

  3. Influence of sugarcane bagasse variability on sugar recovery for cellulosic ethanol production.

    Science.gov (United States)

    Andrade, Liliane Pires; Crespim, Elaine; de Oliveira, Nilton; de Campos, Rafael Carinha; Teodoro, Juliana Conceição; Galvão, Célia Maria Araújo; Maciel Filho, Rubens

    2017-10-01

    In the context of cellulosic ethanol production, special attention must be given to the raw material, as it affects final product yield. As observed for sugarcane, bagasse variations may derive from several elements, for instance edaphoclimatic factors, seasonality, maturation stage and harvesting techniques. Therefore, in the present work, to investigate the impact of raw material characteristics on process performance, sugarcane bagasse from four harvests from October/2010 to October/2011 was pretreated by steam explosion and had its soluble and insoluble solids contents measured, following enzymatic hydrolysis to assess glucan conversion. As confirmed by ANOVA, glucose concentration was related to the solids content in the reactor, whereas glucan conversion was related to the enzymatic load. Variations in raw material composition were indeed observed to significantly interfere in the final sugar recovery, probably due to the increase in the impurities observed as a result of the type of harvest performed in 2011. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The commercial performance of cellulosic ethanol supply-chains in Europe

    Directory of Open Access Journals (Sweden)

    Shah Nilay

    2009-02-01

    Full Text Available Abstract Background The production of fuel-grade ethanol from lignocellulosic biomass resources has the potential to increase biofuel production capacity whilst minimising the negative environmental impacts. These benefits will only be realised if lignocellulosic ethanol production can compete on price with conventional fossil fuels and if it can be produced commercially at scale. This paper focuses on lignocellulosic ethanol production in Europe. The hypothesis is that the eventual cost of production will be determined not only by the performance of the conversion process but by the performance of the entire supply-chain from feedstock production to consumption. To test this, a model for supply-chain cost comparison is developed, the components of representative ethanol supply-chains are described, the factors that are most important in determining the cost and profitability of ethanol production are identified, and a detailed sensitivity analysis is conducted. Results The most important cost determinants are the cost of feedstocks, primarily determined by location and existing markets, and the value obtained for ethanol, primarily determined by the oil price and policy incentives. Both of these factors are highly uncertain. The best performing chains (ethanol produced from softwood and sold as a low percentage blend with gasoline could ultimately be cost competitive with gasoline without requiring subsidy, but production from straw would generally be less competitive. Conclusion Supply-chain design will play a critical role in determining commercial viability. The importance of feedstock supply highlights the need for location-specific assessments of feedstock availability and price. Similarly, the role of subsidies and policy incentives in creating and sustaining the ethanol market highlights the importance of political engagement and the need to include political risks in investment appraisal. For the supply-chains described here, and with

  5. A New Proposal of Cellulosic Ethanol to Boost Sugarcane Biorefineries: Techno-Economic Evaluation

    Directory of Open Access Journals (Sweden)

    Juliana Q. Albarelli

    2014-01-01

    Full Text Available Commercial simulator Aspen Plus was used to simulate a biorefinery producing ethanol from sugarcane juice and second generation ethanol production using bagasse fine fraction composed of parenchyma cells (P-fraction. Liquid hot water and steam explosion pretreatment technologies were evaluated. The processes were thermal and water integrated and compared to a biorefinery producing ethanol from juice and sugarcane bagasse. The results indicated that after thermal and water integration, the evaluated processes were self-sufficient in energy demand, being able to sell the surplus electricity to the grid, and presented water intake inside the environmental limit for São Paulo State, Brazil. The processes that evaluated the use of the bagasse fine fraction presented higher economic results compared with the use of the entire bagasse. Even though, due to the high enzyme costs, the payback calculated for the biorefineries were higher than 8 years for all cases that considered second generation ethanol and the net present value for the investment was negative. The reduction on the enzyme load, in a way that the conversion rates could be maintained, is the limiting factor to make second generation ethanol competitive with the most immediate uses of bagasse: fuel for the cogeneration system to surplus electricity production.

  6. Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica.

    Science.gov (United States)

    Saucedo-Luna, Jaime; Castro-Montoya, Agustin Jaime; Martinez-Pacheco, Mauro Manuel; Sosa-Aguirre, Carlos Ruben; Campos-Garcia, Jesus

    2011-06-01

    Bagasse of Agave tequilana (BAT) is the residual lignocellulosic waste that remains from tequila production. In this study we characterized the chemical composition of BAT, which was further saccharified and fermented to produce ethanol. BAT was constituted by cellulose (42%), hemicellulose (20%), lignin (15%), and other (23%). Saccharification of BAT was carried out at 147 °C with 2% sulfuric acid for 15 min, yielding 25.8 g/l of fermentable sugars, corresponding to 36.1% of saccharificable material (cellulose and hemicellulose contents, w/w). The remaining lignocellulosic material was further hydrolyzed by commercial enzymes, ~8.2% of BAT load was incubated for 72 h at 40 °C rendering 41 g/l of fermentable sugars corresponding to 73.6% of the saccharificable material (w/w). Mathematic surface response analysis of the acid and enzymatic BAT hydrolysis was used for process optimization. The results showed a satisfactory correlation (R (2) = 0.90) between the obtained and predicted responses. The native yeast Pichia caribbica UM-5 was used to ferment sugar liquors from both acid and enzymatic hydrolysis to ethanol yielding 50 and 87%, respectively. The final optimized process generated 8.99 g ethanol/50 g of BAT, corresponding to an overall 56.75% of theoretical ethanol (w/w). Thus, BAT may be employed as a lignocellulosic raw material for bioethanol production and can contribute to BAT residue elimination from environment.

  7. Microorganisms and methods for producing pyruvate, ethanol, and other compounds

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jennifer L.; Zhang, Xiaolin

    2017-12-26

    Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.

  8. Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations

    Directory of Open Access Journals (Sweden)

    Edem Cudjoe Bensah

    2013-01-01

    Full Text Available Pretreatment of lignocellulose has received considerable research globally due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. Some of the most promising pretreatment methods require the application of chemicals such as acids, alkali, salts, oxidants, and solvents. Thus, advances in research have enabled the development and integration of chemical-based pretreatment into proprietary ethanol production technologies in several pilot and demonstration plants globally, with potential to scale-up to commercial levels. This paper reviews known and emerging chemical pretreatment methods, highlighting recent findings and process innovations developed to offset inherent challenges via a range of interventions, notably, the combination of chemical pretreatment with other methods to improve carbohydrate preservation, reduce formation of degradation products, achieve high sugar yields at mild reaction conditions, reduce solvent loads and enzyme dose, reduce waste generation, and improve recovery of biomass components in pure forms. The use of chemicals such as ionic liquids, NMMO, and sulphite are promising once challenges in solvent recovery are overcome. For developing countries, alkali-based methods are relatively easy to deploy in decentralized, low-tech systems owing to advantages such as the requirement of simple reactors and the ease of operation.

  9. Viscoelastic properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover

    Science.gov (United States)

    The rheological properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover were investigated. The corn stover MFC gels exhibited concentration-dependent viscoelastic properties. Higher corn stover MFC concentrations resulted in stronger viscoelastic properties. Th...

  10. Licuri fibers characterization after treatment to produce cellulose nanocrystals

    International Nuclear Information System (INIS)

    Castro, E.G.; Oliveira, J.C.; Miranda, C.S.; Jose, N.M.

    2014-01-01

    Cellulose nanocrystals have been widely studied in the materials area due to their high aspect ratio, which is directly related to a good performance as mechanical reinforcement. Obtaining this nanocrystals from commercial bleached pulps, as eucalyptus, or microcrystalline cellulose is well studied. Trying to find new extraction sources, exploring better the huge variety of Brazil’s natural fibers and giving the opportunity of development to small communities, the present work verifies the influence of two bleaching methodologies, sodium hypochlorite or hydrogen peroxide, on licuri fibers. Previous washing and mercerization steps were performed before bleaching. The product of each step was analysed by: DSC, TGA, XRD, SEM and FTIR. The yield of each step was also calculated. (author)

  11. Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling.

    Science.gov (United States)

    Liu, Gang; Zhang, Jian; Bao, Jie

    2016-01-01

    Cost reduction on cellulase enzyme usage has been the central effort in the commercialization of fuel ethanol production from lignocellulose biomass. Therefore, establishing an accurate evaluation method on cellulase enzyme cost is crucially important to support the health development of the future biorefinery industry. Currently, the cellulase cost evaluation methods were complicated and various controversial or even conflict results were presented. To give a reliable evaluation on this important topic, a rigorous analysis based on the Aspen Plus flowsheet simulation in the commercial scale ethanol plant was proposed in this study. The minimum ethanol selling price (MESP) was used as the indicator to show the impacts of varying enzyme supply modes, enzyme prices, process parameters, as well as enzyme loading on the enzyme cost. The results reveal that the enzyme cost drives the cellulosic ethanol price below the minimum profit point when the enzyme is purchased from the current industrial enzyme market. An innovative production of cellulase enzyme such as on-site enzyme production should be explored and tested in the industrial scale to yield an economically sound enzyme supply for the future cellulosic ethanol production.

  12. Enzymatic pulp upgrade for producing high-value cellulose out of a Kraft paper pulp.

    Science.gov (United States)

    Hutterer, Christian; Kliba, Gerhard; Punz, Manuel; Fackler, Karin; Potthast, Antje

    2017-07-01

    The high-yield separation of polymeric parts from wood-derived lignocellulosic material is indispensable in biorefinery concepts. For the separation of cellulose and xylan from hardwood paper pulps to obtain pulps of high cellulose contents, simple alkaline extractions were found to be the most suitable technology, although having certain limitations. These are embodied by residual alkali resistant xylan incorporated in the pulp matrix. Further purification in order to produce pure cellulose with a low uniformity could be achieved selectively degrading residual xylan and depolymerizing the cellulose macromolecules by xylanase and cellulase. The latter help to adjust cellulose chain lengths for certain dissolving pulp grades while reducing the demand for ozone in subsequent TCF bleaching. Experiments applying different commercially available enzyme preparations revealed the dependency of xylanase performance on the residual xylan content in pulps being stimulated by additional cellulase usage. The action of the latter strongly depends on the cellulose allomorphy confirming the impact of the pulp morphology. Hence, the combined application of both types of enzymes offers a high potential for upgrading pulps in order to produce a pure and high-value cellulose product. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Ethanol extract grapefruit peel ( Citrus maxima Murr.) gel formulations with gelling agent durian seed gum and carboxy methyl cellulose

    OpenAIRE

    Nazliniwaty; Karsono; Zebua, Nilsya Febrika; Nerdy

    2017-01-01

    This research aims to investigate the best gel formula of grapefruit ethanol extracts (Citrus maxima Murr.) with gelling agent combination durian seed gum and carboxy methyl cellulose (CMC). Durian seed gum was isolated with centrifuge and then combined with CMC-Na in five formulas. Evaluation material of topical gel that is its homogeneity, pH, stability testing, and irritation of the volunteers. All formula gel preparations its ...

  14. Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol.

    Science.gov (United States)

    Keshav, Praveen K; Naseeruddin, Shaik; Rao, L Venkateswar

    2016-08-01

    Cotton stalk, a widely available and cheap agricultural residue lacking economic alternatives, was subjected to steam explosion in the range 170-200°C for 5min. Steam explosion at 200°C and 5min led to significant hemicellulose solubilization (71.90±0.10%). Alkaline extraction of steam exploded cotton stalk (SECOH) using 3% NaOH at room temperature for 6h led to 85.07±1.43% lignin removal with complete hemicellulose solubilization. Besides, this combined pretreatment allowed a high recovery of the cellulosic fraction from the biomass. Enzymatic saccharification was studied between steam exploded cotton stalk (SECS) and SECOH using different cellulase loadings. SECOH gave a maximum of 785.30±8.28mg/g reducing sugars with saccharification efficiency of 82.13±0.72%. Subsequently, fermentation of SECOH hydrolysate containing sugars (68.20±1.16g/L) with Saccharomyces cerevisiae produced 23.17±0.84g/L ethanol with 0.44g/g yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Feasibility Study for Co-Locating and Integrating Ethanol Production Plants from Corn Starch and Lignocellulosic Feedstocks (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, R.; Ibsen, K.; McAloon, A.; Yee, W.

    2005-01-01

    Analysis of the feasibility of co-locating corn-grain-to-ethanol and lignocellulosic ethanol plants and potential savings from combining utilities, ethanol purification, product processing, and fermentation. Although none of the scenarios identified could produce ethanol at lower cost than a straight grain ethanol plant, several were lower cost than a straight cellulosic ethanol plant.

  16. Oxidative production of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth by Gluconobacter oxydans.

    Science.gov (United States)

    Zhang, Hongsen; Han, Xushen; Wei, Chengxiang; Bao, Jie

    2017-01-01

    An oxidative production process of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth was designed, experimentally investigated, and evaluated. Dry dilute acid pretreated and biodetoxified corn stover was simultaneously saccharified and fermented into 59.80g/L of ethanol (no xylose utilization). 65.39g/L of xylose was obtained in the distillation stillage without any concentrating step after ethanol was distillated. Then the xylose was completely converted into 66.42g/L of xylonic acid by Gluconobacter oxydans. The rigorous Aspen Plus modeling shows that the wastewater generation and energy consumption was significantly reduced comparing to the previous xylonic acid production process using xylose in pretreatment liquid. This study provided a practical process option for xylonic acid production from lignocellulose feedstock with significant reduction of wastewater and energy consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from Great Basin hot springs with agricultural residues and energy crops.

    Science.gov (United States)

    Zhao, Chao; Deng, Yunjin; Wang, Xingna; Li, Qiuzhe; Huang, Yifan; Liu, Bin

    2014-09-01

    In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA librarybased analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

  18. A novel marine bacterium Isoptericola sp. JS-C42 with the ability to saccharifying the plant biomasses for the aid in cellulosic ethanol production

    Directory of Open Access Journals (Sweden)

    Velayudhan Satheeja Santhi

    2014-06-01

    Full Text Available The ever growing demands for food products such as starch and sugar produces; there is a need to find the sources for saccharification for cellulosic bioethanol production. This study provides the first evidence of the lignocellulolytic and saccharifying ability of a marine bacterium namely Isoptericola sp. JS-C42, a Gram positive actinobacterium with the cocci cells embedded on mycelia isolated from the Arabian Sea, India. It exhibited highest filter paper unit effect, endoglucanase, exoglucanase, cellobiohydrolase, β-glucosidase, xylanase and ligninase effect. The hydrolytic potential of the enzymes displayed the efficient saccharification capability of steam pretreated biomass. It was also found to degrade the paddy, sorghum, Acacia mangium and Ficus religiosa into simple reducing sugars by its efficient lignocellulose enzyme complex with limited consumption of sugars. Production of ethanol was also achieved with the Saccharomyces cerevisiae. Overall, it offers a great potential for the cellulosic ethanol production in an economically reliable and eco-friendly point-of-care.

  19. High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2007-01-01

    The low ethanol tolerance of thermophilic anaerobic bacteria, generally less than 2% (v/v) ethanol, is one of the main limiting factors for their potential use for second generation fuel ethanol production. In this work, the tolerance of thermophilic anaerobic bacterium Thermoanaerobacter BG 1L1...... to exogenously added ethanol was studied in a continuous immobilized reactor system at a growth temperature of 70 degrees C. Ethanol tolerance was evaluated based on inhibition of fermentative performance e.g.. inhibition of substrate conversion. At the highest ethanol concentration tested (8.3% v/v), the strain...... was able to convert 42% of the xylose initially present, indicating that this ethanol concentration is not the upper limit tolerated by the strain. Long-term strain adaptation to high ethanol concentrations (6 - 8.3%) resulted in an improvement of xylose conversion by 25% at an ethanol concentration of 5...

  20. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    International Nuclear Information System (INIS)

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-01-01

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L -1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  1. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant.

    Science.gov (United States)

    Huang, Renliang; Guo, Hong; Su, Rongxin; Qi, Wei; He, Zhimin

    2017-03-01

    Recycling cellulases by substrate adsorption is a promising strategy for reducing the enzyme cost of cellulosic ethanol production. However, β-glucosidase has no carbohydrate-binding module (CBM). Thus, additional enzymes are required in each cycle to achieve a high ethanol yield. In this study, we report a new method of recycling cellulases without β-glucosidase supplementation using lignocellulosic substrate, an engineered strain expressing β-glucosidase and Tween 80. The cellulases and Tween 80 were added to an aqueous suspension of diluted sulfuric acid/ammonia-treated corncobs in a simultaneous saccharification and fermentation (SSF) process for ethanol production. Subsequently, the addition of fresh pretreated corncobs to the fermentation liquor and remaining solid residue provided substrates with absorbed cellulases for the next SSF cycle. This method provided excellent ethanol production in three successive SSF cycles without requiring the addition of new cellulases. For a 10% (w/v) solid loading, a cellulase dosage of 30 filter paper units (FPU)/g cellulose, 0.5% Tween 80, and 2 g/L of the engineered strain, approximately 90% of the initial ethanol concentration from the first SSF process was obtained in the next two SSF processes, with a total ethanol production of 306.27 g/kg corncobs and an enzyme productivity of 0.044 g/FPU. Tween 80 played an important role in enhancing cellulase recovery. This new enzyme recycling method is more efficient and practical than other reported methods. Biotechnol. Bioeng. 2017;114: 543-551. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Yield and properties of ethanol biofuel produced from different whole cassava flours.

    Science.gov (United States)

    Ademiluyi, F T; Mepba, H D

    2013-01-01

    The yield and properties of ethanol biofuel produced from five different whole cassava flours were investigated. Ethanol was produced from five different whole cassava flours. The effect of quantity of yeast on ethanol yield, effect of whole cassava flour to acid and mineralized media ratio on the yield of ethanol produced, and the physical properties of ethanol produced from different cassava were investigated. Physical properties such as distillation range, density, viscosity, and flash point of ethanol produced differ slightly for different cultivars, while the yield of ethanol and electrical conductivity of ethanol from the different cassava cultivars varies significantly. The variation in mineral composition of the different whole cassava flours could also lead to variation in the electrical conductivity of ethanol produced from the different cassava cultivars. The differences in ethanol yield are attributed to differences in starch content, protein content, and dry matter of cassava cultivars. High yield of ethanol from whole cassava flour is best produced from cultivars with high starch content, low protein content, and low fiber.

  3. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha Tea, and Production of the Biopolymer.

    Science.gov (United States)

    Neera; Ramana, Karna Venkata; Batra, Harsh Vardhan

    2015-06-01

    Cellulose producing bacteria were isolated from fruit samples and kombucha tea (a fermented beverage) using CuSO4 solution in modified Watanabe and Yamanaka medium to inhibit yeasts and molds. Six bacterial strains showing cellulose production were isolated and identified by 16S rRNA gene sequencing as Gluconacetobacter xylinus strain DFBT, Ga. xylinus strain dfr-1, Gluconobacter oxydans strain dfr-2, G. oxydans strain dfr-3, Acetobacter orientalis strain dfr-4, and Gluconacetobacter intermedius strain dfr-5. All the cellulose-producing bacteria were checked for the cellulose yield. A potent cellulose-producing bacterium, i.e., Ga. xylinus strain DFBT based on yield (cellulose yield 5.6 g/L) was selected for further studies. Cellulose was also produced in non- conventional media such as pineapple juice medium and hydrolysed corn starch medium. A very high yield of 9.1 g/L cellulose was obtained in pineapple juice medium. Fourier transform infrared spectrometer (FT-IR) analysis of the bacterial cellulose showed the characteristic peaks. Soft cellulose with a very high water holding capacity was produced using limited aeration. Scanning electron microscopy (SEM) was used to analyze the surface characteristics of normal bacterial cellulose and soft cellulose. The structural analysis of the polymer was performed using (13)C solid-state nuclear magnetic resonance (NMR). More interfibrillar space was observed in the case of soft cellulose as compared to normal cellulose. This soft cellulose can find potential applications in the food industry as it can be swallowed easily without chewing.

  4. Evaluation of environmental impacts of cellulosic ethanol using life cycle assessment with technological advances over time

    International Nuclear Information System (INIS)

    Pawelzik, Paul F.; Zhang, Qiong

    2012-01-01

    Life Cycle Assessment (LCA) has been used in quantifying the environmental impacts of materials, processes, products, or systems across their entire lifespan from creation to disposal. To evaluate the environmental impact of advancing technology, Life Cycle Assessment with Technological Advances over Time (LCA-TAT) incorporates technology improvements within the traditional LCA framework. In this paper, the LCA-TAT is applied to quantify the environmental impacts of ethanol production using cellulosic biomass as a feedstock through the simultaneous saccharification and co-fermentation (SSCF) process as it improves over time. The data for the SSCF process are taken from the Aspen Plus ® simulation developed by the National Renewable Energy Lab (NREL). The Environmental Fate and Risk Assessment Tool (EFRAT) is used to calculate the fugitive emissions and SimaPro 7.1 software is used to quantify the environmental impacts of processes. The impact indicators of the processes are calculated using the Eco-indicator 95 method; impact categories analyzed include ozone layer depletion, heavy metals, carcinogens, summer smog, winter smog, pesticides, greenhouse effect, acidification, and eutrophication. Based on the LCA-TAT results, it is found that removal of the continuous ion exchange step within the pretreatment area increases the environmental impact of the process. The main contributor to the increase in the environmental impact of the process is the heavy metal indicator. In addition, a sensitivity analysis is performed to identify major inputs and outputs that affect environmental impacts of the overall process. Based on this analysis it is observed that an increase in waste production and acid use have the greatest effect on the environmental impacts of the SSCF process. Comparing economic analysis with projected technological advances performed by NREL, the improvement in environmental impact was not matched by a concomitant improvement in economic performance. In

  5. High-resolution techno-ecological modelling of a bioenergy landscape to identify climate mitigation opportunities in cellulosic ethanol production

    Science.gov (United States)

    Field, John L.; Evans, Samuel G.; Marx, Ernie; Easter, Mark; Adler, Paul R.; Dinh, Thai; Willson, Bryan; Paustian, Keith

    2018-03-01

    Although dedicated energy crops will probably be an important feedstock for future cellulosic bioenergy production, it is unknown how they can best be integrated into existing agricultural systems. Here we use the DayCent ecosystem model to simulate various scenarios for growing switchgrass in the heterogeneous landscape that surrounds a commercial-scale cellulosic ethanol biorefinery in southwestern Kansas, and quantify the associated fuel production costs and lifecycle greenhouse gas (GHG) emissions. We show that the GHG footprint of ethanol production can be reduced by up to 22 g of CO2 equivalent per megajoule (CO2e MJ-1) through careful optimization of the soils cultivated and corresponding fertilizer application rates (the US Renewable Fuel Standard requires a 56 gCO2e MJ-1 lifecycle emissions reduction for `cellulosic' biofuels compared with conventional gasoline). This improved climate performance is realizable at modest additional costs, less than the current value of low-carbon fuel incentives. We also demonstrate that existing subsidized switchgrass plantings within this landscape probably achieve suboptimal GHG mitigation, as would landscape designs that strictly minimize the biomass collection radius or target certain marginal lands.

  6. Fungal enzyme production in seeds of transgenic canola plants for conversion of cellulosic materials to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, K.J.; Beauchemin, K.A. [Agriculture and Agri-Food Canada, Lethbridge, AB (Canada); Moloney, M.M. [Calgary Univ., AB (Canada). Dept. of Biological Sciences

    1997-07-01

    The fuel alcohol industry makes use of industrial enzymes to effectively degrade fibrous plant cell walls. Carbohydrates in cellulosic materials are in the form of complex sugars that can be hydrolyzed to simple sugars by fungal fibrolytic enzymes such as cellulases and xylanases. This study was conducted to find a cost effective way to produce fibrolytic enzymes using gene fusion technology in which a xylanase gene and a cellulase gene from two fungal species are introduced into canola to be a carrier for the production of these enzymes. The two genes had been analyzed for maximal enzymatic activity to minimize side effects. Results of the study demonstrated the stability and potential of transgenic oil-bodies as an immobilized enzyme matrix, and showed that it is possible to express fibrolytic enzymes in canola.

  7. High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform.

    Science.gov (United States)

    Abalde-Cela, Sara; Gould, Anna; Liu, Xin; Kazamia, Elena; Smith, Alison G; Abell, Chris

    2015-05-06

    Ethanol production by microorganisms is an important renewable energy source. Most processes involve fermentation of sugars from plant feedstock, but there is increasing interest in direct ethanol production by photosynthetic organisms. To facilitate this, a high-throughput screening technique for the detection of ethanol is required. Here, a method for the quantitative detection of ethanol in a microdroplet-based platform is described that can be used for screening cyanobacterial strains to identify those with the highest ethanol productivity levels. The detection of ethanol by enzymatic assay was optimized both in bulk and in microdroplets. In parallel, the encapsulation of engineered ethanol-producing cyanobacteria in microdroplets and their growth dynamics in microdroplet reservoirs were demonstrated. The combination of modular microdroplet operations including droplet generation for cyanobacteria encapsulation, droplet re-injection and pico-injection, and laser-induced fluorescence, were used to create this new platform to screen genetically engineered strains of cyanobacteria with different levels of ethanol production.

  8. Sustainably produced ethanol. A premium fuel component; Nachhaltig produziertes Ethanol. Eine Premium Kraftstoffkomponente

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Joerg [Suedzucker AG, Obrigheim/Pfalz (Germany)

    2012-07-01

    Ethanol is the most used biofuel in the world. It is part of the European biofuel strategy, which is intended to preserve finite fossil resources, reduce greenhouse gas emissions and strengthen European agriculture. In addition to its traditional use in E5 fuel, ethanol most recently features in new fuels for petrol engines in Europe: as E10 as an expansion of the already existing concept of ethanol blends, such as in E5, or as ethanol fuel E85, a blend made up primarily of ethanol. There is already extensive international experience for both types of fuel for example in the USA or Brazil. The use of ethanol as a biofuel is linked to sustainability criteria in Europe which must be proven through a certification scheme. In addition to ethanol, the integrated production process also provides vegetable protein which is used in food as well as in animal feed and therefore provides the quality products of processed plants used for sustainable energy and in animal and human food. Ethanol has an effect on the vapour pressure, boiling behaviour and octane number of the fuel blend. Adjusting the blend stock petrol to fulfil the quality requirements of the final fuel is therefore necessary. Increasing the antiknock properties, increasing the heat of evaporation of the fuel using ethanol and the positive effects this has on the combustion efficiency of the petrol engine are particularly important. Investigations on cars or engines that were specifically designed for fuel with a higher ethanol content show significant improvements in using the energy from the fuel and the potential to reduce carbon dioxide emissions if fuels containing ethanol are used. The perspective based purely on an energy equivalent replacement of fossil fuels with ethanol is therefore misleading. Ethanol can also contribute to increasing the energy efficiency of petrol engines as well as being a replacement source of energy. (orig.)

  9. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes

    International Nuclear Information System (INIS)

    Wang, Michael Q.; Han, Jeongwoo; Haq, Zia; Tyner, Wallace E.; Wu, May; Elgowainy, Amgad

    2011-01-01

    Use of ethanol as a transportation fuel in the United States has grown from 76 dam 3 in 1980 to over 40.1 hm 3 in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

  10. Formation of Highly Twisted Ribbons in a Carboxymethylcellulase Gene-Disrupted Strain of a Cellulose-Producing Bacterium

    Science.gov (United States)

    Sugano, Yasushi; Shoda, Makoto; Sakakibara, Hitoshi; Oiwa, Kazuhiro; Tuzi, Satoru; Imai, Tomoya; Sugiyama, Junji; Takeuchi, Miyuki; Yamauchi, Daisuke

    2013-01-01

    Cellulases are enzymes that normally digest cellulose; however, some are known to play essential roles in cellulose biosynthesis. Although some endogenous cellulases of plants and cellulose-producing bacteria are reportedly involved in cellulose production, their functions in cellulose production are unknown. In this study, we demonstrated that disruption of the cellulase (carboxymethylcellulase) gene causes irregular packing of de novo-synthesized fibrils in Gluconacetobacter xylinus, a cellulose-producing bacterium. Cellulose production was remarkably reduced and small amounts of particulate material were accumulated in the culture of a cmcax-disrupted G. xylinus strain (F2-2). The particulate material was shown to contain cellulose by both solid-state 13C nuclear magnetic resonance analysis and Fourier transform infrared spectroscopy analysis. Electron microscopy revealed that the cellulose fibrils produced by the F2-2 cells were highly twisted compared with those produced by control cells. This hypertwisting of the fibrils may reduce cellulose synthesis in the F2-2 strains. PMID:23243308

  11. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.; Sukmawati, H. [Chemical Engineering, Faculty of Engineering, Diponegoro University Prof. Soedarto Street, Tembalang, Semarang, 50239, Phone/Fax : (024)7460058 (Indonesia)

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  12. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    International Nuclear Information System (INIS)

    Kusworo, T. D.; Aryanti, N.; Firdaus, M. M. H.; Sukmawati, H.

    2015-01-01

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second

  13. Kinetics of Strong Acid Hydrolysis of a Bleached Kraft Pulp for Producing Cellulose Nanocrystals (CNCs)

    Science.gov (United States)

    Qianqian Wang; Xuebing Zhao; J.Y. Zhu

    2014-01-01

    Cellulose nanocrytals (CNCs) are predominantly produced using the traditional strong acid hydrolysis process. In most reported studies, the typical CNC yield is low (approximately 30%) despite process optimization. This study investigated the hydrolysis of a bleached kraft eucalyptus pulp using sulfuric acid between 50 and 64 wt % at temperatures of 35−80 °C...

  14. Ethanol from Cellulosic Biomass with Emphasis of Wheat Straw Utilization. Analysis of Strategies for Process Development

    Directory of Open Access Journals (Sweden)

    Alexander Dimitrov Kroumov

    2015-12-01

    Full Text Available The "Green and Blue Technologies Strategies in HORIZON 2020" has increased the attention of scientific society on global utilization of renewable energy sources. Agricultural residues can be a valuable source of energy because of drastically growing human needs for food. The goal of this review is to show the current state of art on utilization of wheat straw as a substrate for ethanol production. The specifics of wheat straw composition and the chemical and thermodynamic properties of its components pre-determined the application of unit operations and engineering strategies for hydrolysis of the substrate and further its fermentation. Modeling of this two processes is crucially important for optimal overall process development and scale up. The authors gave much attention on main hydrolisis products as a glucose and xylose (C6 and C5 sugars, respectivelly and on the specifics of their metabolization by ethanol producing microorganisms. The microbial physiology reacting on C6 and C5 sugars and mathematical aproaches describing these phenomena are discussing, as well.

  15. Examination of Ethanol Marketing and Input Procurement Practices of the U.S. Ethanol Producers

    OpenAIRE

    Spaulding, Aslihan D.; Schmidgall, Timothy J.

    2008-01-01

    Growing concerns about the dependence on foreign oil and high prices of gasoline have led to rapid growth in ethanol production in the past decade. Unlike earlier development of the ethanol industry which was highly concentrated in a few large corporations, recent ownership of the ethanol plants has been by farmer-owned cooperatives. Not much is known about the marketing and purchasing practices and plants’ flexibility with respect to adapting new technologies. The purpose of this research is...

  16. Fed-batch culture for the direct conversion of cellulosic substrates to acetic acid/ethanol by Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.K.R.; Singh, A.; Schuegerl, K. (Hannover Univ. (Germany). Inst. fuer Technische Chemie)

    1991-01-01

    The production of acetic acid/ethanol and hydrolytic enzymes from potato waste (cellulosic waste from potato starch industries) by Fusarium oxysporum 841 was improved considerably by using fed-batch culture. In this, two types of feed policies were adopted consisting of different substrate concentrations and feeding times. In fed-batch culture, the enzymes tested, namely avicelase, CMCase, cellobiase and xylanase, showed significant improvements over batch fermentations with regard to enzyme titres and productivities. The maximum concentration, yield and productivity of acetic acid were 22.5 g litre{sup -1}, 0.38 g (g {sub strate}){sup -1} and 0.09 g litre{sup -1} h{sup -1}, respectively, and these values for ethanol were 5.7 g litre{sup -1}, 0.1 g (g substrate){sup -1} and 0.03 g litre{sup -1}h{sup -1}, respectively. (author).

  17. Enhancement of crystallinity of cellulose produced by Escherichia coli through heterologous expression of bcsD gene from Gluconacetobacter xylinus.

    Science.gov (United States)

    Sajadi, Elaheh; Babaipour, Valiollah; Deldar, Ali Asghar; Yakhchali, Bagher; Fatemi, Seyed Safa-Ali

    2017-09-01

    To evaluate the crystallinity index of the cellulose produced by Escherichia coli Nissle 1917 after heterologous expression of the cellulose synthase subunit D (bcsD) gene of Gluconacetobacter xylinus BPR2001. The bcsD gene of G. xylinus BPR2001 was expressed in E. coli and its protein product was visualized using SDS-PAGE. FTIR analysis showed that the crystallinity index of the cellulose produced by the recombinants was 0.84, which is 17% more than that of the wild type strain. The increased crystallinity index was also confirmed by X-ray diffraction analysis. The cellulose content was not changed significantly after over-expressing the bcsD. The bcsD gene can improve the crystalline structure of the bacterial cellulose but there is not any significant difference between the amounts of cellulose produced by the recombinant and wild type E. coli Nissle 1917.

  18. Acid hydrolysis of sisal cellulose: studies aiming at nano fibers and bio ethanol preparation

    International Nuclear Information System (INIS)

    Paula, Mauricio P. de; Lacerda, Talita M.; Zambon, Marcia D.; Frollini, Elisabete

    2009-01-01

    The hydrolysis of cellulose can result in nanofibers and also is an important stage in the bioethanol production process. In order to evaluate the influence of acid (sulfuric) concentration, temperature, and native cellulose (sisal) pretreatment on cellulose hydrolysis, the acid concentration was varied between 5% and 30% (v/v) in the temperature range from 60 to 100 deg C using native and alkali-treated (mercerized) sisal cellulose. The following techniques were used to evaluate the residual (non-hydrolysed) cellulose characteristics: viscometry, average degree of polymerization (DP), X-ray diffraction, crystallinity index, and Scanning Electron Microscopy. The sugar cane liquor was analyzed in terms of sugar composition, using High Performance Liquid Chromatography (HPLC). The results showed that increasing the concentration of sulfuric acid and temperature afforded residual cellulose with lower molecular weight and, up to specific acid concentrations, higher crystallinity indexes, when compared to the original cellulose values, and increased the glucose (the bioethanol precursor ) production of the liquor, which was favored for mercerized cellulose. (author)

  19. Evaluation of electricity generation from lignin residue and biogas in cellulosic ethanol production.

    Science.gov (United States)

    Liu, Gang; Bao, Jie

    2017-11-01

    This study takes the first insight on the rigorous evaluation of electricity generation based on the experimentally measured higher heating value (HHV) of lignin residue, as well as the chemical oxygen demand (COD) and biological oxygen demand (BOD 5 ) of wastewater. For producing one metric ton of ethanol fuel from five typical lignocellulose substrates, including corn stover, wheat straw, rice straw, sugarcane bagasse and poplar sawdust, 1.26-1.85tons of dry lignin residue is generated from biorefining process and 0.19-0.27tons of biogas is generated from anaerobic digestion of wastewater, equivalent to 4335-5981kWh and 1946-2795kWh of electricity by combustion of the generated lignin residue and biogas, respectively. The electricity generation not only sufficiently meets the electricity needs of process requirement, but also generates more than half of electricity surplus selling to the grid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ethanol production from paper sludge using Kluyveromyces marxianus

    International Nuclear Information System (INIS)

    Madrid, Lina Maria; Quintero Diaz, Juan Carlos

    2011-01-01

    Recycled paper sludge is a promising raw material for ethanol production. In this study, we first evaluated the effects of ethanol concentration, solids load, and cellulose crystallinity on the enzymatic hydrolysis of cellulose to produce reducing sugars. We then evaluated the production of ethanol by either saccharification and simultaneous fermentation (SSF) or separated hydrolysis and fermentation (SHF) using the yeast Kluyveromyces marxianus ATCC 36907. We found that cellulose hydrolysis decreased as ethanol concentrations increased; at 40 g/L ethanol, the reducing sugar production was decreased by 79 %. Hydrolysis also decreased as solids load increased; at 9 % of solids, the cellulose conversion was 76 % of the stoichiometric production. The ethanol yield and cellulose conversion rate were higher with SSF as opposed to SHF processes at 72 h of treatment.

  1. Ammonia fiber expansion (AFEX) pretreatment, enzymatic hydrolysis, and fermentation on empty palm fruit bunch fiber (EPFBF) for cellulosic ethanol production.

    Science.gov (United States)

    Lau, Ming J; Lau, Ming W; Gunawan, Christa; Dale, Bruce E

    2010-11-01

    Empty palm fruit bunch fiber (EPFBF), a readily available cellulosic biomass from palm processing facilities, is investigated as a potential carbohydrate source for cellulosic ethanol production. This feedstock was pretreated using ammonia fiber expansion (AFEX) and enzymatically hydrolyzed. The best tested AFEX conditions were at 135 °C, 45 min retention time, water to dry biomass loading of 1:1 (weight ratio), and ammonia to dry biomass loading of 1:1 (weight ratio). The particle size of the pretreated biomass was reduced post-AFEX. The optimized enzyme formulation consists of Accellerase (84 μL/g biomass), Multifect Xylanase (31 μL/g biomass), and Multifect Pectinase (24 μL/g biomass). This mixture achieved close to 90% of the total maximum yield within 72 h of enzymatic hydrolysis. Fermentation on the water extract of this biomass affirms that nutrients solely from the pretreated EPFBF can support yeast growth for complete glucose fermentation. These results suggest that AFEX-treated EPFBF can be used for cellulosic biofuels production because biomass recalcitrance has been overcome without reducing the fermentability of the pretreated materials.

  2. Reducing life cycle greenhouse gas emissions of corn ethanol by integrating biomass to produce heat and power at ethanol plants

    International Nuclear Information System (INIS)

    Kaliyan, Nalladurai; Morey, R. Vance; Tiffany, Douglas G.

    2011-01-01

    A life-cycle assessment (LCA) of corn ethanol was conducted to determine the reduction in the life-cycle greenhouse gas (GHG) emissions for corn ethanol compared to gasoline by integrating biomass fuels to replace fossil fuels (natural gas and grid electricity) in a U.S. Midwest dry-grind corn ethanol plant producing 0.19 hm 3 y -1 of denatured ethanol. The biomass fuels studied are corn stover and ethanol co-products [dried distillers grains with solubles (DDGS), and syrup (solubles portion of DDGS)]. The biomass conversion technologies/systems considered are process heat (PH) only systems, combined heat and power (CHP) systems, and biomass integrated gasification combined cycle (BIGCC) systems. The life-cycle GHG emission reduction for corn ethanol compared to gasoline is 38.9% for PH with natural gas, 57.7% for PH with corn stover, 79.1% for CHP with corn stover, 78.2% for IGCC with natural gas, 119.0% for BIGCC with corn stover, and 111.4% for BIGCC with syrup and stover. These GHG emission estimates do not include indirect land use change effects. GHG emission reductions for CHP, IGCC, and BIGCC include power sent to the grid which replaces electricity from coal. BIGCC results in greater reductions in GHG emissions than IGCC with natural gas because biomass is substituted for fossil fuels. In addition, underground sequestration of CO 2 gas from the ethanol plant's fermentation tank could further reduce the life-cycle GHG emission for corn ethanol by 32% compared to gasoline.

  3. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, Birgitte Kiær

    2004-01-01

    for ethanol fermentation. The resulting hydrolyzsates contain substances inhibitory to fermentation-depending on both the raw material (biomass) and the pre-treatment applied. An overview of the inhibitory effect on ethanol production by yeast and bacteria is presented. Apart from furans formed by sugar......An overview of the different inhibitors formed by pre-treatment of lignocellulosic materials and their inhibition of ethanol production in yeast and bacteria is given. Different high temperature physical pre-treatment methods are available to render the carbohydrates in lignocellulose accessible...... degradation, phenol monomers from lignin degradation are important co-factors in hydrolysate inhibition, and inhibitory effects of these aromatic compounds on different ethanol producing microorganisms is reviewed. The furans and phenols generally inhibited growth and ethanol production rate (Q...

  4. A biorefinery concept for simultaneous recovery of cellulosic ethanol and phenolic compounds from oil palm fronds: Process optimization

    International Nuclear Information System (INIS)

    Ofori-Boateng, Cynthia; Lee, Keat Teong; Saad, Bahruddin

    2014-01-01

    Highlights: • Biorefinery concept for simultaneous recovery of cellulose and phenolic compounds. • Sono-assisted organosolv/H 2 O 2 pretreatment was used to isolate palm fronds cellulose. • Optimum conditions for pretreatment: 60 °C, 40 min, 1:20 g/ml, 3% NaOH concentration. • Optimum conditions yielded 55.3% cellulose, 20.1 g/l glucose and 0.769 g/g ethanol. • Pretreatment liquor contained 4.691 mg GAE/g phenolics. - Abstract: In this study, process optimization of an ultrasonic-assisted organosolv/liquid oxidative pretreatment (SOP) of oil palm fronds (OPFs) for the simultaneous recovery of cellulose, bioethanol and biochemicals (i.e. phenolic compounds) in a biorefinery concept was carried out. The effects of time (30–60 min.), temperature (40–80 °C), NaOH concentration (1–5%) and sample:solvent ratio (1:10–1:50 g/ml) on cellulose content, bioethanol yield and total phenolics contents (TPC) after SOP were investigated. At optimum conditions of pretreatment (i.e. 60 °C, 40 min, 3% w/v aq. NaOH and 1:20 g/ml sample to solvent ratio), the recovered cellulose (55.30%) which served as substrate for enzymatic hydrolysis and subsequent fermentation yielded about 20.1 g/l glucose, 11.3 g/l xylose and 9.3 g/l bioethanol (yield of 0.769 g/g). The pretreatment liquor (mostly regarded as wastes) obtained at the optimum pretreatment conditions contained about 4.691 mg gallic acid equivalent (GAE)/g OPFs of TPC, 0.297 mg vanillic acid (VA)/g OPFs, 1.591 mg gallic acid (GA)/g OPFs and 0.331 mg quercetin (QU)/g OPFs. The pretreatment liquor was again analyzed to possess high antiradical scavenging activity (about 97.2%) compared to the synthetic antioxidant, 3,5-di-tert-butyl-4-hydroxytoluene (BHT) (80.7%) at 100 ppm. Thus one sustainable way of managing wastes in biorefinery is the recovery of multi-bioproducts (e.g. bioethanol and biochemicals) during the pretreatment process

  5. Economic feasibility of producing sweet sorghum as an ethanol feedstock in the southeastern United States

    International Nuclear Information System (INIS)

    Linton, Joseph A.; Miller, J. Corey; Little, Randall D.; Petrolia, Daniel R.; Coble, Keith H.

    2011-01-01

    This study examines the feasibility of producing sweet sorghum (Sorghum bicolor (L.) Moench) as an ethanol feedstock in the southeastern United States through representative counties in Mississippi. We construct enterprise budgets along with estimates of transportation costs to estimate sweet sorghum producers' breakeven costs for producing and delivering sweet sorghum biomass. This breakeven cost for the sweet sorghum producer is used to estimate breakeven costs for the ethanol producer based on wholesale ethanol price, production costs, and transportation and marketing costs. Stochastic models are developed to estimate profits for sweet sorghum and competing crops in two representative counties in Mississippi, with sweet sorghum consistently yielding losses in both counties. -- Highlights: → We examine the economic feasibility of sweet sorghum as an ethanol feedstock. → We construct enterprise budgets along with estimates of transportation costs. → We estimate breakeven costs for producing and delivering sweet sorghum biomass. → Stochastic models determine profits for sweet sorghum in two Mississippi counties.

  6. Footprint (A Screening Model for Estimating the Area of a Plume Produced from Gasoline Containing Ethanol

    Science.gov (United States)

    FOOTPRINT is a simple and user-friendly screening model to estimate the length and surface area of BTEX plumes in ground water produced from a spill of gasoline that contains ethanol. Ethanol has a potential negative impact on the natural biodegradation of BTEX compounds in groun...

  7. How much ethanol fuel can be produced from sugarcane in Hawaii

    OpenAIRE

    Kwong, John

    2014-01-01

    This study evaluates how much sugar ethanol Hawaii can produce. Fossilfuel reserves will diminish with time, and alternative energy may not be effectivein totally replacing combustible engines for all application. Factors important tosugar ethanol production and distribution are examined and evaluated.  

  8. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.

    Science.gov (United States)

    Hon, Shuen; Olson, Daniel G; Holwerda, Evert K; Lanahan, Anthony A; Murphy, Sean J L; Maloney, Marybeth I; Zheng, Tianyong; Papanek, Beth; Guss, Adam M; Lynd, Lee R

    2017-07-01

    Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. FOOTPRINT: A Screening Model for Estimating the Area of a Plume Produced From Gasoline Containing Ethanol

    Science.gov (United States)

    FOOTPRINT is a screening model used to estimate the length and surface area of benzene, toluene, ethylbenzene, and xylene (BTEX) plumes in groundwater, produced from a gasoline spill that contains ethanol.

  10. Stability of cellulose radicals produced by radiation in spices as studied by the EPR spectroscopy

    International Nuclear Information System (INIS)

    Lehner, K.; Stachowicz, W.

    2003-01-01

    The results are presented of EPR measurements on the stability of cellulose radicals produced in 26 popular spices irradiated with a dose of 7 kGy of gamma rays. EPR measurements were done with the use of an EPR spectrometer EPR-10 MINI at X band (microwave radiation of frequency 9.5 GHz), produced by St. Petersburg Instruments Ltd. The aim of the work was to prove the applicability of the EPR method for the control of irradiation in the investigated spices. (author)

  11. Comparison of cellulosic ethanol yields from midwestern maize and reconstructed tallgrass prairie systems managed for bioenergy

    Science.gov (United States)

    Maize- and prairie-based systems were investigated as cellulosic feedstocks by conducting a 9 ha side-by-side comparison on fertile soils in the Midwestern United States. Maize was grown continuously with adequate fertilization over years both with and without a winter rye cover crop, and the 31-spe...

  12. Draft Genome Sequence of Komagataeibacter rhaeticus Strain AF1, a High Producer of Cellulose, Isolated from Kombucha Tea.

    Science.gov (United States)

    Dos Santos, Renato Augusto Corrêa; Berretta, Andresa A; Barud, Hernane da Silva; Ribeiro, Sidney José Lima; González-García, Laura Natalia; Zucchi, Tiago Domingues; Goldman, Gustavo H; Riaño-Pachón, Diego M

    2014-07-24

    Here, we present the draft genome sequence of Komagatabaeicter rhaeticus strain AF1, which was isolated from Kombucha tea and is capable of producing high levels of cellulose. Copyright © 2014 dos Santos et al.

  13. Combined enzyme hydrolysis of cellulose and yeast fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Savarese, J J; Young, S D

    1978-08-01

    The conversion of cellulose, especially waste cellulosics, into utilizable materials, especially liquid fuel, is a most valuable outcome of cellulase technology pioneered at the US Army Laboratories, Natick, Mass. A process design has been proposed by Wilke for the conversion of cellulosic materials to ethanol and single-cell protein (SCP). The estimated ethanol production cost by this process is at the moment slightly more expensive than ethanol derived from petroleum. This paper deals with a process design improvement which will lower production cost for ethanol obtained via a Wilke or similar type system. We report a process by which the cellulase-catalyzed hydrolysis of cellulose to glucose is coupled with the yeast fermentation of the glucose produced to ethanol and SCP. Both processes take place in the same fermentor thus eliminating the need for the separation of glucose and a second reactor.

  14. ETHANOL PRECIPITATION OF GLYCOSYL HYDROLASES PRODUCED BY Trichoderma harzianum P49P11

    Directory of Open Access Journals (Sweden)

    M. A. Mariño

    2015-06-01

    Full Text Available AbstractThis study aimed to concentrate glycosyl hydrolases produced by Trichoderma harzianum P49P11 by ethanol precipitation. The variables tested besides ethanol concentration were temperature and pH. The precipitation with 90% (v/v ethanol at pH 5.0 recovered more than 98% of the xylanase activity, regard less of the temperature (5.0, 15.0, or 25.0 °C. The maximum recovery of cellulase activity as FPase was 77% by precipitation carried out at this same pH and ethanol concentration but at 5.0 °C. Therefore, ethanol precipitation can be considered to be an efficient technique for xylanase concentration and, to a certain extent, also for the cellulase complex.

  15. System analyse cellulose ethanol in combines - Combustion characterisation of lignin from cellulose based ethanol production; Systemanalys foer cellulosabaserad etanol i kombinat - Foerbraenningskarakterisering av lignin fraan cellulosabaserad etanolproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Lindstedt, Jan; Wingren, Anders; Magnusson, Staffan; Wiinikka, Henrik; Westbom, Urban; Lidman, Marcus; Groenberg, Carola

    2012-02-15

    In this work 3 different hydrolysed lignin fractions produced from Sugarcane Bagasse, Spruce and Wheat Straw were burned in a 150 kW horizontal furnace equipped with a powder burner to assess the combustion behaviour of hydrolysed lignin fuels. The combustion experiments showed that the feeding properties of all three lignin fractions were better compared to ordinary wood powder

  16. Cellulose utilization: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Bassham, J A

    1975-01-01

    To summarize, the conversion of cellulose to ethanol via hydrolysis to glucose followed by fermentation appears to be highly efficient in terms of energy conservation, yield, and quality of product, especially when reasonably high quality cellulosic waste is available.

  17. Alcohol for cellulosic material using plural ferments

    Energy Technology Data Exchange (ETDEWEB)

    Hoge, W H

    1977-02-22

    A process is described for producing ethanol (EtOH) from cellulosic materials by first hydrolyzing the material to sugars and then converting the sugars to alcohol by digestion and fermentation. Thus, fibrous cellulosic material obtained from municipal waste slurry was sterilized by autoclaving, followed by inoculation with Trichoderma viride cellulase and Saccharomyces cerevisiae. From 100 g of raw material, 25 mL of 95% EtOH was produced by this method.

  18. Selection of yeast able to produce ethanol from glucose at 40/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Hacking, A J; Taylor, I W.F.; Hanas, C M

    1984-05-01

    A total of 55 yeast strains selected from 7 genera known to ferment carbohydrates to ethanol were screened for their ability to ferment glucose to ethanol in shaken flask culture at 37/sup 0/, 40/sup 0/ and 45/sup 0/C. Yields of more than 50% of the theoretical maximum were obtained with 28 strains at 37/sup 0/C, but only 12 at 40/sup 0/C. Only 6 could grow at 45/sup 0/C, but they produced poor yields. In general Kluyveromyces strains were more thermotolerant than Saccharomyces and Candida strains, but Saccharomyces strains produced higher ethanol yields. The 8 strains with the highest yields at 40/sup 0/C were evaluated in batch fermentations. Three of these, two Saccharomyces and one Candida, were able to meet minimum commercial targets set at 8% (v/v) ethanol from 14% (w/v) glucose at 40/sup 0/C.

  19. Systemic analysis of production scenarios for bioethanol produced from ligno-cellulosic biomass [abstract

    Directory of Open Access Journals (Sweden)

    Ghysel, F.

    2010-01-01

    Full Text Available Defining alternatives for non-renewable energy sources constitutes a priority to the development of our societies. One of these alternatives is biofuels production starting from energy crops, agricultural wastes, forest products or wastes. In this context, a "second generation" biofuels production, aiming at utilizing the whole plant, including ligno-cellulosic (hemicelluloses, cellulose, lignin fractions (Ogier et al., 1999 that are not used for human food, would allow the reduction of the drawbacks of bioethanol production (Schoeling, 2007. However, numerous technical, economical, ethical and environmental questions are still pending. One of the aims of the BioEtha2 project, directed by the Walloon Agricultural Research Centre, is to define the position of bioethanol produced from ligno-cellulosic biomass among the different renewable energy alternatives that could be developed in Wallonia towards 2020. With this aim, and in order to answer the numerous questions in this field, the project aims at using tools and methods coming from the concept of "forecasting scenarios" (Sebillotte, 2002; Slegten et al., 2007; For-learn, 2008. This concept, based on a contemporary reality, aims to explore different possible scenarios for the future development of alternative sources of energy production. The principle is to evaluate, explore, possible futures of the studied problematic, through the establishment of possible evolution trajectories. We contribute to this prospective through a systemic approach (Vanloqueren, 2007 that allows lightening the existing interactions within the system "ligno-cellulosic biomass chain" without isolating it from its environment. We explain and sketch the two contexts needed to identify primary stakes. The global context includes inter-dependant and auto-regulating fields such as society, politics, technology and economy. These four fields influence each part of the "chain" with specific tools. However, the interest and

  20. 2015 Survey of Non-Starch Ethanol and Renewable Hydrocarbon Biofuels Producers

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lewis, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-22

    In order to understand the anticipated status of the industry for non-starch ethanol and renewable hydrocarbon biofuels as of the end of calendar year 2015, the National Renewable Energy Laboratory (NREL) conducted its first annual survey update of U.S. non-starch ethanol and renewable hydrocarbon biofuels producers. This report presents the results of this survey, describes the survey methodology, and documents important changes since the 2013 survey.

  1. The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe

    Directory of Open Access Journals (Sweden)

    Bauen Ausilio

    2009-08-01

    Full Text Available Abstract Background Calculating the greenhouse gas savings that may be attributed to biofuels is problematic because production systems are inherently complex and methods used to quantify savings are subjective. Differing approaches and interpretations have fuelled a debate about the environmental merit of biofuels, and consequently about the level of policy support that can be justified. This paper estimates and compares emissions from plausible supply chains for lignocellulosic ethanol production, exemplified using data specific to the UK and Sweden. The common elements that give rise to the greatest greenhouse gas emissions are identified and the sensitivity of total emissions to variations in these elements is estimated. The implications of including consequential impacts including indirect land-use change, and the effects of selecting alternative allocation methods on the interpretation of results are discussed. Results We find that the most important factors affecting supply chain emissions are the emissions embodied in biomass production, the use of electricity in the conversion process and potentially consequential impacts: indirect land-use change and fertiliser replacement. The large quantity of electricity consumed during enzyme manufacture suggests that enzymatic conversion processes may give rise to greater greenhouse gas emissions than the dilute acid conversion process, even though the dilute acid process has a somewhat lower ethanol yield. Conclusion The lignocellulosic ethanol supply chains considered here all lead to greenhouse gas savings relative to gasoline An important caveat to this is that if lignocellulosic ethanol production uses feedstocks that lead to indirect land-use change, or other significant consequential impacts, the benefit may be greatly reduced. Co-locating ethanol, electricity generation and enzyme production in a single facility may improve performance, particularly if this allows the number of energy

  2. Pilot plant studies of the bioconversion of cellulose and production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.

    1977-01-31

    Progress is reported in several areas of research. The following cellulosic raw materials were selected for study: wheat, barley, and rice straws, rice hulls, sorghum, corn stover, cotton gin trash, newsprint, ground wood, and masonite steam-treated Douglas fir and redwood. Samples were collected, prepared, and analyzed for hexosans, pentosans, lignin, ash, and protein. Results of acid extraction and enzymatic hydrolysis are discussed. Yields of glucose, polyglucose, xylose, and arabinose are reported. Progress in process design and economic studies, as well as pilot plant process development and design studies, is summarized. (JGB)

  3. Process development studies on the bioconversion of cellulose and production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.

    1978-02-01

    Progress is reported on studies on the NO--O/sub 2/ pretreatment of wheat straw prior to enzymatic hydrolysis. Studies of the conversion of xylose to ethanol by Fusarium oxysporum were continued. Progress is also reported on pilot plant process development and design studies on continuous cellulase production, enzyme recovery, batch cellulase enzyme production from Trichoderma viride, and kinetic modelling of the enzymatic hydrolysis of 5 percent newsprint. (JGB)

  4. Pilot plant studies of the bioconversion of cellulose and production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.

    1977-09-30

    Work for the period July 1 to September 30, 1977 is summarized briefly. Results of the following studies are reported: analysis and evaluation of potential raw materials--chemical analysis of the Kudzu plant and effect of NO/sub x/ pretreatments on the hydrolysis of wheat straw; utilization of hemicellulose sugars; process design and economic studies--hydrolysis process and ethanol fermentation; pilot plant process development and design studies--enhanced cellulase production and continuous hydrolysis. (JGB)

  5. Bioconversion of cellulose to liquid fuel (ethanol). Final report, Stage 2, 1983-06-30

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B

    1983-01-01

    The process routes of the conversion have been investigated. The material which contains lignocellulose should be pretreated, and the separate processes are to be integrated. The price of raw materials and enzymes influences the process economy. The efficiency of biocatalysts on fermentation and saccharification are being studied and the reuse of enzymes is discussed. The process for the production of ethanol out of lignocellulose is shown to be very complicated. The optimization of the process will necessitate computerized simulation.

  6. Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    McAloon, A.; Taylor, F.; Yee, W.; Ibsen, K.; Wooley, R.

    2000-10-25

    The mature corn-to-ethanol industry has many similarities to the emerging lignocellulose-to-ethanol industry. It is certainly possible that some of the early practitioners of this new technology will be the current corn ethanol producers. In order to begin to explore synergies between the two industries, a joint project between two agencies responsible for aiding these technologies in the Federal government was established. This joint project of the USDA-ARS and DOE/NREL looked at the two processes on a similar process design and engineering basis, and will eventually explore ways to combine them. This report describes the comparison of the processes, each producing 25 million annual gallons of fuel ethanol. This paper attempts to compare the two processes as mature technologies, which requires assuming that the technology improvements needed to make the lignocellulosic process commercializable are achieved, and enough plants have been built to make the design well-understood. Ass umptions about yield and design improvements possible from continued research were made for the emerging lignocellulose process. In order to compare the lignocellulose-to-ethanol process costs with the commercial corn-to-ethanol costs, it was assumed that the lignocellulose plant was an Nth generation plant, built after the industry had been sufficiently established to eliminate first-of-a-kind costs. This places the lignocellulose plant costs on a similar level with the current, established corn ethanol industry, whose costs are well known. The resulting costs of producing 25 million annual gallons of fuel ethanol from each process were determined. The figure below shows the production cost breakdown for each process. The largest cost contributor in the corn starch process is the feedstock; for the lignocellulosic process it is the capital cost, which is represented by depreciation cost on an annual basis.

  7. Chronic ethanol consumption in rats produces opioid antinociceptive tolerance through inhibition of mu opioid receptor endocytosis.

    Directory of Open Access Journals (Sweden)

    Li He

    Full Text Available It is well known that the mu-opioid receptor (MOR plays an important role in the rewarding properties of ethanol. However, it is less clear how chronic ethanol consumption affects MOR signaling. Here, we demonstrate that rats with prolonged voluntary ethanol consumption develop antinociceptive tolerance to opioids. Signaling through the MOR is controlled at many levels, including via the process of endocytosis. Importantly, agonists at the MOR that promote receptor endocytosis, such as the endogenous peptides enkephalin and β-endorphin, show a reduced propensity to promote antinociceptive tolerance than do agonists, like morphine, which do not promote receptor endocytosis. These observations led us to examine whether chronic ethanol consumption produced opioid tolerance by interfering with MOR endocytosis. Indeed, here we show that chronic ethanol consumption inhibits the endocytosis of MOR in response to opioid peptide. This loss of endocytosis was accompanied by a dramatic decrease in G protein coupled receptor kinase 2 (GRK2 protein levels after chronic drinking, suggesting that loss of this component of the trafficking machinery could be a mechanism by which endocytosis is lost. We also found that MOR coupling to G-protein was decreased in ethanol-drinking rats, providing a functional explanation for loss of opioid antinociception. Together, these results suggest that chronic ethanol drinking alters the ability of MOR to endocytose in response to opioid peptides, and consequently, promotes tolerance to the effects of opioids.

  8. Uncertainty in techno-economic estimates of cellulosic ethanol production due to experimental measurement uncertainty

    Directory of Open Access Journals (Sweden)

    Vicari Kristin J

    2012-04-01

    Full Text Available Abstract Background Cost-effective production of lignocellulosic biofuels remains a major financial and technical challenge at the industrial scale. A critical tool in biofuels process development is the techno-economic (TE model, which calculates biofuel production costs using a process model and an economic model. The process model solves mass and energy balances for each unit, and the economic model estimates capital and operating costs from the process model based on economic assumptions. The process model inputs include experimental data on the feedstock composition and intermediate product yields for each unit. These experimental yield data are calculated from primary measurements. Uncertainty in these primary measurements is propagated to the calculated yields, to the process model, and ultimately to the economic model. Thus, outputs of the TE model have a minimum uncertainty associated with the uncertainty in the primary measurements. Results We calculate the uncertainty in the Minimum Ethanol Selling Price (MESP estimate for lignocellulosic ethanol production via a biochemical conversion process: dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis and co-fermentation of the resulting sugars to ethanol. We perform a sensitivity analysis on the TE model and identify the feedstock composition and conversion yields from three unit operations (xylose from pretreatment, glucose from enzymatic hydrolysis, and ethanol from fermentation as the most important variables. The uncertainty in the pretreatment xylose yield arises from multiple measurements, whereas the glucose and ethanol yields from enzymatic hydrolysis and fermentation, respectively, are dominated by a single measurement: the fraction of insoluble solids (fIS in the biomass slurries. Conclusions We calculate a $0.15/gal uncertainty in MESP from the TE model due to uncertainties in primary measurements. This result sets a lower bound on the error bars of

  9. Applying Adaptive Agricultural Management & Industrial Ecology Principles to Produce Lower- Carbon Ethanol from California Energy Beets

    Science.gov (United States)

    Alexiades, Anthy Maria

    The life cycle assessment of a proposed beet-to-ethanol pathway demonstrates how agricultural management and industrial ecology principles can be applied to reduce greenhouse gas emissions, minimize agrochemical inputs and waste, provide ecosystem services and yield a lower-carbon fuel from a highly land-use efficient, first-generation feedstock cultivated in California. Beets grown in California have unique potential as a biofuel feedstock. A mature agricultural product with well-developed supply chains, beet-sugar production in California has contracted over recent decades, leaving idle production capacity and forcing growers to seek other crops for use in rotation or find a new market for beets. California's Low Carbon Fuel Standard (LCFS) faces risk of steeply-rising compliance costs, as greenhouse gas reduction targets in the transportation sector were established assuming commercial volumes of lower-carbon fuels from second-generation feedstocks -- such as residues, waste, algae and cellulosic crops -- would be available by 2020. The expected shortfall of cellulosic ethanol has created an immediate need to develop lower-carbon fuels from readily available feedstocks using conventional conversion technologies. The life cycle carbon intensity of this ethanol pathway is less than 28 gCO2e/MJEthanol: a 72% reduction compared to gasoline and 19% lower than the most efficient corn ethanol pathway (34 gCO2e/MJ not including indirect land use change) approved under LCFS. The system relies primarily on waste-to-energy resources; nearly 18 gCO2e/MJ are avoided by using renewable heat and power generated from anaerobic digestion of fermentation stillage and gasification of orchard residues to meet 88% of the facility's steam demand. Co-products displace 2 gCO2e/MJ. Beet cultivation is the largest source of emissions, contributing 15 gCO 2e/MJ. The goal of the study is to explore opportunities to minimize carbon intensity of beet-ethanol and investigate the potential

  10. Radiation pretreatment of cellulosic wastes and immobilization of cells producing cellulase for their conversion to glucose

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1988-01-01

    Radiation pretreatment of cellulosic wastes such as saw dust and chaff was studied by using electron beam accelerator, in which irradiation effect was increased by increasing irradiation dose and dose rate, by after heating irradiated materials at 100∼140deg C, and by irradiation in the addition of alkaline solution. Trichoderma reesei cells producing cellulase were immobilized by using fibrous porous carrier obtained from radiation polymerization. The filter paper, cellobiose, and CMC activities in the immobilized growing cells were higher than those in free cells. The activity in the immobilized cells obtained with hydrophobic carrier was higher than that obtained with hydrophilic one. Durability of the immobilized cells was examined by repeated batch culture. It was found that the enzyme solution produced in the culture of the immobilized cells can hydrolyze effectively saw dust pretreated by radiation. (author)

  11. Low-cost, environmentally friendly route for producing CFRP laminates with microfibrillated cellulose interphase

    Directory of Open Access Journals (Sweden)

    B. E. B. Uribe

    2017-01-01

    Full Text Available In this paper, a cost-effective and eco-friendly method to improve mechanical performance in continuous carbon fiber-reinforced polymer (CFRP matrix composites is presented. Unsized fiber fabric preforms are coated with self-assembling sugarcane bagasse microfibrillated cellulose, and undergo vacuum-assisted liquid epoxy resin infusion to produce solid laminates after curing at ambient temperature. Quasi-static tensile, flexural and short beam testing at room temperature indicated that the stiffness, ultimate strength and toughness at ultimate load of the brand-new two-level hierarchical composite are substantially higher than in baseline, unsized fiber-reinforced epoxy laminate. Atomic force microscopy for height and phase imaging, along with scanning electron microscopy for the fracture surface survey, revealed a 400 nm-thick fiber/matrix interphase wherein microfibrillated cellulose exerts strengthening and toughening roles in the hybrid laminate. Market expansion of this class of continuous fiber-reinforced-polymer matrix composites exhibiting remarkable mechanical performance/cost ratios is thus conceivable.

  12. 稀碱预处理棕榈残渣制备纤维乙醇%Pretreatment of oil palm residues by dilute alkali for cellulosic ethanol production

    Institute of Scientific and Technical Information of China (English)

    张海燕; 周玉杰; 李晋平; 戴玲妹; 刘德华; 张建安; Yuen May Choo; Soh Kheang Loh

    2013-01-01

    In the study, we used oil palm residues (empty fruit bunch, EFB) as raw material to produce cellulosic ethanol by pretreatment, enzymatic hydrolysis and fermentation. Firstly, the pretreatment of EFB with alkali, alkali/hydrogen peroxide and the effects on the components and enzymatic hydrolysis of cellulose were studied. The results show that dilute alkali was the suitable pretreatment method and the conditions were first to soak the substrate with 1% sodium hydroxide with a solid-liquid ratio of 1:10 at 40 ℃ for 24 h, and then subjected to 121 ℃ for 30 min. Under the conditions, EFB solid recovery was 74.09%, and glucan, xylan and lignin content were 44.08%, 25.74% and 13.89%, respectively. After separated with alkali solution, the pretreated EFB was washed and hydrolyzed for 72 h with 5% substrate concentration and 30 FPU/g dry mass (DM) enzyme loading, and the conversion of glucan and xylan reached 84.44% and 89.28%, respectively. We further investigated the effects of substrate concentration and enzyme loading on enzymatic hydrolysis and ethanol batch simultaneous saccharification and fermentation (SSF). The results show that when enzyme loading was 30 FPU/g DM and substrate concentration was increased from 5% to 25%, ethanol concentration were 9.76 g/L and 35.25 g/L after 72 h fermentation with Saccharomyces cerevisiae (inoculum size 5%, V/V), which was 79.09% and 56.96% of ethanol theory yield.%以棕榈残渣(Empty fruit bunch,EFB)为原料,通过预处理、酶解、发酵等过程制备纤维乙醇.首先对比了碱、碱/过氧化氢等预处理条件对棕榈残渣组成及酶解的影响,结果表明稀碱预处理效果较好.适宜的稀碱预处理条件为:NaOH浓度为1%,固液比为1∶10,在40℃浸泡24 h后于121℃下保温30 min,在该条件下,EFB的固体回收率为74.09%,纤维素、半纤维素和木质素的含量分别为44.08%、25.74%和13.89%.对该条件下预处理后的固体样品,以底物浓度5

  13. Pie waste - A component of food waste and a renewable substrate for producing ethanol.

    Science.gov (United States)

    Magyar, Margaret; da Costa Sousa, Leonardo; Jayanthi, Singaram; Balan, Venkatesh

    2017-04-01

    Sugar-rich food waste is a sustainable feedstock that can be converted into ethanol without an expensive thermochemical pretreatment that is commonly used in first and second generation processes. In this manuscript we have outlined the pie waste conversion to ethanol through a two-step process, namely, enzyme hydrolysis using commercial enzyme products mixtures and microbial fermentation using yeast. Optimized enzyme cocktail was found to be 45% alpha amylase, 45% gamma amylase, and 10% pectinase at 2.5mg enzyme protein/g glucan produced a hydrolysate with high glucose concentration. All three solid loadings (20%, 30%, and 40%) produced sugar-rich hydrolysates and ethanol with little to no enzyme or yeast inhibition. Enzymatic hydrolysis and fermentation process mass balance was carried out using pie waste on a 1000g dry weight basis that produced 329g ethanol at 20% solids loading. This process clearly demonstrate how food waste could be efficiently converted to ethanol that could be used for making biodiesel by reacting with waste cooking oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids.

    Science.gov (United States)

    Lian, Jieni; Chen, Shulin; Zhou, Shuai; Wang, Zhouhong; O'Fallon, James; Li, Chun-Zhu; Garcia-Perez, Manuel

    2010-12-01

    This paper describes a new scheme to convert anhydrosugars found in pyrolysis oils into ethanol and lipids. Pyrolytic sugars were separated from phenols by solvent extraction and were hydrolyzed into glucose using sulfuric acid as a catalyst. Toxicological studies showed that phenols and acids were the main species inhibiting growth of the yeast Saccharomyces cerevisiae. The sulfuric acids, and carboxylic acids from the bio-oils, were neutralized with Ba(OH)(2). The phase rich in sugar was further detoxified with activated carbon. The resulting aqueous phase rich in glucose was fermented with three different yeasts: S. cerevisiae to produce ethanol, and Cryptococcus curvatus and Rhodotorula glutinis to produce lipids. Yields as high as 0.473 g ethanol/g glucose and 0.167 g lipids/g sugar (0.266 g ethanol equivalent/g sugar), were obtained. These results confirm that pyrolytic sugar fermentation to produce ethanol is more efficient than for lipid production. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Performance of CSTR-EGSB-SBR system for treating sulfate-rich cellulosic ethanol wastewater and microbial community analysis.

    Science.gov (United States)

    Shan, Lili; Zhang, Zhaohan; Yu, Yanling; Ambuchi, John Justo; Feng, Yujie

    2017-06-01

    Performance and microbial community composition were evaluated in a two-phase anaerobic and aerobic system treating sulfate-rich cellulosic ethanol wastewater (CEW). The system was operated at five different chemical oxygen demand (COD)/SO 4 2- ratios (63.8, 26.3, 17.8, 13.7, and 10.7). Stable performance was obtained for total COD removal efficiency (94.5%), sulfate removal (89.3%), and methane production rate (11.5 L/day) at an organic loading rate of 32.4 kg COD/(m 3 ·day). The acidogenic reactor made a positive contribution to net VFAs production (2318.1 mg/L) and sulfate removal (60.9%). Acidogenic bacteria (Megasphaera, Parabacteroides, unclassified Ruminococcaceae spp., and Prevotella) and sulfate-reducing bacteria (Butyrivibrio, Megasphaera) were rich in the acidogenic reactor. In the methanogenic reactor, high diversity of microorganisms corresponded with a COD removal contribution of 83.2%. Moreover, methanogens (Methanosaeta) were predominant, suggesting that these organisms played an important role in the acetotrophic methanogenesis pathway. The dominant aerobic bacteria (Truepera) appeared to have been responsible for the COD removal of the SBR. These results indicate that dividing the sulfate reduction process could effectively minimize sulfide toxicity, which is important for the successful operation of system treating sulfate-rich CEW.

  16. Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion.

    Science.gov (United States)

    Buratti, C; Barbanera, M; Bartocci, P; Fantozzi, F

    2015-06-01

    The influence of the addition of cellulosic ethanol residue (CER) on the combustion of Indonesian sub-bituminous coal was analyzed by non isothermal thermo-gravimetric analysis (TGA). The effect of blends ratio (5%, 10%, 15% and 20%), interaction mechanism, and heating rate (5°C/min, 10°C/min, 15°C/min, 20°C/min) on the combustion process was studied. The results show that the increase of the blending ratio allows to achieve the increase of the combustibility index from 7.49E-08 to 5.26E-07 at the blending ratio of 20%. Two types of non-isothermal kinetic analysis methods (Ozawa-Flynn-Wall and Vyazovkin) were also applied. Results indicate that the activation energy of the blends decreases with increasing the conversion rate. In particular, the blending ratio of 20% confirms to have the better combustion performance, with the average value of the activation energy equal to 41.10 kJ/mol obtained by Ozawa-Flynn-Wall model and 31.17 kJ/mol obtained by Vyazovkin model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Identification and Characterization of Non-Cellulose-Producing Mutants of Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis

    Science.gov (United States)

    Deng, Ying; Nagachar, Nivedita; Xiao, Chaowen; Tien, Ming

    2013-01-01

    The acs operon of Gluconacetobacter is thought to encode AcsA, AcsB, AcsC, and AcsD proteins that constitute the cellulose synthase complex, required for the synthesis and secretion of crystalline cellulose microfibrils. A few other genes have been shown to be involved in this process, but their precise role is unclear. We report here the use of Tn5 transposon insertion mutagenesis to identify and characterize six non-cellulose-producing (Cel−) mutants of Gluconacetobacter hansenii ATCC 23769. The genes disrupted were acsA, acsC, ccpAx (encoding cellulose-complementing protein [the subscript “Ax” indicates genes from organisms formerly classified as Acetobacter xylinum]), dgc1 (encoding guanylate dicyclase), and crp-fnr (encoding a cyclic AMP receptor protein/fumarate nitrate reductase transcriptional regulator). Protein blot analysis revealed that (i) AcsB and AcsC were absent in the acsA mutant, (ii) the levels of AcsB and AcsC were significantly reduced in the ccpAx mutant, and (iii) the level of AcsD was not affected in any of the Cel− mutants. Promoter analysis showed that the acs operon does not include acsD, unlike the organization of the acs operon of several strains of closely related Gluconacetobacter xylinus. Complementation experiments confirmed that the gene disrupted in each Cel− mutant was responsible for the phenotype. Quantitative real-time PCR and protein blotting results suggest that the transcription of bglAx (encoding β-glucosidase and located immediately downstream from acsD) was strongly dependent on Crp/Fnr. A bglAx knockout mutant, generated via homologous recombination, produced only ∼16% of the wild-type cellulose level. Since the crp-fnr mutant did not produce any cellulose, Crp/Fnr may regulate the expression of other gene(s) involved in cellulose biosynthesis. PMID:24013627

  18. Lignocellulose-Adapted Endo-Cellulase Producing Streptomyces Strains for Bioconversion of Cellulose-Based Materials.

    Science.gov (United States)

    Ventorino, Valeria; Ionata, Elena; Birolo, Leila; Montella, Salvatore; Marcolongo, Loredana; de Chiaro, Addolorata; Espresso, Francesco; Faraco, Vincenza; Pepe, Olimpia

    2016-01-01

    Twenty-four Actinobacteria strains, isolated from Arundo donax, Eucalyptus camaldulensis and Populus nigra biomass during natural biodegradation and with potential enzymatic activities specific for the degradation of lignocellulosic materials, were identified by a polyphasic approach. All strains belonged to the genus Streptomyces ( S .) and in particular, the most highly represented species was Streptomyces argenteolus representing 50% of strains, while 8 strains were identified as Streptomyces flavogriseus (synonym S. flavovirens ) and Streptomyces fimicarius (synonyms Streptomyces acrimycini, Streptomyces baarnensis, Streptomyces caviscabies , and Streptomyces flavofuscus ), and the other four strains belonged to the species Streptomyces drozdowiczii, Streptomyces rubrogriseus, Streptomyces albolongus , and Streptomyces ambofaciens . Moreover, all Streptomyces strains, tested for endo and exo-cellulase, cellobiase, xylanase, pectinase, ligninase, peroxidase, and laccase activities using qualitative and semi-quantitative methods on solid growth medium, exhibited multiple enzymatic activities (from three to six). The 24 strains were further screened for endo-cellulase activity in liquid growth medium and the four best endo-cellulase producers ( S. argenteolus AE58P, S. argenteolus AE710A, S. argenteolus AE82P, and S. argenteolus AP51A) were subjected to partial characterization and their enzymatic crude extracts adopted to perform saccharification experiments on A. donax pretreated biomass. The degree of cellulose and xylan hydrolysis was evaluated by determining the kinetics of glucose and xylose release during 72 h incubation at 50°C from the pretreated biomass in the presence of cellulose degrading enzymes (cellulase and β-glucosidase) and xylan related activities (xylanase and β-xylosidase). The experiments were carried out utilizing the endo-cellulase activities from the selected S. argenteolus strains supplemented with commercial β-gucosidase and

  19. Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    McAloon, Andrew [U.S. Department of Agriculture, Washington D.C. (United States); Taylor, Frank [U.S. Department of Agriculture, Washington D.C. (United States); Yee, Winnie [U.S. Department of Agriculture, Washington D.C. (United States); Ibsen, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wooley, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2000-10-01

    This report describes the comparison of the processes, each producing 25 million annual gallons of fuel ethanol. This paper attempts to compare the two processes as mature technologies, which requires assuming that the technology improvements needed to make the lignocellulosic process commercializable are achieved, and enough plants have been built to make the design well-understood.

  20. Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept.

    Science.gov (United States)

    Yang, Sheng; Zhang, Yue; Yue, Wen; Wang, Wei; Wang, Yun-Yan; Yuan, Tong-Qi; Sun, Run-Cang

    2016-01-01

    Due to the unsustainable consumption of fossil resources, great efforts have been made to convert lignocellulose into bioethanol and commodity organic compounds through biological methods. The conversion of cellulose is impeded by the compactness of plant cell wall matrix and crystalline structure of the native cellulose. Therefore, appropriate pretreatment and even post-treatment are indispensable to overcome this problem. Additionally, an adequate utilization of coproduct lignin will be important for improving the economic viability of modern biorefinery industries. The effectiveness of moderate alkaline ethanol post-treatment on the bioconversion efficiency of cellulose in the acid-steam-exploded corn stover was investigated in this study. Results showed that an increase of the alcoholic sodium hydroxide (NaOH) concentration from 0.05 to 4% led to a decrease in the lignin content in the post-treated samples from 32.8 to 10.7%, while the cellulose digestibility consequently increased. The cellulose conversion of the 4% alcoholic NaOH integrally treated corn stover reached up to 99.3% after 72 h, which was significantly higher than that of the acid steam exploded corn stover without post-treatment (57.3%). In addition to the decrease in lignin content, an expansion of cellulose I lattice induced by the 4% alcoholic NaOH post-treatment played a significant role in promoting the enzymatic hydrolysis of corn stover. More importantly, the lignin fraction (AL) released during the 4% alcoholic NaOH post-treatment and the lignin-rich residue (EHR) remained after the enzymatic hydrolysis of the 4% alcoholic NaOH post-treated acid-steam-exploded corn stover were employed to synthesize lignin-phenol-formaldehyde (LPF) resins. The plywoods prepared with the resins exhibit satisfactory performances. An alkaline ethanol system with an appropriate NaOH concentration could improve the removal of lignin and modification of the crystalline structure of cellulose in acid

  1. Cellulosic ethanol: interactions between cultivar and enzyme loading in wheat straw processing

    Directory of Open Access Journals (Sweden)

    Felby Claus

    2010-11-01

    Full Text Available Abstract Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield from straw of five winter wheat cultivars at three enzyme loadings (2.5, 5 and 10 FPU g-1 dm pretreated straw and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher yields than coarse particles. The amount of coarse particles from the cultivar with lowest sugar yield was negatively correlated with sugar conversion. Conclusions We conclude that genetic differences in sugar yield and response to enzyme loading exist for wheat straw at pilot scale, depending on differences in removal of hemicellulose, accumulation of ash and particle-size distribution introduced by the pretreatment.

  2. Economic and environmental assessment of cellulosic ethanol production scenarios annexed to a typical sugar mill.

    Science.gov (United States)

    Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2017-01-01

    In this work different biorefinery scenarios were investigated, concerning the co-production of bioethanol and electricity from available lignocellulose at a typical sugar mill, as possible extensions to the current combustion of bagasse for steam and electricity production and burning trash on-filed. In scenario 1, the whole bagasse and brown leaves is utilized in a biorefinery and coal is burnt in the existing inefficient sugar mill boiler. Scenario 2 & 3 are assumed with a new centralized CHP unit without/with coal co-combustion, respectively. Also, through scenarios 4 & 5, the effect of water insoluble loading were studied. All scenarios provided energy for the sugarmill and the ethanol plant, with the export of surplus electricity. Economic analysis determined that scenario 1 was the most viable scenario due to less capital cost and economies-of scale. Based on Life Cycle Assessment (LCA) results, scenario 2 outperformed the other scenarios, while three scenarios showed lower contribution to environmental burdens than the current situation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Impacts of facility size and location decisions on ethanol production cost

    International Nuclear Information System (INIS)

    Kocoloski, Matt; Michael Griffin, W.; Scott Matthews, H.

    2011-01-01

    Cellulosic ethanol has been identified as a promising alternative to fossil fuels to provide energy for the transportation sector. One of the obstacles cellulosic ethanol must overcome in order to contribute to transportation energy demand is the infrastructure required to produce and distribute the fuel. Given a nascent cellulosic ethanol industry, locating cellulosic ethanol refineries and creating the accompanying infrastructure is essentially a greenfield problem that may benefit greatly from quantitative analysis. This study models cellulosic ethanol infrastructure investment using a mixed integer program (MIP) that locates ethanol refineries and connects these refineries to the biomass supplies and ethanol demands in a way that minimizes the total cost. For the single- and multi-state regions examined in this study, larger facilities can decrease ethanol costs by $0.20-0.30 per gallon, and placing these facilities in locations that minimize feedstock and product transportation costs can decrease ethanol costs by up to $0.25 per gallon compared to uninformed placement that could result from influences such as local subsidies to encourage economic development. To best benefit society, policies should allow for incentives that encourage these low-cost production scenarios and avoid politically motivated siting of plants. - Research highlights: → Mixed-integer programming can be used to model ethanol infrastructure investment. → Large cellulosic ethanol facilities can decrease production cost by $0.20/gallon. → Optimized facility placement can save $0.25/gallon.

  4. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose.

    Science.gov (United States)

    Lee, Won-Heong; Jin, Yong-Su

    2017-09-28

    In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathway-a phosphorolytic pathway based on a mutant cellodextrin transporter (CDT-1 (F213L)) and cellobiose phosphorylase (SdCBP)-was investigated by comparing with a hydrolytic pathway based on the same transporter and an intracellular β-glucosidase (GH1-1) for their SSF performances under various conditions. Whereas the phosphorolytic and hydrolytic cellobiose-fermenting S. cerevisiae strains performed similarly under the anoxic SSF conditions, the hydrolytic S. cerevisiae performed slightly better than the phosphorolytic S. cerevisiae under the microaerobic SSF conditions. Nonetheless, the phosphorolytic S. cerevisiae expressing the mutant CDT-1 showed better ethanol production than the glucose-fermenting S. cerevisiae with an extracellular β-glucosidase, regardless of SSF conditions. These results clearly prove that introduction of the intracellular cellobiose metabolic pathway into yeast can be effective on cellulosic ethanol production in SSF. They also demonstrate that enhancement of cellobiose transport activity in engineered yeast is the most important factor affecting the efficiency of SSF of cellulose.

  5. Draft Genome Sequence of Komagataeibacter intermedius Strain AF2, a Producer of Cellulose, Isolated from Kombucha Tea.

    Science.gov (United States)

    Dos Santos, Renato Augusto Corrêa; Berretta, Andresa Aparecida; Barud, Hernane da Silva; Ribeiro, Sidney José Lima; González-García, Laura Natalia; Zucchi, Tiago Domingues; Goldman, Gustavo H; Riaño-Pachón, Diego M

    2015-12-03

    Here, we present the draft genome sequence of Komagataeibacter intermedius strain AF2, which was isolated from Kombucha tea and is capable of producing cellulose, although at lower levels compared to another bacterium from the same environment, K. rhaeticus strain AF1. Copyright © 2015 dos Santos et al.

  6. Understanding longitudinal wood fiber ultra-structure for producing cellulose nanofibrils using disk milling with diluted acid prehydrolysis

    Science.gov (United States)

    Yanlin Qin; Xueqing Qiu; Junyong Zhu

    2016-01-01

    Here we used dilute oxalic acid to pretreat a kraft bleached Eucalyptus pulp (BEP) fibers to facilitate mechanical fibrillation in producing cellulose nanofibrils using disk milling with substantial mechanical energy savings. We successfully applied a reaction kinetics based combined hydrolysis factor (CHFx) as a severity factor to quantitatively...

  7. The structural and functional contributions of β-glucosidase-producing microbial communities to cellulose degradation in composting.

    Science.gov (United States)

    Zang, Xiangyun; Liu, Meiting; Fan, Yihong; Xu, Jie; Xu, Xiuhong; Li, Hongtao

    2018-01-01

    Compost habitats sustain a vast ensemble of microbes that engender the degradation of cellulose, which is an important part of global carbon cycle. β-Glucosidase is the rate-limiting enzyme of degradation of cellulose. Thus, analysis of regulation of β-glucosidase gene expression in composting is beneficial to a better understanding of cellulose degradation mechanism. Genetic diversity and expression of β-glucosidase-producing microbial communities, and relationships of cellulose degradation, metabolic products and the relative enzyme activity during natural composting and inoculated composting were evaluated. Compared with natural composting, adding inoculation agent effectively improved the degradation of cellulose, and maintained high level of the carboxymethyl cellulose (CMCase) and β-glucosidase activities in thermophilic phase. Gene expression analysis showed that glycoside hydrolase family 1 (GH1) family of β-glucosidase genes contributed more to β-glucosidase activity in the later thermophilic phase in inoculated compost. In the cooling phase of natural compost, glycoside hydrolase family 3 (GH3) family of β-glucosidase genes contributed more to β-glucosidase activity. Intracellular β-glucosidase activity played a crucial role in the regulation of β-glucosidase gene expression, and upregulation or downregulation was also determined by extracellular concentration of glucose. At sufficiently high glucose concentrations, the functional microbial community in compost was altered, which may contribute to maintaining β-glucosidase activity despite the high glucose content. This research provides an ecological functional map of microorganisms involved in carbon metabolism in cattle manure-rice straw composting. The performance of the functional microbial groups in the two composting treatments is different, which is related to the cellulase activity and cellulose degradation, respectively.

  8. Scale up of ethanol production using pulp mill wastewater sludge by cellulase and saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kunchada Sangasintu; Petchporn Chawakitchareon

    2010-01-01

    This study aimed to evaluate the potential use of pulp mill wastewater sludge as substrate in ethanol production. The simultaneous saccharification and fermentation process was conducted by using Saccharomyces cerevisiae TISTR 5339 under optimum proportion of cellulase and pulp mill wastewater sludge. The ethanol production from cellulosic materials in simultaneous saccharification and fermentation needs cooperation between cellulase and yeast. The cellulase hydrolyzes cellulose to sugar while yeast utilizes sugar to produce ethanol. The pulp mill wastewater sludge has an average content of 73.3 % hemi cellulose, 67.1 % alpha cellulose, 4.7 % beta cellulose and 1.4 % gamma cellulose. The experimental results indicated that the volume of the ethanol tend to increase with time, providing the maximum ethanol yield of 0.69 g/g on the 7"t"h day, the last day of the experiment. The ethanol production was scaled up in 5 L fermentor under optimum proportion and increased the fermentation period. It was found that the ethanol production gave the maximum ethanol yield of 1.14 g/g on the 9"t"h day of the totally 13 days experimentation. These results showed that the cellulose from pulp mill wastewater sludge was as effective substrate for ethanol production and alternative energy for the future. (author)

  9. Thermo tolerant and ethanol producing saccharomyces cerevisiae mutants using gamma radiation

    International Nuclear Information System (INIS)

    Karima, H.M.; Ismail, A.A.; El-Batal, A.I.

    1997-01-01

    Gene manipulation now plays the main role in fermentation industries. However, throughout ethanol production processes, it appeared the requirements for the selection of higher-producing isolate(s) associated, at the same time, with heat-resistant to overcome higher degrees above 30-35 degree, a step which, actually, will reduce final - producing costs. A total of 43 yeast isolates were selected, after exposure of the strain saccharomyces cervisiae to different doses of gamma radiation. Isolated varied in colony size from the original strain as well as among themselves. These isolates were screened for their ability to grow on glucose and supplemented cane molasses media at 30 degree and 40 degree. Out fo them, only 13 isolates proved to grow well on 40 degree. Furthermore, determination of ethanol production by each of these mutants revealed that yielded in general, 16 to 52.0% increase in alcohol production at 40 degree on cane molasses medium (17.5% w/v initial sugars), compared to the original strain. At 40 degree, maximum ethanol yield was 0.63 coupled with 9.5% ethanol concentration and 85.1% sugar conversion which represents 40, 46.2 and 3.4% increase, respectively from the parental strain

  10. Transportation infrastructure implications of development of a cellulose ethanol industry for Indiana.

    Science.gov (United States)

    2010-10-15

    The 2007 Energy Independence and Security Act calls for the US to produce 36 billion gallons of biofuels by 2022 of which no more than 15 billion would come from corn and 1 billion of biodiesel. Thus, the legislation envisions moving from no cellulos...

  11. Dynamic modeling and analyses of simultaneous saccharification and fermentation process to produce bio-ethanol from rice straw.

    Science.gov (United States)

    Ko, Jordon; Su, Wen-Jun; Chien, I-Lung; Chang, Der-Ming; Chou, Sheng-Hsin; Zhan, Rui-Yu

    2010-02-01

    The rice straw, an agricultural waste from Asians' main provision, was collected as feedstock to convert cellulose into ethanol through the enzymatic hydrolysis and followed by the fermentation process. When the two process steps are performed sequentially, it is referred to as separate hydrolysis and fermentation (SHF). The steps can also be performed simultaneously, i.e., simultaneous saccharification and fermentation (SSF). In this research, the kinetic model parameters of the cellulose saccharification process step using the rice straw as feedstock is obtained from real experimental data of cellulase hydrolysis. Furthermore, this model can be combined with a fermentation model at high glucose and ethanol concentrations to form a SSF model. The fermentation model is based on cybernetic approach from a paper in the literature with an extension of including both the glucose and ethanol inhibition terms to approach more to the actual plants. Dynamic effects of the operating variables in the enzymatic hydrolysis and the fermentation models will be analyzed. The operation of the SSF process will be compared to the SHF process. It is shown that the SSF process is better in reducing the processing time when the product (ethanol) concentration is high. The means to improve the productivity of the overall SSF process, by properly using aeration during the batch operation will also be discussed.

  12. 40 CFR 80.1166 - What are the additional requirements under this subpart for a foreign producer of cellulosic...

    Science.gov (United States)

    2010-07-01

    ... produced, assurance that the ethanol remained segregated as specified in paragraph (j)(1) of this section... vessel loading. (3) The independent third party must: (i) Be approved in advance by EPA, based on a... inspections and audits of the foreign producer facility. (i) Inspections and audits may be either announced in...

  13. A case study of agricultural residue availability and cost for a cellulosic ethanol conversion facility in the Henan province of China

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Erin [ORNL; Wu, Yun [ORNL

    2012-05-01

    A preliminary analysis of the availability and cost of corn stover and wheat straw for the area surrounding a demonstration biorefinery in the Henan Province of China was performed as a case study of potential cooperative analyses of bioenergy feedstocks between researchers and industry in the US and China. Though limited in scope, the purpose of this analysis is to provide insight into some of the issues and challenges of estimating feedstock availability in China and how this relates to analyses of feedstocks in the U.S. Completing this analysis also highlighted the importance of improving communication between U.S. researchers and Chinese collaborators. Understanding the units and terms used in the data provided by Tianguan proved to be a significant challenge. This was further complicated by language barriers between collaborators in the U.S. and China. The Tianguan demonstration biorefinery has a current capacity of 3k tons (1 million gallons) of cellulosic ethanol per year with plans to scale up to 10k tons (3.34 million gallons) per year. Using data provided by Tianguan staff in summer of 2011, the costs and availability of corn stover and wheat straw were estimated. Currently, there are sufficient volumes of wheat straw and corn stover that are considered 'waste' and would likely be available for bioenergy in the 20-km (12-mile) region surrounding the demonstration biorefinery at a low cost. However, as the industry grows, competition for feedstock will grow and prices are likely to rise as producers demand additional compensation to fully recover costs.

  14. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    International Nuclear Information System (INIS)

    Günther, Karoline; Giebing, Christina; Askani, Antonia; Leisegang, Tilmann; Krieg, Marcus; Kyosev, Yordan; Weide, Thomas; Mahltig, Boris

    2015-01-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  15. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Günther, Karoline; Giebing, Christina; Askani, Antonia [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Leisegang, Tilmann [Saxray GmbH, Maria-Reiche-Str. 1, 01109 Dresden (Germany); Krieg, Marcus [TITK, Thüringisches Institut für Textil- und Kunststoff-Forschung e.V., Breitscheidstraße 97, 07407 Rudolstadt (Germany); Kyosev, Yordan; Weide, Thomas [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Mahltig, Boris, E-mail: Boris.Mahltig@hs-niederrhein.de [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany)

    2015-11-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  16. Reforming of Ethanol to Produce Hydrogen over PtRuMg/ZrO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Josh Y. Z. Chiou

    2012-01-01

    Full Text Available A modified PtRu/ZrO2 catalyst with Mg is evaluated for the oxidative steam reforming of ethanol (OSRE and the steam reforming of ethanol (SRE. In order to understand the variation in the reaction mechanism on OSRE and SRE, further analysis of both fresh and used catalyst is concentrated on for TEM, TG, Raman, and TPR characterization. The results show that the OSRE reaction requires a higher temperature (∼390°C to achieve 100% ethanol conversion than the SRE reaction (∼2500°C. The distribution of CO is minor for both reactions (< 5% for OSRE, < 1% for SRE. This demonstrates that the water gas shift (WGS reaction is an important side-reaction in the reforming of ethanol to produce H2 and CO2. A comparison of the temperature of WGS (WGS shows it is lower for the SRE reaction (WGS∼250°C for SRE, ~340°C for OSRE.

  17. Tungsten effect over co-hydrotalcite catalysts to produce hydrogen from bio-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, J.L.; Ortiz, M.A.; Luna, R.; Nuno, L. [Univ. Autonoma Metropolitana-Azcapozalco, Mexico City (Mexico). Dept. de Energia; Fuentes, G.A. [Univ. Autonoma Metropolitana-Iztapalapa, Mexico City (Mexico). Dept. de IPH; Salmones, J.; Zeifert, B. [Inst. Politecnico Nacional, Mexico City (Mexico); Vazquez, A. [Inst. Mexicano del Petroleo, Mexico City (Mexico)

    2010-07-15

    The use of bioethanol has been considered for generating hydrogen via catalytic reforming. The reaction of ethanol with stream is strongly endothermic and produces hydrogen (H{sub 2}) and carbon dioxide (CO{sub 2}). However, undesirable products such as carbon monoxide (CO) and methane (CH{sub 4}) may also form during the reaction. This paper reported on the newly found stabilization effect of tungsten over the Co-hydrotalcite catalysts to produce H{sub 2} from ethanol in steam reforming. The catalysts were characterized by nitrogen (N{sub 2}) physisorption (BET area), X-ray diffraction, Infrared, Raman and UV-vis spectroscopies. Catalytic evaluations were determined using a fixed bed reactor with a water/ethanol mol ratio of 4 at 450 degrees C. The tungsten concentration studied was from 0.5 to 3 wt percent. The intensity of crystalline reflections of the Co-hydrotalcite catalysts decreased as tungsten concentration increased. Infrared spectroscopy was used to determine the superficial chemical groups, notably -OH, H{sub 2}O, Al-OH, Mg-OH, W-O-W and CO{sub 3}{sup 2.} The highest H{sub 2} production and the best catalytic stability was found in catalysts with low tungsten. The smallest pore volume of this catalyst could be related with long residence times of ethanol in the pores. Tungsten promoted the conversion for the Co-hydrotalcite catalysts. The reaction products were H{sub 2}, CO{sub 2}, CH{sub 3}CHO, CH{sub 4} and C{sub 2}H{sub 4} and the catalysts did not produce CO. 33 refs., 2 tabs., 10 figs.

  18. Development of an alcohol dehydrogenase biosensor for ethanol determination with toluidine blue O covalently attached to a cellulose acetate modified electrode.

    Science.gov (United States)

    Alpat, Senol; Telefoncu, Azmi

    2010-01-01

    In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH). Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA) bonded to toluidine blue O (TBO). Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA) cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO) was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10(-5) M and 4 × 10(-4) M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10(-6) M. At the end of the 20(th) day, the biosensor still retained 50% of its initial activity.

  19. Development of an Alcohol Dehydrogenase Biosensor for Ethanol Determination with Toluidine Blue O Covalently Attached to a Cellulose Acetate Modified Electrode

    Directory of Open Access Journals (Sweden)

    Azmi Telefoncu

    2010-01-01

    Full Text Available In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH. Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA bonded to toluidine blue O (TBO. Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10−5 M and 4 × 10−4 M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10−6 M. At the end of the 20th day, the biosensor still retained 50% of its initial activity.

  20. Comparative energy analysis of agricultural crops used for producing ethanol and CO2 emissions

    International Nuclear Information System (INIS)

    Santos, M.A. dos

    1997-01-01

    A variety of biomass sources can be used for producing ethanol. Among these are sugar cane (Brazil), corn (USA), sweet sorghum (USA and Europe), sugar beets (Europe) and wheat (USA and Europe). The production of fuel alcohol worldwide has been analyzed from various perspectives: productivity, the competition between food and energy crops, the social and economic aspects and, more recently, the environmental dimension. Another relevant study is aimed at calculating the energy costs of the production and use of alcohol from sugar cane as compared to other primary sources for this fuel. The present analysis employs the methodology of energy balance, highlighting local conditions that influence how biomass is transformed into ethanol: technology, agricultural productivity, environmental conditions and an estimate of the carbon dioxide emissions from these different processes. (author)

  1. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation.

    Science.gov (United States)

    Niessen, J; Schröder, U; Harnisch, F; Scholz, F

    2005-01-01

    To exploit the fermentative hydrogen generation and direct hydrogen oxidation for the generation of electric current from the degradation of cellulose. Utilizing the metabolic activity of the mesophilic anaerobe Clostridium cellulolyticum and the thermophilic Clostridium thermocellum we show that electricity generation is possible from cellulose fermentation. The current generation is based on an in situ oxidation of microbially synthesized hydrogen at platinum-poly(tetrafluoroaniline) (Pt-PTFA) composite electrodes. Current densities of 130 mA l(-1) (with 3 g cellulose per litre medium) were achieved in poised potential experiments under batch and semi-batch conditions. The presented results show that electricity generation is possible by the in situ oxidation of hydrogen, product of the anaerobic degradation of cellulose by cellulolytic bacteria. For the first time, it is shown that an insoluble complex carbohydrate like cellulose can be used for electricity generation in a microbial fuel cell. The concept represents a first step to the utilization of macromolecular biomass components for microbial electricity generation.

  2. High polymorphism in Est-SSR loci for cellulose synthase and β-amylase of sugarcane varieties (Saccharum spp.) used by the industrial sector for ethanol production.

    Science.gov (United States)

    Augusto, Raphael; Maranho, Rone Charles; Mangolin, Claudete Aparecida; Pires da Silva Machado, Maria de Fátima

    2015-01-01

    High and low polymorphisms in simple sequence repeats of expressed sequence tag (EST-SSR) for specific proteins and enzymes, such as β-amylase, cellulose synthase, xyloglucan endotransglucosylase, fructose 1,6-bisphosphate aldolase, and fructose 1,6-bisphosphatase, were used to illustrate the genetic divergence within and between varieties of sugarcane (Saccharum spp.) and to guide the technological paths to optimize ethanol production from lignocellulose biomass. The varieties RB72454, RB867515, RB92579, and SP813250 on the second stage of cutting, all grown in the state of Paraná (PR), and the varieties RB92579 and SP813250 cultured in the PR state and in Northeastern Brazil, state of Pernambuco (PE), were analyzed using five EST-SSR primers for EstC66, EstC67, EstC68, EstC69, and EstC91 loci. Genetic divergence was evident in the EstC67 and EstC69 loci for β-amylase and cellulose synthase, respectively, among the four sugarcane varieties. An extremely high level of genetic differentiation was also detected in the EstC67 locus from the RB82579 and SP813250 varieties cultured in the PR and PE states. High polymorphism in SSR of the cellulose synthase locus may explain the high variability of substrates used in pretreatment and enzymatic hydrolysis processes, which has been an obstacle to effective industrial adaptations.

  3. Utilization of cellulosic materials through enzymic hydrolysis. 11. Preliminary assessment of an integrated processing scheme

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C R; Cysewski, G R; Yang, R D

    1976-01-01

    An integrated processing scheme is described for the conversion of a cellulose waste (newsprint) to sugars by enzymic hydrolysis and then to ethanol and yeast by fermentation. The unconverted solids are burned to produce process energy requirements and surplus electric power. With the preliminary design at an estimate total capital investment of $33.4 x 10/sup 6/, 95% ethanol may be produced FOB (free on board) the plant for approx.61 cents/gal, assuming zero cost for cellulosic feed; taking into account interest rates and taxes and a cellulose feed cost of $20/ton the figure becomes $1.67/gal.

  4. Anaerobic digestion of stillage to produce bioenergy in the sugarcane-to-ethanol industry.

    Science.gov (United States)

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2014-01-01

    Stillage is the main wastewater from ethanol production, containing a high chemical oxygen demand in addition to acidic and corrosive characteristics. Though stillage may be used as a soil fertilizer, its land application may be considered problematic due its high polluting potential. Anaerobic digestion represents an effective alternative treatment to reduce the pollution load of stillage. In addition, the methane gas produced within the process may be converted to energy, which can be directly applied to the treatment plant. The objective of this paper was to investigate the energetic potential of anaerobic digestion applied to stillage in the sugarcane ethanol industry. An overall analysis of the results indicates energy recovery capacity (ERC) values for methane ranging from 3.5% to 10%, respectively, for sugarcane juice and molasses. The processes employed to obtain the fermentable broth, as well as the distillation step, represent the main limiting factors to the energetic potential feasibility. Considering financial aspects the annual savings could reach up to US$ 30 million due to anaerobic digestion of stillage in relatively large-scale distilleries (365,000 m3 of ethanol per year). The best scenarios were verified for the association between anaerobic digestion of stillage and combustion of bagasse. In this case, the fossil fuels consumption in distilleries could be fully ceased, such the ERC of methane could reach values ranging from 140% to 890%.

  5. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids

    Science.gov (United States)

    Liheng Chen; Junyong Zhu; Carlos Baez; Peter Kitin; Thomas Elder

    2016-01-01

    Here we report the production of highly thermal stable and functional cellulose nanocrystals (CNC) and nanofibrils (CNF) by hydrolysis using concentrated organic acids. Due to their low water solubility, these solid organic acids can be easily recovered after hydrolysis reactions through crystallization at a lower or ambient temperature. When dicarboxylic acids were...

  6. Immobilization of cellulose producing cells (sporotrichum cellulophilum) using irradiated rice husk as a substrate

    International Nuclear Information System (INIS)

    Lina, M.R.; Tamada, M.; Kumakura, M.

    1991-01-01

    An experiment to study the effect of irradiated rice husk as a substrate on cellulase production of free and immobilized cells of S. cellulophium was carried out. Radiation pretreatment of rice husk was done using electron beam accelerator (Dynamitron IEA 3000-25,2), with doses of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 MGy. The substrate used in cellulase production of free and immobilized cells were cellulose powder as a standard, and 1.0 MGy irradiated rice husk. Concentrations of cellulose powder for free and immobilized cells were 1, 2, 3, 5, and 8% (w/v). Irradiated rice husk concentrations for free cells were 3, 6, 9, 15, and 24% (w/v), whereas for immobilized cells were 3, 6, and 9% (w/v). Results showed that glucose concentration in 1.0 MGy irradiated rice husk was the highest of all irradiated and unirradiated rice husks. The GPA (glucose production activity) values used of free immobilized cells of S. cellulophium in medium containing 1.0 MGy irradiated rice husk were about 50% lower than in cellulose powder medium. Cellulase solution resulted by immobilized cells, either in cellulose powder or in irradiated rice husk media, were clear and did not contain mycelium. (authors). 7 refs, 7 figs

  7. Endoglucanase post-milling treatment for producing cellulose nanofibers from bleached eucalyptus fibers by a supermasscolloider

    Science.gov (United States)

    Wangxia Wang; Michael D. Mozuch; Ronald C. Sabo; Philip Kersten; Junyong Zhu; Yongcan Jin

    2016-01-01

    Three recombinant GH5 endoglucanases chosen for their contrasting hydrolytic activities, and a commercial endoglucanase were used to treat cellulose nanofibers (CNFs) after they were milled from bleached eucalyptus pulp with a supermasscolloider. This enzyme ‘‘post-treatment’’ resulted in different properties for the CNFs depending on enzyme treatment. The degree of...

  8. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    Science.gov (United States)

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  9. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.

    Science.gov (United States)

    Silva, Neumara Luci Conceição; Betancur, Gabriel Jaime Vargas; Vasquez, Mariana Peñuela; Gomes, Edelvio de Barros; Pereira, Nei

    2011-04-01

    Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.

  10. Integrated Process for Extraction of Wax as a Value-Added Co-Product and Improved Ethanol Production by Converting Both Starch and Cellulosic Components in Sorghum Grains

    Directory of Open Access Journals (Sweden)

    Nhuan P. Nghiem

    2018-02-01

    Full Text Available Grain sorghum is a potential feedstock for fuel ethanol production due to its high starch content, which is equivalent to that of corn, and has been successfully used in several commercial corn ethanol plants in the United States. Some sorghum grain varieties contain significant levels of surface wax, which may interact with enzymes and make them less efficient toward starch hydrolysis. On the other hand, wax can be recovered as a valuable co-product and as such may help improve the overall process economics. Sorghum grains also contain lignocellulosic materials in the hulls, which can be converted to additional ethanol. An integrated process was developed, consisting of the following steps: 1. Extraction of wax with boiling ethanol, which is the final product of the proposed process; 2. Pretreatment of the dewaxed grains with dilute sulfuric acid; 3. Mashing and fermenting of the pretreated grains to produce ethanol. During the fermentation, commercial cellulase was also added to release fermentable sugars from the hulls, which then were converted to additional ethanol. The advantages of the developed process were illustrated with the following results: (1 Wax extracted (determined by weight loss: ~0.3 wt % of total mass. (2 Final ethanol concentration at 25 wt % solid using raw grains: 86.1 g/L. (3 Final ethanol concentration at 25 wt % solid using dewaxed grains: 106.2 g/L (23.3% improvement. (4 Final ethanol concentration at 25 wt % solid using dewaxed and acid-treated grains (1 wt % H2SO4 plus cellulase (CTec2: 117.8 g/L (36.8% improvement.

  11. Effects on Environmental and Socioeconomic Sustainability of Producing Ethanol from Perennial Grasses

    Science.gov (United States)

    Dale, V. H.; Parish, E. S.

    2016-12-01

    Using perennial grasses to produce ethanol can enhance progress toward sustainability. A suite of 35 environmental and socioeconomic sustainability indicators was considered in a holistic sustainability assessment of a five-year switchgrass-to-ethanol production experiment centered on a demonstration-scale biorefinery in Vonore, Tennessee. By combining field measurements, literature review and expert opinion, the team was able to rate 28 of the 35 recommended sustainability indicators. The team combined these ratings within a multi-attribute decision support system tool and used this information to compare the sustainability of producing 2118 hectares of no-till switchgrass relative to two alternative business-as-usual scenarios of unmanaged pasture and tilled corn production. The results suggest that East Tennessee switchgrass production improves environmental quality overall and can be beneficial to the counties surrounding the biorefinery in terms of dollars earned and jobs created. The timing of switchgrass production also provides an opportunity to use inactive equipment and laborers. By incorporating a landscape design approach, the opportunities, constraints and most reasonable paths forward for growing bioenergy feedstock in specific context can be assessed in a way that adapts and improves local practices. Lessons learned from this case study are being incorporated into sustainability assessments of corn stover in Iowa and a variety of bioenergy feedstocks in diverse settings. The overall goal is to develop sound management practices that can address the multiple and sometimes competing demands of stakeholders.

  12. Recovery Act – Integrated Pilot-Scale Biorefinery for Producing Ethanol from Hybrid Algae

    Energy Technology Data Exchange (ETDEWEB)

    Legere, Ed [Algenol Biotech LLC, Ft. Myers, FL (United States); Roessler, Paul [Algenol Biotech LLC, Ft. Myers, FL (United States); Miller, Harlan [Algenol Biotech LLC, Ft. Myers, FL (United States); Belicka, Laura [Algenol Biotech LLC, Ft. Myers, FL (United States); Yuan, Yanhui [Algenol Biotech LLC, Ft. Myers, FL (United States); Chance, Ron [Algenol Biotech LLC, Ft. Myers, FL (United States); Dalrymple, Kofi [Algenol Biotech LLC, Ft. Myers, FL (United States); Porubsky, William [Algenol Biotech LLC, Ft. Myers, FL (United States); Coleman, John [Algenol Biotech LLC, Ft. Myers, FL (United States); Sweeney, Kevin [Algenol Biotech LLC, Ft. Myers, FL (United States); Ahlm, Pat [Algenol Biotech LLC, Ft. Myers, FL (United States); Ha, Quang [Algenol Biotech LLC, Ft. Myers, FL (United States)

    2017-05-26

    As a scientific and engineering endeavor, the Algenol IBR Biorefinery project has been a success by almost any measure. The vision for the system evolved significantly over the course of the project, always due to recognized opportunities for improved performance, lower energy consumption, and reduced costs. Our commitment to thorough, realistic, techno-economic and life cycle assessments has been an essential element for system innovation, technology guidance, and change management of the overall facility. The biological tools developed during this program for cyanobacteria are second to none, and are the primary reason for the remarkable improvements in organism performance. The breakthrough was the successful transformation of our most robust wild type organism (AB1) early in 2012. That was followed by a series of improvements over the next several years that produced strains wherein over 80% of the fixed carbon was converted into ethanol. At the same time, our expertise in cultivation, physiology, process engineering, CO2 management, and photobioreactor design and manufacturing grew at a comparable pace. We learned enormous amounts from the various upsets, weather variations, contamination events, and new technology related disappointments. We overcame those challenges to produce fuel grade ethanol with a low carbon footprint, and are within striking distance of economic viability even with the challenges of low fossil fuel prices.

  13. Influence of spatially dependent, modeled soil carbon emission factors on life-cycle greenhouse gas emissions of corn and cellulosic ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhangcai [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Dunn, Jennifer B. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Kwon, Hoyoung [Environment and Production Technology Division, International Food Policy Research Institute, 2033 K St. NW Washington DC 20006 USA; Mueller, Steffen [Energy Resources Center, University of Illinois at Chicago, 1309 South Halsted Street Chicago IL 60607 USA; Wander, Michelle M. [Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue Urbana IL 61801 USA

    2016-03-03

    Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life-cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life-cycle GHG emissions affect biofuels’ attractiveness and eligibility under a number of renewable fuel policies in the U.S. and abroad. Modeling was used to refine the spatial resolution and depth-extent of domestic estimates of SOC change for land (cropland, cropland pasture, grasslands, and forests) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow). In most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. Results of SOC change were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life-cycle GHG emissions for the biofuels considered. Total LUC GHG emissions (g CO2eq MJ-1) were 2.1–9.3 for corn, -0.7 for corn stover, -3.4–12.9 for switchgrass, and -20.1–-6.2 for Miscanthus; these varied with SOC modeling assumptions applied. Extending soil depth from 30 to 100cm affected spatially-explicit SOC change and overall LUC GHG emissions; however the influence on LUC GHG emissions estimates were less significant in corn and corn stover than cellulosic feedstocks. Total life-cycle GHG emissions (g CO2eq MJ-1, 100cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18-26 for switchgrass ethanol, and -0.6–-7 for Miscanthus ethanol.

  14. Microbial proteins produced from cannery wastes. II. Different cellulosic wastes used as substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.C.; Chen, S.H.; Chang, J.S.; Lee, S.C.

    1980-01-01

    The production of protein by the cultivation of Cellulomonas species 34 on cellulosic wastes was studied. Maximum protein production on bamboo shoot husks was 4.77 g/L in 48 h when aeration was 1 vol./min, stirring rate was 1000 rpm, and substrate concentration was 3%. The chemical compounds of asparagus peel and pineapple peel and the conditions for their treatment with NaOH for protein fermentation are given.

  15. Anhydrous ethanol: A renewable source of energy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Santosh; Singh, Neetu; Prasad, Ram [Department of Chemical Engineering, H. B. Technological Institute, Kanpur 208002 (India)

    2010-09-15

    Anhydrous ethanol is one of the biofuels produced today and it is a subset of renewable energy. It is considered to be an excellent alternative clean-burning fuel to gasoline. Anhydrous ethanol is commercially produced by either catalytic hydration of ethylene or fermentation of biomass. Any biological material that has sugar, starch or cellulose can be used as biomass for producing anhydrous ethanol. Since ethanol-water solution forms a minimum-boiling azeotrope of composition of 89.4 mol% ethanol and 10.6 mol% water at 78.2 C and standard atmospheric pressure, the dilute ethanol-water solutions produced by fermentation process can be continuously rectified to give at best solutions containing 89.4 mol% ethanol at standard atmospheric pressure. Therefore, special process for removal of the remaining water is required for manufacture of anhydrous ethanol. Various processes for producing anhydrous ethanol have been used/suggested. These include: (i) chemical dehydration process, (ii) dehydration by vacuum distillation process, (iii) azeotropic distillation process, (iv) extractive distillation processes, (v) membrane processes, (vi) adsorption processes and (vii) diffusion distillation process. These processes of manufacturing anhydrous ethanol have been improved continuously due to the increasingly strict requirements for quantity and quality of this product. The literature available on these processes is reviewed. These processes are also compared on the basis of energy requirements. (author)

  16. Process development studies on the bioconversion of cellulose and production of ethanol. Progress report, September 1, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.

    1978-09-01

    Progress is reported in studies on the pretreatment of cellulosic materials to facilitate enzymatic hydrolysis, sulfuric acid hydrolysis, investigation of the Purdue processing scheme including an economic analysis, and the fermentability of the enzymatic hydrolyzate. Progress is also reported on enzyme fermentation studies, hydrolysis reactor development, and utilization of hemicellulose sugars. (JSR)

  17. Percutaneous computed tomography-guided ethanol injection in aldosterone-producing adrenocortical adenoma

    International Nuclear Information System (INIS)

    Rossi, R.; Savastano, S.; Tommaselli, A.P.

    1995-01-01

    The feasibility, safety and effectiveness of percutaneous computed tomography-guided ethanol injection (PEI-CT) was investigated in a patient affected by aldosterone-producing adenoma (APA). A 42-year-old male patient with typical features of hyperaldosteronism presented a solitary left adrenal adenoma measuring 2 cm, with a normal contralateral gland, evidenced by both CT scan and adrenal [ 75 Se-19]-nor-cholesterol scintigraphy. After normalization of potassium plasma levels, 4 ml of sterile 95% ethanol with 0.5 ml of 80% iothalamate sodium was injected. The procedure was completed in about 30 min. No severe pain or local complication was noted. Five hour after PEI, a fourfold and a twofold increase in aldosterone and cortisol plasma levels were observed, respectively. After 11 days on a normal sodium and potassium diet, normal potassium plasma levels and reduced aldosterone plasma levels were present, with reappearance of an aldosterone postural response. Plasma renin activity and aldosterone plasma levels normalized 1 month later, with reappearance also of a plasma renin activity postural response and maintenance of normal potassium plasma levels on a high sodium and normal potassium diet. The patient has remained hypertensive, although lower antihypertensive drug dosages have been employed. After 17 months, normal biochemical, hormonal and morphological findings were present. The authors suggested PEI-CT as a further alternative approach to surgery in the management of carefully selected patients with APA. 15 refs., 2 figs., 1 tab

  18. An analysis of producing ethanol and electric power from woody residues and agricultural crops in East Texas

    Science.gov (United States)

    Ismayilova, Rubaba Mammad

    The increasing U.S. dependence on imported oil; the contribution of fossil fuels to the greenhouse gas emissions and the climate change issue; the current level of energy prices and other environmental concerns have increased world interest in renewable energy sources. Biomass is a large, diverse, readily exploitable resource. This dissertation examines the biomass potential in Eastern Texas by examining a 44 county region. This examination considers the potential establishment of a 100-megawatt (MW) power plant and a 20 million gallon per year (MMGY) ethanol plant using lignocellulosic biomass. The biomass sources considered are switchgrass, sugarcane bagasse, and logging residues. In the case of electricity generation, co-firing scenarios are also investigated. The research analyzes the key indicators involved with economic costs and benefits, environmental and social impacts. The bioenergy production possibilities considered here were biofeedstock supported electric power and cellulosic ethanol production. The results were integrated into a comprehensive set of information that addresses the effects of biomass energy development in the region. The analysis indicates that none of the counties in East Texas have sufficient biomass to individually sustain either a 100% biomass fired power plant or the cellulosic ethanol plant. Such plants would only be feasible at the regional level. Co-firing biomass with coal, however, does provide a most attractive alternative for the study region. The results indicate further that basing the decision solely on economics of feedstock availability and costs would suggest that bioenergy, as a renewable energy, is not a viable energy alternative. Accounting for some environmental and social benefits accruing to the region from bioenergy production together with the feedstock economics, however, suggests that government subsidies, up to the amount of accruing benefits, could make the bioenergies an attractive business opportunity

  19. Enzymatic activity of the cellulolytic complex produced by trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel Jaen, M.; Negro, M.J.; Saez, R.; Martin Moreno, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reese QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass from Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars productions, have been selected. Previous studies on enzymatic hydrolysis of O. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (author). 10 figs.; 10 refs

  20. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel J, M.; Negro A, M. J.; Saez A, R.; Martin M, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs

  1. Price determination for hydrogen produced from bio-ethanol in Argentina

    International Nuclear Information System (INIS)

    Gregorini, V.A.; Pasquevich, D.; Laborde, M.

    2010-01-01

    A massive penetration for hydrogen as a fuel vector requires a price reduction against fossil fuels (up to lower or at less equal to current prices). That is why it is important to calculate the current prices, so that we can determinate the gap between them and work in reducing them. In order to follow properly prices evolution it is necessary been able to compare data generated by Universities, Laboratories and Industries. So that, DOE creates in 2003 a tool (H2A) to determine prices for hydrogen, with some assumptions and pre defined values, to facilitate transparency and consistency of data. In this work we will use the H2A tool to calculate de price of hydrogen produced in a bio-ethanol semi-industrial Plant in Argentina, and we will compare it with the prices of USA studies. (author)

  2. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants.

    Science.gov (United States)

    Manitchotpisit, Pennapa; Bischoff, Kenneth M; Price, Neil P J; Leathers, Timothy D

    2013-05-01

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Four bacterial strains, designated as ALT3A, ALT3B, ALT17, and MR1, produced inhibitory effects on growth of LAB. Sequencing of rRNA identified these strains as species of Bacillus subtilis (ALT3A and ALT3B) and B. cereus (ALT17 and MR1). Cell mass from colonies and agar samples from inhibition zones were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The spectra of ALT3A and ALT3B showed a strong signal at m/z 1,060, similar in mass to the surfactin family of antimicrobial lipopeptides. ALT3A and ALT3B were analyzed by zymogram analysis using SDS-PAGE gels placed on agar plates inoculated with LAB. Cell lysates possessed an inhibitory protein of less than 10 kDa, consistent with the production of an antibacterial lipopeptide. Mass spectra of ALT17 and MR1 had notable signals at m/z 908 and 930 in the whole cell extracts and at m/z 687 in agar, but these masses do not correlate with those of previously reported antibacterial lipopeptides, and no antibacterial activity was detected by zymogram. The antibacterial activities produced by these strains may have application in the fuel ethanol industry as an alternative to antibiotics for prevention and control of bacterial contamination.

  3. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Selig, Michael J; Viamajala, Sridhar; Decker, Stephen R; Tucker, Melvin P; Himmel, Michael E; Vinzant, Todd B

    2007-01-01

    Electron microscopy of lignocellulosic biomass following high-temperature pretreatment revealed the presence of spherical formations on the surface of the residual biomass. The hypothesis that these droplet formations are composed of lignins and possible lignin carbohydrate complexes is being explored. Experiments were conducted to better understand the formation of these "lignin" droplets and the possible implications they might have on the enzymatic saccharification of pretreated biomass. It was demonstrated that these droplets are produced from corn stover during pretreatment under neutral and acidic pH at and above 130 degrees C, and that they can deposit back onto the surface of residual biomass. The deposition of droplets produced under certain pretreatment conditions (acidic pH; T > 150 degrees C) and captured onto pure cellulose was shown to have a negative effect (5-20%) on the enzymatic saccharification of this substrate. It was noted that droplet density (per unit area) was greater and droplet size more variable under conditions where the greatest impact on enzymatic cellulose conversion was observed. These results indicate that this phenomenon has the potential to adversely affect the efficiency of enzymatic conversion in a lignocellulosic biorefinery.

  4. Microbial development in distillers wet grains produced during fuel ethanol production from corn (Zea mays)

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, R.M.; Rosentrater, K.A. [United States Dept. of Agriculture, Brookings, SD (United States). North Central Agricultural Research Laboratory

    2007-09-15

    The microbiology of post-production distillers wet grains (DWG) was investigated over a period of 9 days at an industrial ethanol plant. Samples of the DWG were physically and chemically characterized. Compositional analyses were conducted for protein, fiber, and fat. Fixed suspensions of DWG were dispersed and disrupted by sonication. Bacterial cells were enumerated under epifluorescent illumination. Solid media and standard dilution were used to enumerate total colony-forming units (CFU) of lactic-acid producing bacteria (LAB), and aerobic heterotrophic organisms. The DWG had a pH of approximately 4.4, a moisture content of 53.5 per cent, and 4 x 10{sup 5} total yeast cells. Thirteen morphologically distinct isolates were identified during the study, 10 of which were yeasts and molds from 6 different genera. Two of the yeasts were of the lactic-acid Pediococcus pentosaceus strain, and 1 of the yeasts was an aerobic heterotrophic bacteria. Results showed that the matrix of the DWG produced severe technical difficulties for several of the culture-independent community-level analyses. It was concluded that numbers of potentially beneficial bacteria appeared to increase over the time period relative to potential spoilage agents. Molds capable of producing mycotoxins colonized the DWG and grew to high densities over the 9 day period. 31 refs., 3 tabs., 2 figs.

  5. Characterization of Ethanolic Extract of Streptomyces sp. as a Pancreatic Lipase Inhibitors Produced by Endophytic Streptomyces sp. AEBg12

    Directory of Open Access Journals (Sweden)

    Lenni Fitri

    2017-07-01

    Full Text Available Endophytic Streptomyces sp. AEBg12 isolated from Zingiber cassumunar (Bangle is known to produce pancreatic lipase inhibitory compound. However, the characteristics of this active compound has not been reported yet. This study aimed to determine the characteristics of pancreatics inhibitory compound produced by Streptomyces sp. AEBg12 and to assess the role of endophytic actinobacteria in producing pancreatic lipase inhibitor using endophytic-free bangle tissue culture, wild bangle and compared with the activity of Streptomyces sp. AEBg12 endophytes. Supernatant of Streptomyces sp. AEBg12 was extracted using ethanol, ethyl acetate, and n-hexane solvents. Toxicity test was performed using larvae of shrimp Artemia salina. The results showed that the best solvent to obtain pancreatic lipase inhibitor compounds was ethanol. Phytochemical analysis showed that ethanolic extract of endophytic Streptomyces sp. AEBg12 contained flavonoids. IC50 value of ethanol extract was 180.83 µg/ml. The result of TLC showed that ethanolic extract of Streptomyces AEBg12 had a blue luminescence band indicated that there were either flavone, flavanones, flavonols or isoflavones. Inhibitory activity of Streptomyces sp. AEBg12 was higher than wild bangle and bangle tissue culture. The information from this study can be be used as a basic data for further characterization of the active compound, which might be developed as an antiobesity agent through its pancreatic lipase inhibitory activity.

  6. Ethanol at levels produced by Saccharomyces cerevisiae during wheat dough fermentation has a strong impact on dough properties.

    Science.gov (United States)

    Jayaram, Vinay B; Rezaei, Mohammad N; Cuyvers, Sven; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2014-09-24

    Yeast's role in bread making is primarily the fermentative production of carbon dioxide to leaven the dough. Fermentation also impacts dough matrix rheology, thereby affecting the quality of the end product. Surprisingly, the role of ethanol, the other yeast primary metabolite, has been ill studied in this context. Therefore, this study aims to assess the potential impact of ethanol on yeastless dough extensibility and spread and gluten agglomeration at concentrations at which it is produced in fermenting dough, i.e., up to 60 mmol per 100 g of flour. Reduced dough extensibility and dough spread were observed upon incorporation of ethanol in the dough formula, and were more pronounced for a weak than for a strong flour. Uniaxial and biaxial extension tests showed up to 50% decrease in dough extensibility and a dough strength increase of up to 18% for 60 mmol of ethanol/100 g of flour. Ethanol enhanced gluten agglomeration of a weak flour. Sequential extraction of flour in increasing ethanol concentrations showed that better gluten-solvent interaction is a possible explanation for the changed dough behavior.

  7. Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept.

    Science.gov (United States)

    Wang, Jie; Chae, Michael; Sauvageau, Dominic; Bressler, David C

    2017-01-01

    The cellulosic ethanol industry has developed efficient strategies for converting sugars obtained from various cellulosic feedstocks to bioethanol. However, any further major improvements in ethanol productivity will require development of novel and innovative fermentation strategies that enhance incumbent technologies in a cost-effective manner. The present study investigates the feasibility of applying self-cycling fermentation (SCF) to cellulosic ethanol production to elevate productivity. SCF is a semi-continuous cycling process that employs the following strategy: once the onset of stationary phase is detected, half of the broth volume is automatically harvested and replaced with fresh medium to initiate the next cycle. SCF has been shown to increase product yield and/or productivity in many types of microbial cultivation. To test whether this cycling process could increase productivity during ethanol fermentations, we mimicked the process by manually cycling the fermentation for five cycles in shake flasks, and then compared the results to batch operation. Mimicking SCF for five cycles resulted in regular patterns with regards to glucose consumption, ethanol titer, pH, and biomass production. Compared to batch fermentation, our cycling strategy displayed improved ethanol volumetric productivity (the titer of ethanol produced in a given cycle per corresponding cycle time) and specific productivity (the amount of ethanol produced per cellular biomass) by 43.1 ± 11.6 and 42.7 ± 9.8%, respectively. Five successive cycles contributed to an improvement of overall productivity (the aggregate amount of ethanol produced at the end of a given cycle per total processing time) and the estimated annual ethanol productivity (the amount of ethanol produced per year) by 64.4 ± 3.3 and 33.1 ± 7.2%, respectively. This study provides proof of concept that applying SCF to ethanol production could significantly increase productivities, which will help strengthen the

  8. Using renewable ethanol and isopropanol for lipid transesterification in wet microalgae cells to produce biodiesel with low crystallization temperature

    International Nuclear Information System (INIS)

    Huang, Rui; Cheng, Jun; Qiu, Yi; Li, Tao; Zhou, Junhu; Cen, Kefa

    2015-01-01

    Highlights: • Ethanol and isopropanol were used for transesterification in wet microalgae cell. • Decreased droplet size and polarity of lipid were observed after transesterification. • Ethanol and isopropanol dosage needed for 95% FAAE yield were 75% of methanol dosage. • Crystallization temperature of crude biodiesel decreased from 2.08 °C to −3.15 °C. - Abstract: Renewable ethanol and isopropanol were employed for lipid transesterification in wet microalgae cells to produce biodiesel with low crystallization temperature and reduce the alcohol volume needed for biodiesel production. Decreased droplet size and lipid polarity were observed after transesterification with alcohol in microalgae cells. Such decrease was beneficial in extracting lipid from microalgae with apolar hexane. The effects of reaction temperature, reaction time, and alcohol volume on microwave-assisted transesterification with ethanol and isopropanol were investigated, and results were compared with those with methanol. Microwave-assisted transesterification with ethanol and isopropanol, which were more miscible with lipid in cells, resulted in higher fatty acid alkyl ester (FAAE) yields than that with methanol when the reaction temperature was lower than 90 °C. The ethanol and isopropanol volumes in the transesterification with 95% FAAE yield were only 75% of the methanol volume. The crystallization temperatures (0.19 °C and −3.15 °C) of biodiesels produced from wet microalgae through lipid transesterification in cells with ethanol and isopropanol were lower than that with methanol (2.08 °C), which was favorable for biodiesel flow in cold districts and winter.

  9. Ethanol Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  10. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland

    DEFF Research Database (Denmark)

    Larsen, L.; Nielsen, P.; Ahring, B.K.

    1997-01-01

    The extremely thermophilic ethanol-producing strain A3 was isolated from a hot spring in Iceland, The cells were rod-shaped, motile, and had terminal spores: cells from the mid-to-late exponential growth phase stained gram-variable but had a gram-positive cell wall structure when viewed...

  11. Biohydrogen, bioelectricity and bioalcohols from cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Nissila, M.

    2013-03-01

    The demand for renewable energy is increasing due to increasing energy demand and global warming associated with increasing use of fossil fuels. Renewable energy can be derived from biological production of energy carriers from cellulosic biomass. These biochemical processes include biomass fermentation to hydrogen, methane and alcohols, and bioelectricity production in microbial fuel cells (MFCs). The objective of this study was to investigate the production of different energy carriers (hydrogen, methane, ethanol, butanol, bioelectricity) through biochemical processes. Hydrogen production potential of a hot spring enrichment culture from different sugars was determined, and hydrogen was produced continuously from xylose. Cellulolytic and hydrogenic cultures were enriched on cellulose, cellulosic pulp materials, and on silage at different process conditions. The enrichment cultures were further characterized. The effect of acid pretreatment on hydrogen production from pulp materials was studied and compared to direct pulp fermentation to hydrogen. Electricity and alcohol(s) were simultaneously produced from xylose in MFCs and the exoelectrogenic and alcohologenic enrichment cultures were characterized. In the end, the energy yields obtained from different biochemical processes were determined and compared. In this study, cultures carrying out simultaneous cellulose hydrolysis and hydrogen fermentation were enriched from different sources at different operational conditions. These cultures were successfully utilized for cellulose to hydrogen fermentation in batch systems. Based on these results further research should be conducted on continuous hydrogen production from cellulosic materials.

  12. On the conflicting findings of Role of Cellulose-Crystallinity in Enzume Hydrolysis of Biomass

    Science.gov (United States)

    Umesh Agarwal; Sally Ralph

    2014-01-01

    In the field of conversion of biomass to ethanol, an important area of research is the enzymatic hydrolysis of cellulose. Once cellulose is converted to glucose, it can be easily fermented to ethanol. As the cellulosic ethanol technology stands now, costly pretreatments and high dosages of cellulases are needed to achieve complete hydrolysis of the cellulose fraction...

  13. Improving the performance of industrial ethanol-producing yeast by expressing the aspartyl protease on the cell surface.

    Science.gov (United States)

    Guo, Zhong-peng; Zhang, Liang; Ding, Zhong-yang; Wang, Zheng-Xiang; Shi, Gui-Yang

    2010-12-01

    The yeasts used in fuel ethanol manufacture are unable to metabolize soluble proteins. The PEP4 gene, encoding a vacuolar aspartyl protease in Saccharomyces cerevisiae, was either secretively or cell-surface anchored expressed in industrial ethanol-producing S. cerevisiae. The obtained recombinant strains APA (expressing the protease secretively) and APB (expressing the protease on the cell wall) were studied under ethanol fermentation conditions in feed barley cultures. The effects of expression of the protease on product formation, growth and cell protein content were measured. The biomass yield of the wild-type was clearly lower than that of the recombinant strains (0.578 ± 0.12 g biomass/g glucose for APA and 0.582 ± 0.08 g biomass/g glucose for APB). In addition, nearly 98-99% of the theoretical maximum level of ethanol yield was achieved (relative to the amount of substrate consumed) for the recombinant strains, while limiting the nitrogen source resulted in dissatisfactory fermentation for the wild-type and more than 30 g/l residual sugar was detected at the end of fermentation. In addition, higher growth rate, viability and lower yields of byproducts such as glycerol and pyruvic acid for recombinant strains were observed. Expressing acid protease can be expected to lead to a significant increase in ethanol productivity. Copyright © 2010 John Wiley & Sons, Ltd.

  14. Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects

    Directory of Open Access Journals (Sweden)

    Swapnalee Sarmah

    2013-08-01

    Fetal alcohol spectrum disorder (FASD occurs when pregnant mothers consume alcohol, causing embryonic ethanol exposure and characteristic birth defects that include craniofacial, neural and cardiac defects. Gastrulation is a particularly sensitive developmental stage for teratogen exposure, and zebrafish is an outstanding model to study gastrulation and FASD. Epiboly (spreading blastomere cells over the yolk cell, prechordal plate migration and convergence/extension cell movements are sensitive to early ethanol exposure. Here, experiments are presented that characterize mechanisms of ethanol toxicity on epiboly and gastrulation. Epiboly mechanisms include blastomere radial intercalation cell movements and yolk cell microtubule cytoskeleton pulling the embryo to the vegetal pole. Both of these processes were disrupted by ethanol exposure. Ethanol effects on cell migration also indicated that cell adhesion was affected, which was confirmed by cell aggregation assays. E-cadherin cell adhesion molecule expression was not affected by ethanol exposure, but E-cadherin distribution, which controls epiboly and gastrulation, was changed. E-cadherin was redistributed into cytoplasmic aggregates in blastomeres and dramatically redistributed in the extraembryonic yolk cell. Gene expression microarray analysis was used to identify potential causative factors for early development defects, and expression of the cell adhesion molecule protocadherin-18a (pcdh18a, which controls epiboly, was significantly reduced in ethanol exposed embryos. Injecting pcdh18a synthetic mRNA in ethanol treated embryos partially rescued epiboly cell movements, including enveloping layer cell shape changes. Together, data show that epiboly and gastrulation defects induced by ethanol are multifactorial, and include yolk cell (extraembryonic tissue microtubule cytoskeleton disruption and blastomere adhesion defects, in part caused by reduced pcdh18a expression.

  15. Techno-economic and environmental aspects of the production of medium scale ligno-cellulosic ethanol under Egyptian conditions

    Directory of Open Access Journals (Sweden)

    Shadia R. Tewfik

    2015-12-01

    Full Text Available As a result of actual pilot experimental data and guided by international and national reported estimates, this techno-economic study on a 20,000 ton/y ethanol production plant from rice straw has been conducted. The process essentially comprises preparation of the raw materials, alkaline pretreatment, simultaneous saccharification and fermentation (SSF and dehydration. For the proposed capacity, costs have been estimated based on published information for the equipment as updated to 2013. Operating costs have been estimated according to experimental results of the research team and published information. Financial and sensitivity analyses have been conducted for optimistic and pessimistic scenarios for investment and operating costs and varying sales price of ethanol in the range $0.76/kg–$0.84/kg. Results indicate that positive present values have been obtained at the prevailing discount rate of 3%. The Internal Rate of Return (IRR exceeds the discount rate considerably for the optimistic assumptions and is rather marginal for the pessimistic scenarios. In general, the process is considered technically and economically viable.

  16. γ radiolysis of cellulose acetate

    International Nuclear Information System (INIS)

    Ali, S.M.; Clay, P.G.

    1979-01-01

    The major degradative process in γ-irradiated cellulose acetate is chain scission. For the dry powder the G/sub s/ value (number of scissions per 100 eV of energy absorbed) was found to be 7.1. The water-swollen material was found to degrade at the higher rate of G/sub s/ = 9.45. Additions of ethanol and methanol to the water brought about reductions in G/sub s/, whereas dissolved nitrous oxide produced an increase in G/sub s/. The useful life of cellulose acetate reverse osmosis membranes exposed to γ radiation was estimated by observations of the water permeation rate during irradiation. Membrane breakdown occurred at 15 Mrad in pure water, but the dose to breakdown was extended to 83 Mrad in the presence of 4% methanol. 3 figures, 1 table

  17. Ethanol production from biomass. Voorlopig nauwelijks ethanolproduktie uit biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Van der Knijff, A; Wildschut, L R [Haskoning Koninklijk Ingenieurs- en Architectenbureau, Nijmegen (Netherlands); Williams, A [Technische Univ. Twente, Enschede (Netherlands)

    1991-04-01

    Fluid fuels, for instance ethanol and methanol, can be produced from agricultural materials and from waste materials. For 37 waste flows (among which scrap from the oil- and fat industry, waste potatoes, withdrawn vegetables, waste wood, straw, roadside grass, vegetables-, fruits- and garden wastes and beet tails) possibilities to produce fuels have been considered. In general, sacchariferous and farinaceous wastes, which could be used for ethanol production, are used for other purposes. Therefore ethanol production from these materials is expensive. Cellulose wastes (for instance straw, wood wastes and paper sludge) can be suitable in the future for ethanol production. But first a cheap method to decompose and hydrolize cellulose has to be developed. 2 figs., 2 ills., 3 refs.

  18. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products.

    Science.gov (United States)

    Oliveira, Fernando M V; Pinheiro, Irapuan O; Souto-Maior, Ana M; Martin, Carlos; Gonçalves, Adilson R; Rocha, George J M

    2013-02-01

    Steam explosion at 180, 190 and 200°C for 15min was applied to sugarcane straw in an industrial sugar/ethanol reactor (2.5m(3)). The pretreated straw was delignificated by sodium hydroxide and hydrolyzed with cellulases, or submitted directly to enzymatic hydrolysis after the pretreatment. The pretreatments led to remarkable hemicellulose solubilization, with the maximum (92.7%) for pretreatment performed at 200°C. Alkaline treatment of the pretreated materials led to lignin solubilization of 86.7% at 180°C, and only to 81.3% in the material pretreated at 200°C. All pretreatment conditions led to high hydrolysis conversion of cellulose, with the maximum (80.0%) achieved at 200°C. Delignification increase the enzymatic conversion (from 58.8% in the cellulignin to 85.1% in the delignificated pulp) of the material pretreated at 180°C, but for the material pretreated at 190°C, the improvement was less remarkable, while for the pretreated at 200°C the hydrolysis conversion decreased after the alkaline treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes.

    Science.gov (United States)

    Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr; Jørgensen, Henning; Felby, Claus

    2013-11-01

    Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated wheat straw. Industrial conditions were used to study the impact of hydrolysis temperature (40 or 50°C) and residence time on recyclability. Enzyme recycling at 12% DM indicated that hydrolysis at 50°C, though ideal for ethanol yield, should be kept short or carried out at lower temperature to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose a challenge for applicable methods in enzyme recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Esterification with ethanol to produce biodiesel from high acidity raw materials. Kinetic studies and analysis of secondary reactions

    Energy Technology Data Exchange (ETDEWEB)

    Pisarello, M.L.; Dalla Costa, B.; Mendow, G.; Querini, C.A. [Instituto de Investigaciones en Catalisis y Petroquimica (INCAPE)-(FIQ-UNL, CONICET), Santiago del Estero 2654-Santa Fe, S3000AOJ (Argentina)

    2010-09-15

    In this work, the esterification reaction of free fatty acids (FFA) in sunflower oil, coconut oil and concentrated FFA, with ethanol, methanol and ethanol 96%, using homogeneous acid catalysts to produce biodiesel is studied. Kinetic parameters are estimated with a simplified model, and then used to predict the reaction behavior. Reactions other than the reversible esterification are considered to explain the behavior that this system displays. Such reactions are the triglycerides conversion by acid catalyzed transesterification and hydrolysis. In addition, we include kinetic studies of the reaction that occur between the sulphuric acid and methanol (or ethanol), forming mono and dialkylsulphates. This reaction produces water and consumes methanol (or ethanol), and consequently has a direct impact in the esterification reaction rate and equilibrium conversion. The concentration of sulphuric acid decreases to less than 50% of the initial value due to the reaction with the alcohol. A minimum in the acidity due to the free fatty acids as a function of time was clearly observed during the reaction, which has not been reported earlier. This behavior is related to the consecutive reactions that take place during the esterification of FFA in the presence of triglycerides. The phase separation due to the presence of water, which is generated during the reaction, is also studied. (author)

  1. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.

    Science.gov (United States)

    Svetlitchnyi, Vitali A; Kensch, Oliver; Falkenhan, Doris A; Korseska, Svenja G; Lippert, Nadine; Prinz, Melanie; Sassi, Jamaleddine; Schickor, Anke; Curvers, Simon

    2013-02-28

    Consolidated bioprocessing (CBP) of lignocellulosic biomass to ethanol using thermophilic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic enzymes. Most studies on the thermophilic CBP concentrate on co-cultivation of the thermophilic cellulolytic bacterium Clostridium thermocellum with non-cellulolytic thermophilic anaerobes at temperatures of 55°C-60°C. We have specifically screened for cellulolytic bacteria growing at temperatures >70°C to enable direct conversion of lignocellulosic materials into ethanol. Seven new strains of extremely thermophilic anaerobic cellulolytic bacteria of the genus Caldicellulosiruptor and eight new strains of extremely thermophilic xylanolytic/saccharolytic bacteria of the genus Thermoanaerobacter isolated from environmental samples exhibited fast growth at 72°C, extensive lignocellulose degradation and high yield ethanol production on cellulose and pretreated lignocellulosic biomass. Monocultures of Caldicellulosiruptor strains degraded up to 89-97% of the cellulose and hemicellulose polymers in pretreated biomass and produced up to 72 mM ethanol on cellulose without addition of exogenous enzymes. In dual co-cultures of Caldicellulosiruptor strains with Thermoanaerobacter strains the ethanol concentrations rose 2- to 8.2-fold compared to cellulolytic monocultures. A co-culture of Caldicellulosiruptor DIB 087C and Thermoanaerobacter DIB 097X was particularly effective in the conversion of cellulose to ethanol, ethanol comprising 34.8 mol% of the total organic products. In contrast, a co-culture of Caldicellulosiruptor saccharolyticus DSM 8903 and Thermoanaerobacter mathranii subsp. mathranii DSM 11426 produced only low amounts of ethanol. The newly discovered Caldicellulosiruptor sp. strain DIB 004C was capable of producing unexpectedly large amounts of ethanol from lignocellulose in fermentors. The established co-cultures of new Caldicellulosiruptor

  2. The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases

    Energy Technology Data Exchange (ETDEWEB)

    Stipanovic, Arthur J [SUNY College of Environmental Science and Forestry

    2014-11-17

    Consistent with the US-DOE and USDA “Roadmap” objective of producing ethanol and chemicals from cellulosic feedstocks more efficiently, a three year research project entitled “The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases” was initiated in early 2003 under DOE sponsorship (Project Number DE-FG02-02ER15356). A three year continuation was awarded in June 2005 for the period September 15, 2005 through September 14, 2008. The original goal of this project was to determine the effect of cellulose crystal structure, including allomorphic crystalline form (Cellulose I, II, III, IV and sub-allomorphs), relative degree of crystallinity and crystallite size, on the activity of different types of genetically engineered cellulase enzymes to provide insight into the mechanism and kinetics of cellulose digestion by “pure” enzymes rather than complex mixtures. We expected that such information would ultimately help enhance the accessibility of cellulose to enzymatic conversion processes thereby creating a more cost-effective commercial process yielding sugars for fermentation into ethanol and other chemical products. Perhaps the most significant finding of the initial project phase was that conversion of native bacterial cellulose (Cellulose I; BC-I) to the Cellulose II (BC-II) crystal form by aqueous NaOH “pretreatment” provided an increase in cellulase conversion rate approaching 2-4 fold depending on enzyme concentration and temperature, even when initial % crystallinity values were similar for both allomorphs.

  3. Process for fermentation of ethanol. Verfahren zur Aethanolfermentation

    Energy Technology Data Exchange (ETDEWEB)

    Pemberton, M S; Crawford, S D

    1980-06-19

    The invention concerns an improved process for the manufacture of ethanol from cellulose and substrates containing cellulate with cellulase enzymes and yeast (Candida brassicae ATCC 32196). The cellulase and the micro-organisms producing the alcohol are caused to react simultaneously on the same substrate. The yeast is active below and above 40/sup 0/C.

  4. Cellulose conversion of corn pericarp without pretreatment.

    Science.gov (United States)

    Kim, Daehwan; Orrego, David; Ximenes, Eduardo A; Ladisch, Michael R

    2017-12-01

    We report enzyme hydrolysis of cellulose in unpretreated pericarp at a cellulase loading of 0.25FPU/g pericarp solids using a phenol tolerant Aspergillus niger pectinase preparation. The overall protein added was 5mg/g and gave 98% cellulose conversion in 72h. However, for double the amount of enzyme from Trichoderma reesei, which is significantly less tolerant to phenols, conversion was only 16%. The key to achieving high conversion without pretreatment is combining phenol inhibition-resistant enzymes (such as from A. niger) with unground pericarp from which release of phenols is minimal. Size reduction of the pericarp, which is typically carried out in a corn-to-ethanol process, where corn is first ground to a fine powder, causes release of highly inhibitory phenols that interfere with cellulase enzyme activity. This work demonstrates hydrolysis without pretreatment of large particulate pericarp is a viable pathway for directly producing cellulose ethanol in corn ethanol plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Osterndorff-Kahanek

    Full Text Available Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY, nucleus accumbens (NAC, prefrontal cortex (PFC, and liver after four weekly cycles of chronic intermittent ethanol (CIE vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000 at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600. Within each region, there was little gene overlap across time (~20%. All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global 'rewiring' of coexpression systems involving glial and immune signaling as well as neuronal genes.

  6. Gas quality prediction in ligno-cellulosic biomass gasification in a co-current gas producer

    International Nuclear Information System (INIS)

    Martin, J.; Nganhou, J.; Amie Assouh, A.

    2008-01-01

    Our research covers the energetic valuation of the biomass for electricity production. As electrical energy production is the main drive behind a modern economy, we wanted to make our contribution to the debate by describing a tried technique, whose use on an industrial scale can still be perfected, failing control over the basic principles that support the gasification processes called upon in this industry. Our study describes gasification, which is a process to transform a solid combustible into a gas combustible. The resulting gas can be used as combustible in an internal combustion motor and produce electricity. Our work interprets the experimental results of gasification tests conducted on an available and functional experimental centre and the ENSPY's Decentralized Energy Production Lab. The work involved developing a tool to appreciate the results of the gasification of the ligneous biomass from the stoichiometric composition of the combustible to be gasified and the chemical and mathematical bases of the gasification process. It is an investigation with a view to elaborating a mathematical model based on the concept of compatibility. Its original lies in the quality prediction method for the gas obtained through the gasification of a biomass whose chemical composition is known. (authors)

  7. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  8. Mapping grasslands suitable for cellulosic biofuels in the Greater Platte River Basin, United States

    Science.gov (United States)

    Wylie, Bruce K.; Gu, Yingxin

    2012-01-01

    Biofuels are an important component in the development of alternative energy supplies, which is needed to achieve national energy independence and security in the United States. The most common biofuel product today in the United States is corn-based ethanol; however, its development is limited because of concerns about global food shortages, livestock and food price increases, and water demand increases for irrigation and ethanol production. Corn-based ethanol also potentially contributes to soil erosion, and pesticides and fertilizers affect water quality. Studies indicate that future potential production of cellulosic ethanol is likely to be much greater than grain- or starch-based ethanol. As a result, economics and policy incentives could, in the near future, encourage expansion of cellulosic biofuels production from grasses, forest woody biomass, and agricultural and municipal wastes. If production expands, cultivation of cellulosic feedstock crops, such as switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus species), is expected to increase dramatically. The main objective of this study is to identify grasslands in the Great Plains that are potentially suitable for cellulosic feedstock (such as switchgrass) production. Producing ethanol from noncropland holdings (such as grassland) will minimize the effects of biofuel developments on global food supplies. Our pilot study area is the Greater Platte River Basin, which includes a broad range of plant productivity from semiarid grasslands in the west to the fertile corn belt in the east. The Greater Platte River Basin was the subject of related U.S. Geological Survey (USGS) integrated research projects.

  9. One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Park Enoch Y

    2012-08-01

    Full Text Available Abstract Background While the ethanol production from biomass by consolidated bioprocess (CBP is considered to be the most ideal process, simultaneous saccharification and fermentation (SSF is the most appropriate strategy in practice. In this study, one-pot bioethanol production, including cellulase production, saccharification of cellulose, and ethanol production, was investigated for the conversion of biomass to biofuel by co-culture of two different microorganisms such as a hyper cellulase producer, Acremonium cellulolyticus C-1 and an ethanol producer Saccharomyces cerevisiae. Furthermore, the operational conditions of the one-pot process were evaluated for maximizing ethanol concentration from cellulose in a single reactor. Results Ethanol production from cellulose was carried out in one-pot bioethanol production process. A. cellulolyticus C-1 and S. cerevisiae were co-cultured in a single reactor. Cellulase producing-medium supplemented with 2.5 g/l of yeast extract was used for productions of both cellulase and ethanol. Cellulase production was achieved by A. cellulolyticus C-1 using Solka-Floc (SF as a cellulase-inducing substrate. Subsequently, ethanol was produced with addition of both 10%(v/v of S. cerevisiae inoculum and SF at the culture time of 60 h. Dissolved oxygen levels were adjusted at higher than 20% during cellulase producing phase and at lower than 10% during ethanol producing phase. Cellulase activity remained 8–12 FPU/ml throughout the one-pot process. When 50–300 g SF/l was used in 500 ml Erlenmeyer flask scale, the ethanol concentration and yield based on initial SF were as 8.7–46.3 g/l and 0.15–0.18 (g ethanol/g SF, respectively. In 3-l fermentor with 50–300 g SF/l, the ethanol concentration and yield were 9.5–35.1 g/l with their yields of 0.12–0.19 (g/g respectively, demonstrating that the one-pot bioethanol production is a reproducible process in a scale-up bioconversion of cellulose to ethanol

  10. A study of ethanol production of yeast cells immobilized with polymer carrier produced by radiation polymerization

    International Nuclear Information System (INIS)

    Lu Zhaoxin; Fujimura, Takashi

    1993-01-01

    Polymer carriers, poly(hydroxyethyl acrylate(HEA)-methoxy polyethylene glycol methylacrylate (M-23G)) and poly(hydroxyethyl acrylate(HEA)-glycidyl methylacrylate (GMA)) used for the immobilization of yeast cells were prepared by radiation polymerization at low temperature. Yeast cells were immobilized through adhesion and multiplication of yeast cells. The ethanol productivity of immobilized yeast cells with these carriers was related to the monomer composition of polymers and the optimum monomer composition was 20%:10% in poly(HEA-M-23G) and 17%:6% in poly(HEA-GMA). In this case, the ethanol productivity of immobilized yeast cells was about 4 times that of cells in free system. The relationship between the activity of immobilized yeast cells and the water content of the polymer carrier were also discussed. (author)

  11. Ethanol production from Dekkera bruxellensis in synthetic media with pentose

    Directory of Open Access Journals (Sweden)

    Carolina B. Codato

    Full Text Available Abstract Ethanol is obtained in Brazil from the fermentation of sugarcane, molasses or a mixture of these. Alternatively, it can also be obtained from products composed of cellulose and hemicellulose, called “second generation ethanol - 2G”. The yeast Saccharomyces cerevisiae, commonly applied in industrial ethanol production, is not efficient in the conversion of pentoses, which is present in high amounts in lignocellulosic materials. This study aimed to evaluate the ability of a yeast strain of Dekkera bruxellensis in producing ethanol from synthetic media, containing xylose or arabinose, xylose and glucose as the sole carbon sources. The results indicated that D. bruxellensis was capable of producing ethanol from xylose and arabinose, with ethanol concentration similar for both carbon sources, 1.9 g L-1. For the fermentations performed with xylose and glucose, there was an increase in the concentration of ethanol to 5.9 g L-1, lower than the standard yeast Pichia stipitis (9.3 g L-1, but with similar maximum yield in ethanol (0.9 g g TOC-1. This proves that the yeast D. bruxellensis produced lower amounts of ethanol when compared with P. stipitis, but showed that is capable of fermenting xylose and can be a promising alternative for ethanol conversion from hydrolysates containing glucose and xylose as carbon source.

  12. High cell density cultures produced by internal retention: application in continuous ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Berta Carola Pérez

    2004-07-01

    Full Text Available Ethanol has provoked great interest due to its potential as an alternative fuel. Nevertheless, fermentation processes must be developed by increasing the low volumetric productivity achieved in conventional cultures (batch or continuous to make this product become economically competitive. This can be achieved by using techniques leading to high cell concentration and reducing inhibition by the end-product. One of the frequently employed methods involves cell recycling. This work thus developed a membrane reactor incorporating a filtration module with 5 u,m stainless steel tubular units inside a 3L stirred jar fermenter for investigating its application in continuous ethanol production. The effects of cell concentration and transmembrane pressure difference on permeate flux were evaluated for testing the filtration module's performance. The internal cell retention system was operated in Saccharomyces cerevisiae continuous culture derived from sucrose, once fermentation conditions had been selected (30 °C, 1.25 -1.75 vvm, pH 4.5. Filter unit permeability was maintained by applying pulses of air. More than 97% of the grown cells were retained in the fermenter, reaching 51 g/L cell concentration and 8.51 g/L.h average ethanol productivity in culture with internal cell retention; this was twice that obtained in a conventional continuous culture. Key words: Membrane reactor, Saccharomyces cerevisiae, alcoholic fermentation, cell recycling.

  13. Ethanol production from alfalfa fiber fractions by saccharification and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sreenath, H.K. [University of Wisconsin, Madison, WI (United States). Dept. of Biological Systems Engineering; USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Koegel, R.G. [US Department of Agriculture, Madison, WI (United States). Dairy Forage Research Center; Moldes, A.B. [USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Universidade de Vigo, Ourense (Spain); Jeffries, T.W. [USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Straub, R.J. [University of Wisconsin, Madison, WI (United States). Dept. of Biological Systems Engineering

    2001-07-01

    This work describes ethanol production from alfalfa fiber using separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) with and without liquid hot water (LHW) pretreatment. Candida shehatae FPL-702 produced 5 and 6.4 g/l ethanol with a yield of 0.25 and 0.16 g ethanol/g sugar respectively by SHF and SSF from alfalfa fiber without pretreatment. With LHW pretreatment using SSF, C. shehatae FPL-702 produced 18.0 g/l ethanol, a yield of 0.45 g ethanol/g sugar from cellulosic solids or 'raffinate'. Using SHF, it produced 9.6 g/l ethanol, a yield of 0.47 g ethanol/g sugar from raffinate. However, the soluble extract fraction containing hemicelluloses was poorly fermented in both SHF and SSF due to the presence of inhibitors. Addition of dilute acid during LHW pretreatment of alfalfa fiber resulted in fractions that were poorly saccharified and fermented. These results show that unpretreated alfalfa fiber produced a lower ethanol yield. Although LHW pretreatment can increase ethanol production from raffinate fiber fractions, it does not increase production from the hemicellulosic and pectin fractions. (author)

  14. Optimizing fermentation process miscanthus-to-ethanol biorefinery scale under uncertain conditions

    International Nuclear Information System (INIS)

    Bomberg, Matthew; Sanchez, Daniel L; Lipman, Timothy E

    2014-01-01

    Ethanol produced from cellulosic feedstocks has garnered significant interest for greenhouse gas abatement and energy security promotion. One outstanding question in the development of a mature cellulosic ethanol industry is the optimal scale of biorefining activities. This question is important for companies and entrepreneurs seeking to construct and operate cellulosic ethanol biorefineries as it determines the size of investment needed and the amount of feedstock for which they must contract. The question also has important implications for the nature and location of lifecycle environmental impacts from cellulosic ethanol. We use an optimization framework similar to previous studies, but add richer details by treating many of these critical parameters as random variables and incorporating a stochastic sub-model for land conversion. We then use Monte Carlo simulation to obtain a probability distribution for the optimal scale of a biorefinery using a fermentation process and miscanthus feedstock. We find a bimodal distribution with a high peak at around 10–30 MMgal yr −1 (representing circumstances where a relatively low percentage of farmers elect to participate in miscanthus cultivation) and a lower and flatter peak between 150 and 250 MMgal yr −1 (representing more typically assumed land-conversion conditions). This distribution leads to useful insights; in particular, the asymmetry of the distribution—with significantly more mass on the low side—indicates that developers of cellulosic ethanol biorefineries may wish to exercise caution in scale-up. (letters)

  15. Optimizing fermentation process miscanthus-to-ethanol biorefinery scale under uncertain conditions

    Science.gov (United States)

    Bomberg, Matthew; Sanchez, Daniel L.; Lipman, Timothy E.

    2014-05-01

    Ethanol produced from cellulosic feedstocks has garnered significant interest for greenhouse gas abatement and energy security promotion. One outstanding question in the development of a mature cellulosic ethanol industry is the optimal scale of biorefining activities. This question is important for companies and entrepreneurs seeking to construct and operate cellulosic ethanol biorefineries as it determines the size of investment needed and the amount of feedstock for which they must contract. The question also has important implications for the nature and location of lifecycle environmental impacts from cellulosic ethanol. We use an optimization framework similar to previous studies, but add richer details by treating many of these critical parameters as random variables and incorporating a stochastic sub-model for land conversion. We then use Monte Carlo simulation to obtain a probability distribution for the optimal scale of a biorefinery using a fermentation process and miscanthus feedstock. We find a bimodal distribution with a high peak at around 10-30 MMgal yr-1 (representing circumstances where a relatively low percentage of farmers elect to participate in miscanthus cultivation) and a lower and flatter peak between 150 and 250 MMgal yr-1 (representing more typically assumed land-conversion conditions). This distribution leads to useful insights; in particular, the asymmetry of the distribution—with significantly more mass on the low side—indicates that developers of cellulosic ethanol biorefineries may wish to exercise caution in scale-up.

  16. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, December 1, 1978-February 28, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1979-02-01

    The ongoing progress of a coordinated research program aimed at optimizing the biodegradation of cellulosic biomass to ethanol and chemical feedstocks is summarized. Growth requirements and genetic manipulations of clostridium thermocellum for selection of high cellulose producers are reported. The enzymatic activity of the cellulase produced by these organisms was studied. The soluble sugars produced from hydrolysis were analyzed. Increasing the tolerance of C. thermocellum to ethanol during liquid fuel production, increasing the rate of product formation, and directing the catabolism to selectively achieve high ethanol concentrations with respect to other products were studied. Alternative substrates for C. thermocellum were evaluated. Studies on the utilization of xylose were performed. Single stage fermentation of cellulose using mixed cultures of C. thermocellum and C. thermosaccharolyticum were studied. The study of the production of chemical feedstocks focused on acrylic acid, acetone/butanol, acetic acid, and lactic acid.

  17. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  18. The environmental benefits of cellulosic energy crops at a landscape scale

    International Nuclear Information System (INIS)

    Graham, R.L.; Liu, W.; English, B.C.

    1995-01-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops--particularly the cellulosic energy crops current under development. For this discussion, the term energy crop refers to a crop grown primarily to create feedstock for either making biofuels such as ethanol or burning in a heat or electricity generation facility. Cellulosic energy crops are designed to be used in cellulose-based ethanol conversion processes (as opposed to starch or sugar-based ethanol conversion processes). As more cellulose can be produced per hectare of land than can sugar or starch, the cellulose-based ethanol conversion process is a more efficient sue of land for ethanol production. Assessing the environmental impacts of biomass energy from energy crops is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing cellulosic energy crops especially at the landscape or regional scale. However, to set the stage for this discussion, the authors begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics

  19. Opportunity for profitable investments in cellulosic biofuels

    International Nuclear Information System (INIS)

    Babcock, Bruce A.; Marette, Stephan; Treguer, David

    2011-01-01

    Research efforts to allow large-scale conversion of cellulose into biofuels are being undertaken in the US and EU. These efforts are designed to increase logistic and conversion efficiencies, enhancing the economic competitiveness of cellulosic biofuels. However, not enough attention has been paid to the future market conditions for cellulosic biofuels, which will determine whether the necessary private investment will be available to allow a cellulosic biofuels industry to emerge. We examine the future market for cellulosic biofuels, differentiating between cellulosic ethanol and 'drop-in' cellulosic biofuels that can be transported with petroleum fuels and have equivalent energy values. We show that emergence of a cellulosic ethanol industry is unlikely without costly government subsidies, in part because of strong competition from conventional ethanol and limits on ethanol blending. If production costs of drop-in cellulosic biofuels fall enough to become competitive, then their expansion will not necessarily cause feedstock prices to rise. As long as local supplies of feedstocks that have no or low-valued alternative uses exist, then expansion will not cause prices to rise significantly. If cellulosic feedstocks come from dedicated biomass crops, then the supply curves will have a steeper slope because of competition for land. (author)

  20. Detoxification and fermentation of pyrolytic sugar for ethanol production.

    Science.gov (United States)

    Wang, Hui; Livingston, Darrell; Srinivasan, Radhakrishnan; Li, Qi; Steele, Philip; Yu, Fei

    2012-11-01

    The sugars present in bio-oil produced by fast pyrolysis can potentially be fermented by microbial organisms to produce cellulosic ethanol. This study shows the potential for microbial digestion of the aqueous fraction of bio-oil in an enrichment medium to consume glucose and produce ethanol. In addition to glucose, inhibitors such as furans and phenols are present in the bio-oil. A pure glucose enrichment medium of 20 g/l was used as a standard to compare with glucose and aqueous fraction mixtures for digestion. Thirty percent by volume of aqueous fraction in media was the maximum additive amount that could be consumed and converted to ethanol. Inhibitors were removed by extraction, activated carbon, air stripping, and microbial methods. After economic analysis, the cost of ethanol using an inexpensive fermentation medium in a large scale plant is approximately $14 per gallon.

  1. Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept

    OpenAIRE

    Yang, Sheng; Zhang, Yue; Yue, Wen; Wang, Wei; Wang, Yun-Yan; Yuan, Tong-Qi; Sun, Run-Cang

    2016-01-01

    Background Due to the unsustainable consumption of fossil resources, great efforts have been made to convert lignocellulose into bioethanol and commodity organic compounds through biological methods. The conversion of cellulose is impeded by the compactness of plant cell wall matrix and crystalline structure of the native cellulose. Therefore, appropriate pretreatment and even post-treatment are indispensable to overcome this problem. Additionally, an adequate utilization of coproduct lignin ...

  2. Ability of industrial anaerobic ecosystems to produce methane from ethanol in psychrophilic, mesophilic and thermophilic conditions

    International Nuclear Information System (INIS)

    Mabala, Jojo Charlie

    2012-01-01

    The process of anaerobic degradation of organic matter is a natural phenomenon widespread in many ecosystems (eg, marshes, lakes, rice fields, digestive systems of animals and humans). A high microbial diversity is maintained during this process, reflecting a diversity of metabolic pathways involved. When complete, the anaerobic digestion results in the formation of biogas (mixture of methane and carbon dioxide). In terms of biotechnology, anaerobic treatment of organic pollution reduces the volume of waste and generates energy as methane recoverable in several forms (electricity, heat, natural gas, biofuels). Industrial digesters are mostly operated at 35 deg. C or 55 deg. C which requires exogenous energy. The objective of the thesis is to study the adaptability of ecosystems sourced from anaerobic industrial scale reactors treating different range of wastes from different processes to convert ethanol into biogas at various temperatures. The first phase of the study was to adapt, in laboratory reactors ecosystems to their original temperature with a readily biodegradable substrate (ethanol). Then, the performances of microbial communities (the maximum methanogenic potential and degradation kinetics) were estimated on a temperature gradient from 5 deg. C to 55 deg. C in batch reactors. The adaptation phase of the ecosystems in lab-scale reactors showed that the biogas averaged theoretical production and this production was followed by a decrease in reaction time with successive addition of the substrate. In addition, the kinetics of the biogas obtained varied greatly from one ecosystem to another. Molecular fingerprinting profiles (CE-SSCP) of bacterial and archaeal communities were performed at the beginning and at the end of conditioning. These community profiles were compared with each other by principal component analysis (PCA). Bacterial populations that ensured efficient performance were different from those that ensured a good adaptability. In addition, the

  3. TECHNOLOGICAL ADVANCES IN THE OBTAINING OF ETHANOL FROM Sweet sorghum (Sorghum bicolor (L. Moench

    Directory of Open Access Journals (Sweden)

    Sandro Pedroso Cunha

    2010-11-01

    Full Text Available ABSTRACT: Replacing the use of gasoline with ethanol in vehicles reduces by 90% CO2 emissions, this justifies the interest in the use of bioethanol as renewable energy. Besides sugar cane, cassava, maize and sugar beet special emphasis is being given to sorghum (Sorghum bicolor L. Moench to produce ethanol for its productivity and resistance. The sorghum is grown in Rio Grande do Sul with a production of about 70,000 tons / year. Embrapa has a program to develop cultivars of sorghum from the time the Pro-Alcohol and currently 25 new varieties of sorghum are being evaluated. Several factors are relevant in the optimization of production such as increased productivity and reduced costs in the production of ethanol. This study aimed to survey recent data that will assess production parameters of ethanol from sorghum. Factors such as reducing the risk of bacterial contamination, the means conducive to fermentation processes or grain sorghum stalk through the use of pretreatment of the sample, have been of great importance because it is basically turning cellulosic biomass into fermentable sugars. Superior genotypes of sweet sorghum for ethanol production are of utmost importance, as well as better ways to convert sugars into ethanol. Lignin, toxic against microorganisms, prevents the conversion of lignocellulose into ethanol. The conversion of lignocellulosic ethanol compounds based on the hydrolysis of cellulose producing simple sugars and fermenting those sugars into ethanol through microbiology.

  4. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    This work presents the experimental results of the synthesis of unsupported and supported SiC iron oxide nanoparticles and their catalytic activity towards ethanol partial oxidation. For comparison, further unsupported iron oxide phases were investigated towards the ethanol partial oxidation. These {gamma}-Fe{sub 2}O{sub 3} and {alpha}/{gamma}-Fe{sub 2}O{sub 3} phase catalysts were prepared by the CVS method using Fe(CO){sub 5} as precursor, supplied by another author. The {alpha}-Fe{sub 2}O{sub 3} and SiC nanoparticles were prepared by the CVS method using a home made hot wall reactor technique at atmospheric pressure. Ferrocene and tetramethylsilane were used as precursor for the production process. Process parameters of precursor evaporation temperature, precursor concentration, gas mixture velocity and gas mixture dilution were investigated and optimised to produce particle sizes in a range of 10 nm. For Fe{sub 2}O{sub 3}/SiC catalyst series production, a new hot wall reactor setup was used. The particles were produced by simultaneous thermal decomposition of ferrocene and tetramethylsilane in one reactor from both sides. The production parameters of inlet tube distance inside the reactor, precursor evaporation temperature and carrier gas flow were investigated to produce a series of samples with different iron oxide content. The prepared catalysts composition, physical and chemical properties were characterized by XRD, EDX, SEM, BET surface area, FTIR, XPS and dynamic light scattering (DLS) techniques. The catalytic activity for the ethanol gas-phase oxidation was investigated in a temperature range from 260 C to 290 C. The product distributions obtained over all catalysts were analysed with mass spectrometry analysis tool. The activity of bulk Fe{sub 2}O{sub 3} and SiC nanoparticles was compared with prepared nano-iron oxide phase catalysts. The reaction parameters, such as reaction temperature and O{sub 2}/ethanol ratio were investigated. The catalysts

  5. Three-dimensional cellulose sponge: Fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration.

    Science.gov (United States)

    Joshi, Mahesh Kumar; Pant, Hem Raj; Tiwari, Arjun Prasad; Maharjan, Bikendra; Liao, Nina; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2016-01-20

    In this study, cellulose based scaffolds were produced by electrospinning of cellulose acetate (CA) solution followed by its saponification with NaOH/ethanol system for 24h. The resulting nonwoven cellulose mat was treated with sodium borohydride (SB) solution. In situ hydrolysis of SB solution into the pores of the membrane produced hydrogen gas resulting a three-dimensional (3D) cellulose sponge. SEM images demonstrated an open porous and loosely packed fibrous mesh compared to the tightly packed single-layered structure of the conventional electrospun membrane. 3D cellulose sponge showed admirable ability to nucleate bioactive calcium phosphate (Ca-P) crystals in simulated body fluid (SBF) solution. SEM-EDX and X-ray diffraction studies revealed that the minerals deposited on the nanofibers have the nonstoichiometric composition similar to that of hydroxyapatite, the mineralized component of the bone. 3D cellulose sponge exhibited the better cell infiltration, spreading and proliferation compared to 2D cellulose mat. Therefore, a facile fabrication of 3D cellulose sponge with improved mineralization represents an innovative strategy for the bone tissue engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Utilization of agricultural wastes for production of ethanol. Progress report, October 1979-May 1980

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.

    1980-05-01

    The project proposes to develop methods to utilize agricultural wastes, especially cottonseed hulls and peanut shells to produce ethanol. Initial steps will involve development of methods to break down cellulose to a usable form of substrates for chemical or biological digestion. The process of ethanol production will consist of (a) preparatory step to separate fibrous (cellulose) and non-fibrous (non-cellulosic compounds). The non-cellulosic residues which may include grains, fats or other substrates for alcoholic fermentation. The fibrous residues will be first pre-treated to digest cellulose with acid, alkali, and sulfur dioxide gas or other solvents. (b) The altered cellulose will be digested by suitable micro-organisms and cellulose enzymes before alcoholic fermentation. The digester and fermentative unit will be specially designed to develop a prototype for pilot plant for a continuous process. The first phase of the project will be devoted toward screening of a suitable method for cellulose modification, separation of fibrous and non-fibrous residues, the micro-organism and enzyme preparations. Work is in progress on: the effects of various microorganisms on the degree of saccharification; the effects of higher concentrations of acids, alkali, and EDTA on efficiency of microbial degradation; and the effects of chemicals on enzymatic digestion.

  7. Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase.

    Science.gov (United States)

    Yu, Kyung Ok; Jung, Ju; Kim, Seung Wook; Park, Chul Hwan; Han, Sung Ok

    2012-01-01

    The high price of petroleum-based diesel fuel has led to the development of alternative fuels, such as ethanol. Saccharomyces cerevisiae was metabolically engineered to utilize glycerol as a substrate for ethanol production. For the synthesis of fatty acid ethyl esters (FAEEs) by engineered S. cerevisiae that utilize glycerol as substrate, heterologous expression of an unspecific acyltransferase from Acinetobacter baylyi with glycerol utilizing genes was established. As a result, the engineered YPH499 (pGcyaDak, pGupWs-DgaTCas) strain produced 0.24 g/L FAEEs using endogenous ethanol produced from glycerol. And this study also demonstrated the possibility of increasing FAEE production by enhancing ethanol production by minimizing the synthesis of glycerol. The overall FAEE production in strain YPH499 fps1Δ gpd2Δ (pGcyaDak, pGupWs-DgaTCas) was 2.1-fold more than in YPH499 (pGcyaDak, pGupWs-DgaTCas), with approximately 0.52 g/L FAEEs produced, while nearly 17 g/L of glycerol was consumed. These results clearly indicated that FAEEs were synthesized in engineered S. cerevisiae by esterifying exogenous fatty acids with endogenously produced ethanol from glycerol. This microbial system acts as a platform in applying metabolic engineering that allows the production of FAEEs from cheap and abundant substrates specifically glycerol through the use of endogenous bioethanol. Copyright © 2011 Wiley Periodicals, Inc.

  8. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate

  9. Perspectives on fuel ethanol consumption and trade

    International Nuclear Information System (INIS)

    Walter, Arnaldo; Dolzan, Paulo; Piacente, Erik; Borges da Cunha, Kamyla; Rosillo-Calle, Frank

    2008-01-01

    Since the year 2000 or so there has been a rapid growth on fuel ethanol production and consumption, particularly in US and Brazil. Ethanol trade represented about 10% of world consumption in 2005, Brazil being the main exporter. The most important consumer markets - US and European Union (EU) - have trade regimes that constrained the comparative advantages of the most efficient producers, such as Brazil. This paper evaluates the fuel ethanol market up to 2030 together with the potential for international biotrade. Based on forecasts of gasoline consumption and on targets and mandates of fuel ethanol use, it is estimated that demand could reach 272 Gl in 2030, displacing 10% of the estimated demand of gasoline (Scenario 1), or even 566 Gl in the same year, displacing about 20% of the gasoline demand (Scenario 2). The analysis considers fuel ethanol consumption and production in US, EU-25, Japan, China, Brazil and the rest of the world (ROW-BR). Without significant production of ethanol from cellulosic materials in this period, displacing 10% of the gasoline demand in 2030, at reasonable cost, can only be accomplished by fostering fuel ethanol production in developing countries and enhancing ethanol trade. If the US and EU-25 reach their full production potential (based on conventional routes), the minimum amount that could be traded in 2030 would be about 34 Gl. Displacing 20% of the gasoline demand by 2030 will require the combined development of second-generation technologies and large-scale international trade in ethanol fuel. Without second-generation technologies, Scenario 2 could become a reality only with large-scale production of ethanol from sugarcane in developing countries, e.g., Brazil and ROW-BR could be able to export at least 14.5 Gl in 2010, 73.9 Gl in 2020 and 71.8 Gl in 2030. (author)

  10. An Investigation of Cellulose Digesting Bacteria in the Panda Gut Microbiome

    Science.gov (United States)

    Lu, M.; Leung, F. C.

    2014-12-01

    The Giant Panda (Ailuropoda melanoleuca) diet consists primarily of bamboo leaves, stems and shoots. However, the Giant Panda lacks genes for the enzymes needed to digest cellulose, the core component of bamboo. Thus, it is hypothesized that the cellulolytic digestion necessary for maintaining the Giant Panda diet is carried out by microbial symbionts in the panda gut microbiota. Fecal microbiota is used as surrogate index for gut microbiota since the Giant Panda is listed by the World Conservation Union as a Threatened Species. Two bacterial isolates with potential cellulolytic activity were isolated from Giant Panda fecal samples and cultured on selective media CMC (carboxymethyl cellulose) agar and CMC-Congo Red agar using various methods of inoculation. After incubation, clearance zones around colonies were observed and used as qualitative assays for cellulose digestion. Polymerase chain reaction amplification of the 16S rRNA gene was completed and species identification was done based on the BLAST result of 16S rRNA sequence obtained using Sanger sequencing. Once the cellulase activity is confirmed, genomic DNA of the bacteria will be extracted and used for whole genome shotgun sequencing. Illumina next generation sequencing platform will be adopted as it yields high-throughput information, providing a better understanding of cellulose digestion and the molecular genetic pathways to renewable sources of biofuels. Researchers have identified multiple cellulose-digesting microbes in the Giant Panda gut, but few have applied such bacteria in converting cellulose into glucose to create biofuel. Cellulosic ethanol, a biofuel, is produced through the fermentation of lignocellulosic biomasses. This anaerobic process is aided by cellulose-digesting enzymes. Certain microbes, such as those present in the Giant Panda gut, can produce enzymes that cleave the glycosidic bonds of cellulose (C6H10O5) into glucose molecules (C6H12O6), which can then be fermented into ethanol

  11. Internal and External Barriers Impacting Non-Food Cellulosic Biofuel Projects in the United States

    Directory of Open Access Journals (Sweden)

    Jeremy Withers

    2015-05-01

    Full Text Available Escalating demand, along with EPAct 2005, has led the United States government to assume a twofold leadership approach of energy security and environmental practices. This has initiated several important issues pertaining to cellulosic biofuel production. However, little is known about what is needed for the U.S. to lead long-term renewable energy security, how the US will develop and implement leading environmental energy practices, what supply capabilities and refining technologies are available to produce renewable fuels, and how funding can be used to adopt available technologies. This article examines geographical aspects, operational status, and barriers tending to prevent the successful commercialization of non-food cellulosic ethanol projects in the U.S. from secondary sources. Outcomes of this research can be used to further understand inhibitors that impact the production and commercialization of ethanol from non-food cellulosic sources.

  12. Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC

    Science.gov (United States)

    Q.Q. Wang; J.Y. Zhu; R.S. Reiner; S.P. Verrill; U. Baxa; S.E. McNeil

    2012-01-01

    This study demonstrated the potential of simultaneously recovering cellulosic solid residues (CSR) and producing cellulose nanocrystals (CNCs) by strong sulfuric acid hydrolysis to minimize cellulose loss to near zero. A set of slightly milder acid hydrolysis conditions than that considered as “optimal” were used to significantly minimize the degradation of cellulose...

  13. Control of the Biofilms Formed by Curli- and Cellulose-Expressing Shiga Toxin-Producing Escherichia coli Using Treatments with Organic Acids and Commercial Sanitizers.

    Science.gov (United States)

    Park, Yoen Ju; Chen, Jinru

    2015-05-01

    Biofilms are a mixture of bacteria and extracellular products secreted by bacterial cells and are of great concern to the food industry because they offer physical, mechanical, and biological protection to bacterial cells. This study was conducted to quantify biofilms formed by different Shiga toxin-producing Escherichia coli (STEC) strains on polystyrene and stainless steel surfaces and to determine the effectiveness of sanitizing treatments in control of these biofilms. STEC producing various amounts of cellulose (n = 6) or curli (n = 6) were allowed to develop biofilms on polystyrene and stainless steel surfaces at 28°C for 7 days. The biofilms were treated with 2% acetic or lactic acid and manufacturer-recommended concentrations of acidic or alkaline sanitizers, and residual biofilms were quantified. Treatments with the acidic and alkaline sanitizers were more effective than those with the organic acids for removing the biofilms. Compared with their counterparts, cells expressing a greater amount of cellulose or curli formed more biofilm mass and had greater residual mass after sanitizing treatments on polystyrene than on stainless steel. Research suggests that the organic acids and sanitizers used in the present study differed in their ability to control biofilms. Bacterial surface components and cell contact surfaces can influence both biofilm formation and the efficacy of sanitizing treatments. These results provide additional information on control of biofilms formed by STEC.

  14. Electrospinning cellulose based nanofibers for sensor applications

    Science.gov (United States)

    Nartker, Steven

    2009-12-01

    Bacterial pathogens have recently become a serious threat to the food and water supply. A biosensor based on an electrochemical immunoassay has been developed for detecting food borne pathogens, such as Escherichia coli (E. coli) O157:H7. These sensors consist of several materials including, cellulose, cellulose nitrate, polyaniline and glass fibers. The current sensors have not been optimized in terms of microscale architecture and materials. The major problem associated with the current sensors is the limited concentration range of pathogens that provides a linear response on the concentration conductivity chart. Electrospinning is a process that can be used to create a patterned fiber mat design that will increase the linear range and lower the detection limit of these sensors by improving the microscale architecture. Using the electrospinning process to produce novel mats of cellulose nitrate will offer improved surface area, and the cellulose nitrate can be treated to further improve chemical interactions required for sensor activity. The macro and micro architecture of the sensor is critical to the performance of the sensors. Electrospinning technology can be used to create patterned architectures of nanofibers that will enhance sensor performance. To date electrospinning of cellulose nitrate has not been performed and optimization of the electrospinning process will provide novel materials suitable for applications such as filtration and sensing. The goal of this research is to identify and elucidate the primary materials and process factors necessary to produce cellulose nitrate nanofibers using the electrospinning process that will improve the performance of biosensors. Cellulose nitrate is readily dissolved in common organic solvents such as acetone, tetrahydrofuran (THF) and N,N dimethylformamide (DMF). These solvents can be mixed with other latent solvents such as ethanol and other alcohols to provide a solvent system with good electrospinning behavior

  15. The potential of lignocellulosic ethanol production in the Mediterranean Basin

    Energy Technology Data Exchange (ETDEWEB)

    Faraco, Vincenza [Department of Organic Chemistry and Biochemistry, University of Naples ' ' Federico II' ' , Naples (Italy); School of Biotechnological Sciences, University of Naples ' ' Federico II' ' , Naples (Italy); Hadar, Yitzhak [Department of Microbiology and Plant Pathology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot (Israel)

    2011-01-15

    This review provides an overview of the potential of bioethanol fuel production from lignocellulosic residues in the Mediterranean Basin. Residues from cereal crops, olive trees, and tomato and grape processing are abundant lignocellulosic wastes in France, Italy, Spain, Turkey and Egypt, where their use as raw materials for ethanol production could give rise to a potential production capacity of 13 Mtoe of ethanol. Due to the lack of sufficient amounts of agricultural residues in all of the other Mediterranean countries, use of the cellulosic content of municipal solid waste (MSW) as feedstock for ethanol fuel production is also proposed. A maximum potential production capacity of 30 Mtoe of ethanol could be achieved from 50% of the 180 million tons of waste currently produced annually in the Mediterranean Basin, the management of which has become a subject of serious concern. However, to make large-scale ethanol production from agricultural residues and MSW a medium-term feasible goal in the Mediterranean Basin, huge efforts are needed to achieve the required progress in cellulose ethanol technologies and to overcome several foreseeable constraints. (author)

  16. Wet oxidation pretreatment of rape straw for ethanol production

    International Nuclear Information System (INIS)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole slurry (Filter cake + filtrate) in SSF were also tested. Except ethanol yields, pretreatment methods were evaluated based on achieved glucose yields, amount of water used, recovery of cellulose, hemicellulose, and lignin. The highest ethanol yield obtained was 67% after fermenting the whole slurry produced by WO at 205 °C for 3 min with 12 bar of oxygen gas pressure and featured with presoaking in water. At these conditions after pre-treatment, cellulose and hemicellulose was recovered quantitatively (100%) together with 86% of the lignin. WO treatments of 2–3 min at 205–210 °C with 12 bar of oxygen gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid formation in SSF. -- Highlights: ► Wet Oxidation pretreatment on rape straw for sugar and ethanol production. ► Variables were reaction time, temperature, and oxygen gas pressure. ► Also, other configurations for increase of water and energy efficiency. ► Short Wet oxidation pretreatment (2–3 min) produced highest ethanol yield. ► After these pretreatment conditions recovery of lignin in solids was 86%.

  17. Study on the Requirement of Nitrogen Sources by Scheffersomyces Stipitis NRRL Y-7124 to Produce Ethanol from Xylose Based-media

    DEFF Research Database (Denmark)

    Mussatto, Solange I.; Carneiro, L. M.; Roberto, I. C.

    This study aimed at evaluating the requirement of nitrogen sources by the yeast Scheffersomyces stipitis NRRL Y-7124 to produce ethanol from xylose based-media. Different nitrogen sources were evaluated, which were used to supplement a defined xylose-based medium and also the hemicellulosic hydro...

  18. Structural differences of xylans affect their interaction with cellulose

    NARCIS (Netherlands)

    Kabel, M.A.; Borne, van den H.; Vincken, J.P.; Voragen, A.G.J.; Schols, H.A.

    2007-01-01

    The affinity of xylan to cellulose is an important aspect of many industrial processes, e.g. production of cellulose, paper making and bio-ethanol production. However, little is known about the adsorption of structurally different xylans to cellulose. Therefore, the adsorption of various xylans to

  19. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  20. Cellulose Perversions

    Directory of Open Access Journals (Sweden)

    Maria H. Godinho

    2013-03-01

    Full Text Available Cellulose micro/nano-fibers can be produced by electrospinning from liquid crystalline solutions. Scanning electron microscopy (SEM, as well as atomic force microscopy (AFM and polarizing optical microscopy (POM measurements showed that cellulose-based electrospun fibers can curl and twist, due to the presence of an off-core line defect disclination, which was present when the fibers were prepared. This permits the mimicking of the shapes found in many systems in the living world, e.g., the tendrils of climbing plants, three to four orders of magnitude larger. In this work, we address the mechanism that is behind the spirals’ and helices’ appearance by recording the trajectories of the fibers toward diverse electrospinning targets. The intrinsic curvature of the system occurs via asymmetric contraction of an internal disclination line, which generates different shrinkages of the material along the fiber. The completely different instabilities observed for isotropic and anisotropic electrospun solutions at the exit of the needle seem to corroborate the hypothesis that the intrinsic curvature of the material is acquired during liquid crystalline sample processing inside the needle. The existence of perversions, which joins left and right helices, is also investigated by using suspended, as well as flat, targets. Possible routes of application inspired from the living world are addressed.

  1. An interlaboratory comparison of the performance of ethanol-producing micro-organisms in a xylose-rich acid hydrolysate

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B. (Dept. of Applied Microbiology, Lund Inst. of Technology/Univ. of Lund (Sweden)); Jeppsson, H. (Dept. of Applied Microbiology, Lund Inst. of Technology/Univ. of Lund (Sweden)); Olsson, L. (Dept. of Applied Microbiology, Lund Inst. of Technology/Univ. of Lund (Sweden)); Mohagheghi, A. (Bioprocess and Fuels Engineering Research Branch, National Renewable Energy Lab., Golden, CO (United States))

    1994-03-01

    A xylose-rich, dilute-acid-pretreated corn-cob hydrolysate was fermented by Escherichia coli ATCC 11303, recombinant (rec) E. coli B (pLOI 297 and KO11), Pichia stipitis (CBS 5773, 6054 and R), Saccharomyces cerevisiae isolate 3 in combination with xylose isomerase, rec S. cerevisiae (TJ1, H550 and H477) and Fusarium oxysporum VTT-D-80134 in an interlaboratory comparison. The micro-organisms were studied according to three different options: (A) fermentation under consistent conditions. (B) fermentation under optimal conditions for the organism, and (C) fermentation under optimal conditions for the organism with detoxification of the hydrolysate. The highest yields of ethanol, 0.24 g/g (A), 0.36 g/g (B) and 0.54 g/g (C), were obtained from rec E. coli B, KO11. P. stipitis and F. oxysporum were sensitive to the inhibitors present in the hydrolysate and produced a maximum yield of 0.34 g/g (C) and 0.04 g/g (B), respectively. The analysis of the corn-cob hydrolysate and aspects of process economy of the different fermentation options (pH, sterilization, nutrient supplementation, adaptation, detoxification) are discussed. (orig.)

  2. Systems biology and pathway engineering enable Saccharomyces cerevisiae to utilize C-5 and C-6 sugars simultaneously for cellulosic ethanol production

    Science.gov (United States)

    Saccharomyces cerevisiae is a traditional industrial workhorse for ethanol production. However, conventional ethanologenic yeast is superior in fermentation of hexose sugars (C-6) such as glucose but unable to utilize pentose sugars (C-5) such as xylose richly embedded in lignocellulosic biomass. In...

  3. Effect of cellulosic sugar degradation products (furfural and hydroxymethylfurfural) on acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii P260

    Science.gov (United States)

    Studies were performed to identify chemicals present in wheat straw hydrolysate (WSH) that enhance acetone butanol ethanol (ABE) productivity. These chemicals were identified as furfural and hydroxymethyl furfural (HMF). Control experiment resulted in the production of 21.09-21.66 gL**-1 ABE with a ...

  4. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations

    Science.gov (United States)

    Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.

    2013-08-01

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (no-ethanol lane) and BToX plus ethanol (with-ethanol lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field data set and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the with-ethanol lane than in the no-ethanol lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.

  5. Recent updates on lignocellulosic biomass derived ethanol - A review

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-03-01

    Full Text Available Lignocellulosic (or cellulosic biomass derived ethanol is the most promising near/long term fuel candidate. In addition, cellulosic biomass derived ethanol may serve a precursor to other fuels and chemicals that are currently derived from unsustainable sources and/or are proposed to be derived from cellulosic biomass. However, the processing cost for second generation ethanol is still high to make the process commercially profitable and replicable. In this review, recent trends in cellulosic biomass ethanol derived via biochemical route are reviewed with main focus on current research efforts that are being undertaken to realize high product yields/titers and bring the overall cost down.

  6. Ethanol Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  7. Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Saricks, Christoper [Argonne National Lab. (ANL), Argonne, IL (United States); Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States)

    1997-12-19

    This study addresses two issues: (1) data and information essential to an informed choice about the corn-to-ethanol cycle are in need of updating, thanks to scientific and technological advances in both corn farming and ethanol production; and (2) generalized national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than estimates based specifically on activities and practices in the principal domestic corn production and milling region -- the upper Midwest.

  8. Production of Biofuels from Selected Cellulosic Waste materials

    Directory of Open Access Journals (Sweden)

    Jathwa Abdul Kareem Ibrahim

    2017-08-01

    Full Text Available In this study four types of cellulose-rich municipal solid wastes (residuals of orange, banana peel, corn residues, and saw dust were used as raw materials. These cellulosic substrates usually have a lot of lignin content which prevents the process of saccharification by microorganisms. Thus pretreatment methods of enzymatic, acid or base with enzymatic treatment and dilute acid followed by autoclaving were necessary to dignify these wastes and to obtain higher reducing sugar yields and hence higher ethanol production. Dilute HCl acid of 1% followed by autoclaving at 121℃ for 30 min proved to give good result where significant amounts of reducing sugars were obtained at the end of the saccharification process. Orange peel proved to give the highest glucose concentration of an average of 6000 mg/l on day 4 of the saccharification process. Fermentation was carried out for the hydrolyzed samples using Saccharomyces cerevisiae yeast. The amount of ethanol produced after fermentation was found to be the highest for orange peel having a value of 1300 mg/l after 96h of incubation. As science is proceeding, engineered microorganisms could help to produce sustainable fuels from cellulose-rich municipal solid wastes in the future.

  9. Microbial fuel cell treatment of ethanol fermentation process water

    Science.gov (United States)

    Borole, Abhijeet P [Knoxville, TN

    2012-06-05

    The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

  10. Kinetic modeling of cellulosic biomass to ethanol via simultaneous saccharification and fermentation: Part I. Accommodation of intermittent feeding and analysis of staged reactors.

    Science.gov (United States)

    Shao, Xiongjun; Lynd, Lee; Wyman, Charles; Bakker, André

    2009-01-01

    The model of South et al. [South et al. (1995) Enzyme Microb Technol 17(9): 797-803] for simultaneous saccharification of fermentation of cellulosic biomass is extended and modified to accommodate intermittent feeding of substrate and enzyme, cascade reactor configurations, and to be more computationally efficient. A dynamic enzyme adsorption model is found to be much more computationally efficient than the equilibrium model used previously, thus increasing the feasibility of incorporating the kinetic model in a computational fluid dynamic framework in the future. For continuous or discretely fed reactors, it is necessary to use particle conversion in conversion-dependent hydrolysis rate laws rather than reactor conversion. Whereas reactor conversion decreases due to both reaction and exit of particles from the reactor, particle conversion decreases due to reaction only. Using the modified models, it is predicted that cellulose conversion increases with decreasing feeding frequency (feedings per residence time, f). A computationally efficient strategy for modeling cascade reactors involving a modified rate constant is shown to give equivalent results relative to an exhaustive approach considering the distribution of particles in each successive fermenter.

  11. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda. A Research Roadmap Resulting from the Biomass to Biofuels Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-06-30

    A robust fusion of the agricultural, industrial biotechnology, and energy industries can create a new strategic national capability for energy independence and climate protection. In his State of the Union Address (*Bush 2006), President George W. Bush outlined the Advanced Energy Initiative, which seeks to reduce our national dependence on imported oil by accelerating the development of domestic,renewable alternatives to gasoline and diesel fuels. The president has set a national goal of developing cleaner, cheaper, and more reliable alternative energy sources to substantially replace oil imports in the coming years.Fuels derived from cellulosic biomass—the fibrous, woody, and generally inedible portions of plant matter—offer one such alternative to conventional energy sources that can dramatically impact national economic growth, national energy security, and environmental goals. Cellulosic biomass is an attractive energy feedstock because it is an abundant, domestic, renewable source that can be converted to liquid transportation fuels.These fuels can be used readily by current-generation vehicles and distributed through the existing transportation-fuel infrastructure.

  12. Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream

    Science.gov (United States)

    Qianqian Wang; J.Y. Zhu; John M. Considine

    2013-01-01

    We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...

  13. Life cycle assessment of fuel ethanol produced from soluble sugar in sweet sorghum stalks in North China

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ning; Yang, Yang; Cai, Hao; Liu, Jingru; Ren, Lantian; Yang, Jianxin; Xie, Guang Hui

    2017-09-01

    This paper describes the results of a life cycle assessment of sweet sorghum stalk (SSS)-based ethanol in North China. We determined the environmental performance of SSS-based ethanol and examined its advantages and disadvantages, as compared to gasoline, focusing on the life cycle of feedstock production, transportation, ethanol production and distribution, and use. The GREET transportation model and the method developed by the Centre of Environmental Sciences at Leiden University (CML method) were used to compile a life cycle inventory and to assess environmental impacts. Results indicate that SSS-based ethanol has advantages in terms of energy consumption, with a well to wheel decrease of 85% fossil energy and 44% global warming potential, as compared with gasoline. Abiotic depletion potential, acidification potential, and photochemical ozone creation potential were also 50–90% lower than in the case of gasoline, while human health toxic potential was 36% lower. However, SSS-based sorghum did not have advantages over gasoline in terms of life cycle cost, land use, and water consumption. Results indicate that such an evaluation cannot just consider a few types of environmental impacts, researchers should promote systematic and comprehensive life cycle assessment of ethanol to guide the development of an energy strategy for China.

  14. An Investigation of Cellulose Digesting Bacteria in the Camel Feces Microbiome

    Science.gov (United States)

    Man, V.; Leung, F. C.

    2015-12-01

    Research Question: Is there a bacteria in camel feces that digests cellulose material and can be used for waste to energy projects? Fossil fuels are the current main resource of energy in the modern world. However, as the demand for fuel increases, biofuels have been proposed as an alternative energy source that is a more sustainable form of liquid fuel generation from living things or waste, commonly known as biofuels and ethanol. The Camelus dromedarius', also known as Arabian camel, diet consist of grass, grains, wheat and oats as well desert vegetation in their natural habitat. However, as the Arabian camel lacks the enzymes to degrade cellulose, it is hypothesized that cellulose digestion is performed by microbial symbionts in camel microbiota. Fecal samples were collected from the Camelus dromedarius in United Arab Emirates and diluted 10-7 times. The diluted sample was then streaked onto a Sodium Carboxymethyl Cellulose plate, and inoculated onto CMC and Azure-B plates. Afterwards, Congo Red was used for staining in order to identify clearance zones of single colonies that may potentially be used as a qualitative assays for cellulose digestion. Then the colonies undergo polymerase chain reaction amplification to produce amplified RNA fragments. The 16S ribosomal RNA gene is identified based on BLAST result using Sanger Sequencing. Amongst the three identified microbes: Bacillus, Staphylococcus and Escherichia coli, both Bacillus and Staphylococcus are cellulose-digesting microbes, and through the fermentation of lignocellulosic, biomasses can be converted into cellulosic ethanol (Biofuel). According to the Improvements in Life Cycle Energy Efficiency and Greenhouse Gas Emissions of Corn-Ethanol by Adam J. Liska, ""Ethanol reduces greenhouse gas emissions by 40-50% when compared directly to gasoline." The determination of bacterial communities that are capable of efficiently and effectively digesting cellulose materials requires that the bacteria be first

  15. Ethanol dehydration via azeotropic distillation with gasoline fraction mixtures as entrainers: A pilot-scale study with industrially produced bioethanol and naphta

    OpenAIRE

    Gomis Yagües, Vicente; Pedraza Berenguer, Ricardo; Saquete Ferrándiz, María Dolores; Font, Alicia; Garcia-Cano, Jorge

    2015-01-01

    Various hydrocarbons (n-hexane, cyclohexane, toluene, isooctane) and mixtures of them (binary, ternary or quaternary), as well as two different types of industrially produced naphtha (one obtained by direct distillation and the other from a catalytic cracking process), have been tested as candidate entrainers to dehydrate ethanol. The tests were carried out in an azeotropic distillation column on a semi pilot plant. The results show that it is possible to dehydrate bioethanol using naphtha as...

  16. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    Energy Technology Data Exchange (ETDEWEB)

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  17. Procces for producing ethanol and/or baking yeast. Verfahren zur Herstellung von Aethanol und/oder Backhefe

    Energy Technology Data Exchange (ETDEWEB)

    Pilepp, E.; Scheffler, U.; Osthaus, G.

    1987-06-25

    A method for the production of ethanol and/or baker's yeast is described, in which a substrate of sacchariferous substances and a nutrient solution is fermented with a yeast of the genus saccharomyces at a temperature of 20 to 40/sup 0/C and ethanol and/or the baker's yeast are subsequently separated from the fermented substrate. This method provides that the mixture consisting of the substrate and the yeast is sterilized by circulation in a homogenizer.

  18. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Science.gov (United States)

    Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

    2014-01-01

    Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

  19. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Directory of Open Access Journals (Sweden)

    Mehmet Isik

    2014-07-01

    Full Text Available Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.

  20. Simultaneous or separated; comparison approach for saccharification and fermentation process in producing bio-ethanol from EFB

    Science.gov (United States)

    Bardant, Teuku Beuna; Dahnum, Deliana; Amaliyah, Nur

    2017-11-01

    Simultaneous Saccharification Fermentation (SSF) of palm oil (Elaeis guineensis) empty fruit bunch (EFB) pulp were investigated as a part of ethanol production process. SSF was investigated by observing the effect of substrate loading variation in range 10-20%w, cellulase loading 5-30 FPU/gr substrate and yeast addition 1-2%v to the ethanol yield. Mathematical model for describing the effects of these three variables to the ethanol yield were developed using Response Surface Methodology-Cheminformatics (RSM-CI). The model gave acceptable accuracy in predicting ethanol yield for Simultaneous Saccharification and Fermentation (SSF) with coefficient of determination (R2) 0.8899. Model validation based on data from previous study gave (R2) 0.7942 which was acceptable for using this model for trend prediction analysis. Trend prediction analysis based on model prediction yield showed that SSF gave trend for higher yield when the process was operated in high enzyme concentration and low substrate concentration. On the other hand, even SHF model showed better yield will be obtained if operated in lower substrate concentration, it still possible to operate in higher substrate concentration with slightly lower yield. Opportunity provided by SHF to operate in high loading substrate make it preferable option for application in commercial scale.

  1. Ethyl nitrite is produced in the human stomach from dietary nitrate and ethanol, releasing nitric oxide at physiological pH: potential impact on gastric motility.

    Science.gov (United States)

    Rocha, Bárbara S; Gago, Bruno; Barbosa, Rui M; Cavaleiro, Carlos; Laranjinha, João

    2015-05-01

    Nitric oxide ((∙)NO), a ubiquitous molecule involved in a plethora of signaling pathways, is produced from dietary nitrate in the gut through the so-called nitrate-nitrite-NO pathway. In the stomach, nitrite derived from dietary nitrate triggers a network of chemical reactions targeting endogenous and exogenous biomolecules, thereby producing new compounds with physiological activity. The aim of this study was to ascertain whether compounds with physiological relevance are produced in the stomach upon consumption of nitrate- and ethanol-rich foods. Human volunteers consumed a serving of lettuce (source of nitrate) and alcoholic beverages (source of ethanol). After 15 min, samples of the gastric headspace were collected and ethyl nitrite was identified by GC-MS. Wistar rats were used to study the impact of ethyl nitrite on gastric smooth muscle relaxation at physiological pH. Nitrogen oxides, produced from nitrite in the stomach, induce nitrosation of ethanol from alcoholic beverages in the human stomach yielding ethyl nitrite. Ethyl nitrite, a potent vasodilator, is produced in vivo upon the consumption of lettuce with either red wine or whisky. Moreover, at physiological pH, ethyl nitrite induces gastric smooth muscle relaxation through a cGMP-dependent pathway. Overall, these results suggest that ethyl nitrite is produced in the gastric lumen and releases (∙)NO at physiological pH, which ultimately may have an impact on gastric motility. Systemic effects may also be expected if ethyl nitrite diffuses through the gastric mucosa reaching blood vessels, therefore operating as a (∙)NO carrier throughout the body. These data pinpoint posttranslational modifications as an underappreciated mechanism for the production of novel molecules with physiological impact locally in the gut and highlight the notion that diet may fuel compounds with the potential to modulate gastrointestinal welfare. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Bio-Ethanol Production from Poultry Manure

    African Journals Online (AJOL)

    john

    ethanol. Fuel ethanol is known as bio-ethanol, since it is produced from plant materials by biological processes. Bioethanol is mainly produced by fermentation of sugar containing crops like corn, maize, wheat, sugar cane, sugar beet, potatoes, ...

  3. Cellulose Synthesis in Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  4. Fuel ethanol discussion paper

    International Nuclear Information System (INIS)

    1992-01-01

    In recognition of the potential benefits of ethanol and the merits of encouraging value-added agricultural development, a committee was formed to develop options for the role of the Ontario Ministry of Agriculture and Food in the further development of the ethanol industry in Ontario. A consultation with interested parties produced a discussion paper which begins with an outline of the role of ethanol as an alternative fuel. Ethanol issues which require industry consideration are presented, including the function of ethanol as a gasoline oxygenate or octane enhancer, environmental impacts, energy impacts, agricultural impacts, trade and fiscal implications, and regulation. The ethanol industry and distribution systems in Ontario are then described. The current industry consists of one ethanol plant and over 30 retail stations. The key issue for expanding the industry is the economics of producing ethanol. At present, production of ethanol in the short term depends on tax incentives amounting to 23.2 cents/l. In the longer term, a significant reduction in feedstock costs and a significant improvement in processing technology, or equally significant gasoline price increases, will be needed to create a sustainable ethanol industry that does not need incentives. Possible roles for the Ministry are identified, such as support for ethanol research and development, financial support for construction of ethanol plants, and active encouragement of market demand for ethanol-blended gasolines

  5. Analysis of a Modern Hybrid and an Ancient Sugarcane Implicates a Complex Interplay of Factors in Affecting Recalcitrance to Cellulosic Ethanol Production.

    Directory of Open Access Journals (Sweden)

    Viviane Guzzo de Carli Poelking

    Full Text Available Abundant evidence exists to support a role for lignin as an important element in biomass recalcitrance. However, several independent studies have also shown that factors apart from lignin are also relevant and overall, the relative importance of different recalcitrance traits remains in dispute. In this study we used two genetically distant sugarcane genotypes, and performed a correlational study with the variation in anatomical parameters, cell wall composition, and recalcitrance factors between these genotypes. In addition we also tracked alterations in these characteristics in internodes at different stages of development. Significant differences in the development of the culm between the genotypes were associated with clear differential distributions of lignin content and composition that were not correlated with saccharification and fermentation yield. Given the strong influence of the environment on lignin content and composition, we hypothesized that sampling within a single plant could allow us to more easily interpret recalcitrance and changes in lignin biosynthesis than analysing variations between different genotypes with extensive changes in plant morphology and culm anatomy. The syringyl/guaiacyl (S/G ratio was higher in the oldest internode of the modern genotype, but S/G ratio was not correlated with enzymatic hydrolysis yield nor fermentation efficiency. Curiously we observed a strong positive correlation between ferulate ester level and cellulose conversion efficiency. Together, these data support the hypothesis that biomass enzymatic hydrolysis recalcitrance is governed by a quantitative heritage rather than a single trait.

  6. Transesterification of mustard (Brassica nigra) seed oil with ethanol: Purification of the crude ethyl ester with activated carbon produced from de-oiled cake

    International Nuclear Information System (INIS)

    Fadhil, Abdelrahman B.; Abdulahad, Waseem S.

    2014-01-01

    Highlights: • Biodiesel ethyl ester has been developed from mustard seed oil. • Variables affect the transesterification were investigated. • Dry washing using the activated carbon produced from the extraction remaining was applied to purify the ethyl esters. • Properties of the produced fuels were measured. • Blending of the produced ethyl ester with petro diesel was also investigated. - Abstract: The present study reports the production of mustard seed oil ethyl esters (MSOEE) through alkali-catalyzed transesterification with ethanol using potassium hydroxide as a catalyst. The influence of the process parameters such as catalyst concentration, ethanol to oil molar ratio, reaction temperature, reaction duration and the catalyst type was investigated so as to find out the optimal conditions for the transesterification process. As a result, optimum conditions for production of MSOEE were found to be: 0.90% KOH wt/wt of oil, 8:1 ethanol to oil molar ratio, a reaction temperature of 60 °C, and a reaction time of 60 min. Dry washing method with (2.50% wt.) of the activated carbon that was produced from the de-oiled cake was used to purify the crude ethyl ester from the residual catalyst and glycerol. The transesterification process provided a yield of 94% w/w of ethyl esters with an ester content of 98.22% wt. under the optimum conditions. Properties of the produced ethyl esters satisfied the specifications prescribed by the ASTM standards. Blending MSOEE with petro diesel was also investigated. The results showed that the ethyl esters had a slight influence on the properties of petro diesel

  7. Kinetic study of Escherichia coli BPPTCC-EgRK2 to produce recombinant cellulase for ethanol production from oil palm empty fruit bunch

    Science.gov (United States)

    Limoes, S.; Rahman, S. F.; Setyahadi, S.; Gozan, M.

    2018-03-01

    Oil Palm Empty Fruit Bunch (OPEFB) is an abundant biomass resource in Indonesia, which contains 46,77% (w/w) of cellulose. The high cellulose content of OPEFB can be used as a substrate for bacteria cultivation to produce cellulase. By using OPEFB as an alternative substrate, the production cost of cellulase in industrial scale can be suppressed. However, currently there are no available research that simulate a cellulase production plant design. Prior to simulating the cellulase plant design, kinetic studies of bacteria used in cultivation are needed to create an accurate simulation. In this research, kinetic studies of E. coli BPPTCC-EgRK2 growth were examined with the Monod approach to get the Monod constant (Ks) and maximum specific growth rate (μmax). This study found that E. coli BPPTCC-EgRK2 have μmax and Ks of 1.581 and 0.0709 respectively. BPPTCC-EgRK2 produced intracellular cellulase, thus gave linear correlation between cell concentration and cellulase production.

  8. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  9. Cellulose nanomaterials review: structure, properties and nanocomposites

    Science.gov (United States)

    Robert J. Moon; Ashlie Martini; John Nairn; John Simonsen; Jeff Youngblood

    2011-01-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The...

  10. Cellulose-binding domains: tools for innovation in cellulosic fibre production and modification

    NARCIS (Netherlands)

    Quentin, M.G.E.; Valk, van der H.C.P.M.; Dam, van J.E.G.; Jong, de E.

    2003-01-01

    Plant cell walls are composed of cellulose, nature's most abundant macromolecule, and therefore represent a renewable resource of special technical importance. Cellulose degrading enzymes involved in plant cell wall loosening (expansins), or produced by plant pathogenic microorganisms (cellulases),

  11. Morphology and physical-chemical properties of celluloses obtained by different methods

    Science.gov (United States)

    Anpilova, A. Yu.; Mastalygina, E. E.; Mikhaylov, I. A.; Popov, A. A.; Kartasheva, Z. S.

    2017-12-01

    The morphology and structural characteristics of celluloses obtained by different methods were studied. The objects of the investigation are cellulose from pulp source, commercial celluloses produced by sodium and acid hydrolysis, laboratory produced cellulose from bleached birch kraft pulp, and cellulose obtained by thermooxidative catalytic treatment of maple leaves by peroxide. According to a complex analysis of cellulose characteristics, several types of celluloses were offered as modifying additives for polymers.

  12. Cellulose is not just cellulose

    DEFF Research Database (Denmark)

    Hidayat, Budi Juliman; Felby, Claus; Johansen, Katja Salomon

    2012-01-01

    are not regions where free cellulose ends are more abundant than in the bulk cell wall. In more severe cases cracks between fibrils form at dislocations and it is possible that the increased accessibility that these cracks give is the reason why hydrolysis of cellulose starts at these locations. If acid...... or enzymatic hydrolysis of plant cell walls is carried out simultaneously with the application of shear stress, plant cells such as fibers or tracheids break at their dislocations. At present it is not known whether specific carbohydrate binding modules (CBMs) and/or cellulases preferentially access cellulose...

  13. Isolation and characterization of Ethanologenbacterium HitB49 gen. nov. sp. nov., an anaerobic, high hydrogen-producing bacterium with a special ethanol-type-fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M. [Harbin Inst. of Technology, Harbin, HL (China). School of Municipal and Environmental Engineering]|[Nanyang Technological Univ., Singapore (Singapore). Inst. of Environmental Science and Engineering; Ren, N.Q.; Wang, A.J. [Harbin Inst. of Technology, Harbin, HL (China). School of Municipal and Environmental Engineering; Liang, D.T.; Tay, J.H. [Nanyang Technological Univ., Singapore (Singapore). Inst. of Environmental Science and Engineering

    2004-07-01

    Hydrogen, an important future energy source, can be produced by several fermentative microorganisms. The factor that prevents widespread biohydrogen production is the difficulty in isolating the ideal high hydrogen-producing bacterium (HPB). In this study, the Hungate technology was used to isolate and cultivate 210 strains of dominant fermentative bacteria. They were isolated from 6 sludges with ethanol-type fermentation (ETF) bioreactors. The study examined the production of hydrogen in pH 4, very low pH in ETF. The maximum rate in the biohydrogen-producing reactor was promising under continuous flow condition. The novel genus of HPB was Ethanologenbacterium Hit, of which strain B49 belonged to the ETF bacteria.

  14. Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress

    Directory of Open Access Journals (Sweden)

    Yang Shihui

    2012-07-01

    Full Text Available Abstract Background Clostridium thermocellum is a candidate consolidated bioprocessing biocatalyst, which is a microorganism that expresses enzymes for both cellulose hydrolysis and its fermentation to produce fuels such as lignocellulosic ethanol. However, C. thermocellum is relatively sensitive to ethanol compared to ethanologenic microorganisms such as yeast and Zymomonas mobilis that are used in industrial fermentations but do not possess native enzymes for industrial cellulose hydrolysis. Results In this study, C. thermocellum was grown to mid-exponential phase and then treated with ethanol to a final concentration of 3.9 g/L to investigate its physiological and regulatory responses to ethanol stress. Samples were taken pre-shock and 2, 12, 30, 60, 120, and 240 min post-shock, and from untreated control fermentations for systems biology analyses. Cell growth was arrested by ethanol supplementation with intracellular accumulation of carbon sources such as cellobiose, and sugar phosphates, including fructose-6-phosphate and glucose-6-phosphate. The largest response of C. thermocellum to ethanol shock treatment was in genes and proteins related to nitrogen uptake and metabolism, which is likely important for redirecting the cells physiology to overcome inhibition and allow growth to resume. Conclusion This study suggests possible avenues for metabolic engineering and provides comprehensive, integrated systems biology datasets that will be useful for future metabolic modeling and strain development endeavors.

  15. Ethanol production in China: Potential and technologies

    International Nuclear Information System (INIS)

    Li, Shi-Zhong; Chan-Halbrendt, Catherine

    2009-01-01

    Rising oil demand in China has resulted in surging oil imports and mounting environmental pollution. It is projected that by 2030 the demand for fossil fuel oil will be 250 million tons. Ethanol seems to be an attractive renewable alternative to fossil fuel. This study assesses China's ethanol supply potential by examining potential non-food crops as feedstock; emerging conversion technologies; and cost competitiveness. Results of this study show that sweet sorghum among all the non-food feedstocks has the greatest potential. It grows well on the available marginal lands and the ASSF technology when commercialized will shorten the fermentation time which will lower the costs. Other emerging technologies such as improved saccharification and fermentation; and cellulosic technologies will make China more competitive in ethanol production in the future. Based on the estimated available marginal lands for energy crop production and conversion yields of the potential feedstocks, the most likely and optimistic production levels are 19 and 50 million tons of ethanol by 2020. In order to achieve those levels, the roadmap for China is to: select the non-food feedstock most suitable to grow on the available marginal land; provide funding to support the high priority conversion technologies identified by the scientists; provide monetary incentives to new and poor farmers to grow the feedstocks to revitalize rural economy; less market regulation and gradual reduction of subsidies to producers for industry efficiency; and educate consumers on the impact of fossil fuel on the environment to reduce consumption. Since the share of ethanol in the overall fuel demand is small, the impact of ethanol on lowering pollution and enhancing fuel security will be minimal. (author)

  16. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, September 1-November 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1978-11-01

    Studies on the accumulation of glucose during the fermentation of cellulose by Clostridium thermocellum are discussed. Production of ethanol and its relationship to growth rate in C. thermocellum is reported. Different biomasses were tested for ethanol yields. These included exploded poplar, sugar cane, bagasse, corn cobs, sweet gum, rice straw, and wheat straw. Thermophilic bacteria were tested to determine relationship of temperature to yield of ethanol. A preliminary report on isolating plaque forming emits derived from C. thermocellum is presented as well as the utilization of carbohydrates in nutrition. A cellulose enzyme is being purified from C. thermocellum. The production of chemical feedstocks by fermentation is reported. Acrylic acid, acetone/butanol, and acetic acid, produced by C. propionicum, C. acetobutylicum, and C. thermoaceticum, are discussed. (DC)

  17. Cost estimate for the production of ethanol from spent sulphite liquors and wood residues

    International Nuclear Information System (INIS)

    Nguyen, Q.

    1990-03-01

    A Lotus 1-2-3 spreadsheet model for estimating the production cost of 95 wt % ethanol from spent sulfite liquors (SSL) and from a wood hydrolysis front-end is described. The most economically attractive process is the fermentation of softwood SSL (SSSL) by the yeast Saccharomyces cerevisiae, yielding a production cost estimate of $0.47/liter. The cost of producing ethanol from cellulosic waste (clarifier sludge) via acid hydrolysis is approximately $0.55/liter, still below the market price of ca $0.60/liter for industrial ethanol. Neither the fermentation of hardwood SSL nor the conversion of sawdust to ethanol, using current technology, are economically viable. However, these processes can become commercially viable if acetic acid-tolerant xylose-fermenting yeasts can be found. 17 refs., 12 figs., 16 tabs

  18. Assesment of the energy quality of the synthesis gas produced from biomass derived fuels conversion: Part I: Liquid Fuels, Ethanol

    International Nuclear Information System (INIS)

    Arteaga Perez, Luis E; Casas, Yannay; Peralta, Luis M; Granda, Daikenel; Prieto, Julio O

    2011-01-01

    The use of biofuels plays an important role to increase the efficiency and energetic safety of the energy processes in the world. The main goal of the present research is to study from the thermodynamics and kinetics the effect of the operational variables on the thermo-conversion processes of biomass derived fuels focused on ethanol reforming. Several models are developed to assess the technological proposals. The minimization of Gibbs free energy is the criterion applied to evaluate the performance of the different alternatives considering the equilibrium constraints. All the models where validated on an experimental data base. The gas composition, HHV and the ratio H2/CO are used as measures for the process efficiency. The operational parameters are studied in a wide range (reactants molar ratio, temperature and oxygen/fuel ratio). (author)

  19. A novel biochemical route for fuels and chemicals production from cellulosic biomass.

    Directory of Open Access Journals (Sweden)

    Zhiliang Fan

    Full Text Available The conventional biochemical platform featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and chemicals. Herein, an alternative biochemical route is proposed. Pretreatment, enzymatic hydrolysis and cellulase production is consolidated into one single step, referred to as consolidated aerobic processing, and sugar aldonates are produced as the reactive intermediates for biofuels production by fermentation. In this study, we demonstrate the viability of consolidation of the enzymatic hydrolysis and cellulase production steps in the new route using Neurospora crassa as the model microorganism and the conversion of cellulose to ethanol as the model system. We intended to prove the two hypotheses: 1 cellulose can be directed to produce cellobionate by reducing β-glucosidase production and by enhancing cellobiose dehydrogenase production; and 2 both of the two hydrolysis products of cellobionate--glucose and gluconate--can be used as carbon sources for ethanol and other chemical production. Our results showed that knocking out multiple copies of β-glucosidase genes led to cellobionate production from cellulose, without jeopardizing the cellulose hydrolysis rate. Simulating cellobiose dehydrogenase over-expression by addition of exogenous cellobiose dehydrogenase led to more cellobionate production. Both of the two hydrolysis products of cellobionate: glucose and gluconate can be used by Escherichia coli KO 11 for efficient ethanol production. They were utilized simultaneously in glucose and gluconate co-fermentation. Gluconate was used even faster than glucose. The results support the viability of the two hypotheses that lay the foundation for the proposed new route.

  20. A novel biochemical route for fuels and chemicals production from cellulosic biomass.

    Science.gov (United States)

    Fan, Zhiliang; Wu, Weihua; Hildebrand, Amanda; Kasuga, Takao; Zhang, Ruifu; Xiong, Xiaochao

    2012-01-01

    The conventional biochemical platform featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and chemicals. Herein, an alternative biochemical route is proposed. Pretreatment, enzymatic hydrolysis and cellulase production is consolidated into one single step, referred to as consolidated aerobic processing, and sugar aldonates are produced as the reactive intermediates for biofuels production by fermentation. In this study, we demonstrate the viability of consolidation of the enzymatic hydrolysis and cellulase production steps in the new route using Neurospora crassa as the model microorganism and the conversion of cellulose to ethanol as the model system. We intended to prove the two hypotheses: 1) cellulose can be directed to produce cellobionate by reducing β-glucosidase production and by enhancing cellobiose dehydrogenase production; and 2) both of the two hydrolysis products of cellobionate--glucose and gluconate--can be used as carbon sources for ethanol and other chemical production. Our results showed that knocking out multiple copies of β-glucosidase genes led to cellobionate production from cellulose, without jeopardizing the cellulose hydrolysis rate. Simulating cellobiose dehydrogenase over-expression by addition of exogenous cellobiose dehydrogenase led to more cellobionate production. Both of the two hydrolysis products of cellobionate: glucose and gluconate can be used by Escherichia coli KO 11 for efficient ethanol production. They were utilized simultaneously in glucose and gluconate co-fermentation. Gluconate was used even faster than glucose. The results support the viability of the two hypotheses that lay the foundation for the proposed new route.

  1. Water consumption in the production of ethanol and petroleum gasoline.

    Science.gov (United States)

    Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil

    2009-11-01

    We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.

  2. Water Consumption in the Production of Ethanol and Petroleum Gasoline

    Science.gov (United States)

    Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil

    2009-11-01

    We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.

  3. HYDROLYSIS OF AGRICULTURAL BIOMASS BY COMBINED PRETREATMENT AND ENZYMATIC METHODS IN ORDER TO PRODUCE BIOFUELS (ETHANOL, BIOGAS

    Directory of Open Access Journals (Sweden)

    STEFANA JURCOANE

    2009-05-01

    Full Text Available The use of energy crops (maize straw, wheat straw, barley straw etc. as substrate for renewable energy production (e.g. biogas is more efficient when it is degraded by different hydrolysis methods. However, fibers contained inside energy crops (e.g. cellulose and hemicellulose are only hardly and slowly degraded by anaerobic bacteria. The slow degradation of these substances can decrease the methane yields of agricultural biogas plants.In the present study, we investigated the efficiency of combined pretreatment (different concentrations H2SO4 + 30 minutes at 1210C followed to enzymatic hydrolysis. Testing different concentration of H2SO4, good results were obtained for maize whole crop when we used combined pretreatment (3% H2SO4 + 30 minutes at 1210C followed to enzymatic hydrolysis (3.9 fold higher and for Gavott Maize Straw when we used combined pretreatment (2% H2SO4 + 30 minutes at 1210C followed to enzymatic hydrolysis (3.6 fold higher comparing with untreated samples.

  4. Irradiation effects in wood and cellulose

    International Nuclear Information System (INIS)

    McLaren, K.G.

    1976-01-01

    For cellulosic materials the predominant effect of high energy radiation is depolymerisation and degradation by chain scission, although there is some evidence that crosslinking or cellulose stabilisation can occur under certain conditions. When the cellulose is in the form of a natural product such as wood, where it is intimately associated with other polysaccharides, lignins, resins and gums, the effects of radiation can be significantly modified. Examination of cellulose produced by chemical pulping treatment of wood which had been previously given small doses of radiation, showed significant differences in the extent of cellulose depolymerisation with different wood species. The relevance of this work to the paper pulp industry will also be discussed. (author)

  5. Energy assessment of second generation (2G) ethanol production from wheat straw in Indian scenario.

    Science.gov (United States)

    Mishra, Archana; Kumar, Akash; Ghosh, Sanjoy

    2018-03-01

    Impact of second-generation ethanol (2G) use in transportation sector mainly depends upon energy efficiency of entire production process. The objective of present study was to determine energy efficiency of a potential lignocellulosic feedstock; wheat straw and its conversion into cellulosic ethanol in Indian scenario. Energy efficiency was determined by calculating Net energy ratio (NER), i.e. ratio of output energy obtained by ethanol and input energy used in ethanol production. Energy consumption and generation at each step is calculated briefly (11,837.35 MJ/ha during Indian dwarf irrigated variety of wheat crop production and 7.1148 MJ/kg straw during ethanol production stage). Total energy consumption is calculated as 8.2988 MJ/kg straw whereas energy generation from ethanol is 15.082 MJ/kg straw; resulting into NER > 1. Major portion of agricultural energy input is contributed by diesel and fertilisers whereas refining process of wheat straw feedstock to ethanol and by-products require mainly in the form of steam and electricity. On an average, 1671.8 kg water free ethanol, 930 kg lignin rich biomass (for combustion), and 561 kg C5-molasses (for fodder) per hectare are produced. Findings of this study, net energy ratio (1.81) and figure of merit (14.8028 MJ/nil kg carbon) proves wheat straw as highest energy efficient lignocellulosic feedstock for the country.

  6. Cellulose synthase complex organization and cellulose microfibril structure.

    Science.gov (United States)

    Turner, Simon; Kumar, Manoj

    2018-02-13

    Cellulose consists of linear chains of β-1,4-linked glucose units, which are synthesized by the cellulose synthase complex (CSC). In plants, these chains associate in an ordered manner to form the cellulose microfibrils. Both the CSC and the local environment in which the individual chains coalesce to form the cellulose microfibril determine the structure and the unique physical properties of the microfibril. There are several recent reviews that cover many aspects of cellulose biosynthesis, which include trafficking of the complex to the plasma membrane and the relationship between the movement of the CSC and the underlying cortical microtubules (Bringmann et al. 2012 Trends Plant Sci. 17 , 666-674 (doi:10.1016/j.tplants.2012.06.003); Kumar & Turner 2015 Phytochemistry 112 , 91-99 (doi:10.1016/j.phytochem.2014.07.009); Schneider et al. 2016 Curr. Opin. Plant Biol. 34 , 9-16 (doi:10.1016/j.pbi.2016.07.007)). In this review, we will focus on recent advances in cellulose biosynthesis in plants, with an emphasis on our current understanding of the structure of individual catalytic subunits together with the local membrane environment where cellulose synthesis occurs. We will attempt to relate this information to our current knowledge of the structure of the cellulose microfibril and propose a model in which variations in the structure of the CSC have important implications for the structure of the cellulose microfibril produced.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'. © 2017 The Author(s).

  7. Production of ethanol from hemicellulose fraction of cocksfoot grass using pichia stipitis

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Iversen, Jens Asmus; Uellendahl, Hinrich

    2013-01-01

    liquid hydrolysate to ethanol is essential for economically feasible cellulosic ethanol processes. Fermentation of the separated hemicellulose liquid hydrolysates obtained after the WEx pretreatment was done by Pichia stipitis CBS 6054 (Scheffersomyces stipitis). Results: The fermentation of the WEx...

  8. Kinetics of Cellulose Digestion by Fibrobacter succinogenes S85

    OpenAIRE

    Maglione, G.; Russell, J. B.; Wilson, D. B.

    1997-01-01

    Growing cultures of Fibrobacter succinogenes S85 digested cellulose at a rapid rate, but nongrowing cells and cell extracts did not have detectable crystalline cellulase activity. Cells that had been growing exponentially on cellobiose initiated cellulose digestion and succinate production immediately, and cellulose-dependent succinate production could be used as an index of enzyme activity against crystalline cellulose. Cells incubated with cellulose never produced detectable cellobiose, and...

  9. Preparation of membranes from cellulose obtained of sugarcane bagasse

    International Nuclear Information System (INIS)

    Pereira, Paulo Henrique Fernandes; Cioffi, Maria Odila Hilario; Voorwald, Herman Jacobus Cornelis; Pinho, Maria Noberta de; Silva, Maria Lucia Caetano Pinto da

    2010-01-01

    In this work, cellulose obtained from sugarcane bagasse to produce both cellulose and acetylated cellulose to prepare asymmetric membranes. Membranes was procedure used a mixture of materials of DMAc/ LiCl systemic in different conditions. Cellulose and acetylated cellulose were characterized by thermogravimetric (TG), Xray diffraction (XRD) and scanning Electron Microscopy (SEM). Observed less stability thermal of acetylated cellulose when compared of cellulose. All membranes procedure were asymmetric, characterized by presence of a dense skin and porous support can be observed. SEM showed that the morphology of the superficial of membranes depends on the method preparation. (author)

  10. Influence of rice straw cooking conditions in the soda-ethanol-water pulping on the mechanical properties of produced paper sheets.

    Science.gov (United States)

    Navaee-Ardeh, S; Mohammadi-Rovshandeh, J; Pourjoozi, M

    2004-03-01

    A normalized design was used to examine the influence of independent variables (alcohol concentration, cooking time and temperature) in the catalytic soda-ethanol pulping of rice straw on various mechanical properties (breaking length, burst, tear index and folding endurance) of paper sheets obtained from each pulping process. An equation of each dependent variable as a function of cooking variables (independent variables) was obtained by multiple non-linear regression using the least square method by MATLAB software for developing of empirical models. The ranges of alcohol concentration, cooking time and temperature were 40-65% (w/w), 150-180 min and 195-210 degrees C, respectively. Three-dimensional graphs of dependent variables were also plotted versus independent variables. The optimum values of breaking length, burst and tear index and folding endurance were 4683.7 (m), 30.99 (kN/g), 376.93 (mN m2/g) and 27.31, respectively. However, short cooking time (150 min), high ethanol concentration (65%) and high temperature (210 degrees C) could be used to produce papers with suitable burst and tear index. However, for papers with best breaking length and folding endurance low temperature (195 degrees C) was desirable. Differences between optimum values of dependent variables obtained by normalized design and experimental data were less than 20%.

  11. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    Science.gov (United States)

    Goyal, Garima

    composed of four yeast populations. These yeast populations include: one displaying scaffoldin on its surface and three populations secreting three different cellulases in the medium to hydrolyze the cellulose. The modular nature of the consortium system allows for the fine-tuning of each population by changing their initial inoculum ratio, thereby optimizing the cellulose hydrolysis and hence ethanol production. When comparing the optimized consortium with equal ratio consortium, the optimized one produced almost double the amount of ethanol (1.87 g/l) with a yield of 0.475 g ethanol/g cellulose. To further evaluate the feasibility of using consortium for CBP, it was grown at very low optical density (OD) under anaerobic conditions. Under stressful conditions like low OD and no oxygen, the consortium system was proficient in assembling the cellulosome on its surface and growing on the PAS-avicel as sole carbon source and concomitantly producing ethanol with a yield of 87% of the theoretical value. For the dynamic study of yeast consortium system, quantitative real time PCR was used to enumerate the individual yeast population in the mixed culture. At the end of the cultivation, ratios of each population in this consortium maintained similar number as the initial inoculums ratios, which further confirms the consortium system is suitable for the application of CBP.

  12. IMPROVEMENT OF BIOFUEL ETHANOL RECOVERY USING THE PERVAPORATION SEPARATION TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    Nilufer Durmaz Hilmioglu [Kocaeli University Chemical Engineering Department Veziroglu Campus, Kocaeli (Turkey)

    2008-09-30

    The climatic impact of carbon dioxide emissions from the burning of fossil fuels have become a major problem. The production of renewable biofuels from biomass has received increasing attention. Because of the economic and environmental benefits of fuel ethanol's use it is considered one of the most important renewable fuels. In ethanol fermentations inhibition of the microorganism by ethanol limits the amount of substrate in the feed that can be converted. In a process high feed concentrations are desirable to minimize the flows. Such high feed concentrations can be realized in integrated processes in which ethanol is recovered by pervaporation from the fermentation broth as it is formed. The hybrid process is an attractive process to increase ethanol production economics and to decrease environmental pollution. The separaiton of alcohol from mixtures with ethanol produced by fermentation is usually carried out by distillation and the energy consumption is very high when azeotropic concentration is reached, which corresponds to 5% water in ethanol/water mixture. The pervaporation process provides an economical alternative to the existing distillation technique. A continous recovery of alcohol could be achieved by using the pervaporation process during fermentation, making the process more energy efficient. In this work, for the purposes of membrane material development for pervaporation; zeolite filled and unfilled cellulose acetate membranes were prepared. Zeolite types were 4A, 13X. The effect of incorporation of nano-sized zeolites prepared in a colloidal form in membranes was also investigated. From the sorption tests it is concluded that, ethanol/water azeotropy can be breaked by pervaporation.

  13. Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers’ tricks

    Directory of Open Access Journals (Sweden)

    Roberto Mazzoli

    2012-10-01

    Full Text Available Cellulose waste biomass is the most abundant and attractive substrate for "biorefinery strategies" that are aimed to produce high-value products (e.g. solvents, fuels, building blocks by economically and environmentally sustainable fermentation processes. However, cellulose is highly recalcitrant to biodegradation and its conversion by biotechnological strategies currently requires economically inefficient multistep industrial processes. The need for dedicated cellulase production continues to be a major constraint to cost-effective processing of cellulosic biomass.Research efforts have been aimed at developing recombinant microorganisms with suitable characteristics for single step biomass fermentation (consolidated bioprocessing, CBP. Two paradigms have been applied for such, so far unsuccessful, attempts: a “native cellulolytic strategies”, aimed at conferring high-value product properties to natural cellulolytic microorganisms; b “recombinant cellulolytic strategies”, aimed to confer cellulolytic ability to microorganisms exhibiting high product yields and titers.By starting from the description of natural enzyme systems for plant biomass degradation and natural metabolic pathways for some of the most valuable product (i.e. butanol, ethanol, and hydrogen biosynthesis, this review describes state-of-the-art bottlenecks and solutions for the development of recombinant microbial strains for cellulosic biofuel CBP by metabolic engineering. Complexed cellulases (i.e. cellulosomes benefit from stronger proximity effects and show enhanced synergy on insoluble substrates (i.e. crystalline cellulose with respect to free enzymes. For this reason, special attention was held on strategies involving cellulosome/designer cellulosome-bearing recombinant microorganisms.

  14. Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol

    International Nuclear Information System (INIS)

    Crago, Christine L.; Khanna, Madhu; Barton, Jason; Giuliani, Eduardo; Amaral, Weber

    2010-01-01

    Corn ethanol produced in the US and sugarcane ethanol produced in Brazil are the world's leading sources of biofuel. Current US biofuel policies create both incentives and constraints for the import of ethanol from Brazil and together with the cost competitiveness and greenhouse gas intensity of sugarcane ethanol compared to corn ethanol will determine the extent of these imports. This study analyzes the supply-side determinants of cost competitiveness and compares the greenhouse gas intensity of corn ethanol and sugarcane ethanol delivered to US ports. We find that while the cost of sugarcane ethanol production in Brazil is lower than that of corn ethanol in the US, the inclusion of transportation costs for the former and co-product credits for the latter changes their relative competitiveness. We also find that the relative cost of ethanol in the US and Brazil is highly sensitive to the prevailing exchange rate and prices of feedstocks. At an exchange rate of US1=R2.15 the cost of corn ethanol is 15% lower than the delivered cost of sugarcane ethanol at a US port. Sugarcane ethanol has lower GHG emissions than corn ethanol but a price of over $113 per ton of CO 2 is needed to affect competitiveness. (author)

  15. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol......TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...

  16. Licuri fibers characterization after treatment to produce cellulose nanocrystals; Caracterizacao da fibra de licuri apos tratamento para producao de nanocristais de celulose

    Energy Technology Data Exchange (ETDEWEB)

    Castro, E.G.; Oliveira, J.C.; Miranda, C.S.; Jose, N.M., E-mail: elyane_casft@msn.com [Universidade Federal da Bahia (GECIM/UFBA), Salvador, BA (Brazil). Programa de Pos-Graduacao em Engenharia Quimica. Grupo de Energia e Ciencias dos Materiais

    2014-07-01

    Cellulose nanocrystals have been widely studied in the materials area due to their high aspect ratio, which is directly related to a good performance as mechanical reinforcement. Obtaining this nanocrystals from commercial bleached pulps, as eucalyptus, or microcrystalline cellulose is well studied. Trying to find new extraction sources, exploring better the huge variety of Brazil’s natural fibers and giving the opportunity of development to small communities, the present work verifies the influence of two bleaching methodologies, sodium hypochlorite or hydrogen peroxide, on licuri fibers. Previous washing and mercerization steps were performed before bleaching. The product of each step was analysed by: DSC, TGA, XRD, SEM and FTIR. The yield of each step was also calculated. (author)

  17. Water absorption and maintenance of nanofiber cellulose ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-05-17

    May 17, 2012 ... Physiochemical properties of bacterial cellulose producing by Gluconacetobacter rhaeticus TL-2C was ... shape of the mold (Czaja et al., 2006). ... impurity, and then it was freeze-dried and ground to a fine ... Figure 1. Microstructure and chemical structure of bacterial cellulose producing G. rhaeticus TL-2C.

  18. The `ASCAB` process of producing synthesis gas (methanol, ammonia) or medium joule gas from lignin-cellulose materials (wood, sugar cane wastes, peat, straw, agricultural wastes)

    Energy Technology Data Exchange (ETDEWEB)

    Carre, J

    1988-12-31

    The aim of this work is to relate the build a demonstration unit at a small city in France, on the principle of pressurized gasification of lignin-cellulose biomass with oxygen and steam, for the production of methanol, ammonia and low btu gases. In another type of application, the process should also be used for the incineration of some industrial wastes. (author) 8 figs., 1 tab.

  19. Experimental assessment of the purity of α-cellulose produced by variations of the Brendel method: Implications for stable isotope (δ13C, δ18O) dendroclimatology

    Science.gov (United States)

    Brookman, Tom; Whittaker, Thomas

    2012-09-01

    Stable isotope dendroclimatology using α-cellulose has unique potential to deliver multimillennial-scale, sub-annually resolved, terrestrial climate records. However, lengthy processing and analytical methods often preclude such reconstructions. Variants of the Brendel extraction method have reduced these limitations, providing fast, easy methods of isolating α-cellulose in some species. Here, we investigate application of Standard Brendel (SBrendel) variants to resinous soft-woods by treating samples of kauri (Agathis australis), ponderosa pine (Pinus ponderosa) and huon pine (Lagarastrobus franklinii), varying reaction vessel, temperature, boiling time and reagent volume. Numerous samples were visibly `under-processed' and Fourier Transform infrared spectroscopic (FTIR) investigation showed absorption peaks at 1520 cm-1 and ˜1600 cm-1 in those fibers suggesting residual lignin and retained resin respectively. Replicate analyses of all samples processed at high temperature yielded consistent δ13C and δ18O despite color and spectral variations. Spectra and isotopic data revealed that α-cellulose δ13C can be altered during processing, most likely due to chemical contamination from insufficient acetone removal, but is not systematically affected by methodological variation. Reagent amount, temperature and extraction time all influence δ18O, however, and our results demonstrate that different species may require different processing methods. FTIR prior to isotopic analysis is a fast and cost effective way to determine α-cellulose extract purity. Furthermore, a systematic isotopic test such as we present here can also determine sensitivity of isotopic values to methodological variables. Without these tests, isotopic variability introduced by the method could obscure or `create' climatic signals within a data set.

  20. Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Kosugi, Akihiko; Murata, Yoshinori; Arai, Takamitsu; Mori, Yutaka [Post-harvest Science and Technology Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686 (Japan); Kondo, Akihiko [Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, Nada-ku, Kobe, 657-8501 (Japan); Ueda, Mitsuyoshi [Department of Applied Biochemistry, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Vaithanomsat, Pilanee; Thanapase, Warunee [Nanotechnology and Biotechnology Division, Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, 50 Chatuchak, Ladyao, Bangkok 10900 (Thailand)

    2009-05-15

    Cassava (Manihot esculenta Crantz) pulp, produced in large amounts as a by-product of starch manufacturing, is a major biomass resource in Southeast Asian countries. It contains abundant starch (approximately 60%) and cellulose fiber (approximately 20%). To effectively utilize the cassava pulp, an attempt was made to convert its components to ethanol using a sake-brewing yeast displaying glucoamylase on the cell surface. Saccharomyces cerevisiae Kyokai no. 7 (strain K7) displaying Rhizopus oryzae glucoamylase, designated strain K7G, was constructed using the C-terminal-half region of {alpha}-agglutinin. A sample of cassava pulp was pretreated with a hydrothermal reaction (140 C for 1 h), followed by treatment with a Trichoderma reesei cellulase to hydrolyze the cellulose in the sample. The K7G strain fermented starch and glucose in pretreated samples without addition of amylolytic enzymes, and produced ethanol in 91% and 80% of theoretical yield from 5% and 10% cassava pulp, respectively. (author)

  1. Utilization of household food waste for the production of ethanol at high dry material content.

    Science.gov (United States)

    Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul

    2014-01-08

    Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall

  2. Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Lane, Stephan; Dong, Jia; Jin, Yong-Su

    2018-07-01

    The substantial research efforts into lignocellulosic biofuels have generated an abundance of valuable knowledge and technologies for metabolic engineering. In particular, these investments have led to a vast growth in proficiency of engineering the yeast Saccharomyces cerevisiae for consuming lignocellulosic sugars, enabling the simultaneous assimilation of multiple carbon sources, and producing a large variety of value-added products by introduction of heterologous metabolic pathways. While microbial conversion of cellulosic sugars into large-volume low-value biofuels is not currently economically feasible, there may still be opportunities to produce other value-added chemicals as regulation of cellulosic sugar metabolism is quite different from glucose metabolism. This review summarizes these recent advances with an emphasis on employing engineered yeast for the bioconversion of lignocellulosic sugars into a variety of non-ethanol value-added products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Recent trends in global production and utilization of bio-ethanol fuel

    International Nuclear Information System (INIS)

    Balat, Mustafa; Balat, Havva

    2009-01-01

    Bio-fuels are important because they replace petroleum fuels. A number of environmental and economic benefits are claimed for bio-fuels. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide. Production of bio-ethanol from biomass is one way to reduce both consumption of crude oil and environmental pollution. Using bio-ethanol blended gasoline fuel for automobiles can significantly reduce petroleum use and exhaust greenhouse gas emission. Bio-ethanol can be produced from different kinds of raw materials. These raw materials are classified into three categories of agricultural raw materials: simple sugars, starch and lignocellulose. Bio-ethanol from sugar cane, produced under the proper conditions, is essentially a clean fuel and has several clear advantages over petroleum-derived gasoline in reducing greenhouse gas emissions and improving air quality in metropolitan areas. Conversion technologies for producing bio-ethanol from cellulosic biomass resources such as forest materials, agricultural residues and urban wastes are under development and have not yet been demonstrated commercially.

  4. Ligno cellulosic-ethanol : a second opinion

    NARCIS (Netherlands)

    Zessen, van E.; Weismann, M.; Bakker, R.R.C.; Elbersen, H.W.; Reith, J.H.; Uil, den H.

    2003-01-01

    Up to now renewable energy sources are primarily used in the Netherlands for electricity production. At the end of the past decade the GAVE programme was launched to facilitate the introduction of climate neutral gaseous and liquid fuels. A comprehensive study by ADL evaluated a large number of

  5. Bio Diesel Cellulosic Ethanol Research Project

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, Edward A. [County of Hendry, FL (United States); Capece, John C. [County of Hendry, FL (United States); McAvoy, Eugene [County of Hendry, FL (United States); Hodges, Alan Wayne [County of Hendry, FL (United States); Shukla, Sanjay [County of Hendry, FL (United States); Ozores-Hamilton, Monica [County of Hendry, FL (United States); Gilbert, Rob [County of Hendry, FL (United States); Wright, Alan [County of Hendry, FL (United States); Baucum, L. [County of Hendry, FL (United States)

    2017-02-07

    The objective of the project is to create the Hendry County Sustainable Biofuels Center and initiate its research, development, and education programs. The mission is to develop engineering and economic assessment methods to evaluate the natural resources impacts of biomass farming and fuel conversion systems; provide sustainability assessments of specific biofuels productions proposals; develop biomass farming and fuel conversion systems that are compatible with south Florida ecosystem restoration priorities; create ecosystem services opportunities and structures to diversify farm income; monitor the range of research and development activities necessary to the creation of sutstainable biofuels production systems in south Florida, identify gaps in the regional research, and assist in the development and coordination of additional projects to fill out the required knowledge base; prepare the workforce of southwest Florida for employment in biofuels related professions; and assist businesses & governmental design and realize sustainable biofuels projects.

  6. Cellulose Breakdown

    Science.gov (United States)

    Greenler, John; Nye, Leith; Tangen, Travis

    2014-01-01

    Production of liquid fuels such as ethanol from fibrous plant biomass could potentially be a significant sustainable component of the U.S. energy portfolio. Engineers and scientists are actively researching this area, and high school students can engage in this contemporary inquiry process by experimenting with different types of biomass, varying…

  7. Microaerobic conversion of xylose to ethanol in recombinant Saccharomyces cerevisiae SX6(MUT) expressing cofactor-balanced xylose metabolic enzymes and deficient in ALD6.

    Science.gov (United States)

    Jo, Sung-Eun; Seong, Yeong-Je; Lee, Hyun-Soo; Lee, Soo Min; Kim, Soo-Jung; Park, Kyungmoon; Park, Yong-Cheol

    2016-06-10

    Xylose is a major monosugar in cellulosic biomass and should be utilized for cost-effective ethanol production. In this study, xylose-converting ability of recombinant Saccharomyces cerevisiae SX6(MUT) expressing NADH-preferring xylose reductase mutant (R276H) and other xylose-metabolic enzymes, and deficient in aldehyde dehydrogenase 6 (Ald6p) were characterized at microaerobic conditions using various sugar mixtures. The reduction of air supply from 0.5vvm to 0.1vvm increased specific ethanol production rate by 75% and did not affect specific xylose consumption rate. In batch fermentations using various concentrations of xylose (50-104g/L), higher xylose concentration enhanced xylose consumption rate and ethanol productivity but reduced ethanol yield, owing to the accumulation of xylitol and glycerol from xylose. SX6(MUT) consumed monosugars in pitch pine hydrolysates and produced 23.1g/L ethanol from 58.7g/L sugars with 0.39g/g ethanol yield, which was 14% higher than the host strain of S. cerevisiae D452-2 without the xylose assimilating enzymes. In conclusion, S. cerevisiae SX6(MUT) was characterized to possess high xylose-consuming ability in microaerobic conditions and a potential for ethanol production from cellulosic biomass. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Direct ethanol production from barley beta-glucan by sake yeast displaying Aspergillus oryzae beta-glucosidase and endoglucanase.

    Science.gov (United States)

    Kotaka, Atsushi; Bando, Hiroki; Kaya, Masahiko; Kato-Murai, Michiko; Kuroda, Kouichi; Sahara, Hiroshi; Hata, Yoji; Kondo, Akihiko; Ueda, Mitsuyoshi

    2008-06-01

    Three beta-glucosidase- and two endoglucanase-encoding genes were cloned from Aspergillus oryzae, and their gene products were displayed on the cell surface of the sake yeast, Saccharomyces cerevisiae GRI-117-UK. GRI-117-UK/pUDB7 displaying beta-glucosidase AO090009000356 showed the highest activity against various substrates and efficiently produced ethanol from cellobiose. On the other hand, GRI-117-UK/pUDCB displaying endoglucanase AO090010000314 efficiently degraded barley beta-glucan to glucose and smaller cellooligosaccharides. GRI-117-UK/pUDB7CB codisplaying both beta-glucosidase AO090009000356 and endoglucanase AO090010000314 was constructed. When direct ethanol fermentation from 20 g/l barley beta-glucan as a model substrate was performed with the codisplaying strain, the ethanol concentration reached 7.94 g/l after 24 h of fermentation. The conversion ratio of ethanol from beta-glucan was 69.6% of the theoretical ethanol concentration produced from 20 g/l barley beta-glucan. These results showed that sake yeast displaying A. oryzae cellulolytic enzymes can be used to produce ethanol from cellulosic materials. Our constructs have higher ethanol production potential than the laboratory constructs previously reported.

  9. Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and ethanol organosolv.

    Science.gov (United States)

    Yu, Hailong; Xing, Yang; Lei, Fuhou; Liu, Zhiping; Liu, Zuguang; Jiang, Jianxin

    2014-09-01

    Furfural residues (FRs) were pretreated with ethanol and a green liquor (GL) catalyst to produce fermentable sugar. Anthraquinone (AQ) was used as an auxiliary reagent to improve delignification and reduce cellulose decomposition. The results showed that 42.7% of lignin was removed and 96.5% of cellulose was recovered from substrates pretreated with 1.0 mL GL/g of dry substrate and 0.4% (w/w) AQ at 140°C for 1h. Compared with raw material, ethanol-GL pretreatment of FRs increased the glucose yield from 69.0% to 85.9% after 96 h hydrolysis with 18 FPU/g-cellulose for cellulase, 27 CBU/g-cellulose for β-glucosidase. The Brauner-Emmett-Teller surface area was reduced during pretreatment, which did not inhibit the enzymatic hydrolysis. Owing to the reduced surface area, the unproductive binding of cellulase to lignin was decreased, thus improving the enzymatic hydrolysis. The degree of polymerization of cellulose from FRs was too low to be a key factor for improving enzymatic hydrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Evaluation of Potential Fungal Species for the in situ Simultaneous Saccharification and Fermentation (SSF of Cellulosic Material

    Directory of Open Access Journals (Sweden)

    Leeuwen, J.

    2011-01-01

    Full Text Available Three fungal species were evaluated for their abilities to saccharify pure cellulose. The three species chosen represented three major wood-rot molds; brown rot (Gloeophyllum trabeum, white rot (Phanerochaete chrysosporium and soft rot (Trichoderma reesei. After solid state fermentation of the fungi on the filter paper for four days, the saccharified cellulose was then fermented to ethanol by using Saccharomyces cerevisiae. The efficiency of the fungal species in saccharifying the filter paper was compared against a low dose (25 FPU/g cellulose of a commercial cellulase. Total sugar, cellobiose and glucose were monitored during the fermentation period, along with ethanol, acetic acid and lactic acid. Results indicated that the most efficient fungal species in saccharifying the filter paper was T. reesei with 5.13 g/100 g filter paper of ethanol being produced at days 5, followed by P. chrysosporium at 1.79 g/100 g filter paper. No ethanol was detected for the filter paper treated with G. trabeum throughout the five day fermentation stage. Acetic acid was only produced in the sample treated with T. reesei and the commercial enzyme, with concentration 0.95 and 2.57 g/100 g filter paper, respectively at day 5. Lactic acid production was not detected for all the fungal treated filter paper after day 5. Our study indicated that there is potential in utilizing in situ enzymatic saccharification of biomass by using T. reesei and P. chrysosporium that may lead to an economical simultaneous saccharification and fermentation process for the production of fuel ethanol.

  11. Investigation of Pleurotus ostreatus pretreatment on switchgrass for ethanol production

    Science.gov (United States)

    Slavens, Shelyn Gehle

    Fungal pretreatment using the white-rot fungus Pleurotus ostreatus on switchgrass for ethanol production was studied. In a small-scale storage study, small switchgrass bales were inoculated with fungal spawn and automatically watered to maintain moisture. Sampled at 25, 53, and 81 d, the switchgrass composition was determined and liquid hot water (LHW) pretreatment was conducted. Fungal pretreatment significantly decreased the xylan and lignin content; glucan was not significantly affected by fungal loading. The glucan, xylan, and lignin contents significantly decreased with increased fungal pretreatment time. The effects of the fungal pretreatment were not highly evident after the LHW pretreatment, showing only changes based on sampling time. Although other biological activity within the bales increased cellulose degradation, the fungal pretreatment successfully reduced the switchgrass lignin and hemicellulose contents. In a laboratory-scale nutrient supplementation study, copper, manganese, glucose, or water was added to switchgrass to induce production of ligninolytic enzymes by P. ostreatus. After 40 d, ligninolytic enzyme activities and biomass composition were determined and simultaneous saccharification and fermentation (SSF) was conducted to determine ethanol yield. Laccase activity was similar for all supplements and manganese peroxidase (MnP) activity was significantly less in copper-treated samples than in the other fungal-inoculated samples. The fungal pretreatment reduced glucan, xylan, and lignin content, while increasing extractable sugars content. The lowest lignin contents occurred in the water-fungal treated samples and produced the greatest ethanol yields. The greatest lignin contents occurred in the copper-fungal treated samples and produced the lowest ethanol yields. Manganese-fungal and glucose-fungal treated samples had similar, intermediate lignin contents and produced similar, intermediate ethanol yields. Ethanol yields from switchgrass

  12. Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover.

    Science.gov (United States)

    Kadam, Kiran L; Chin, Chim Y; Brown, Lawrence W

    2008-05-01

    A new biorefining process is presented that embodies green processing and sustainable development. In the spirit of a true biorefinery, the objective is to convert agricultural residues and other biomass feedstocks into value-added products such as fuel ethanol, dissolving pulp, and lignin for resin production. The continuous biomass fractionation process yields a liquid stream rich in hemicellulosic sugars, a lignin-rich liquid stream, and a solid cellulose stream. This paper generally discusses potential applications of the three streams and specifically provides results on the evaluation of the cellulose stream from corn stover as a source of fermentation sugars and specialty pulp. Enzymatic hydrolysis of this relatively pure cellulose stream requires significantly lower enzyme loadings because of minimal enzyme deactivation from nonspecific binding to lignin. A correlation was shown to exist between lignin removal efficiency and enzymatic digestibility. The cellulose produced was also demonstrated to be a suitable replacement for hardwood pulp, especially in the top ply of a linerboard. Also, the relatively pure nature of the cellulose renders it suitable as raw material for making dissolving pulp. This pulping approach has significantly smaller environmental footprint compared to the industry-standard kraft process because no sulfur- or chlorine-containing compounds are used. Although this option needs some minimal post-processing, it produces a higher value commodity than ethanol and, unlike ethanol, does not need extensive processing such as hydrolysis or fermentation. Potential use of low-molecular weight lignin as a raw material for wood adhesive production is discussed as well as its use as cement and feed binder. As a baseline application the hemicellulosic sugars captured in the hydrolyzate liquor can be used to produce ethanol, but potential utilization of xylose for xylitol fermentation is also feasible. Markets and values of these applications are

  13. Wet oxidation pretreatment of rape straw for ethanol production

    DEFF Research Database (Denmark)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via...... Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole...... gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid...

  14. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose; Actividad enzimatica del complejo celulolitico producido por Trichoderma reesei. Hidrolisis enzimatica de la celulosa

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsel, M; Negro, M J; Saez, R; Martin, C

    1986-07-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs.

  15. Glucose production for cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Karube, I

    1977-04-16

    Glucose was produced from cellulose by passing a cellulose solution through a column of an immobilized cellulase which was prepared by coating an inorganic carrier such as macadam or stainless steel beads with collagen containing the cellulase. Thus, 4 mL of 5% cellulase T-AP (60,000 units/g) solution was dissolved in 100 g of 0.9% collagen solution and the solution mixed with 60 g of macadam (diam. = 0.5 to 1.5 mm) and stirred for 10 min. The treated beads were dried in air at 10/sup 0/ to yield an immobilized enzyme retaining 64% of its activity. Through a column (0.8 x 20 cm) packed with 3 g of the immobilized enzyme, 100 mL of 0.33% Avicel SF solution was circulated at 26.4 mL/min at 30/sup 0/ for 60 h. The Avicel SF conversion to glucose was 23%.

  16. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and {beta}-glucosidase

    Energy Technology Data Exchange (ETDEWEB)

    Apiwatanapiwat, Waraporn; Rugthaworn, Prapassorn [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Kasetsart Univ., Bangkok (Thailand). Nanotechnology and Biotechnology Div.; Murata, Yoshinori; Kosugi, Akihiko; Arai, Takamitsu; Mori, Yutaka [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Yamada, Ryosuke; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering

    2011-04-15

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying {alpha}-amylase ({alpha}-AM), glucoamylase, endoglucanase, cellobiohydrase, and {beta}-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley {beta}-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes. (orig.)

  17. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    Science.gov (United States)

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  18. Simultaneous saccharification and fermentation of alkaline-pretreated corn stover to ethanol using a recombinant yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jing; Xia, Liming [Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China)

    2009-10-15

    Bio-ethanol converted from cheap and abundant lignocellulosic materials is a potential renewable resource to replace depleting fossil fuels. Simultaneous saccharification and fermentation (SSF) of alkaline-pretreated corn stover for the production of ethanol was investigated using a recombinant yeast strain Saccharomyces cerevisiae ZU-10. Low cellobiase activity in Trichoderma reesei cellulase resulted in cellobiose accumulation. Supplementing the simultaneous saccharification and fermentation system with cellobiase greatly reduced feedback inhibition caused by cellobiose to the cellulase reaction, thereby increased the ethanol yield. 12 h of enzymatic prehydrolysis at 50 C prior to simultaneous saccharification and fermentation was found to have a negative effect on the overall ethanol yield. Glucose and xylose produced from alkaline-pretreated corn stover could be co-fermented to ethanol effectively by S. cerevisiae ZU-10. An ethanol concentration of 27.8 g/L and the corresponding ethanol yield on carbohydrate in substrate of 0.350 g/g were achieved within 72 h at 33 C with 80 g/L of substrate and enzyme loadings of 20 filter paper activity units (FPU)/g substrate and 10 cellobiase units (CBU)/g substrate. The results are meaningful in co-conversion of cellulose and hemicellulose fraction of lignocellulosic materials to fuel ethanol. (author)

  19. Market penetration of ethanol

    International Nuclear Information System (INIS)

    Szulczyk, Kenneth R.; McCarl, Bruce A.; Cornforth, Gerald

    2010-01-01

    This research examines in detail the technology and economics of substituting ethanol for gasoline. This endeavor examines three issues. First, the benefits of ethanol/gasoline blends are examined, and then the technical problems of large-scale implementation of ethanol. Second, ethanol production possibilities are examined in detail from a variety of feedstocks and technologies. The feedstocks are the starch/sugar crops and crop residues, while the technologies are corn wet mill, dry grind, and lignocellulosic fermentation. Examining in detail the production possibilities allows the researchers to identity the extent of technological change, production costs, byproducts, and GHG emissions. Finally, a U.S. agricultural model, FASOMGHG, is updated which predicts the market penetration of ethanol given technological progress, variety of technologies and feedstocks, market interactions, energy prices, and GHG prices. FASOMGHG has several interesting results. First, gasoline prices have a small expansionary impact on the U.S. ethanol industry. Both agricultural producers' income and cost both increase with higher energy prices. If wholesale gasoline is $4 per gallon, the predicted ethanol market penetration attains 53% of U.S. gasoline consumption in 2030. Second, the corn wet mill remains an important industry for ethanol production, because this industry also produces corn oil, which could be converted to biodiesel. Third, GHG prices expand the ethanol industry. However, the GHG price expands the corn wet mill, but has an ambiguous impact on lignocellulosic ethanol. Feedstocks for lignocellulosic fermentation can also be burned with coal to generate electricity. Both industries are quite GHG efficient. Finally, U.S. government subsidies on biofuels have an expansionary impact on ethanol production, but may only increase market penetration by an additional 1% in 2030, which is approximately 6 billion gallons. (author)

  20. High-Octane Mid-Level Ethanol Blend Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Caley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, Emily [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peterson, Steve [Lexidyne, LLC, Colorado Springs, CO (United States); Leiby, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinez, Rocio Uria [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oladosu, Gbadebo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Maxwell L. [Colorado School of Mines, Golden, CO (United States)

    2015-12-01

    The United States government has been promoting increased use of biofuels, including ethanol from non-food feedstocks, through policies contained in the Energy Independence and Security Act of 2007. The objective is to enhance energy security, reduce greenhouse gas (GHG) emissions, and provide economic benefits. However, the United States has reached the ethanol blend wall, where more ethanol is produced domestically than can be blended into standard gasoline. Nearly all ethanol is blended at 10 volume percent (vol%) in gasoline. At the same time, the introduction of more stringent standards for fuel economy and GHG tailpipe emissions is driving research to increase the efficiency of spark ignition (SI) engines. Advanced strategies for increasing SI engine efficiency are enabled by higher octane number (more highly knock-resistant) fuels. Ethanol has a research octane number (RON) of 109, compared to typical U.S. regular gasoline at 91-93. Accordingly, high RON ethanol blends containing 20 vol% to 40 vol% ethanol are being extensively studied as fuels that enable design of more efficient engines. These blends are referred to as high-octane fuel (HOF) in this report. HOF could enable dramatic growth in the U.S. ethanol industry, with consequent energy security and GHG emission benefits, while also supporting introduction of more efficient vehicles. HOF could provide the additional ethanol demand necessary for more widespread deployment of cellulosic ethanol. However, the potential of HOF can be realized only if it is adopted by the motor fuel marketplace. This study assesses the feasibility, economics, and logistics of this adoption by the four required participants--drivers, vehicle manufacturers, fuel retailers, and fuel producers. It first assesses the benefits that could motivate these participants to adopt HOF. Then it focuses on the drawbacks and barriers that these participants could face when adopting HOF and proposes strategies--including incentives and

  1. Co-production of electricity and ethanol, process economics of value prior combustion

    International Nuclear Information System (INIS)

    Treasure, T.; Gonzalez, R.; Venditti, R.; Pu, Y.; Jameel, H.; Kelley, S.; Prestemon, Jeffrey

    2012-01-01

    Highlights: ► Economics of producing cellulosic ethanol and bio-power in the same facility using an autohydrolysis process. ► Feedstock considerably affect the economics of the biorefinery facility. ► Lower moisture content improves financial performance of the bio-power business. - Abstract: A process economic analysis of co-producing bioethanol and electricity (value prior to combustion) from mixed southern hardwood and southern yellow pine is presented. Bioethanol is produced by extracting carbohydrates from wood via autohydrolysis, membrane separation of byproducts, enzymatic hydrolysis of extracted oligomers and fermentation to ethanol. The residual solids after autohydrolysis are pressed and burned in a power boiler to generate steam and electricity. A base case scenario of biomass combustion to produce electricity is presented as a reference to understand the basics of bio-power generation economics. For the base case, minimum electricity revenue of $70–$96/MWh must be realized to achieve a 6–12% internal rate of return. In the alternative co-production cases, the ethanol facility is treated as a separate business entity that purchases power and steam from the biomass power plant. Minimum ethanol revenue required to achieve a 12% internal rate of return was estimated to be $0.84–$1.05/l for hardwood and $0.74–$0.85/l for softwood. Based on current market conditions and an assumed future ethanol selling price of $0.65/l, the co-production of cellulosic bioethanol and power does not produce financeable returns. A risk analysis indicates that there is a probability of 26.6% to achieve an internal rate of return equal or higher than 12%. It is suggested that focus be placed on improving yield and reducing CAPEX before this technology can be applied commercially. This modeling approach is a robust method to evaluate economic feasibility of integrated production of bio-power and other products based on extracted hemicellulose.

  2. A lignocellulosic ethanol strategy via nonenzymatic sugar production: process synthesis and analysis.

    Science.gov (United States)

    Han, Jeehoon; Luterbacher, Jeremy S; Alonso, David Martin; Dumesic, James A; Maravelias, Christos T

    2015-04-01

    The work develops a strategy for the production of ethanol from lignocellulosic biomass. In this strategy, the cellulose and hemicellulose fractions are simultaneously converted to sugars using a γ-valerolactone (GVL) solvent containing a dilute acid catalyst. To effectively recover GVL for reuse as solvent and biomass-derived lignin for heat and power generation, separation subsystems, including a novel CO2-based extraction for the separation of sugars from GVL, lignin and humins have been designed. The sugars are co-fermented by yeast to produce ethanol. Furthermore, heat integration to reduce utility requirements is performed. It is shown that this strategy leads to high ethanol yields and the total energy requirements could be satisfied by burning the lignin. The integrated strategy using corn stover feedstock leads to a minimum selling price of $5 per gallon of gasoline equivalent, which suggests that it is a promising alternative to current biofuels production approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Cellulose-Hemicellulose Interactions at Elevated Temperatures Increase Cellulose Recalcitrance to Biological Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kumar, Rajeev [University of California, Riverside; Oak Ridge National Laboratory; ; Smith, Micholas Dean [Oak Ridge National Laboratory; University of Tennessee; Petridis, Loukas [Oak Ridge National Laboratory; University of Tennessee; Ong, Rebecca G. [Michigan Technological University; Cai, Charles M. [University of California, Riverside; Oak Ridge National Laboratory; Balan, Venkatesh [University of Houston; Dale, Bruce E. [Michigan State University; Ragauskas, Arthur J. [Oak Ridge National Laboratory; University of Tennessee; Smith, Jeremy C. [Oak Ridge National Laboratory; University of Tennessee; Wyman, Charles E. [University of California, Riverside; Oak Ridge National Laboratory

    2018-01-23

    It has been previously shown that cellulose-lignin droplets' strong interactions, resulting from lignin coalescence and redisposition on cellulose surface during thermochemical pretreatments, increase cellulose recalcitrance to biological conversion, especially at commercially viable low enzyme loadings. However, information on the impact of cellulose-hemicellulose interactions on cellulose recalcitrance following relevant pretreatment conditions are scarce. Here, to investigate the effects of plausible hemicellulose precipitation and re-association with cellulose on cellulose conversion, different pretreatments were applied to pure Avicel(R) PH101 cellulose alone and Avicel mixed with model hemicellulose compounds followed by enzymatic hydrolysis of resulting solids at both low and high enzyme loadings. Solids produced by pretreatment of Avicel mixed with hemicelluloses (AMH) were found to contain about 2 to 14.6% of exogenous, precipitated hemicelluloses and showed a remarkably much lower digestibility (up to 60%) than their respective controls. However, the exogenous hemicellulosic residues that associated with Avicel following high temperature pretreatments resulted in greater losses in cellulose conversion than those formed at low temperatures, suggesting that temperature plays a strong role in the strength of cellulose-hemicellulose association. Molecular dynamics simulations of hemicellulosic xylan and cellulose were found to further support this temperature effect as the xylan-cellulose interactions were found to substantially increase at elevated temperatures. Furthermore, exogenous, precipitated hemicelluloses in pretreated AMH solids resulted in a larger drop in cellulose conversion than the delignified lignocellulosic biomass containing comparably much higher natural hemicellulose amounts. Increased cellulase loadings or supplementation of cellulase with xylanases enhanced cellulose conversion for most pretreated AMH solids; however, this approach

  4. Pretreatment of Reed by Wet Oxidation and Subsequent Utilization of the Pretreated Fibers for Ethanol Production

    DEFF Research Database (Denmark)

    Szijarto, Nora; Kádár, Zsófia; Varga, Eniko

    2009-01-01

    lignocelluloses usually do. In the present study, wet oxidation was investigated as the pretreatment method to enhance the enzymatic digestibility of reed cellulose to soluble sugars and thus improve the convertibility of reed to ethanol. The most effective treatment increased the digestibility of reed cellulose...... of cellulose to glucose was 82.4%. Simultaneous saccharification and fermentation of pretreated solids resulted in a final ethanol concentration as high as 8.7 g/L, yielding 73% of the theoretical....

  5. Características tecnológicas dos caules de juta visando à produção de pastas celulósicas para papel Technological characteristics of jute stalks to produce cellulosic fibers for paper making

    Directory of Open Access Journals (Sweden)

    Anísio Azzini

    1986-01-01

    Full Text Available Foram estudadas seis variedades de juta quanto à densidade básica do caule e seus teores em líber, lenho, fibra, celulose e dimensões das fibras. Os valores para a densidade básica, de 0,270 a 0,335g/cm³, evidenciaram suas diferenças tecnológicas. Os caules da variedade introduzida sob nº I-52445 foram os menos densos, com menores teores de fibra e de celulose. Os teores de líber (36,6 a 40,6%, lenho (59,4 a 63,4%, fibra (17,3 a 22,0% e celulose (42,4 a 45,4%, bem como o estudo micrométrico das fibras liberianas e lenhosas, evidenciaram as possibilidades de utilização dos caules de juta como matéria-prima para produção de fibras celulósicas para papel.In this paper six varieties of jute identified by the numbers I-53502, I -53503, I -52444, I -52445, I -52446 e Roxa were studied considering the following stalk technological characteristics: basic density, contents of bast, woody fiber, cellulose and fiber dimensions. The basic density ranged from 0.270 to 0.335g/cm³, showing differences among varieties. The contents of bast ranged from 36.6 to 40.6%, woody from 49.4 to 63.4%, fiber from 17.3 to 22.0%, and cellulose from 42.4 to 45.4%; the bast fiber lengths ranged from 1.99 to 2.14mm and woody 0.70 to 0.82mm. These results indicated the great potential the jute stalks have to produce cellulose fibers for paper making.

  6. Ethanol production from rape straw: Part of an oilseed rape biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Arvaniti, E

    2010-12-15

    solution was fermented via Simultaneous Saccharification and Fermentation (SSF) assisted by liquefaction step, with Cellubrix L and baker's yeast achieved ethanol yield was 67% based on sugars in raw material (12.5% DM). Optimization of ethanol production from rape straw then focused to enzymatic hydrolysis and benchmarking available commercial enzyme mixtures. It was found that hydrolysis rate increased considerably, if adequate amount of beta-glycosidase is present in enzyme mixture. Best mixture of enzymes was Celluclast 1.5L supplemented by Novozym 188 (5:1 v/v ratio), which in 24 hours it hydrolyzed 77% of pretreated rape straw C6 sugars. In an attempt to produce enzymes from pretreated rape straw, the most promising carbon source was a mixture of cellulose and hemicellulose (81:19 w/w sugars ratio). The produced cellulolytic enzymes in turn hydrolyzed pretreated rape straw by 70% in 24 hours enzyme hydrolysis test. These enzymes were produced after 11 days of fermentation with enzyme yielded 109 FPU/g sugars (pretreated rape straw). Finally, ethanol fermentation was optimized using the selected pretreatment method, and best enzyme mixture. Assessment of optimal fermentation conditions included determination of optimal highest fermenting temperature among three strains; the best pH pattern for maximum ethanol production; and finally assessing potentials of fermentations at increased dry matter. Results have shown that S. cerevisiae has thermotollerance up to 37 deg. C, and that pH was the catalytic factor for the progress of ethanol fermentation as well as contamination by lactic acid bacteria, in both shake flasks and scale up experiments. Highest ethanol yield was 77% achieved with 16% DM at 37 deg. C by an isolate strain from baker' yeast within 120 hours of SSF. (Author)

  7. Ethanol production from rape straw: Part of an oilseed rape biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Arvaniti, E.

    2010-12-15

    solution was fermented via Simultaneous Saccharification and Fermentation (SSF) assisted by liquefaction step, with Cellubrix L and baker's yeast achieved ethanol yield was 67% based on sugars in raw material (12.5% DM). Optimization of ethanol production from rape straw then focused to enzymatic hydrolysis and benchmarking available commercial enzyme mixtures. It was found that hydrolysis rate increased considerably, if adequate amount of beta-glycosidase is present in enzyme mixture. Best mixture of enzymes was Celluclast 1.5L supplemented by Novozym 188 (5:1 v/v ratio), which in 24 hours it hydrolyzed 77% of pretreated rape straw C6 sugars. In an attempt to produce enzymes from pretreated rape straw, the most promising carbon source was a mixture of cellulose and hemicellulose (81:19 w/w sugars ratio). The produced cellulolytic enzymes in turn hydrolyzed pretreated rape straw by 70% in 24 hours enzyme hydrolysis test. These enzymes were produced after 11 days of fermentation with enzyme yielded 109 FPU/g sugars (pretreated rape straw). Finally, ethanol fermentation was optimized using the selected pretreatment method, and best enzyme mixture. Assessment of optimal fermentation conditions included determination of optimal highest fermenting temperature among three strains; the best pH pattern for maximum ethanol production; and finally assessing potentials of fermentations at increased dry matter. Results have shown that S. cerevisiae has thermotollerance up to 37 deg. C, and that pH was the catalytic factor for the progress of ethanol fermentation as well as contamination by lactic acid bacteria, in both shake flasks and scale up experiments. Highest ethanol yield was 77% achieved with 16% DM at 37 deg. C by an isolate strain from baker' yeast within 120 hours of SSF. (Author)

  8. Dilute Ionic Liquids Pretreatment of Palm Empty Bunch and Its Impact to Produce Bioethanol

    OpenAIRE

    Lucy Arianie; Utin Dewi Pebriyana; Yudiansyah; Nora Idiawati; Deana Wahyuningrum

    2014-01-01

    Ethanol production through ionic liquids pretreatment of palm empty bunch (PEB) was carried out. This research aims to investigate impact of ionic liquids synthetic i.e 1-butyl-3-methyl imidazoliumbromide or [BMIM]bromide toward cellulose’s palm empty bunch and convert its cellulose into bioethanol. Ionic liquid was synthesized  through reflux and microwave assisted synthesis methods. Research investigation showed that microwave assisted synthesis produce [BMIM]bromide 90% faster than reflux ...

  9. Ethanol annual report FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Texeira, R.H.; Goodman, B.J. (eds.)

    1991-01-01

    This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

  10. Re-engineering bacteria for ethanol production

    Science.gov (United States)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  11. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.

    Science.gov (United States)

    Lee, Cho-Ryong; Sung, Bong Hyun; Lim, Kwang-Mook; Kim, Mi-Jin; Sohn, Min Jeong; Bae, Jung-Hoon; Sohn, Jung-Hoon

    2017-06-30

    To realize the economical production of ethanol and other bio-based chemicals from lignocellulosic biomass by consolidated bioprocessing (CBP), various cellulases from different sources were tested to improve the level of cellulase secretion in the yeast Saccharomyces cerevisiae by screening an optimal translational fusion partner (TFP) as both a secretion signal and fusion partner. Among them, four indispensable cellulases for cellulose hydrolysis, including Chaetomium thermophilum cellobiohydrolase (CtCBH1), Chrysosporium lucknowense cellobiohydrolase (ClCBH2), Trichoderma reesei endoglucanase (TrEGL2), and Saccharomycopsis fibuligera β-glucosidase (SfBGL1), were identified to be highly secreted in active form in yeast. Despite variability in the enzyme levels produced, each recombinant yeast could secrete approximately 0.6-2.0 g/L of cellulases into the fermentation broth. The synergistic effect of the mixed culture of the four strains expressing the essential cellulases with the insoluble substrate Avicel and several types of cellulosic biomass was demonstrated to be effective. Co-fermentation of these yeast strains produced approximately 14 g/L ethanol from the pre-treated rice straw containing 35 g/L glucan with 3-fold higher productivity than that of wild type yeast using a reduced amount of commercial cellulases. This process will contribute to the cost-effective production of bioenergy such as bioethanol and biochemicals from cellulosic biomass.

  12. Fe3O4 Modification of Microcrystalline Cellulose for Composite Materials

    OpenAIRE

    Dimitrov, Kiril; Herzog, Michael; Nenkova, Sanchi

    2013-01-01

    A new synthesis method for producing cellulose ferrite micro- and nano- composites was developed and new material properties were studied. Microcrystalline cellulose was modified with a mixture of Fe+2/Fe+3 to produce surface bonded nanoparticles magnetite (Fe3O4). Optimal conditions were determined. Microsized hematite (Fe2O3) was mixed with microcrystalline cellulose and used as a reference. The magnetite modified microcrystalline cellulose and hematite filled microcrystalline cellulose wer...

  13. Microbiology and physiology of anaerobic fermentations of cellulose. Progress report, September 1, 1979-May 15, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Peck, H.D. Jr.; Ljungdahl, L.G.

    1980-01-01

    Reseach progress is reported for the period September, 1979 to May, 1980. Studies on the mesophilic and thermophilic microorganisms fermenting cellulose to various products (ethanol, acetate, CO/sub 2/, H/sub 2/, and methane) are summarized. (ACR)

  14. Microscopic Analysis of Corn Fiber Using Corn Starch- and Cellulose-Specific Molecular Probes

    Energy Technology Data Exchange (ETDEWEB)

    Porter, S. E.; Donohoe, B. S.; Beery, K. E.; Xu, Q.; Ding, S.-Y.; Vinzant, T. B.; Abbas, C. A.; Himmel, M. E.

    2007-09-01

    Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. These probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.

  15. The impact of lignocellulosic ethanol yields in polygeneration with district heating – A case study

    International Nuclear Information System (INIS)

    Starfelt, Fredrik; Daianova, Lilia; Yan, Jinyue; Thorin, Eva; Dotzauer, Erik

    2012-01-01

    Highlights: ► We model a system with ethanol, power and district heating production. ► Different ethanol yields are investigated from an overall system perspective. ► Yields of ethanol production have less importance for the profitability of the plant. -- Abstract: The development towards high energy efficiency and low environmental impact from human interactions has led to changes at many levels of society. As a result of the introduction of penalties on carbon dioxide emissions and other economic instruments, the energy industry is striving to improve energy efficiency and climate mitigation by switching from fossil fuels to renewable fuels. Biomass-based combined heat and power (CHP) plants connected to district heating networks have a need to find uses for the excess heat they produce in summer when the heat demand is low. On the other hand, the transport sector makes a substantial contribution to the increasing CO 2 emissions, which have to be reduced. One promising alternative to address these challenging issues is the integration of vehicle fuel production with biomass-based CHP plants. This paper presents the configuration and operating profits in terms of electricity, heat and ethanol fuel from cellulosic biomass. A case study of a commercial small scale CHP plant was conducted using simulation and modeling tools. The results clearly show that electricity production can be increased when CHP production is integrated with cellulosic ethanol production. The findings also show that the economic benefits of the energy system can be realized with near-term commercially available technology, and that the benefits do not rely solely on ethanol yields.

  16. Performance of cellulose derivatives in deep-fried battered snacks: Oil barrier and crispy properties

    NARCIS (Netherlands)

    Primo-Martín, C.; Sanz, T.; Steringa, D.W.; Salvador, A.; Fiszman, S.M.; Vliet, T. van

    2010-01-01

    The performance of batters containing cellulose derivatives (methyl cellulose (A4M), three hydroxypropylmethyl celluloses (E4M, F4M and K4M) with different degree of hydroxypropyl and/or methyl substitution and carboxymethyl cellulose (CMC)) to produce crispy deep-fried snacks crusts was studied by

  17. Optimizing Extraction of Cellulose and Synthesizing Pharmaceutical Grade Carboxymethyl Sago Cellulose from Malaysian Sago Pulp

    Directory of Open Access Journals (Sweden)

    Anand Kumar Veeramachineni

    2016-06-01

    Full Text Available Sago biomass is an agro-industrial waste produced in large quantities, mainly in the Asia-Pacific region and in particular South-East Asia. This work focuses on using sago biomass to obtain cellulose as the raw material, through chemical processing using acid hydrolysis, alkaline extraction, chlorination and bleaching, finally converting the material to pharmaceutical grade carboxymethyl sago cellulose (CMSC by carboxymethylation. The cellulose was evaluated using Thermogravimetric Analysis (TGA, Infrared Spectroscopy (FTIR, X-Ray Diffraction (XRD, Differential Scanning Calorimetry (DSC and Field Emission Scanning Electronic Microscopy (FESEM. The extracted cellulose was analyzed for cellulose composition, and subsequently modified to CMSC with a degree of substitution (DS 0.6 by typical carboxymethylation reactions. X-ray diffraction analysis indicated that the crystallinity of the sago cellulose was reduced after carboxymethylation. FTIR and NMR studies indicate that the hydroxyl groups of the cellulose fibers were etherified through carboxymethylation to produce CMSC. Further characterization of the cellulose and CMSC were performed using FESEM and DSC. The purity of CMSC was analyzed according to the American Society for Testing and Materials (ASTM International standards. In this case, acid and alkaline treatments coupled with high-pressure defibrillation were found to be effective in depolymerization and defibrillation of the cellulose fibers. The synthesized CMSC also shows no toxicity in the cell line studies and could be exploited as a pharmaceutical excipient.

  18. Enhanced bioprocessing of lignocellulose: Wood-rot fungal saccharification and fermentation of corn fiber to ethanol

    Science.gov (United States)

    Shrestha, Prachand

    no improvement in ethanol yields. We showed that saccharification of lignocellulosic material with a wood-rot fungal process is quite feasible. Corn fiber from wet milling was best degraded to sugars using aerobic solid state fermentation with the soft-rot fungus T. reesei. However, it was shown that both the white-rot fungus P. chrysosporium and brown-rot fungus G. trabeum had the ability to produce additional consortia of hemi/cellulose degrading enzymes. It is likely that a consortium of enzymes from these fungi would be the best approach in saccharification of lignocellulose. In all cases, a subsequent anaerobic yeast process under submerged conditions is required to ferment the released sugars to ethanol. To our knowledge, this is the first time report on production of cellulolytic enzymes from wet-milled corn fiber using white- and brown-rot fungi for sequential fermentation of corn fiber hydrolyzate to ethanol. Keywords: lignocellulose, ethanol, biofuel, bioeconomy, biomass, renewable resources, corn fiber, pretreatment, solid-substrate fermentation, simultaneous saccharification and fermentation (SSF), white-rot fungus, brown-rot fungus, soft-rot fungus, fermentable sugars, enzyme activities, cellulytic enzymes Phanerochaete chrysosporium, Gloleophyllum trabeum, Trichoderma reesei, Saccharomyces cerevisiae.

  19. High pressure HC1 conversion of cellulose to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Antonoplis, Robert Alexander [Univ. of California, Berkeley, CA (United States); Blanch, Harvey W. [Univ. of California, Berkeley, CA (United States); Wilke, Charles R. [Univ. of California, Berkeley, CA (United States)

    1981-08-01

    The production of ethanol from glucose by means of fermentation represents a potential long-range alternative to oil for use as a transportation fuel. Today's rising oil prices and the dwindling world supply of oil have made other fuels, such as ethanol, attractive alternatives. It has been shown that automobiles can operate, with minor alterations, on a 10% ethanol-gasoline mixture popularly known as gasohol. Wood has long been known as a potential source of glucose. Glucose may be obtained from wood following acid hydrolysis. In this research, it was found that saturating wood particles with HCl gas under pressure was an effective pretreatment before subjecting the wood to dilute acid hydrolysis. The pretreatment is necessary because of the tight lattice structure of cellulose, which inhibits dilute acid hydrolysis. HCl gas makes the cellulose more susceptible to hydrolysis and the glucose yield is doubled when dilute acid hydrolysis is preceded by HCl saturation at high pressure. The saturation was most effectively performed in a fluidized bed reactor, with pure HCl gas fluidizing equal volumes of ground wood and inert particles. The fluidized bed effectively dissipated the large amount of heat released upon HCl absorption into the wood. Batch reaction times of one hour at 314.7 p.s.i.a. gave glucose yields of 80% and xylose yields of 95% after dilute acid hydrolysis. A non-catalytic gas-solid reaction model, with gas diffusing through the solid limiting the reaction rate, was found to describe the HCl-wood reaction in the fluidized bed. HCl was found to form a stable adduct with the lignin residue in the wood, in a ratio of 3.33 moles per mole of lignin monomer. This resulted in a loss of 0.1453 lb. of HCl per pound of wood. The adduct was broken upon the addition of water. A process design and economic evaluation for a plant to produce 214 tons per day of glucose from air-dried ground Populus tristi gave an estimated glucose cost of 15.14 cents per pound

  20. Method of forming an electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Woodward, Jonathan [Ashtead, GB

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  1. Dilute Ionic Liquids Pretreatment of Palm Empty Bunch and Its Impact to Produce Bioethanol

    Directory of Open Access Journals (Sweden)

    Lucy Arianie

    2013-12-01

    Full Text Available Ethanol production through ionic liquids pretreatment of palm empty bunch (PEB was carried out. This research aims to investigate impact of ionic liquids synthetic i.e 1-butyl-3-methyl imidazoliumbromide or [BMIM]bromide toward cellulose’s palm empty bunch and convert its cellulose into bioethanol. Ionic liquid was synthesized  through reflux and microwave assisted synthesis methods. Research investigation showed that microwave assisted synthesis produce [BMIM]bromide 90% faster than reflux method. The characterization of synthesized product using FTIR, 1H-NMR, 13C-NMR and LC-MS showed that these reactions have been carried out successfully. Scanning electron microscope figure out changes morphological surface of palm empty bunch caused by ionic liquid pretreatment. Crystallinity index of PEB milled and cellulose of PEFB after [BMIM]bromide dissolution were identified using comparison of PEB FTIR spectrum. Cellulose without dilute [BMIM]bromide have higher LOI number than cellulose after [BMIM]bromide dissolution. It indicated that a large part of cellulose after dissolution has been changed into amorf. Hydrolysis residue of palm empty bunch hydrolyzed by sulfuric acids 5%, 100 0C for 5 hours and produce 685 ppm of reducing sugar. Simultaneous Saccharification and Fermentation using Trichoderma viride and Saccharomyce cerevisiae  for 5 days produce 0,69% of bioethanol.

  2. Dilute Ionic Liquids Pretreatment of Palm Empty Bunch and Its Impact to Produce Bioethanol

    Directory of Open Access Journals (Sweden)

    Lucy Arianie

    2014-06-01

    Full Text Available Ethanol production through ionic liquids pretreatment of palm empty bunch (PEB was carried out. This research aims to investigate impact of ionic liquids synthetic i.e 1-butyl- 3-methyl imidazoliumbromide or [BMIM]bromide toward cellulose’s palm empty bunch and convert its cellulose into bioethanol. Ionic liquid was synthesized through reflux and microwave assisted synthesis methods. Research investigation showed that microwave assisted synthesis produce [BMIM]bromide 90% faster than reflux method. The characterization of synthesized product using FTIR, 1H-NMR, 13C-NMR and LC-MS showed that these reactions have been carried out successfully. Scanning electron microscope figure out changes morphological surface of palm empty bunch caused by ionic liquid pretreatment. Crystallinity index of PEB milled and cellulose of PEFB after [BMIM]bromide dissolution were identified using comparison of PEB FTIR spectrum. Cellulose without dilute [BMIM]bromide have higher LOI number than cellulose after [BMIM]bromide dissolution. It indicated that a large part of cellulose after dissolution has been changed into amorf. Hydrolysis residue of palm empty bunch hydrolyzed by sulfuric acids 5%, 100 0C for 5 hours and produce 685 ppm of reducing sugar. Simultaneous Saccharification and Fermentation using Trichoderma viride and Saccharomyce cerevisiae for 5 days produce 0,69% of bioethanol.

  3. Comparison between Cellulose Nanocrystal and Cellulose Nanofibril Reinforced Poly(ethylene oxide) Nanofibers and Their Novel Shish-Kebab-Like Crystalline Structures

    Science.gov (United States)

    Xuezhu Xu; Haoran Wang; Long Jiang; Xinnan Wang; Scott A. Payne; J.Y. Zhu; Ruipeng Li

    2014-01-01

    Poly(ethylene oxide) (PEO) nanofiber mats were produced by electrospinning. Biobased cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) as reinforcement nanofillers were also added to the polymer to produce composite nanofiber mats. The effects of the two cellulose nanofillers on the rheological properties of the PEO solutions and the microstructure,...

  4. Fact sheet: Ethanol from corn

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-31

    This fact sheet is intended to provide an overview of the advantages of ethanol from corn, emphasizing ethanol`s contribution to environmental protection and sustainable agriculture. Ethanol, an alternative fuel used as an octane enhancer is produced through the conversion of starch to sugars by enzymes, and fermentation of these sugars to ethanol by yeast. The production process may involve wet milling or dry milling. Both these processes produce valuable by-products, in addition to ethanol and carbon dioxide. Ethanol contains about 32,000 BTU per litre. It is commonly believed that using state-of-the-art corn farming and corn processing processes, the amount of energy contained in ethanol and its by-products would be more than twice the energy required to grow and process corn into ethanol. Ethanol represents the third largest market for Ontario corn, after direct use as animal feed and wet milling for starch, corn sweetener and corn oil. The environmental consequences of using ethanol are very significant. It is estimated that a 10 per cent ethanol blend in gasoline would result in a 25 to 30 per cent decrease in carbon monoxide emissions, a 6 to 10 per cent decrease in net carbon dioxide, a slight increase in nitrous oxide emissions which, however, would still result in an overall decrease in ozone formation, since the significant reduction in carbon monoxide emissions would compensate for any slight increase in nitrous oxide. Volatile organic compounds emission would also decrease by about 7 per cent with a 10 per cent ethanol blend. High level blends could reduce VOCs production by as much as 30 per cent. 7 refs.

  5. Enhancement of Cellulose Degradation by Cattle Saliva

    Science.gov (United States)

    Seki, Yasutaka; Kikuchi, Yukiko; Kimura, Yoshihiro; Yoshimoto, Ryo; Takahashi, Masatoshi; Aburai, Kenichi; Kanai, Yoshihiro; Ruike, Tatsushi; Iwabata, Kazuki; Sugawara, Fumio; Sakai, Hideki; Abe, Masahiko; Sakaguchi, Kengo

    2015-01-01

    Saccharification of cellulose is a promising technique for producing alternative source of energy. However, the efficiency of conversion of cellulose into soluble sugar using any currently available methodology is too low for industrial application. Many additives, such as surfactants, have been shown to enhance the efficiency of cellulose-to-sugar conversion. In this study, we have examined first whether cattle saliva, as an additive, would enhance the cellulase-catalyzed hydrolysis of cellulose, and subsequently elucidated the mechanism by which cattle saliva enhanced this conversion. Although cattle saliva, by itself, did not degrade cellulose, it enhanced the cellulase-catalyzed degradation of cellulose. Thus, the amount of reducing sugar produced increased approximately 2.9-fold by the addition of cattle saliva. We also found that non-enzymatic proteins, which were present in cattle saliva, were responsible for causing the enhancement effect. Third, the mechanism of cattle saliva mediated enhancement of cellulase activity was probably similar to that of the canonical surfactants. Cattle saliva is available in large amounts easily and cheaply, and it can be used without further purification. Thus, cattle saliva could be a promising additive for efficient saccharification of cellulose on an industrial scale. PMID:26402242

  6. Bacterial laminarinase for application in ethanol production from brown algae Sargassum sp. using halotolerant yeast

    Directory of Open Access Journals (Sweden)

    C.M.T. Perez

    2018-03-01

    Full Text Available Macroalgae are known to have many industrial applications, with current research targeting the potential of macroalgal biomass as feedstock in production of biofuels. Marine algal biomass is rich in storage carbohydrates, laminarin, and cellulose, which can be converted to fermentable sugars using appropriate enzymes, for fermentation to ethanol. This study focused on ethanol production from macroalgae using only enzymatic treatment for saccharification of algal biomass. This involved the isolation and identification of cellulase and laminarinase-producing microorganisms from mangrove area in the Philippines and production of partially purified enzymes for algal biomass saccharification. Results showed that the partially purified laminarinase produced from Bacillus sp. was capable of hydrolyzing the laminarin present in the macroalage. Fermentation of the algal hydrolysate yielded only small amount of ethanol due to lack of other pre-treatment methods, however, it was observed that higher ethanol was produced in saccharification treatments using a combination of cellulase and laminarinase which implies a possible synergistic effect between the two enzymes.

  7. Characterization of cellulose nanowhiskers

    International Nuclear Information System (INIS)

    Nascimento, Nayra R.; Pinheiro, Ivanei F.; Morales, Ana R.; Ravagnani, Sergio P.; Mei, Lucia

    2015-01-01

    Cellulose is the most abundant polymer earth. The cellulose nanowhiskers can be extracted from the cellulose. These have attracted attention for its use in nanostructured materials for various applications, such as nanocomposites, because they have peculiar characteristics, among them, high aspect ratio, biodegradability and excellent mechanical properties. This work aims to characterize cellulose nanowhiskers from microcrystalline cellulose. Therefore, these materials were characterized by X-ray diffraction (XRD) to assess the degree of crystallinity, infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) to the morphology of nanowhiskers and thermal stability was evaluated by Thermogravimetric Analysis (TGA). (author)

  8. From the Cover: Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels

    Science.gov (United States)

    Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas

    2006-07-01

    Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels. corn | soybean | life-cycle accounting | agriculture | fossil fuel

  9. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels.

    Science.gov (United States)

    Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas

    2006-07-25

    Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels.

  10. Enzymic hydrolysis of cellulosic wastes to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Spano, L A; Medeiros, J; Mandels, M

    1976-01-01

    An enzymic process for the conversion of cellulose to glucose is based on the use of a specific enzyme derived from mutant strains of the fungus trichoderma viride which is capable of reacting with the crystalline fraction of the cellulose molecule. The production and mode of action of the cellulase complex produced during the growth of trichoderma viride is discussed as well as the application of such enzymes for the conversion of cellulosic wastes to crude glucose syrup for use in production of chemical feedstocks, single-cell proteins, fuels, solvents, etc.

  11. Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    Dogaris, Ioannis; Gkounta, Olga; Mamma, Diomi; Kekos, Dimitris [National Technical Univ. of Athens, Zografou (Greece). Biotechnology Lab.

    2012-07-15

    Bioethanol production from sweet sorghum bagasse (SB), the lignocellulosic solid residue obtained after extraction of sugars from sorghum stalks, can further improve the energy yield of the crop. The aim of the present work was to evaluate a cost-efficient bioconversion of SB to ethanol at high solids loadings (16 % at pretreatment and 8 % at fermentation), low cellulase activities (1-7 FPU/g SB) and co-fermentation of hexoses and pentoses. The fungus Neurospora crassa DSM 1129 was used, which exhibits both depolymerase and co-fermentative ability, as well as mixed cultures with Saccharomyces cerevisiae 2541. A dilute-acid pretreatment (sulfuric acid 2 g/100 g SB; 210 C; 10 min) was implemented, with high hemicellulose decomposition and low inhibitor formation. The bioconversion efficiency of N. crassa was superior to S. cerevisiae, while their mixed cultures had negative effect on ethanol production. Supplementing the in situ produced N. crassa cellulolytic system (1.0 FPU/g SB) with commercial cellulase and {beta}-glucosidase mixture at low activity (6.0 FPU/g SB) increased ethanol production to 27.6 g/l or 84.7 % of theoretical yield (based on SB cellulose and hemicellulose sugar content). The combined dilute-acid pretreatment and bioconversion led to maximum cellulose and hemicellulose hydrolysis 73.3 % and 89.6 %, respectively. (orig.)

  12. Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa.

    Science.gov (United States)

    Dogaris, Ioannis; Gkounta, Olga; Mamma, Diomi; Kekos, Dimitris

    2012-07-01

    Bioethanol production from sweet sorghum bagasse (SB), the lignocellulosic solid residue obtained after extraction of sugars from sorghum stalks, can further improve the energy yield of the crop. The aim of the present work was to evaluate a cost-efficient bioconversion of SB to ethanol at high solids loadings (16 % at pretreatment and 8 % at fermentation), low cellulase activities (1-7 FPU/g SB) and co-fermentation of hexoses and pentoses. The fungus Neurospora crassa DSM 1129 was used, which exhibits both depolymerase and co-fermentative ability, as well as mixed cultures with Saccharomyces cerevisiae 2541. A dilute-acid pretreatment (sulfuric acid 2 g/100 g SB; 210 °C; 10 min) was implemented, with high hemicellulose decomposition and low inhibitor formation. The bioconversion efficiency of N. crassa was superior to S. cerevisiae, while their mixed cultures had negative effect on ethanol production. Supplementing the in situ produced N. crassa cellulolytic system (1.0 FPU/g SB) with commercial cellulase and β-glucosidase mixture at low activity (6.0 FPU/g SB) increased ethanol production to 27.6 g/l or 84.7 % of theoretical yield (based on SB cellulose and hemicellulose sugar content). The combined dilute-acid pretreatment and bioconversion led to maximum cellulose and hemicellulose hydrolysis 73.3 % and 89.6 %, respectively.

  13. ETHANOL ORGANOSOLV PRETREATMENT OF BAMBOO FOR EFFICIENT ENZYMATIC SACCHARIFICATION

    Directory of Open Access Journals (Sweden)

    Zhiqiang Li,

    2012-06-01

    Full Text Available Bamboo is a potential lignocellulosic biomass for the production of bioethanol because of its high cellulose and hemicelluloses content. In this research, ethanol organosolv pretreatment with dilute sulfuric acid as the catalyst was studied in order to enhance enzymatic saccharification of moso bamboo. The addition of 2% (w/w bamboo dilute sulfuric acid in 75% ethanol had a particularly strong effect on fractionation of bamboo. It yielded a solids fraction containing 83.4% cellulose in the treated substrate. The cellulose conversion to glucose yield reached 77.1 to 83.4% after enzymatic hydrolysis of the solids fraction for 48 h at an enzyme loading of 15 FPU cellulase/g cellulose and 30 IU β-glucosidase/g cellulose. The enzymatic hydrolysis rate was significantly accelerated as the ethanol organosolv pretreatment time increased, reaching the highest enzymatic glucose yield of 83.4% after 48 h at 50 °C. The concentrations of fermentation inhibitors such as HMF (5-hydroxy-2-methyl furfural and furfural were 0.96 g/L and 4.38 g/L in the spent liquor after the ethanol organosolv pretreatment, which were slightly lower than the concentrations quantified during H2SO4-water treatment. Spent liquor was diluted with water, and more than 87.2% of lignin in raw bamboo was recovered as ethanol organosolv lignin through the filtration process.

  14. Evaluation of wheat stillage for ethanol production by recombinant Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Davis, L.; Peiris, P. [University of Western Sydney, Penrith (Australia). School of Science, Food and Horticulture; Young-Jae Jeon; Svenson, C.; Rogers, P. [University of New South Wales, Sydney (Australia). School of Biotechnology and Biomolecular Sciences; Pearce, J. [Manildra Group, Bomaderry (Australia)

    2005-07-01

    Stillage is the main residue from the starch-to-ethanol fermentation process.Carbohydrates (hemicellulose and cellulose) comprise approximately 50% (w/w)of the total components of stillage. Conversion of the hemicellulose and cellulose to fermentable sugars and then to ethanol has the potential to significantly increase the efficiency of the process. The hydrolysis of stillage to fermentable sugars was optimised using 2% (v/v) H{sub 2}SO{sub 4} at 100{sup o}C for 5.5 h and produced 18 g/L xylose, 11.5 g/L arabinose and 6.5 g/L glucose from 120 g/L stillage. Further hydrolysis using enzymes increased the release of glucose by 61%. Furfural, acetate and lactate were the main inhibitors present in the acid hydrolysate of stillage. The lignin-derived inhibitors hydroxymethylfuraldehyde, hydroxybenzaldehyde, vanillin and syringaldehyde were not detected. Neutralisation of the hydrolysate with lime to pH 5 decreased the concentration of furfural by 50%. Fermentation of hydrolysate supplemented with glucose 10 g/L, by recombinant Zymomonas mobilis ZM4(pZB5), produced 11 g/L of ethanol after 70 h, with residual xylose 12 g/L. Supplementation of the hydrolysate with 5 g/L yeast extract and 40 g/L glucose produced 28 g/L ethanol with 2.6 g/L residual xylose after 18 h. Arabinose was not utilised by this particular recombinant strain. From the results, Z. mobilis ZM4(pZB5) may be a suitable candidate for the fermentation of both glucose and xylose in stillage acid hydrolysates. (author)

  15. Enzymatic hydrolysis and fermentation of agricultural residues to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Mes-Hartree, M.; Hogan, C.M.; Saddler, J.N.

    1984-01-01

    A combined enzymatic hydrolysis and fermentation process was used to convert steam-treated wheat and barley straw to ethanol. Maximum conversion efficiencies were obtained when the substrates were steamed for 90 s. These substrates could yield over 0.4 g ethanol/g cellulose following a combined enzymatic hydrolysis and fermentation process procedure using culture filtrates derived from Trichoderma harzianum E58. When culture filtrates from Trichoderma reesei C30 and T. reesei QM9414 were used, the ethanol yields obtained were 0.32 and 0.12 g ethanol/g cellulose utilized, respectively. The lower ethanol yields obtained with these strains were attributed to the lower amounts of ..beta..-glucosidase detected in the T. reesei culture filtrates.

  16. Energy analysis of ethanol production from sweet sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Worley, J.W. (Georgia Univ., Athens, GA (United States). Dept. of Agricultural Engineering); Vaughan, D.H.; Cundiff, J.S. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Agricultural Engineering)

    1992-01-01

    The Piedmont System is a collection of equipment for efficiently removing the juice from sweet sorghum stalks for the production of ethanol. The concept is to separate the whole stalks into pith and rind-leaf fractions, pass only the pith fraction through a screw press, and thus achieve an improvement in juice-expression efficiency and press capacity. An energy analysis was done for two options of this proposed harvesting/processing system: (Option 1) The juice is evaporated to syrup and used throughout the year to produce ethanol, and the by-products are used as cattle feed. (Option 2) The juice is fermented as it is harvested, and the by-products (along with other cellulosic materials) are used as feedstock for the remainder of the year. Energy ratios (energy output/energy input) of 0.9, 1.1 and 0.8 were found for sweet sorghum Option 1, sweet sorghum Option 2, and corn, respectively, as feedstocks for ethanol. If only liquid fuels are considered, the ratios are increased to 3.5, 7.9 and 4.5. (author).

  17. Improved ethanol yield and reduced Minimum Ethanol Selling Price (MESP by modifying low severity dilute acid pretreatment with deacetylation and mechanical refining: 1 Experimental

    Directory of Open Access Journals (Sweden)

    Chen Xiaowen

    2012-08-01

    Full Text Available Abstract Background Historically, acid pretreatment technology for the production of bio-ethanol from corn stover has required severe conditions to overcome biomass recalcitrance. However, the high usage of acid and steam at severe pretreatment conditions hinders the economic feasibility of the ethanol production from biomass. In addition, the amount of acetate and furfural produced during harsh pretreatment is in the range that strongly inhibits cell growth and impedes ethanol fermentation. The current work addresses these issues through pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. Results The results showed that deacetylation with 0.1 M NaOH before acid pretreatment improved the monomeric xylose yield in pretreatment by up to 20% while keeping the furfural yield under 2%. Deacetylation also improved the glucose yield by 10% and the xylose yield by 20% during low solids enzymatic hydrolysis. Mechanical refining using a PFI mill further improved sugar yields during both low- and high-solids enzymatic hydrolysis. Mechanical refining also allowed enzyme loadings to be reduced while maintaining high yields. Deacetylation and mechanical refining are shown to assist in achieving 90% cellulose yield in high-solids (20% enzymatic hydrolysis. When fermentations were performed under pH control to evaluate the effect of deacetylation and mechanical refining on the ethanol yields, glucose and xylose utilizations over 90% and ethanol yields over 90% were achieved. Overall ethanol yields were calculated based on experimental results for the base case and modified cases. One modified case that integrated deacetylation, mechanical refining, and washing was estimated to produce 88 gallons of ethanol per ton of biomass. Conclusion The current work developed a novel bio-ethanol process that features pretreatment with lower acid concentrations and temperatures incorporated with deacetylation

  18. Effect of various carbon and nitrogen sources on cellulose synthesis ...

    African Journals Online (AJOL)

    The effect of various carbon and nitrogen sources on cellulose production by Acetobacter lovaniensis HBB5 was examined. In this study, glucose, fructose, sucrose and ethanol as carbon source and yeast extract, casein hydrolysate and ammonium sulphate as nitrogen source were used. Among the carbon sources, ...

  19. Spectroscopic characterization of low power argon microwave-induced plasma with gaseous species produced from ethanol-water solutions in continuous hydride generation process

    Energy Technology Data Exchange (ETDEWEB)

    Wlodarczyk, Magdalena; Zyrnicki, Wieslaw E-mail: zyrnicki@ichn.ch.pwr.wroc.pl

    2003-03-31

    Low power microwave-induced argon plasma generated by resonant TE{sub 101} rectangular cavity was investigated upon introduction of volatile species formed in the reaction with sodium tetraborohydrate(III) in hydrochloric acid-ethanol solution. The molecular emission bands of OH and CH were used for rotational temperature (T{sub rot}) determination, while the atomic emission lines of Ar, H and Sb were applied for excitation temperature (T{sub exc}) measurement. Assuming a Boltzmann distribution, the temperatures were calculated with the aid of the least squares method. Electron number density (n{sub e}) derived from Stark broadening of the H{sub {beta}} line was found to be between 2.5x10{sup 15} and 0.57x10{sup 15} cm{sup -3}. The detection limits (DL) were determined for Hg and Sb. The influence of ethanol concentration in analyte solution and microwave power on measured parameters, was investigated. The results showed that T{sub rot}(OH) increased from 2970 to 3820 K while T{sub rot}(CH) decreased from 6100 to 4540 K with ethanol concentration in the solution, ranging from 10 to 90%. Under the same experimental conditions the excitation temperature for Ar, H and Sb varied in the following ranges: 5670-4800, 6190-3950 and 10500-7390 K, respectively. It was observed that element DL were significantly influenced by the presence of ethanol in the sample solution. The DL values for Hg and Sb were, as follows: 0.5-11 and 5.3-35 {mu}g l{sup -1}, respectively.

  20. Characterization of ethyl cellulose polymer.

    Science.gov (United States)

    Mahnaj, Tazin; Ahmed, Salah U; Plakogiannis, Fotios M

    2013-01-01

    Ethyl cellulose (EC) polymer was characterized for its property before considering the interactions with the plasicizer. Ethocel Std.10 FP Premium from Dow chemical company USA was tested for its solubility, morphology and thermal properties. Seven percentage of EC solution in ethanol was found to be the right viscosity used to prepare the film. The EC polymer and EC film without any plasticizers showed almost identical thermal behavior, but in X-ray diffraction showed different arrangements of crystallites and amorphous region. Dynamic mechanical analysis of film showed that without a plasticizer, EC film was not flexible and had very low elongation with high applied force. The aim of the work was to avoid using the commercially available EC dispersions Surelease® and Aquacoat®; both already have additives on it. Instead, Ethocel EC polymer (powder) was characterized in our laboratory in order to find out the properties of polymer before considering the interactions of the polymer with various plasticizers.

  1. Deletion of the hfsB gene increases ethanol production in Thermoanaerobacterium saccharolyticum and several other thermophilic anaerobic bacteria.

    Science.gov (United States)

    Eminoğlu, Ayşenur; Murphy, Sean Jean-Loup; Maloney, Marybeth; Lanahan, Anthony; Giannone, Richard J; Hettich, Robert L; Tripathi, Shital A; Beldüz, Ali Osman; Lynd, Lee R; Olson, Daniel G

    2017-01-01

    With the discovery of interspecies hydrogen transfer in the late 1960s (Bryant et al. in Arch Microbiol 59:20-31, 1967), it was shown that reducing the partial pressure of hydrogen could cause mixed acid fermenting organisms to produce acetate at the expense of ethanol. Hydrogen and ethanol are both more reduced than glucose. Thus there is a tradeoff between production of these compounds imposed by electron balancing requirements; however, the mechanism is not fully known. Deletion of the hfsA or B subunits resulted in a roughly 1.8-fold increase in ethanol yield. The increase in ethanol production appears to be associated with an increase in alcohol dehydrogenase activity, which appears to be due, at least in part, to increased expression of the adhE gene, and may suggest a regulatory linkage between hfsB and adhE . We studied this system most intensively in the organism Thermoanaerobacterium saccharolyticum ; however, deletion of hfsB also increases ethanol production in other thermophilic bacteria suggesting that this could be used as a general technique for engineering thermophilic bacteria for improved ethanol production in organisms with hfs -type hydrogenases. Since its discovery by Shaw et al. (JAMA 191:6457-64, 2009), the hfs hydrogenase has been suspected to act as a regulator due to the presence of a PAS domain. We provide additional support for the presence of a regulatory phenomenon. In addition, we find a practical application for this scientific insight, namely increasing ethanol yield in strains that are of interest for ethanol production from cellulose or hemicellulose. In two of these organisms ( T. xylanolyticum and T. thermosaccharolyticum ), the ethanol yields are the highest reported to date.

  2. Electron beam processing of sugar cane bagasse to cellulose hydrolysis

    International Nuclear Information System (INIS)

    Ribeiro, Marcia A.; Cardoso, Vanessa M.; Mori, Manoel N.; Duarte, Celina L.

    2009-01-01

    Sugarcane bagasse has been considered as a substrate for single cell protein, animal feed, and renewable energy production. Sugarcane bagasse generally contain up to 45% glucose polymer cellulose, 40% hemicelluloses, and 20% lignin. Pure cellulose is readily depolymerised by radiation, but in biomass, the cellulose is intimately bonded with lignin, that protect it from radiation effects. The objective of this study is the evaluation of the electron beam irradiation as a pre-treatment to enzymatic hydrolysis of cellulose in order to facilitate its fermentation and improves the production of ethanol biofuel. Samples of sugarcane bagasse were obtained in sugar/ethanol Iracema Mill sited in Piracicaba, Brazil, and were irradiated using Radiation Dynamics Electron Beam Accelerator with 1.5 MeV energy and 37kW, in batch systems. The applied absorbed doses of the fist sampling, Bagasse A, were 20 kGy, 50 kGy, 100 kGy and 200 kGy. After the evaluation the preliminary obtained results, it was applied lower absorbed doses in the second assay: 5 kGy, 10 kGy, 20 kGy, 30 kGy, 50 kGy, 70 kGy, 100 kGy and 150 kGy. The electron beam processing took to changes in the sugarcane bagasse structure and composition, lignin and cellulose cleavage. The yield of enzymatic hydrolyzes of cellulose increase about 40 % with 30 kGy of absorbed dose. (author)

  3. Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost.

    Science.gov (United States)

    Sizova, M V; Izquierdo, J A; Panikov, N S; Lynd, L R

    2011-04-01

    Nine thermophilic cellulolytic clostridial isolates and four other noncellulolytic bacterial isolates were isolated from self-heated biocompost via preliminary enrichment culture on microcrystalline cellulose. All cellulolytic isolates grew vigorously on cellulose, with the formation of either ethanol and acetate or acetate and formate as principal fermentation products as well as lactate and glycerol as minor products. In addition, two out of nine cellulolytic strains were able to utilize xylan and pretreated wood with roughly the same efficiency as for cellulose. The major products of xylan fermentation were acetate and formate, with minor contributions of lactate and ethanol. Phylogenetic analyses of 16S rRNA and glycosyl hydrolase family 48 (GH48) gene sequences revealed that two xylan-utilizing isolates were related to a Clostridium clariflavum strain and represent a distinct novel branch within the GH48 family. Both isolates possessed high cellulase and xylanase activity induced independently by either cellulose or xylan. Enzymatic activity decayed after growth cessation, with more-rapid disappearance of cellulase activity than of xylanase activity. A mixture of xylan and cellulose was utilized simultaneously, with a significant synergistic effect observed as a reduction of lag phase in cellulose degradation.

  4. Radiation modification of cellulose pulps. Preparation of cellulose derivatives

    International Nuclear Information System (INIS)

    Iller, E.; Zimek, Z.; Stupinska, H.; Mikolajczyk, W; Starostka, P.

    2005-01-01

    One of the most common methods of cellulose pulp modification (activation) applied in the production process of cellulose derivatives is the treatment of the pulp with NaOH solutions leading to the formation of alkalicellulose. The product then undergoes a prolonged process of maturation by its storage under specific conditions. The goal of the process is lowering of the molecular weight of cellulose down to the level resulting from various technological requirements. The process is time-consuming and costly; besides, it requires usage of large-capacity technological vessels and produces considerable amounts of liquid waste. Therefore, many attempts have been made to limit or altogether eliminate the highly disadvantageous stage of cellulose treatment with lye. One of the alternatives proposed so far is the radiation treatment of the cellulose pulp. In the pulp exposed to an electron beam, the bonds between molecules of D-antihydroglucopiranoses loosen and the local crystalline lattice becomes destroyed. This facilitates the access of chemical reagents to the inner structure of the cellulose and, in consequence, eliminates the need for the prolonged maturation of alkalicellulose, thus reducing the consumption of chemicals by the whole process. Research aimed at the application of radiation treatment of cellulose pulp for the production of cellulose derivatives has been conducted by a number of scientific institutions including the Institute of Nuclear Chemistry and Technology, Institute of Biopolymers and Chemical Fibres, and Pulp and Paper Research Institute. For the investigations and assessment of the molecular, hypermolecular, morphologic properties and the chemical reactivity, cellulose pulps used for chemical processing, namely Alicell, Borregaard and Ketchikan, as well as paper pulps made from pine and birch wood were selected. The selected cellulose pulps were exposed to an electron beam with an energy of 10 MeV generated in a linear electron accelerator

  5. Pretreatment and Fractionation of Wheat Straw for Production of Fuel Ethanol and Value-added Co-products in a Biorefinery

    Directory of Open Access Journals (Sweden)

    Xiu Zhang

    2014-08-01

    Full Text Available An integrated process has been developed for a wheat straw biorefinery. In this process, wheat straw was pretreated by soaking in aqueous ammonia (SAA, which extensively removed lignin but preserved high percentages of the carbohydrate fractions for subsequent bioconversion. The pretreatment conditions included 15 wt% NH4OH, 1:10 solid:liquid ratio, 65 oC and 15 hours. Under these conditions, 48% of the original lignin was removed, whereas 98%, 83% and 78% of the original glucan, xylan, and arabinan, respectively, were preserved. The pretreated material was subsequently hydrolyzed with a commercial hemicellulase to produce a solution rich in xylose and low in glucose plus a cellulose-enriched solid residue. The xylose-rich solution then was used for production of value-added products. Xylitol and astaxanthin were selected to demonstrate the fermentability of the xylose-rich hydrolysate. Candida mogii and Phaffia rhodozyma were used for xylitol and astaxanthin fermentation, respectively. The cellulose-enriched residue obtained after the enzymatic hydrolysis of the pretreated straw was used for ethanol production in a fed-batch simultaneous saccharification and fermentation (SSF process. In this process, a commercial cellulase was used for hydrolysis of the glucan in the residue and Saccharomyces cerevisiae, which is the most efficient commercial ethanol-producing organism, was used for ethanol production. Final ethanol concentration of 57 g/l was obtained at 27 wt% total solid loading.

  6. Steam reforming of ethanol

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition...

  7. Social opportunity and ethanol drinking in rats.

    Science.gov (United States)

    Tomie, Arthur; Burger, Kelly M; Di Poce, Jason; Pohorecky, Larissa A

    2004-11-01

    Two experiments were designed to evaluate the effects of pairings of ethanol sipper conditioned stimulus (CS) with social opportunity unconditioned stimulus (US) on ethanol sipper CS-directed drinking in rats. In both experiments, rats were deprived of neither food nor water, and initiation of drinking of unsweetened 3% ethanol was evaluated, as were the effects of increasing the concentration of unsweetened ethanol (3-10%) across sessions. In Experiment 1, Group Paired (n=8) received 35 trials per session wherein the ethanol sipper CS was presented for 10 s immediately prior to 15 s of social opportunity US. All rats initiated sipper CS-directed drinking of 3% ethanol. Increasing the concentration of ethanol in the sipper CS [(3%, 4%, 6%, 8%, 10% (vol./vol.)] across sessions induced escalation of daily g/kg ethanol intake. To evaluate the hypothesis that the drinking in Group Paired was due to autoshaping, Experiment 2 included a pseudoconditioning control that received sipper CS and social opportunity US randomly with respect to one another. All rats in Group Paired (n=6) and in Group Random (n=6) initiated sipper CS-directed drinking of 3% ethanol and daily mean g/kg ethanol intake in the two groups was comparable. Also comparable was daily g/kg ethanol intake, which increased for both groups with the availability of higher concentrations of ethanol in the sipper CS, up to a maximum of approximately 0.8 g/kg ethanol intake of 10% ethanol. Results indicate that random presentations of ethanol sipper CS and social opportunity US induced reliable initiation and escalation of ethanol intake, and close temporally contiguous presentations of CS and US did not induce still additional ethanol intake. This may indicate that autoshaping CR performance is not induced by these procedures, or that high levels of ethanol intake induced by factors related to pseudoconditioning produces a ceiling effect. Implications for ethanol drinking in humans are discussed.

  8. A new magnesium bisulfite pretreatment (MBSP) development for bio-ethanol production from corn stover.

    Science.gov (United States)

    Yu, Heng; Ren, Jiwei; Liu, Lei; Zheng, Zhaojuan; Zhu, Junjun; Yong, Qiang; Ouyang, Jia

    2016-01-01

    This study established a new more neutral magnesium bisulfate pretreatment (MBSP) using magnesium bisulfate as sulfonating agent for improving the enzymatic hydrolysis efficiency of corn stover. Using the MBSP with 5.21% magnesium bisulfate, 170°C and pH 5.2 for 60 min, about 90% of lignin and 80% of hemicellulose were removed from biomass and more than 90% cellulose conversion of substrate was achieved after 48 h hydrolysis. About 6.19 kg raw corn stover could produce 1 kg ethanol by Saccharomyces cerevisiae. Meanwhile, MBSP also could protect sugars from excessive degradation, prevent fermentation inhibition formation and directly convert the hemicelluloses into xylooligosaccharides as higher-value products. These results suggested that the MBSP method offers an alternative approach to the efficient conversion of nonwoody lignocellulosic biomass to ethanol and had broad space for development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Quantifying Supply Risk at a Cellulosic Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Jason K [Idaho National Laboratory; Jacobson, Jacob Jordan [Idaho National Laboratory; Cafferty, Kara Grace [Idaho National Laboratory; Lamers, Patrick [Idaho National Laboratory; Roni, MD S [Idaho National Laboratory

    2015-03-01

    In order to increase the sustainability and security of the nation’s energy supply, the U.S. Department of Energy through its Bioenergy Technology Office has set a vision for one billion tons of biomass to be processed for renewable energy and bioproducts annually by the year 2030. The Renewable Fuels Standard limits the amount of corn grain that can be used in ethanol conversion sold in the U.S, which is already at its maximum. Therefore making the DOE’s vision a reality requires significant growth in the advanced biofuels industry where currently three cellulosic biorefineries convert cellulosic biomass to ethanol. Risk mitigation is central to growing the industry beyond its infancy to a level necessary to achieve the DOE vision. This paper focuses on reducing the supply risk that faces a firm that owns a cellulosic biorefinery. It uses risk theory and simulation modeling to build a risk assessment model based on causal relationships of underlying, uncertain, supply driving variables. Using the model the paper quantifies supply risk reduction achieved by converting the supply chain from a conventional supply system (bales and trucks) to an advanced supply system (depots, pellets, and trains). Results imply that the advanced supply system reduces supply system risk, defined as the probability of a unit cost overrun, from 83% in the conventional system to 4% in the advanced system. Reducing cost risk in this nascent industry improves the odds of realizing desired growth.

  10. Quantifying Supply Risk at a Cellulosic Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Jason K.; Jacobson, Jacob J.; Cafferty, Kara G.; Lamers, Patrick; Roni, Mohammad S.

    2015-07-01

    In order to increase the sustainability and security of the nation’s energy supply, the U.S. Department of Energy through its Bioenergy Technology Office has set a vision for one billion tons of biomass to be processed for renewable energy and bioproducts annually by the year 2030. The Renewable Fuels Standard limits the amount of corn grain that can be used in ethanol conversion sold in the U.S, which is already at its maximum. Therefore making the DOE’s vision a reality requires significant growth in the advanced biofuels industry where currently three cellulosic biorefineries convert cellulosic biomass to ethanol. Risk mitigation is central to growing the industry beyond its infancy to a level necessary to achieve the DOE vision. This paper focuses on reducing the supply risk that faces a firm that owns a cellulosic biorefinery. It uses risk theory and simulation modeling to build a risk assessment model based on causal relationships of underlying, uncertain, supply driving variables. Using the model the paper quantifies supply risk reduction achieved by converting the supply chain from a conventional supply system (bales and trucks) to an advanced supply system (depots, pellets, and trains). Results imply that the advanced supply system reduces supply system risk, defined as the probability of a unit cost overrun, from 83% in the conventional system to 4% in the advanced system. Reducing cost risk in this nascent industry improves the odds of realizing desired growth.

  11. A systems approach for the evaluation of ethanol production based on forages

    Energy Technology Data Exchange (ETDEWEB)

    Alvo, P. [McGill Univ., Ste. Anne de Bellevue, PQ (Canada). Macdonald Coll.; Savoie, P. [Agriculture and Agri-Food Canada, Quebec, PQ (Canada). Saine-Foy Research Centre; Tremblay, D. [Laval Univ., Quebec, PQ (Canada). Dept. de Genie Rural; Emond, J.-P.; Turcotte, G. [Laval Univ., Quebec City, PQ (Canada). Dept. de Sciences et Technologie des Aliments

    1996-04-01

    A systems approach is proposed to simultaneously consider the agronomic aspects of forage production and the processing aspects related to the extraction of a glucose or xylose substrate, its fermentation into ethanol and the optimal utilization of co-products (protein meal, fibrous residue). The energy to produce and transport forage on the farm was estimated to be only 375 MJ/t dry matter (DM) when liquid manure was used and 1165 MJ/t DM when mineral fertilizer was used. An additional 126 MJ/t DM would be required to transport it to a processing plant. In contrast, whole-plant corn production using mineral fertilizer required about 3211 MJ/t DM, but it had a potential ethanol yield 3.2 times greater per unit area than perennial forage. A forage system with mechanical juice extraction resulted in 8-20% of the original forage dry matter available in a liquid substrate with subsequent protein meal separation and the fermentation of soluble sugars into ethanol. Another forage system with relatively complete conversion of cellulose and hemicellulose into simple sugars by thermal, acidic and enzymatic treatments was estimated to produce 12-28 times more ethanol per unit area than the mechanically extracted juice. Complete conversion of perennial forages would meet the petroleum industry`s needs more consistently than simple extraction of soluble components. (Author)

  12. Delta receptor antagonism, ethanol taste reactivity, and ethanol consumption in outbred male rats.

    Science.gov (United States)

    Higley, Amanda E; Kiefer, Stephen W

    2006-11-01

    Naltrexone, a nonspecific opioid antagonist, produces significant changes in ethanol responsivity in rats by rendering the taste of ethanol aversive as well as producing a decrease in voluntary ethanol consumption. The present study investigated the effect of naltrindole, a specific antagonist of delta opioid receptors, on ethanol taste reactivity and ethanol consumption in outbred rats. In the first experiment, rats received acute treatment of naltrexone, naltrindole, or saline followed by the measurement of ethanol consumption in a short-term access period. The second experiment involved the same treatments and investigated ethanol palatability (using the taste-reactivity test) as well as ethanol consumption. Results indicated that treatment with 3 mg/kg naltrexone significantly affected palatability (rendered ethanol more aversive, Experiment 2) and decreased voluntary ethanol consumption (Experiments 1 and 2). The effects of naltrindole were inconsistent. In Experiment 1, 8 mg/kg naltrindole significantly decreased voluntary ethanol consumption but this was not replicated in Experiment 2. The 8 mg/kg dose produced a significant increase in aversive responding (Experiment 2) but did not affect ingestive responding. Lower doses of naltrindole (2 and 4 mg/kg) were ineffective in altering rats' taste-reactivity response to and consumption of ethanol. While these data suggest that delta receptors are involved in rats' taste-reactivity response to ethanol and rats' ethanol consumption, it is likely that multiple opioid receptors mediate both behavioral responses.

  13. Synthesis and characterization of amorphous cellulose from triacetate of cellulose

    International Nuclear Information System (INIS)

    Vega-Baudrit, Jose; Sibaja, Maria; Nikolaeva, Svetlana; Rivera A, Andrea

    2014-01-01

    It was carried-out a study for the synthesis and characterization of amorphous cellulose starting from cellulose triacetate. X-rays diffraction was used in order to obtain the cellulose crystallinity degree, also infrared spectroscopy FTIR was used. (author)

  14. CELLULOSIC NANOCOMPOSITES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2008-08-01

    Full Text Available Because of their wide abundance, their renewable and environmentally benign nature, and their outstanding mechanical properties, a great deal of attention has been paid recently to cellulosic nanofibrillar structures as components in nanocomposites. A first major challenge has been to find efficient ways to liberate cellulosic fibrils from different source materials, including wood, agricultural residues, or bacterial cellulose. A second major challenge has involved the lack of compatibility of cellulosic surfaces with a variety of plastic materials. The water-swellable nature of cellulose, especially in its non-crystalline regions, also can be a concern in various composite materials. This review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications.

  15. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant

    Directory of Open Access Journals (Sweden)

    Thelen Kurt D

    2010-06-01

    Full Text Available Abstract Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS and matured whole corn plants (WCP as feedstocks to produce ethanol using ammonia fiber expansion (AFEX pretreatment followed by enzymatic hydrolysis (at low enzyme loadings and cofermentation (for both glucose and xylose using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan. Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading CS hydrolyzate (resulting

  16. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant

    Science.gov (United States)

    2010-01-01

    Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant) is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS) and matured whole corn plants (WCP) as feedstocks to produce ethanol using ammonia fiber expansion (AFEX) pretreatment followed by enzymatic hydrolysis (at low enzyme loadings) and cofermentation (for both glucose and xylose) using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST) strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch) had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan). Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading) CS hydrolyzate (resulting in 28 g/L ethanol

  17. Posidonia oceanica as a Renewable Lignocellulosic Biomass for the Synthesis of Cellulose Acetate and Glycidyl Methacrylate Grafted Cellulose

    Directory of Open Access Journals (Sweden)

    Elena Vismara

    2013-05-01

    Full Text Available High-grade cellulose (97% α-cellulose content of 48% crystallinity index was extracted from the renewable marine biomass waste Posidonia oceanica using H2O2 and organic peracids following an environmentally friendly and chlorine-free process. This cellulose appeared as a new high-grade cellulose of waste origin quite similar to the high-grade cellulose extracted from more noble starting materials like wood and cotton linters. The benefits of α-cellulose recovery from P. oceanica were enhanced by its transformation into cellulose acetate CA and cellulose derivative GMA-C. Fully acetylated CA was prepared by conventional acetylation method and easily transformed into a transparent film. GMA-C with a molar substitution (MS of 0.72 was produced by quenching Fenton’s reagent (H2O2/FeSO4 generated cellulose radicals with GMA. GMA grafting endowed high-grade cellulose from Posidonia with adsorption capability. GMA-C removes β-naphthol from water with an efficiency of 47%, as measured by UV-Vis spectroscopy. After hydrolysis of the glycidyl group to glycerol group, the modified GMA-C was able to remove p-nitrophenol from water with an efficiency of 92%, as measured by UV-Vis spectroscopy. α-cellulose and GMA-Cs from Posidonia waste can be considered as new materials of potential industrial and environmental interest.

  18. Internally plasticised cellulose polymers

    International Nuclear Information System (INIS)

    Burnup, M.; Hayes, G.F.; Fydelor, P.J.

    1981-01-01

    Plasticised cellulose polymers comprise base polymer having a chain of β-anhydroglucose units joined by ether linkages, with at least one of said units carrying at least one chemically unreactive side chain derived from an allylic monomer or a vinyl substituted derivative of ferrocene. The side chains are normally formed by radiation grafting. These internally plasticised celluloses are useful in particular as inhibitor coatings for rocket motor propellants and in general wherever cellulose polymers are employed. (author)

  19. Potential of giant reed (Arundo donax L. for second generation ethanol production

    Directory of Open Access Journals (Sweden)

    Claudia Fernanda Lemons e Silva

    2015-01-01

    Conclusions: The fermentability of the pretreated biomass was performed successfully through the conception of simultaneous saccharification and fermentation resulting in approximately 75 L of ethanol per ton of cellulose.

  20. Versatile High-Performance Regenerated Cellulose Membranes Prepared using Trimethylsilyl Cellulose as a Precursor

    KAUST Repository

    Puspasari, Tiara

    2018-05-01

    with a good compatibility. The cellulose–PDMS membranes demonstrate attractive performance in ethanol-water pervaporation as compared to the commercial PDMS membrane, and allow nanofiltration of a wide range of solvents with different polarity. The cellulose-PEI membranes exhibit anomalous performance improvement in nanofiltration as compared to the corresponding pure membranes. This study has opened up many great opportunities for cellulose to continuously contribute to sustainable and economical membrane processes.

  1. Secondary liquefaction in ethanol production

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase.......The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase....

  2. The Canadian Petroleum Products Institute : position on ethanol

    International Nuclear Information System (INIS)

    2002-01-01

    A brief overview of the Canadian Petroleum Products Institute (CPPI), an industry association which represents Canadian Petroleum Refiners and Marketers is provided. It is not against nor for the use of ethanol as a fuel. Ethanol blends are marketed by some CPPI members. It is mentioned that consumers accept ethanol fuels when the price is competitive with the price of non-ethanol fuel. Mandating the use of ethanol in fuels is not an issue supported by the CPPI. A subsidy is required in order for ethanol to be an economically attractive option, and the consumers would be forced to bear subsidy costs if the use of ethanol in fuels were to be mandated. The technology is still some years away for ethanol from cellulose to be an attractive option. It is difficult to finance new plants, and 50 million of the 240 million litres of ethanol blended has to be imported. The advantages of ethanol as a fuel are marginal and not cost effective. Some changes to the gasoline distribution system would be required, as ethanol must be added near the consumer, and it may not be appropriate for some older vehicles and some off-road equipment. The gasoline industry's flexibility would be reduced by provincial mandates. Several questions have not yet been answered, such as what is the real purpose of mandating ethanol in motor fuels? when will new technology be available? The CPPI makes four recommendations: (1) the development of a clear understanding of and the articulation of the objectives of a new ethanol policy, (2) support the development of new cellulose based technology, (3) take a prudent and gradual approach to development of a new policy, and (4) CPPI does not believe that an ethanol mandate is in the best interests of all Canadians

  3. Beyond commonplace biofuels: Social aspects of ethanol

    International Nuclear Information System (INIS)

    Ribeiro, Barbara Esteves

    2013-01-01

    Biofuels policies and projects may lead to environmental, economic and social impacts. A number of studies point out the need to deliver comprehensive sustainability assessments regarding biofuels, with some presenting analytical frameworks that claim to be exhaustive. However, what is often found in the literature is an overexploitation of environmental and economic concerns, by contrast to a limited appraisal of the social aspects of biofuels. Building on a systematic review of the peer-reviewed literature, this paper discusses the social constraints and strengths of ethanol, with regard to the product's lifecycle stages and the actors involved. Its objective is to contribute to the development of social frameworks to be used in assessing the impact of ethanol. Main findings indicate that ethanol developments can increase the levels of social vulnerability, although there is little evidence in the literature regarding the positive and negative social impacts of 1st-generation ethanol and potential impacts of cellulosic ethanol. Further work is needed on the formulation of social criteria and indicators for a comprehensive sustainability assessment of this biofuel. Policy makers need to internalise the social dimension of ethanol in decision-making to prevent public opposition and irreversible social costs in the future. - Highlights: ► The literature lacks evidence on the social impacts of ethanol. ► Further work is needed on social criteria and indicators for assessment. ► Ethanol developments can increase the levels of social vulnerability. ► Decision-making should internalise the social dimension of biofuels sustainability

  4. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions; TOPICAL

    International Nuclear Information System (INIS)

    C. Saricks; D. Santini; M. Wang

    1999-01-01

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O)

  5. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    C. Saricks; D. Santini; M. Wang

    1999-01-01

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O)

  6. Process Intensification for Cellulosic Biorefineries.

    Science.gov (United States)

    Sadula, Sunitha; Athaley, Abhay; Zheng, Weiqing; Ierapetritou, Marianthi; Saha, Basudeb

    2017-06-22

    Utilization of renewable carbon source, especially non-food biomass is critical to address the climate change and future energy challenge. Current chemical and enzymatic processes for producing cellulosic sugars are multistep, and energy- and water-intensive. Techno-economic analysis (TEA) suggests that upstream lignocellulose processing is a major hurdle to the economic viability of the cellulosic biorefineries. Process intensification, which integrates processes and uses less water and energy, has the potential to overcome the aforementioned challenges. Here, we demonstrate a one-pot depolymerization and saccharification process of woody biomass, energy crops, and agricultural residues to produce soluble sugars with high yields. Lignin is separated as a solid for selective upgrading. Further integration of our upstream process with a reactive extraction step makes energy-efficient separation of sugars in the form of furans. TEA reveals that the process efficiency and integration enable, for the first time, economic production of feed streams that could profoundly improve process economics for downstream cellulosic bioproducts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods.

    Science.gov (United States)

    Du, Lanxing; Wang, Jinwu; Zhang, Yang; Qi, Chusheng; Wolcott, Michael P; Yu, Zhiming

    2017-08-01

    This study demonstrated the technical potential for the large-scale co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals. Ball-milled woods with two particle sizes were prepared by ball milling for 80min or 120min (BMW 80 , BMW 120 ) and then enzymatically hydrolyzed. 78.3% cellulose conversion of BMW 120 was achieved, which was three times as high as the conversion of BMW 80 . The hydrolyzed residues (HRs) were neutrally sulfonated cooking. 57.72g/L and 88.16g/L lignosulfonate concentration, respectively, were harvested from HR 80 and HR 120 , and 42.6±0.5% lignin were removed. The subsequent solid residuals were purified to produce cellulose and then this material was acid-hydrolyzed to produce cellulose nanocrystals. The BMW 120 maintained smaller particle size and aspect ratio during each step of during the multiple processes, while the average aspect ratio of its cellulose nanocrystals was larger. The crystallinity of both materials increased with each step of wet processing, reaching to 74% for the cellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain.

    Science.gov (United States)

    Mattam, Anu Jose; Kuila, Arindam; Suralikerimath, Niranjan; Choudary, Nettem; Rao, Peddy V C; Velankar, Harshad Ravindra

    2016-01-01

    Lignocellulosic ethanol production involves major steps such as thermochemical pretreatment of biomass, enzymatic hydrolysis of pre-treated biomass and the fermentation of released sugars into ethanol. At least two different organisms are conventionally utilized for producing cellulolytic enzymes and for ethanol production through fermentation, whereas in the present study a single yeast isolate with the capacity to simultaneously produce cellulases and xylanases and ferment the released sugars into ethanol and xylitol has been described. A yeast strain isolated from soil samples and identified as Candida tropicalis MTCC 25057 expressed cellulases and xylanases over a wide range of temperatures (32 and 42 °C) and in the presence of different cellulosic substrates [carboxymethylcellulose and wheat straw (WS)]. The studies indicated that the cultivation of yeast at 42 °C in pre-treated hydrolysate containing 0.5 % WS resulted in proportional expression of cellulases (exoglucanases and endoglucanases) at concentrations of 114.1 and 97.8 U g(-1) ds, respectively. A high xylanase activity (689.3 U g(-1) ds) was also exhibited by the yeast under similar growth conditions. Maximum expression of cellulolytic enzymes by the yeast occurred within 24 h of incubation. Of the sugars released from biomass after pretreatment, 49 g L(-1) xylose was aerobically converted into 15.8 g L(-1) of xylitol. In addition, 25.4 g L(-1) glucose released after the enzymatic hydrolysis of biomass was fermented by the same yeast to obtain an ethanol titer of 7.3 g L(-1). During the present study, a new strain of C. tropicalis was isolated and found to have potential for consolidated bioprocessing (CBP) applications. The strain could grow in a wide range of process conditions (temperature, pH) and in the presence of lignocellulosic inhibitors such as furfural, HMF and acetic acid. The new yeast produced cellulolytic enzymes over a wide temperature range and in the presence of

  9. Expanded ethanol production: Implications for agriculture, water demand, and water quality

    International Nuclear Information System (INIS)

    De La Torre Ugarte, Daniel G.; He, Lixia; Jensen, Kimberly L.; English, Burton C.

    2010-01-01

    Feedstock production for large scale development of the U.S. ethanol industry and introduction of cellulose-to-ethanol technology will require extensive changes in land use and field management. Hence, this production will likely have significant impact on water demand and quality. This study compares two 'what if' scenarios for attaining a 227.1 hm 3 of ethanol by 2030 and 3.8 hm 3 of biodiesel by 2012. In the first scenario cellulose-to-ethanol technology is introduced in 2012, while in the second scenario the technology is delayed until 2015. Results show that the timing of introduction of cellulose-to-ethanol technology will affect the water use and water quality related input use in primarily in the eastern part of the nation. Results also suggest policy emphasis on reduced and no-till practices needs to be complementary to increased crop residue use. (author)

  10. Ethanol production from wet oxidized corn straw by simultaneous saccharification and fermentation

    DEFF Research Database (Denmark)

    Zhang, Q.; Yin, Y.; Thygesen, Anders

    2010-01-01

    remained in the solid fraction and recovery of cellulose was 95.87% after pretreatment. After 24 h hydrolysis at 50°C using cellulase, the achieved conversion of cellulose to glucose was about 67.6%. After 142 h of SSF with substrate concentration of 8%, ethanol yield of 79.0% of the theoretical...

  11. Fuel ethanol production from wet oxidised corn stover by S. cerevisiae

    DEFF Research Database (Denmark)

    Qiang, zhang; Thomsen, Anne Belinda

    2012-01-01

    of 74.6% were obtained after pretreatment. 86.5% of cellulose was remained in the solid cake. After 24h hydrolysis at 50°C using cellulase (Cellubrix L), the achieved conversion of cellulose to glucose was 64.8%. Ethanol production was evaluated from dried solid cake and the hydrolysate was employed...

  12. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Thomas [Archer Daniels Midland Company, Decatur, IL (United States); Erpelding, Michael [Archer Daniels Midland Company, Decatur, IL (United States); Schmid, Josef [Archer Daniels Midland Company, Decatur, IL (United States); Chin, Andrew [Archer Daniels Midland Company, Decatur, IL (United States); Sammons, Rhea [Archer Daniels Midland Company, Decatur, IL (United States); Rockafellow, Erin [Archer Daniels Midland Company, Decatur, IL (United States)

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  13. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  14. Cellulose Degradation by Cellulose-Clearing and Non-Cellulose-Clearing Brown-Rot Fungi

    OpenAIRE

    Highley, Terry L.

    1980-01-01

    Cellulose degradation by four cellulose-clearing brown-rot fungi in the Coniophoraceae—Coniophora prasinoides, C. puteana, Leucogyrophana arizonica, and L. olivascens—is compared with that of a non-cellulose-clearing brown-rot fungus, Poria placenta. The cellulose- and the non-cellulose-clearing brown-rot fungi apparently employ similar mechanisms to depolymerize cellulose; most likely a nonenzymatic mechanism is involved.

  15. Renewable corn-ethanol and energy security

    International Nuclear Information System (INIS)

    Eaves, James

    2007-01-01

    Though corn-ethanol is promoted as renewable, models of the production process assume fossil fuel inputs. Moreover, ethanol is promoted as a means of increasing energy security, but there is little discussion of the dependability of its supply. This study investigates the sensibility of promoting corn-ethanol as an automobile fuel, assuming a fully renewable production process. We then use historical data to estimate the supply risk of ethanol relative to imported petroleum. We find that devoting 100% of US corn to ethanol would displace 3.5% of gasoline consumption and the annual supply of the ethanol would be inherently more risky than that of imported oil. Finally, because large temperature increases can simultaneously increase fuel demand and the cost of growing corn, the supply responses of ethanol producers to temperature-induced demand shocks would likely be weaker than those of gasoline producers. (author)

  16. Cellulose Triacetate Synthesis from Cellulosic Wastes by Heterogeneous Reactions

    Directory of Open Access Journals (Sweden)

    Sherif Shawki Z. Hindi

    2015-06-01

    Full Text Available Cellulosic fibers from cotton fibers (CF, recycled writing papers (RWP, recycled newspapers (RN, and macerated woody fibers of Leucaena leucocephala (MWFL were acetylated by heterogeneous reactions with glacial acetic acid, concentrated H2SO4, and acetic anhydride. The resultant cellulose triacetate (CTA was characterized for yield and solubility as well as by using 1H-NMR spectroscopy and SEM. The acetylated product (AP yields for CF, RWP, RN, and MWFL were 112, 94, 84, and 73%, respectively. After isolation of pure CTA from the AP, the CTA yields were 87, 80, 68, and 54%. The solubility test for the CTA’s showed a clear solubility in chloroform, as well as mixture of chloroform and methanol (9:1v/v and vice versa for acetone. The degree of substitution (DS values for the CTA’s produced were nearly identical and confirmed the presence of CTA. In addition, the pore diameter of the CTA skeleton ranged from 0.072 to 0.239 µm for RWP and RN, and within the dimension scale of the CTA pinholes confirm the synthesis of CTA. Accordingly, pouring of the AP liquor at 25 °C in distilled water at the end of the acetylation and filtration did not hydrolyze the CTA to cellulose diacetate.

  17. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites.

    Science.gov (United States)

    Penttilä, Paavo A; Imai, Tomoya; Hemming, Jarl; Willför, Stefan; Sugiyama, Junji

    2018-06-15

    The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose. The reason for the easier hydrolysis could be related to the nanoscale structure of the substrate, particularly the packing of cellulose microfibrils into ribbons or bundles. In addition, small-angle X-ray scattering was used to show that the average nanoscale morphology of bacterial cellulose remained unchanged during the enzymatic hydrolysis. The reported easier enzymatic hydrolysis of bacterial cellulose produced in the presence of wood-based xylan offers new insights to overcome biomass recalcitrance through genetic engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Environmentally friendly cellulose-based polyelectrolytes in wastewater treatment.

    Science.gov (United States)

    Grenda, Kinga; Arnold, Julien; Gamelas, José A F; Rasteiro, Maria G

    2017-09-01

    Natural-based polyelectrolytes (PELs), with all the advantages coming from being produced from renewable and biodegradable sources, are a potential solution for the removal of dyes from wastewater. In this work, surplus Eucalyptus bleached cellulose fibres from a paper mill were modified to increase the charge and solubility of cellulose. First, reactive aldehyde groups were introduced in the cellulose backbone by periodate oxidation of cellulose. Further modification with alkylammonium produced positively charged cellulose-based PELs. The final products were characterized by several analytical techniques. The PEL with the highest substitution degree of cationic groups was evaluated for its performance in decolouration processes, bentonite being used as aid. This was found to be effective for colour removal of either anionic or cationic dyes. Bio-PELs can thus be considered as very favourable eco-friendly flocculation agents for decolouration of harsh effluents from several industries, considering their biodegradable nature and thus the ability to produce less sludge.

  19. Ethanol production by Kluyveromyces marxianus IMB3 during growth on straw-supplemented whiskey distillery spent wash at 45 C

    Energy Technology Data Exchange (ETDEWEB)

    Barron, N.; Mulholland, H.; Boyle, M.; McHale, A.P. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine, Co. Londonderry, BT52 1SA (United Kingdom)

    1997-11-01

    The thermotolerant, ethanol-producing yeast strain, Kluyveromyces marxianus IMB3 was grown on media consisting of straw-supplemented distillery spent wash from The Old Bushmill`s Distillery Co. Ltd., Bushmills, Co Antrim, Northern Ireland. Media were supplemented with cellulase activity and fermentations were carried out at 45 C. When pulverized straw was used as substrate in this system at concentrations of 2, 4 and 6% (w/v), ethanol concentrations increased to maxima of 1.45, 2.2 and 3 g/l, respectively. Based on straw containing a maximum of 40% cellulose, these ethanol concentrations accounted for 36, 27 and 24% of the maximum theoretical yield, respectively. When the straw was pre-treated with NaOH and used in the spent wash containing system at concentrations of 2, 4 and 6% (w/v) ethanol, concentrations increased to maxima of 3, 6.2 and 10.5 g/l, respectively and these accounted for 75, 76 and 86% of the maximum theoretical yield. When these results are compared with previously published data relating to the use of straw in laboratory-based media, they suggest that whiskey distillery spent wash may provide an adequate medium for supplementation with complex carbohydrate and subsequent ethanol production in simultaneous saccharification and fermentation processes. (orig.) With 2 figs., 17 refs.

  20. Endurance of high molecular weight carboxymethyl cellulose in corrosive environments

    Science.gov (United States)

    Murodov, M. M.; Rahmanberdiev, G. R.; Khalikov, M. M.; Egamberdiev, E. A.; Negmatova, K. C.; Saidov, M. M.; Mahmudova, N.

    2012-07-01

    Lignin obtained from the waste cooking liquor, formed after soda pulping process, is used as an inhibitor of NaCMC thermo oxidative degradation in presence of in extreme conditions during drilling oil wells. In this paper the schematic process of obtaining NaCMC by the principle of "monoapparat" on the basis of cellulose produced by non-wood cellulose materials is presented.

  1. Sorghum to Ethanol Research

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Jeffrey A. [Univ. of California, Parlier, CA (United States). Kearney Research and Extension Center; Wolfrum, Edward J. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Process and Analytical Engineering Group

    2010-09-28

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  2. Final Report on Development of Thermoanaerobacterium saccharolyticum for the conversion of lignocellulose to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Herring, Christopher D.; Kenealy, William R.; Shaw, A. Joe; Raman, Babu; Tschaplinski, Timothy J.; Brown, Steven D.; Davison, Brian H.; Covalla, Sean F.; Sillers, W. Ryan; Xu, Haowen; Tsakraklides, Vasiliki; Hogsett, David A.

    2012-01-24

    This project addressed the need for economical technology for the conversion of lignocellulosic biomass to fuels, specifically the conversion of pretreated hardwood to ethanol. The technology developed is a set of strains of the bacterium Thermoanaerobacterium saccharolyticum and an associated fermentation process for pretreated hardwood. Tools for genetic engineering and analysis of the organism were developed, including a markerless mutation method, a complete genome sequence and a set of gene expression profiles that show the activity of its genes under a variety of conditions relevant to lignocellulose conversion. Improved strains were generated by selection and genetic engineering to be able to produce higher amounts of ethanol (up to 70 g/L) and to be able to better tolerate inhibitory compounds from pretreated hardwood. Analysis of these strains has generated useful insight into the genetic basis for desired properties of biofuel producing organisms. Fermentation conditions were tested and optimized to achieve ethanol production targets established in the original project proposal. The approach proposed was to add cellulase enzymes to the fermentation, a method called Simultaneous Saccharification and Fermentation (SSF). We had reason to think SSF would be an efficient approach because the optimal temperature and pH for the enzymes and bacterium are very close. Unfortunately, we discovered that commercially available cellulases are inactivated in thermophilic SSF by a combination of low redox potential and ethanol. Despite this, progress was made against the fermentation targets using bacterial cellulases. Thermoanaerobacterium saccharolyticum may still prove to be a commercially viable technology should cellulase enzyme issues be addressed. Moreover, the organism was demonstrated to produce ethanol at approximately theoretical yield from oligomeric hemicellulose extracts, an ability that may prove to be uniquely valuable in pretreatment configurations in

  3. Cellulose: To depolymerize… or not to?

    Science.gov (United States)

    Coseri, Sergiu

    Oxidation of the primary OH groups in cellulose is a pivotal reaction both at lab and industrial scale, leading to the value-added products, i.e. oxidized cellulose which have tremendous applications in medicine, pharmacy and hi-tech industry. Moreover, the introduction of carboxyl moieties creates prerequisites for further cellulose functionalization through covalent attachment or electrostatic interactions, being an essential achievement designed to boost the area of cellulose-based nanomaterials fabrication. Various methods for the cellulose oxidation have been developed in the course of time, aiming the selective conversion of the OH groups. These methods use: nitrogen dioxide in chloroform, alkali metal nitrites and nitrates, strong acids alone or in combination with permanganates or sodium nitrite, ozone, and sodium periodate or lead (IV) tetraacetate. In the case of the last two reagents, cellulose dialdehydes derivatives are formed, which are further oxidized by sodium chlorite or hydrogen peroxide to form dicarboxyl groups. A major improvement in the cellulose oxidation was represented by the introduction of the stable nitroxyl radicals, such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). However, a major impediment for the researchers working in this area is related with the severe depolymerisation occurred during the TEMPO-mediated conversion of CH 2 OH into COOH groups. On the other hand, the cellulose depolymerisation represent the key step, in the general effort of searching for alternative strategies to develop new renewable, carbon-neutral energy sources. In this connection, exploiting the biomass feed stocks to produce biofuel and other low molecular organic compounds, involves a high amount of research to improve the overall reaction conditions, limit the energy consumption, and to use benign reagents. This work is therefore focused on the parallelism between these two apparently antagonist processes involving cellulose, building a necessary

  4. High Dehumidification Performance of Amorphous Cellulose Composite Membranes prepared from Trimethylsilyl Cellulose

    KAUST Repository

    Puspasari, Tiara

    2018-04-11

    Cellulose is widely regarded as an environmentally friendly, natural and low cost material which can significantly contribute the sustainable economic growth. In this study, cellulose composite membranes were prepared via regeneration of trimethylsilyl cellulose (TMSC), an easily synthesized cellulose derivative. The amorphous hydrophilic feature of the regenerated cellulose enabled fast permeation of water vapour. The pore-free cellulose layer thickness was adjustable by the initial TMSC concentration and acted as an efficient gas barrier. As a result, a 5,000 GPU water vapour transmission rate (WVTR) at the highest ideal selectivity of 1.1 x 106 was achieved by the membranes spin coated from a 7% (w/w) TMSC solution. The membranes maintained a 4,000 GPU WVTR with selectivity of 1.1 x 104 in the mixed-gas experiments, surpassing the performances of the previously reported composite membranes. This study provides a simple way to not only produce high performance membranes but also to advance cellulose as a low-cost and sustainable membrane material for dehumidification applications.

  5. Ethanol from residues - Paper tubes and textiles; Etanol ur avfall - Pappersrullar och textilier

    Energy Technology Data Exchange (ETDEWEB)

    Jeihanipour, Azam; Talebnia, Farid; Loren, Anders; Nordman, Roger; Taherzadeh, Mohammad

    2009-06-15

    The aim of this project was to investigate the possibilities to produce ethanol from waste fractions. In this project, the investigation was limited to paper tubes and textiles. Project goals were to study: (a) Is it possible to produce ethanol from the selected waste fractions? (b) Which problems could arise in the hydrolysis and fermentation, and how could these be solved? (c) What yields could be achieved in practice, expressed as kg ethanol per kg waste? Tests have been made in both laboratory scale and in pilot scale. Weak acid hydrolysis was made in laboratory scale and in pilot scale, while enzymatic hydrolysis and SSF (simultaneous saccharification and fermentation), was made in laboratory scale only. Two different acids, phosphoric acid and sulphuric acid were used. The results from the experiments show that phosphoric acid have the best effect on dissolving the crystalline cellulosic structure of the two acids tested. This results in higher glucose yields before fermentation. The tests with paper tubes resulted in ethanol yields of 20-24 % based on dry raw material. Some textiles (jeans material) resulted in yields of 30-40% based on dry raw material. The results from the experiments show that yields of 25-30 l ethanol per 100 kg paper tubes, and 35-50 l ethanol per 100 kg textiles were reached. Waste fractions that were studied in this project are available in whole Sweden, but the relative share of the wastes depends on local conditions. In Boraas, the amount of paper tubes is approximately 300 tons per year, and textiles amounts to about 17 000 tons per year. About 25 % of the textiles are considered to be available for ethanol production. Any negative effects on the ethanol production from additives could not be noted in the experiments. For example, the additive poly-vinylic alcohol, PVA, which is present in the paper tubes, does not hamper the ethanol yield in any large proportion. During the experiments with textiles, comparative fermentation tests

  6. Economic analysis of U.S. ethanol expansion issues

    Science.gov (United States)

    Chaudhuri, Malika

    The dependency of the U.S. economy on crude oil imported from politically unstable countries, escalating energy demand world wide, growing nationwide environmental consciousness, and the Renewable Fuels Standards (RFS) government mandates are some of the primary factors that have provided a favorable environment for the growth and development of the U.S. ethanol industry. The first essay derives decision rules for a discrete-time dynamic hedging model in a multiple commodity framework under expected utility maximization and basis risk. It compares hedging performance of three types of hedging models, namely constant hedging, time-varying static hedging model and the new dynamic hedging rule derived in this study. Findings show that natural gas futures contracts were effective instruments for hedging ethanol spot price risk before March, 2005, when ethanol futures trading was initiated on the CBOT. However, post-March, 2005, corn and ethanol futures contracts proved to be efficient hedging instruments. Results also indicate that ethanol producers may effectively decrease variance of cumulative cash flows by hedging using ethanol, natural gas and corn futures prices using the traditional techniques. The study concludes that using the new dynamic hedge model in a three period and two commodity set up, producers can effectively reduce variance of cumulative cash flow by 13.2% as compared to the 'no hedge' scenario. In my second essay, I use choice based, conjoint analysis methods to estimate consumers' willingness to pay (WTP) for alternative transportation fuels in the U.S. In this study, I consider unleaded gasoline and ethanol, which may be derived from corn or three different sources of cellulosic biomass as alternative transportation fuels. Results suggest that age and household income are some of the socioeconomic variables that significantly influence consumer's choice behavior. Results indicate considerable consumer preference heterogeneity. Welfare effects are

  7. Alterations in Ca2+-dependent and Ca2+-independent release of catecholamines in preparations of rat brain produced by ethanol treatment in vivo

    International Nuclear Information System (INIS)

    Lynch, M.A.; Pagonis, C.; Samuel, D.; Littleton, J.M.

    1985-01-01

    Compared to preparations from control animals, superfused striatal slice preparations from brains of rats treated chronically with ethanol released a significantly greater fraction of stored [ 3 H] dopamine on depolarisation in 40 mM K + . Similarly, the electrically-evoked release of [ 3 H]-norepinephrine from cortical slices and of [ 3 H]-dopamine from striatal slices is also increased, although with this mechanism of depolarisation the change is significant only in the case of [ 3 H] norepinephrine release. In contrast to this tendency to enhancement of Ca 2+ -dependent depolarisation-induced release, a reduced fraction of stored [ 3 H]-catecholamines was released from these preparations by the indirect sympathomimetics tyramine and (+)-amphetamine. The catecholamine release induced by these indirect sympathomimetics is largely independent of external Ca 2+ and the results are interpreted as suggesting that chronic alcohol treatment changes the distribution of catecholamine neurotransmitters between storage pools in the nerve terminal which do or do not require Ca 2+ entry for release

  8. Ethanol production using engineered mutant E. coli

    Science.gov (United States)

    Ingram, Lonnie O.; Clark, David P.

    1991-01-01

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  9. The potential of C4 grasses for cellulosic biofuel production

    Directory of Open Access Journals (Sweden)

    Tim eWeijde

    2013-05-01

    Full Text Available With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulose feedstock for biofuel production is discussed. These include three important field crops - maize, sugarcane and sorghum - and two undomesticated perennial energy grasses - miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of

  10. Applications of bacterial cellulose and its composites in biomedicine.

    Science.gov (United States)

    Rajwade, J M; Paknikar, K M; Kumbhar, J V

    2015-03-01

    Bacterial cellulose produced by few but specific microbial genera is an extremely pure natural exopolysaccharide. Besides providing adhesive properties and a competitive advantage to the cellulose over-producer, bacterial cellulose confers UV protection, ensures maintenance of an aerobic environment, retains moisture, protects against heavy metal stress, etc. This unique nanostructured matrix is being widely explored for various medical and nonmedical applications. It can be produced in various shapes and forms because of which it finds varied uses in biomedicine. The attributes of bacterial cellulose such as biocompatibility, haemocompatibility, mechanical strength, microporosity and biodegradability with its unique surface chemistry make it ideally suited for a plethora of biomedical applications. This review highlights these qualities of bacterial cellulose in detail with emphasis on reports that prove its utility in biomedicine. It also gives an in-depth account of various biomedical applications ranging from implants and scaffolds for tissue engineering, carriers for drug delivery, wound-dressing materials, etc. that are reported until date. Besides, perspectives on limitations of commercialisation of bacterial cellulose have been presented. This review is also an update on the variety of low-cost substrates used for production of bacterial cellulose and its nonmedical applications and includes patents and commercial products based on bacterial cellulose.

  11. Production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-10

    Ethanol is produced by fermentation with a photohardening resin-immobilized yeast preparation. The ethanol producing yeast may be selected from Saccharomyces, Zygosaccharomyces, or Schizosaccharomyces. The photohardening resin for yeast immobilization is a hydrophilic unsaturated compound, especially polyurethane acrylate, with an average molecular weight of 300-80,000 and containing at least 2 photopolymerizable ethylene groups. The immobilized yeast preparation is prepared by irradiating an aqueous suspension of yeast and a photohardening resin with UV light; the average size of the immobilized yeast is 0.1-3.0 mm and with various shapes. Thus, an aqueous suspension containing Saccharomyces formosensis cells (5 parts), a poly(ethylene glycol)isopharone diisocyanate-2-hydroxyethyl methacrylate copolymer (50 parts), and benzoin ethyl ether (0.5 parts) was homogenized, spread on a polypropylene tray (1.0 mm depth), and irradiated with a 3600 A Hg lamp for 5-10 minutes to form a yeast-containing polyurethane acrylate sheet (1.0 mm thickness), which was then sliced into bits of approximately 1.0 mm. When a molasses substrate solution (pH 4.5-5.0) was passed through a column (200 x 20 mm) packed with the polyurethane acrylate-immobilized yeast preparation, eluates containing 7% (weight/volume) ethanol were produced for >3000 hours.

  12. Metabolic engineering of Escherichia coli for ethanol production without foreign genes

    Science.gov (United States)

    Kim, Youngnyun

    Worldwide dependence on finite petroleum-based energy necessitates alternative energy sources that can be produced from renewable resources. A successful example of an alternative transportation fuel is bioethanol, produced by microorganisms, from corn starch that is blended with gasoline. However, corn, currently the main feedstock for bioethanol production, also occupies a significant role in human food and animal feed chains. As more corn is diverted to bioethanol, the cost of corn is expected to increase with an increase in the price of food, feed and ethanol. Using lignocellulosic biomass for ethanol production is considered to resolve this problem. However, this requires a microbial biocatalyst that can ferment hexoses and pentoses to ethanol. Escherichia coli is an efficient biocatalyst that can use all the monomeric sugars in lignocellulose, and recombinant derivatives of E. coli have been engineered to produce ethanol as the major fermentation product. In my study, ethanologenic E. coli strains were isolated from a ldhA-, pflB- derivative without introduction of foreign genes. These isolates grew anaerobically and produced ethanol as the main fermentation product. The mutation responsible for anaerobic growth and ethanol production was mapped in the lpdA gene and the mutation was identified as E354K in three of the isolates tested. Another three isolates carried an lpdA mutation, H352Y. Enzyme kinetic studies revealed that the mutated form of the dihydrolipoamide dehydrogenase (LPD) encoded by the lpdA was significantly less sensitive to NADH inhibition than the native LPD. This reduced NADH sensitivity of the mutated LPD was translated into lower sensitivity to NADH of the pyruvate dehydrogenase complex in strain SE2378. The net yield of 4 moles of NADH and 2 moles of acetyl-CoA per mole of glucose produced by a combination of glycolysis and PDH provided a logical basis to explain the production of 2 moles of ethanol per glucose. The development of E

  13. Ethanol dehydration

    OpenAIRE

    Ana María Uyazán; Iván Dario Gil; J L Aguilar; Gerardo Rodríguez Niño; Luis Alfonso Caicedo

    2004-01-01

    This review outlines ethanol dehydration processes and their most important characteristics. It also deals with the main operating variables and some criteria used in designing the separation scheme. A differentiation is made between processes involving liquid steam balance in separation operations and those doing it by screening the difference in molecule size. The last part presents a comparison between the three main industrial processes, stressing their stengths and weaknesses from the op...

  14. Ethanol dehydration

    Directory of Open Access Journals (Sweden)

    Ana María Uyazán

    2004-09-01

    Full Text Available This review outlines ethanol dehydration processes and their most important characteristics. It also deals with the main operating variables and some criteria used in designing the separation scheme. A differentiation is made between processes involving liquid steam balance in separation operations and those doing it by screening the difference in molecule size. The last part presents a comparison between the three main industrial processes, stressing their stengths and weaknesses from the operational, energy consumption and industrial services points of view.

  15. Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol.

    Science.gov (United States)

    Jennings, Edward W; Schell, Daniel J

    2011-01-01

    Dilute-acid pretreatment of lignocellulosic biomass enhances the ability of enzymes to hydrolyze cellulose to glucose, but produces many toxic compounds that inhibit fermentation of sugars to ethanol. The objective of this study was to compare the effectiveness of treating hydrolysate liquor with Ca(OH)2 and NH4OH for improving ethanol yields. Corn stover was pretreated in a pilot-scale reactor and then the liquor fraction (hydrolysate) was extracted and treated with various amounts of Ca(OH)2 or NH4OH at several temperatures. Glucose and xylose in the treated liquor were fermented to ethanol using a glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. Sugar losses up to 10% occurred during treatment with Ca(OH)2, but these losses were two to fourfold lower with NH4OH treatment. Ethanol yields for NH4OH-treated hydrolysate were 33% greater than those achieved in Ca(OH)2-treated hydrolysate and pH adjustment to either 6.0 or 8.5 with NH4OH prior to fermentation produced equivalent ethanol yields. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Method of saccharifying cellulose

    Science.gov (United States)

    Johnson, E.A.; Demain, A.L.; Madia, A.

    1983-05-13

    A method is disclosed of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of thiol reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  17. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  18. Transcriptome profiling of Zymomonas mobilis under ethanol stress

    Directory of Open Access Journals (Sweden)

    He Ming-xiong

    2012-10-01

    Full Text Available Abstract Background High tolerance to ethanol is a desirable characteristics for ethanologenic strains used in industrial ethanol fermentation. A deeper understanding of the molecular mechanisms underlying ethanologenic strains tolerance of ethanol stress may guide the design of rational strategies to increase process performance in industrial alcoholic production. Many extensive studies have been performed in Saccharomyces cerevisiae and Escherichia coli. However, the physiological basis and genetic mechanisms involved in ethanol tolerance for Zymomonas mobilis are poorly understood on genomic level. To identify the genes required for tolerance to ethanol, microarray technology was used to investigate the transcriptome profiling of the ethanologenic Z. mobilis in response to ethanol stress. Results We successfully identified 127 genes which were differentially expressed in response to ethanol. Ethanol up- or down-regulated genes related to cell wall/membrane biogenesis, metabolism, and transcription. These genes were classified as being involved in a wide range of cellular processes including carbohydrate metabolism, cell wall/membrane biogenesis, respiratory chain, terpenoid biosynthesis, DNA replication, DNA recombination, DNA repair, transport, transcriptional regulation, some universal stress response, etc. Conclusion In this study, genome-wide transcriptional responses to ethanol were investigated for the first time in Z. mobilis using microarray analysis.Our results revealed that ethanol had effects on multiple aspects of cellular metabolism at the transcriptional level and that membrane might play important roles in response to ethanol. Although the molecular mechanism involved in tolerance and adaptation of ethanologenic strains to ethanol is still unclear, this research has provided insights into molecular response to ethanol in Z. mobilis. These data will also be helpful to construct more ethanol resistant strains for cellulosic

  19. Ethanol production potential of local yeast strains isolated from ripe ...

    African Journals Online (AJOL)

    The ability of different yeast strains isolated from ripe banana peels to produce ethanol was investigated. Of the 8 isolates screened for their fermentation ability, 5 showed enhanced performance and were subsequently identified and assessed for important ethanol fermentation attributes such as ethanol producing ability, ...

  20. Ethanol Production from Brewers’ Spent Grain Pretreated by Dilute Phosphoric Acid

    DEFF Research Database (Denmark)

    Rojas-Chamorro, José A.; Cara, Cristóbal; Romero, Inmaculada

    2018-01-01

    of both pretreatment and enzymatic hydrolysis together recovered 92% of total sugars in BSG, mainly solubilized in the prehydrolysate (63%). Escherichia coli SL100 fermented this mixed sugar solution containing hemicellulosic sugars and starchy glucose without previous detoxification with an ethanol yield...... in this work allowed 69% of the total sugars in the BSG to be converted to ethanol....... of 0.40 g/g. Considering also the glucose released from the cellulosic structure and converted to ethanol by a simultaneous saccharification and fermentation process, an overall ethanol yield of 17.9 g of ethanol per 100 g of raw BSG was achieved. Thereby, the process configuration proposed...

  1. The correlation between cellulose allomorphs (I and II) and conversion after removal of hemicellulose and lignin of lignocellulose.

    Science.gov (United States)

    Song, Yanliang; Zhang, Jingzhi; Zhang, Xu; Tan, Tianwei

    2015-10-01

    H2SO4, NaOH and H3PO4 were applied to decompose lignocellulose samples (giant reeds, pennisetum and cotton stalks) to investigate the correlation between cellulose allomorphs (cellulose I and II) and conversion of cellulose. The effect of removal of hemicellulose and lignin on the surface morphology, crystallinity index (CrI), cellulose allomorphs (cellulose I and II), and enzymatic hydrolysis under different pretreatments was also studied. CrI caused by H3PO4 pretreatment reached 11.19%, 24.93% and 8.15% for the three samples, respectively. Corn stalk showed highest conversion of cellulose among three samples, irrespective of the pretreatment used. This accounted for the widely use of corn stalk as the renewable crop substrate to synthesize biofuels like ethanol. CrI of cellulose I (CrI-I) negatively affects cellulose conversion but CrI of cellulose II (CrI-II) positively affects cellulose conversion. It contributes to make the strategy to transform cellulose I to cellulose II and enhancing enzymatic hydrolysis of lignocellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Donal F. Day

    2009-01-29

    The Audubon Sugar Institute (ASI) of Louisiana State University’s Agricultural Center (LSU AgCenter) and MBI International (MBI) sought to develop technologies that will lead to the development of a sugar-cane biorefinery, capable of supplying fuel ethanol from bagasse. Technology development focused on the conversion of bagasse, cane-leaf matter (CLM) and molasses into high value-added products that included ethanol, specialty chemicals, biomaterials and animal feed; i.e. a sugar cane-based biorefinery. The key to lignocellulosic biomass utilization is an economically feasible method (pretreatment) for separating the cellulose and the hemicellulose from the physical protection provided by lignin. An effective pretreatment disrupts physical barriers, cellulose crystallinity, and the association of lignin and hemicellulose with cellulose so that hydrolytic enzymes can access the biomass macrostructure (Teymouri et al. 2004, Laureano-Perez, 2005). We chose to focus on alkaline pretreatment methods for, and in particular, the Ammonia Fiber Expansion (AFEX) process owned by MBI. During the first two years of this program a laboratory process was established for the pretreatment of bagasse and CLM using the AFEX process. There was significant improvement of both rate and yield of glucose and xylose upon enzymatic hydrolysis of AFEX-treated bagasse and CLM compared with untreated material. Because of reactor size limitation, several other alkaline pretreatment methods were also co-investigated. They included, dilute ammonia, lime and hydroxy-hypochlorite treatments. Scale-up focused on using a dilute ammonia process as a substitute for AFEX, allowing development at a larger scale. The pretreatment of bagasse by an ammonia process, followed by saccharification and fermentation produced ethanol from bagasse. Simultaneous saccharification and fermentation (SSF) allowed two operations in the same vessel. The addition of sugarcane molasses to the hydrolysate

  3. Sticking to cellulose: exploiting Arabidopsis seed coat mucilage to understand cellulose biosynthesis and cell wall polysaccharide interactions.

    Science.gov (United States)

    Griffiths, Jonathan S; North, Helen M

    2017-05-01

    The cell wall defines the shape of cells and ultimately plant architecture. It provides mechanical resistance to osmotic pressure while still being malleable and allowing cells to grow and divide. These properties are determined by the different components of the wall and the interactions between them. The major components of the cell wall are the polysaccharides cellulose, hemicellulose and pectin. Cellulose biosynthesis has been extensively studied in Arabidopsis hypocotyls, and more recently in the mucilage-producing epidermal cells of the seed coat. The latter has emerged as an excellent system to study cellulose biosynthesis and the interactions between cellulose and other cell wall polymers. Here we review some of the major advances in our understanding of cellulose biosynthesis in the seed coat, and how mucilage has aided our understanding of the interactions between cellulose and other cell wall components required for wall cohesion. Recently, 10 genes involved in cellulose or hemicellulose biosynthesis in mucilage have been identified. These discoveries have helped to demonstrate that xylan side-chains on rhamnogalacturonan I act to link this pectin directly to cellulose. We also examine other factors that, either directly or indirectly, influence cellulose organization or crystallization in mucilage. © 2017 INRA. New Phytologist © 2017 New Phytologist Trust.

  4. Production of Cellulosic Polymers from Agricultural Wastes

    Directory of Open Access Jo