WorldWideScience

Sample records for procyon high explosive

  1. Hubble Space Telescope Astrometry of the Procyon System

    Science.gov (United States)

    2015-11-10

    subtraction effectively removes 85%–90% of the flux . As shown by the red boxes in Figure 3, we used only relatively small regions containing high-S/N...the Procyon system. The stability of planets orbiting the individual stars in a binary system has been studied numerically by, among others, Holman...orbits in the Procyon system are about 3.7 years for a planet orbiting Procyon A, and 2.8 years for one orbiting Procyon B. We calculated the

  2. HUBBLE SPACE TELESCOPE ASTROMETRY OF THE PROCYON SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Gilliland, Ronald L.; Kozhurina-Platais, Vera; Nelan, Edmund P. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Schaefer, Gail H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Demarque, Pierre; Girard, Terrence M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520 (United States); Holberg, Jay B. [Lunar and Planetary Laboratory, University of Arizona, 1541 E. University Blvd., Tucson, AZ 85721 (United States); Gudehus, Donald [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Mason, Brian D. [U.S. Naval Observatory, 3450 Massachusetts Ave., Washington, DC 20392 (United States); Burleigh, Matthew R.; Barstow, Martin A., E-mail: heb11@psu.edu [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2015-11-10

    The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84-year period by the faint DQZ white dwarf (WD) Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 ± 0.012 M{sub ⊙} and 0.592 ± 0.006 M{sub ⊙} for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A’s age is ∼2.7 Gyr. Procyon B’s location in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass. Its position in the mass–radius plane is also consistent with theory, assuming a carbon–oxygen core and a helium-dominated atmosphere. Its progenitor’s mass was 1.9–2.2 M{sub ⊙}, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only ∼5 AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (∼0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.

  3. Hubble Space Telescope Astrometry of the Procyon System

    Science.gov (United States)

    Bond, Howard E.; Gilliland, Ronald L.; Schaefer, Gail H.; Demarque, Pierre; Girard, Terrence M.; Holberg, Jay B.; Gudehus, Donald; Mason, Brian D.; Kozhurina-Platais, Vera; Burleigh, Matthew R.

    2015-01-01

    The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84-year period by the faint DQZ white dwarf (WD) Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 plus or minus 0.012M and 0.592 plus or minus 0.006M for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A's age is approximately 2.7 Gyr. Procyon B's location in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitor's mass was 1.9-2.2M, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only approximately AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (approximately 0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.

  4. Two-dimensional modeling of x-ray output from switched foil implosions on Procyon

    Science.gov (United States)

    Bowers, R. L.; Nakafuji, G.; Greene, A. E.; McLenithan, K. D.; Peterson, D. L.; Roderick, N. F.

    1996-09-01

    A series of two-dimensional radiation magnetohydrodynamic calculations are presented of a Z-pinch implosion using a plasma flow switch. Results from a recent experiment using the high explosive driven generator Procyon, which delivered 16.5 MA to a plasma flow switch and switched about 15 MA into a static load, are used to study the implosion of a 29 mg load foil [J. H. Goforth et al., ``Review of the Procyon Explosive Pulsed Power System,'' in Ninth IEEE Pulsed Power Conference, June 1993, Albuquerque, edited by K. R. Prestwich and W. L. Baker (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1993), p. 36]. The interaction of the switch with the load plasma and the effects of background plasma on the total radiation output is examined. Models which assume ideal switching are also included. Also included are the effects of perturbations in the load plasma which may be associated with initial vaporization of the load foil. If the background plasma density in the switch region and in the load region does not affect the dynamics, the pinch is predicted to produce a total radiation output of about 4 MJ. Including perturbations of the load plasma associated with switching and assuming a background plasma density after switching in excess of 10-7 g/cm3 results in a total output from the pinch of about 0.6 MJ.

  5. Procyon LLC: From Music Recommendations to Preference Mapping

    Science.gov (United States)

    Chinn, Susan J.

    2011-01-01

    Procyon LLC had re-launched and renamed their music discovery site, Electra, to Capella, in 2008. Its core strength had originated from Electra's proprietary technology, which used music libraries from real people, its members, to generating "automated word-of-mouth" recommendations, targeted advertising and editorial content. With the re-launch,…

  6. A Multi-Site Campaign to Measure Solar-Like Oscillations in Procyon. II. Mode Frequencies

    DEFF Research Database (Denmark)

    Bedding, Timothy R.; Kjeldsen, Hans; Campante, Tiago L.

    2010-01-01

      We have analyzed data from a multi-site campaign to observe oscillations in the F5 star Procyon. The data consist of high-precision velocities that we obtained over more than three weeks with 11 telescopes. A new method for adjusting the data weights allows us to suppress the sidelobes in the p...

  7. Procyon 1. First prototype worldwide for storage spent nuclear fuel rods

    International Nuclear Information System (INIS)

    Meyering, Manfred

    2010-01-01

    HFH Herbst has designed and built a unique machine for storage of spent highly radioactive nuclear fuel rods within two years for the Swedish SKB. The vehicle (total weight 98 t) can be operated underground without a driver. Herbst was able to bring to this project almost 30 years of experience in the complementation of vehicle projects for the nuclear industry. The Procyon 1 already proved its efficiency impressively in several hundred storage processes and operates with absolute reliability. (orig.)

  8. High-nitrogen explosives

    Energy Technology Data Exchange (ETDEWEB)

    Naud, D. (Darren); Hiskey, M. A. (Michael A.); Kramer, J. F. (John F.); Bishop, R. L. (Robert L.); Harry, H. H. (Herbert H.); Son, S. F. (Steven F.); Sullivan, G. K. (Gregg K.)

    2002-01-01

    The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAz

  9. Chandra X-ray Time-Domain Study of Alpha Centauri AB, Procyon, and their Environs

    Science.gov (United States)

    Ayres, Thomas R.

    2018-06-01

    For more than a decade, Chandra X-ray Observatory has been monitoring the central AB binary (G2V+K1V) of the α Centauri triple system with semi-annual pointings, using the High-Resolution Camera. This study has been extended in recent years to the mid-F subgiant, Procyon. The main objective is to follow the coronal (T~1MK) activity variations of the three stars, analogous to the Sun's 11-year sunspot cycle. Tentative periods of 20 yr and 8 yr have been deduced for α Cen A and B, respectively; but so far Procyon has shown only a slow, very modest decline in count rate, which could well reflect a slight instrumental degradation rather than intrinsic behavior. The negligible high-energy variability of Procyon sits in stark contrast to the dramatic factor of several to ten changes in the X-ray luminosities of α Cen AB and the Sun over their respective cycles. Further, although sunlike α Cen A has been observed by successive generations of X-ray observatories for nearly four decades, albeit sporadically, there are key gaps in the coverage that affect the determination of the cycle period. In fact, the most recent pointings suggest a downturn in A's count rate that might be signaling a shorter, more solar-like cycle following a delayed minimum in the 2005--2010 time frame (perhaps an exaggerated version of the extended solar minimum between recent Cycles 23 and 24). Beyond the coronal cycles of the three stars, the sequence of periodic X-ray images represents a unique time-domain history concerning steady as well as variable sources in the two 30'x30' fields. The most conspicuous of the variable objects -- in the α Cen field -- will be described here.

  10. Morphological study of the pineal gland of (crab eater raccoon Procyon cancrivorus (Cuvier, 1798

    Directory of Open Access Journals (Sweden)

    Leandro de Oliveira Marques

    2010-06-01

    Full Text Available The Procyon cancrivorus is a wild carnivore that is widely distributed and relatively common, but it remains little studied, and few works report on the biology of this species. The aim of this work was to characterize morphologically the pineal gland of Procyon cancrivorus through macro, microscopic and radiographic studies, and to compare them with those from other animals. In this work, four adult animals of both sexes were used, originating from the Scientific Herd of CECRIMPAS IBAMA (Process nº 02027.003731/04-76. Macroscopically, the pineal gland of Procyon cancrivorus was located between the occipital lobes of the cerebral hemispheres, cranially to the vermis cerebelar. It was positioned rostrally to the rostral colliculus and caudally to the habenular comissure. Microscopically, the gland was covered externally by a capsule deriving from the meningeal pia mater. The presence of three types of cells was noted in the glandular parenchyma: pinealocytes, glial cells and mast cells. No calcareous concretions in the pineal gland were found in the radiographic and microscopic studies.

  11. A MULTI-SITE CAMPAIGN TO MEASURE SOLAR-LIKE OSCILLATIONS IN PROCYON. II. MODE FREQUENCIES

    International Nuclear Information System (INIS)

    Bedding, Timothy R.; Bruntt, Hans; Kiss, Laszlo L.; Kjeldsen, Hans; Campante, Tiago L.; Appourchaux, Thierry; Bonanno, Alfio; Chaplin, William J.; Garcia, Rafael A.; Martic, Milena; Mosser, Benoit; Butler, R. Paul; O'Toole, Simon J.; Kambe, Eiji; Izumiura, Hideyuki; Ando, Hiroyasu; Sato, Bun'ei; Hartmann, Michael; Hatzes, Artie

    2010-01-01

    We have analyzed data from a multi-site campaign to observe oscillations in the F5 star Procyon. The data consist of high-precision velocities that we obtained over more than three weeks with 11 telescopes. A new method for adjusting the data weights allows us to suppress the sidelobes in the power spectrum. Stacking the power spectrum in a so-called echelle diagram reveals two clear ridges, which we identify with even and odd values of the angular degree (l = 0 and 2, and l = 1 and 3, respectively). We interpret a strong, narrow peak at 446 μHz that lies close to the l = 1 ridge as a mode with mixed character. We show that the frequencies of the ridge centroids and their separations are useful diagnostics for asteroseismology. In particular, variations in the large separation appear to indicate a glitch in the sound-speed profile at an acoustic depth of ∼1000 s. We list frequencies for 55 modes extracted from the data spanning 20 radial orders, a range comparable to the best solar data, which will provide valuable constraints for theoretical models. A preliminary comparison with published models shows that the offset between observed and calculated frequencies for the radial modes is very different for Procyon than for the Sun and other cool stars. We find the mean lifetime of the modes in Procyon to be 1.29 +0.55 -0.49 days, which is significantly shorter than the 2-4 days seen in the Sun.

  12. Food preferences of captive wild raccoons, Procyon lotor, from east Texas

    Science.gov (United States)

    James F. Taulman; James H. Williamson

    1994-01-01

    We offered a random assortment of six foods to nine captive raccoons (Procyon lotor) during 10 days in February 1991 and to 10 raccoons during 9 days in January 1992; persimmon (Diospyros virginianus); southern red oak acorn (Quercus falacata); chicken egg; crayfish (Cambarus bartoni);...

  13. High-explosive driven crowbar switch

    International Nuclear Information System (INIS)

    Dike, R.S.; Kewish, R.W. Jr.

    1976-01-01

    The disclosure relates to a compact explosive driven switch for use as a low resistance, low inductance crowbar switch. A high-explosive charge extrudes a deformable conductive metallic plate through a polyethylene insulating layer to achieve a hard current contact with a supportive annular conductor

  14. Introduction to High Explosives Science

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, Cary Bradford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    These are a set of slides for educational outreach to children on high explosives science. It gives an introduction to the elements involved in this science: carbon, hydrogen, nitrogen, and oxygen. Combined, these form the molecule HMX. Many pictures are also included to illustrate explosions.

  15. Method for enhancing stability of high explosives, for purposes of transport or storage, and the stabilized high explosives

    International Nuclear Information System (INIS)

    Nutt, G.L.

    1991-01-01

    This papent describes a method for suppressing the tendency of a porous solid high explosive to ignite and detonate. It comprises: filling substantially all the press of the solid high explosive material with a predetermined pore radius of at least 10μm with a relatively inert, stable, pore filling material in liquid form, the pore filling being selected from gallium, rubidium-potassium eutectic, and Wood's metal; and solidifying the pore filling material in the pores of the explosive material

  16. Criticality safety in high explosives dissolution

    International Nuclear Information System (INIS)

    Troyer, S.D.

    1997-01-01

    In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig

  17. Mesoscale modeling of metal-loaded high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, John Bohdan [Los Alamos National Laboratory; Lieberthal, Brandon [UNIV OF ILLINOIS; Srewart, Donald S [UNIV OF ILLINOIS

    2010-01-01

    We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.

  18. Modeling Hot-Spot Contributions in Shocked High Explosives at the Mesoscale

    Energy Technology Data Exchange (ETDEWEB)

    Harrier, Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-12

    When looking at performance of high explosives, the defects within the explosive become very important. Plastic bonded explosives, or PBXs, contain voids of air and bonder between the particles of explosive material that aid in the ignition of the explosive. These voids collapse in high pressure shock conditions, which leads to the formation of hot spots. Hot spots are localized high temperature and high pressure regions that cause significant changes in the way the explosive material detonates. Previously hot spots have been overlooked with modeling, but now scientists are realizing their importance and new modeling systems that can accurately model hot spots are underway.

  19. High-explosive-driven delay line pulse generator

    International Nuclear Information System (INIS)

    Shearer, J.W.

    1982-01-01

    The inclusion of a delay line circuit into the design of a high-explosive-driven generator shortens the time constant of the output pulse. After a brief review of generator concepts and previously described pulse-shortening methods, a geometry is presented which incorporates delay line circuit techcniques into a coil generator. The circuit constants are adjusted to match the velocity of the generated electromagnetic wave to the detonation velocity of the high explosive. The proposed generator can be modeled by adding a variable inductance term to the telegrapher's equation. A particular solution of this equation is useful for exploring the operational parameters of the generator. The duration of the electromagnetic pulse equals the radial expansion time of the high-explosive-driven armature until it strikes the coil. Because the impedance of the generator is a constant, the current multiplication factor is limited only by nonlinear effects such as voltage breakdown, diffusion, and compression at high energies

  20. Diet of Procyon cancrivorus (Carnivora, Procyonidae in restinga and estuarine environments of southern Brazil

    Directory of Open Access Journals (Sweden)

    Fernando M. Quintela

    2014-06-01

    Full Text Available Despite its wide range and abundance on certain habitats, the crab-eating raccoon Procyon cancrivorus (G. Cuvier, 1798 is considered one of the less known Neotropical carnivore species. In the present study we analyzed the diet of P. cancrivorus in a peat forest and in an estuarine island in southernmost Brazil. Fruits of the gerivá palm tree Syagrus romanzoffiana were the most consumed item in the peat forest, followed by insects and mollusks. Small mammals, followed by Bromelia antiacantha (Bromeliaceae fruits and brachyuran crustaceans were the most frequent items in the estuarine island. Other items found in lower frequencies were Solanum sp., Psidium sp., Smilax sp. and Dyospiros sp. fruits, diplopods, scorpions, fishes, anuran amphibians, reptiles (black tegu lizard and snakes, birds and medium-sized mammals (white-eared opossum, armadillo and coypu. Levin’s index values (peat forest: 0.38; estuarine island: 0.45 indicate an approximation to a median position between a specialist and a well distributed diet. Pianka’s index (0.80 showed a considerable diet similarity between the two systems. Procyon cancrivorus presented a varied diet in the studied areas and may play an important role as seed disperser on coastal environments in southernmost Brazil.

  1. Hemoparasites of raccoons (Procyon lotor) in Florida.

    Science.gov (United States)

    Telford, S R; Forrester, D J

    1991-07-01

    Four hemoparasite species (Babesia lotori, Trypanosoma cruzi, Dirofilaria tenuis and Mansonella llewellyni) were found in raccoons (Procyon lotor) collected from 1972 to 1974 in Duval (n = 14) and Collier (n = 170) counties, Florida (USA). Trypanosoma cruzi was found in thin blood smears from one raccoon at each locality. The prevalence of B. lotori was 79% and 80% in samples taken in December 1973 in Collier and Duval counties, respectively. No patent infections by B. lotori were detected in raccoons collected in Collier County in December 1972, but 42% of the raccoons examined in September 1973 were infected. In Collier County there were no significant differences in the prevalence of B. lotori by host sex or age. In Duval County, overall D. tenuis prevalence was 7%, whereas that of M. llewellyni was 14%; the latter species was not found in Collier County. Adult raccoons had a significantly greater prevalence of D. tenuis (32%) than did subadults and juveniles (7%), and male raccoons showed a significantly greater prevalence (51%) than did females (8%).

  2. High explosive programmed burn in the FLAG code

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, D.; Burton, D.; Lund, C.

    1998-02-01

    The models used to calculate the programmed burn high-explosive lighting times for two- and three-dimensions in the FLAG code are described. FLAG uses an unstructured polyhedra grid. The calculations were compared to exact solutions for a square in two dimensions and for a cube in three dimensions. The maximum error was 3.95 percent in two dimensions and 4.84 percent in three dimensions. The high explosive lighting time model described has the advantage that only one cell at a time needs to be considered.

  3. High Explosives Research and Development (HERD) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to provide high explosive formulation, chemical analysis, safety and performance testing, processing, X-ray, quality control and loading support for...

  4. Novel high explosive compositions

    Science.gov (United States)

    Perry, D.D.; Fein, M.M.; Schoenfelder, C.W.

    1968-04-16

    This is a technique of preparing explosive compositions by the in-situ reaction of polynitroaliphatic compounds with one or more carboranes or carborane derivatives. One or more polynitroaliphatic reactants are combined with one or more carborane reactants in a suitable container and mixed to a homogeneous reaction mixture using a stream of inert gas or conventional mixing means. Ordinarily the container is a fissure, crack, or crevice in which the explosive is to be implanted. The ratio of reactants will determine not only the stoichiometry of the system, but will effect the quality and quantity of combustion products, the explosive force obtained as well as the impact sensitivity. The test values can shift with even relatively slight changes or modifications in the reaction conditions. Eighteen illustrative examples accompany the disclosure. (46 claims)

  5. Aspects of raccoon (Procyon lotor) social organization

    Science.gov (United States)

    Fritzell, E.K.

    1978-01-01

    Spatial and temporal relationships among members of a raccoon (Procyon lotor) population were studied during spring and summer in east-central North Dakota during 1973-1975. Radio telemetry was used to locate 48 raccoons 6443 times. Livetrapping results and other observations suggested that most raccoons in the area were radio equipped; densities were estimated to be 0.5-1.0 resident/km2. Adult males maintained large areas relatively exclusive of other adult males; they seldom were located within 3 km of each other even though their home ranges abutted. One adult male responded to the death of an adjacent adult male by shifting movements into the dead male's former home range. Two or more parous or pregnant females resided within the home ranges of a single adult male. All yearling males showed signs of dispersal in May, June, or July, some occupied exclusive areas as adults in the following year. Parous or pregnant females (six adults, one yearling) occupied extensively overlapping home ranges but were never located with other adult or yearling raccoons. Nulliparous yearling females did not disperse and tolerated other raccoons. Territoriality is indicated among adult males probably in response to competition for access to females.

  6. Spectro web: oscillator strength measurements of atomic absorption lines in the sun and procyon

    International Nuclear Information System (INIS)

    Lobel, A

    2008-01-01

    We update the online SpectroWeb database of spectral standard reference stars with 1178 oscillator strength values of atomic absorption lines observed in the optical spectrum of the Sun and Procyon (α CMi A). The updated line oscillator strengths are measured with best fits to the disk-integrated KPNO-FTS spectrum of the Sun observed between 4000 A and 6800 A using state-of-the-art detailed spectral synthesis calculations. A subset of 660 line oscillator strengths is validated with synthetic spectrum calculations of Procyon observed with ESO-UVES between 4700 A and 6800 A. The new log(gf)-values in SpectroWeb are improvements upon the values offered in the online Vienna Atomic Line Database (VALD). We find for neutral iron-group elements, such as Fe I, Ni I, Cr I, and Ti I, a statistically significant over-estimation of the VALD log((gf)-values for weak absorption lines with normalized central line depths below 15 %. For abundant lighter elements (e.g. Mg I and Ca I) this trend is statistically not significantly detectable, with the exception of Si I for which the log(gf)-values of 60 weak and medium-strong lines are substantially decreased to best fit the observed spectra. The newly measured log(gf)-values are available in the SpectroWeb database at http://spectra.freeshell.org, which interactively displays the observed and computed stellar spectra, together with corresponding atomic line data.

  7. New Mix Explosives for Explosive Welding

    Science.gov (United States)

    Andreevskikh, Leonid

    2011-06-01

    Suggested and tested were some mix explosives--powder mixtures of a brisant high explosive (HE = RDX, PETN) and an inert diluent (baking soda)--for use in explosive welding. RDX and PETN were selected in view of their high throwing ability and low critical diameter. Since the decomposition of baking soda yields a huge amount of gaseous products, its presence ensures (even at a low HE percentage) a throwing speed that is sufficient for realization of explosive welding, at a reduced brisant action of charge. Mix chargers containing 30-70 wt % HE (the rest baking soda) have been tested experimentally and optimized. For study of possibility to reduce critical diameter of HE mixture, the mixture was prepared where HE crystal sizes did not exceed 10 μm. The tests, which were performed with this HE, revealed that the mixture detonated stably with the velocity D ~ 2 km/s, if the layer thickness was d = 2 mm. The above explosives afford to markedly diminish deformations within the oblique impact zone and thus to carry out explosive welding of hollow items and thin metallic foils.

  8. High-speed imaging of explosive eruptions: applications and perspectives

    Science.gov (United States)

    Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Capponi, Antonio; Alatorre-Ibarguengoitia, Miguel-Angel; Moroni, Monica

    2013-04-01

    Explosive eruptions, being by definition highly dynamic over short time scales, necessarily call for observational systems capable of relatively high sampling rates. "Traditional" tools, like as seismic and acoustic networks, have recently been joined by Doppler radar and electric sensors. Recent developments in high-speed camera systems now allow direct visual information of eruptions to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Here we summarize the methods employed to gather and process high-speed videos of explosive eruptions, and provide an overview of the several applications of these new type of data in understanding different aspects of explosive volcanism. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian

  9. Design of a spheromak compressor driven by high explosives

    International Nuclear Information System (INIS)

    Henins, I.; Fernandez, J.C.; Jarboe, T.R.; Marsh, S.P.; Marklin, G.J.; Mayo, R.M.; Wysocki, F.J.

    1990-01-01

    High energy density spheromaks can be used to accelerate a thin section of the flux conserver wall to high velocities. The energy density of a spheromak, formed by conventional helicity injection into a flux conserver, can be increased by reducing the flux conserver volume after the spheromak is formed. A method of accomplishing this is by imploding one wall of the flux conserver with high explosives. The authors have embarked on a program to demonstrate that a spheromak can be used as an energy transfer medium, and that a velocity gain over high-explosive driven plate velocities can be achieved. To do this, a plasma gun helicity source that will inject a spheromak with suitable initial energy density and lifetime is needed. Also, an implodable flux conserver that remains intact and clean during the implosion must be developed. The flux conserver problem is probably the more challenging one, because very little experimental work has been done in the past on explosively driven metal plates into a high vacuum, with sizes and travel distances appropriate for their application. There are two necessary practical requirements for an explosive compression of a flux conserver. The first is that the imploding wall does not rupture. The second is that gasses or other debri are not ejected which could penetrate and poison the spheromak plasma, and thus reduce the spheromak lifetime below what is necessary to carry out the spheromak compression and the subsequent acceleration of the flyer plate. The authors have designed and fabricated a plasma gun to be used for injecting the initial spheromak plasma into the collapsible flux conserver

  10. Research topics in explosives - a look at explosives behaviors

    International Nuclear Information System (INIS)

    Maienschein, J L

    2014-01-01

    The behaviors of explosives under many conditions - e.g., sensitivity to inadvertent reactions, explosion, detonation - are controlled by the chemical and physical properties of the explosive materials. Several properties are considered for a range of improvised and conventional explosives. Here I compare these properties across a wide range of explosives to develop an understanding of explosive behaviors. For improvised explosives, which are generally heterogeneous mixtures of ingredients, a range of studies is identified as needed to more fully understand their behavior and properties. For conventional explosives, which are generally comprised of crystalline explosive molecules held together with a binder, I identify key material properties that determine overall sensitivity, including the extremely safe behavior of Insensitive High Explosives, and discuss an approach to predicting the sensitivity or insensitivity of an explosive.

  11. Characterization Of High Explosives Detonations Via Laser-Induced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Aleman, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    One objective of the Department of Energy’s National Security Administration is to develop technologies that can help the United States government to detect foreign nuclear weapons development activities. The realm of high explosive (HE) experiments is one of the key areas to assess the nuclear ambitions of a country. SRNL has participated in the collection of particulates from HE experiments and characterized the material with the purpose to correlate particulate matter with HE. Since these field campaigns are expensive, on-demand simulated laboratory-scale explosion experiments are needed to further our knowledge of the chemistry and particle formation in the process. Our goal is to develop an experimental test bed in the laboratory to test measurement concepts and correlate particle formation processes with the observables from the detonation fireball. The final objective is to use this knowledge to tailor our experimental setups in future field campaigns. The test bed uses pulsed laser-induced plasmas to simulate micro-explosions, with the intent to study the temporal behavior of the fireball observed in field tests. During FY15, a plan was prepared and executed which assembled two laser ablation systems, procured materials for study, and tested a Step-Scan Fourier Transform Infrared Spectrometer (SS-FTIR). Designs for a shadowgraph system for shock wave analysis, design for a micro-particulate collector from ablated pulse were accomplished. A novel spectroscopic system was conceived and a prototype system built for acquisition of spectral/temporal characterization of a high speed event such as from a high explosive detonation. Experiments and analyses will continue into FY16.

  12. Explosive material treatment in particular the explosive compaction of powders

    International Nuclear Information System (INIS)

    Pruemmer, R.

    1985-01-01

    The constructive use of explosives in the last decades has led to new procedures in manufacturing techniques. The most important of these are explosive forming and cladding, the latter especially for the production of compound materials. The method of explosive compaction has the highest potential for further innovation. Almost theoretical densities are achievable in the green compacts as the pressure released by detonating explosives are very high. Also, the production of new conditions of materials (metastable high pressure phases) is possible. (orig.) [de

  13. High methane natural gas/air explosion characteristics in confined vessel.

    Science.gov (United States)

    Tang, Chenglong; Zhang, Shuang; Si, Zhanbo; Huang, Zuohua; Zhang, Kongming; Jin, Zebing

    2014-08-15

    The explosion characteristics of high methane fraction natural gas were investigated in a constant volume combustion vessel at different initial conditions. Results show that with the increase of initial pressure, the peak explosion pressure, the maximum rate of pressure rise increase due to a higher amount (mass) of flammable mixture, which delivers an increased amount of heat. The increased total flame duration and flame development time result as a consequence of the higher amount of flammable mixture. With the increase of the initial temperature, the peak explosion pressures decrease, but the pressure increase during combustion is accelerated, which indicates a faster flame speed and heat release rate. The maximum value of the explosion pressure, the maximum rate of pressure rise, the minimum total combustion duration and the minimum flame development time is observed when the equivalence ratio of the mixture is 1.1. Additionally, for higher methane fraction natural gas, the explosion pressure and the maximum rate of pressure rise are slightly decreased, while the combustion duration is postponed. The combustion phasing is empirically correlated with the experimental parameters with good fitting performance. Furthermore, the addition of dilute gas significantly reduces the explosion pressure, the maximum rate of pressure rise and postpones the flame development and this flame retarding effect of carbon dioxide is stronger than that of nitrogen. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Computer code to predict the heat of explosion of high energy materials

    International Nuclear Information System (INIS)

    Muthurajan, H.; Sivabalan, R.; Pon Saravanan, N.; Talawar, M.B.

    2009-01-01

    The computational approach to the thermochemical changes involved in the process of explosion of a high energy materials (HEMs) vis-a-vis its molecular structure aids a HEMs chemist/engineers to predict the important thermodynamic parameters such as heat of explosion of the HEMs. Such a computer-aided design will be useful in predicting the performance of a given HEM as well as in conceiving futuristic high energy molecules that have significant potential in the field of explosives and propellants. The software code viz., LOTUSES developed by authors predicts various characteristics of HEMs such as explosion products including balanced explosion reactions, density of HEMs, velocity of detonation, CJ pressure, etc. The new computational approach described in this paper allows the prediction of heat of explosion (ΔH e ) without any experimental data for different HEMs, which are comparable with experimental results reported in literature. The new algorithm which does not require any complex input parameter is incorporated in LOTUSES (version 1.5) and the results are presented in this paper. The linear regression analysis of all data point yields the correlation coefficient R 2 = 0.9721 with a linear equation y = 0.9262x + 101.45. The correlation coefficient value 0.9721 reveals that the computed values are in good agreement with experimental values and useful for rapid hazard assessment of energetic materials

  15. Understanding the shock and detonation response of high explosives at the continuum and meso scales

    Science.gov (United States)

    Handley, C. A.; Lambourn, B. D.; Whitworth, N. J.; James, H. R.; Belfield, W. J.

    2018-03-01

    The shock and detonation response of high explosives has been an active research topic for more than a century. In recent years, high quality data from experiments using embedded gauges and other diagnostic techniques have inspired the development of a range of new high-fidelity computer models for explosives. The experiments and models have led to new insights, both at the continuum scale applicable to most shock and detonation experiments, and at the mesoscale relevant to hotspots and burning within explosive microstructures. This article reviews the continuum and mesoscale models, and their application to explosive phenomena, gaining insights to aid future model development and improved understanding of the physics of shock initiation and detonation propagation. In particular, it is argued that "desensitization" and the effect of porosity on high explosives can both be explained by the combined effect of thermodynamics and hydrodynamics, rather than the traditional hotspot-based explanations linked to pressure-dependent reaction rates.

  16. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    Directory of Open Access Journals (Sweden)

    Qingjie Jiao

    2018-03-01

    Full Text Available To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20 based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm grows gradually; shock wave energy (Es continues increasing, bubble energy (Eb increases then decreases peaking at 15% for both formulas, and the total energy (E and energy release rate (η peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.

  17. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    Science.gov (United States)

    Jiao, Qingjie; Wang, Qiushi; Nie, Jianxin; Guo, Xueyong; Zhang, Wei; Fan, Wenqi

    2018-03-01

    To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX) based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm) grows gradually; shock wave energy (Es) continues increasing, bubble energy (Eb) increases then decreases peaking at 15% for both formulas, and the total energy (E) and energy release rate (η) peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.

  18. Numerical simulation of the ionization effects of low- and high-altitude nuclear explosions

    International Nuclear Information System (INIS)

    Zhao Zhengyu; Wang Xiang

    2007-01-01

    Low-altitude and high-altitude nuclear explosions are sources of intensive additional ionization in ionosphere. In this paper, in terms of the ionization equilibrium equation system and the equation of energy deposition of radiation in atmosphere, and considering the influence of atmosphere, the temporal and spatial distribution of ionization effects caused by atmospheric nuclear detonation are investigated. The calculated results show that the maximum of additional free electron density produced by low-altitude nuclear explosion is greater than that by the high-altitude nuclear burst. As to the influence of instant nuclear radiation, there is obvious difference between the low-altitude and the high-altitude explosions. The influence range and the continuance time caused by delayed nuclear radiation is less for the low-altitude nuclear detonation than that for the high-altitude one. (authors)

  19. High explosive spot test analyses of samples from Operable Unit (OU) 1111

    Energy Technology Data Exchange (ETDEWEB)

    McRae, D.; Haywood, W.; Powell, J.; Harris, B.

    1995-01-01

    A preliminary evaluation has been completed of environmental contaminants at selected sites within the Group DX-10 (formally Group M-7) area. Soil samples taken from specific locations at this detonator facility were analyzed for harmful metals and screened for explosives. A sanitary outflow, a burn pit, a pentaerythritol tetranitrate (PETN) production outflow field, an active firing chamber, an inactive firing chamber, and a leach field were sampled. Energy dispersive x-ray fluorescence (EDXRF) was used to obtain semi-quantitative concentrations of metals in the soil. Two field spot-test kits for explosives were used to assess the presence of energetic materials in the soil and in items found at the areas tested. PETN is the major explosive in detonators manufactured and destroyed at Los Alamos. No measurable amounts of PETN or other explosives were detected in the soil, but items taken from the burn area and a high-energy explosive (HE)/chemical sump were contaminated. The concentrations of lead, mercury, and uranium are given.

  20. Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility.

    Science.gov (United States)

    Pielhop, Thomas; Amgarten, Janick; von Rohr, Philipp Rudolf; Studer, Michael H

    2016-01-01

    Steam explosion pretreatment has been examined in many studies for enhancing the enzymatic digestibility of lignocellulosic biomass and is currently the most common pretreatment method in commercial biorefineries. The information available about the effect of the explosive decompression on the biochemical conversion is, however, very limited, and no studies prove that the latter is actually enhanced by the explosion. Hence, it is of great value to discern between the effect of the explosion on the one hand and the steaming on the other hand, to identify their particular influences on enzymatic digestibility. The effect of the explosive decompression in the steam explosion pretreatment of spruce wood chips on their enzymatic cellulose digestibility was studied systematically. The explosion had a high influence on digestibility, improving it by up to 90 % compared to a steam pretreatment without explosion. Two factors were identified to be essentially responsible for the effect of the explosion on enzymatic digestibility: pretreatment severity and pressure difference of the explosion. A higher pretreatment severity can soften up and weaken the lignocellulose structure more, so that the explosion can better break up the biomass and decrease its particle size, which enhances its digestibility. In particular, increasing the pressure difference of the explosion leads to more defibration, a smaller particle size and a better digestibility. Though differences were found in the micro- and nanostructure of exploded and non-exploded biomass, the only influence of the explosion on digestibility was found to be the macroscopic particle size reduction. Steam explosion treatments with a high severity and a high pressure difference of the explosion lead to a comparatively high cellulose digestibility of the-typically very recalcitrant-softwood biomass. This is the first study to show that explosion can enhance the enzymatic digestibility of lignocellulosic biomass. If the

  1. Estudo morfofuncional das glândulas mamárias de Mão Pelada, Procyon cancrivorus Morphofunctional study of Crab-eating Raccoon (Procyon cancrivorus mammary gland

    Directory of Open Access Journals (Sweden)

    Tatiana Bellatine

    2010-08-01

    Full Text Available Para a descrição macro e microscópica das glândulas mamárias foram utilizadas três fêmeas de Mão Pelada (Procyon cancrivorus. As amostras das glândulas foram processadas conforme técnicas rotineiras para histologia. As fêmeas estudadas apresentaram 3 pares de glândulas mamárias, sendo um par de glândula mamária abdominal cranial, um par de abdominal caudal e um par de inguinal. As papilas mamárias apresentaram formato pendular, como os canídeos domésticos. Microscopicamente, a glândula mamária apresentou da porção externa para a interna: epiderme (epitélio estratificado pavimentoso queratinizado, derme (tecido conjuntivo frouxo e tecido conjuntivo denso não modelado, fibras musculares lisas e ductos papilíferos que abrem em vários ósteos papilares em formato de "chuveiro". A porção secretora glandular era caracteristicamente túbulo alveolar, com células cuboidais dispostas em camada simples. Os resultados indicam que o conjunto glandular estudado é semelhante ao da cadela (Cannis familiaris tanto em seu aspecto macroscópico quanto em seu aspecto microscópico, este fato sugere que podemos utilizar o Mão Pelada e o Cão como modelos similares de estudo, para identificação de patologias relacionadas a este sistema.Three Procyon cancrivorus females were studied with emphasis for gross and microscopical description of the mammary glands. Samples of the glands were processed with routine techniques for histology. The females studied presented three pairs of mammary glands: one pair of cranial abdominal mammary glands, a second pair of caudal abdominal and a third one, as inguinal mammary glands. Mammary papillae presented a pendulum shape, as in the domestic dogs. Microscopically, the mammary gland consisted from the external to the internal portion (1 of stratified squamous epithelium of the epidermis, (2 dense irregular connective tissue of the derma, and (3 smooth muscle fibers and papillary ducts that flowed

  2. Strategies for the disposition of high explosives resulting from dismantlement of nuclear weapons

    International Nuclear Information System (INIS)

    Pruneda, C.; Humphrey, J.

    1993-03-01

    Many thousands of pounds of high quality main-charge explosives will result as surplus from the dismantlement of returns from the US nuclear weapons stockpile. The method most often employed for dealing with this surplus explosive is destruction by open burning. However, open burning as a means of treating excess explosives is losing favor because of environmental concerns associated with such an uncontrolled thermal destruction process. Thus, alternative processes for treatment of excess explosives from weapon dismantlement is discussed. These alternatives include: reformulation, crystalline component recovery, chemical conversion of the crystalline component to higher value products which may have civilian or military applications and, when necessary, treatment as waste in an environmentally benign fashion

  3. Optical detection of explosives: spectral signatures for the explosive bouquet

    Science.gov (United States)

    Osborn, Tabetha; Kaimal, Sindhu; Causey, Jason; Burns, William; Reeve, Scott

    2009-05-01

    Research with canines suggests that sniffer dogs alert not on the odor from a pure explosive, but rather on a set of far more volatile species present in an explosive as impurities. Following the explosive trained canine example, we have begun examining the vapor signatures for many of these volatile impurities utilizing high resolution spectroscopic techniques in several molecular fingerprint regions. Here we will describe some of these high resolution measurements and discuss strategies for selecting useful spectral signature regions for individual molecular markers of interest.

  4. Novel high-fidelity realistic explosion damage simulation for urban environments

    Science.gov (United States)

    Liu, Xiaoqing; Yadegar, Jacob; Zhu, Youding; Raju, Chaitanya; Bhagavathula, Jaya

    2010-04-01

    Realistic building damage simulation has a significant impact in modern modeling and simulation systems especially in diverse panoply of military and civil applications where these simulation systems are widely used for personnel training, critical mission planning, disaster management, etc. Realistic building damage simulation should incorporate accurate physics-based explosion models, rubble generation, rubble flyout, and interactions between flying rubble and their surrounding entities. However, none of the existing building damage simulation systems sufficiently faithfully realize the criteria of realism required for effective military applications. In this paper, we present a novel physics-based high-fidelity and runtime efficient explosion simulation system to realistically simulate destruction to buildings. In the proposed system, a family of novel blast models is applied to accurately and realistically simulate explosions based on static and/or dynamic detonation conditions. The system also takes account of rubble pile formation and applies a generic and scalable multi-component based object representation to describe scene entities and highly scalable agent-subsumption architecture and scheduler to schedule clusters of sequential and parallel events. The proposed system utilizes a highly efficient and scalable tetrahedral decomposition approach to realistically simulate rubble formation. Experimental results demonstrate that the proposed system has the capability to realistically simulate rubble generation, rubble flyout and their primary and secondary impacts on surrounding objects including buildings, constructions, vehicles and pedestrians in clusters of sequential and parallel damage events.

  5. Explosive magnetic flux compression plate generators as fast high-energy power sources

    International Nuclear Information System (INIS)

    Caird, R.S.; Erickson, D.J.; Garn, W.B.; Fowler, C.M.

    1976-01-01

    A type of explosive driven generator, called a plate generator, is described. It is capable of delivering electrical energies in the MJ range at TW power levels. Plane wave detonated explosive systems accelerate two large-area metal plates to high opposing velocities. An initial magnetic field is compressed and the flux transferred to an external load. The characteristics of the plate generator are described and compared with those of other types of generators. Methods of load matching are discussed. The results of several high-power experiments are also given

  6. High-Speed Imaging of Explosive Droplet Boiling at the Superheat Limit

    Science.gov (United States)

    Ferris, F. Robert; Hermanson, Jim; Asadollahi, Arash; Esmaeeli, Asghar

    2017-11-01

    The explosive boiling processes of droplets of diethyl ether (1-2 mm in diameter) at the superheat limit were examined both experimentally and computationally. Experimentally, droplet explosion was studied using a heated bubble column to bring the test droplet to the superheat limit. The droplet fluid was diethyl ether (superheat limit 147 C at 1 bar) with immiscible glycerol employed as the heated host fluid. Tests were carried out at pressures between 0.5 and 4 bar absolute. The pressure rise associated with the explosive boiling event was captured using a piezoelectric quartz pressure transducer with a 1 MHz DAQ system. High-speed imaging of the interfacial behavior during explosive boiling was performed using a Phantom v12.1 camera at a frame rate of up to one million frames per second with the droplets illuminated by diffuse back-lighting. The imaging reveals features of the Rayleigh-Taylor instability at the vapor-liquid interface resulting from the unstable boiling process. Computationally, Direct Numerical Simulations are performed at Southern Illinois University Carbondale to compliment the experimental tests. NSF Award Number 1511152.

  7. Prevalence of agglutinating antibodies to Toxoplasma gondii in striped skunks (Mephitis mephitis), opossums (Didelphis virginiana), and raccoons (Procyon lotor) from Connecticut

    OpenAIRE

    Mitchell, S. M.; Richardson, D. J.; Lindsay, D. S.

    2006-01-01

    The prevalence of agglutinating antibodies to Toxoplasma gondii was examined in striped skunks (Mephitis mephitis), opossums (Didelphis virginiana), and raccoons (Procyon lotor) from 8 cities in Connecticut. Ten (42%) of the 24 striped skunks, 2 of 7 (29%) opossums, and 12 of 12 (100%) raccoons were positive at dilutions of 1:50 or greater. These results suggest that T. gondii is prevalent in the environment, or prey items, or both, of these omnivores in Connecticut.

  8. Prevalence of agglutinating antibodies to Toxoplasma gondii in striped skunks (Mephitis mephitis), opossums (Didelphis virginiana), and raccoons (Procyon lotor) from Connecticut.

    Science.gov (United States)

    Mitchell, Sheila M; Richardson, Dennis J; Lindsay, David S

    2006-06-01

    The prevalence of agglutinating antibodies to Toxoplasma gondii was examined in striped skunks (Mephitis mephitis), opossums (Didelphis virginiana), and raccoons (Procyon lotor) from 8 cities in Connecticut. Ten (42%) of the 24 striped skunks, 2 of 7 (29%) opossums, and 12 of 12 (100%) raccoons were positive at dilutions of 1:50 or greater. These results suggest that T. gondii is prevalent in the environment, or prey items, or both, of these omnivores in Connecticut.

  9. Helminths of the raccoon (Procyon lotor) in western Kentucky.

    Science.gov (United States)

    Cole, R A; Shoop, W L

    1987-08-01

    Seventy raccoons (Procyon lotor) from western Kentucky were examined for helminths from December 1985 through May 1986. Twenty-three species of helminths were collected including 10 species of Trematoda (Brachylaima virginiana, Euryhelmis squamula, Eurytrema procyonis, Fibricola cratera, Gyrosoma singulare, Maritreminoides nettae, Mesostephanus appendiculatoides, Metagonimoides oregonensis, Paragonimus kellicotti, Pharyngostomoides procyonis), 2 species of Cestoda (Atriotaenia procyonis, Mesocestoides variabilis), 10 species of Nematoda (Arthrocephalus lotoris, Baylisascaris procyonis, Capillaria putorii, C. plica, Crenosoma goblei, Dracunculus insignis, Gnathostoma procyonis, Molineus barbatus, Physaloptera rara, Trichinella spiralis), and 1 species of Acanthocephala (Macracanthorhynchus ingens). A mean of 6.4 (3-11) helminth species per host was recorded. Fibricola cratera, Atriotaenia procyonis, Mesocestoides variabilis, Arthrocephalus lotoris, Capillaria plica, Dracunculus insignis, Molineus barbatus, and Physaloptera rara were ubiquitous parasites of the raccoon, whereas specific nidi were observed for Eurytrema procyonis, Gyrosoma singulare, Paragonimus kellicotti, Baylisascaris procyonis, Trichinella spiralis, and Macracanthorhyncus ingens. With an overall prevalence of 10% or higher, 15 of the 23 helminth species were considered common parasites of the raccoon in western Kentucky. When the 10% prevalence rate was applied within geographical quadrants to correct for the presence of nidi it was found that 18 of the 23 helminth species were common and 5 were regarded as rare parasites of the raccoon. Two species of nematodes, T. spiralis and B. procyonis, displayed a markedly higher prevalence in male raccoons.

  10. Normal conjunctival flora in the North American opossum (Didelphis virginiana) and raccoon (Procyon lotor).

    Science.gov (United States)

    Pinard, Chantale L; Brightman, Alan H; Yeary, Teresa J; Everson, Troy D; Cox, Linda K; Chengappa, M M; Davidson, Harriet J

    2002-10-01

    We documented the normal conjunctival bacterial flora from 17 opossums (Didelphis virginiana) and 10 raccoons (Procyon lotor) trapped in Manhattan, Kansas (USA) from November 1999 to January 2000. Both raccoons and opossums were free of apparent ocular disease. The inferior conjunctival sacs of each animal were swabbed for aerobic bacterial and Mycoplasma culture and polymerase chain reaction (PCR) for Mycoplasma and Chlamydia detection. All conjunctival samples were positive for one or more species of aerobic bacteria. The most common isolate from opossums was Staphylococcus spp. Other isolates included Streptococcus spp., Bacillus spp., Corynebacterium spp., and Enterococcus faecalis. The most common isolates in raccoons was Bacillus spp. Other isolates included Streptococcus spp., Staphylococcus spp., non-hemolytic Escherichia coli, and Enterococcus faecalis. Mycoplasma culture was negative in samples from opossums and raccoons. Evidence of Mycoplasma and Chlamydia presence was detected by PCR.

  11. The ionization effects from nuclear explosions in high-altitude and their effect to radio propagation

    International Nuclear Information System (INIS)

    Guan Rongsheng; Li Qin

    1997-01-01

    A high-altitude nuclear explosions releases large quantities of energetic particles and electromagnetic radiation capable of producing ionization in the atmosphere. These particles and rays radiation character in the atmosphere are discussed. Ionizations due to explosion X rays, γ rays, neutrons and β particles are considered separately. The time-space distribution of additional electron density is computed and its nature is analyzed. The effects of explosion-induced ionization on the absorption of radio wave is considered and the dependence of the absorption on explosion characteristics, distance from the earth's atmosphere, and frequency of the radio wave is determined

  12. Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Kevin B [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walton, Otis R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benjamin, Russ [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlop, William H [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-29

    A computational study was performed to examine the differences in near-surface ground-waves and air-blast waves generated by high-explosive energy sources and those generated by much higher energy - density low - yield nuclear sources. The study examined the effect of explosive-source emplacement (i.e., height-of-burst, HOB, or depth-of-burial, DOB) over a range from depths of -35m to heights of 20m, for explosions with an explosive yield of 1-kt . The chemical explosive was modeled by a JWL equation-of-state model for a ~14m diameter sphere of ANFO (~1,200,000kg – 1 k t equivalent yield ), and the high-energy-density source was modeled as a one tonne (1000 kg) plasma of ‘Iron-gas’ (utilizing LLNL’s tabular equation-of-state database, LEOS) in a 2m diameter sphere, with a total internal-energy content equivalent to 1 k t . A consistent equivalent-yield coupling-factor approach was developed to compare the behavior of the two sources. The results indicate that the equivalent-yield coupling-factor for air-blasts from 1 k t ANFO explosions varies monotonically and continuously from a nearly perfec t reflected wave off of the ground surface for a HOB ≈ 20m, to a coupling factor of nearly zero at DOB ≈ -25m. The nuclear air - blast coupling curve, on the other hand, remained nearly equal to a perfectly reflected wave all the way down to HOB’s very near zero, and then quickly dropped to a value near zero for explosions with a DOB ≈ -10m. The near - surface ground - wave traveling horizontally out from the explosive source region to distances of 100’s of meters exhibited equivalent - yield coupling - factors t hat varied nearly linearly with HOB/DOB for the simulated ANFO explosive source, going from a value near zero at HOB ≈ 5m to nearly one at DOB ≈ -25m. The nuclear-source generated near-surface ground wave coupling-factor remained near zero for almost all HOB’s greater than zero, and then appeared to vary nearly - linearly with depth

  13. Numerical Simulation and Experimental Study on Formation of High Concentration of H2 Generated by Gas Explosion

    Directory of Open Access Journals (Sweden)

    Lei Baiwei

    2016-10-01

    Full Text Available In coal mine fire rescues, if the abnormal increase of gas concentration occurs, it is the primary thing to analyze the reasons and identify sources of the abnormal forming, which is also the basis of judge the combustion state of fire area and formulate proper fire reliefs. Nowadays, related researches have recognized the methane explosion as the source of high concentration of H2 formation, but there are few studies about the conditions and reaction mechanism of gas explosion generating high concentration of H2.Therefore, this paper uses the chemical kinetic calculation software, ChemKin, and the 20L spherical explosion experimental device to simulate the generating process and formation conditions of H2 in gas explosion. The experimental results show that: the decomposition of water vapor is the main base element reaction (R84 which leads to the generation of H2.The free radical H is the key factor to influence the formation of H2 generated from gas explosion. With the gradual increase of gas explosion concentration, the explosive reaction becomes more incomplete, and then the generating quantity of H2 increases gradually. Experimental results of 20L spherical explosion are consistent with the change trend about simulation results, which verifies the accuracy of simulation analysis. The results of explosion experiments show that when gas concentration is higher than 9%, the incomplete reaction of methane explosion increases which leads to the gradual increase of H2 formation.

  14. A novel method for the measurement of the von Neumann spike in detonating high explosives

    Science.gov (United States)

    Sollier, A.; Bouyer, V.; Hébert, P.; Doucet, M.

    2016-06-01

    We present detonation wave profiles measured in T2 (97 wt. % TATB) and TX1 (52 wt. % TATB and 45 wt. % HMX) high explosives. The experiments consisted in initiating a detonation wave in a 15 mm diameter cylinder of explosive using an explosive wire detonator and an explosive booster. Free surface velocity wave profiles were measured at the explosive/air interface using a Photon Doppler Velocimetry system. We demonstrate that a comparison of these free surface wave profiles with those measured at explosive/window interfaces in similar conditions allows to bracket the von Neumann spike in a narrow range. For T2, our measurements show that the spike pressure lies between 35.9 and 40.1 GPa, whereas for TX1, it lies between 42.3 and 47.0 GPa. The numerical simulations performed in support to these measurements show that they can be used to calibrate reactive burn models and also to check the accuracy of the detonation products equation of state at low pressure.

  15. Research of explosives in an environment of high pressure and temperature using a new test stand

    Directory of Open Access Journals (Sweden)

    Jan Drzewiecki

    2015-01-01

    Full Text Available In this article the test stand for determining the blast abilities of explosives in high pressure and temperature conditions as well as the initial results of the research are presented. Explosives are used in rock burst and methane prevention to destroy precisely defined fragments of the rock mass where energy and methane are accumulated. Using this preventive method for fracturing the structure of the rocks which accumulate the energy or coal of the methane seam very often does not bring the anticipated results. It is because of the short range of destructive action of the post-blast gases around the blast hole. Evaluation of the blast dynamics of explosives in a test chamber, i.e. in the pressure and temperature conditions comparable to those found “in situ”, will enable evaluation of their real usefulness in commonly used mining hazard preventive methods. At the same time, it will enable the development of new designs of the explosive charges used for precisely determined mining hazards. In order to test the explosives for their use in difficult environmental conditions and to determine the characteristics of their explosion, a test chamber has been built. It is equipped with a system of sensors and a high-frequency recording system of pressure and temperature during a controlled explosion of an explosive charge. The results of the research will enable the development of new technologies for rock burst and methane prevention which will significantly increase workplace health and safety level. This paper presented results constitute the initial phase of research started in the middle of 2014.

  16. Modeling a High Explosive Cylinder Experiment

    Science.gov (United States)

    Zocher, Marvin A.

    2017-06-01

    Cylindrical assemblies constructed from high explosives encased in an inert confining material are often used in experiments aimed at calibrating and validating continuum level models for the so-called equation of state (constitutive model for the spherical part of the Cauchy tensor). Such is the case in the work to be discussed here. In particular, work will be described involving the modeling of a series of experiments involving PBX-9501 encased in a copper cylinder. The objective of the work is to test and perhaps refine a set of phenomenological parameters for the Wescott-Stewart-Davis reactive burn model. The focus of this talk will be on modeling the experiments, which turned out to be non-trivial. The modeling is conducted using ALE methodology.

  17. Impulsive shock induced single drop steam explosion visualized by high-speed x-ray radiography and photography - metallic melt

    International Nuclear Information System (INIS)

    Park, H. S.; Hansson, R. C.; Sehgal, B. R.

    2003-01-01

    Experimental investigation of fine fragmentation process during vapor explosion was conducted in a small-scale single drop system employing continuous high-speed X-ray radiography and photography. A molten tin drop of about 0.7 g at approximately 1000 .deg. C was dropped into a water pool, at temperatures ranging from 20 to 90 .deg. C, and the explosion was triggered by an external shock pulse of about 1 MPa. X-ray radiographs show that finely fragmented melt particles accelerates to the vapor bubble boundary and forms a particle shell during the period of vapor bubble expansion due to vapor explosions. From the photographs, it was possible to observe a number of counter-jets on the vapor boundary. For tests with highly subcooled coolant, local explosion due to external impulsive shock trigger initiates the stratified mode of explosion along the entire melt surface. For tests with lower subcooled coolant local explosions were initiated by an external impulsive shock trigger and by collapse of vapor/gas pocket attached on the top of the melt drop. Transient spatial distribution map of melt fragments during vapor explosion was obtained by a series of image processing and calibration tests

  18. Motivation for a High Explosive Testing Program in South Africa

    Science.gov (United States)

    2015-12-04

    environment for several decades. Much has been learned about the impact of high in situ stress and its influence on rock bursts (violent rock ...is the possibility of evasive nuclear testing in deep mine environments where the release of high stress fields by an explosion can resemble a rock ... burst or natural earthquake. This paper provides background information on previous research in and around the deep mines of South Africa and lays

  19. iVCJ: A tool for Interactive Visualization of high explosives CJ states

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aslam, Tariq Dennis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Whitley, Von Howard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-12

    A graphical user interface (GUI) tool has been developed that facilitates the visualization and analysis of the Chapman-Jouguet state for high explosives gaseous products using the Jones- Wilkins-Lee equation of state.

  20. Biodegradation of the High Explosive Hexanitrohexaazaiso-wurtzitane (CL-20)

    OpenAIRE

    Karakaya, Pelin; Christodoulatos, Christos; Koutsospyros, Agamemnon; Balas, Wendy; Nicolich, Steve; Sidhoum, Mohammed

    2009-01-01

    The aerobic biodegradability of the high explosive CL-20 by activated sludge and the white rot fungus Phanerochaete chrysosporium has been investigated. Although activated sludge is not effective in degrading CL-20 directly, it can mineralize the alkaline hydrolysis products. Phanerochaete chrysosporium degrades CL-20 in the presence of supplementary carbon and nitrogen sources. Biodegradation studies were conducted using various nutrient media under diverse conditions. Variables included the...

  1. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  2. Explosive simulants for testing explosive detection systems

    Science.gov (United States)

    Kury, John W.; Anderson, Brian L.

    1999-09-28

    Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

  3. Phenomenological modelling of steam explosions

    International Nuclear Information System (INIS)

    Corradini, M.L.; Drumheller, D.S.

    1980-01-01

    During a hypothetical core meltdown accident, an important safety issue to be addressed is the potential for steam explosions. This paper presents analysis and modelling of experimental results. There are four observations that can be drawn from the analysis: (1) vapor explosions are suppressed by noncondensible gases generated by fuel oxidation, by high ambient pressure, and by high water temperatures; (2) these effects appear to be trigger-related in that an explosion can again be induced in some cases by increasing the trigger magnitude; (3) direct fuel liquid-coolant liquid contact can explain small scale fuel fragmentation; (4) heat transfer during the expansion phase of the explosion can reduce the work potential

  4. Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations

    Directory of Open Access Journals (Sweden)

    Clare Kimblin

    2017-09-01

    Full Text Available Experimental investigations into the characteristics of laser-induced plasmas indicate that LIBS provides a relatively inexpensive and easily replicable laboratory technique to isolate and measure reactions germane to understanding aspects of high-explosive detonations under controlled conditions. Spectral signatures and derived physical parameters following laser ablation of aluminum, graphite and laser-sparked air are examined as they relate to those observed following detonation of high explosives and as they relate to shocked air. Laser-induced breakdown spectroscopy (LIBS reliably correlates reactions involving atomic Al and aluminum monoxide (AlO with respect to both emission spectra and temperatures, as compared to small- and large-scale high-explosive detonations. Atomic Al and AlO resulting from laser ablation and a cited small-scale study, decay within ∼10-5 s, roughly 100 times faster than the Al and AlO decay rates (∼10-3 s observed following the large-scale detonation of an Al-encased explosive. Temperatures and species produced in laser-sparked air are compared to those produced with laser ablated graphite in air. With graphite present, CN is dominant relative to N2+. In studies where the height of the ablating laser’s focus was altered relative to the surface of the graphite substrate, CN concentration was found to decrease with laser focus below the graphite surface, indicating that laser intensity is a critical factor in the production of CN, via reactive nitrogen.

  5. Demographics, diet, movements, and survival of an isolated, unmanaged raccoon Procyon lotor (Procyonidae, Carnivora) population on the Outer Banks of North Carolina

    Science.gov (United States)

    Parsons, Arielle Waldstein; Simons, Theodore R.; O'Connell, Allan F.; Stoskopf, Michael K.

    2012-01-01

    Raccoons (Procyon lotor) are highly adaptable meso-carnivores that inhabit many environments, including the Atlantic barrier islands, where their role as predators of declining, beach-nesting bird and turtle species is of particular interest. Population models that improve our understanding of predator-prey dynamics are receiving increasing attention in the literature; however, their effective application requires site-specific information on population parameters. We studied an unharvested raccoon population on the Outer Banks of North Carolina and evaluated spatial and seasonal differences in a number of population/demographic factors of raccoons inhabiting areas of high and low human activity. Raccoons denned and foraged primarily in salt marsh habitats but shifted their movements in response to changes in seasonal resource conditions. The population was skewed toward older animals and exhibited delayed breeding, typical of populations at high density with few sources of mortality. Diet and movement analysis indicated shorebird and turtle predation was attributed to a small number of individual raccoons. Although seasonal resources appeared adequate to sustain a high population density of raccoons, poor body condition and low recruitment suggested a population near carrying capacity.

  6. High energy materials. Propellants, explosives and pyrotechnics

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Jai Prakash

    2010-07-01

    Authored by an insider with over 40 years of high energy materials (HEMs) experience in academia, industry and defence organizations, this handbook and ready reference covers all important HEMs from the 1950s to the present with their respective properties and intended purposes. Written at an attainable level for professionals, engineers and technicians alike, the book provides a comprehensive view of the current status and suggests further directions for research and development. An introductory chapter on the chemical and thermodynamic basics allows the reader to become acquainted with the fundamental features of explosives, before moving on to the important safety aspects in processing, handling, transportation and storage of high energy materials. With its collation of results and formulation strategies hitherto scattered in the literature, this should be on the shelf of every HEM researcher and developer. (orig.)

  7. Nanotwin Formation in High-Manganese Austenitic Steels Under Explosive Shock Loading

    Science.gov (United States)

    Canadinc, D.; Uzer, B.; Elmadagli, M.; Guner, F.

    2018-04-01

    The micro-deformation mechanisms active in a high-manganese austenitic steel were investigated upon explosive shock loading. Single system of nanotwins forming within primary twins were shown to govern the deformation despite the elevated temperatures attained during testing. The benefits of nanotwin formation for potential armor materials were demonstrated.

  8. Electron stereodynamics in coulomb explosion of molecules by slow highly charged ions

    International Nuclear Information System (INIS)

    Ichimura, Atsushi; Ohyama-Yamaguchi, Tomoko

    2008-01-01

    The three-center Coulombic over-the-barrier model is developed for Coulomb explosion of a homonuclear diatomic molecule in collisions with a slow (∼10 eV/amu) highly charged ion. A conventional two-step picture of multiple electron transfer followed by Coulomb explosion is far from appropriate because the molecule sets out to dissociate before the incident ion approaches the closest distance. We treat the formation of a quasi-molecule and its decay into the three moving atomic ions. Charge-asymmetric population between fragment ions observed in a triple-coincidence measurement is suggested to reflect the bond elongation during a collision. Collisions of Kr 8+ + N 2 are analyzed. (author)

  9. High Resolution Digital Elevation Models of Pristine Explosion Craters

    Science.gov (United States)

    Farr, T. G.; Krabill, W.; Garvin, J. B.

    2004-01-01

    In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements

  10. Study of nanometric thin pyrolytic carbon films for explosive electron emission cathode in high-voltage planar diode

    Energy Technology Data Exchange (ETDEWEB)

    Baryshevsky, Vladimir; Belous, Nikolai; Gurinovich, Alexandra; Gurnevich, Evgeny [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); Kuzhir, Polina, E-mail: polina.kuzhir@gmail.com [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); National Research Tomsk State University, 36 Lenin Prospekt, Tomsk 634050 (Russian Federation); Maksimenko, Sergey [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); National Research Tomsk State University, 36 Lenin Prospekt, Tomsk 634050 (Russian Federation); Molchanov, Pavel; Shuba, Mikhail [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); Roddatis, Vladimir [CIC energiGUNE, Albert Einstein 48, 01510 Minano, Alava (Spain); Institut für Materialphysik of Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Kaplas, Tommi; Svirko, Yuri [Institute of Photonics, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101 (Finland)

    2015-04-30

    We report on an experimental study of explosive electron emission properties of cathode made by nanometric thin pyrolytic carbon (PyC) films (2–150 nm) deposited on Cu substrate via methane-based chemical vapor deposition. High current density at level of 300 A/cm{sup 2} in 5 · 10{sup −5} Pa vacuum has been observed together with very stable explosive emission from the planar cathode. The Raman spectroscopy investigation proves that the PyC films remain the same after seven shots. According to the optical image analysis of the cathode before and after one and seven shots, we conclude that the most unusual and interesting feature of using the PyC films/Cu cathode for explosive emission is that the PyC layer on the top of the copper target prevents its evaporation and oxidation, which leads to higher emission stability compared to conventional graphitic/Cu cathodes, and therefore results in longer working life. - Highlights: • Explosive electron emission from pyrolytic carbon (PyC) cathode is reported. • We observe high current density, 300 A/cm{sup 2}, and stable emission parameters. • PyC integrity ensures a high application potential for high current electronics.

  11. Steam explosion studies review

    International Nuclear Information System (INIS)

    Hwang, Moon Kyu; Kim, Hee Dong

    1999-03-01

    When a cold liquid is brought into contact with a molten material with a temperature significantly higher than the liquid boiling point, an explosive interaction due to sudden fragmentation of the melt and rapid evaporation of the liquid may take place. This phenomenon is referred to as a steam explosion or vapor explosion. Depending upon the amount of the melt and the liquid involved, the mechanical energy released during a vapor explosion can be large enough to cause serious destruction. In hypothetical severe accidents which involve fuel melt down, subsequent interactions between the molten fuel and coolant may cause steam explosion. This process has been studied by many investigators in an effort to assess the likelihood of containment failure which leads to large scale release of radioactive materials to the environment. In an effort to understand the phenomenology of steam explosion, extensive studies has been performed so far. The report presents both experimental and analytical studies on steam explosion. As for the experimental studies, both small scale tests which involve usually less than 20 g of high temperature melt and medium/large scale tests which more than 1 kg of melt is used are reviewed. For the modelling part of steam explosions, mechanistic modelling as well as thermodynamic modelling is reviewed. (author)

  12. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  13. 3-D high-speed imaging of volcanic bomb trajectory in basaltic explosive eruptions

    Science.gov (United States)

    Gaudin, D.; Taddeucci, J; Houghton, Bruce F.; Orr, Tim R.; Andronico, D.; Del Bello, E.; Kueppers, U.; Ricci, T.; Scarlato, P.

    2016-01-01

    Imaging, in general, and high speed imaging in particular are important emerging tools for the study of explosive volcanic eruptions. However, traditional 2-D video observations cannot measure volcanic ejecta motion toward and away from the camera, strongly hindering our capability to fully determine crucial hazard-related parameters such as explosion directionality and pyroclasts' absolute velocity. In this paper, we use up to three synchronized high-speed cameras to reconstruct pyroclasts trajectories in three dimensions. Classical stereographic techniques are adapted to overcome the difficult observation conditions of active volcanic vents, including the large number of overlapping pyroclasts which may change shape in flight, variable lighting and clouding conditions, and lack of direct access to the target. In particular, we use a laser rangefinder to measure the geometry of the filming setup and manually track pyroclasts on the videos. This method reduces uncertainties to 10° in azimuth and dip angle of the pyroclasts, and down to 20% in the absolute velocity estimation. We demonstrate the potential of this approach by three examples: the development of an explosion at Stromboli, a bubble burst at Halema'uma'u lava lake, and an in-flight collision between two bombs at Stromboli.

  14. Emission spectroscopy of hypervelocity impacts on aluminum, organic and high-explosive targets

    NARCIS (Netherlands)

    Verreault, J.; Day, J.P.R.; Halswijk, W.H.C.; Loiseau, J.; Huneault, J.; Higgins, A.J.; Devir, A.D.

    2015-01-01

    Laboratory experiments of hypervelocity impacts on aluminum, nylon and high-explosive targets are presented. Spectral measurements of the impact flash are recorded, together with radiometric measurements to derive the temperature of the flash. Such experiments aim at demonstrating that the impact

  15. Forensic Analysis of High Explosive Residues from Selected Cloth

    International Nuclear Information System (INIS)

    Mohamad Afiq Mohamed Huri; Umi Kalthom Ahmad

    2014-01-01

    Increased terrorist activities around the Asian region have resulted in the need for improved analytical techniques in forensic analysis. High explosive residues from post-blast clothing are often encountered as physical evidence submitted to a forensic laboratory. Therefore, this study was initiated to detect high explosives residues of cyclotrimethylenetrinitramine (RDX) and pentaerythritol tetranitrate (PETN) on selected cloth in this study. Cotton swabbing technique was employed as a simple and rapid method in recovering analytes from the sample matrix. Analytes were analyzed using Griess spot test, TLC and HPLC. TLC separation employed toluene-ethyl acetate (9:1) as a good solvent system. Reversed phase HPLC separation employed acetonitrile-water (65:35) as the mobile phase and analytes detected using a programmed wavelength. RDX was detected at 235 nm for the first 3.5 min and then switched to 215 nm for PETN. Limits of detection (LODs) of analytes were in the low ppm range (0.05 ppm for RDX and 0.25 ppm for PETN). Analyte recovery studies revealed that the type of cloth has a profound effect on the extraction efficiency. Analytes were recovered better for nylon as compared to cotton cloth. However, no analytes could be recovered from denim cloth. For post-blast samples, only RDX was detected in low concentration for both nylon and cotton cloth. (author)

  16. SURVEILLANCE FOR ANTIBODIES AGAINST SIX CANINE VIRUSES IN WILD RACCOONS (PROCYON LOTOR) IN JAPAN.

    Science.gov (United States)

    Aoki, Emiko; Soma, Takehisa; Yokoyama, Mayumi; Matsubayashi, Makoto; Sasai, Kazumi

    2017-10-01

    Raccoons (Procyon lotor) are found worldwide. They are frequently seen in crowded inner cities as well as in forests or wooded areas, often living in proximity to humans and their pets. We examined sera from 100 wild raccoons in Japan for antibodies to six canine viruses with veterinary significance to assess their potential as reservoirs. We also aimed to understand the distribution of potentially infected wildlife. We found that 7% of samples were seropositive for canine distemper virus (CDV), 10% for canine parvovirus type 2, 2% for canine adenovirus type 1, 6% for canine adenovirus type 2, and 7% for canine coronavirus. No samples were found to be seropositive for canine parainfluenza virus. Seropositivity rates for canine distemper virus and canine parvovirus type 2 were significantly different between areas, and younger raccoons (Canis lupus familiaris), our results suggest that they can act as reservoirs for some of these important canine viruses and might be involved in viral transmission. Further study should include isolation and analysis of canine viruses in wild raccoons from a wider area.

  17. Prevalence of agglutinating antibodies to Sarcocystis neurona in skunks (Mephitis Mephitis), raccoons (Procyon lotor), and opossums (Didelphis Virginiana) from Connecticut.

    Science.gov (United States)

    Mitchell, Sheila M; Richardson, Dennis J; Cheadle, M Andy; Zajac, Anne M; Lindsay, David S

    2002-10-01

    Equine protozoal myeloencephalitis is the most important protozoan disease of horses in North America and is usually caused by Sarcocystis neurona. Natural cases of encephalitis caused by S. neurona have been reported in skunks (Mephitis mephitis) and raccoons (Procyon lotor). Opossums (Didelphis spp.) are the only known definitive host. Sera from 24 striped skunks, 12 raccoons, and 7 opossums (D. virginiana) from Connecticut were examined for agglutinating antibodies to S. neurona using the S. neurona agglutination test (SAT) employing formalin-fixed merozoites as antigen. The SAT was validated for skunk sera using pre- and postinfection serum samples from 2 experimentally infected skunks. Of the 24 (46%) skunks 11 were positive, and all 12 raccoons were positive for S. neurona antibodies. None of the 7 opossums was positive for antibodies to S. neurona. These results suggest that exposure to sporocysts of S. neurona by intermediate hosts is high in Connecticut. The absence of antibodies in opossums collected from the same areas is most likely because of the absence of systemic infection in the definitive host.

  18. Review of Soviet studies related to peaceful underground nuclear explosions

    International Nuclear Information System (INIS)

    Lin, W.

    1978-01-01

    Theoretical and empirical studies of contained and crater-forming underground nuclear explosions by USSR investigators are reviewed and summarized. Published data on U.S., USSR, and French cavity-forming nuclear explosions are compared with those predicted by the formula. Empirical studies on U.S. and USSR cratering explosions, both high explosions, both high explosive and nuclear are summarized. The parameters governing an excavation explosion are reviewed

  19. Research on Initiation Sensitivity of Solid Explosive and Planer Initiation System

    Directory of Open Access Journals (Sweden)

    N Matsuo

    2016-09-01

    Full Text Available Firstly, recently, there are a lot of techniques being demanded for complex process, various explosive initiation method and highly accurate control of detonation are needed. In this research, the metal foil explosion using high current is focused attention on the method to obtain linear or planate initiation easily, and the main evaluation of metal foil explosion to initiate explosive was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metal foil explosion. Secondly, in high energy explosive processing, there are several applications, such as shock compaction, explosive welding, food processing and explosive forming. In these explosive applications, a high sensitive explosive has been mainly used. The high sensitive explosive is so dangerous, since it can lead to explosion suddenly. So, for developing explosives, the safety is the most important thing as well as low manufacturing cost and explosive characteristics. In this work, we have focused on the initiation sensitivity of a solid explosive and performed numerical analysis of sympathetic detonation. The numerical analysis is calculated by LS-DYNA 3D (commercial code. To understand the initiation reaction of an explosive, Lee-Tarver equation was used and impact detonation process was analyzed by ALE code. Configuration of simulation model is a quarter of circular cylinder. The donor type of explosive (SEP was used as initiation explosive. When the donor explosive is exploded, a shock wave is generated and it propagates into PMMA, air and metallic layers in order. During passing through the layers, the shock wave is attenuated and finally, it has influence on the acceptor explosive, Comp. B. Here, we evaluate the initiation of acceptor explosive and discuss about detonation pressure, reactive rate of acceptor explosive and attenuation of impact pressure.

  20. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  1. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Science.gov (United States)

    2013-10-28

    ..., including non-cap sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. [[Page 64247

  2. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    OpenAIRE

    Qingjie Jiao; Qiushi Wang; Jianxin Nie; Xueyong Guo; Wei Zhang; Wenqi Fan

    2018-01-01

    To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-...

  3. Forensic analysis of high explosives residues in post-blast water samples employing solid phase extraction for analyte pro-concentration

    International Nuclear Information System (INIS)

    Umi Kalsom Ahmad; Rajendran, Sumathy; Ling, Lee Woan

    2008-01-01

    Nitro aromatic, nitramine and nitrate ester compounds are a major group of high order explosive or better known as military explosives. Octahydro-1,3,5,7-tetrazocine (HMX), 1,3,5-hexahydro-1,3,5-trinitro triazine (RDX), 2,4,6-trinitro-toluene (TNT), pentaerythritol tetranitrate (PETN) and 2,4-dinitrotoluene (2,4-DNT) are secondary high explosives classified as most commonly used explosives components. There is an increasing demand for pre-concentration of these compounds in water samples as the sensitivity achieved by instrumental analytical methods for these high explosives residues are the main drawback in the application at trace levels for forensic analysis. Hence, a simple cartridge solid phase extraction (SPE) procedure was optimized as the off-line extraction and pre-concentration method to enhance the detection limit of high explosive residues using micellar electrokinetic chromatography (MEKC) and gas chromatography with electron-capture detection (GC-ECD) methods. The SPE cartridges utilized LiChrolut EN as the SPE adsorbent. By emplying pre-concentration using SPE, the detection limits of the target analytes in water sample were lowered by more than 1000 times with good percentage recovery (>87%) for MEKC method and lowered by 120 times with more than 2 % percentage recovery for GC-ECD methods. In order to test the feasibility of the developed method to real cases, post-blast water samples were analyzed. The post-blast water samples which were collected from Baling Bom training range, Ulu Kinta, Perak contained RDX and PETN in the range of 0.05 - 0.17 ppm and 0.0124 - 0.0390 ppm respectively. (author)

  4. Sensitivities of ionic explosives

    Science.gov (United States)

    Politzer, Peter; Lane, Pat; Murray, Jane S.

    2017-03-01

    We have investigated the relevance for ionic explosive sensitivity of three factors that have been demonstrated to be related to the sensitivities of molecular explosives. These are (1) the maximum available heat of detonation, (2) the amount of free space per molecule (or per formula unit) in the crystal lattice and (3) specific features of the electrostatic potential on the molecular or ionic surface. We find that for ionic explosives, just as for molecular ones, there is an overall tendency for impact sensitivity to increase as the maximum detonation heat release is greater. This means that the usual emphasis upon designing explosives with large heats of detonation needs to be tempered somewhat. We also show that a moderate detonation heat release does not preclude a high level of detonation performance for ionic explosives, as was already demonstrated for molecular ones. Relating the free space per formula unit to sensitivity may require a modified procedure for ionic explosives; this will continue to be investigated. Finally, an encouraging start has been made in linking impact sensitivities to the electrostatic potentials on ionic surfaces, although limited so far to ammonium salts.

  5. High explosive characterization for the dice throw event

    Energy Technology Data Exchange (ETDEWEB)

    Helm, F.; Finger, M.; Hayes, B.; Lee, E.; Cheung, H.; Walton, J.

    1976-06-16

    An equation of state for detonation products was developed to describe the detonation of large charges of ammonium nitrate/fuel oil (ANFO). The equation of state will be used to predict air-blast and ground-motion effects in the Dice Throw Event. The explosive performance of ANFO is highly dependent on charge size. The equation developed from this work is applicable to heavily confined detonations 101.6 mm in diameter or larger. The equation of state is based on results from experiments in cylinders and hemispheres, and a large field test. The report contains a detailed discussion of the diagnostic and initiation techniques used in these experiments.

  6. Determining the Coalescence of Hotspots into Uniform Detonation Fronts in High Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Steward, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Purdue Univ., West Lafayette, IN (United States); Mays, R. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Converse, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Baluyot, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tringe, J. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kane, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-14

    Microwave Interferometry (MI) offers the advantage of a continuous time measurement of detonation front velocity from detonation initiation to disassembly, which is an important step to assure the quality of stockpile high explosives. However, the method is currently characterized by areas of poor signal strength, which lead to low confidence measurements. Experiments in inert materials were conducted to determine if reflective hot spots, pockets of plasma that form during detonation, are responsible due to varying hot spot concentrations. Instead, it was found that the copper tube used in a range of standard HE test configurations is the cause of the poor signal reception. Hot spots were represented by microwave reflective aluminum particles. The aluminum was mixed with Titanium Dioxide, a material electrically similar to the insensitive high explosive, triaminotrinitrobenzene (TATB), in volume percent fractions (VPFs) between 0 and 100% aluminum, in increments of 10%. Reflectivity was measured based on input and reflection received from a test apparatus with a layer representing undetonated explosive and another representing an approaching shockwave. The results showed no correlation between VPF and measured reflectivity test cases while enclosed in the standard copper tube. Upon further testing, each sample’s measured reflectivity independent of the copper enclosure did correlate with VPF. This revealed that the test enclosure currently used for MI measurements is causing poor MI signal reception, and new methods must be developed to account for this aberration in MI measurements.

  7. Problems in the theory of point explosions

    Science.gov (United States)

    Korobeinikov, V. P.

    The book is concerned with the development of the theory of point explosions, which is relevant to the study of such phenomena as the initiation of detonation, high-power explosions, electric discharges, cosmic explosions, laser blasts, and hypersonic aerodynamics. The discussion covers the principal equations and the statement of problems; linearized non-self-similar one-dimensional problems; spherical, cylindrical, and plane explosions with allowance for counterpressure under conditions of constant initial density; explosions in a combustible mixture of gases; and point explosions in inhomogeneous media with nonsymmetric energy release. Attention is also given to point explosions in an electrically conducting gas with allowance for the effect of the magnetic field and to the propagation of perturbations from solar flares.

  8. Equations of state for detonation products of high energy PBX explosives

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. L.; Helm, F. H.; Finger, M.; Walton, J. R.

    1977-08-01

    It has become apparent that the accumulated changes in the analysis of cylinder test data, in the material specifications, and in the hydrodynamic code simulation of the cylinder test necessitated an update of the detonation product EOS description for explosives in common use at LLL. The explosives reviewed are PBX-9404-3, LX-04-1, LX-10-1, LX-14-0 and LX-09-1. In order to maintain the proper relation of predicted performance of these standard explosives, they have been revised as a single set.

  9. Analysis and modeling of flow blockage-induced steam explosion events in the High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Lestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.; Kirkpatrick, J.

    1993-01-01

    This paper provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor during flow blockage events. The overall workscope included modeling and analysis of core melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several miliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. Therefore, it is judged that the HFIR vessel and top head structure will be able to withstand loads generated from thermally driven steam explosions initiated by any credible flow blockage event. A substantial margin to safety was demonstrated

  10. Primary explosives

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Robert; Pachman, Jiri [Pardubice Univ. (Czech Republic). Faculty of Chemical Technology

    2013-06-01

    The first chapter provides background such as the basics of initiation and differences between requirements on primary explosives used in detonators and igniters. The authors then clarify the influence of physical characteristics on explosive properties, focusing on those properties required for primary explosives. Furthermore, the issue of sensitivity is discussed. All the chapters on particular groups of primary explosives are structured in the same way, including introduction, physical and chemical properties, explosive properties, preparation and documented use.

  11. Analysis and modeling of flow-blockage-induced steam explosion events in the high-flux isotope reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Nestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.

    1994-01-01

    This article provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor (HFIR) during flow blockage events. The overall work scope included modeling and analysis of core-melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and, finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several milliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. 19 refs., 11 figs

  12. High-temperature explosive development for geothermal well stimulation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E.W.; Mars, J.E.; Wang, C.

    1978-03-31

    A two-component, temperature-resistant liquid explosive called HITEX has been developed which is capable of withstanding 561/sup 0/K (550/sup 0/F) for 24 hours in a geothermal environment. The explosive is intended for the stimulation of nonproducing or marginally producing geothermal (hot dry rock, vapor-dominated or hydrothermal) reservoirs by fracturing the strata in the vicinity of a borehole. The explosive is inherently safe because it is mixed below ground downhole from two nondetonable liquid components. Development and safety tests included differential scanning calorimetry, thermal stability, minerals compatibility, drop-weight sensitivity, adiabatic compression, electrostatic discharge sensitivity, friction sensitivity, detonation arrest capability, cook-off tests, detonability at ambient and elevated pressure, detonation velocity and thin film propagation in a wedge.

  13. Investigation of the stable combustion of initiating explosives at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Fogelzang, A.E.; Egorshev, V.IU.; Pimenov, A.IU.; Sinditskii, V.P.; Saklantii, A.R.

    1985-01-01

    The combustion of typical initiating explosives - tetrazene, tricycloacetone peroxide, diazodinitrophenol, hexamethylene triperoxide diamine, and cyanur triazide - was studied experimentally in the 0.1-40 MPa pressure range. The dependence of combustion rate on pressure was studied for these explosives. 8 references.

  14. Kaliski's explosive driven fusion experiments

    International Nuclear Information System (INIS)

    Marshall, J.

    1979-01-01

    An experiment performed by a group in Poland on the production of DD fusion neutrons by purely explosive means is discussed. A method for multiplying shock velocities ordinarily available from high explosives by a factor of ten is described, and its application to DD fusion experiments is discussed

  15. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 1 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Beck Colleen M,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  16. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 2 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  17. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 3 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  18. Intensive evaporation and boiling of a heterogeneous liquid droplet with an explosive disintegration in high-temperature gas area

    Directory of Open Access Journals (Sweden)

    Piskunov Maxim V.

    2016-01-01

    Full Text Available The using of the high-speed (not less than 105 frames per second video recording tools (“Phantom” and the software package ("TEMA Automotive" allowed carrying out an experimental research of laws of intensive vaporization with an explosive disintegration of heterogeneous (with a single solid nontransparent inclusion liquid droplet (by the example of water in high-temperature (500-800 K gases (combustion products. Times of the processes under consideration and stages (liquid heat-up, evaporation from an external surface, bubble boiling at internal interfaces, growth of bubble sizes, explosive droplet breakup were established. Necessary conditions of an explosive vaporization of a heterogeneous droplet were found out. Mechanisms of this process and an influence of properties of liquid and inclusion material on them were determined.

  19. Terminal velocity of liquids and granular materials dispersed by a high explosive

    Science.gov (United States)

    Loiseau, J.; Pontalier, Q.; Milne, A. M.; Goroshin, S.; Frost, D. L.

    2018-04-01

    The explosive dispersal of a layer of solid particles or a layer of liquid surrounding a spherical high-explosive charge generates a turbulent, multiphase flow. Shock compression of the material layer during the initial acceleration may partially consolidate the material, leading to the formation of jet-like structures when the layer fragments and sheds particles upon release. Similarly, release of a shock-compressed liquid shell causes the nucleation of cavitation sites, leading to the radial breakup of the shell and the formation of jets upon expansion. In the current study, a wide variety of granular materials and liquids were explosively dispersed. The maximum terminal jet tip or shell velocity was measured using high-speed videography. Charges were constructed using thin-walled glass bulbs of various diameters and contained a central C-4 charge surrounded by the material to be dispersed. This permitted variation of the ratio of material mass to charge mass (M/C) from 4 to 300. Results indicated that material velocity broadly correlates with predictions of the Gurney model. For liquids, the terminal velocity was accurately predicted by the Gurney model. For granular materials, Gurney over-predicted the terminal velocity by 25-60%, depending on the M/C ratio, with larger M/C values exhibiting larger deficits. These deficits are explained by energy dissipation during the collapse of voids in the granular material bed. Velocity deficits were insensitive to the degree of jetting and granular material properties. Empirical corrections to the Gurney model are presented with improved agreement with the dry powder experimental velocities.

  20. Terminal velocity of liquids and granular materials dispersed by a high explosive

    Science.gov (United States)

    Loiseau, J.; Pontalier, Q.; Milne, A. M.; Goroshin, S.; Frost, D. L.

    2018-05-01

    The explosive dispersal of a layer of solid particles or a layer of liquid surrounding a spherical high-explosive charge generates a turbulent, multiphase flow. Shock compression of the material layer during the initial acceleration may partially consolidate the material, leading to the formation of jet-like structures when the layer fragments and sheds particles upon release. Similarly, release of a shock-compressed liquid shell causes the nucleation of cavitation sites, leading to the radial breakup of the shell and the formation of jets upon expansion. In the current study, a wide variety of granular materials and liquids were explosively dispersed. The maximum terminal jet tip or shell velocity was measured using high-speed videography. Charges were constructed using thin-walled glass bulbs of various diameters and contained a central C-4 charge surrounded by the material to be dispersed. This permitted variation of the ratio of material mass to charge mass ( M/ C) from 4 to 300. Results indicated that material velocity broadly correlates with predictions of the Gurney model. For liquids, the terminal velocity was accurately predicted by the Gurney model. For granular materials, Gurney over-predicted the terminal velocity by 25-60%, depending on the M/ C ratio, with larger M/ C values exhibiting larger deficits. These deficits are explained by energy dissipation during the collapse of voids in the granular material bed. Velocity deficits were insensitive to the degree of jetting and granular material properties. Empirical corrections to the Gurney model are presented with improved agreement with the dry powder experimental velocities.

  1. Behavior of surface residual stress in explosion hardened high manganese austenitic cast steel due to repeated impact loads

    International Nuclear Information System (INIS)

    Oda, Akira; Miyagawa, Hideaki

    1985-01-01

    Explosion hardened high manganese austenitic cast steel is being tried for rail crossing recently. From the previous studies, it became clear that high tensile residual stress was generated in the hardened surface layer by explosion and microcracks were observed. In this study, therefore, the behavior of surface residual stress in explosion hardened steel due to repeated impact loads was examined and compared with those of the original and shot peened steels. The results obtained are summarized as follows: (1) In the initial stage of the repetition of impact, high tensile surface residual stress in explosion hardened steel decreased rapidly with the repetition of impact, while those of the original and shot peened steels increased rapidly. This difference was attributed to the difference in depth of the work hardened layer in three testing materials. (2) Beyond 20 impacts the residual stress of three test specimens decreased gradually, and at more than 2000 impacts the compressive stress of about 500 MPa was produced regardless of the histories of working of testing materials. (3) The linear law in the second stage of residual stress fading was applicable to this case, and the range of the linear relationship was related to the depth of the work hardened layer of testing material. (4) From the changes in half-value breadth and peak intensity of diffraction X-ray, it was supposed that a peculiar microscopic strain exists in explosion hardened steel. (author)

  2. Trace explosives sensor testbed (TESTbed)

    Science.gov (United States)

    Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.

    2017-03-01

    A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.

  3. Multistage reaction pathways in detonating high explosives

    International Nuclear Information System (INIS)

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya

    2014-01-01

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N 2 and H 2 O within ∼10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N 2 and H 2 O productions

  4. Multistage reaction pathways in detonating high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States)

    2014-11-17

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N{sub 2} and H{sub 2}O within ∼10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N{sub 2} and H{sub 2}O productions.

  5. Analysis of Nitro-aromatic and Nitramine Explosives by Atmospheric Pressure Chemical Ionization / High Performance Liquid Chromatography / Mass Spectrometry / Mass Spectrometry

    International Nuclear Information System (INIS)

    Hicks, B.J.; Han, W.; Robben, J.R.

    2009-01-01

    This procedure is capable of separating and quantifying twenty-nine high explosives and internal surrogates with a single injection. After the initial preparation step, the sample is introduced to the high performance liquid chromatograph for target separation, ionized by atmospheric pressure chemical ionization and the explosives of interest are isolated / quantified by mass spectrometry / mass spectrometry. Concentrations of the target explosives are measured relative to the response of both internal and external standard concentrations. A C-18 reverse phase high performance liquid chromatograph column is used for separation. Ionization is performed using both positive and negative atmospheric pressure chemical ionization resulting in a molecular ion with little fragmentation. These ions are isolated at the first quadrupole of the mass spectrometer, dissociated by collision with argon in the collision cell and the resulting daughter ions are isolated at the second quadrupole. These daughter ions then reach the detector where they are quantified. To date this procedure represents the most thorough high performance liquid chromatography / mass spectrometry / mass spectrometry explosives analysis available in the environmental chemistry market. (authors)

  6. THE HIGH-METALLICITY EXPLOSION ENVIRONMENT OF THE RELATIVISTIC SUPERNOVA 2009bb

    International Nuclear Information System (INIS)

    Levesque, E. M.; Kewley, L. J.; Soderberg, A. M.; Foley, R. J.; Berger, E.; Torres, M. A. P.; Challis, P.; Kirshner, R. P.; Copete, A.; Chakraborti, S.; Ray, A.; Barthelmy, S. D.; Bietenholz, M. F.; Chandra, P.; Chaplin, V.; Connaughton, V.; Chevalier, R. A.; Fox, O.; Chugai, N.; Fransson, C.

    2010-01-01

    We investigate the environment of the nearby (d ∼ 40 Mpc) broad-lined Type Ic supernova (SN) 2009bb. This event was observed to produce a relativistic outflow likely powered by a central accreting compact object. While such a phenomenon was previously observed only in long-duration gamma-ray bursts (LGRBs), no LGRB was detected in association with SN 2009bb. Using an optical spectrum of the SN 2009bb explosion site, we determine a variety of interstellar medium properties for the host environment, including metallicity, young stellar population age, and star formation rate. We compare the SN explosion site properties to observations of LGRB and broad-lined SN Ic host environments on optical emission line ratio diagnostic diagrams. Based on these analyses, we find that the SN 2009bb explosion site has a metallicity between 1.7 Z sun and 3.5 Z sun , in agreement with other broad-lined SN Ic host environments and at odds with the low-redshift LGRB host environments and recently proposed maximum metallicity limits for relativistic explosions. We consider the implications of these findings and the impact that SN 2009bb's unusual explosive properties and environment have on our understanding of the key physical ingredient that enables some SNe to produce a relativistic outflow.

  7. Lawrence Livermore Laboratory's beryllium control program for high-explosive test firing bunkers and tables

    International Nuclear Information System (INIS)

    Johnson, J.S.

    1980-01-01

    This report on the control program to minimize beryllium levels in Laboratory workplaces includes an outline of beryllium surface, soil, and air levels and an 11-y summary of sampling results from two high-use, high-explosive test firing bunkers. These sampling data and other studies demonstrate that the beryllium control program is functioning effectively

  8. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  9. Development of a high efficient conventional type cold neutron source using a non-explosive material

    International Nuclear Information System (INIS)

    Kiyanagi, Y.; Satoh, S.

    1999-01-01

    An efficient cold moderator that can be used easily at a small neutron source would be useful for neutron radiography, prompt gamma ray analysis and so on. Non-explosive materials are chosen for a cold moderator since explosive materials such as hydrogen and methane require a safety system. Neutronic performances of coupled moderators of various non-explosive materials are studied so as to develop such a cold moderator since the coupled moderator system is the best to obtain high intensity of cold neutrons. Effect of premoderator is studied and neutron spectra from methanol, ethanol, benzene, mesitylene and benzene methanol are measured around 20 K. The premoderator increased the cold neutron intensity by about 50∼70%. Methanol and mesitylene gave the highest cold neutron intensity. Effect of Be filter-reflector is also studied and a intensity gain of about 20% was obtained below about 5 MeV. (author)

  10. Explosion-Induced Implosions of Cylindrical Shell Structures

    Science.gov (United States)

    Ikeda, C. M.; Duncan, J. H.

    2010-11-01

    An experimental study of the explosion-induced implosion of cylindrical shell structures in a high-pressure water environment was performed. The shell structures are filled with air at atmospheric pressure and are placed in a large water-filled pressure vessel. The vessel is then pressurized to various levels P∞=αPc, where Pc is the natural implosion pressure of the model and α is a factor that ranges from 0.1 to 0.9. An explosive is then set off at various standoff distances, d, from the model center line, where d varies from R to 10R and R is the maximum radius of the explosion bubble. High-speed photography (27,000 fps) was used to observe the explosion and resulting shell structure implosion. High-frequency underwater blast sensors recorded dynamic pressure waves at 6 positions. The cylindrical models were made from aluminum (diameter D = 39.1 mm, wall thickness t = 0.89 mm, length L = 240 mm) and brass (D = 16.7 mm, t = 0.36 mm, L=152 mm) tubes. The pressure records are interpreted in light of the high-speed movies. It is found that the implosion is induced by two mechanisms: the shockwave generated by the explosion and the jet formed during the explosion-bubble collapse. Whether an implosion is caused by the shockwave or the jet depends on the maximum bubble diameter and the standoff distance.

  11. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  12. Gas explosion in domestic buildings. The vented gas explosion[sub][/sub

    Directory of Open Access Journals (Sweden)

    Tadeusz Chyży

    2014-08-01

    Full Text Available In this paper, the basic information, related to the so-called vented gas explosion, has been presented. The vented explosion it is an explosion, during which the destruction of the weakest elements of the structure occurs. Through the resulting holes (decompressing surfaces can flow both combustion products and non-burned gas mixture. In consequence, reduction of the maximum explosion pressure[i] P[sub]red [/sub][/i] may be significant. Often, a gas explosion occurs inside residential buildings. In this case, natural vents are window and door openings.[b]Keywords[/b]: gas, explosion, combustion, explosion vents

  13. Lawrence Livermore Laboratory's beryllium control program for high-explosive test firing bunkers and tables

    International Nuclear Information System (INIS)

    Johnson, J.S.

    1978-01-01

    This detailed report on Lawrence Livermore Laboratory's control program to minimize beryllium levels in Laboratory workplaces includes an outline of beryllium surface, soil, and air levels and an 11-y summary of sampling results from two high-use, high-explosive test firing bunkers. These sampling data and other studies demonstrate that the beryllium control program is funcioning effectively

  14. Mechanisms of formation of trace decomposition products in complex high explosive mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Woodyard, J.D.; Burgess, C.E. [West Texas A and M Univ., Canyon, TX (United States); Rainwater, K.A. [Texas Tech Univ., Lubbock, TX (United States)

    1999-03-01

    A significant concern in the nation`s stockpile surveillance program in prediction of the lifetimes of the high explosives (HE) and their components as the weapons age. The Department of Energy`s Core Surveillance and Enhanced Surveillance programs specifically target issues of degradation of HE, binders, and plastic-bonded explosives (PBX) for determination of component lifetimes and handling procedures. These material science topics are being addressed at the DOE national laboratories and production plants, including Pantex. The principal goal of this project is to identify the mechanisms of decomposition of HE, plasticizers, plastic polymer binders, and radical stabilizers resulting from exposures to ionizing radiation, heat, and humidity. The following reports the work completed for 1998, including a comprehensive literature review about some of the materials examined and the laboratory work completed to date. The materials focused on in the laboratory are TATB, Estane 5301, and Irganox 1010.

  15. Risk Quantitative Determination of Fire and Explosion in a Process Unit By Dow’s Fire and Explosion Index

    Directory of Open Access Journals (Sweden)

    S. Varmazyar

    2008-04-01

    Full Text Available Background and aims   Fire and explosion hazards are the first and second of major hazards in process industries, respectively. This study has been done to determine fire and explosion risk severity,radius of exposure and estimating of most probable loss.   Methods   In this quantitative study process unit has been selected with affecting parameters on  fire and explosion risk. Then, it was analyzed by DOW's fire and explosion index (F&EI. Technical data were obtained from process documents and reports, fire and explosion guideline.After calculating of DOW's index, radius of exposure determined and finally most  probable loss was estimated.   Results   The results showed an F&EI value of 226 for this process unit.The F&EI was extremely  high and unacceptable.Risk severity was categorized in sever class.Radius of exposure and damage factor were calculated 57 meters and 83%,respectively. As well as most probable loss was  estimated about 6.7 million dollars.   Conclusion   F&EI is a proper technique for risk assessment and loss estimation of fire and  explosion in process industries.Also,It is an important index for detecting high risk and low risk   areas in an industry. At this technique, all of factors affecting on fire and explosion risk was  showed as index that is a base for judgement risk class. Finally, estimated losses could be used as  a base of fire and explosion insurance.

  16. Research on Initiation Sensitivity of Solid Explosive and Planer Initiation System

    OpenAIRE

    N Matsuo; M Otuka; H Hamasima; K Hokamoto; S Itoh

    2016-01-01

    Firstly, recently, there are a lot of techniques being demanded for complex process, various explosive initiation method and highly accurate control of detonation are needed. In this research, the metal foil explosion using high current is focused attention on the method to obtain linear or planate initiation easily, and the main evaluation of metal foil explosion to initiate explosive was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated ...

  17. The fracture of concrete under explosive shock loading

    International Nuclear Information System (INIS)

    Watson, A.J.; Sanderson, A.J.

    1982-01-01

    Concrete fracture close to the point of application of high explosive shock pressures has been studied experimentally by placing an explosive charge on the edge of a concrete slab. The extent of the crushing and cracking produced by a semi cylindrical diverging plane compressive stress pulse has been measured and complementary experiments gave the pressure transmitted at an explosive to concrete interface and the stress-strain relation for concrete at explosive strain rates. (orig.) [de

  18. Effects of High Intensity Interval Training on Increasing Explosive Power, Speed, and Agility

    Science.gov (United States)

    Fajrin, F.; Kusnanik, N. W.; Wijono

    2018-01-01

    High Intensity Interval Training (HIIT) is a type of exercise that combines high-intensity exercise and low intensity exercise in a certain time interval. This type of training is very effective and efficient to improve the physical components. The process of improving athletes achievement related to how the process of improving the physical components, so the selection of a good practice method will be very helpful. This study aims to analyze how is the effects of HIIT on increasing explosive power, speed, and agility. This type of research is quantitative with quasi-experimental methods. The design of this study used the Matching-Only Design, with data analysis using the t-test (paired sample t-test). After being given the treatment for six weeks, the results showed there are significant increasing in explosive power, speed, and agility. HIIT in this study used a form of exercise plyometric as high-intensity exercise and jogging as mild or moderate intensity exercise. Increase was due to the improvement of neuromuscular characteristics that affect the increase in muscle strength and performance. From the data analysis, researchers concluded that, Exercises of High Intensity Interval Training significantly effect on the increase in Power Limbs, speed, and agility.

  19. System for detecting nuclear explosions

    International Nuclear Information System (INIS)

    Rawls, L.E.

    1978-01-01

    Apparatus for detecting underground nuclear explosions is described that is comprised of an antenna located in the dielectric substance of a deep waveguide in the earth and adapted to detect low frequency electromagnetic waves generated by a nuclear explosion, the deep waveguide comprising the high conductivity upper sedimentary layers of the earth, the dielectric basement rock, and a high conductivity layer of basement rock due to the increased temperature thereof at great depths, and means for receiving the electromagnetic waves detected by said antenna means

  20. Techniques of industrial radiology in military explosives

    International Nuclear Information System (INIS)

    Alves, L.E.G.

    1985-01-01

    The use of industrial radiology techniques id very important for military explosive fabrication. The cylindrical-ogive bodies made in forged metal have their interior fulfilled with high melted explosive and they must explode when they reach the target. The granades, as these bodies are called, are thrown by cannons and their interior are submitted to high pressures and accelerations which can cause a premature detonation, in most case, in interior of tube, in case of they have defects in explosive mass. The origins of defects, its localization and classification presenting the techniques used and disposable in Brazil are discussed. (M.C.K.) [pt

  1. General phenomenology of underground nuclear explosions; Phenomenologie generale des explosions nucleaires souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S; Supiot, F [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    An essentially qualitatively description is given of the phenomena related to underground nuclear explosions (explosion of a single unit, of several units in line, and simultaneous explosions). In the first chapter are described the phenomena which are common to contained explosions and to explosions forming craters (formation and propagation of a shock-wave causing the vaporization, the fusion and the fracturing of the medium). The second chapter describes the phenomena related to contained explosions (formation of a cavity with a chimney). The third chapter is devoted to the phenomenology of test explosions which form a crater; it describes in particular the mechanism of formation and the different types of craters as a function of the depth of the explosion and of the nature of the ground. The aerial phenomena connected with explosions which form a crater: shock wave in the air and focussing at a large distance, and dust clouds, are also dealt with. (authors) [French] On donne une description essentiellement qualitative des phenomenes lies aux explosions nucleaires souterraines (explosion d'un seul engin, d'engins en ligne et explosions simultanees). Dans un premier chapitre sont decrits les phenomenes communs aux explosions contenues et aux explosions formant un cratere (formation et propagation d'une onde de choc provoquant la vaporisation, la fusion et la fracturation du milieu). Le deuxieme chapitre decrit les phenomenes lies aux tirs contenus (formation d'une cavite et d'une cheminee). Le troisieme chapitre est consacre a la phenomenologie des tirs formant un cratere et decrit notamment le mecanisme de formation et les differents types de crateres en fonction de la profondeur d'explosion et de la nature du terrain. Les phenomenes aeriens lies aux explosions formant un cratere: onde de pression aerienne et focalisation a grande distance, nuages de poussieres, sont egalement abordes. (auteurs)

  2. Inelastic processes in seismic wave generation by underground explosions

    Energy Technology Data Exchange (ETDEWEB)

    Rodean, H.C.

    1980-08-01

    Theories, computer calculations, and measurements of spherical stress waves from explosions are described and compared, with emphasis on the transition from inelastic to almost-elastic relations between stress and strain. Two aspects of nonspherical explosion geometry are considered: tectonic strain release and surface spall. Tectonic strain release affects the generation of surface waves; spall closure may also. The reduced-displacement potential is a common solution (the equivalent elastic source) of the forward and inverse problems, assuming a spherical source. Measured reduced-displacement potentials are compared with potentials calculated as solutions of the direct and inverse problems; there are significant differences between the results of the two types of calculations and between calculations and measurements. The simple spherical model of an explosion is not sufficient to account for observations of explosions over wide ranges of depth and yield. The explosion environment can have a large effect on explosion detection and yield estimation. The best sets of seismic observations for use in developing discrimination techniques are for high-magnitude high-yield explosions; the identification problem is most difficult for low-magnitude low-yield explosions. Most of the presently available explosion data (time, medium, depth, yield, etc.) are for explosions in a few media at the Nevada Test Site; some key questions concerning magnitude vs yield and m/sub b/ vs M/sub s/ relations can be answered only by data for explosions in other media at other locations.

  3. Inelastic processes in seismic wave generation by underground explosions

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1980-01-01

    Theories, computer calculations, and measurements of spherical stress waves from explosions are described and compared, with emphasis on the transition from inelastic to almost-elastic relations between stress and strain. Two aspects of nonspherical explosion geometry are considered: tectonic strain release and surface spall. Tectonic strain release affects the generation of surface waves; spall closure may also. The reduced-displacement potential is a common solution (the equivalent elastic source) of the forward and inverse problems, assuming a spherical source. Measured reduced-displacement potentials are compared with potentials calculated as solutions of the direct and inverse problems; there are significant differences between the results of the two types of calculations and between calculations and measurements. The simple spherical model of an explosion is not sufficient to account for observations of explosions over wide ranges of depth and yield. The explosion environment can have a large effect on explosion detection and yield estimation. The best sets of seismic observations for use in developing discrimination techniques are for high-magnitude high-yield explosions; the identification problem is most difficult for low-magnitude low-yield explosions. Most of the presently available explosion data (time, medium, depth, yield, etc.) are for explosions in a few media at the Nevada Test Site; some key questions concerning magnitude vs yield and m/sub b/ vs M/sub s/ relations can be answered only by data for explosions in other media at other locations

  4. An integral model of plume rise from high explosive detonations

    International Nuclear Information System (INIS)

    Boughton, B.A.; De Laurentis, J.M.

    1987-01-01

    A numerical model has been developed which provides a complete description of the time evolution of both the physical and thermodynamic properties of the cloud formed when a high explosive is detonated. This simulation employs the integral technique. The model equations are derived by integrating the three-dimensional conservation equations of mass, momentum and energy over the plume cross section. Assumptions are made regarding (a) plume symmetry; (b) the shape of profiles of velocity, temperature, etc. across the plume; and (c) the methodology for simulating entrainment and the effects of the crossflow induced pressure drag force on the plume. With these assumptions, the integral equations can be reduced to a set of ordinary differential equations on the plume centerline variables. Only the macroscopic plume characteristics, e.g., plume radius, centerline height, temperature and density, are predicted; details of the plume intrastructure are ignored. The model explicitly takes into account existing meteorology and has been expanded to consider the alterations in plume behavior which occur when aqueous foam is used as a dispersal mitigating material. The simulation was tested by comparison with field measurements of cloud top height and diameter. Predictions were within 25% of field observations over a wide range of explosive yield and atmospheric stability

  5. Computer simulation of explosion crater in dams with different buried depths of explosive

    Science.gov (United States)

    Zhang, Zhichao; Ye, Longzhen

    2018-04-01

    Based on multi-material ALE method, this paper conducted a computer simulation on the explosion crater in dams with different buried depths of explosive using LS-DYNA program. The results turn out that the crater size increases with the increase of buried depth of explosive at first, but closed explosion cavity rather than a visible crater is formed when the buried depth of explosive increases to some extent. The soil in the explosion cavity is taken away by the explosion products and the soil under the explosion cavity is compressed with its density increased. The research can provide some reference for the anti-explosion design of dams in the future.

  6. Potentially lethal effects of astrophysical high energy explosive events

    International Nuclear Information System (INIS)

    Zarauza, Dario; Martin, Osmel; Rolando Cardenas

    2007-01-01

    In this work we compare the biological extinction risks posed by different types of high energy explosive events, if they occur at distances close enough to inhabited planets. These events are several kinds of supernovae and gamma ray bursts. We mainly consider the ozone depletion, leaving other effects, as photon retransmission and muon showers, for future work. In order to estimate the damage on ozonosphere, we use a simple analytical model for ozone depletion. We also mention some hints to look for the signatures of these events on Earth biogeochemical record, and evaluate the possibility of applying these results to the astrobiologically interesting sample of stars gathered by Porto de Mello, del Peloso and Ghezzi. (Author)

  7. Explosions of Thorne-Żytkow objects

    Science.gov (United States)

    Moriya, Takashi J.

    2018-03-01

    We propose that massive Thorne-Żytkow objects can explode. A Thorne-Żytkow object is a theoretically predicted star that has a neutron core. When nuclear reactions supporting a massive Thorne-Żytkow object terminate, a strong accretion occurs towards the central neutron core. The accretion rate is large enough to sustain a super-Eddington accretion towards the neutron core. The neutron core may collapse to a black hole after a while. A strong large-scale outflow or a jet can be launched from the super-Eddington accretion disc and the collapsing Thorne-Żytkow object can be turned into an explosion. The ejecta have about 10 M⊙ but the explosion energy depends on when the accretion is suppressed. We presume that the explosion energy could be as low as ˜1047 erg and such a low-energy explosion could be observed like a failed supernova. The maximum possible explosion energy is ˜1052 erg and such a high-energy explosion could be observed as an energetic Type II supernova or a superluminous supernova. Explosions of Thorne-Żytkow objects may provide a new path to spread lithium and other heavy elements produced through the irp process such as molybdenum in the Universe.

  8. Progress in model development to quantify High Explosive Violent Response (HEVR) to mechanical insult

    International Nuclear Information System (INIS)

    Reaugh, J.E.

    2008-01-01

    The rapid release of chemical energy has found application for industrial and military purposes since the invention of gunpowder. Black powder, smokeless powder of various compositions, and pyrotechnics all exhibit the rapid release of energy without detonation when they are being used as designed. The rapidity of energy release for these materials is controlled by adjustments to the particle surface area (propellant grain configuration or powder particle size) in conjunction with the measured pressure-dependent burning rate, which is very subsonic. In this way a manufacturing process can be used to engineer the desired violence of the explosion. Detonations in molecular explosives, in contrast, propagate with a supersonic velocity that depends on the loading density, but is independent of the surface area. In ideal detonations, the reaction is complete within a small distance of the propagating shock front. Non-ideal detonations in molecular and composite explosives proceed with a slower velocity, and the reaction may continue well behind the shock front. We are developing models to describe the circumstances when molecular and composite explosives undergo a rapid release of energy without detonating. The models also apply to the behavior of rocket propellants subject to mechanical insult, whether for accidents (Hazards) or the suite of standardized tests used to assess whether the system can be designated an Insensitive Munition (IM). In the application described here, we are studying an HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane) explosive developed in the UK, which is 91% by weight HMX and 9% binder-plasticizer. Most explosives and propellants, when subjected to a mechanical insult, drop or impact that is well below the threshold for detonation have been observed to react violently. This behavior is known as High Explosive Violent Reaction (HEVR). The basis of our model is the observation that the mechanical insult produces damage in a volume of the

  9. Pyroshock Prediction of Ridge-Cut Explosive Bolts Using Hydrocodes

    Directory of Open Access Journals (Sweden)

    Juho Lee

    2016-01-01

    Full Text Available Pyrotechnic release devices such as explosive bolts are prevalent for many applications due to their merits: high reliability, high power-to-weight ratio, reasonable cost, and more. However, pyroshock generated by an explosive event can cause failures in electric components. Although pyroshock propagations are relatively well understood through many numerical and experimental studies, the prediction of pyroshock generation is still a very difficult problem. This study proposes a numerical method for predicting the pyroshock of a ridge-cut explosive bolt using a commercial hydrocode (ANSYS AUTODYN. A numerical model is established by integrating fluid-structure interaction and complex material models for high explosives and metals, including high explosive detonation, shock wave transmission and propagation, and stress wave propagation. To verify the proposed numerical scheme, pyroshock measurement experiments of the ridge-cut explosive bolts with two types of surrounding structures are performed using laser Doppler vibrometers (LDVs. The numerical analysis results provide accurate prediction in both the time (acceleration and frequency domains (maximax shock response spectra. In maximax shock response spectra, the peaks due to vibration modes of the structures are observed in both the experimental and numerical results. The numerical analysis also helps to identify the pyroshock generation source and the propagation routes.

  10. The ion mobility spectrometer for high explosive vapor detection

    International Nuclear Information System (INIS)

    Cohen, M.J.; Stimac, R.M.; Wernlund, R.F.

    1984-01-01

    The Phemto-Chem /SUP R/ Model 100 Ion Mobility Spectrometer (IMS) operates in air and measures a number of explosive vapors at levels as low as partsper-trillion in seconds. The theory and operation of this instrument is discussed. The IMS inhales the vapor sample in a current of air and generates characteristic ions which are separated by time-of -ion drift in the atmospheric pressure gas. Quantitative results, using a dilution tunnel and standard signal generator with TNT, nitroglycerine, ethylene glycol dinitrate, cyclohexanone, methylamine, octafluoronaphthalene and hexafluorobenzene, are given. Rapid sample treatment with sample concentrations, microprocessor signal readout and chemical identification, offer a realistic opportunity of rapid explosive vapor detection at levels down to 10 -14 parts by volume in air

  11. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R. [VTT Energy, Espoo (Finland). Energy Systems

    1997-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  12. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R [VTT Energy, Espoo (Finland). Energy Systems

    1998-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  13. Apparatus for forming an explosively expanded tube-tube sheet joint

    International Nuclear Information System (INIS)

    Schroeder, J.W.

    1984-01-01

    The invention relates to apparatus for expanding a tube into a bore formed in a tube sheet. According to the invention, a primary explosive containing a relatively high number of grains of explosive per unit length extends within the tube coextensive with that portion of the tube to be expanded. An energy transfer cord extends between a detonator and the primary explosive and includes a relatively low number of grains of explosive per unit length which are insufficient to detonate the primary explosive. The transfer cord is covered by a sheath to contain the debris and gases associated with the explosion of the explosive therein. A booster extends between the energy transfer cord and the primary explosive and contains an explosive which can be detonated by the explosive in the energy transfer cord and can, upon exploding, in turn detonate the primary explosive. (author)

  14. Summary of efficiency testing of standard and high-capacity high-efficiency particulate air filters subjected to simulated tornado depressurization and explosive shock waves

    International Nuclear Information System (INIS)

    Smith, P.R.; Gregory, W.S.

    1985-04-01

    Pressure transients in nuclear facility air cleaning systems can originate from natural phenomena such as tornadoes or from accident-induced explosive blast waves. This study was concerned with the effective efficiency of high-efficiency particulate air (HEPA) filters during pressure surges resulting from simulated tornado and explosion transients. The primary objective of the study was to examine filter efficiencies at pressure levels below the point of structural failure. Both standard and high-capacity 0.61-m by 0.61-m HEPA filters were evaluated, as were several 0.2-m by 0.2-m HEPA filters. For a particular manufacturer, the material release when subjected to tornado transients is the same (per unit area) for both the 0.2-m by 0.2-m and the 0.61-m by 0.61-m filters. For tornado transients, the material release was on the order of micrograms per square meter. When subjecting clean HEPA filters to simulated tornado transients with aerosol entrained in the pressure pulse, all filters tested showed a degradation of filter efficiency. For explosive transients, the material release from preloaded high-capacity filters was as much as 340 g. When preloaded high-capacity filters were subjected to shock waves approximately 50% of the structural limit level, 1 to 2 mg of particulate was released

  15. Characterization of ANFO explosive by high accuracy ESI(±)-FTMS with forensic identification on real samples by EASI(-)-MS.

    Science.gov (United States)

    Hernandes, Vinicius Veri; Franco, Marcos Fernado; Santos, Jandyson Machado; Melendez-Perez, Jose J; de Morais, Damila Rodrigues; Rocha, Werickson Fortunato de Carvalho; Borges, Rodrigo; de Souza, Wanderley; Zacca, Jorge Jardim; Logrado, Lucio Paulo Lima; Eberlin, Marcos Nogueira; Correa, Deleon Nascimento

    2015-04-01

    Ammonium nitrate fuel oil (ANFO) is an explosive used in many civil applications. In Brazil, ANFO has unfortunately also been used in criminal attacks, mainly in automated teller machine (ATM) explosions. In this paper, we describe a detailed characterization of the ANFO composition and its two main constituents (diesel and a nitrate explosive) using high resolution and accuracy mass spectrometry performed on an FT-ICR-mass spectrometer with electrospray ionization (ESI(±)-FTMS) in both the positive and negative ion modes. Via ESI(-)-MS, an ion marker for ANFO was characterized. Using a direct and simple ambient desorption/ionization technique, i.e., easy ambient sonic-spray ionization mass spectrometry (EASI-MS), in a simpler, lower accuracy but robust single quadrupole mass spectrometer, the ANFO ion marker was directly detected from the surface of banknotes collected from ATM explosion theft. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

    International Nuclear Information System (INIS)

    HOGELAND, STEVE R.; NELSON, LLOYD S.; ROTH, THOMAS CHRISTOPHER

    1999-01-01

    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives

  17. Explosive Leidenfrost droplets

    Science.gov (United States)

    Colinet, Pierre; Moreau, Florian; Dorbolo, Stéphane

    2017-11-01

    We show that Leidenfrost droplets made of an aqueous solution of surfactant undergo a violent explosion in a wide range of initial volumes and concentrations. This unexpected behavior turns out to be triggered by the formation of a gel-like shell, followed by a sharp temperature increase. Comparing a simple model of the radial surfactant distribution inside a spherical droplet with experiments allows highlighting the existence of a critical surface concentration for the shell to form. The temperature rise (attributed to boiling point elevation with surface concentration) is a key feature leading to the explosion, instead of the implosion (buckling) scenario reported by other authors. Indeed, under some conditions, this temperature increase is shown to be sufficient to trigger nucleation and growth of vapor bubbles in the highly superheated liquid bulk, stretching the surrounding elastic shell up to its rupture limit. The successive timescales characterizing this explosion sequence are also discussed. Funding sources: F.R.S. - FNRS (ODILE and DITRASOL projects, RD and SRA positions of P. Colinet and S. Dorbolo), BELSPO (IAP 7/38 MicroMAST project).

  18. Automated detection of cavities present in the high explosive filler of artillery shells

    International Nuclear Information System (INIS)

    Kruger, R.P.; Janney, D.H.; Breedlove, J.R. Jr.

    1976-01-01

    Initial research has been conducted into the use of digital image analysis techniques for automated detection and characterization of piping cavities present in the high explosive (HE) filler region of 105-mm artillery shells. Experimental work utilizing scene segmentation techniques followed by a sequential similarity detection algorithm for cavitation detection have yielded promising initial results. This work is described with examples of computer-detected defects

  19. Simulation of changes in temperature and pressure fields during high speed projectiles forming by explosion

    Directory of Open Access Journals (Sweden)

    Marković Miloš D.

    2016-01-01

    Full Text Available The Research in this paper considered the temperatures fields as the consequently influenced effects appeared by plastic deformation, in the explosively forming process aimed to design Explosively Formed Projectiles (henceforth EFP. As the special payloads of the missiles, used projectiles are packaged as the metal liners, joined with explosive charges, to design explosive propulsion effect. Their final form and velocity during shaping depend on distributed temperatures in explosively driven plastic deformation process. Developed simulation model consider forming process without metal cover of explosive charge, in aim to discover liner’s dynamical correlations of effective plastic strains and temperatures in the unconstrained detonation environment made by payload construction. The temperature fields of the liner’s copper material are considered in time, as the consequence of strain/stress displacements driven by explosion environmental thermodynamically fields of pressures and temperatures. Achieved final velocities and mass loses as the expected EFP performances are estimated regarding their dynamical shaping and thermal gradients behavior vs. effective plastic strains. Performances and parameters are presented vs. process time, numerically simulated by the Autodyne software package. [Projekat Ministarstva nauke Republike Srbije, br. III-47029

  20. Nuclear explosive driven experiments

    International Nuclear Information System (INIS)

    Ragan, C.E.

    1981-01-01

    Ultrahigh pressures are generated in the vicinity of a nuclear explosion. We have developed diagnostic techniques to obtain precise high pressures equation-of-state data in this exotic but hostile environment

  1. Explosive coalescence of magnetic islands and explosive particle acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Sakai, J.I.

    1985-07-01

    An explosive reconnection process associated with the nonlinear evolution of the coalescence instability is found through studies of the electromagnetic particle simulation and the magnetohydrodynamic particle simulation. The explosive coalescence is a process of magnetic collapse, in which we find the magnetic and electrostatic field energies and temperatures (ion temperature in the coalescing direction, in particular) explode toward the explosion time t 0 as (t 0 - t)/sup -8/3/, (t 0 - t) -4 , and (t 0 - t)/sup -8/3/, respectively for a canonical case. Single-peak, double-peak, and triple-peak structures of magnetic energy, temperature, and electrostatic energy, respectively, are observed on the simulation as overshoot amplitude oscillations and are theoretically explained. The heuristic model of Brunel and Tajima is extended to this explosive coalescence in order to extract the basic process. Since the explosive coalescence exhibits self-similarity, a temporal universality, we theoretically search for a self-similar solution to the two-fluid plasma equations

  2. 75 FR 1085 - Commerce in Explosives; List of Explosive Materials (2009R-18T)

    Science.gov (United States)

    2010-01-08

    ... sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. Fulminate of mercury. Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating...

  3. 75 FR 70291 - Commerce in Explosives; List of Explosive Materials (2010R-27T)

    Science.gov (United States)

    2010-11-17

    ..., including non-cap sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. Fulminate of mercury. Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating...

  4. In-situ Raman spectroscopy and high-speed photography of a shocked triaminotrinitrobenzene based explosive

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Amans, C.; Hébert, P., E-mail: philippe.hebert@cea.fr; Doucet, M. [CEA, DAM, Le RIPAULT, F-37620 Monts (France); Resseguier, T. de [Institut P' , UPR CNRS 3346, ENSMA, Université de Poitiers, F-86961 Futuroscope, Chasseneuil (France)

    2015-01-14

    We have developed a single-shot Raman spectroscopy experiment to study at the molecular level the initiation mechanisms that can lead to sustained detonation of a triaminotrinitrobenzene-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamond anvil cell. Our shock data indicate the role of temperature effects. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Reflectivity measurements under shock compression show that this opacity is due to a broadening of the absorption spectrum over the entire visible region.

  5. Water-bearing explosive compositions

    Energy Technology Data Exchange (ETDEWEB)

    Gay, G M

    1970-12-21

    An explosive water-bearing composition, with high detonation velocity, comprises a mixture of (1) an inorganic oxidizer salt; (2) nitroglycerine; (3) nitrocellulose; (4) water; and (5) a water thickening agent. (11 claims)

  6. High-order shock-fitted detonation propagation in high explosives

    Science.gov (United States)

    Romick, Christopher M.; Aslam, Tariq D.

    2017-03-01

    A highly accurate numerical shock and material interface fitting scheme composed of fifth-order spatial and third- or fifth-order temporal discretizations is applied to the two-dimensional reactive Euler equations in both slab and axisymmetric geometries. High rates of convergence are not typically possible with shock-capturing methods as the Taylor series analysis breaks down in the vicinity of discontinuities. Furthermore, for typical high explosive (HE) simulations, the effects of material interfaces at the charge boundary can also cause significant computational errors. Fitting a computational boundary to both the shock front and material interface (i.e. streamline) alleviates the computational errors associated with captured shocks and thus opens up the possibility of high rates of convergence for multi-dimensional shock and detonation flows. Several verification tests, including a Sedov blast wave, a Zel'dovich-von Neumann-Döring (ZND) detonation wave, and Taylor-Maccoll supersonic flow over a cone, are utilized to demonstrate high rates of convergence to nontrivial shock and reaction flows. Comparisons to previously published shock-capturing multi-dimensional detonations in a polytropic fluid with a constant adiabatic exponent (PF-CAE) are made, demonstrating significantly lower computational error for the present shock and material interface fitting method. For an error on the order of 10 m /s, which is similar to that observed in experiments, shock-fitting offers a computational savings on the order of 1000. In addition, the behavior of the detonation phase speed is examined for several slab widths to evaluate the detonation performance of PBX 9501 while utilizing the Wescott-Stewart-Davis (WSD) model, which is commonly used in HE modeling. It is found that the thickness effect curve resulting from this equation of state and reaction model using published values is dramatically more steep than observed in recent experiments. Utilizing the present fitting

  7. Detonation of high explosives in Lagrangian hydrodynamic codes using the programmed burn technique

    International Nuclear Information System (INIS)

    Berger, M.E.

    1975-09-01

    Two initiation methods were developed for improving the programmed burn technique for detonation of high explosives in smeared-shock Lagrangian hydrodynamic codes. The methods are verified by comparing the improved programmed burn with existing solutions in one-dimensional plane, converging, and diverging geometries. Deficiencies in the standard programmed burn are described. One of the initiation methods has been determined to be better for inclusion in production hydrodynamic codes

  8. Liquid explosives

    CERN Document Server

    Liu, Jiping

    2015-01-01

    The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.

  9. Explosive mixture of high power and high total energy content, and process for its manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Cook, M.A.; Udy, L.L.

    1973-05-10

    This explosive consists of a viscous suspension of an inorganic oxidizer, finely divided aluminum, water, and a liquid organic material miscible with water; a thickener may also be added. The mixture contains 45 to 55% of a strong inorganic oxidizer, of which at least two-thirds is ammonium nitrate; 32 to 43% aluminum powder; 11 to 18% or liquid, mostly water with an organic water-soluble liquid such as ethylene glycol; and a high temperature resistant, gel-forming thickener made of crosslinked guar gum and not crosslinked xanthane gum made from a polysaccharide through bacterial action.

  10. Explosive Breakup of a Water Droplet with a Nontransparent Solid Inclusion Heated in a High-Temperature Gaseous Medium

    Directory of Open Access Journals (Sweden)

    Dmitrienko Margarita A.

    2015-01-01

    Full Text Available This paper investigates the evaporation of a water droplet with a comparably sized solid nontransparent inclusion in a high-temperature (500–800 K gas medium. Water evaporates from the free surface of the inclusion. During this process, intensive vapor formation occurs on the inner interface “water droplet – solid inclusion” with the subsequent explosive decay of the droplet. Experiments have been conducted using high-speed (up to 105 fps video cameras “Phantom” and software “Phantom Camera Control”. The conditions of the explosive vapor formation of the heterogeneous water droplet were found. The typical phase change mechanisms of the heterogeneous water droplet under the conditions of intensive heat exchange were determined.

  11. What factors control the superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.

    2015-04-01

    Dome-forming eruption is a frequent eruptive style; lava domes result from intermittent, slow extrusion of viscous lava. Most dome-forming eruptions produce highly microcrystallized and highly- to almost totally-degassed magmas which have a low explosive potential. During lava dome growth, recurrent collapses of unstable parts are the main destructive process of the lava dome, generating concentrated pyroclastic density currents (C-PDC) channelized in valleys. These C-PDC have a high, but localized, damage potential that largely depends on the collapsed volume. Sometimes, a dilute ash cloud surge develops at the top of the concentrated flow with an increased destructive effect because it may overflow ridges and affect larger areas. In some cases, large lava dome collapses can induce a depressurization of the magma within the conduit, leading to vulcanian explosions. By contrast, violent, laterally directed, explosions may occur at the base of a growing lava dome: this activity generates dilute and turbulent, highly-destructive, pyroclastic density currents (D-PDC), with a high velocity and propagation poorly dependent on the topography. Numerous studies on lava dome behaviors exist, but the triggering of lava dome explosions is poorly understood. Here, seven dome-forming eruptions are investigated: in the Lesser Antilles arc: Montagne Pelée, Martinique (1902-1905, 1929-1932 and 650 y. BP eruptions), Soufrière Hills, Montserrat; in Guatemala, Santiaguito (1929 eruption); in La Chaîne des Puys, France (Puy de Dome and Puy Chopine eruptions). We propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by these key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite

  12. Hydrocarbon production with nuclear explosives

    International Nuclear Information System (INIS)

    Wade Watkins, J.

    1970-01-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  13. Hydrocarbon production with nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Wade Watkins, J [Petroleum Research, Bureau of Mines, U.S. Department of the Interior, Washington, DC (United States)

    1970-05-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  14. Explosions of water clusters in intense laser fields

    International Nuclear Information System (INIS)

    Kumarappan, V.; Krishnamurthy, M.; Mathur, D.

    2003-01-01

    Energetic, highly charged oxygen ions O q+ (q≤6), are copiously produced upon laser field-induced disassembly of highly charged water clusters, (H 2 O) n and (D 2 O) n , n∼60, that are formed by seeding high-pressure helium or argon with water vapor. Ar n clusters (n∼40 000) formed under similar experimental conditions are found to undergo disassembly in the Coulomb explosion regime, with the energies of Ar q+ ions showing a q 2 dependence. Water clusters, which are argued to be considerably smaller in size, should also disassemble in the same regime, but the energies of fragment O q+ ions are found to depend linearly on q which, according to prevailing wisdom, ought to be a signature of hydrodynamic expansion that is expected of much larger clusters. The implication of these observations on our understanding of the two cluster explosion regimes, Coulomb explosion and hydrodynamic expansion, is discussed. Our results indicate that charge state dependences of ion energy do not constitute an unambiguous experimental signature of cluster explosion regime

  15. High Explosive Radiological Dispersion Device: Time and Distance Multiscale Study

    International Nuclear Information System (INIS)

    Sharon, A.; Sattinger, I.; Halevy, D.; Banaim, P.; Yaar, I.; Krantz, L.

    2014-01-01

    A wide range of explosion tests imitates different explosive RDD scenarios were conducted and aimed at increasing the preparedness for possible terrorism events, where radioactive (RA) materials disperse via an explosive charge. About 20 atmospheric dispersion tests were conducted using6-8 Ci of 99mTc which were coupled to TNT charges within the range of 0.2525 kg. Tests performed above different typical urban ground surfaces (in order to study the surface effect on the activity ground deposition pattern due to different in particles size distribution). We have used an efficient aerosolizing devices, means that most of the RA particles were initially created within the size of fine aerosols, mostly respirable. Ground activity measurements were performed both, around the dispersion point and up to few hundred meters downwind. Micrometeorology parameters (wind intensity and direction, potential temperature, relative humidity, solar radiation and atmospheric stability) were collected allowing comparisons topredictions of existing atmospheric dispersion models’1. Based on the experimental results, new model parameterizations were performed. Improvements in the models’ predictions were achieved and a set of thumb rules for first responders was formulated. This paper describes the project objectives, some of the experimental setups and results obtained. Post detonation nuclear forensic considerations can be made based upon results achieved

  16. TOWARD END-TO-END MODELING FOR NUCLEAR EXPLOSION MONITORING: SIMULATION OF UNDERGROUND NUCLEAR EXPLOSIONS AND EARTHQUAKES USING HYDRODYNAMIC AND ANELASTIC SIMULATIONS, HIGH-PERFORMANCE COMPUTING AND THREE-DIMENSIONAL EARTH MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A; Vorobiev, O; Petersson, A; Sjogreen, B

    2009-07-06

    This paper describes new research being performed to improve understanding of seismic waves generated by underground nuclear explosions (UNE) by using full waveform simulation, high-performance computing and three-dimensional (3D) earth models. The goal of this effort is to develop an end-to-end modeling capability to cover the range of wave propagation required for nuclear explosion monitoring (NEM) from the buried nuclear device to the seismic sensor. The goal of this work is to improve understanding of the physical basis and prediction capabilities of seismic observables for NEM including source and path-propagation effects. We are pursuing research along three main thrusts. Firstly, we are modeling the non-linear hydrodynamic response of geologic materials to underground explosions in order to better understand how source emplacement conditions impact the seismic waves that emerge from the source region and are ultimately observed hundreds or thousands of kilometers away. Empirical evidence shows that the amplitudes and frequency content of seismic waves at all distances are strongly impacted by the physical properties of the source region (e.g. density, strength, porosity). To model the near-source shock-wave motions of an UNE, we use GEODYN, an Eulerian Godunov (finite volume) code incorporating thermodynamically consistent non-linear constitutive relations, including cavity formation, yielding, porous compaction, tensile failure, bulking and damage. In order to propagate motions to seismic distances we are developing a one-way coupling method to pass motions to WPP (a Cartesian anelastic finite difference code). Preliminary investigations of UNE's in canonical materials (granite, tuff and alluvium) confirm that emplacement conditions have a strong effect on seismic amplitudes and the generation of shear waves. Specifically, we find that motions from an explosion in high-strength, low-porosity granite have high compressional wave amplitudes and weak

  17. Weapons Experiments Division Explosives Operations Overview

    Energy Technology Data Exchange (ETDEWEB)

    Laintz, Kenneth E. [Los Alamos National Laboratory

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  18. Studies of the laser-induced fluorescence of explosives and explosive compositions.

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Philip Joseph, Jr. (,; .); Thorne, Lawrence R.; Phifer, Carol Celeste; Parmeter, John Ethan; Schmitt, Randal L.

    2006-10-01

    Continuing use of explosives by terrorists throughout the world has led to great interest in explosives detection technology, especially in technologies that have potential for standoff detection. This LDRD was undertaken in order to investigate the possible detection of explosive particulates at safe standoff distances in an attempt to identify vehicles that might contain large vehicle bombs (LVBs). The explosives investigated have included the common homogeneous or molecular explosives, 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclonite or hexogen (RDX), octogen (HMX), and the heterogeneous explosive, ammonium nitrate/fuel oil (ANFO), and its components. We have investigated standard excited/dispersed fluorescence, laser-excited prompt and delayed dispersed fluorescence using excitation wavelengths of 266 and 355 nm, the effects of polarization of the laser excitation light, and fluorescence imaging microscopy using 365- and 470-nm excitation. The four nitro-based, homogeneous explosives (TNT, PETN, RDX, and HMX) exhibit virtually no native fluorescence, but do exhibit quenching effects of varying magnitude when adsorbed on fluorescing surfaces. Ammonium nitrate and fuel oil mixtures fluoresce primarily due to the fuel oil, and, in some cases, due to the presence of hydrophobic coatings on ammonium nitrate prill or impurities in the ammonium nitrate itself. Pure ammonium nitrate shows no detectable fluorescence. These results are of scientific interest, but they provide little hope for the use of UV-excited fluorescence as a technique to perform safe standoff detection of adsorbed explosive particulates under real-world conditions with a useful degree of reliability.

  19. Water temperature and concentration measurements within the expanding blast wave of a high explosive

    International Nuclear Information System (INIS)

    Carney, J R; Lightstone, J M; Piecuch, S; Koch, J D

    2011-01-01

    We present an application of absorption spectroscopy to directly measure temperature and concentration histories of water vapor within the expansion of a high explosive detonation. While the approach of absorption spectroscopy is well established, the combination of a fast, near-infrared array, broadband light source, and rigid gauge allow the first application of time-resolved absorption measurements in an explosive environment. The instrument is demonstrated using pentaerythritol tetranitrate with a sampling rate of 20 kHz for 20 ms following detonation. Absorption by water vapor is measured between 1335 and 1380 nm. Water temperatures are determined by fitting experimental transmission spectra to a simulated database. Water mole fractions are deduced following the temperature assignment. The sources of uncertainty and their impact on the results are discussed. These measurements will aid the development of chemical-specific reaction models and the predictive capability in technical fields including combustion and detonation science

  20. Energetic lanthanide complexes: coordination chemistry and explosives applications

    International Nuclear Information System (INIS)

    Manner, V W; Barker, B J; Sanders, V E; Laintz, K E; Scott, B L; Preston, D N; Sandstrom, M; Reardon, B L

    2014-01-01

    Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with 'tailor made' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.

  1. 76 FR 64974 - Commerce in Explosives; List of Explosive Materials (2011R-18T)

    Science.gov (United States)

    2011-10-19

    ... slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Esters of nitro-substituted alcohols. Ethyl-tetryl. Explosive conitrates. Explosive gelatins. Explosive... silver. Fulminating gold. Fulminating mercury. Fulminating platinum. Fulminating silver. G Gelatinized...

  2. Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical Warfare Agent and explosives

    Science.gov (United States)

    Patel, C. K. N.

    2008-01-01

    Tunable laser photoacoustic spectroscopy is maturing rapidly in its applications to real world problems. One of the burning problems of the current turbulent times is the threat of terrorist acts against civilian population. This threat appears in two distinct forms. The first is the potential release of chemical warfare agents (CWA), such as the nerve agents, in a crowded environment. An example of this is the release of Sarin by Aum Shinrikyo sect in a crowded Tokyo subway in 1995. An example of the second terrorist threat is the ever-present possible suicide bomber in crowded environment such as airports, markets and large buildings. Minimizing the impact of both of these threats requires early detection of the presence of the CWAs and explosives. Photoacoustic spectroscopy is an exquisitely sensitive technique for the detection of trace gaseous species, a property that Pranalytica has extensively exploited in its CO2 laser based commercial instrumentation for the sub-ppb level detection of a number of industrially important gases including ammonia, ethylene, acrolein, sulfur hexafluoride, phosphine, arsine, boron trichloride and boron trifluoride. In this presentation, I will focus, however, on our recent use of broadly tunable single frequency high power room temperature quantum cascade lasers (QCL) for the detection of the CWAs and explosives. Using external grating cavity geometry, we have developed room temperature QCLs that produce continuously tunable single frequency CW power output in excess of 300 mW at wavelengths covering 5 μm to 12 μm. I will present data that show a CWA detection capability at ppb levels with false alarm rates below 1:108. I will also show the capability of detecting a variety of explosives at a ppb level, again with very low false alarm rates. Among the explosives, we have demonstrated the capability of detecting homemade explosives such as triacetone triperoxide and its liquid precursor, acetone which is a common household

  3. Explosion hazards of LPG-air mixtures in vented enclosure with obstacles.

    Science.gov (United States)

    Zhang, Qi; Wang, Yaxing; Lian, Zhen

    2017-07-15

    Numerical simulations were performed to study explosion characteristics of liquefied petroleum gas (LPG) explosion in enclosure with a vent. Unlike explosion overpressure and dynamic pressure, explosion temperature of the LPG-air mixture at a given concentration in a vented enclosure has very little variation with obstacle numbers for a given blockage ratio. For an enclosure without obstacle, explosion overpressures for the stoichiometric mixtures and the fuel-lean mixtures reach their maximum within the vent and that for fuel-rich mixture reaches its maximum beyond and near the vent. Dynamic pressures produced by an indoor LPG explosion reach their maximum always beyond the vent no matter obstacles are present or not in the enclosure. A LPG explosion in a vented enclosure with built-in obstacles is strong enough to make the brick and mortar wall with a thickness of 370mm damaged. If there is no obstacle in the enclosure, the lower explosion pressure of several kPa can not break the brick and mortar wall with a thickness of 370mm. For a LPG explosion produced in an enclosure with a vent, main hazards, within the vent, are overpressure and high temperature. However main hazards are dynamic pressure, blast wind, and high temperature beyond the vent. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Determining the explosion risk level and the explosion hazard area for a group of natural gas wells

    Science.gov (United States)

    Gligor, A.; Petrescu, V.; Deac, C.; Bibu, M.

    2016-11-01

    Starting from the fact that the natural gas engineering profession is generally associated with a high occupational risk, the current paper aims to help increase the safety of natural gas wells and reduce the risk of work-related accidents, as well as the occurrence of professional illnesses, by applying an assessment method that has proven its efficiency in other industrial areas in combination with a computer-aided design software. More specifically, the paper focuses on two main research directions: assessing the explosion risk for employees working at natural gas wells and indicating areas with a higher explosion hazard by using a modern software that allows their presentation in 3D. The appropriate zoning of industrial areas allows to group the various functional areas function of the probability of the occurrence of a dangerous element, such as an explosive atmosphere and subsequently it allows also to correctly select the electrical and mechanical equipment that will be used in that area, since electrical apparatuses that are otherwise found in normal work environments cannot generally be used in areas with explosion hazard, because of the risk that an electric spark, an electrostatic discharge etc. ignites the explosive atmosphere.

  5. Fuse Selection for the Two-Stage Explosive Type Switches

    Science.gov (United States)

    Muravlev, I. O.; Surkov, M. A.; Tarasov, E. V.; Uvarov, N. F.

    2017-04-01

    In the two-level explosive switch destruction of a delay happens in the form of electric explosion. Criteria of similarity of electric explosion in transformer oil are defined. The challenge of protecting the power electrical equipment from short circuit currents is still urgent, especially with the growth of unit capacity. Is required to reduce the tripping time as much as possible, and limit the amplitude of the fault current, that is very important for saving of working capacity of life-support systems. This is particularly important when operating in remote stand-alone power supply systems with a high share of renewable energy, working through the inverter transducers, as well as inverter-type diesel generators. The explosive breakers copes well with these requirements. High-speed flow of transformer oil and high pressure provides formation rate of a contact gap of 20 - 100 m/s. In these conditions there is as a rapid increase in voltage on the discontinuity, and recovery of electric strength (Ures) after current interruption.

  6. Review on the explosive consolidation methods to fabricate tungsten based PFMs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuming, E-mail: wangshuming@ustb.edu.cn; Sun, Chongxiao; Guo, Wenhao; Yan, Qingzhi; Zhou, Zhangjian; Zhang, Yingchun; Shen, Weiping; Ge, Changchun

    2014-12-15

    Tungsten is one of the best candidates for plasma-facing materials in the fusion reactors, owing to its many unique properties. In the development of tungsten-based Plasma Facing Materials/Components (PFMs/PFCs), materials scientists have explored many different, innovative preparation and processing routes to meet the requirement of International Thermonuclear Experimental Reactor (ITER). Some explosive consolidation technology intrinsic characteristics, which make it suitable for powder metallurgy (powders consolidation) and PFMs production, are the high pressure processing, highly short heating time and can be considered as a highly competitive green technology. In this work, an overview of explosive consolidation techniques applied to fabricate tungsten-based PFMs is presented. Emphasis is given to describe the main characteristics and potentialities of the explosive sintering, explosive consolidation techniques. The aspects presented and discussed in this paper indicate the explosive consolidation processes as a promising and competitive technology for tungsten-based PFMs processing.

  7. 77 FR 58410 - Commerce in Explosives; List of Explosive Materials (2012R-10T)

    Science.gov (United States)

    2012-09-20

    ... sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Esters of nitro-substituted alcohols. Ethyl-tetryl. Explosive conitrates. Explosive gelatins. Explosive.... Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating platinum. Fulminating silver. G...

  8. Shock Initiation of Wedge-shaped Explosive Measured with Smear Camera and Photon Doppler Velocimetry

    Science.gov (United States)

    Gu, Yan

    2017-06-01

    Triaminotrinitrobenzene (TATB) is an important insensitive high explosive in conventional weapons due to its safety and high energy. In order to have an insight into the shock initiation performance of a TATB-based insensitive high explosive (IHE), experimental measurements of the particle velocity histories of the TATB-based Explosive using Photon Doppler Velocimetry and shock wave profile of the TATB-based explosive using High Speed Rotating Mirror Smear Camera had been performed. In this paper, we would describe the shock initiation performance of the TATB-based explosive by run-to-detonation distance and the particle velocity history at an initialization shock of about 7.9 GPa. The parameters of hugoniot of unreacted the TATB-based explosive and Pop relationship could be derived with the particle velocity history obtained in this paper.

  9. Liquid explosives. The threat to civil aviation and the European response

    NARCIS (Netherlands)

    Ruiter, C.J. de; Lemmens, O.M.E.J.

    2008-01-01

    This paper deals with the specific group of homemade liquid high explosives in relation to aviation security. The sudden and irrefutable focus on homemade explosives and liquid explosives in particular after the 2006 defeated attacks in London, made the aviation security community realize that the

  10. Genetically different isolates of Trypanosoma cruzi elicit different infection dynamics in raccoons (Procyon lotor) and Virginia opossums (Didelphis virginiana).

    Science.gov (United States)

    Roellig, Dawn M; Ellis, Angela E; Yabsley, Michael J

    2009-12-01

    Trypanosoma cruzi is a genetically and biologically diverse species. In the current study we determined T. cruzi infection dynamics in two common North American reservoirs, Virginia opossums (Didelphis virginiana) and raccoons (Procyon lotor). Based on previous molecular and culture data from naturally-exposed animals, we hypothesised that raccoons would have a longer patent period than opossums, and raccoons would be competent reservoirs for both genotypes T. cruzi I (TcI) and TcIIa, while opossums would only serve as hosts for TcI. Individuals (n=2 or 3) of each species were inoculated with 1x10(6) culture-derived T. cruzi trypomastigotes of TcIIa (North American (NA) - raccoon), TcI (NA - opossum), TcIIb (South American - human), or both TcI and TcIIa. Parasitemias in opossums gradually increased and declined rapidly, whereas parasitemias peaked sooner in raccoons and they maintained relatively high parasitemia for 5weeks. Raccoons became infected with all three T. cruzi strains, while opossums only became infected with TcI and TcIIb. Although opossums were susceptible to TcIIb, infection dynamics were dramatically different compared with TcI. Opossums inoculated with TcIIb seroconverted, but parasitemia duration was short and only detectable by PCR. In addition, raccoons seroconverted sooner (3-7days post inoculation) than opossums (10days post inoculation). These data suggest that infection dynamics of various T. cruzi strains can differ considerably in different wildlife hosts.

  11. A brief introduction to high altitude nuclear explosion and a review on high altitude nuclear tests of usa and former USSR

    International Nuclear Information System (INIS)

    Sun Jingwen

    1999-11-01

    The author briefly introduces some knowledge about high altitude nuclear explosion (HANE) and presents a general review on high altitude nuclear tests of USA and former USSR. Physical phenomenon generated by HANE is given. The effects of HANE on space flyer, artificial satellite and communication are discussed. Some aspects of a mechanism of antimissile for HANE are described and the effect and role of HANE for USA and USSR are reviewed

  12. Underground nuclear explosions

    International Nuclear Information System (INIS)

    Higgins, Gary H.

    1970-01-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  13. Underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Gary H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  14. Numerical Simulation of Explosive Forming Using Detonating Fuse

    OpenAIRE

    H Iyama; Y Higa; M Nishi; S Itoh

    2017-01-01

    The explosive forming is a characteristic method. An underwater shock wave is generated by underwater explosion of an explosive. A metal plate is affected high strain rate by the shock loading and is formed along a metal die. Although this method has the advantage of mirroring the shape of the die, a free forming was used in this paper. An expensive metal die is not necessary for this free forming. It is possible that a metal plate is formed with simple supporting parts. However, the forming ...

  15. THE BIGGEST EXPLOSIONS IN THE UNIVERSE

    International Nuclear Information System (INIS)

    Johnson, Jarrett L.; Whalen, Daniel J.; Smidt, Joseph; Even, Wesley; Fryer, Chris L.; Heger, Alex; Chen, Ke-Jung

    2013-01-01

    Supermassive primordial stars are expected to form in a small fraction of massive protogalaxies in the early universe, and are generally conceived of as the progenitors of the seeds of supermassive black holes (BHs). Supermassive stars with masses of ∼55, 000 M ☉ , however, have been found to explode and completely disrupt in a supernova (SN) with an energy of up to ∼10 55 erg instead of collapsing to a BH. Such events, ∼10, 000 times more energetic than typical SNe today, would be among the biggest explosions in the history of the universe. Here we present a simulation of such a SN in two stages. Using the RAGE radiation hydrodynamics code, we first evolve the explosion from an early stage through the breakout of the shock from the surface of the star until the blast wave has propagated out to several parsecs from the explosion site, which lies deep within an atomic cooling dark matter (DM) halo at z ≅ 15. Then, using the GADGET cosmological hydrodynamics code, we evolve the explosion out to several kiloparsecs from the explosion site, far into the low-density intergalactic medium. The host DM halo, with a total mass of 4 × 10 7 M ☉ , much more massive than typical primordial star-forming halos, is completely evacuated of high-density gas after ∼ ☉ after ∼> 70 Myr. The chemical signature of supermassive star explosions may be found in such long-lived second-generation stars today

  16. Vortex-Induced Vapor Explosion during Drop Impact on a Superheated Pool

    KAUST Repository

    Alchalabi, M.A.

    2017-04-18

    Ultra high-speed imaging is used to investigate the vapor explosion when a drop impacts onto a high-temperature pool. The two liquids are immiscible, a low boiling-temperature perfluorohexane drop, at room temperature, which impacts a high boiling-temperature soybean-oil pool, which is heated well above the boiling temperature of the drop. We observe different regimes: weak and strong nucleate boiling, film boiling or Leidenfrost regime and entrainment followed by vapor explosion. The vapor explosions were seen to depend on the formation of a rotational flow at the edge of the impact crater, near the pool surface, which resembles a vortex ring. This rotational motion entrains a thin sheet of the drop liquid, to become surrounded by the oil. In that region, the vapor explosion starts at a point after which it propagates azimuthally along the entire periphery at high speed.

  17. Vortex-Induced Vapor Explosion during Drop Impact on a Superheated Pool

    KAUST Repository

    Alchalabi, M.A.; Kouraytem, Nadia; Li, Erqiang; Thoroddsen, Sigurdur T

    2017-01-01

    Ultra high-speed imaging is used to investigate the vapor explosion when a drop impacts onto a high-temperature pool. The two liquids are immiscible, a low boiling-temperature perfluorohexane drop, at room temperature, which impacts a high boiling-temperature soybean-oil pool, which is heated well above the boiling temperature of the drop. We observe different regimes: weak and strong nucleate boiling, film boiling or Leidenfrost regime and entrainment followed by vapor explosion. The vapor explosions were seen to depend on the formation of a rotational flow at the edge of the impact crater, near the pool surface, which resembles a vortex ring. This rotational motion entrains a thin sheet of the drop liquid, to become surrounded by the oil. In that region, the vapor explosion starts at a point after which it propagates azimuthally along the entire periphery at high speed.

  18. Stellar explosion

    International Nuclear Information System (INIS)

    Suraud, E.

    1987-01-01

    What is the energy source and which physical processes are powerful enough to generate this explosion which scatters the star. The knowledge progress of very dense matter allows the scenario reconstitution. An instability in the star core which is developing during milliseconds is the cause of this explosion [fr

  19. Dimensional analysis for the mechanical effects of some underground explosions

    Energy Technology Data Exchange (ETDEWEB)

    Delort, Francis [Commissariat a l' Energie Atomique, Centre d' Etudes de Bruyeres-le-Chatel (France)

    1970-05-15

    The influence of the medium properties upon the effects of underground nuclear and high explosive explosions is studied by dimensional analysis methods. A comparison is made with the experimental data from the Hoggar contained nuclear shots, specially with the particle motion data and the cavity radii. Furthermore, for example, crater data from explosions in Nevada have been examined by statistical methods. (author)

  20. Fire and explosion hazards to flora and fauna from explosives.

    Science.gov (United States)

    Merrifield, R

    2000-06-30

    Deliberate or accidental initiation of explosives can produce a range of potentially damaging fire and explosion effects. Quantification of the consequences of such effects upon the surroundings, particularly on people and structures, has always been of paramount importance. Information on the effects on flora and fauna, however, is limited, with probably the weakest area lying with fragmentation of buildings and their effects on different small mammals. Information has been used here to gain an appreciation of the likely magnitude of the potential fire and explosion effects on flora and fauna. This is based on a number of broad assumptions and a variety of data sources including World War II bomb damage, experiments performed with animals 30-40 years ago, and more recent field trials on building break-up under explosive loading.

  1. Shock-induced explosive chemistry in a deterministic sample configuration.

    Energy Technology Data Exchange (ETDEWEB)

    Stuecker, John Nicholas; Castaneda, Jaime N.; Cesarano, Joseph, III (,; ); Trott, Wayne Merle; Baer, Melvin R.; Tappan, Alexander Smith

    2005-10-01

    Explosive initiation and energy release have been studied in two sample geometries designed to minimize stochastic behavior in shock-loading experiments. These sample concepts include a design with explosive material occupying the hole locations of a close-packed bed of inert spheres and a design that utilizes infiltration of a liquid explosive into a well-defined inert matrix. Wave profiles transmitted by these samples in gas-gun impact experiments have been characterized by both velocity interferometry diagnostics and three-dimensional numerical simulations. Highly organized wave structures associated with the characteristic length scales of the deterministic samples have been observed. Initiation and reaction growth in an inert matrix filled with sensitized nitromethane (a homogeneous explosive material) result in wave profiles similar to those observed with heterogeneous explosives. Comparison of experimental and numerical results indicates that energetic material studies in deterministic sample geometries can provide an important new tool for validation of models of energy release in numerical simulations of explosive initiation and performance.

  2. Detecting Weak Explosions at Local Distances by Fusing Multiple Geophysical Phenomenologies

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Joshua D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nemzek, Robert J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Arrowsmith, Stephen J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sentz, Kari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-23

    Comprehensive explosion monitoring requires the technical capability to identify certain signatures at low signal strengths. For particularly small, evasively conducted explosions, conventional monitoring methods that use single geophysical phenomenologies may produce marginal or absent detections. To address this challenge, we recorded coincident acoustic, seismic and radio-frequency emissions during the above-ground detonation of ~ 2-12 kg solid charges and assessed how waveform data could be fused to increase explosion-screening capability. Our data provided identifiable explosion signatures that we implemented as template-events in multichannel correlation detectors to search for similar, matching waveforms. We thereby observed that these highly sensitive correlation detectors missed explosive events when applied separately to data streams that were heavily contaminated with noise and signal clutter. By then adding the p-values of these statistics through Fisher’s combined probability test, we correctly identified the explosion signals at thresholds consistent with the false alarm rates of the correlation detectors. This resulting Fisher test thereby provided high-probability detections, zero false alarms, and higher theoretical detection capability. We conclude that inclusion of these fusion methods in routine monitoring operations will likely lower both detection thresholds for small explosions, while reducing false attribution rates.

  3. Hábitos alimentarios del mapachín (Procyon lotor (Carnivora: Procyonidae en un bosque muy húmedo tropical costero de Costa Rica

    Directory of Open Access Journals (Sweden)

    Eduardo Carrillo

    2001-12-01

    Full Text Available Se determinaron los hábitos alimentarios del mapachín (Procyon lotor en el Parque Nacional Manuel Antonio, un bosque tropical muy húmedo ubicado en la costa del Pacífico de Costa Rica, durante la estación lluviosa del año 1987 (mayo a diciembre, la estación lluviosa de 1989 (setiembre a diciembre y durante la estación seca del año 1990 (enero a abril. Mediante el análisis de 134 muestras de heces se determinó que la categoría más importante en la dieta del mapachín estuvo compuesta por los cangrejos de tierra (Gecarcinus quadratus y Cardisoma crassum, con una frecuencia relativa de 0.94 en la estación lluviosa del año 1987, 0.76 en la estación lluviosa del año 1989 y 0.65 en la estación seca de 1990. La segunda categoría en importancia estuvo compuesta por frutos, con una frecuencia relativa de 0.09 en la estación lluviosa del año 1987, 0.32 en la estación lluviosa del año 1989 y 0.44 en la estación seca del año 1990. De acuerdo con los cambios estacionales en la dieta, los mapachines forrajearon de manera eficiente para maximizar la ganancia en la tasa neta de energíaRaccoon (Procyon lotor food habits were studied at Manuel Antonio National Park, a tropical rain forest in the Pacific coast of Costa Rica from May to December 1987, from September to December 1989 and from January to April 1990. A 134 feces sample size was used to assess the most important items in raccoon diet: two crab species (Gecarcinus quadratus and Cardisoma crassum with a relative frequency of 0.94 in the rainy season of 1987, 0.76 in the rainy season of 1989 and 0.65 in the dry season of 1990. Fruits were the second category in importance, with relative frequencies of 0.09 for 1987, 0.32 for 1989 and 0.44 for 1990

  4. The control and prevention of dust explosions

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Papers presented discussed: explosion characteristics and hybrid mixtures explosion characteristics and influencing factors, propagation of dust explosions in ducts, prevention of dust explosions, desensitization, explosion-proof type of construction, explosion pressure relief, optical flame barriers, slide-valves for explosion protection, Ventex explosion barrier valves, grinding and mixing plants, spray driers, dust explosions in silos, and explosion-proof bucket elevators. One paper has been abstracted separately.

  5. Coulomb explosion of “hot spot”

    Energy Technology Data Exchange (ETDEWEB)

    Oreshkin, V. I., E-mail: oreshkin@ovpe.hcei.tsc.ru [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); Tomsk Polytechnic University, Tomsk (Russian Federation); Oreshkin, E. V. [P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Chaikovsky, S. A. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Institute of Electrophysics, UD, RAS, Ekaterinburg (Russian Federation); Artyomov, A. P. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation)

    2016-09-15

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  6. Coulomb explosion of “hot spot”

    International Nuclear Information System (INIS)

    Oreshkin, V. I.; Oreshkin, E. V.; Chaikovsky, S. A.; Artyomov, A. P.

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  7. Explosion Clad for Upstream Oil and Gas Equipment

    Science.gov (United States)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO2 and/or H2S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  8. Explosion Clad for Upstream Oil and Gas Equipment

    International Nuclear Information System (INIS)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO 2 and/or H 2 S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  9. Chernobyl explosion bombshell

    International Nuclear Information System (INIS)

    Martin, S.; Arnott, D.

    1988-01-01

    It is suggested that the explosion at the Chernobyl-4 reactor in April 1986 was a nuclear explosion. The evidence for this is examined. The sequence of events at Chernobyl is looked at to see if the effects were like those from a nuclear explosion. The question of whether a United Kingdom reactor could go prompt critical is discussed. It is concluded that prompt criticality excursions are possible, but the specific Chernobyl sequence is impossible. (UK)

  10. Physics of phenomena in the zone close to an underground nuclear explosion; Physique des phenomenes en zone proche des explosions nucleaires souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Maury, J; Levret, C [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    After a description of the phenomenology of underground explosions, the basic laws governing the propagation in the ground of the energy produced by the explosion are given. The reports considers hydrodynamics, the mechanics of solids, the equations of state for solids and gases in the case of very high and medium pressures, and the dynamical strength of solids. These various elements make it possible to draw up a system of equations which define completely the changes with time of the shock-wave produced in the ground by the explosion. (authors) [French] Apres une description de la phenomenologie des explosions souterraines, on expose les lois fondamentales regissant la propagation dans le sol de l'energie degagee par l'explosion. L'expose comprend des developpements sur l'hydrodynamique, la mecanique des solides, les equations d'etat des solides et des gaz, aux tres fortes et moyennes pressions, et sur la resistance dynamique des solides. Ces differents elements permettent d'ecrire un systeme d'equations qui definissent completement l'evolution dans le temps de l'onde de choc emise dans le sol par l'explosion. (auteurs)

  11. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  12. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    van den Broek, D.M.; Elwenspoek, Michael Curt

    2007-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a very high temperature in a very short time. At these temperatures homogeneous nucleation takes place. The nucleated bubbles almost instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse and

  13. Numerical Simulation of Explosive Forming Using Detonating Fuse

    Directory of Open Access Journals (Sweden)

    H Iyama

    2017-09-01

    Full Text Available The explosive forming is a characteristic method. An underwater shock wave is generated by underwater explosion of an explosive. A metal plate is affected high strain rate by the shock loading and is formed along a metal die. Although this method has the advantage of mirroring the shape of the die, a free forming was used in this paper. An expensive metal die is not necessary for this free forming. It is possible that a metal plate is formed with simple supporting parts. However, the forming shape is depend on the shock pressure distribution act on the metal plate. This pressure distribution is able to change by the shape of explosive, a mass of explosive and a shape of pressure vessel. On the other hand, we need the pressure vessel for food processing by the underwater shock wave. Therefore, we propose making the pressure vessel by this explosive forming. One design suggestion of pressure vessel made of stainless steel was considered. However, we cannot decide suitable conditions, the mass of the explosive and the distance between the explosive and the metal plate to make the pressure vessel. In order to decide these conditions, we have tried the numerical simulation on this explosive forming. The basic simulation method was ALE (Arbitrary Laglangian Eulerian method including with Mie-Grümeisen EOS (equation of state, JWL EOS, Johnson-Cook constitutive equation for a material model. In this paper, the underwater pressure contours to clear the propagations of the underwater shock wave, forming processes and deformation velocity of the metal plate is shown and it will be discussed about those results.

  14. Aspects regarding explosion risk assessment

    Directory of Open Access Journals (Sweden)

    Părăian Mihaela

    2017-01-01

    Full Text Available Explosive risk occurs in all activities involving flammable substances in the form of gases, vapors, mists or dusts which, in mixture with air, can generate an explosive atmosphere. As explosions can cause human losses and huge material damage, the assessment of the explosion risk and the establishment of appropriate measures to reduce it to acceptable levels according to the standards and standards in force is of particular importance for the safety and health of people and goods.There is no yet a recognized method of assessing the explosion risk, but regardless of the applied method, the likelihood of an explosive atmosphere occurrence has to be determined, together with the occurrence of an efficient ignition source and the magnitude of foreseeable consequences. In assessment processes, consequences analysis has a secondary importance since it’s likely that explosions would always involve considerable damage, starting from important material damages and up to human damages that could lead to death.The purpose of the work is to highlight the important principles and elements to be taken into account for a specific risk assessment. An essential element in assessing the risk of explosion in workplaces where explosive atmospheres may occur is technical installations and personal protective equipment (PPE that must be designed, manufactured, installed and maintained so that they cannot generate a source of ignition. Explosion prevention and protection requirements are governed by specific norms and standards, and a main part of the explosion risk assessment is related to the assessment of the compliance of the equipment / installation with these requirements.

  15. Numerical modelling of the effect of using multi-explosives on the explosive forming of steel cones

    OpenAIRE

    De Vuyst, T; Kong, K; Djordjevic, N; Vignjevic, R; Campbell, JC; Hughes, K

    2016-01-01

    Modelling and analysis of underwater explosive forming process by using FEM and SPH formulation is presented in this work. The explosive forming of a steel cone is studied. The model setup includes a low carbon steel plate, plate holder, forming die as well as water and C4 explosive. The effect of multiple explosives on rate of targets deformation has been studied. Four different multi-explosives models have been developed and compared to the single explosive model. The formability of the ste...

  16. Biodegradation of the High Explosive Hexanitrohexaazaiso-wurtzitane (CL-20

    Directory of Open Access Journals (Sweden)

    Steve Nicolich

    2009-04-01

    Full Text Available The aerobic biodegradability of the high explosive CL-20 by activated sludge and the white rot fungus Phanerochaete chrysosporium has been investigated. Although activated sludge is not effective in degrading CL-20 directly, it can mineralize the alkaline hydrolysis products. Phanerochaete chrysosporium degrades CL-20 in the presence of supplementary carbon and nitrogen sources. Biodegradation studies were conducted using various nutrient media under diverse conditions. Variables included the CL-20 concentration; levels of carbon (as glycerol and ammonium sulfate and yeast extract as sources of nitrogen. Cultures that received CL-20 at the time of inoculation transformed CL-20 completely under all nutrient conditions studied. When CL-20 was added to pre-grown cultures, degradation was limited. The extent of mineralization was monitored by the 14CO2 time evolution; up to 51% mineralization was achieved when the fungus was incubated with [14C]-CL-20. The kinetics of CL-20 biodegradation by Phanerochaete chrysosporium follows the logistic kinetic growth model.

  17. Pressure Wave Measurements from Thermal Cook-Off of an HMX Based High Explosive PBX 9501

    International Nuclear Information System (INIS)

    Garcia, F.; Forbes, J.W.; Tarver, C.M.; Urtiew, P.A.; Greenwood, D.W.; Vandersall, K.S.

    2001-01-01

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios

  18. The explosion-proof container, satisfying the IAEA norms on safety

    International Nuclear Information System (INIS)

    Syrunin, M.A.; Fedorenko, A.G.; Ivanov, A.G.; Abakumov, A.I.; Nizovtsev, P.N.; Loginov, P.G.; Smolyakov, A.A.; Solov'ev, V.P.

    1998-01-01

    Safety of radioactive materials (RM) transportation is under strict control of the international norms of IAEA, aimed to ensure non-proliferation of hazardous materials in the environments. At the same time the nuclear countries use much more dangerous transportations of two types of hazardous materials. Probability of emergency explosion of high explosives (HE) during transportation and storage of such constructions is not equal to zero. HE explosion can be caused by: 1)excess of mechanical effects, allowable by the norms, on an explosive 2)lightening or fire 3)terrorist attack 4)radio controlled or time controlled mechanism in case of the terrorist device. It is obvious that an accident with explosion HE element of the nuclear weapon in an usual container, which meets the IAEA norms, but is not explosion-proof, will result in its destruction, RM dispersal, and inadmissible pollution of the environments. Therefore, it is urgent need for development of the container, which is able to withstand explosion of HE, placed in it, and to confine released RM inside of it. The experimental prototype of the load-bearing shell of the explosion-proof container (EC) can be the successfully tested spherical steel - glass plastic shell, having high-strength throats and lids. Having weight of 45-50 kg it is able to withstand internal explosion with energy more than 1.4 kg of the TNT equivalent. To preserve the explosion-proofness property in the abnormal environments during transportation, the explosion-proof container should be placed in the protective supporting transport device or the transport container (TC), consisting of the external thin-walled steel shell and the damping heat-proof layer from heat-resistant foam plastic. To justify the design parameters of such container, the tests for development and revision of the numerical model parameters were carried out. With use of this model the calculations were performed to calculate loads and the container response to 1

  19. New high-nitrogen materials based on nitroguanyl-tetrazines: explosive properties, thermal decomposition and combustion studies

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, David E.; Tappan, Bryce C.; Hiskey, Michael A.; Son, Steve F.; Harry, Herbert; Montoya, Dennis; Hagelberg, Stephanie [Dynamic Experimentation Division, DX-2 Materials Dynamics Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-12-01

    This paper describes the explosive sensitivity and performance properties of two novel high-nitrogen materials, 3,6-bis-nitroguanyl-1,2,4,5-tetrazine (1, (NQ{sub 2}Tz)) and its corresponding bis-triaminoguanidinium salt (2, (TAG){sub 2}(NQ){sub 2}Tz). These materials exhibit very low pressure dependence in burning rate. Flash pyrolysis/FTIR spectroscopy was performed, and insight into this interesting burning behavior was obtained. Our studies indicate that 1 and 2 exhibit highly promising energetic materials properties. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  20. Early light curves for Type Ia supernova explosion models

    Science.gov (United States)

    Noebauer, U. M.; Kromer, M.; Taubenberger, S.; Baklanov, P.; Blinnikov, S.; Sorokina, E.; Hillebrandt, W.

    2017-12-01

    Upcoming high-cadence transient survey programmes will produce a wealth of observational data for Type Ia supernovae. These data sets will contain numerous events detected very early in their evolution, shortly after explosion. Here, we present synthetic light curves, calculated with the radiation hydrodynamical approach STELLA for a number of different explosion models, specifically focusing on these first few days after explosion. We show that overall the early light curve evolution is similar for most of the investigated models. Characteristic imprints are induced by radioactive material located close to the surface. However, these are very similar to the signatures expected from ejecta-CSM or ejecta-companion interaction. Apart from the pure deflagration explosion models, none of our synthetic light curves exhibit the commonly assumed power-law rise. We demonstrate that this can lead to substantial errors in the determination of the time of explosion. In summary, we illustrate with our calculations that even with very early data an identification of specific explosion scenarios is challenging, if only photometric observations are available.

  1. A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.

    2013-09-18

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  2. Automated High-Speed Video Detection of Small-Scale Explosives Testing

    Science.gov (United States)

    Ford, Robert; Guymon, Clint

    2013-06-01

    Small-scale explosives sensitivity test data is used to evaluate hazards of processing, handling, transportation, and storage of energetic materials. Accurate test data is critical to implementation of engineering and administrative controls for personnel safety and asset protection. Operator mischaracterization of reactions during testing contributes to either excessive or inadequate safety protocols. Use of equipment and associated algorithms to aid the operator in reaction determination can significantly reduce operator error. Safety Management Services, Inc. has developed an algorithm to evaluate high-speed video images of sparks from an ESD (Electrostatic Discharge) machine to automatically determine whether or not a reaction has taken place. The algorithm with the high-speed camera is termed GoDetect (patent pending). An operator assisted version for friction and impact testing has also been developed where software is used to quickly process and store video of sensitivity testing. We have used this method for sensitivity testing with multiple pieces of equipment. We present the fundamentals of GoDetect and compare it to other methods used for reaction detection.

  3. Elaboration of the Charge Constructions of Explosives for the Structure of Facing Stone

    Science.gov (United States)

    Khomeriki, Sergo; Mataradze, Edgar; Chikhradze, Nikoloz; Losaberidze, Marine; Khomeriki, Davit; Shatberashvili, Grigol

    2017-12-01

    Increased demand for high-strength facing material caused the enhancement of the volume of explosives use in modern technologies of blocks production. The volume of broken rocks and crushing quality depends on the rock characteristics and on the properties of the explosive, in particular on its brisance and serviceability. Therefore, the correct selection of the explosive for the specific massif is of a considerable practical importance. For efficient mining of facing materials by explosion method the solving of such problems as determination of the method of blasthole drilling as well as of the regime and charge values, selection of the explosive, blastholes distribution in the face and their order is necessary. This paper focuses on technical solutions for conservation of rock natural structure in the blocks of facing material, mined by the use of the explosives. It has been established that the efficient solving of mentioned problem is attained by reducing of shock pulse duration. In such conditions the rigidity of crystalline lattice increases in high pressure area. As a result, the hazard if crack formation in structural unites and the increases of natural cracks are excluded. Short-time action of explosion pulse is possible only by linear charges of the explosives, characterized by high detonation velocity which detonate by the velocity of 7-7.5 km/sec and are characterized by very small critical diameter.

  4. On beyond the standard model for high explosives: challenges & obstacles to surmount

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph Ds [Los Alamos National Laboratory

    2009-01-01

    Plastic-bonded explosives (PBX) are heterogeneous materials. Nevertheless, current explosive models treat them as homogeneous materials. To compensate, an empirically determined effective burn rate is used in place of a chemical reaction rate. A significant limitation of these models is that different burn parameters are needed for applications in different regimes; for example, shock initiation of a PBX at different initial temperatures or different initial densities. This is due to temperature fluctuations generated when a heterogeneous material is shock compressed. Localized regions of high temperatures are called hot spots. They dominate the reaction for shock initiation. The understanding of hot spot generation and their subsequent evolution has been limited by the inability to measure transients on small spatial ({approx} 1 {micro}m) and small temporal ({approx} 1 ns) scales in the harsh environment of a detonation. With the advances in computing power, it is natural to try and gain an understanding of hot-spot initiation with numerical experiments based on meso-scale simulations that resolve material heterogeneities and utilize realistic chemical reaction rates. However, to capture the underlying physics correctly, such high resolution simulations will require more than fast computers with a large amount of memory. Here we discuss some of the issues that need to be addressed. These include dissipative mechanisms that generate hot spots, accurate thermal propceties for the equations of state of the reactants and products, and controlling numerical entropy error from shock impedance mismatches at material interfaces. The later can generate artificial hot spots and lead to premature reaction. Eliminating numerical hot spots is critical for shock initiation simulations due to the positive feedback between the energy release from reaction and the hydrodynamic flow.

  5. Explosively formed fuse opening switches for use in flux-compression generator circuits

    International Nuclear Information System (INIS)

    Goforth, J.H.; Marsh, S.P.

    1990-01-01

    Explosive-driven magnetic flux compression generators (explosive generators) provide for the generation of large amounts of energy compactly stored in a magnetic field. Opening switches for use in explosive generator circuits allow the energy to be used for applications requiring higher power than can be developed by the generators themselves. The authors have developed a type of opening switch that they describe as an explosively formed fuse (EEF). These switches are well suited to explosive generator circuits and provide a considerable enhancement of explosive pulsed-power capability. The authors first experiments with explosively formed fuses occurred while attempting to utilize the enhanced pressure developed in the high-pressure interaction between two detonation fronts. In these tests they attempted to use the interaction to sever conducting plates along lines perpendicular to current flow. The technique worked to some extent, and to ascertain how much advantage was gained from the high-pressure interaction, they substituted an areal detonation in place of the discrete lines required to produce lines of interaction. This paper describes the authors development effort, the state of the art, and the different manifestations of their technique

  6. Physics of phenomena in the zone close to an underground nuclear explosion; Physique des phenomenes en zone proche des explosions nucleaires souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Maury, J.; Levret, C. [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    After a description of the phenomenology of underground explosions, the basic laws governing the propagation in the ground of the energy produced by the explosion are given. The reports considers hydrodynamics, the mechanics of solids, the equations of state for solids and gases in the case of very high and medium pressures, and the dynamical strength of solids. These various elements make it possible to draw up a system of equations which define completely the changes with time of the shock-wave produced in the ground by the explosion. (authors) [French] Apres une description de la phenomenologie des explosions souterraines, on expose les lois fondamentales regissant la propagation dans le sol de l'energie degagee par l'explosion. L'expose comprend des developpements sur l'hydrodynamique, la mecanique des solides, les equations d'etat des solides et des gaz, aux tres fortes et moyennes pressions, et sur la resistance dynamique des solides. Ces differents elements permettent d'ecrire un systeme d'equations qui definissent completement l'evolution dans le temps de l'onde de choc emise dans le sol par l'explosion. (auteurs)

  7. A Study on intelligent measurement of nuclear explosion equivalent in atmosphere

    International Nuclear Information System (INIS)

    Wang Desheng; Wu Xiaohong

    1999-01-01

    Measurement of nuclear explosion equivalent in atmosphere is an important subject for nuclear survey. Based on the relations between nuclear explosion equivalent and the minimum illuminance time of light radiation from nuclear explosion. The method of RC differential valley time detection and mean-time taking is presented the method, using a single-chip computer as a intelligent part, can realize intelligent measurement of minimum illuminance time with high reliability and low power consumption. This method provides a practical mean for quick, accurate and reliable measurement of nuclear explosion equivalent in atmosphere

  8. General phenomenology of underground nuclear explosions

    International Nuclear Information System (INIS)

    Derlich, S.; Supiot, F.

    1969-01-01

    An essentially qualitatively description is given of the phenomena related to underground nuclear explosions (explosion of a single unit, of several units in line, and simultaneous explosions). In the first chapter are described the phenomena which are common to contained explosions and to explosions forming craters (formation and propagation of a shock-wave causing the vaporization, the fusion and the fracturing of the medium). The second chapter describes the phenomena related to contained explosions (formation of a cavity with a chimney). The third chapter is devoted to the phenomenology of test explosions which form a crater; it describes in particular the mechanism of formation and the different types of craters as a function of the depth of the explosion and of the nature of the ground. The aerial phenomena connected with explosions which form a crater: shock wave in the air and focussing at a large distance, and dust clouds, are also dealt with. (authors) [fr

  9. Lead-free primary explosives

    Science.gov (United States)

    Huynh, My Hang V.

    2010-06-22

    Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  10. Recent Advances in Understanding Large Scale Vapour Explosions

    International Nuclear Information System (INIS)

    Board, S.J.; Hall, R.W.

    1976-01-01

    In foundries, violent explosions occur occasionally when molten metal comes into contact with water. If similar explosions can occur with other materials, hazardous situations may arise for example in LNG marine transportation accidents, or in liquid cooled reactor incidents when molten UO 2 contacts water or sodium coolant. Over the last 10 years a large body of experimental data has been obtained on the behaviour of small quantities of hot material in contact with a vaporisable coolant. Such experiments generally give low energy yields, despite producing fine fragmentation of the molten material. These events have been interpreted in terms of a wide range of phenomena such as violent boiling, liquid entrainment, bubble collapse, superheat, surface cracking and many others. Many of these studies have been aimed at understanding the small scale behaviour of the particular materials of interest. However, understanding the nature of the energetic events which were the original cause for concern may also be necessary to give confidence that violent events cannot occur for these materials in large scale situations. More recently, there has been a trend towards larger experiments and some of these have produced explosions of moderately high efficiency. Although occurrence of such large scale explosions can depend rather critically on initial conditions in a way which is not fully understood, there are signs that the interpretation of these events may be more straightforward than that of the single drop experiments. In the last two years several theoretical models for large scale explosions have appeared which attempt a self contained explanation of at least some stages of such high yield events: these have as their common feature a description of how a propagating breakdown of an initially quasi-stable distribution of materials is induced by the pressure and flow field caused by the energy release in adjacent regions. These models have led to the idea that for a full

  11. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    Science.gov (United States)

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-05

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Explosive strength training improves speed and agility in wheelchair basketball athletes

    OpenAIRE

    Tarik Ozmen; Bekir Yuktasir; Necmiye Un Yildirim; Birol Yalcin; Mark ET Willems

    2014-01-01

    INTRODUCTION: Wheelchair basketball is a paralympic sport characterized by intermittent high-intensity activities that require explosive strength and speed. OBJECTIVE: To investigate the effect of explosive strength training on speed and agility performance in wheelchair basketball players. METHODS: Ten male wheelchair basketball players (Mage=31±4 yrs) were divided into two groups [i.e. explosive strength training (ES); control (CN)] based on International Wheelchair Basketball Fede...

  13. Magnetorotational Explosions of Core-Collapse Supernovae

    Directory of Open Access Journals (Sweden)

    Gennady S. Bisnovatyi-Kogan

    2014-12-01

    Full Text Available Core-collapse supernovae are accompanied by formation of neutron stars. The gravitation energy is transformed into the energy of the explosion, observed as SN II, SN Ib,c type supernovae. We present results of 2-D MHD simulations, where the source of energy is rotation, and magnetic eld serves as a "transition belt" for the transformation of the rotation energy into the energy of the explosion. The toroidal part of the magnetic energy initially grows linearly with time due to dierential rotation. When the twisted toroidal component strongly exceeds the poloidal eld, magneto-rotational instability develops, leading to a drastic acceleration in the growth of magnetic energy. Finally, a fast MHD shock is formed, producing a supernova explosion. Mildly collimated jet is produced for dipole-like type of the initial field. At very high initial magnetic field no MRI development was found.

  14. Composting of soils/sediments and sludges containing toxic organics including high energy explosives. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, R.C.; Kitchens, J.F.

    1993-07-01

    Laboratory and pilot-scale experimentation were conducted to evaluate composting as an on-site treatment technology to remediate soils contaminated with hazardous waste at DOE`s PANTEX Plant. Suspected contaminated sites within the PANTEX Plant were sampled and analyzed for explosives, other organics, and inorganic wastes. Soils in drainage ditches and playas at PANTEX Plant were found to be contaminated with low levels of explosives (including RDX, HMX, PETN and TATB). Additional sites previously used for solvent disposal were heavily contaminated with solvents and transformation products of the solvent, as well as explosives and by-products of explosives. Laboratory studies were conducted using {sup 14}C-labeled explosives and {sup 14}C-labeled diacetone alcohol contaminated soil loaded into horse manure/hay composts at three rates: 20, 30, and 40%(W/W). The composts were incubated for six weeks at approximately 60{degree}C with continuous aeration. All explosives degraded rapidly and were reduced to below detection limits within 3 weeks in the laboratory studies. {sup 14}C-degradates from {sup 14}C-RDX, {sup 14}C-HMX and {sup 14}C-TATB were largely limited to {sup 14}CO{sub 2} and unextracted residue in the compost. Volatile and non-volatile {sup 14}C-degradates were found to result from {sup 14}C-PETN breakdown, but these compounds were not identified. {sup 14}C-diacetone alcohol concentrations were significantly reduced during composting. However, most of the radioactivity was volatilized from the compost as non-{sup 14}CO{sub 2} degradates or as {sup 14}C-diacetone alcohol. Pilot scale composts loaded with explosives contaminated soil at 30% (W/W) with intermittent aeration were monitored over six weeks. Data from the pilot-scale study generally was in agreement with the laboratory studies. However, the {sup 14}C-labeled TATB degraded much faster than the unlabeled TATB. Some formulations of TATB may be more resistant to composting activity than others.

  15. A model of vulcanian explosions

    International Nuclear Information System (INIS)

    Woods, A.W.

    1995-01-01

    We present a model of the initial stages of the explosive eruption of magma from a volcanic conduit as occurs in Vulcanian style eruptions. We assume there is a volatile rich (1-10 wt%) mixture of magma, vaporised groundwater and exsolved volatiles, trapped at high pressure (1-100 atm) just below a plug in a volcanic conduit. If the plug disrupts, there is an explosive eruption in which a rarefaction wave propagates into the conduit allowing the volatile rich mixture to expand and discharge into the atmosphere ahead of the vent. Typically, the explosions are so rapid that coarse grained ejecta (>0.5 mm) do not remain in thermal equilibrium with the gas, and this leads to significantly lower velocities and temperatures than predicted by an equilibrium model. Material may erupt from the vent at speeds of 100-400 m s -1 with an initial mass flux of order 10 7 -10 9 kg s -1 , consistent with video observations of eruptions and measurements of the ballistic dispersal of large clasts. (orig.)

  16. Influence of external-detonation-generated plasmas on the performance of semi-confined explosive charges

    Energy Technology Data Exchange (ETDEWEB)

    Udy, L.L.

    1979-02-01

    External-detonation-generated plasmas, highly ionized zones of reacting material ejected from the surface of detonating explosive charges, are shown to be the cause of channel desensitization, i.e., the self-quenching of a detonating explosive column loaded in a borehole with an air annulus between the explosive and the borehole wall. The effects of this phenomenon on several explosive compositions and types are demonstrated and discussed. The explosives tested include aluminum-sensitized and explosive-sensitized slurries, ANFO, liquid explosives and dynamites. Various techniques are described that can be used to reduce or eliminate the plasma effect.

  17. Ex-Vessel Steam Explosion Analysis of Central Melt Pour Scenario

    International Nuclear Information System (INIS)

    Ursic, M.; Leskovar, M.

    2008-01-01

    An ex-vessel steam explosion may develop during a severe reactor accident when the reactor vessel fails and the molten core interacts with the coolant in the reactor cavity. At this process part of the corium energy is intensively transferred to water in a very short time scale. The water vaporizes at high pressure and expands, doing work on its surrounding. Although the steam explosion has probably a low probability of occurrence, it is an important nuclear safety issue in case of a severe reactor accident. Namely, the formed very high pressure region induces dynamic loadings on the surrounding structures that may potentially lead to an early release of the radioactive material into the environment. Although the steam explosion events have being studied for several years, the level of the process and consequences understanding is still not adequate. To increase the level of confidence the OECD programme SERENA (Steam Explosion REsolution for Nuclear Applications) was established in 2002. The objectives of the program were to evaluate capabilities of the current generation of the FCI (Fuel-Coolant Interaction) computer codes in predicting the steam explosion induced loads, identifying key FCI phenomena and associated uncertainties impacting the predictability of the steam explosion energetics in the reactor situations and proposing confirmatory research to reduce the uncertainties to acceptable levels for the steam explosion risk assessment. To get a better insight into the most challenging ex-vessel steam explosions, analyses for different locations of the melt release, the cavity water sub-cooling, the primary system pressure overpressure and the triggering time were preformed for a typical pressurized water reactor cavity. The results of some scenarios revealed that significantly higher pressure loads are predicted than obtained in the OECD programme SERENA Phase 1. Among the performed analyses for the central melt pour scenarios, the maximum pressure loads were

  18. Application of high-frame-rate neutron radiography to steam explosion research

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Hibiki, T.; Yamamoto, A.; Sugimoto, J.; Moriyama, K.

    1999-01-01

    To understand the behavior of dispersed molten metal particles dropped into water during the premixing process of steam explosion, experiments were performed by using heated stainless-steel particles simulating dispersed molten metal particles. High-frame-rate neutron radiography was successfully employed for visualization and void fraction measurement. Visualization was conducted by dropping heated stainless-steel particle into heavy water filled in a rectangular tank with the particle diameter (6, 9, and 12 mm) and temperature (600 deg. C, 700 deg. C, 800 deg. C, and 1000 deg. C) as parameters. Steam generation due to direct contact of heated particle and heavy water was successfully visualized by the high-frame-rate neutron radiography at the recording speed of 500 frames/s. From void fraction measurement it was revealed that the amount of generated steam was in proportion to the particle size and temperature. It is suggested that the ambient liquid might be superheated by the particle-liquid contact

  19. Cell phone explosion.

    Science.gov (United States)

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj

    2016-03-01

    Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging. © The Author(s) 2015.

  20. A structured approach to forensic study of explosions: The TNO Inverse Explosion Analysis tool

    NARCIS (Netherlands)

    Voort, M.M. van der; Wees, R.M.M. van; Brouwer, S.D.; Jagt-Deutekom, M.J. van der; Verreault, J.

    2015-01-01

    Forensic analysis of explosions consists of determining the point of origin, the explosive substance involved, and the charge mass. Within the EU FP7 project Hyperion, TNO developed the Inverse Explosion Analysis (TNO-IEA) tool to estimate the charge mass and point of origin based on observed damage

  1. Detection of hidden explosives by fast neutron activation analysis

    International Nuclear Information System (INIS)

    Li Xinnian; Guo Junpeng; Luo Wenyun; Wang Chuanshan; Fang Xiaoming; Yu Tailiu

    2008-01-01

    The paper describes the method and principle for detection of hidden explosive by fast neutron activation analysis (FNAA). The method of detection of explosives by FNAA has the specific properties of simple determination equipments, high reliability, and low detecting cost, and would be beneficial to the applicability and popularization in the field of protecting and securing nation. The contents of nitrogen and oxygen in four explosives, more then ten common materials and TNT samples covered with soil, were measured by FNAA. 14 MeV fast neutrons were generated from (d, t) reaction with a 400 kV Cockcroft Walton type accelerator. The two-dimension distributions for nitro- gen and oxygen counting rates per unit mass of determined matters were obtained, and the characteristic area of explosives and non-explosives can be defined. By computer aided pattern recognition, the samples were identified with low false alarm or omission rates. The Monte-Carlo simulation indicates that there is no any radiation at 15 m apart from neutron source and is safe for irradiation after 1 h. It is suggested that FNAA may be potential in remote controlling for detection hidden explosive system with multi-probe large array. (authors)

  2. A single sphere film boiling model for trigger ability and explosion potential

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Kim, Jong Hwan; Hong, Seong Ho; Hong, Seong Wan

    2012-01-01

    The main causes for the controversy about the corium explosiveness are the hydrogen effect, large voided mixture, material property, poor triggering event (wrong position, weak triggering, wrong time), and low superheat due to a high melting temperature. It has been suggested that a steam explosion of the corium/water system must be suppressed due to the physical properties of corium such as high temperature, high density, multicomponent oxide melt, and low thermal conductivity. It was also claimed that the magnitude of the effect on the FCI results of corium/water systems is on the order of higher density, higher temperature, and non eutectic composition. This concept of a material effect is supported to some degree by parametric experimental results. However, the parametric results between the steam explosion pressure and the material compositions do not directly provide an understanding of the mechanism for the material difference affecting a steam explosion process, even though the sensitivity results can reveal the trends of some parameters affecting the FCI results. This concept of a material effect is supported to some degree by parametric experimental results. The parametric tests themselves also provide us with information on the effect of each initial parameter on a steam explosion. However, sensitivity studies between the steam explosion pressure and the initial value of a parameter do not directly provide an understanding of the steam explosion process. Handling the explosion res sure and initial condition without a mixing could not contribute to a code development process. We need a certain parameter for representing mixing, but we cannot measure it during the FCI tests. The particle size distribution collected after the FCI tests can be a good indicator for explaining a mixing process. In this paper, TROI tests were analyzed in view of a particle size response for various types of fuel coolant explosions. The heat losses and remnants were calculated

  3. Intermittent Explosive Disorder

    Directory of Open Access Journals (Sweden)

    Lut Tamam

    2011-09-01

    Full Text Available Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etiological studies displayed the role of both psychosocial factors like childhood traumas and biological factors like dysfunctional neurotransmitter systems and genetics. In differential diagnosis of the disorder, disorders involving agression as a symptom such as alcohol and drug intoxication, antisocial and borderline personality disorders, personality changes due to general medical conditions and behavioral disorder should be considered. A combination of pharmacological and psychotherapeutic approaches are suggested in the treatment of the disorder. This article briefly reviews the historical background, diagnostic criteria, epidemiology, etiology and treatment of intermittent explosive disorder.

  4. The Physical Basis of Lg Generation by Explosion Sources

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Stevens; G. E. Baker; H. Xu; T. J. Bennett; N. Rimer; S. D. Day

    2004-12-20

    source in a high velocity medium, however, is not trapped in the crust. It, therefore, does not explain the Lg observations. A spherically symmetric explosion source also fails to explain near-source Sg and regional Sn observations. However, the observed shear waveforms and amplitudes can be explained by adding a CLVD source component, which is the lowest order non-spherical correction to the spherical source. The persistence of Rg to large distances in some regions argues against Rg scattering as the source of Lg in all regions. 2D nonlinear calculations of explosion sources quantify the amount of seismic radiation generated by the non-spherical parts of a realistic explosion source. A 2D nonlinear calculation modeled after the NPE source and structure produces Lg consistent with an explosion plus a CLVD source with about half the strength of the explosion. However, because of the very low velocities at the NPE source location, the explosion generates substantial Lg directly. This alone may be sufficient to explain the Lg observations in this case. The importance of the non-spherical component of the source to matching observed shear wave phases is demonstrated in 2D calculations of Degelen explosions, which are typically underburied in high velocity granite. Source calculations for an overburied event in high velocity medium do not produce the observed shear waves, and so we also investigate scattering mechanisms. 2D and 3D finite difference calculations indicate that the topography at Degelen traps much more of the surface P-to-S converted phase in the crust than does scattering from crustal heterogeneities. Topography also has the greatest impact on Rg. The effect of topography increases with frequency, and the primary effect is to disperse Rg. In the 3D calculations, there is significant scattering to the tangential component at 8 km and 4 Hz. We use energy conservation to determine an upper bound on Rg to Lg scattering. Rg to Lg scattering may contribute to Lg and

  5. Preliminary experiments using light-initiated high explosive for driving thin flyer plates

    International Nuclear Information System (INIS)

    Benham, R.A.

    1980-02-01

    Light-initiated high explosive, silver acelytide - silver-nitrate (SASN), has been used to produce simulated x ray blow-off impulse loading on reentry vehicles to study the system structural response. SASN can be used to accelerate thin flyer plates to high terminal velocities which, in turn, can deliver a pressure pulse that can be tailored to the target material. This process is important for impulse tests where both structural and material response is desired. The theories used to calculate the dynamic state of the flyer plate prior to impact are summarized. Data from several experiments are presented which indicate that thin flyer plates can be properly accelerated and that there are predictive techniques available which are adequate to calculate the motion of the flyer plate. Recommendations are made for future study that must be undertaken to make the SASN flyer plate technique usable

  6. Free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  7. Proof testing of an explosion containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Esparza, E.D. [Esparza (Edward D.), San Antonio, TX (United States); Stacy, H.; Wackerle, J. [Los Alamos National Lab., NM (United States)

    1996-10-01

    A steel containment vessel was fabricated and proof tested for use by the Los Alamos National Laboratory at their M-9 facility. The HY-100 steel vessel was designed to provide total containment for high explosives tests up to 22 lb (10 kg) of TNT equivalent. The vessel was fabricated from an 11.5-ft diameter cylindrical shell, 1.5 in thick, and 2:1 elliptical ends, 2 in thick. Prior to delivery and acceptance, three types of tests were required for proof testing the vessel: a hydrostatic pressure test, air leak tests, and two full design charge explosion tests. The hydrostatic pressure test provided an initial static check on the capacity of the vessel and functioning of the strain instrumentation. The pneumatic air leak tests were performed before, in between, and after the explosion tests. After three smaller preliminary charge tests, the full design charge weight explosion tests demonstrated that no yielding occurred in the vessel at its rated capacity. The blast pressures generated by the explosions and the dynamic response of the vessel were measured and recorded with 33 strain channels, 4 blast pressure channels, 2 gas pressure channels, and 3 displacement channels. This paper presents an overview of the test program, a short summary of the methodology used to predict the design blast loads, a brief description of the transducer locations and measurement systems, some of the hydrostatic test strain and stress results, examples of the explosion pressure and dynamic strain data, and some comparisons of the measured data with the design loads and stresses on the vessel.

  8. Spot test kit for explosives detection

    Science.gov (United States)

    Pagoria, Philip F; Whipple, Richard E; Nunes, Peter J; Eckels, Joel Del; Reynolds, John G; Miles, Robin R; Chiarappa-Zucca, Marina L

    2014-03-11

    An explosion tester system comprising a body, a lateral flow membrane swab unit adapted to be removeably connected to the body, a first explosives detecting reagent, a first reagent holder and dispenser operatively connected to the body, the first reagent holder and dispenser containing the first explosives detecting reagent and positioned to deliver the first explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body, a second explosives detecting reagent, and a second reagent holder and dispenser operatively connected to the body, the second reagent holder and dispenser containing the second explosives detecting reagent and positioned to deliver the second explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body.

  9. Nuclear explosives and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P

    1971-10-01

    A nuclear explosive 12 in. in diam and producing very little tritium is feasible in France. Such a device would be well adapted for contained nuclear explosions set off for the purpose of hydrocarbon storage or stimulation. The different aspects of setting off the explosive are reviewed. In the particular case of gas storage in a nuclear cavity in granite, it is demonstrated that the dose of irradiation received is extremely small. (18 refs.)

  10. Three-dimensional Modeling of Type Ia Supernova Explosions

    Science.gov (United States)

    Khokhlov, Alexei

    2001-06-01

    A deflagration explosion of a Type Ia Supernova (SNIa) is studied using three-dimensional, high-resolution, adaptive mesh refinement fluid dynamic calculations. Deflagration speed in an exploding Chandrasekhar-mass carbon-oxygen white dwarf (WD) grows exponentially, reaches approximately 30the speed of sound, and then declines due to a WD expansion. Outermost layers of the WD remain unburned. The explosion energy is comparable to that of a Type Ia supernova. The freezing of turbulent motions by expansion appears to be a crucial physical mechanism regulating the strength of a supernova explosion. In contrast to one-dimensional models, three-dimensional calculations predict the formation of Si-group elements and pockets of unburned CO in the middle and in central regions of a supernova ejecta. This, and the presence of unburned outer layer of carbon-oxygen may pose problems for SNIa spectra. Explosion sensitivity to initial conditions and its relation to a diversity of SNIa is discussed.

  11. Steam Explosions in Slurry-fed Ceramic Melters

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.T.

    2001-03-28

    This report assesses the potential and consequences of a steam explosion in Slurry Feed Ceramic Melters (SFCM). The principles that determine if an interaction is realistically probable within a SFCM are established. Also considered are the mitigating effects due to dissolved, non-condensable gas(es) and suspended solids within the slurry feed, radiation, high glass viscosity, and the existence of a cold cap. The report finds that, even if any explosion were to occur, however, it would not be large enough to compromise vessel integrity.

  12. Experimental Study of Structure/Behavior Relationship for a Metallized Explosive

    Science.gov (United States)

    Bukovsky, Eric; Reeves, Robert; Gash, Alexander; Glumac, Nick

    2017-06-01

    Metal powders are commonly added to explosive formulations to modify the blast behavior. Although detonation velocity is typically reduced compared to the neat explosive, the metal provides other benefits. Aluminum is a common additive to increase the overall energy output and high-density metals can be useful for enhancing momentum transfer to a target. Typically, metal powder is homogeneously distributed throughout the material; in this study, controlled distributions of metal powder in explosive formulations were investigated. The powder structures were printed using powder bed printing and the porous structures were filled with explosives to create bulk explosive composites. In all cases, the overall ratio between metal and explosive was maintained, but the powder distribution was varied. Samples utilizing uniform distributions to represent typical materials, discrete pockets of metal powder, and controlled, graded powder distributions were created. Detonation experiments were performed to evaluate the influence of metal powder design on the output pressure/time and the overall impulse. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. 30 CFR 77.1301 - Explosives; magazines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives; magazines. 77.1301 Section 77.1301... and Blasting § 77.1301 Explosives; magazines. (a) Detonators and explosives other than blasting agents shall be stored in magazines. (b) Detonators shall not be stored in the same magazine with explosives...

  14. A survey of high explosive-induced damage and spall in selected metals using proton radiography

    International Nuclear Information System (INIS)

    Holtkamp, D.B.; Clark, D.A.; Ferm, E.N.; Gallegos, R.A.; Hammon, D.; Hemsing, W.F.; Hogan, G.E.; Holmes, V.H.; King, N.S.P.; Lopez, R.P.; Merrill, F.E.; Morris, C.L.; Morley, K.B.; Murray, M.M.; Pazuchanics, P.D.; Prestridge, K.P.; Quintana, J.P.; Saunders, A.; Shinas, M.A.; Stacy, H.L.

    2004-01-01

    Multiple spall and damage layers can be created in metal when the free surface reflects a Taylor wave generated by high explosives. These phenomena have been explored in different thicknesses of several metals (tantalum, copper, 6061 T6-aluminum, and tin) using high-energy proton radiography. Multiple images (up to 21) can be produced of the dynamic evolution of damaged material on the microsecond time scale with a <50 ns 'shutter' time. Movies and multiframe still images of areal and (Abel inverted) volume densities are presented. An example of material that is likely melted on release (tin) is also presented

  15. Explosion metal welding

    International Nuclear Information System (INIS)

    Popoff, A.A.

    1976-01-01

    Process parameters pertaining to welding similar and dissimilar metals using explosives are reviewed. The discussion centers on the interrelationship of physical parameters which play a part in achieving desirable metallurgical results. Present activities in explosion metal welding at LASL are presented and shown how they related to the interests of the ERDA community

  16. Sensitivity to friction for primary explosives.

    Science.gov (United States)

    Matyáš, Robert; Šelešovský, Jakub; Musil, Tomáš

    2012-04-30

    The sensitivity to friction for a selection of primary explosives has been studied using a small BAM friction apparatus. The probit analysis was used for the construction of a sensitivity curve for each primary explosive tested. Two groups of primary explosives were chosen for measurement (a) the most commonly used industrially produced primary explosives (e.g. lead azide, tetrazene, dinol, lead styphnate) and (b) the most produced improvised primary explosives (e.g. triacetone triperoxide, hexamethylenetriperoxide diamine, mercury fulminate, acetylides of heavy metals). A knowledge of friction sensitivity is very important for determining manipulation safety for primary explosives. All the primary explosives tested were carefully characterised (synthesis procedure, shape and size of crystals). The sensitivity curves obtained represent a unique set of data, which cannot be found anywhere else in the available literature. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Zirconium hydride containing explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1981-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  18. Close-in airblast from underground explosions

    Energy Technology Data Exchange (ETDEWEB)

    Vortman, L J [Sandia Laboratories, Albuquerque, NM (United States)

    1970-05-15

    Air overpressures as a function of time have been measured from surface zero to about 170 ft/lb{sup 1/3} along the ground from nuclear and chemical explosions. Charge depths varied from the surface to depths below which explosion gases are contained. A ground-shock-induced air pressure pulse is clearly distinguishable from the pulse caused by venting gases. Measured peak overpressures show reasonable agreement with the theoretical treatment by Monta. In a given medium the suppression of blast with explosion burial depth is a function of the relative distance at which the blast is observed. Rates of suppression of peak overpressure with charge burial are different for the two pulses. Rates are determined for each pulse over the range of distances at which measurements have been made of air overpressure from chemical explosions in several media. Nuclear data are available from too few shots for similar dependence on burial depth and distance to be developed, but it is clear that the gas venting peak overpressure from nuclear explosions is much more dependent on medium than that from chemical explosions. For above-ground explosions, experiment has shown that airblast from a I-kiloton nuclear explosion is equal to that from a 0.5-kiloton TNT explosion. Data on ground-shock-induced airblast is now sufficient to show that a similar relationship may exist for buried explosions. Because of medium dependence of the gas venting pulse from nuclear explosions, data from additional nuclear events will be required before a chemical/nuclear airblast equivalence can be determined for the gas-venting pulse. (author)

  19. Sarcocyst Development in Raccoons (Procyon lotor) Inoculated with Different Strains of Sarcocystis neurona Culture-Derived Merozoites.

    Science.gov (United States)

    Dryburgh, E L; Marsh, A E; Dubey, J P; Howe, D K; Reed, S M; Bolten, K E; Pei, W; Saville, W J A

    2015-08-01

    Sarcocystis neurona is considered the major etiologic agent of equine protozoal myeloencephalitis (EPM), a neurological disease in horses. Raccoon ( Procyon lotor ) is considered the most important intermediate host in the life cycle of S. neurona in the United States; S. neurona sarcocysts do mature in raccoon muscles, and raccoons also develop clinical signs simulating EPM. The focus of this study was to determine if sarcocysts would develop in raccoons experimentally inoculated with different host-derived strains of in vitro-cultivated S. neurona merozoites. Four raccoons were inoculated with strains derived from a raccoon, a sea otter, a cat, and a horse. Raccoon tissues were fed to laboratory-raised opossums ( Didelphis virginiana ), the definitive host of S. neurona . Intestinal scraping revealed sporocysts in opossums who received muscle tissue from raccoons inoculated with the raccoon-derived or the sea otter-derived isolates. These results demonstrate that sarcocysts can mature in raccoons inoculated with in vitro-derived S. neurona merozoites. In contrast, the horse and cat-derived isolates did not produce microscopically or biologically detected sarcocysts. Immunoblot analysis revealed both antigenic and antibody differences when testing the inoculated raccoons. Immunohistochemical staining indicated differences in staining between the merozoite and sarcocyst stages. The successful infections achieved in this study indicates that the life cycle can be manipulated in the laboratory without affecting subsequent stage development, thereby allowing further purification of strains and artificial maintenance of the life cycle.

  20. 8. Peaceful uses of nuclear explosions

    International Nuclear Information System (INIS)

    Musilek, L.

    1992-01-01

    The chapter deals with peaceful uses of nuclear explosions. Described are the development of the underground nuclear explosion, properties of radionuclides formed during the explosion, their distribution, the release of radioactive products of underground nuclear explosions into the air, their propagation in the atmosphere, and fallout in the landscape. (Z.S.). 1 tab., 8 figs., 19 refs

  1. Explosives and chemical warfare agents - detection and analysis with PTR-MS

    Energy Technology Data Exchange (ETDEWEB)

    Sulzer, Philipp; Juerschik, Simone; Jaksch, Stefan; Jordan, Alfons; Hanel, Gernot; Hartungen, Eugen; Seehauser, Hans; Maerk, Lukas; Haidacher, Stefan; Schottkowsky, Ralf [IONICON Analytik GmbH, Innsbruck (Austria); Petersson, Fredrik [Institut fuer Ionenphysik und Angewandte Physik, Leopold-Franzens Universitaet Innsbruck (Austria); Maerk, Tilmann [IONICON Analytik GmbH, Innsbruck (Austria); Institut fuer Ionenphysik und Angewandte Physik, Leopold-Franzens Universitaet Innsbruck (Austria)

    2010-07-01

    We utilized a recently developed high sensitivity PTR-MS instrument equipped with a high resolution time-of-flight mass analyzer for detailed investigations on explosives and chemical warfare agents (CWAs). We show that with this so called PTR-TOF 8000 it is possible to identify solid explosives (RDX, TNT, HMX, PETN and Semtex A) by analyzing the headspace above small quantities of samples at room temperature and from trace quantities not visible to the naked eye placed on surfaces. As the mentioned solid explosives possess very low vapor pressures, the main challenge for detecting them in the gas phase is to provide an instrument with a sufficient sensitivity. CWAs on the other side have very high vapor pressures but are difficult to identify unambiguously as their nominal molecular masses are usually comparably small and therefore hard to distinguish from harmless everyday-compounds (e.g. mustard gas: 159 g/mol). In the present work we demonstrate that we can detect a broad range of dangerous substances, ranging from the CWA mustard gas to the explosive HMX.

  2. High explosive driven plasma opening switches

    International Nuclear Information System (INIS)

    Greene, A.E.; Bowers, R.L.; Brownell, J.H.; Goforth, J.H.; Oliphant, T.A.; Weiss, D.L.

    1983-01-01

    A joint theoretical and experimental effort is underway to understand and improve upon the performance of high explosive driven plasma opening switches such as those first described by Pavlovskii et al. We have modeled these switches in both planar and cylindrical geometry using a one dimensional Lagrangian MHD code. This one-dimensional analysis is now essentially complete. It has shown that simple, one-dimensional, compression of the current-carrying channel can explain the observed resistance increases during the time of flight of the HE detonation products. Our calculations imply that ionization plays an important role as an energy sink and the performance of these switches might be improved by a judicious choice of gases. We also predict improved performance by lowering the pressure in the plasma channel. The bulk of our experimental effort to date has been with planar switches. We have worked with current densities of 0.25 to 0.4 MA/cm and have observed resistance increases of 40 to 60 mΩ. Significant resistance increases are observed later than the time of flight of the HE detonation products. We suggest that these resistance increases are due to mixing between the hot plasma and the relatively cooler detonation products. Such mixing is not included in the 1-D, Lagrangian code. We are presently beginning a computational effort with a 2-D Eulerian code. The status of this effort is discussed. Experimentally we have designed an apparatus that will permit us to test the role of different gases and pressures. This system is also in a planar geometry, but the plasma channel is doughnut shaped, permitting us to avoid edge effects associated with the planar rectangular geometry. The first experiments with this design are quite encouraging and the status of this effort is also discussed

  3. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia

    2016-06-17

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field\\'s metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field\\'s metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  4. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia; Li, Erqiang; Thoroddsen, Sigurdur T

    2016-01-01

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field's metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field's metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  5. Dynamics of the formation of the condensed phase particles at detonation of high explosives

    CERN Document Server

    Evdokov, O V; Kulipanov, G N; Luckjanchikov, L A; Lyakhov, N Z; Mishnev, S I; Sharafutdinov, M R; Sheromov, M A; Ten, K A; Titov, V M; Tolochko, B P; Zubkov, P I

    2001-01-01

    The article presents the results of the experimental study SAXS on condensed carbon particles that appear at the detonation of a high explosive. It was shown that the SAXS signal rises for 1.5-4 mu s after the detonation front passing. The SAXS signal in trotyl and its alloys with hexogen starts just after the compression of the material in the detonation wave. In octogen, hexogen and PETN, the SAXS signal appears in 0.5 mu s and is much smaller than the signal at the detonation of trotyl and its alloys with hexogen.

  6. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  7. Simulation of steam explosion in stratified melt-coolant configuration

    International Nuclear Information System (INIS)

    Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja

    2016-01-01

    Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To

  8. 27 CFR 70.445 - Commerce in explosives.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Commerce in explosives. 70... Cartridges, and Explosives § 70.445 Commerce in explosives. Part 55 of title 27 CFR contains the regulations..., explosives, (b) Permits for users who buy or transport explosives in interstate or foreign commerce, (c...

  9. Prediction of Ignition of High Explosive When Submitted To Impact

    Science.gov (United States)

    Picart, Didier; Delmaire-Sizes, Franck; Gruau, Cyril; Trumel, Herve

    2009-06-01

    High explosive structures may unintentionally ignite and transit to deflagration or detonation, when subjected to mechanical loadings, such as low velocity impact. We focus our attention on ignition. The Browning and Scammon [1] criterion has been adapted. A concrete like constitutive law is derived, with an up-to-date experimental characterization. These models have been implemented in Abaqus/Explicit [2]. Numerical simulations are used to calibrate the ignition threshold. The presentation or the poster will detail the main assumptions, the models (Browning et al, mechanical behavior) and the calibration procedure. Comparisons between numerical results and experiments [3] will show the interest of this method but also its limitations (numerical artifacts, lack of mechanical data, misinterpretation of reactive tests). [1] R. Browning and R. Scammon, Shock compression of condensed matter, pp. 987-990, (2001). [2] C. Gruau, D. Picart et al., 17^th Dymat technical meeting, Cambridge, UK, (2007). [3] F. Delmaire-Sizes et al., 3^rd International symposium on energetic materials, Tokyo, Japan, (2008).

  10. Halide salts accelerate degradation of high explosives by zerovalent iron

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Shea, Patrick J.; Yang, Jae E.; Kim, Jang-Eok

    2007-01-01

    Zerovalent iron (Fe 0 , ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe 0 (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24 h also restored ZVI reactivity, resulting in complete degradation within 8 h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl - and Br - was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br - was present in solution. - The addition of halide ions promotes the degradation of high explosives by zerovalent iron

  11. Thermal decomposition and reaction of confined explosives

    International Nuclear Information System (INIS)

    Catalano, E.; McGuire, R.; Lee, E.; Wrenn, E.; Ornellas, D.; Walton, J.

    1976-01-01

    Some new experiments designed to accurately determine the time interval required to produce a reactive event in confined explosives subjected to temperatures which will cause decomposition are described. Geometry and boundary conditions were both well defined so that these experiments on the rapid thermal decomposition of HE are amenable to predictive modelling. Experiments have been carried out on TNT, TATB and on two plastic-bonded HMX-based high explosives, LX-04 and LX-10. When the results of these experiments are plotted as the logarithm of the time to explosion versus 1/T K (Arrhenius plot), the curves produced are remarkably linear. This is in contradiction to the results obtained by an iterative solution of the Laplace equation for a system with a first order rate heat source. Such calculations produce plots which display considerable curvature. The experiments have also shown that the time to explosion is strongly influenced by the void volume in the containment vessel. Results of the experiments with calculations based on the heat flow equations coupled with first-order models of chemical decomposition are compared. The comparisons demonstrate the need for a more realistic reaction model

  12. Short term forecasting of explosions at Ubinas volcano, Perú

    Science.gov (United States)

    Traversa, P.; Lengliné, O.; Macedo, O.; Metaxian, J. P.; Grasso, J. R.; Inza, A.; Taipe, E.

    2011-11-01

    Most seismic eruption forerunners are described using Volcano-Tectonic earthquakes, seismic energy release, deformation rates or seismic noise analyses. Using the seismic data recorded at Ubinas volcano (Perú) between 2006 and 2008, we explore the time evolution of the Long Period (LP) seismicity rate prior to 143 explosions. We resolve an average acceleration of the LP rate above the background level during the 2-3 hours preceding the explosion onset. Such an average pattern, which emerges when stacking over LP time series, is robust and stable over all the 2006-2008 period, for which data is available. This accelerating pattern is also recovered when conditioning the LP rate on the occurrence of an other LP event, rather than on the explosion time. It supports a common mechanism for the generation of explosions and LP events, the magma conduit pressure increase being the most probable candidate. The average LP rate acceleration toward an explosion is highly significant prior to the higher energy explosions, supposedly the ones associated with the larger pressure increases. The dramatic decay of the LP activity following explosions, still reinforce the strong relationship between these two processes. We test and we quantify the retrospective forecasting power of these LP rate patterns to predict Ubinas explosions. The prediction quality of the forecasts (e.g. for 17% of alarm time, we predict 63% of Ubinas explosions, with 58% of false alarms) is evaluated using error diagrams. The prediction results are stable and the prediction algorithm validated, i.e. its performance is better than the random guess.

  13. Carbon Condensation during High Explosive Detonation with Time Resolved Small Angle X-ray Scattering

    Science.gov (United States)

    Hammons, Joshua; Bagge-Hansen, Michael; Nielsen, Michael; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; Fried, Larry; May, Chadd; Sinclair, Nicholas; Jensen, Brian; Gustavsen, Rick; Dattelbaum, Dana; Watkins, Erik; Firestone, Millicent; Ilavsky, Jan; van Buuren, Tony; Willey, Trevor; Lawrence Livermore National Lab Collaboration; Los Alamos National Laboratory Collaboration; Washington State University/Advanced Photon Source Team

    Carbon condensation during high-energy detonations occurs under extreme conditions and on very short time scales. Understanding and manipulating soot formation, particularly detonation nanodiamond, has attracted the attention of military, academic and industrial research. An in-situ characterization of these nanoscale phases, during detonation, is highly sought after and presents a formidable challenge even with today's instruments. Using the high flux available with synchrotron X-rays, pink beam small angle X-ray scattering is able to observe the carbon phases during detonation. This experimental approach, though powerful, requires careful consideration and support from other techniques, such as post-mortem TEM, EELS and USAXS. We present a comparative survey of carbon condensation from different CHNO high explosives. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  14. Idaho Explosives Detection System

    International Nuclear Information System (INIS)

    Reber, Edward L.; Blackwood, Larry G.; Edwards, Andrew J.; Jewell, J. Keith; Rohde, Kenneth W.; Seabury, Edward H.; Klinger, Jeffery B.

    2005-01-01

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004

  15. Idaho Explosives Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Reber, Edward L. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States)]. E-mail: reber@inel.gov; Blackwood, Larry G. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Edwards, Andrew J. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Jewell, J. Keith [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Rohde, Kenneth W. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Seabury, Edward H. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Klinger, Jeffery B. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States)

    2005-12-15

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.

  16. Measurement and evaluation of high-rise building response to ground motion generated by underground nuclear explosions

    International Nuclear Information System (INIS)

    Honda, K.K.

    1976-01-01

    As part of the structural response research program being conducted for ERDA, the response behavior of high-rise buildings in Las Vegas, Nevada, due to ground motion caused by underground nuclear explosions (UNEs) at the Nevada Test Site (NTS) has been measured for the past 12 years. Results obtained include variation in dynamic response properties as a function of amplitude of motion, influence of nonstructural partitions in the building response, and comparison of calculated and measured response. These data for three reinforced concrete high-rise buildings, all designed as moment-resisting space frames are presented

  17. Techniques for detecting explosives and contraband

    International Nuclear Information System (INIS)

    Vourvopoulos, G.

    1994-01-01

    Because terrorism continues to be a societal threat, scientists are still searching for ways to identify concealed weapons that can be used in terrorist attacks. Explosives are singled out for particular attention because they can easily be shaped to look innocuous, and are still hard to detect. At present, there are three methods under development for the detection of explosives: X-ray imaging, vapour detection and nuclear techniques, and this article will concentrate on the latter. Since there is no single technology that can address all the questions concerning the detection of explosives and other illicit contraband, the philosophy that emerges is that of an integral system combining methodologies. Such a system could contain a nuclear technology device, a vapour detector, and an X-ray imaging device, all backed by an intelligence gathering system. In this paper methods are suggested for identifying explosives which may be used in terrorist attacks and for detecting concealed drugs. Techniques discussed are X-ray imaging, combining high and low energy x-ray machines, vapour detection using a ''sniffer'' to collect vapour samples then analysing the vapour by gas chromatography, chemiluminescence and mass spectroscopy and nuclear techniques. Nuclear techniques, such as neutron activation analysis, are discussed in detail but it is stressed that they need to be carried out at speed to eliminate disruption and delay at airports etc. (UK)

  18. Report on the treatability study for inerting small quantities of radioactive explosives and explosive components

    International Nuclear Information System (INIS)

    Loyola, V.M.; Reber, S.D.

    1996-02-01

    As a result of Sandia's radiation hardening testing on a variety of its explosive components, radioactive waste streams were generated and have to be disposed of as radioactive waste. Due to the combined hazards of explosives and radioactivity, Sandia's Radioactive and Mixed Waste Management organization did not have a mechanism for disposal of these waste streams. This report documents the study done to provide a method for the removal of the explosive hazard from those waste streams. The report includes the design of the equipment used, procedures followed, results from waste stream analog tests and the results from the actual explosive inerting tests on radioactive samples. As a result of the inerting treatment, the waste streams were rendered non-explosive and, thus, manageable through normal radioactive waste disposal channels

  19. Model testing of a 10-kg high explosive blast attenuation maze

    International Nuclear Information System (INIS)

    Bacigalupi, C.M.; Burton, W.A.

    1981-01-01

    The basement area of the proposed High Explosive Applications Facility (HEAF) at the Lawrence Livermore National Laboratory includes 10-kg HE assembly and process cells, and a 10-kg corridor for the transport of up to 10 kg of HE from the receiving dock to the cells and to the experimental firing tanks. Previous model experiments developed a process cell-maze configuration that attenuated the effects of an accidental 10-kg detonation to acceptable levels (maximum of 10 to 11 psi reflected). This document reports 1/8-scale model tests conducted to confirm the maze design and to determine the blast pressures in adjacent areas in the final HEAF building configuration. In addition, pressure/time information was obtained at selected points in the model expansion chamber to provide the architect-engineer with information for structural design

  20. A scheme for the classification of explosions in the chemical process industry.

    Science.gov (United States)

    Abbasi, Tasneem; Pasman, H J; Abbasi, S A

    2010-02-15

    All process industry accidents fall under three broad categories-fire, explosion, and toxic release. Of these fire is the most common, followed by explosions. Within these broad categories occur a large number of sub-categories, each depicting a specific sub-type of a fire/explosion/toxic release. But whereas clear and self-consistent sub-classifications exist for fires and toxic releases, the situation is not as clear vis a vis explosions. In this paper the inconsistencies and/or shortcomings associated with the classification of different types of explosions, which are seen even in otherwise highly authentic and useful reference books on process safety, are reviewed. In its context a new classification is attempted which may, hopefully, provide a frame-of-reference for the future.

  1. Expediency of application of explosion-relief constructions to ensure explosion resistance of production buildings

    Directory of Open Access Journals (Sweden)

    Lyapin Anton

    2016-01-01

    Full Text Available The article presents a model of economic evaluation and selection of explosion-relief constructions (ERC, as well as determination of explosion protection efficiency of buildings and structures provided on a stage of construction. It has been shown that definition of economic efficiency of ERС is the evaluation of its application for buildings with remote or automatically controlled production. It has been determined that an important role in design of explosive industrial facilities is played by selection of the economically feasible and effective materials for ERC. When selecting materials it is necessary to consider probability and yield of explosions. Necessity to create the methods allow considering such probability has been revealed.

  2. Explosives 92. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Farnfield, R.A. (ed.)

    1992-01-01

    17 papers are presented. Topics covered include: the POG system - a new concept in the use of ANFO; demolition of a motorway bridge; presplit and smooth blasting; VIBReX - a predictive code for assessing the effect of blast design on ground vibration; ground vibrations from blasting; digital seismographs; human response to blasting and the effects on planning conditions; landform construction by restoration blasting; use of small diameter explosives; efficient priming; safety management in the explosives industry; and the law on packaging of explosives. Two papers have been abstracted separately.

  3. Test of EMG-720 explosive magneto-cumulative generator

    Energy Technology Data Exchange (ETDEWEB)

    Popkov, N F; Pikar, A S; Ryaslov, E A [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation); and others

    1997-12-31

    The results of testing of the 30 MJ explosive magnetocumulative generator EMG-720 are reported. This comparatively simple and inexpensive generator is destined for energizing a stationary electro-physical facility placed in a special explosion-protected bunker. The current increase coefficient and the energy increase factor of the generator are as high as 500 and 120, respectively. The generator operating time is 225 s, and its internal operating voltage is higher than 100 kV. (J.U.). 4 figs., 4 refs.

  4. Ocular injuries from carbonated soft drink bottle explosions.

    OpenAIRE

    Al Salem, M; Sheriff, S M

    1984-01-01

    Sixteen cases of ocular injuries serious enough to require admission to Ibn-Sina Hospital, Kuwait, Arabian Gulf, due to explosion of glass bottles of carbonated soft drinks are reported over a period of 14 months from the beginning of July 1981 to the end of August 1982. Prevalence was much greater in the summer months and among children. Explosions of bottles without prior agitation occurred in 11 cases (68.7%). High environmental temperature and defective bottles were the most important pre...

  5. Evaluation of hand-held ion-mobility explosives vapor detectors

    International Nuclear Information System (INIS)

    Burrows, T.A.; Thoma, P.J.

    1979-12-01

    Two types of ion-mobility detectors were evaluated in both laboratory and field tests. Laboratory test results show that these detectors are highly sensitive to dynamite and pistol powder and have good false-alarm agent rejection. Field tests of these two detectors revealed that they would detect dynamite and Ball-C-Propellent in free air. However, neither of the ion-mobility detectors would detect these explosives if the explosives were concealed

  6. Hidden explosives detector employing pulsed neutron and x-ray interrogation

    International Nuclear Information System (INIS)

    Schultz, F.J.; Caldwell, J.T.

    1993-01-01

    Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected

  7. Hidden explosives detector employing pulsed neutron and x-ray interrogation

    Science.gov (United States)

    Schultz, Frederick J.; Caldwell, John T.

    1993-01-01

    Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected.

  8. NATO Advanced Research Workshop on Explosives Detection Using Magnetic and Nuclear Resonance Techniques

    CERN Document Server

    Fraissard, Jacques

    2009-01-01

    Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, particularly with the radio-frequency interference that exists in a field environment, NQR polarization being much weaker than that from an external magnetic field. The distinctive signatures are there, but are difficult to extract from the noise. In addition, the high selectivity is partly a disadvantage, as it is hard to bui...

  9. Neutrino oscillations in magnetically driven supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Shio; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, Tomoya, E-mail: shio.k@nao.ac.jp, E-mail: takiwaki.tomoya@nao.ac.jp, E-mail: kkotake@th.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ{sub 13} (sin{sup 2} 2θ{sub 13} ∼> 10{sup −3}), we show that survival probabilities of ν-bar {sub e} and ν{sub e} seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of ν-bar {sub e} observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the ν{sub e} signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the ν-bar {sub e} and ν{sub e} signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  10. Neutrino oscillations in magnetically driven supernova explosions

    Science.gov (United States)

    Kawagoe, Shio; Takiwaki, Tomoya; Kotake, Kei

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ13 (sin2 2θ13 gtrsim 10-3), we show that survival probabilities of bar nue and νe seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of bar nue observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the νe signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the bar nue and νe signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  11. A Local Propagation for Vapor Explosions

    International Nuclear Information System (INIS)

    Ochiai, M.; Bankoff, S.G.

    1976-01-01

    Explosive boiling, defined as energy transfer leading to formation of vapor rapidly enough to produce large shock waves, has been widely studied in a number of contexts. Depending upon the nature and temperatures of the liquids and mode of contacting, large-scale mixing and explosive vaporization may occur, or alternatively, only relatively non-energetic, film-type boiling may exist. The key difference is whether a mechanism is operative for increasing the liquid-liquid interfacial area in a time scale consistent with the formation of a detonation wave. Small drops of a cold volatile liquid were dropped onto a free surface of a hot, non-volatile liquid. The critical Weber number for coalescence is obtained from the envelope of the film boiling region. Markedly different behavior for the two hot liquids is observed. A 'splash' theory for local propagation of vapor explosions in spontaneously nucleating liquid-liquid systems is now formulated. After a random contact is made, explosive growth and coalescence of the vapor bubbles occurs as soon as the surrounding pressure is relieved, resulting in a high-pressure vapor layer at the liquid-liquid contact area. This amounts to an impact pressure applied to the free surface, with a resulting velocity distribution obtained from potential flow theory. The peak pressure predictions are. consistent with data for Freon-oil mixing, but further evaluation will await additional experimental data. Nevertheless, the current inference is that a UO 2 -Na vapor explosion in a reactor environment cannot be visualized. In conclusion: The propagation model presented here differs in some details from that of Henry and Fauske, although both are consistent with some peak pressure data obtained by Henry, et al. Clearly, additional experimental information is needed for further evaluation of these theories. Nevertheless, it should be emphasized that even at this time a number of important observations concerning the requirements for a vapor

  12. The classification of explosion-proof protected induction motor into adequate temperature and efficiency class

    Science.gov (United States)

    Brinovar, Iztok; Srpčič, Gregor; Seme, Sebastijan; Štumberger, Bojan; Hadžiselimović, Miralem

    2017-07-01

    This article deals with the classification of explosion-proof protected induction motors, which are used in hazardous areas, into adequate temperature and efficiency class. Hazardous areas are defined as locations with a potentially explosive atmosphere where explosion may occur due to present of flammable gasses, liquids or combustible dusts (industrial plants, mines, etc.). Electric motors and electrical equipment used in such locations must be specially designed and tested to prevent electrical initiation of explosion due to high surface temperature and arcing contacts. This article presents the basic tests of three-phase explosion-proof protected induction motor with special emphasis on the measuring system and temperature rise test. All the measurements were performed with high-accuracy instrumentation and accessory equipment and carried out at the Institute of energy technology in the Electric machines and drives laboratory and Applied electrical engineering laboratory.

  13. Safety engineering experiments of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Noboru

    1987-07-24

    The outline of large scale experiments carried out every year since 1969 to obtain fundamental data and then establish the safety engineering standards concerning the manufacturing, storage and transportation, etc. of all explosives was described. Because it becomes recently difficult to ensure the safety distance in powder magazines and powder plants, the sandwich structure with sand is thought to be suitable as the neighboring barrier walls. The special vertical structure for embankments to provide against a emergency explosion is effective to absorb the blast. Explosion behaviors such as initiating sensitivity, detonation, sympathetic detonation, and shock occurence of the ANFO explosives in place of dynamite and the slurry explosives were studied. The safety engineering standards for the manufacturing and application of explosives were studied to establish because accidents by tabacco fire are not still distinguished. Much data concerning early stage fire fighting, a large quantity of flooding and shock occurence from a assumption of ignition during machining in the propellants manufacturing plant, could be obtained. Basic studies were made to prevent pollution in blasting sites. Collected data are utilized for the safety administration after sufficient discussion. (4 figs, 2 tabs, 3 photos, 17 refs)

  14. Sensitivity to friction for primary explosives

    International Nuclear Information System (INIS)

    Matyáš, Robert; Šelešovský, Jakub; Musil, Tomáš

    2012-01-01

    Highlights: ► The friction sensitivity of 14 samples of primary explosives was determined. ► The same apparatus (small scale BAM) and the same method (probit analysis) was used. ► The crystal shapes and sizes were documented with microscopy. ► Almost all samples are less sensitive than lead azide, which is commercially used. ► The organic peroxides (TATP, DADP, HMTD) are not as sensitive as often reported. - Abstract: The sensitivity to friction for a selection of primary explosives has been studied using a small BAM friction apparatus. The probit analysis was used for the construction of a sensitivity curve for each primary explosive tested. Two groups of primary explosives were chosen for measurement (a) the most commonly used industrially produced primary explosives (e.g. lead azide, tetrazene, dinol, lead styphnate) and (b) the most produced improvised primary explosives (e.g. triacetone triperoxide, hexamethylenetriperoxide diamine, mercury fulminate, acetylides of heavy metals). A knowledge of friction sensitivity is very important for determining manipulation safety for primary explosives. All the primary explosives tested were carefully characterised (synthesis procedure, shape and size of crystals). The sensitivity curves obtained represent a unique set of data, which cannot be found anywhere else in the available literature.

  15. Sensitivity to friction for primary explosives

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Robert, E-mail: robert.matyas@upce.cz [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Pardubice 532 10 (Czech Republic); Selesovsky, Jakub; Musil, Tomas [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Pardubice 532 10 (Czech Republic)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer The friction sensitivity of 14 samples of primary explosives was determined. Black-Right-Pointing-Pointer The same apparatus (small scale BAM) and the same method (probit analysis) was used. Black-Right-Pointing-Pointer The crystal shapes and sizes were documented with microscopy. Black-Right-Pointing-Pointer Almost all samples are less sensitive than lead azide, which is commercially used. Black-Right-Pointing-Pointer The organic peroxides (TATP, DADP, HMTD) are not as sensitive as often reported. - Abstract: The sensitivity to friction for a selection of primary explosives has been studied using a small BAM friction apparatus. The probit analysis was used for the construction of a sensitivity curve for each primary explosive tested. Two groups of primary explosives were chosen for measurement (a) the most commonly used industrially produced primary explosives (e.g. lead azide, tetrazene, dinol, lead styphnate) and (b) the most produced improvised primary explosives (e.g. triacetone triperoxide, hexamethylenetriperoxide diamine, mercury fulminate, acetylides of heavy metals). A knowledge of friction sensitivity is very important for determining manipulation safety for primary explosives. All the primary explosives tested were carefully characterised (synthesis procedure, shape and size of crystals). The sensitivity curves obtained represent a unique set of data, which cannot be found anywhere else in the available literature.

  16. Seismic explosion sources on an ice cap

    DEFF Research Database (Denmark)

    Shulgin, Alexey; Thybo, Hans

    2015-01-01

    crustal model can be modelled. A crucial challenge for applying the technique is to control the sources. Here, we present data that describe the efficiency of explosive sources in the ice cover. Analysis of the data shows, that the ice cap traps a significant amount of energy, which is observed......Controlled source seismic investigation of crustal structure below ice covers is an emerging technique. We have recently conducted an explosive refraction/wide-angle reflection seismic experiment on the ice cap in east-central Greenland. The data-quality is high for all shot points and a full...

  17. Study of film boiling collapse behavior during vapor explosion

    International Nuclear Information System (INIS)

    Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi.

    1996-06-01

    Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)

  18. Numerical Simulation of the Micro-explosion during Ho:YAG laser lithotripsy

    International Nuclear Information System (INIS)

    Yao Yucheng; Huang Chuyun; Xu Guowang; Yan Xudong; Wang Yanlin

    2011-01-01

    The micro-explosion during Ho:YAG laser lithotripsy may cause calculus fragmentation and migration. It plays an important role to the surgery. A numerical simulation of the micro-explosion during Ho:YAG laser lithotripsy has been developed. The explosion problem in water environment was solved by the Euler algorithm and the piecewise parabolic method (PPM) was selected in the calculation. This simulation investigated the explosion dynamics evolution in the lithotripsy area. The pressure and intensity of the calculus surface were calculated for different laser pulse energy and different distance between calculus and fiber tip. The calculation results indicate that the micro-explosion's properties are determined by the pulse energy, pulse duration and the water distance. Though Short pulse duration and large pulse energy cause high ablation efficiency, it mains more calculus retropulsion at the same time. The ideal surgery results need property laser parameters.

  19. Multispectral Observations of Explosive Gas Emissions from Santiaguito, Guatemala

    Science.gov (United States)

    Carn, S. A.; Watson, M.; Thomas, H.; Rodriguez, L. A.; Campion, R.; Prata, F. J.

    2016-12-01

    Santiaguito volcano, Guatemala, has been persistently active for decades, producing frequent explosions from its actively growing lava dome. Repeated release of volcanic gases contains information about conduit processes during the cyclical explosions at Santiaguito, but the composition of the gas phase and the amount of volatiles released in each explosion remains poorly constrained. In addition to its persistent activity, Santiaguito offers an exceptional opportunity to investigate lava dome degassing processes since the upper surface of the active lava dome can be viewed from the summit of neighboring Santa Maria. In January 2016 we conducted multi-spectral observations of Santiaguito's explosive eruption plumes and passive degassing from multiple perspectives as part of the first NSF-sponsored `Workshop on Volcanoes' instrument deployment. Gas measurements included open-path Fourier-Transform infrared (OP-FTIR) spectroscopy from the Santa Maria summit, coincident with ultraviolet (UV) and infrared (IR) camera and UV Differential Optical Absorption Spectroscopy (DOAS) from the El Mirador site below Santiaguito's active Caliente lava dome. Using the OP-FTIR in passive mode with the Caliente lava dome as the source of IR radiation, we were able to collect IR spectra at high temporal resolution prior to and during two explosions of Santiaguito on 7-8 January, with volcanic SO2 and H2O emissions detected. UV and IR camera data provide constraints on the total SO2 burden in the emissions (and potentially the volcanic ash burden), which coupled with the FTIR gas ratios provides new constraints on the mass and composition of volatiles driving explosions at Santiaguito. All gas measurements indicate significant volatile release during explosions with limited degassing during repose periods. In this presentation we will present ongoing analysis of the unique Santiaguito gas dataset including estimation of the total volatile mass released in explosions and an

  20. Safety explosives in coal mining. Explosivos de seguridad en la mineria de carbon

    Energy Technology Data Exchange (ETDEWEB)

    (Union Espanola de Explosivos y Rio Blast, S.A., Madrid (Spain))

    1990-06-01

    The use of explosives in underground coal mining is essential for two reasons. The first is the highly resistant nature of the rock surrounding coal which requires explosives to remove it during development work. The second is that certain types of coal need to be blasted in order to achieve a higher output in coal winning operations. This article examines the characteristics, the types and the conditions under which safety or ion exchange explosives are used in underground coal mines where explosive atmospheres are sometimes encountered. 3 tabs. 2 pts.

  1. Enhancement of eruption explosivity by heterogeneous bubble nucleation triggered by magma mingling.

    Science.gov (United States)

    Paredes-Mariño, Joali; Dobson, Katherine J; Ortenzi, Gianluigi; Kueppers, Ulrich; Morgavi, Daniele; Petrelli, Maurizio; Hess, Kai-Uwe; Laeger, Kathrin; Porreca, Massimiliano; Pimentel, Adriano; Perugini, Diego

    2017-12-04

    We present new evidence that shows magma mingling can be a key process during highly explosive eruptions. Using fractal analysis of the size distribution of trachybasaltic fragments found on the inner walls of bubbles in trachytic pumices, we show that the more mafic component underwent fracturing during quenching against the trachyte. We propose a new mechanism for how this magmatic interaction at depth triggered rapid heterogeneous bubble nucleation and growth and could have enhanced eruption explosivity. We argue that the data support a further, and hitherto unreported contribution of magma mingling to highly explosive eruptions. This has implications for hazard assessment for those volcanoes in which evidence of magma mingling exists.

  2. Explosive performance on the non-proliferation experiment

    Energy Technology Data Exchange (ETDEWEB)

    McKown, T.O. [Los Alamos National Lab., NM (United States)

    1994-12-31

    The Explosive Effects Physics Project at the Los Alamos National Laboratory planned and conducted experiments on the Non-Proliferation Experiment (NPE) as part of its effort to define source functions for seismic waves. Since all investigations were contingent on the performance of the emplaced chemical explosive, an array of diagnostic measurements was fielded in the emplaced explosive. The CORRTEX (COntinuous Reflectometry for Radius vs Time EXperiment) system was used to investigate the explosive initiation and to determine the detonation velocities on three levels and in a number of radial directions. The CORRTEX experiments fielded in the explosive chamber will be described, including a description of the explosive emplacement from the perspective of its impact on the CORRTEX results. The data obtained are reviewed and the resulting detonation velocities are reported. A variation of detonation velocity with depth in the explosive and the apparent underdetonation and overdetonation of the explosive in different radial directions is reported.

  3. The behavior limestone under explosive load

    Science.gov (United States)

    Orlov, M. Yu; Orlova, Yu N.; Bogomolov, G. N.

    2016-11-01

    Limestone behavior under explosive loading was investigated. The behavior of the limestone by the action of the three types of explosives, including granular, ammonite and emulsion explosives was studied in detail. The shape and diameter of the explosion craters were obtained. The observed fragments after the blast have been classified as large, medium and small fragments. Three full-scale experiments were carried out. The research results can be used as a qualitative test for the approbation of numerical methods.

  4. Nuclear explosions and their effects

    Energy Technology Data Exchange (ETDEWEB)

    1958-01-01

    A brief historical background is given of the development of the atomic bomb. Also included is an account of the Hiroshima-Nagasaki bombing, plus some information on the testing and production of nuclear weapons by the United States, United Kingdom, and Russia. More detailed consideration is given to the following: the scientific principles of fission and fusion explosions; the energy released in fission and the radioactivity of fission products; blast, thermal, and radiologicalal effects of nuclear explosions; long-term radiological hazards from fall-out; and genetic effects of nuclear explosions. A brief account is given of the fission chain process, the concept of critical size, and the principles of implosion as applied to nuclear explosions. Limited information is presented on the controlled release of thermonuclear energy and catalyzed fusion reaction. Discussions are included on dose rates from radiation sources inside and outside the body, the effect of nuclear explosions on the weather, and the contamination of fish and marine organisms.

  5. Explosions and static electricity

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1995-01-01

    The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...

  6. Conversion of chemical energy in an explosive by a magnetohydrodynamic method

    International Nuclear Information System (INIS)

    Lebedev, E.F.; Ostashev, V.E.; Svetsov, G.A.

    1983-01-01

    In this paper, the authors examine different methods for realizing the MHD method for converting chemical energy of a condensed explosive into pulsed electrical energy. It is shown that explosive MHD generators, which are compact sources of powerful pulses of electrical energy, are characterized by their relative simplicity, autonomy and maneuverability of firing and they are capable of operating in the frequency-periodic mode. A number of projects have been proposed for explosive MHD generators in the megajoule range. Practical experience has been gained in creating frequency-periodic action generators as well as autonomous setups using superconducting magnetic systems. The increase in the operational efficiency of an explosive MHD generator is primarily related to increasing the magnetic Reynolds number of the flow, which can be attained, in particular, by using different schemes for accumulating the energy of the explosion. The use of a metallic liner, which expands under the pressure of the detonation products, in an explosive MHD generator is, in the practical sense, apparently hopeless. The general information available on the parameters and properties of explosive MHD generators gives a basis for concluding that this generator is a promising source of powerful energy pulses. In a certain range of parameters, it can be an alternative to the use of conventional high-energy pulse devices

  7. MHC class II DRB diversity in raccoons (Procyon lotor) reveals associations with raccoon rabies virus (Lyssavirus).

    Science.gov (United States)

    Srithayakumar, Vythegi; Castillo, Sarrah; Rosatte, Rick C; Kyle, Christopher J

    2011-02-01

    In North America, the raccoon rabies virus (RRV) is an endemic wildlife disease which causes acute encephalopathies and is a strong selective force on raccoons (Procyon lotor), with estimates of ∼85% of the population succumbing to the disease when epizootic. RRV is regarded as a lethal disease if untreated; therefore, no evolutionary response would be expected of raccoon populations. However, variable immune responses to RRV have been observed in raccoons indicating a potential for evolutionary adaptation. Studies of variation within the immunologically important major histocompatibility complex (MHC) have revealed relationships between MHC alleles and diseases in humans and other wildlife species. This enhances our understanding of how hosts and pathogens adapt and co-evolve. In this study, we used RRV as a model system to study host-pathogen interaction in raccoons from a challenge study and from four wild populations that differ in exposure times and viral lineages. We investigated the potential role of Prlo-DRB polymorphism in relation to susceptibility/resistance to RRV in 113 RRV positive and 143 RRV negative raccoons. Six alleles were found to be associated with RRV negative status and five alleles with RRV positive animals. We found variable patterns of MHC associations given the relative number of selective RRV sweeps in the studied regions and correlations between MHC diversity and RRV lineages. The allelic associations established provide insight into how the genetic variation of raccoons may affect the disease outcome and this can be used to examine similar associations between other rabies variants and their hosts.

  8. Pushing the Volcanic Explosivity Index to its limit and beyond: Constraints from exceptionally weak explosive eruptions at Kīlauea in 2008

    Science.gov (United States)

    Houghton, Bruce F.; Swanson, Don; Rausch, J.; Carey, R.J.; Fagents, S.A.; Orr, Tim R.

    2013-01-01

    Estimating the mass, volume, and dispersal of the deposits of very small and/or extremely weak explosive eruptions is difficult, unless they can be sampled on eruption. During explosive eruptions of Halema‘uma‘u Crater (Kīlauea, Hawaii) in 2008, we constrained for the first time deposits of bulk volumes as small as 9–300 m3 (1 × 104 to 8 × 105 kg) and can demonstrate that they show simple exponential thinning with distance from the vent. There is no simple fit for such products within classifications such as the Volcanic Explosivity Index (VEI). The VEI is being increasingly used as the measure of magnitude of explosive eruptions, and as an input for both hazard modeling and forecasting of atmospheric dispersal of tephra. The 2008 deposits demonstrate a problem for the use of the VEI, as originally defined, which classifies small, yet ballistic-producing, explosive eruptions at Kīlauea and other basaltic volcanoes as nonexplosive. We suggest a simple change to extend the scale in a fashion inclusive of such very small deposits, and to make the VEI more consistent with other magnitude scales such as the Richter scale for earthquakes. Eruptions of this magnitude constitute a significant risk at Kīlauea and elsewhere because of their high frequency and the growing number of “volcano tourists” visiting basaltic volcanoes.

  9. Improved Overpressure Recording and Modeling for Near-Surface Explosion Forensics

    Science.gov (United States)

    Kim, K.; Schnurr, J.; Garces, M. A.; Rodgers, A. J.

    2017-12-01

    The accurate recording and analysis of air-blast acoustic waveforms is a key component of the forensic analysis of explosive events. Smartphone apps can enhance traditional technologies by providing scalable, cost-effective ubiquitous sensor solutions for monitoring blasts, undeclared activities, and inaccessible facilities. During a series of near-surface chemical high explosive tests, iPhone 6's running the RedVox infrasound recorder app were co-located with high-fidelity Hyperion overpressure sensors, allowing for direct comparison of the resolution and frequency content of the devices. Data from the traditional sensors is used to characterize blast signatures and to determine relative iPhone microphone amplitude and phase responses. A Wiener filter based source deconvolution method is applied, using a parameterized source function estimated from traditional overpressure sensor data, to estimate system responses. In addition, progress on a new parameterized air-blast model is presented. The model is based on the analysis of a large set of overpressure waveforms from several surface explosion test series. An appropriate functional form with parameters determined empirically from modern air-blast and acoustic data will allow for better parameterization of signals and the improved characterization of explosive sources.

  10. Explosive Characteristics of Carbonaceous Nanoparticles

    Science.gov (United States)

    Turkevich, Leonid; Fernback, Joseph; Dastidar, Ashok

    2013-03-01

    Explosion testing has been performed on 20 codes of carbonaceous particles. These include SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes), CNFs (carbon nanofibers), graphene, diamond, fullerene, carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226-10 protocol), at a (dilute) concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples exhibited overpressures of 5-7 bar, and deflagration index KSt = V1/3 (dp/pt)max ~ 10 - 80 bar-m/s, which places these materials in European Dust Explosion Class St-1 (similar to cotton and wood dust). There was minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with particle size (BET specific surface area). Additional tests were performed on selected materials to identify minimum explosive concentration [MEC]. These materials exhibit MEC ~ 101 -102 g/m3 (lower than the MEC for coals). The concentration scans confirm that the earlier screening was performed under fuel-rich conditions (i.e. the maximum over-pressure and deflagration index exceed the screening values); e.g. the true fullerene KSt ~ 200 bar-m/s, placing it borderline St-1/St-2. Work supported through the NIOSH Nanotechnology Research Center (NTRC)

  11. 27 CFR 555.181 - Reporting of plastic explosives.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Reporting of plastic..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Marking of Plastic Explosives § 555.181 Reporting of plastic explosives. All persons, other than an agency of the United States...

  12. HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation

    Energy Technology Data Exchange (ETDEWEB)

    Reaugh, J E

    2011-11-22

    HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable

  13. Mid-IR DIAL for high-resolution mapping of explosive precursors

    Science.gov (United States)

    Mitev, V.; Babichenko, S.; Bennes, J.; Borelli, R.; Dolfi-Bouteyre, A.; Fiorani, L.; Hespel, L.; Huet, T.; Palucci, A.; Pistilli, M.; Puiu, A.; Rebane, O.; Sobolev, I.

    2013-10-01

    A DIAL instrument on a moving platform is seen as a valuable remote sensing component in a sensor network for area monitoring, targeting sites involved in unauthorised explosive manufacturing. Such instrument will perform the area mapping of the vapour concentration of key substances, known to be used as precursors in explosive fabrication, such as acetone and nitromethane. The IR spectra of acetone and nitromethane vapours have been defined from available spectroscopy databases and from laboratory measurements as showing optimal spectral band for the DIAL operation in the spectral range of 3.0 μm - 3.5 μm. The DIAL operation has been numerically simulated, with inputs based on the HITRAN database, the U.S. Standard Atmosphere and aerosol simulation software package OPAC. A combination of OPO and OPA has been chosen as a transmitter, where the idler wavelength is used for probing, with wavelength tuning in sequence. A scanner mounted on top of the coaxially aligned laser and receiver, is capable of covering almost 360 degrees horizontally and +/-30 degrees vertically. The detection is performed by a photovoltaic photodiode with 4-stage cooling, with a signal digitalisation having 14 bit amplitude resolution and 125 Ms/s sampling rate. Here we present the development and the first test of the DIAL instrument.

  14. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    Science.gov (United States)

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.

  15. Railguns powered by explosive driven flux compression generators

    International Nuclear Information System (INIS)

    Fowler, C.M.; Zimmermann, E.L.; Cummings, C.E.

    1986-01-01

    Explosive driven flux compression generators (FCG's) are single-shot devices that convert part of the energy of high explosives into electromagnetic energy. Some classes of these generators have served quite well as railgun power sources. In this paper and the following paper we describe strip and helical type FCG's, both of which are in use in the Los Alamos railgun program. Advantages and disadvantages these generators have for railgun power supplies will be discussed, together with experimental results obtained and some of the diagnostics we have found particularly useful

  16. EVENT, Explosive Transients in Flow Networks

    International Nuclear Information System (INIS)

    Andrae, R.W.; Tang, P.K.; Bolstad, J.W.; Gregory, W.S.

    1985-01-01

    1 - Description of problem or function: A major concern of the chemical, nuclear, and mining industries is the occurrence of an explosion in one part of a facility and subsequent transmission of explosive effects through the ventilation system. An explosive event can cause performance degradation of the ventilation system or even structural failures. A more serious consequence is the release of hazardous materials to the environment if vital protective devices such as air filters, are damaged. EVENT was developed to investigate the effects of explosive transients through fluid-flow networks. Using the principles of fluid mechanics and thermodynamics, governing equations for the conservation of mass, energy, and momentum are formulated. These equations are applied to the complete network subdivided into two general components: nodes and branches. The nodes represent boundaries and internal junctions where the conservation of mass and energy applies. The branches can be ducts, valves, blowers, or filters. Since in EVENT the effect of the explosion, not the characteristics of the explosion itself, is of interest, the transient is simulated in the simplest possible way. A rapid addition of mass and energy to the system at certain locations is used. This representation is adequate for all of the network except the region where the explosion actually occurs. EVENT84 is a modification of EVENT which includes a new explosion chamber model subroutine based on the NOL BLAST program developed at the Naval Ordnance Laboratory, Silver Spring, Maryland. This subroutine calculates the confined explosion near-field parameters and supplies the time functions of energy and mass injection. Solid-phase or TNT-equivalent explosions (which simulate 'point source' explosions in nuclear facilities) as well as explosions in gas-air mixtures can be simulated. The four types of explosions EVENT84 simulates are TNT, hydrogen in air, acetylene in air, and tributyl phosphate (TBP or 'red oil

  17. Reduction of radioactivity produced by nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Lessler, Richard M [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Four main sources contribute to the radioactivity produced by a nuclear explosive: 1. Fission products from the nuclear explosive, 2. Fusion products from the nuclear explosive, 3. Induced radioactivity in the nuclear explosive, 4. Induced radioactivity in the environment. This paper will summarize some of the work done at the Lawrence Radiation Laboratory at Livermore to reduce the radioactivity from these sources to levels acceptable for peaceful applications. Although it is theoretically possible to have no radioactivity produced by nuclear explosives, this goal has not been achieved.

  18. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jong Hyun [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The morphology of craters resulting from high irradiance laser ablation of silicon was measured using a white light interferometry microscope. The craters show a dramatic increase in their depth and volume at a certain irradiance, indicating a change in the primary mechanism for mass removal. Laser shadowgraph imaging was used to characterize and differentiate the mass ejection processes for laser irradiances above and below the threshold value. Time-resolved images show distinct features of the mass ejected at irradiances above the threshold value including the presence of micron-sized particulates; this begins at approximately 300 ~ 400 ns after the start of laser heating. The analysis of the phenomena was carried out by using two models: a thermal evaporation model and a phase explosion model. Estimation of the crater depth due to the thermally evaporated mass led to a large underestimation of the crater depth for irradiances above the threshold. Above the threshold irradiance, the possibility of phase explosion was analyzed. Two important results are the thickness of the superheated liquid layer that is close to the critical temperature and the time for vapor bubbles that are generated in the superheated liquid to achieve a critical size. After reaching the critical size, vapor bubbles can grow spontaneously resulting in a violent ejection of liquid droplets from the superheated volume. The effects of an induced transparency, i.e. of liquid silicon turning into an optically transparent liquid dielectric medium, are also introduced. The estimated time for a bubble to reach the critical size is in agreement with the delay time measured for the initiation of large mass ejection. Also, the thickness of the superheated liquid layer that is close to the critical temperature at the time of the beginning of the large mass ejection is representative of the crater depth at the threshold irradiance. These results suggest that phase explosion is a plausible thermal

  19. Peaceful nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-07-01

    Republic of Germany, India, Mexico, Sweden, Thailand, United Kingdom, USA and USSR. An additional 21 Member States sent observers. A summary of the technical papers follows: n general, statements on national programmes revealed continued interest in assessing the technical and economic feasibility of peaceful nuclear explosions and in evaluating the health and safety problems. In some cases the interest was qualified by the realization that factors such as high population densities and social attitudes make it improbable that the States concerned will be able to make any use of peaceful nuclear explosions domestically even if such explosions are shown to be technically and economically viable. Health and safety, phenomenology, applications, and projects all received attention in the technical papers presented by participants. The scope of the health and safety papers and the discussion which they generated reflected the considerable attention now being given to these aspects both within and outside of national programmes. (author)

  20. Explosive vaporization induced by high-power CO2-laser target interactions

    International Nuclear Information System (INIS)

    Hugenschmidt, M.; Vollrath, K.

    1976-01-01

    The interactions of high-power laser pulses with targets such as metals or dielectric materials causes a series of optical, thermal, and mechanical processes. Thereby, heating, melting, and vaporization can take place in a short time. At power densities of about 10 7 to several 10 8 W/cm 2 this can even be produced explosively. As compared to continuous ablation, this type of interaction can remove greater masses from the bulk of material. The investigations are performed by using an electron-beam preionized CO 2 -laser acting on different target materials. The energy of the laser pulses is about 30 J, the pulse-half-widths of the long-tail pulses 4 to 6 μs. Optical measurements yield some information on threshold values for these processes, for the formation and expansion of plasmas, and for the ejection of material in form of greater particles. High speed photographic techniques include a rotating mirror- and an image converter camera. Starting from shock-wave theory, gas dynamic equations (in unidimensional approximation) allow for a quantitative determination of the specific internal energies and pressures in the case of optical detonation. (orig.) [de

  1. ALPHA visual data collection. STX005-025: melt drop steam explosion experiments

    International Nuclear Information System (INIS)

    Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu; Kudo, Tamotsu; Sugimoto, Jun

    1999-03-01

    Steam explosion is a phenomenon in which a high temperature liquid gives its internal energy to a low temperature volatile liquid extremely quickly causing rapid evaporation and shock wave generation. In the field of nuclear reactor safety research regarding severe accidents in LWRs, steam explosions involving molten fuel and coolant has been recognized as a potential threat to the integrity of the reactor containment vessel. In the ALPHA (Assessment of Loads and Performance of Containment in Hypothetical Accident) program, experiments were performed to investigate the phenomenology of vapor explosions using iron-alumina thermite melt as a simulant of molten core. This report collects the experimental results especially emphasizing the visual observations by high speed photography. (author)

  2. Liquid-liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This phenomenon is called a vapor explosion. One method of producing intimate, liquid-liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. The report describes experiments in which cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials

  3. Atmospheric emission of NOx from mining explosives: A critical review

    Science.gov (United States)

    Oluwoye, Ibukun; Dlugogorski, Bogdan Z.; Gore, Jeff; Oskierski, Hans C.; Altarawneh, Mohammednoor

    2017-10-01

    High-energy materials such as emulsions, slurries and ammonium-nitrate fuel-oil (ANFO) explosives play crucial roles in mining, quarrying, tunnelling and many other infrastructure activities, because of their excellent transport and blasting properties. These explosives engender environmental concerns, due to atmospheric pollution caused by emission of dust and nitrogen oxides (NOx) from blasts, the latter characterised by the average emission factor of 5 kg (t AN explosive)-1. This first-of-its-kind review provides a concise literature account of the formation of NOx during blasting of AN-based explosives, employed in surface operations. We estimate the total NOx emission rate from AN-based explosives as 0.05 Tg (i.e., 5 × 104 t) N per annum, compared to the total global annual anthropogenic NOx emissions of 41.3 × 106 t N y-1. Although minor in the global sense, the large localised plumes from blasting exhibit high NOx concentration (500 ppm) exceeding up to 3000 times the international standards. This emission has profound consequences at mining sites and for adjacent atmospheric environment, necessitating expensive management of exclusion zones. The review describes different types of AN energetic materials for civilian applications, and summarises the essential properties and terminologies pertaining to their use. Furthermore, we recapitulate the mechanisms that lead to the formation of the reactive nitrogen species in blasting of AN-based explosives, review their implications to atmospheric air pollution, and compare the mechanisms with those experienced in other thermal and combustion operations. We also examine the mitigation approaches, including guidelines and operational-control measures. The review discusses the abatement technologies such as the formulation of new explosive mixtures, comprising secondary fuels, spin traps and other additives, in light of their effectiveness and efficiency. We conclude the review with a summary of unresolved problems

  4. Experimental study of vapor explosion of molten salt and low boiling point liquid

    International Nuclear Information System (INIS)

    Iida, Yoshihiro; Takashima, Takeo

    1987-01-01

    Fundamental study of vapor explosion using small drops of high temperature liquid and low boiling point liquid and a series of small-scale vapor explosion tests are carried out. A single or plural drops of molten LiNO 3 are dropped into ethyl alcohol and the temperature range of two liquids wherein the fragmentation occurs is examined. The propagation phenomenon of vapor explosion between two drops is photographed and the pressure trace is proved to be well consistent with the behavior of the vapor bubble regions. A small amount of molten Flinak and tin which are enclosed in a test tube is dropped into tapped water. The temperature effect of two liquids onto the occurrence of vapor explosion is investigated. Some considerations are made with respect to the upper and lower temperature limits of vapor explosion to occur. A qualitative modeling of vapor explosion mechanism is proposed and discussed. (author)

  5. Properties and Behavior of Geopolymer Concrete Subjected to Explosive Air Blast Loading: A Review

    Directory of Open Access Journals (Sweden)

    Mohd Mortar Nurul Aida

    2017-01-01

    Full Text Available The severe damage to civilian buildings, public area, jet aircraft impact and defense target under explosive blast loading can cause a huge property loss. Most of researcher discusses the topics on design the concrete material model to sustain againts the explosive detonation. The implementation of modern reinforcement steels and fibres in ordinary Portland cement (OPC concrete matrix can reduce the extreme loading effects. However, most researchers have proved that geopolymer concrete (GPC has better mechanical properties towards high performance concrete, compared to OPC. GPC has the high early compressive strength and high ability to resist the thermal energy from explosive detonation. In addition, OPC production is less environmental friendly than geopolymer cement. Geopolymer used can lead to environmental protection besides being improved in mechanical properties. Thus, this paper highlighted on an experimental, numerical and the analytical studies cause of the explosive detonation impact to concrete structures.

  6. Explosives mimic for testing, training, and monitoring

    Science.gov (United States)

    Reynolds, John G.; Durban, Matthew M.; Gash, Alexander E.; Grapes, Michael D.; Kelley, Ryan S.; Sullivan, Kyle T.

    2018-02-13

    Additive Manufacturing (AM) is used to make mimics for explosives. The process uses mixtures of explosives and matrices commonly used in AM. The explosives are formulated into a mixture with the matrix and printed using AM techniques and equipment. The explosive concentrations are kept less than 10% by wt. of the mixture to conform to requirements of shipping and handling.

  7. Effect of type of explosives and physical-mechanical properties of explosive rock on formation of toxic gases in atmosphere of shafts

    Science.gov (United States)

    Mindeli, E. O.; Khudyakov, M. Y.

    1981-01-01

    The quality of toxic gases formed during explosive work in underground shafts depends upon the type of explosives and the conditions of explosion. Several types of explosives and rocks were examined. All remaining conditions were maintained the same (sandy-argillaceous stemming, electrical method of explosions, diameter of blast holes, and the direct triggering of charges).

  8. Toward an Empirically-based Parametric Explosion Spectral Model

    Science.gov (United States)

    Ford, S. R.; Walter, W. R.; Ruppert, S.; Matzel, E.; Hauk, T. F.; Gok, R.

    2010-12-01

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases (Pn, Pg, and Lg) that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. These parameters are then correlated with near-source geology and containment conditions. There is a correlation of high gas-porosity (low strength) with increased spectral slope. However, there are trade-offs between the slope and corner-frequency, which we try to independently constrain using Mueller-Murphy relations and coda-ratio techniques. The relationship between the parametric equation and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source, and aid in the prediction of observed local and regional distance seismic amplitudes for event identification and yield determination in regions with incomplete or no prior history of underground nuclear testing.

  9. Molecular Outflows: Explosive versus Protostellar

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina; Loinard, Laurent [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Schmid-Burgk, Johannes [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn (Germany)

    2017-02-10

    With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion–ejection process in star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al., and using {sup 12}CO( J = 2-1) archival data from the Submillimeter Array, we contrast two well-known explosive objects, Orion KL and DR21, to HH 211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment, there are only two well-established cases of explosive outflows, but with the full availability of ALMA we expect that more examples will be found in the near future. The main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the redshifted with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very-well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum, and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position (i.e., the place where its “exciting source” was located), contrary to the bulk of the molecular material within the protostellar outflows.

  10. Detection of chemical explosives using multiple photon signatures

    International Nuclear Information System (INIS)

    Loschke, K.W.; Dunn, W.L.

    2008-01-01

    Full text: A template-matching procedure to aid in rapid detection of improvised explosive devices (IEDs) is being investigated. Multiple photon-scattered and photon-induced positron annihilation radiation responses are being used as part of a photon-neutron signature-based radiation scanning (SBRS) approach (see companion reference for description of the neutron component), in an attempt to detect chemical explosives at safe standoff distances. Many past and present photon interrogation methods are based on imaging. Imaging techniques seek to determine at high special resolution the internal structure of a target of interest. Our technique simply seeks to determine if an unknown target contains a detectable amount of chemical explosives by comparing multiple responses (signatures) that depend on both density and composition of portions of a target. In the photon component, beams of photons are used to create back-streaming signatures, which are dependent on the density and composition of part of the target being interrogated. These signatures are compared to templates, which are collections of the same signatures if the interrogated volume contained a significant amount of explosives. The signature analysis produces a figure-of-merit and a standard deviation of the figure-of-merit. These two metrics are used to filter safe from dangerous targets. Experiments have been conducted that show that explosive surrogates (fertilizers) can be distinguished from several inert materials using these photon signatures, demonstrating that these signatures can be used effectively to help IEDs

  11. Asymmetric supernova explosions and the origin of binary pulsars

    International Nuclear Information System (INIS)

    Sutantyo, W.

    1978-01-01

    The author investigates the effect of asymmetric supernova explosions on the orbital parameters of binary systems with a compact component. Such explosions are related to the origin of binary pulsars. The degree of asymmetry of the explosion is represented by the kick velocity gained by the exploding star due to the asymmetric mass ejection. The required kick velocity to produce the observed parameters of the binary pulsar PSR 1913 + 16 should be larger than approximately 80 km s -1 if the mass of the exploding star is larger than approximately 4 solar masses. The mean survival probability of the binary system ( ) is examined for various degrees of asymmetry in the explosion. The rare occurrence of a binary pulsar does not neccessarily imply that such a probability is low since not all pulsars have originated in a binary system. Assuming the birth rate of pulsars by Taylor and Manchester (1977), it is derived that would be as high as 0.25. Such values of can be obtained if the mass of the exploding stars is, in general, not large (< approximately 10 solar masses). (Auth.)

  12. Thermochemistry of mixed explosives

    International Nuclear Information System (INIS)

    Janney, J.L.; Rogers, R.N.

    1982-01-01

    In order to predict thermal hazards of high-energy materials, accurate kinetics constants must be determined. Predictions of thermal hazards for mixtures of high-energy materials require measurements on the mixtures, because interactions among components are common. A differential-scanning calorimeter (DSC) can be used to observe rate processes directly, and isothermal methods enable detection of mechanism changes. Rate-controlling processes will change as components of a mixture are depleted, and the correct depletion function must be identified for each specific stage of a complex process. A method for kinetics measurements on mixed explosives can be demonstrated with Composition B is an approximately 60/40 mixture of RDX and TNT, and is an important military explosive. Kinetics results indicate that the mator process is the decomposition of RDX in solution in TNT with a perturbation caused by interaction between the two components. It is concluded that a combination of chemical kinetics and experimental self-heating procedures provides a good approach to the production of predictive models for thermal hazards of high-energy materials. Systems involving more than one energy-contributing component can be studied. Invalid and dangerous predictive models can be detected by a failure of agreement between prediction and experiment at a specific size, shape, and density. Rates of thermal decomposition for Composition B appear to be modeled adequately for critical-temperature predictions with the following kinetics constants: E = 180.2 kJ mole -1 and Z = 4.62 X 10 16 s -1

  13. Glass produced by underground nuclear explosions

    International Nuclear Information System (INIS)

    Schwartz, L.; Piwinskii, A.; Ryerson, F.; Tewes, H.; Beiriger, W.

    1983-01-01

    Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (10 12 calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 μm scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity

  14. Improvised explosive devices: pathophysiology, injury profiles and current medical management.

    Science.gov (United States)

    Ramasamy, A; Hill, A M; Clasper, J C

    2009-12-01

    The improvised explosive device (IED), in all its forms, has become the most significant threat to troops operating in Afghanistan and Iraq. These devices range from rudimentary home made explosives to sophisticated weapon systems containing high-grade explosives. Within this broad definition they may be classified as roadside explosives and blast mines, explosive formed pojectile (EFP) devices and suicide bombings. Each of these groups causeinjury through a number of different mechanisms and can result in vastly different injury profiles. The "Global War on Terror" has meant that incidents which were previously exclusively seen in conflict areas, can occur anywhere, and clinicians who are involved in emergency trauma care may be required to manage casualties from similar terrorist attacks. An understanding of the types of devices and their pathophysiological effects is necessary to allow proper planning of mass casualty events and to allow appropriate management of the complex poly-trauma casualties they invariably cause. The aim of this review article is to firstly describe the physics and injury profile from these different devices and secondly to present the current clinical evidence that underpins their medical management.

  15. Experimentally Evaluated Explosion Resistance and Performance of Destruction Unit in Multiple Detonation of Ammunition

    Directory of Open Access Journals (Sweden)

    P. A. Baskakov

    2016-01-01

    Full Text Available The paper presents results of development and experimental investigation of explosion resistance and destruction unit performance in multiple detonation of ammunition with an explosive weight up to 0.7 kg of TNT. A preliminary evaluation of the explosion resistance was carried out using a model of explosion resistance localizer, represented as a thick-walled tube. As a result of explosive tests, the nature and characteristics of tube deformation under repeated explosions have been revealed. The findings allowed us to develop the first embodiment of the destruction unit with a turning non-separable heater and a two-layer localizer, which was heated by the induction field. The explosive life tests have revealed the following drawbacks: low resource localizer, jamming rotating mechanism in contact with the splinters, and impossible replacement of damaged localizer. In the second embodiment of the destruction unit a plate-assembled easychange localizer is mounted on the heater, and it is heated by heat transfer from the core. Tests have shown that, with such a placement, the uniform heating of the localizer is not reached. This leads to incomplete destruction of ammunition. Besides, because of the low strength of the pins connecting the plates, occurrs their rapid destruction. Taking into consideration the shortcomings of the previous two designs, the third option of the destruction unit with a replaceable localizer and induction heating of a localizer has been designed. A localizer material having high mechanical strength at high temperatures and good ferromagnetic properties has been selected. The paper offers an all-metal localizer design with the thickest wall at the bottom that is the most damageable. The paper has experimentally determined a critical deformation of the localizer when destroying the ammunition with varying weight of explosive and defined the heater and bump resource. As a result, the work proposes the destruction unit design

  16. Study on explosives and their quality performance

    Energy Technology Data Exchange (ETDEWEB)

    Nabiullah, M.; Pingua, B.M.P.; Jagdish Khan, M.; Emranuzzaman [Central Mining Research Institute, Dhanbad (India)

    2005-07-01

    There are about forty suppliers of explosive and blasting accessories in India manufacturing site mixed emulsion, site mixed slurry, ANFO, HANFO, packed products, and blasting accessories of use in surface and underground mines. A field laboratory was set up to measure explosive properties of explosive samples, cast booster, detonating fuse, detonators, cord relay, MS connector, and shock tubes. Density, velocity of detonation, water percentage, water resistance, and energy output were considered as the important properties of explosives. A rating system was designed for selection of good explosive products. The delay interval and delay scattering in cord relay and shock tube was studied to improve blast performance. This paper describes in detail the method of measurement and vender rating system for explosive products as per marking system accepted by Coal India. 12 refs., 4 figs., 22 tabs.

  17. Explosive coalescence of Magnetic Islands

    International Nuclear Information System (INIS)

    Tajima, T.; Sakai, J.I.

    1985-04-01

    An explosive reconnection process associated with nonlinear evolution of the coalescence instability is found through studies of particle and magnetohydrodynamic simulations. The explosive coalescence is a self-similar process of magnetic collapse, in which the magnetic and electrostatic energies and temperatures explode toward the explosion time t 0 as (t 0 -t)/sup 8/3/,(t 0 -t) -4 , and (t 0 -t)/sup -8/3/, respectively. Ensuing amplitude oscillations in these quantities are identified by deriving an equation of motion for the scale factor in the Sagdeev potential

  18. Raman lidar for remote control explosives in the subway

    Science.gov (United States)

    Grishkanich, Aleksandr; Redka, Dmitriy; Vasiliev, Sergey; Tishkov, Victor; Zhevlakov, Aleksandr

    2017-10-01

    Laser sensing can serve as a highly effective method of searching and monitoring of explosives in the subway. The first method is essence consists in definition the explosives concentration by excitation and registration ramans shifts at wavelength of λ = 0.261 - 0.532 μm at laser sounding. Preliminary results of investigation show the real possibility to register of 2,4,6-trinitrophenylmethylnitramine with concentration on surface at level of 108÷109 cm-3 on a safe distance 50 m from the object.

  19. Chemosensors for detection of nitroaromatic compounds (explosives)

    Science.gov (United States)

    Zyryanov, G. V.; Kopchuk, D. S.; Kovalev, I. S.; Nosova, E. V.; Rusinov, V. L.; Chupakhin, O. N.

    2014-09-01

    The key types of low-molecular-mass chemosensors for the detection of nitroaromatic compounds representing energetic substances (explosives) are analyzed. The coordination and chemical properties of these chemosensors and structural features of their complexes with nitroaromatic compounds are considered. The causes and methods for attaining high selectivity of recognition are demonstrated. The primary attention is paid to the use of low-molecular-mass chemosensors for visual detection of explosives of this class by colorimetric and photometric methods. Examples of using photo- and chemiluminescence for this purpose are described. A separate section is devoted to electrochemical methods of detection of nitroaromatic compounds. Data published from 2000 to 2014 are mainly covered. The bibliography includes 245 references.

  20. Chemosensors for detection of nitroaromatic compounds (explosives)

    International Nuclear Information System (INIS)

    Zyryanov, G V; Kopchuk, D S; Rusinov, V L; Chupakhin, O N; Kovalev, I S; Nosova, E V

    2014-01-01

    The key types of low-molecular-mass chemosensors for the detection of nitroaromatic compounds representing energetic substances (explosives) are analyzed. The coordination and chemical properties of these chemosensors and structural features of their complexes with nitroaromatic compounds are considered. The causes and methods for attaining high selectivity of recognition are demonstrated. The primary attention is paid to the use of low-molecular-mass chemosensors for visual detection of explosives of this class by colorimetric and photometric methods. Examples of using photo- and chemiluminescence for this purpose are described. A separate section is devoted to electrochemical methods of detection of nitroaromatic compounds. Data published from 2000 to 2014 are mainly covered. The bibliography includes 245 references

  1. Explosive nucleosynthesis in a neutrino-driven core collapse supernova

    International Nuclear Information System (INIS)

    Fujimoto, Shin-ichiro; Kotake, Kei; Hashimoto, Masa-aki; Ono, Masaomi; Ohnishi, Naofumi

    2010-01-01

    We investigate explosive nucleosynthesis in a delayed neutrino-driven, supernova explosion aided by standing accretion shock instability (SASI), based on two-dimensional hydrodynamic simulations of the explosion of a 15 M · star. We take into accounts neutrino heating and cooling as well as change in electron fraction due to weak interactions appropriately, in the two-dimensional simulations. We assume the isotropic emission of neutrinos from the neutrino spheres with given luminosities. and the Fermi-Dirac distribution of given temperatures. We find that the stalled shock revives due to the neutrino heating aided by SASI for cases with L νe ≥3.9x10 52 ergss -1 and the as-pherical shock passes through the outer layers of the star (≥10,000 km), with the explosion energies of ∼10 51 ergs.Next we examine abundances and masses of the supernova ejecta. We find that masses of the ejecta and 56 Ni correlate with the neutrino luminosity, and 56 Ni mass is comparable to that observed in SN 1987A. We also find that abundance pattern of the supernova ejecta is similar to that of the solar system, for cases with high explosion energies of >10 51 ergs. We emphasize that 64 Zn, which is underproduced in the spherical case, is abundantly produced in slightly neutron-rich ejecta.

  2. Screening sealed bottles for liquid explosives

    Science.gov (United States)

    Kumar, Sankaran; McMichael, W. Casey; Kim, Y.-W.; Sheldon, Alan G.; Magnuson, Erik E.; Ficke, L.; Chhoa, T. K.; Moeller, C. R.; Barrall, Geoffrey A.; Burnett, Lowell J.; Czipott, Peter V.; Pence, J. S.; Skvoretz, David C.

    1997-01-01

    A particularly disturbing development affecting transportation safety and security is the increasing use of terrorist devices which avoid detection by conventional means through the use of liquid explosives and flammables. The hazardous materials are generally hidden in wine or liquor bottles that cannot be opened routinely for inspection. This problem was highlighted by the liquid explosives threat which disrupted air traffic between the US an the Far East for an extended period in 1995. Quantum Magnetics has developed a Liquid Explosives Screening systems capable of scanning unopened bottles for liquid explosives. The system can be operated to detect specific explosives directly or to verify the labeled or bar-coded contents of the container. In this system, magnetic resonance (MR) is used to interrogate the liquid. MR produces an extremely rich data set and many characteristics of the MR response can be determined simultaneously. As a result, multiple MR signatures can be defined for any given set of liquids, and the signature complexity then selected according to the level of threat. The Quantum Magnetics Liquid Explosives Screening System is currently operational. Following extensive laboratory testing, a field trial of the system was carried out at the Los Angeles International Airport.

  3. Hydrodynamics of Explosion Experiments and Models

    CERN Document Server

    Kedrinskii, Valery K

    2005-01-01

    Hydronamics of Explosion presents the research results for the problems of underwater explosions and contains a detailed analysis of the structure and the parameters of the wave fields generated by explosions of cord and spiral charges, a description of the formation mechanisms for a wide range of cumulative flows at underwater explosions near the free surface, and the relevant mathematical models. Shock-wave transformation in bubbly liquids, shock-wave amplification due to collision and focusing, and the formation of bubble detonation waves in reactive bubbly liquids are studied in detail. Particular emphasis is placed on the investigation of wave processes in cavitating liquids, which incorporates the concepts of the strength of real liquids containing natural microinhomogeneities, the relaxation of tensile stress, and the cavitation fracture of a liquid as the inversion of its two-phase state under impulsive (explosive) loading. The problems are classed among essentially nonlinear processes that occur unde...

  4. Gas induced fire and explosion frequencies

    International Nuclear Information System (INIS)

    Coutts, D.A.

    1997-01-01

    The use and handling of flammable gases poses a fire and explosion hazard to many DOE nuclear facilities. This hazard is not unique to DOE facilities. Each year over 2,900 non-residential structural fires occur in the U.S. where a gas is the first item ignited. Details from these events are collected by the National Fire Incident Reporting System (NFIRS) through an extensive reporting network. This extensive data set (800,000 fires in non-residential structures over a 5-year period) is an underutilized resource within the DOE community. Explosions in nuclear facilities can have very severe consequences. The explosion can both damage the facility containment and provide a mechanism for significant radiological dispersion. In addition, an explosion can have significant worker safety implications. Because of this a quantitative frequency estimate for explosions in an SRS laboratory facility has been prepared using the NFIRS data. 6 refs., 1 tab

  5. Spherical shock due to point explosion with varying energy

    Science.gov (United States)

    Singh, J. B.; Srivastava, S. K.

    1983-05-01

    The motion of a perfect gas behind a weak or strong spherical point-explosion shock wave in a nonuniform rest atmosphere is investigated analytically for the case of variable flow energy. The self-similar solutions derived are also adaptable to a uniform expanding piston. The solution is applied to the isothermal case, and the results of numerical integration are presented in graphs showing the density, velocity, and pressure distributions for different values of delta. The findings are considered significant for investigations of sonic booms, laser production of plasmas, high-altitude nuclear detonations, supernova explosions, and the sudden expansion of the solar corona, and for the laboratory production of high temperatures using shock waves.

  6. Safety problems with abandoned explosive facilities

    International Nuclear Information System (INIS)

    Courtright, W.C.

    1969-01-01

    Procedures were developed for the safe removal of explosive and radioactive contaminated materials structures and drains from abandoned sites, including explosives processing and service buildings with a goal to return the entire area to its natural state and to permit public access. The safety problems encountered in the cleanup and their solutions are applicable to modification and maintenance work in operating explosive facilities. (U.S.)

  7. The Use of Explosive Forming for Fastening and Joining Structural and Pressure Components

    Science.gov (United States)

    Schroeder, J. W.

    1985-01-01

    Explosive expansion of tubes into tubesheets has been used for over 20 years in the fabrication and repair of shell and tube heat exchangers. The use of explosives to perform these expansions has offered several distinct advantages over other methods. First, the process is fast and economical and can be performed with minimal training of personnel. Secondly, explosive forming does not cause the deleterious metallurgical effects which often result from other forming operations. In addition, the process can be performed remotely without the need for sophisticated handling equipment. The expansion of tubes into tubesheets is only one of many possible fastening and joining applications for which explosive forming can be used to achieve highly successful results. The explosive forming process and where it has been used are described. In addition, some possible adaptations to other joining applications are identified and discussed.

  8. Simulation of first SERENA KROTOS steam explosion experiment

    International Nuclear Information System (INIS)

    Leskovar, Matjaz; Ursic, Mitja

    2009-01-01

    A steam explosion may occur when, during a severe reactor accident, the molten core comes into contact with the coolant water. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. To resolve the open issues in steam explosion understanding and modeling, the OECD program SERENA Phase 2 was launched at the end of year 2007, focusing on nuclear applications. SERENA comprises an experimental program, which is being carried out in the complementary KROTOS and TROI corium facilities, accompanied by a comprehensive analytical program, where also pre- and post-test calculations are foreseen. In the paper the sensitivity post-test calculations of the first SERENA KROTOS experiment KS-1, which were performed with the code MC3D, are presented and discussed. Since the results of the SERENA tests are restricted to SERENA members, only the various calculation results are given, not comparing them to experimental measurements. Various premixing and explosion simulations were performed on a coarse and a fine numerical mesh, applying two different jet breakup models (global, local) and varying the minimum bubble diameter in the explosion simulations (0.5 mm, 5 mm). The simulations revealed that all varied parameters have a significant influence on the calculation results, as was expected since the fuel coolant interaction process is a highly complex phenomenon. The results of the various calculations are presented in comparison and the observed differences are discussed and explained. (author)

  9. Explosive double salts and preparation

    Science.gov (United States)

    Cady, Howard H.; Lee, Kien-yin

    1984-01-01

    Applicants have discovered a new composition of matter which is an explosive addition compound of ammonium nitrate (AN) and diethylenetriamine trinitrate (DETN) in a 50:50 molar ratio. The compound is stable over extended periods of time only at temperatures higher than 46.degree. C., decomposing to a fine-grained eutectic mixture (which is also believed to be new) of AN and DETN at temperatures lower than 46.degree. C. The compound of the invention has an x-ray density of 1.61 g/cm.sup.3, explodes to form essentially only gaseous products, has higher detonation properties (i.e., detonation velocity and pressure) than those of any mechanical mixture having the same density and composition as the compound of the invention, is a quite insensitive explosive material, can be cast at temperatures attainable by high pressure steam, and is prepared from inexpensive ingredients. Methods of preparing the compound of the invention and the fine-grained eutectic composition of the invention are given.

  10. Steam explosions in sodium cooled breeder reactors

    International Nuclear Information System (INIS)

    Lundell, B.

    1982-01-01

    Steam explosion is considered a physical process which transport heat from molten fuel to liquid coolant so fast that the coolant starts boiling in an explosion-like manner. The arising pressure waves transform part of the thermal energy to mechanical energy. This can stress the reactor tank and threaten its hightness. The course of the explosion has not been theoretical explained. Experimental results indicate that the probability of steam explosions in a breeder reactor is small. The efficiency of the transformation of the heat of fusion into mechanical energy in substantially lower than the theoretical maximum value. The mechanical stress from the steam explosion on the reactor tank does not seem to jeopardize its tightness. (G.B.)

  11. The limit of detection for explosives in spectroscopic differential reflectometry

    Science.gov (United States)

    Dubroca, Thierry; Vishwanathan, Karthik; Hummel, Rolf E.

    2011-05-01

    In the wake of recent terrorist attacks, such as the 2008 Mumbai hotel explosion or the December 25th 2009 "underwear bomber", our group has developed a technique (US patent #7368292) to apply differential reflection spectroscopy to detect traces of explosives. Briefly, light (200-500 nm) is shone on a surface such as a piece of luggage at an airport. Upon reflection, the light is collected with a spectrometer combined with a CCD camera. A computer processes the data and produces in turn a differential reflection spectrum involving two adjacent areas of the surface. This differential technique is highly sensitive and provides spectroscopic data of explosives. As an example, 2,4,6, trinitrotoluene (TNT) displays strong and distinct features in differential reflectograms near 420 nm. Similar, but distinctly different features are observed for other explosives. One of the most important criteria for explosive detection techniques is the limit of detection. This limit is defined as the amount of explosive material necessary to produce a signal to noise ratio of three. We present here, a method to evaluate the limit of detection of our technique. Finally, we present our sample preparation method and experimental set-up specifically developed to measure the limit of detection for our technology. This results in a limit ranging from 100 nano-grams to 50 micro-grams depending on the method and the set-up parameters used, such as the detector-sample distance.

  12. Tracing explosive in solvent using quantum cascade laser with pulsed electric discharge system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong-Wook; Tian, Chao; Martini, Rainer, E-mail: rmartini@stevens.edu [Department of Physics and Engineering Physics, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey 07030 (United States); Chen, Gang [School of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China); Chen, I-chun Anderson [Newport Corporation/Oriel Instruments, 150 Long Beach Boulevard, Stratford, Connecticut 06615 (United States)

    2014-11-03

    We demonstrated highly sensitive detection of explosive dissolved in solvent with a portable spectroscopy system (Q-MACS) by tracing the explosive byproduct, N{sub 2}O, in combination with a pulsed electric discharge system for safe explosive decomposition. Using Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the gas was monitored and analyzed by Q-MACS and the presence of the dissolved explosive clearly detected. While HMX presence could be identified directly in the air above the solutions even without plasma, much better results were achieved under the decomposition. The experiment results give an estimated detection limit of 10 ppb, which corresponds to a 15 pg of HMX.

  13. Tracing explosive in solvent using quantum cascade laser with pulsed electric discharge system

    International Nuclear Information System (INIS)

    Park, Seong-Wook; Tian, Chao; Martini, Rainer; Chen, Gang; Chen, I-chun Anderson

    2014-01-01

    We demonstrated highly sensitive detection of explosive dissolved in solvent with a portable spectroscopy system (Q-MACS) by tracing the explosive byproduct, N 2 O, in combination with a pulsed electric discharge system for safe explosive decomposition. Using Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the gas was monitored and analyzed by Q-MACS and the presence of the dissolved explosive clearly detected. While HMX presence could be identified directly in the air above the solutions even without plasma, much better results were achieved under the decomposition. The experiment results give an estimated detection limit of 10 ppb, which corresponds to a 15 pg of HMX

  14. Some properties of explosive mixtures containing peroxides

    International Nuclear Information System (INIS)

    Zeman, Svatopluk; Trzcinski, Waldemar A.; Matyas, Robert

    2008-01-01

    This study concerns mixtures of triacetone triperoxide (3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane, TATP) and ammonium nitrate (AN) with added water (W), as the case may be, and dry mixtures of TATP with urea nitrate (UN). Relative performances (RP) of the mixtures and their individual components, relative to TNT, were determined by means of ballistic mortar. The detonation energies, E 0 , and detonation velocities, D, were calculated for the mixtures studied by means of the thermodynamic code CHEETAH. Relationships have been found and are discussed between the RP and the E 0 values related to unit volume of gaseous products of detonation of these mixtures. These relationships together with those between RP and oxygen balance values of the mixtures studied indicate different types of participation of AN and UN in the explosive decomposition of the respective mixtures. Dry TATP/UN mixtures exhibit lower RP than analogous mixtures TATP/AN containing up to 25% of water. Depending on the water content, the TATP/AN mixtures possess higher detonability values than the ANFO explosives. A semi-logarithmic relationship between the D values and oxygen coefficients has been derived for all the mixtures studied at the charge density of 1000 kg m -3 . Among the mixtures studied, this relationship distinguishes several samples of the type of 'tertiary explosives' as well as samples that approach 'high explosives' in their performances and detonation velocities

  15. Some properties of explosive mixtures containing peroxides

    Energy Technology Data Exchange (ETDEWEB)

    Zeman, Svatopluk [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice (Czech Republic)], E-mail: svatopluk.zeman@upce.cz; Trzcinski, Waldemar A. [Institute of Chemistry, Military University of Technology, PL-00-908 Warsaw 49 (Poland); Matyas, Robert [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice (Czech Republic)

    2008-06-15

    This study concerns mixtures of triacetone triperoxide (3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane, TATP) and ammonium nitrate (AN) with added water (W), as the case may be, and dry mixtures of TATP with urea nitrate (UN). Relative performances (RP) of the mixtures and their individual components, relative to TNT, were determined by means of ballistic mortar. The detonation energies, E{sub 0}, and detonation velocities, D, were calculated for the mixtures studied by means of the thermodynamic code CHEETAH. Relationships have been found and are discussed between the RP and the E{sub 0} values related to unit volume of gaseous products of detonation of these mixtures. These relationships together with those between RP and oxygen balance values of the mixtures studied indicate different types of participation of AN and UN in the explosive decomposition of the respective mixtures. Dry TATP/UN mixtures exhibit lower RP than analogous mixtures TATP/AN containing up to 25% of water. Depending on the water content, the TATP/AN mixtures possess higher detonability values than the ANFO explosives. A semi-logarithmic relationship between the D values and oxygen coefficients has been derived for all the mixtures studied at the charge density of 1000 kg m{sup -3}. Among the mixtures studied, this relationship distinguishes several samples of the type of 'tertiary explosives' as well as samples that approach 'high explosives' in their performances and detonation velocities.

  16. Bias-corrected estimation in potentially mildly explosive autoregressive models

    DEFF Research Database (Denmark)

    Haufmann, Hendrik; Kruse, Robinson

    This paper provides a comprehensive Monte Carlo comparison of different finite-sample bias-correction methods for autoregressive processes. We consider classic situations where the process is either stationary or exhibits a unit root. Importantly, the case of mildly explosive behaviour is studied...... that the indirect inference approach oers a valuable alternative to other existing techniques. Its performance (measured by its bias and root mean squared error) is balanced and highly competitive across many different settings. A clear advantage is its applicability for mildly explosive processes. In an empirical...

  17. An experimental study of an explosively driven flat plate launcher

    Science.gov (United States)

    Rae, Philip; Haroz, Erik; Armstrong, Chris; Perry, Lee; M Division Team

    2017-06-01

    For some upcoming experiments it is desired to impact a large explosive assembly with one or more moderate diameter flat metal plates traveling at high velocity (2-3 km s-1). The time of arrival of these plates will need to carefully controlled and delayed (i.e. the time(s) of arrival known to approximately a microsecond). For this reason, producing a flyer plate from more traditional gun assemblies is not possible. Previous researchers have demonstrated the ability to throw reasonably flat metal flyers from the so-called Forest flyer geometry. The defining characteristics of this design are a carefully controlled reduction in explosive area from a larger explosive plane-wave-lens and booster pad to a smaller flyer plate to improve the planarity of the drive available and an air gap between the explosive booster and the plate to reduce the peak tensile stresses generated in the plate to suppress spalling. This experimental series comprised a number of different design variants and plate and explosive drive materials. The aim was to calibrate a predictive computational modeling capability on this kind of system in preparation for later more radical design ideas best tested in a computer before undertaking the expensive business of construction.

  18. Donor free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E. [15 Way Points Rd., Danville, CA 94526; Wasley, Richard J. [4290 Colgate Way, Livermore, CA 94550

    1980-04-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising an organic compound or mixture of organic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and which is not an explosive, or an inorganic compound or mixture of inorganic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and selected from ammonium or alkali metal persulfates.

  19. Peaceful applications of nuclear explosions

    International Nuclear Information System (INIS)

    Wallin, L.B.

    1975-12-01

    The intension of this report is to give a survey of the field of peaceful applications of nuclear explosions. As an introduction some examples of possibilities of application are given together with a simple description of nuclear explosions under ground. After a summary of what has been done and will be done in this field nationally and internationally, a short discussion of advantages and problems with peaceful application of nuclear explosions follows. The risks of spreading nuclear weapons due to this applications are also touched before the report is finished with an attempt to judge the future development in this field. (M.S.)

  20. Mechanical constraints on the triggering of vulcanian explosions at Santiaguito volcano, Guatemala

    Science.gov (United States)

    Hornby, Adrian; Lavallée, Yan; Collinson, Amy; Neuberg, Jurgen; De Angelis, Silvio; Kendrick, Jackie; Lamur, Anthony

    2016-04-01

    Gas- and ash explosions at Santiaguito volcano occur at regular 20-200 minute intervals, exiting through arcuate fractures in the summit dome of the Caliente vent. Infrasound, ground deformation and seismic monitoring collected during a long term monitoring survey conducted by the University of Liverpool have constrained a stable, repeatable source for these explosions. The explosions maintain similar magnitudes and (low) erupted mass throughout examined period. Ground deformation reveals stable ~25 minute inflation-deflation cycles, which culminate in either explosions or passive outgassing. Inversion of infrasound sources has revealed that faster inflation rates during the final minutes before peak inflation lead to explosions. These explosions fragment a consistently small-volume pressurized, gas-rich domain within magma located below a denser, lower permeability magma plug. Rapid decompression of this gas-rich domain occurs through fracturing and faulting, creating a highly permeable connection with atmospheric pressures near to the dome surface. We surmise that the dominant fracture mode at these shallow depths is tensile due to the volumetric strain exerted by a pressurising source below the magma plug, however a component of shear is also detected during explosive events. Fractures may either propagate downwards from the dome surface (due to greater magma stiffness and lower confining pressure) or upwards from the gas-rich domain (due to higher strain rates at the deformation source in the case of viscous deformation). In order to constrain the origin and evolution of these fractures we have conducted Brazilian tensile stress tests on lavas from the Caliente vent at strain rates from 10-3-10-5, porosities 3-30% and temperatures 20-800 °C. Across the expected conduit temperature range (750-800 °C) the dome material becomes highly sensitive to strain rate, showing a range of response from elastic failure to viscous flow. The total strain accommodated prior

  1. Detonation and fragmentation modeling for the description of large scale vapor explosions

    International Nuclear Information System (INIS)

    Buerger, M.; Carachalios, C.; Unger, H.

    1985-01-01

    The thermal detonation modeling of large-scale vapor explosions is shown to be indispensable for realistic safety evaluations. A steady-state as well as transient detonation model have been developed including detailed descriptions of the dynamics as well as the fragmentation processes inside a detonation wave. Strong restrictions for large-scale vapor explosions are obtained from this modeling and they indicate that the reactor pressure vessel would even withstand explosions with unrealistically high masses of corium involved. The modeling is supported by comparisons with a detonation experiment and - concerning its key part - hydronamic fragmentation experiments. (orig.) [de

  2. Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy): Volatile stocking, gas fluxing, and the shift from low-energy to highly-explosive basaltic eruptions

    Science.gov (United States)

    Moretti, Roberto; Métrich, Nicole; Di Renzo, Valeria; Aiuppa, Alessandro; Allard, Patrick; Arienzo, Ilenia

    2017-04-01

    Basaltic magmas can transport and release large amounts of volatiles into the atmosphere, especially in subduction zones, where slab-derived fluids enrich the mantle wedge. Depending on magma volatile content, basaltic volcanoes thus display a wide spectrum of eruptive styles, from common Strombolian-type activity to Plinian events. Mt. Etna in Sicily, is a typical basaltic volcano where the volatile control on such a variable activity can be investigated. Based on a melt inclusion study in products from Strombolian or lava-fountain activity to Plinian eruptions, here we show that for the same initial volatile content, different eruptive styles reflect variable degassing paths throughout the composite Etnean plumbing system. The combined influence of i) crystallization, ii) deep degassing and iii) CO2 gas fluxing can explain the evolution of H2O, CO2, S and Cl in products from such a spectrum of activity. Deep crystallization produces the CO2-rich gas fluxing the upward magma portions, which will become buoyant and easily mobilized in small gas-rich batches stored within the plumbing system. When reaching gas dominated conditions (i.e., a gas/melt mass ratio of 0.3 and CO2,gas/H2Ogas molar ratio 5 ), these will erupt effusively or mildly explosively, whilst in case of the 122 BC Plinian eruption, open-system degassing conditions took place within the plumbing system, such that continuous CO2-fluxing determined gas accumulation on top of the magmatic system. The emission of such a cap in the early eruptive phase triggered the arrival of deep H2O-rich whose fast decompression and bubble nucleation lead to the highly explosive character, enhanced by abundant microlite crystallization and consequent increase of magma effective viscosity. This could explain why open system basaltic systems like Etna may experience highly explosive or even Plinian episodes during eruptions that start with effusive to mildly explosive phases. The proposed mechanism also determines a

  3. Explosion approach for external safety assessment: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D. Michael; Halford, Ann [Germanischer Lloyd, Loughborough (United Kingdom); Mendes, Renato F. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Several questions related to the potential for explosions are explored as this became an important subject during an enterprise risk analysis. The understanding of explosions underwent a substantial evolution in the final 20 years of the 20{sup th} century following international research projects in Europe involving several research institutes, as well gas and oil companies. This led to the development of techniques that could be used to assess the potential consequences of explosions on oil, gas and petrochemical facilities. This paper presents an overview of the potential for explosions in communities close to industrial sites or pipelines right of way (RoW), where the standard explosion assessment methods cannot be applied. With reference to experimental studies, the potential for confined explosions in buildings and Vapor Cloud Explosions is explored. Vapor Cloud Explosion incidents in rural or urban areas are also discussed. The method used for incorporating possible explosion and fire events in risk studies is also described using a case study. Standard explosion assessment methodologies and a revised approach are compared as part of an on going evaluation of risk (author)

  4. 27 CFR 555.63 - Explosives magazine changes.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Explosives magazine... § 555.63 Explosives magazine changes. (a) General. (1) The requirements of this section are applicable to magazines used for other than temporary (under 24 hours) storage of explosives. (2) A magazine is...

  5. Nucleation Characteristics in Physical Experiments/explosions

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.

    1976-01-01

    of the small nucleation frequency. For higher values of interface temperature, large masses will remain in film boiling because of the well-developed thermal boundary layer and the large frequency of nucleation. These masses will remain in film boiling until the critical size is achieved whereupon they will be captured by the hot liquid. For these smaller drops, the vaporization rates of the system can be extremely high, and in fact, can produce vapor on an explosive time scale. This mechanism proposes that spontaneous nucleation is the mechanism for describing: (1) film boiling in a liquid/liquid system after intimate contact, (2) the limit of stability at a given temperature, (3) the trigger for an explosive interaction, and (4) the propagation of the initiating event in these systems. The model formulated in these considerations provides a good representation of the explosive character for well-wetted liquid systems including the onset of explosive events, and the magnitude of these events

  6. Risk of dust explosions of combustible nanomaterials

    International Nuclear Information System (INIS)

    Dobashi, Ritsu

    2009-01-01

    Nanomaterials have several valuable properties and are widely used for various practical applications. However, safety matters are suspected such as the influence on health and environment, and fire and explosion hazards. To minimize the risk of nanomaterials, appropriate understanding of these hazards is indispensable. Nanoparticles of combustible materials have potential hazard of dust explosion accidents. However, the explosion risk of nanomaterials has not yet been understood adequately because of the lack of data for nanomaterials. In this presentation, the risk of dust explosions of nanomaterials is discussed.

  7. EXPLOSION OF ANNULAR CHARGE ON DUSTY SURFASE

    Directory of Open Access Journals (Sweden)

    A. Levin Vladimir

    2017-01-01

    Full Text Available This problem is related to the safety problem in the area of forest fires. It is well known that is possible to extinguish a fire, for example, by means of a powerful air stream. Such flow arises from the explosive shock wave. To enhance the im- pact of the blast wave can be used an explosive charge of annular shape. The shock wave, produced by the explosion, in- creased during moves to the center and can serve as a means of transportation dust in the seat of the fire. In addition, emerging after the collapse of a converging shock wave strong updraft can raise dust on a greater height and facilitate fire extinguishing, precipitating dust over a large area. This updraft can be dangerous for aircraft that are in the sky above the fire. To determine the width and height of the danger zone performed the numerical simulation of the ring of the explosion and the subsequent movement of dust and gas mixtures. The gas is considered ideal and perfect. The explosion is modeled as an instantaneous increase in the specific internal energy in an annular zone on the value of the specific heat of explosives. The flow is consid- ered as two-dimensional, and axisymmetric. The axis of symmetry perpendicular to the Earth surface. This surface is considered to be absolutely rigid and is considered as the boundary of the computational domain. On this surface is exhibited the condition of no motion. For the numerical method S. K. Godunov is used a movable grid. One system of lines of this grid is moved in accordance with movement of the shock wave. Others lines of this grid are stationary. The calculations were per- formed for different values of the radii of the annular field and for different sizes of rectangular cross-sectional of the annular field. Numerical results show that a very strong flow is occurring near the axis of symmetry and the particles rise high above the surface. These calculations allow us to estimate the sizes of the zone of danger in specific

  8. Characterization of major histocompatibility complex (MHC DRB exon 2 and DRA exon 3 fragments in a primary terrestrial rabies vector (Procyon lotor.

    Directory of Open Access Journals (Sweden)

    Sarrah Castillo

    Full Text Available The major histocompatibility complex (MHC presents a unique system to explore links between genetic diversity and pathogens, as diversity within MHC is maintained in part by pathogen driven selection. While the majority of wildlife MHC studies have investigated species that are of conservation concern, here we characterize MHC variation in a common and broadly distributed species, the North American raccoon (Procyon lotor. Raccoons host an array of broadly distributed wildlife diseases (e.g., canine distemper, parvovirus and raccoon rabies virus and present important human health risks as they persist in high densities and in close proximity to humans and livestock. To further explore how genetic variation influences the spread and maintenance of disease in raccoons we characterized a fragment of MHC class II DRA exon 3 (250 bp and DRB exon 2 (228 bp. MHC DRA was found to be functionally monomorphic in the 32 individuals screened; whereas DRB exon 2 revealed 66 unique alleles among the 246 individuals screened. Between two and four alleles were observed in each individual suggesting we were amplifying a duplicated DRB locus. Nucleotide differences between DRB alleles ranged from 1 to 36 bp (0.4-15.8% divergence and translated into 1 to 21 (1.3-27.6% divergence amino acid differences. We detected a significant excess of nonsynonymous substitutions at the peptide binding region (P = 0.005, indicating that DRB exon 2 in raccoons has been influenced by positive selection. These data will form the basis of continued analyses into the spatial and temporal relationship of the raccoon rabies virus and the immunogenetic response in its primary host.

  9. The experimental investigation of explosive opening switch

    Energy Technology Data Exchange (ETDEWEB)

    Jiande, Zhang; Huihuang, Zhong; Chuanlu, Li; Yonggui, Liu; Dongqun, Cheng; Xianyang, Peng [National Univ. of Defense Technology, Changsha (China). Dept. of Applied Physics

    1997-12-31

    The explosive opening switch (EOS) used in explosive-driven magnetic-flux compression generator (EMCG) circuits was investigated. It is shown that (1) under certain conditions, the EOS voltage is hardly dependent on the size of the explosive and aluminium foil used in EOS; (2) with the explosive coated by an insulator pipe, the opening effect of EOS is better; (3) by use of EOS, a pulse with 5 kA current, 100 kV voltage and 250 ns risetime has been transferred into a resistance load. (author). 12 figs., 5 refs.

  10. The experimental investigation of explosive opening switch

    International Nuclear Information System (INIS)

    Zhang Jiande; Zhong Huihuang; Li Chuanlu; Liu Yonggui; Cheng Dongqun; Peng Xianyang

    1996-01-01

    The explosive opening switch (EOS) used in explosive-driven magnetic-flux compression generator (EMCG) circuits was investigated. It is shown that (1) under certain conditions, the EOS voltage is hardly dependent on the size of the explosive and aluminium foil used in EOS; (2) with the explosive coated by an insulator pipe, the opening effect of EOS is better; (3) by use of EOS, a pulse with 5 kA current, 100 kV voltage and 250 ns risetime has been transferred into a resistance load. (author). 12 figs., 5 refs

  11. Natural gas production from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    1965-01-01

    A remote location in Rio Arriba County, NW. New Mexico, is being considered as the site for an experiment in the use of a nuclear explosive to increase production from a natural gas field. A feasibility study has been conducted by the El Paso Natural Gas Co., the U.S. Atomic Energy commission, and the U.S. Bureau of Mines. As presently conceived, a nuclear explosive would be set in an emplacement hole and detonated. The explosion would create a cylinder or ''chimney'' of collapsed rock, and a network of fractures extending beyond the chimney. The fractures are the key effect. These would consist of new fractures, enlargement of existing ones, and movement along planes where strata overlap. In addition, there are a number of intangible but important benefits that could accrue from the stimulating effect. Among these are the great increase in recoverable reserves and the deliverability of large volumes of gas during the periods of high demand. It is believed that this type of well stimulation may increase the total gas production of these low permeability natural gas fields by about 7 times the amounts now attainable.

  12. Wireless sensor for detecting explosive material

    Science.gov (United States)

    Lamberti, Vincent E; Howell, Jr., Layton N; Mee, David K; Sepaniak, Michael J

    2014-10-28

    Disclosed is a sensor for detecting explosive devices. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon absorption of vapor from an explosive material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The explosive device is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  13. Explosions on a gas-vacuum interface

    International Nuclear Information System (INIS)

    Nutt, G.; Klein, L.; Ratcliffe, A.E.

    1981-01-01

    A finite-difference computer code is used to calculate the time development of an explosion on a gas-vacuum interface. An analytic theory of the shape of the shock wave produced in the explosion is compared with the results of the computer simulation. The assumptions used in obtaining this analytic solution are verified, and the degree to which the variables describing the explosion are self-similar is examined. Finally, certain consistency relations among the similarity exponents are tested

  14. Multi-dimensional simulations of core-collapse supernova explosions with CHIMERA

    Science.gov (United States)

    Messer, O. E. B.; Harris, J. A.; Hix, W. R.; Lentz, E. J.; Bruenn, S. W.; Mezzacappa, A.

    2018-04-01

    Unraveling the core-collapse supernova (CCSN) mechanism is a problem that remains essentially unsolved despite more than four decades of effort. Spherically symmetric models with otherwise high physical fidelity generally fail to produce explosions, and it is widely accepted that CCSNe are inherently multi-dimensional. Progress in realistic modeling has occurred recently through the availability of petascale platforms and the increasing sophistication of supernova codes. We will discuss our most recent work on understanding neutrino-driven CCSN explosions employing multi-dimensional neutrino-radiation hydrodynamics simulations with the Chimera code. We discuss the inputs and resulting outputs from these simulations, the role of neutrino radiation transport, and the importance of multi-dimensional fluid flows in shaping the explosions. We also highlight the production of 48Ca in long-running Chimera simulations.

  15. Explosive strength training improves speed and agility in wheelchair basketball athletes

    Directory of Open Access Journals (Sweden)

    Tarik Ozmen

    2014-04-01

    Full Text Available INTRODUCTION: Wheelchair basketball is a paralympic sport characterized by intermittent high-intensity activities that require explosive strength and speed. OBJECTIVE: To investigate the effect of explosive strength training on speed and agility performance in wheelchair basketball players. METHODS: Ten male wheelchair basketball players (Mage=31±4 yrs were divided into two groups [i.e. explosive strength training (ES; control (CN] based on International Wheelchair Basketball Federation (IWBF classification scores. The ES group underwent 6-weeks of training, twice weekly, at 50% 1RM, 10-12 repetitions and 3-4 sets in addition to routine training. Effects of training were measured by the 20 m sprint test and Illinois agility test. RESULTS: The ES group, showed significantly higher increases in speed and agility performance (p ≤ .05. CONCLUSION: A short-duration (i.e. 6-week explosive strength training programme in wheelchair basketball athletes results in significant improvements in sprint and agility performance.

  16. Study on explosion field temperature testing system based on wireless data transmission

    International Nuclear Information System (INIS)

    Wang Xinling; Sun Yunqiang

    2011-01-01

    The accurate measurement of the transient temperature value produced by explosive blasting may provide the basis for distinguishing the types of the explosive, the power contrast of the explosive and the performance evaluation in the weapons research process. To solve the problems of the Universal Test System emplaced inconveniently and the stored testing system need to be recycled, it has designed the explosion field application in wireless sensor system of temperature measurement. The system based on PIC16F877A micro controller, CPLD complex programmable logic devices and nRF24L01 wireless transmission chip sensor. The system adopts the Tungsten-Rhenium Thermocouple as the temperature sensor, DS600 temperature sensor for cold temperature compensation. This system has arrangement convenient, high-speed data acquisition, trigger and working parameters of adjustable characteristics, has been successfully applied in a test system. (authors)

  17. Electromagnetic field effects in explosives

    Science.gov (United States)

    Tasker, Douglas

    2009-06-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.

  18. Follow up of natural infection with Trypanosoma cruzi in two mammals species, Nasua narica and Procyon lotor (Carnivora: Procyonidae): evidence of infection control?

    Science.gov (United States)

    Martínez-Hernández, Fernando; Rendon-Franco, Emilio; Gama-Campillo, Lilia María; Villanueva-García, Claudia; Romero-Valdovinos, Mirza; Maravilla, Pablo; Alejandre-Aguilar, Ricardo; Rivas, Nancy; Córdoba-Aguilar, Alex; Muñoz-García, Claudia Irais; Villalobos, Guiehdani

    2014-08-29

    A large variety of mammals act as natural reservoirs of Trypanosoma cruzi (the causal agent of Chagas disease) across the American continent. Related issues are infection and parasite burden in these reservoirs, and whether they are able to control T. cruzi infections. These parameters can indicate the real role of mammals as T. cruzi reservoirs and transmitters. Here, two species of mammals, white-nosed coati (Nasua narica) and raccoon (Procyon lotor), were examined for to determine: a) T. cruzi presence, and; b) their ability to control T. cruzi infection. Multiple capture-recaptures of both species were carried out in semi-wild conditions in Villahermosa, Tabasco, Mexico, for 5 years. Two samplings per year (summer and winter) took place. Prevalence and pattern of T. cruzi infection were determined by PCR from both mammals' blood samples. Raccoon samples had a higher relative infection values (26.6%) compared to those of white-nosed coati (9.05%), being this difference significant in summer 2012 (P mammals are able to tolerate the infection). However, while infected, they may also be able to approach human dwellings and play a role important in linking sylvatic and domestic cycles.

  19. Blast overpressure after tire explosion: a fatal case.

    Science.gov (United States)

    Pomara, Cristoforo; D'Errico, Stefano; Riezzo, Irene; Perilli, Gabriela; Volpe, Umberto; Fineschi, Vittorio

    2013-12-01

    Fatal blast injuries are generally reported in literature as a consequence of the detonation of explosives in war settings. The pattern of lesion depends on the position of the victim in relation to the explosion, on whether the blast tracks through air or water, and whether it happens in the open air or within an enclosed space and the distance from the explosion. Tire explosion-related injuries are rarely reported in literature. This study presents a fatal case of blast overpressure due to the accidental explosion of a truck tire occurring in a tire repair shop. A multidisciplinary approach to the fatality involving forensic pathologists and engineers revealed that the accidental explosion, which caused a series of primary and tertiary blast wave injuries, was due to tire deterioration.

  20. A Risk Management Framework to Characterize Black Swan Risks: A Case Study of Lightning Effects on Insensitive High Explosives

    Science.gov (United States)

    Sanders, Gary A.

    Effective and efficient risk management processes include the use of high fidelity modeling and simulation during the concept exploration phase as part of the technology and risk assessment activities, with testing and evaluation tasks occurring in later design development phases. However, some safety requirements and design architectures may be dominated by the low probability/high consequence "Black Swan" vulnerabilities that require very early testing to characterize and efficiently mitigate. Failure to address these unique risks has led to catastrophic systems failures including the space shuttle Challenger, Deepwater Horizon, Fukushima nuclear reactor, and Katrina dike failures. Discovering and addressing these risks later in the design and development process can be very costly or even lead to project cancellation. This paper examines the need for risk management process adoption of early hazard phenomenology testing to inform the technical risk assessment, requirements definition and conceptual design. A case study of the lightning design vulnerability of the insensitive high explosives being used in construction, mining, demolition, and defense industries will be presented to examine the impact of this vulnerability testing during the concept exploration phase of the design effort. While these insensitive high explosives are far less sensitive to accidental initiation by fire, impact, friction or even electrical stimuli, their full range of sensitivities have not been characterized and ensuring safe engineering design and operations during events such as lightning storms requires vulnerability testing during the risk assessment phase.

  1. Engineering effects of underground nuclear explosions

    International Nuclear Information System (INIS)

    Boardman, Charles R.

    1970-01-01

    Useful effects of contained underground nuclear explosions are discussed in light of today's most promising potential applications. Relevant data obtained through exploration of explosion environments of nine U.S. tests in competent rock are summarized and presented as a practical basis for estimating magnitudes of effects. Effects discussed include chimney configuration, permeability, and volume as well as rubble particle size distributions and extents of permeability change in the chimney wall rock. Explosion mediums include shale, granite, dolomite, and salt. (author)

  2. Engineering effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Charles R [CER Geonuclear Corporation, Las Vegas, NV (United States)

    1970-05-01

    Useful effects of contained underground nuclear explosions are discussed in light of today's most promising potential applications. Relevant data obtained through exploration of explosion environments of nine U.S. tests in competent rock are summarized and presented as a practical basis for estimating magnitudes of effects. Effects discussed include chimney configuration, permeability, and volume as well as rubble particle size distributions and extents of permeability change in the chimney wall rock. Explosion mediums include shale, granite, dolomite, and salt. (author)

  3. Green primary explosives: 5-Nitrotetrazolato-N2-ferrate hierarchies

    OpenAIRE

    Huynh, My Hang V.; Coburn, Michael D.; Meyer, Thomas J.; Wetzler, Modi

    2006-01-01

    The sensitive explosives used in initiating devices like primers and detonators are called primary explosives. Successful detonations of secondary explosives are accomplished by suitable sources of initiation energy that is transmitted directly from the primaries or through secondary explosive boosters. Reliable initiating mechanisms are available in numerous forms of primers and detonators depending upon the nature of the secondary explosives. The technology of initiation devices used for mi...

  4. Hot-Spot Ignition Mechanisms for Explosives and Propellants

    Science.gov (United States)

    Field, J. E.; Bourne, N. K.; Palmer, S. J. P.; Walley, S. M.

    1992-05-01

    This paper describes the response of explosives to stress and impact and in particular the mechanisms of `hot-spot' production. Samples in the form of single crystals, powder layers, pressed pellets, gels, polymer bonded explosives (PBXs) and propellants have been studied. Techniques used include a drop-weight facility with transparent anvils which allows photography at microsecond framing intervals, an instrumented drop-weight machine, a miniaturized Hopkinson bar system for high strain rate property measurement, laser speckle for studying the deformation and fracture of PBXs, an automated system for analysing speckle patterns and heat sensitive film for recording the positions and temperatures of hot spots. Polishing and staining methods have been developed to observe the microstructure of PBXs and failure during quasi-static loading. Ignition, when it occurred, took place at local hot-spot sites. Evidence is discussed for a variety of ignition mechanisms including adiabatic shear of the explosive, adiabatic heating of trapped gases during cavity collapse, viscous flow, friction, fracture and shear of added particles and triboluminescent discharge.

  5. Laser-based optical detection of explosives

    CERN Document Server

    Pellegrino, Paul M; Farrell, Mikella E

    2015-01-01

    Laser-Based Optical Detection of Explosives offers a comprehensive review of past, present, and emerging laser-based methods for the detection of a variety of explosives. This book: Considers laser propagation safety and explains standard test material preparation for standoff optical-based detection system evaluation Explores explosives detection using deep ultraviolet native fluorescence, Raman spectroscopy, laser-induced breakdown spectroscopy, reflectometry, and hyperspectral imaging Examines photodissociation followed by laser-induced fluorescence, photothermal methods, cavity-enhanced absorption spectrometry, and short-pulse laser-based techniques Describes the detection and recognition of explosives using terahertz-frequency spectroscopic techniques Each chapter is authored by a leading expert on the respective technology, and is structured to supply historical perspective, address current advantages and challenges, and discuss novel research and applications. Readers are left with an in-depth understa...

  6. Xsense: using nanotechnology to combine detection methods for high sensitivity handheld explosives detectors

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbæk; Kostesha, Natalie; Bosco, Filippo

    2010-01-01

    In an effort to produce a handheld explosives sensor the Xsense project has been initiated at the Technical University of Denmark in collaboration with a number of partners. Using micro- and nano technological approaches it will be attempted to integrate four detection principles into a single de...

  7. Description and validation of ERAD: An atmospheric dispersion model for high explosive detonations

    Energy Technology Data Exchange (ETDEWEB)

    Boughton, B.A.; DeLaurentis, J.M.

    1992-10-01

    The Explosive Release Atmospheric Dispersion (ERAD) model is a three-dimensional numerical simulation of turbulent atmospheric transport and diffusion. An integral plume rise technique is used to provide a description of the physical and thermodynamic properties of the cloud of warm gases formed when the explosive detonates. Particle dispersion is treated as a stochastic process which is simulated using a discrete time Lagrangian Monte Carlo method. The stochastic process approach permits a more fundamental treatment of buoyancy effects, calm winds and spatial variations in meteorological conditions. Computational requirements of the three-dimensional simulation are substantially reduced by using a conceptualization in which each Monte Carlo particle represents a small puff that spreads according to a Gaussian law in the horizontal directions. ERAD was evaluated against dosage and deposition measurements obtained during Operation Roller Coaster. The predicted contour areas average within about 50% of the observations. The validation results confirm the model`s representation of the physical processes.

  8. Fessibility Study on Nitrogen in Explosives using X-ray Photoelectron Spectroscopy: Chemical Fertilizer

    International Nuclear Information System (INIS)

    Dararutana, P.

    2014-01-01

    It was known that an explosive is defined as a material which contains a large amount of energy stored in chemical bonds. The energetic stability of gaseous products, and hence, their generation come from the strong bond formation of carbon (mono/di)oxide and (di)nitrogen. Consequently, most commercial explosives are contained -NO 2 , -ONO 2 and/or -NHNO 2 groups which when detonated release gases like the aforementioned ones, e.g., nitroglycerin, TNT, HMX, PETN, nitrocellulose, etc. It was revealed that the elemental compositions, especially N was found in most of the explosive and fertilizer. Chemical fertilizers that used as explosive stimulants were analyzed using X-ray photoelectron spectroscopy (XPS) and scanning electron microscope coupled with energy-dispersive X-ray fluorescence spectroscopy (SEM-EDS). XPS spectra showed relatively high amount of nitrogen (N) in the various samples, especially sample #6 and #7. In addition, the elemental analysis revealed the presence of trace elements. Explosives and fertilizers have differences in specific compositions. It can be concluded that these methods seem to be used as a fingerprint examination to identify various kinds of explosives and fertilizers.

  9. Inhomogeneous wire explosion in water

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Kong, H.J.; Lee, S.S.

    1980-01-01

    Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)

  10. Water waves generated by underwater explosion

    CERN Document Server

    Mehaute, Bernard Le

    1996-01-01

    This is the first book on explosion-generated water waves. It presents the theoretical foundations and experimental results of the generation and propagation of impulsively generated waves resulting from underwater explosions. Many of the theories and concepts presented herein are applicable to other types of water waves, in particular, tsunamis and waves generated by the fall of a meteorite. Linear and nonlinear theories, as well as experimental calibrations, are presented for cases of deep and shallow water explosions. Propagation of transient waves on dissipative, nonuniform bathymetries to

  11. Ideas for peaceful nuclear explosions in USSR

    International Nuclear Information System (INIS)

    1970-01-01

    Three papers prepared in USSR have been made available to the Agency for circulation among Member States. One examines radioactive contamination and methods for predicting it, of natural environments during underground explosions. Another deals with the mechanical effect of underground explosions. The third, which forms the basis of this article, reviews possible applications of peaceful nuclear explosions in the Soviet economy. (author)

  12. A Scaling Analysis of Frequency Dependent Energy Partition for Local and Regional Seismic Phases from Explosions

    Science.gov (United States)

    2007-08-31

    explosions at the former Soviet Semipalatinsk test site (STS). Labeled stations are those for which high resolution digital data are available. 12 8...characteristics of regional phase observations from underground nuclear explosions at the former Soviet Semipalatinsk and Novaya Zemlya test sites , the...various regional phases observed from underground nuclear explosions at the former Soviet Semipalatinsk test site (STS). Labeled stations are those for

  13. Liquid-liquid contact in vapor explosion. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This phenomenon is called a vapor explosion. One method of producing intimate, liquid-liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. The report describes experiments in which cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture).

  14. Study on Explosive Forming of Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    H Iyama

    2016-09-01

    Full Text Available Now, the aluminum alloy is often used as auto parts, for example, body, engine. For example, there are the body, a cylinder block, a piston, a connecting rod, interior, exterior parts, etc. These are practical used the characteristic of a light and strong aluminum alloy efficiently. However, although an aluminum alloy is lighter than steel, the elongation is smaller than that. Therefore, in press forming, some problems often occur. We have proposed use of explosive forming, in order to solve this problem. In the explosive forming, since a blank is formed at high speed, a strain rate effect becomes large and it can be made the elongation is larger. Then, in order to clarify this feature, we carried out experimental research and numerical analysis. In this paper, these contents will be discussed.

  15. Insensitive detonator apparatus for initiating large failure diameter explosives

    Science.gov (United States)

    Perry, III, William Leroy

    2015-07-28

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  16. In-vessel coolability and steam explosion in Nordic BWRs

    International Nuclear Information System (INIS)

    Ma, W.; Hansson, R.; Li, L.; Kudinov, P.; Cadinu, F.; Tran, C-.T.

    2010-05-01

    The INCOSE project is to reduce the uncertainty in quantification of steam explosion risk and in-vessel coolability in Nordic BWR plants with the cavity flooding as a severe accident management (SAM) measure. During 2009 substantial advances and new insights into physical mechanisms were gained for studies of: (i) in-vessel corium coolability - development of the methodologies to assess the efficiency of the control rod guide tube (CRGT) cooling as a potential SAM measure; (ii) debris bed coolability - characterization of the effective particle diameter of multi-size particles and qualification of friction law for two-phase flow in the beds packed with multi-size particles; and (iii) steam explosion - investigation of the effect of binary oxides mixtures properties on steam explosion. An approach for coupling of ECM/PECM models with RELAP5 was developed to enhance predictive fidelity for melt pool heat transfer. MELCOR was employed to examine the CRGT cooling efficiency by considering an entire accident scenario, and the simulation results show that the nominal flowrate (∼10kg/s) of CRGT cooling is sufficient to maintain the integrity of the vessel in a BWR of 3900 MWth, if the water injection is activated no later than 1 hour after scram. The POMECO-FL experimental data suggest that for a particulate bed packed with multi-size particles, the effective particle diameter can be represented by the area mean diameter of the particles, while at high velocity (Re>7) the effective particle diameter is closer to the length mean diameter. The pressure drop of two-phase flow through the particulate bed can be predicted by Reed's model. The steam explosion experiments performed at high melt superheat (>200oC) using oxidic mixture of WO3-CaO didn't detect an apparent difference in steam explosion energetics and preconditioning between the eutectic and noneutectic melts. This points out that the next step of MISTEE experiment will be conducted at lower superheat. (author)

  17. Underground Nuclear Explosions and Release of Radioactive Noble Gases

    Science.gov (United States)

    Dubasov, Yuri V.

    2010-05-01

    Over a period in 1961-1990 496 underground nuclear tests and explosions of different purpose and in different rocks were conducted in the Soviet Union at Semipalatinsk and anovaya Zemlya Test Sites. A total of 340 underground nuclear tests were conducted at the Semipalatinsk Test Site. One hundred seventy-nine explosions (52.6%) among them were classified as these of complete containment, 145 explosions (42.6%) as explosions with weak release of radioactive noble gases (RNG), 12 explosions (3.5%) as explosions with nonstandard radiation situation, and four excavation explosions with ground ejection (1.1%). Thirty-nine nuclear tests had been conducted at the Novaya Zemlya Test Site; six of them - in shafts. In 14 tests (36%) there were no RNG release. Twenty-three tests have been accompanied by RNG release into the atmosphere without sedimental contamination. Nonstandard radiation situation occurred in two tests. In incomplete containment explosions both early-time RNG release (up to ~1 h) and late-time release from 1 to 28 h after the explosion were observed. Sometimes gas release took place for several days, and it occurred either through tunnel portal or epicentral zone, depending on atmospheric air temperature.

  18. Establishment of data base of regional seismic recordings from earthquakes, chemical explosions and nuclear explosions in the Former Soviet Union

    Energy Technology Data Exchange (ETDEWEB)

    Ermolenko, N.A.; Kopnichev, Yu.F.; Kunakov, V.G.; Kunakova, O.K.; Rakhmatullin, M.Kh.; Sokolova, I.N.; Vybornyy, Zh.I. [AN SSSR, Moscow (Russian Federation). Inst. Fiziki Zemli

    1995-06-01

    In this report results of work on establishment of a data base of regional seismic recordings from earthquakes, chemical explosions and nuclear explosions in the former Soviet Union are described. This work was carried out in the Complex Seismological Expedition (CSE) of the Joint Institute of Physics of the Earth of the Russian Academy of Sciences and Lawrence Livermore National Laboratory. The recording system, methods of investigations and primary data processing are described in detail. The largest number of digital records was received by the permanent seismic station Talgar, situated in the northern Tien Shan, 20 km to the east of Almaty city. More than half of the records are seismograms of underground nuclear explosions and chemical explosions. The nuclear explosions were recorded mainly from the Semipalatinsk test site. In addition, records of the explosions from the Chinese test site Lop Nor and industrial nuclear explosions from the West Siberia region were obtained. Four records of strong chemical explosions were picked out (two of them have been produced at the Semipalatinsk test site and two -- in Uzbekistan). We also obtained 16 records of crustal earthquakes, mainly from the Altai region, close to the Semipalatinsk test site, and also from the West China region, close to the Lop Nor test site. In addition, a small number of records of earthquakes and underground nuclear explosions, received by arrays of temporary stations, that have been working in the southern Kazakhstan region are included in this report. Parameters of the digital seismograms and file structure are described. Possible directions of future work on the digitizing of unique data archive are discussed.

  19. Workshop on explosions, BLEVEs, fires, etc.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this workshop will be to provide a bridge between engineering practices, modeling, and measurement of fires and explosions, and use this information in a practical manner to improve the fire safety of the process facility. New techniques and information are available on the means to prevent, predict and mitigate fires and explosions. A review of BLEVEs and methods for preventing and protecting against the effects of BLEVES in large petrochemical facilities. Observations and the use of models that have been successful in predicting the effects of vapor explosions for the prevention of collapse of structures and mitigation of the effects of vapor explosions in process facilities are presented. Recent work involving the measurement of radiation from large jet fires at the Kuwaiti oil fields and fire tests of crude oil spills on the sea is discussed. Fire radiation measurement can be used to predict effects on structures, facilities, and the complexity of fire fighting operations required for control of spill and pool fires. Practical applications of techniques for prevention and control of explosions within building, resulting from failures of autoclaves or release of flammable gas to the atmosphere of the building are discussed.

  20. What factors control superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J

    2015-09-30

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  1. Effects of Aluminum Powder on Ignition Performance of RDX, HMX, and CL-20 Explosives

    Directory of Open Access Journals (Sweden)

    Xiaoxiang Mao

    2018-01-01

    Full Text Available As a kind of high explosives, aluminized explosive cannot release the energy maximumly, which is a key problem. Using DTA-TG equipment, the ignition performance of three kinds of aluminized explosives (RDX, HMX, and CL-20 with different mass percentages of aluminum powder (0%, 10 wt.%, 20 wt.%, and 30 wt.% was investigated. The results showed that the energy release of the HMX/Al composite explosive with 10 wt.%, 20 wt.%, and 30 wt.% aluminum powder was only equivalent to 80%, 65%, and 36% of pure HMX, respectively. It was similar to RDX/Al and CL-20/Al composite explosives, except the CL-20/Al mixture with 10% aluminum powder. Rather than participating in the ignition and combustion, the aluminum powder does effect the complete reaction of RDX, HMX, and CL-20 in the initial stage of ignition or in the lower temperature area of the boundary.

  2. Bipolar explosion models for hypernovae

    International Nuclear Information System (INIS)

    Maeda, Keiichi; Nomoto, Ken'ichi

    2003-01-01

    Bipolar explosion models for hypernovae (very energetic supernovae) are presented. These models provide a favorable situation to explain some unexpected features in observations of hypernovae, e.g., high velocity matter dominated by Fe and low velocity matter dominated by O. The overall abundance of these models gives a good fit, at least qualitatively, to abundances in extremely metal-poor stars. We suggest hypernovae be driven by bipolar jets and contribute significantly to the early Galactic chemical evolution

  3. GAP pre-polymer, as an energetic binder and high performance additive for propellants and explosives: A review

    Directory of Open Access Journals (Sweden)

    Mehmet S. Eroglu

    2017-08-01

    Full Text Available In preparation of energetic composite formulations, functionally terminated pre-polymers have been used as binder. After physically mixing the pre-polymers with oxidizing components, metallic fuel, burning rate modifier and other minor ingredients, they are cured with a suitable curing agent to provide physical and chemical stability. These pre-polymers could be functionalized with carboxyl, epoxide or hydroxyl groups at varying average chain functionalities. For carboxyl-terminated pre-polymers, an epoxy functional curing agents could be used. If the pre-polymer possesses hydroxyl groups, isocyanate functional curing agents are the most suitable curing agents in terms of easy and efficient processing. Glycidyl azide polymer (GAP is one of the well-known low-molecular weight energetic liquid pre-polymer, which was developed to use as energetic binder, high performance additive and gas generator for high performance smokeless composite propellant and explosive formulations. Linear or branched GAP can be synthesized by nucleophilic substitution reaction of corresponding poly(epichlorohydrin (PECH with sodium azide through replacement of chloromethyl groups of PECH with pendant energetic azido-methyl groups on the polyether main chain. Positive heat of formation (+957 kJ/kg enables exothermic and rapid decomposition of GAP producing fuel rich gases. Its polyether main chain provides GAP with relatively low glass transition temperature (Tg= - 48 oC and presence of hydroxyl functional groups allows it to have easy processing in curing with isocyanate curing agents to form covalently crosslinked polyurethane structure. These outstanding properties of GAP enable it to be used as energetic polymeric binder and high performance additive in preparation of energetic materials and low vulnerable explosives.

  4. Use of explosives in pipeline construction work

    Energy Technology Data Exchange (ETDEWEB)

    Ball, M J

    1976-08-01

    Explosives are an essential tool in Great Britain's pipeline-construction industry, with applications on dry land and under water, in trench blasting and tunneling for road and service crossings, demolition of unwanted sections, and removal of coatings. Nobels Explosive Co. Ltd. describes basic explosives operations as pertaining to the requirements of rock trenching, submarine operations, thrust-bore and tunneling operations, demolitions, and precision blasting.

  5. Health Consequences and Management of Explosive Events

    Directory of Open Access Journals (Sweden)

    Abbas Ostadtaghizadeh

    2016-01-01

    Conclusion: Because of the wide range and adverse impacts of explosions, healthcare authorities and staff should have a good grasp of preventive principles, as well as protection and management of explosion sites. Besides they have to be familiar with treating the injured. It is recommended that training courses and simulated explosive events be designed and run by the healthcare sector.

  6. Effect of carbon black nanoparticles on methane/air explosions: Influence at low initial turbulence

    Science.gov (United States)

    Torrado, David; Glaude, Pierre-Alexandre; Dufaud, Olivier

    2017-06-01

    Nanoparticles are widely used in industrial applications as additives to modify materials properties such as resistance, surface, rheology or UV-radiation. As a consequence, the quantification and characterization of nanoparticles have become almost compulsory, including the understanding of the risks associated to their use. Since a few years ago, several studies of dust explosion properties involving nano-sized powder have been published. During the production and industrial use of nanoparticles, simultaneous presence of gas / vapor / solvents and dispersed nanoparticles mixtures might be obtained, increasing the risk of a hybrid mixture explosion. The aim of this work is to study the severity of the explosion of carbon black nanoparticles/methane mixtures and understand the influence of adding nanopowders on the behavior of the gas explosions. These results are also useful to understand the influence of soot on the efficiency of the gas combustion. Two grades of carbon black nanoparticles (ranging from 20 to 300 nm average diameter) have been mixed with methane. Tests have been performed on these mixtures in a standard 20 L explosion sphere. Regarding the scale precision, the lowest concentration of carbon black nanoparticles was set at 0.5 g.m-3. Tests were also performed at 2.5 g.m-3, which is still far below 60 g.m-3, the minimum explosive concentration of such powders previously determined in our laboratory. The influence of carbon black particles on the severity of the explosions has been compared to that of pure gas. It appears that the use of carbon black nanoparticles increases the explosion overpressure for lean methane mixtures at low initial turbulences by c. 10%. Similar results were obtained for high initial turbulent systems. Therefore, it seems that carbon black nanoparticles have an impact on the severity of the explosion even for quiescent systems, as opposed to systems involving micro-sized powders that require dispersion at high turbulence

  7. A two-phase model for aluminized explosives on the ballistic and brisance performance

    Science.gov (United States)

    Kim, Wuhyun; Gwak, Min-cheol; Lee, Young-hun; Yoh, Jack J.

    2018-02-01

    The performance of aluminized high explosives is considered by varying the aluminum (Al) mass fraction in a heterogeneous mixture model. Since the time scales of the characteristic induction and combustion of high explosives and Al particles differ, the process of energy release behind the leading detonation wave front occurs over an extended period of time. For simulating the performance of aluminized explosives with varying Al mass fraction, HMX (1,3,5,7-tetrahexmine-1,3,5,7-tetrazocane) is considered as a base explosive when formulating the multiphase conservation laws of mass, momentum, and energy exchanges between the HMX product gases and Al particles. In the current study, a two-phase model is utilized in order to determine the effects of the Al mass fraction in a condensed phase explosive. First, two types of confined rate stick tests are considered to investigate the detonation velocity and the acceleration ability, which refers to the radial expansion velocity of the confinement shell. The simulation results of the confined rate stick test are compared with the experimental data for the Al mass fraction range of 0%-25%, and the optimal Al mass fraction is provided, which is consistent with the experimental observations. Additionally, a series of plate dent test simulations are conducted, the results of which show the same tendency as those of the experimental tests with varying Al mass fractions.

  8. A systematic study of the explosion energy issue in core collapse supernova theory

    Science.gov (United States)

    Yamamoto, Yu

    2016-06-01

    Massive stars with main sequence masses greater than 8 solar mass (Msun) the main target of CCSNe researches. According to initial mass function (IMF) they occupy about 15As a matter of fact, supernova theorists have failed to reproduce this energetic stellar explosion for about a half century because micro and macro physics are highly complex and are mutual influenced. The theoretical investigation of the explosion mechanism is based on numerical simulations, which will ultimately require computational sources of exsa scales. With recent remarkable developments both in hardware and software, however, more realistic physics are incorporated and research group are beginning to overcome the difficulties, reporting successful explosions in their numerical models. The successful is still partial, unfortunately, since in the most of the cases the explosion energy hardly reaches the typical value (10^51erg). What is worse other groups found no explosion for almost same setups. The robust explosion mechanism has not yet been ascertained and is still a remaining issue. The purpose of this paper is to study how far our understanding of "neutrino heating mechanism", the current paradigm, has reached, or put another way, to expose what kind of physics are still missing to explain observations , such as explosion energy and nickel mass. As already remarked the physics in CCSNe are quite complicated with extremely high Reynolds number, highly uncertain equation of state (EOS) at supra-nuclear densities, copious neutrinos not in thermal nor chemical equilibrium with matter normally. I believe that it is justified to devote a somewhat large number of pages to the introduction. It will be also helpful for understanding the motivation of this paper. Starting with evidence from supernova light curves I will then move to the basics idea of neutrino heating mechanism and summarize some recent developments in various micro and macro physics. Key factors in the theory of massive

  9. Numerical simulation on the explosive boiling phenomena on the surface of molten metal

    International Nuclear Information System (INIS)

    Chen Deqi; Peng Cheng; Wang Qinghua; Pan Liangming

    2014-01-01

    In this paper, numerical simulation was carried out to investigate the explosive boiling phenomenon on high temperature surface also the influence of vapor growth rate during explosive boiling, vapor condensation in sub-cooled water and the subsequent effect on flowing and heat transfer. The simulation result indicates that the steam on the molten metal surface grows with very high speed, and it pushes away the sub-cooled water around and causes severe flowing. The steam clusters which block the sub-cooled water to rewet the molten metal surface are appearing at the same time. During the growth, lifting off as well as condensation of the steam clusters, the sub-cooled water around is strongly disturbed, and obvious vortexes appear. Conversely, the vortex will influence the steam cluster detachment and cub-cooled water rewetting the metal surface. This simulation visually displays the complex explosive boiling phenomena on the molten metal surface with high temperature. (authors)

  10. Burn propagation in a PBX 9501 thermal explosion

    International Nuclear Information System (INIS)

    Henson, B. F.; Smilowitz, L.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.

    2007-01-01

    We have applied proton radiography to study the conversion of solid density to gaseous combustion products subsequent to ignition of a thermal explosion in PBX 9501. We apply a thermal boundary condition to the cylindrical walls of the case, ending with an induction period at 205 C. We then introduce a laser pulse that accelerates the thermal ignition and synchronizes the explosion with the proton accelerator. We then obtain fast, synchronized images of the evolution of density loss with few microsecond resolution during the approximately 100 microsecond duration of the explosion. We present images of the solid explosive during the explosion and discuss measured rates and assumed mechanisms of burning the role of pressure in this internal burning

  11. Time-resolved dynamics of nanosecond laser-induced phase explosion

    International Nuclear Information System (INIS)

    Porneala, Cristian; Willis, David A

    2009-01-01

    Visualization of Nd : YAG laser ablation of aluminium targets was performed by a shadowgraph apparatus capable of imaging the dynamics of ablation with nanosecond time resolution. Direct observations of vaporization, explosive phase change and shock waves were obtained. The influence of vaporization and phase explosion on shock wave velocity was directly measured. A significant increase in the shock wave velocity was observed at the onset of phase explosion. However, the shock wave behaviour followed the form of a Taylor-Sedov spherical shock below and above the explosive phase change threshold. The jump in the shock wave velocity above phase explosion threshold is attributed to the release of stored enthalpy in the superheated liquid surface. The energy released during phase explosion was estimated by fitting the transient shock wave position to the Taylor scaling rules. Results of temperature calculations indicate that the vapour temperature at the phase explosion threshold is slightly higher than the critical temperature at the early stages of the shock wave formation. The shock wave pressure nearly doubled when transitioning from normal vaporization to phase explosion.

  12. Filling bore-holes with explosive

    Energy Technology Data Exchange (ETDEWEB)

    Alfredsson, S H

    1965-03-02

    In this device for filling boreholes formed in a rock formation with particulate explosive, the explosive is conveyed into the hole by means of a pressure fluid through a tube which has a lesser diameter than the hole. The tube is characterized by a lattice work arranged externally on it, and having a structure adapted to allow passage of a pressure fluid returning between the tube and the wall of the hole, but retaining particles of explosive entrained by the returning pressure fluid. In another arrangement of the device, the lattice work has the form of a brush, including filaments or bristles which are dimensioned to bridge the spacing between the tube and the wall of the hole. (12 claims)

  13. Calculating overpressure from BLEVE explosions

    Energy Technology Data Exchange (ETDEWEB)

    Planas-Cuchi, E.; Casal, J. [Universitat Politecnica de Catalunya, Barcelona (Spain). Department of Chemical Engineering, Centre for Technological Risk Studies; Salla, J.M. [Universitat Politecnica de Catalunya, Barcelona (Spain). Department of Heat Engines

    2004-11-01

    Although a certain number of authors have analyzed the prediction of boiling liquid expanding vapour explosion (BLEVE) and fireball effects, only very few of them have proposed methodologies for predicting the overpressure from such explosions. In this paper, the methods previously published are discussed and shown to introduce a significant overestimation due to erroneous thermodynamic assumptions - ideal gas behaviour and isentropic vapour expansion - on which they are based (in fact, they give the maximum value of overpressure which can be caused by a BLEVE). A new approach is proposed, based on the - more realistic - assumption of an adiabatic and irreversible expansion process; the real properties of the substance involved in the explosion are used. The two methods are compared through the application to a given case. (author)

  14. Evidence for nearby supernova explosions

    International Nuclear Information System (INIS)

    Benitez, Narciso; Maiz-Apellaniz, Jesus; Canelles, Matilde

    2002-01-01

    Supernova (SN) explosions are one of the most energetic--and potentially lethal--phenomena in the Universe. We show that the Scorpius-Centaurus OB association, a group of young stars currently located at ∼130 pc from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. The deposition on Earth of 60 Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that ∼2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction

  15. Methane Explosion Mitigation in Coal Mines by Water Mist

    Science.gov (United States)

    Chikhradze, Nikoloz; Mataradze, Edgar; Chikhradze, Mikheil; Krauthammer, Ted; Mansurov, Zulkhair; Alyiev, Erhan

    2017-12-01

    Statistics shows that the majority of accidents with fatal outcome are caused by methane and/or coal dust explosion. This leads to assume that contemporary counter-explosion systems of various designs cannot be considered effective. Considering the growing threat of methane explosion in the coming years along with the development of deeper levels, the improvement of a system for protecting people in underground opening appears urgent. This paper focuses on technical solutions to be used in designing a protective system for minimizing the consequences of methane explosions in coalmines. The new protective system consists of three main modules: i) a high-speed shock wave suppression section; ii) a suppression section with a long-term action and iii) a system activating device. The shock wave suppressor contains a 200 litre volume water tank with a built-in gas generator and nozzles. It is activated after 12ms from the blast moment, the duration of discharge is 40 s. The suppression section with a long-term action contains a 2000 litre volume water tank, a high-pressure pump, a hydraulic accumulator, solenoid valves, and a system of pipes with built-in nozzles. It is activated after 4 s from the blast moment, the duration of discharge is 8 min. The activation device includes a detection block containing sensors, an emergency signal generation module, a signal transmission module, a signal receiving module and a power supply module. The system operates in a waiting mode and activates immediately upon the receipt of the start signal generated by the detector. The paper also addresses the preliminary results of the system prototype testing in the tunnel.

  16. Rotor Systems Research Aircraft /RSRA/ canopy explosive severance/fracture

    Science.gov (United States)

    Bement, L. J.

    1976-01-01

    The Rotor Systems Research Aircraft (RSRA), a compound rotor/fixed-wing aircraft, incorporates an emergency escape system for the three crew members; to achieve unobstructed egress, the overhead acrylic canopies of each crew member will be explosively severed and fractured into predictably small, low-mass pieces. A canopy explosive severance/fracture system was developed under this investigation that included the following system design considerations: selection of canopy and explosive materials, determining the acrylic's explosive severance and fracture characteristics, evaluating the effects of installation variables and temperature, determining the most effective explosive patterns, conducting full-scale, flat and double-curvature canopy tests, and evaluating the effects of back-blast of the explosive into the cockpit.

  17. Explosives remain preferred methods for platform abandonment

    International Nuclear Information System (INIS)

    Pulsipher, A.; Daniel, W. IV; Kiesler, J.E.; Mackey, V. III

    1996-01-01

    Economics and safety concerns indicate that methods involving explosives remain the most practical and cost-effective means for abandoning oil and gas structures in the Gulf of Mexico. A decade has passed since 51 dead sea turtles, many endangered Kemp's Ridleys, washed ashore on the Texas coast shortly after explosives helped remove several offshore platforms. Although no relationship between the explosions and the dead turtles was ever established, in response to widespread public concern, the US Minerals Management Service (MMS) and National Marine Fisheries Service (NMFS) implemented regulations limiting the size and timing of explosive charges. Also, more importantly, they required that operators pay for observers to survey waters surrounding platforms scheduled for removal for 48 hr before any detonations. If observers spot sea turtles or marine mammals within the danger zone, the platform abandonment is delayed until the turtles leave or are removed. However, concern about the effects of explosives on marine life remains

  18. Modeling the explosion-source region: An overview

    International Nuclear Information System (INIS)

    Glenn, L.A.

    1993-01-01

    The explosion-source region is defined as the region surrounding an underground explosion that cannot be described by elastic or anelastic theory. This region extends typically to ranges up to 1 km/(kt) 1/3 but for some purposes, such as yield estimation via hydrodynamic means (CORRTEX and HYDRO PLUS), the maximum range of interest is less by an order of magnitude. For the simulation or analysis of seismic signals, however, what is required is the time resolved motion and stress state at the inelastic boundary. Various analytic approximations have been made for these boundary conditions, but since they rely on near-field empirical data they cannot be expected to reliably extrapolate to different explosion sites. More important, without some knowledge of the initial energy density and the characteristics of the medium immediately surrounding the explosion, these simplified models are unable to distinguish chemical from nuclear explosions, identify cavity decoupling, or account for such phenomena as anomalous dissipation via pore collapse

  19. Off-center point explosion in a spheroid

    International Nuclear Information System (INIS)

    Morita, Kazuhiko; Sakashita, Shiro

    1978-01-01

    An off-center point explosion in a spheroid with exponential or Gaussian density distribution is investigated by applying the generalized Laumbach and Probstein method. For a typical example, we calculate the explosion in a spheroid with the eccentricity e = 0.7. If the separation distance between the center of the spheroid and the explosion point is larger than three times of the density scale height, the shock wave may almost propagate toward the direction of the minor axis of symmetry, within the polar angle of 30 0 . The shock envelope elongates toward the same direction and may form a polar jet and/or a tilted jet. But, in the case of an explosion in the equatorial plane (perpendicular to the minor axis of symmetry), two plasmas with the same form may be ejected into two different directions with the angle smaller than 180 0 . Explosion models of double radio sources and related objects are suggested. (author)

  20. Application of factor analysis to the explosive detection

    International Nuclear Information System (INIS)

    Park, Yong Joon; Song, Byung Chul; Im, Hee Jung; Kim, Won Ho; Cho, Jung Hwan

    2005-01-01

    The detection of explosive devices hidden in airline baggage is significant problem, particularly in view of the development of modern plastic explosives which can formed into various innocent-appearing shapes and which are sufficiently powerful that small quantities can destroy an aircraft in flight. Besides, the biggest difficulty occurs from long detection time required for the explosive detection system based on thermal neutron interrogation, which involves exposing baggage to slow neutrons having energy in the order of 0.025 eV. The elemental compositions of explosives can be determined by the Neutron Induced Prompt gamma Spectroscopy (NIPS) which has been installed in Korea Atomic Energy Research Institute as a tool for the detection of explosives in passenger baggage. In this work, the factor analysis has been applied to the NIPS system to increase the signal-to-noise ratio of the prompt gamma spectrum for the detection of explosive hidden in a passenger's baggage, especially for the noisy prompt gamma spectrum obtained with short measurement time

  1. Explosions and light curves of supernovae

    International Nuclear Information System (INIS)

    Gaffet, B.

    1975-01-01

    The models developed to explain supernovae explosions are reviewed. The first one is thermonuclear explosion (simple or preceded by an implosion phase); the neutrino emission which results of such an explosion can have an important dynamical effect, according as the star is opaque or transparent to them; another theory involves the radiation pressure of the pulsar which is formed in the center of the star. The origin of the supernovae brightness is also uncertain: the initial heat due to the explosion does not seem to be sufficient; the brightness can result from the diffusion of the heat through the ejected matter or can be transported more rapidly by a shock wave. A model in which the heat is produced by the pulsar seems compatible with most observations (shapes of the brightness curves and the continuum spectra, expansion velocities, temperature and luminosity at the peak, total kinetic energy) [fr

  2. One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hust, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McClelland, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gresshoff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-12

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).

  3. An examination of Southwest Pacific explosive cyclones, 1989 to 2009

    International Nuclear Information System (INIS)

    Black, M T; Pezza, A B; Kreft, P

    2010-01-01

    This study has assembled a climatology of Southwest Pacific explosively developing cyclones, based on the European Centre for Medium-Range Weather Forecasts' ERA-Interim reanalysis data, over the 21-year period from 1989 to 2009. The recently developed 'combined explosive' expression, a refinement of the 'relative explosive' criterion, was used to identify cyclones deemed explosive with respect to both the drop in central pressure and the climatological pressure gradient. Over the period of analysis, 47 explosive cyclones were identified within the Southwest Pacific, equating to an average of 2.2 explosive events per year. Seasonally, explosive cyclones are most frequent during the winter months, while least frequent during the summer. Two case explosive systems are briefly considered, with their corresponding measures of intensity and scale placed into climatological perspective.

  4. Vapor explosion studies for nuclear and non-nuclear industries

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, Rusi P. [Arden L. Bement, Jr. Professor Nuclear Engineering, School of Nuclear Engineering, 1290 Nuclear Engineering Building, Room 108C, Purdue University, West Lafayette, IN 47905 (United States)]. E-mail: rusi@purdue.edu

    2005-05-01

    Energetic melt-water explosions are a well-established contributor to risk for nuclear reactors, and even more so for the metal casting industry. In-depth studies were undertaken in an industry-national laboratory collaborative effort to understand the root causes of explosion triggering and to evaluate methods for prevention. The steam explosion triggering studies (SETS) facility was devised and implemented for deriving key insights into explosion prevention. Data obtained indicated that onset of base surface-entrapment induced explosive boiling-caused trigger shocks is a result of complex combination of surface wettability, type of coating (organic versus inorganic), degree of coating wearoff, existence of bypass pathways for pressure relief, charring and non-condensable gas (NCG) release potential. Of these parameters NCGs were found to play a preeminent role on explosion prevention by stabilizing the melt-water steam interface and acting as a shock absorber. The role of NCGs was experimentally confirmed using SETS for their effect on stable film boiling using a downward facing heated body through which gases were injected. The presence of NCGs in the steam film layer caused a significant delay in the transitioning of film-to-nucleate boiling. The role of NCGs on explosion prevention was thereafter demonstrated more directly by introducing molten metal drops into water pools with and without NCG bubbling. Whereas spontaneous and energetic explosions took place without NCG injection, only benign quenching occurred in the presence of NCGs. Gravimetric analyses of organic coatings which are known to prevent explosion onset were also found to release significant NCGs during thermal attack by melt in the presence of water. These findings offer a novel, simple, cost-effective technique for deriving fundamental insights into melt-water explosions as well as for explosion prevention under most conditions of interest to metal casting, and possibly for nuclear reactor

  5. Preparation of graphene by electrical explosion of graphite sticks.

    Science.gov (United States)

    Gao, Xin; Xu, Chunxiao; Yin, Hao; Wang, Xiaoguang; Song, Qiuzhi; Chen, Pengwan

    2017-08-03

    Graphene nanosheets were produced by electrical explosion of high-purity graphite sticks in distilled water at room temperature. The as-prepared samples were characterized by various techniques to find different forms of carbon phases, including graphite nanosheets, few-layer graphene, and especially, mono-layer graphene with good crystallinity. Delicate control of energy injection is critical for graphene nanosheet formation, whereas mono-layer graphene was produced under the charging voltage of 22.5-23.5 kV. On the basis of electrical wire explosion and our experimental results, the underlying mechanism that governs the graphene generation was carefully illustrated. This work provides a simple but innovative route for producing graphene nanosheets.

  6. Comparing CTH simulations and experiments on explosively loaded rings

    Science.gov (United States)

    Braithwaite, C. H.; Aydelotte, Brady; Collins, Adam; Thadhani, Naresh; Williamson, David Martin

    2012-03-01

    A series of experiments were conducted on explosively loaded metallic rings for the purpose of studying fragmentation. In addition to the collection of fragments for analysis, the radial velocity of the expanding ring was measured with photon Doppler velocimetry (PDV) and the arrangement was imaged using high speed photography. Both the ring material and the material used as the explosive container were altered and the results compared with simulations performed in CTH. Good agreement was found between the simulations and the experiments. The maximum radial velocity attained was approximately 380 m/s, which was achieved through loading with a 5g PETN based charge.

  7. Numerical simulation of explosive magnetic cumulative generator EMG-720

    Energy Technology Data Exchange (ETDEWEB)

    Deryugin, Yu N; Zelenskij, D K; Kazakova, I F; Kargin, V I; Mironychev, P V; Pikar, A S; Popkov, N F; Ryaslov, E A; Ryzhatskova, E G [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    The paper discusses the methods and results of numerical simulations used in the development of a helical-coaxial explosive magnetic cumulative generator (EMG) with the stator up to 720 mm in diameter. In the process of designing, separate units were numerically modeled, as was the generator operation with a constant inductive-ohmic load. The 2-D processes of the armature acceleration by the explosion products were modeled as well as those of the formation of the sliding high-current contact between the armature and stator`s insulated turns. The problem of the armature integrity in the region of the detonation waves collision was numerically analyzed. 8 figs., 2 refs.

  8. Steam explosion studies with single drops of molten refractory materials

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1980-01-01

    Laser heating, levitation melting, and metal combustion were used to prepare individual drops of molten refractory materials which simulate LWR fuel melt products. Drop temperatures ranged from approx. = 1500 to > 3000K. These drops, several millimeters in diameter, were injected into water and subjected to pressure transients (approx. = 1MPa peak pressures) generated by a submerged exploding bridgewire. Molten oxides of Fe, Al and Zr could be induced to explode with bridgewire initiation. High speed films showed the explosions with exceptional clarity, and pressure transducer records could be correlated with individual frames in the films. Pressure spikes one or two MPa high were generated whenever an explosion occurred. Debris particles were mostly spheroidal, with diameters in the range 10 to 1000 μm

  9. Ecological surveys of the proposed high explosives wastewater treatment facility region

    International Nuclear Information System (INIS)

    Haarmann, T.

    1995-07-01

    Los Alamos National Laboratory (LANL) proposes to improve its treatment of wastewater from high explosives (HE) research and development activities. The proposed project would focus on a concerted waste minimization effort to greatly reduce the amount of wastewater needing treatment. The result would be a 99% decrease in the HE wastewater volume, from the current level of 6,760,000 L/mo (1,786,000 gal./mo) to 41,200 L/mo (11,000 gal./mo). This reduction would entail closure of HE wastewater outfalls, affecting some wetland areas that depend on HE wastewater effluents. The outfalls also provide drinking water for many wildlife species. Terminating the flow of effluents at outfalls would represent an improvement in water quality in the LANL region but locally could have a negative effect on some wetlands and wildlife species. None of the affected species are protected by any state or federal endangered species laws. The purpose of this report is to briefly discuss the different biological studies that have been done in the region of the project area. This report is written to give biological information and baseline data and the biota of the project area

  10. Ecological surveys of the proposed high explosives wastewater treatment facility region

    Energy Technology Data Exchange (ETDEWEB)

    Haarmann, T.

    1995-07-01

    Los Alamos National Laboratory (LANL) proposes to improve its treatment of wastewater from high explosives (HE) research and development activities. The proposed project would focus on a concerted waste minimization effort to greatly reduce the amount of wastewater needing treatment. The result would be a 99% decrease in the HE wastewater volume, from the current level of 6,760,000 L/mo (1,786,000 gal./mo) to 41,200 L/mo (11,000 gal./mo). This reduction would entail closure of HE wastewater outfalls, affecting some wetland areas that depend on HE wastewater effluents. The outfalls also provide drinking water for many wildlife species. Terminating the flow of effluents at outfalls would represent an improvement in water quality in the LANL region but locally could have a negative effect on some wetlands and wildlife species. None of the affected species are protected by any state or federal endangered species laws. The purpose of this report is to briefly discuss the different biological studies that have been done in the region of the project area. This report is written to give biological information and baseline data and the biota of the project area.

  11. Evaluation of Accelerometer Mechanical Filters on Submerged Cylinders Near an Underwater Explosion

    Directory of Open Access Journals (Sweden)

    G. Yiannakopoulos

    1998-01-01

    Full Text Available An accelerometer, mounted to a structure near an explosion to measure elasto-plastic deformation, can be excited at its resonant frequency by impulsive stresses transmitted within the structure. This results in spurious high peak acceleration levels that can be much higher than acceleration levels from the explosion itself. The spurious signals also have higher frequencies than the underlying signal from the explosion and can be removed by a low pass filter. This report assesses the performance of four accelerometer and filter assemblies. The assessment involves measurements of the response of a mild steel cylinder to an underwater explosion, in which each assembly is mounted onto the interior surface of the cylinder. Three assemblies utilise a piezoresistive accelerometer in which isolation is provided mechanically. In the fourth assembly, a piezoelectric accelerometer, with a built-in filter, incorporates both mechanical and electronic filtering. This assembly is found to be more suitable because of its secure mounting arrangement, ease of use, robustness and noise free results.

  12. 30 CFR 75.1311 - Transporting explosives and detonators.

    Science.gov (United States)

    2010-07-01

    ... noncombustible materials. (c) When explosives and detonators are transported on conveyor belts— (1) Containers of... explosives or detonators, a person shall be at each transfer point between belts and at the unloading location; and (4) Conveyor belts shall be stopped before explosives or detonators are loaded or unloaded...

  13. 29 CFR 1926.902 - Surface transportation of explosives.

    Science.gov (United States)

    2010-07-01

    ... electric) shall not be transported in the same vehicle with other explosives. (e) Vehicles used for... prevent contact with containers of explosives. (h) Every motor vehicle or conveyance used for transporting... Carriers. (b) Motor vehicles or conveyances transporting explosives shall only be driven by, and be in the...

  14. Consideration on hydrogen explosion scenario in APR 1400 containment building during small breakup loss of coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kweonha, E-mail: khpark@kmou.ac.kr [Division of Mechanical & Energy Systems Engineering, Korea Maritime University, Dongsam-dong, Yeongdo-gu, Busan 606-791 (Korea, Republic of); Khor, Chong Lee, E-mail: itachi_829@hotmail.com [Department of Mechanical Engineering, Korea Maritime University, Dongsam-dong, Yeongdo-gu, Busan 606-791 (Korea, Republic of)

    2015-11-15

    Highlights: • Hydrogen behavior in the containment building of APR1400 nuclear plant up to 15 h after the failure happened. • The risk of hydrogen explosion largely depends on the combination of air, hydrogen and steam in the containment. • Hydrogen explosion risk at different locations in the containment was analyzed. - Abstract: This paper describes the analytical result of the potential risk of hydrogen gas up to 15 h after the failure takes place. The major cause of the disaster occurred in Fukushima Daiichi nuclear reactor was the detonation of accumulated hydrogen in the containment by highly increased reactor core temperatures after the failure of the emergency cooling system. The hydrogen risk should be considered in severe accident strategies in current and future NPPs. A hydrogen explosion scenario is proposed. Hydrogen is accumulated on top of the dome during the hydrogen release period. At this point, there are no risk of explosion due to the steam that resides in upper part of the dome. As the hydrogen concentration increase, substantial amount of steams are released. Subsequently, hydrogen is forced into the lower part of the building with high air density—small explosion and dormant steam condensation phase are possible. The light hydrogen rises up slowly with air, gathering on top of the building with high air density. Massive hydrogen explosion is anticipated upon ignition at this stage.

  15. Coating and Characterization of Mock and Explosive Materials

    Directory of Open Access Journals (Sweden)

    Emily M. Hunt

    2012-01-01

    Full Text Available This project develops a method of manufacturing plastic-bonded explosives by using use precision control of agglomeration and coating of energetic powders. The energetic material coating process entails suspending either wet or dry energetic powders in a stream of inert gas and contacting the energetic powder with atomized droplets of a lacquer composed of binder and organic solvent. By using a high-velocity air stream to pneumatically convey the energetic powders and droplets of lacquer, the energetic powders are efficiently wetted while agglomerate drying begins almost immediately. The result is an energetic powder uniformly coated with binder, that is, a PBX, with a high bulk density suitable for pressing. Experiments have been conducted using mock explosive materials to examine coating effectiveness and density. Energetic materials are now being coated and will be tested both mechanically and thermally. This allows for a comprehensive comparison of the morphology and reactivity of the newly coated materials to previously manufactured materials.

  16. Do peaceful nuclear explosions have a future

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The idea of peaceful uses for nuclear explosive devices arose almost simultaneously with the concept of the nuclear explosion itself. It has been a powerful idea in that it soon generated major study efforts in the United States and the USSR and also captured the interest of many developing nations. But in spite of this considerable interest and much expenditure of funds and effort, the expectation that economically viable uses will be found for peaceful nuclear explosions looks even more distant now that when the first studies were initiated. This, at least, is the conclusion of two recent U.S. studies of the economic feasibility and time scale for application of peaceful nuclear explosions by the United States. The larger of these two studies was prepared by the Gulf Universities Research Consortium, and dealt particularly with possibilities for use in the United States by 1990 of contained, i.e., underground, peaceful nuclear explosions. This paper provides briefer analysis by an ad hoc panel assesses the implications of the Gulf report, considers other uses for peaceful nuclear explosions, and summarizes the reasons why there is only a small possibility that there will be significant use of them by the United States before the year 2000

  17. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  18. Explosive Technology Group

    Data.gov (United States)

    Federal Laboratory Consortium — The Explosive Technology Group (ETG) provides diverse technical expertise and an agile, integrated approach to solve complex challenges for all classes of energetic...

  19. Study of energy partitioning using a set of related explosive formulations

    Science.gov (United States)

    Lieber, Mark; Foster, Joseph C.; Stewart, D. Scott

    2012-03-01

    Condensed phase high explosives convert potential energy stored in the electro-magnetic field structure of complex molecules to high power output during the detonation process. Historically, the explosive design problem has focused on intramolecular energy storage. The molecules of interest are derived via molecular synthesis providing near stoichiometric balance on the physical scale of the molecule. This approach provides prompt reactions based on transport physics at the molecular scale. Modern material design has evolved to approaches that employ intermolecular ingredients to alter the spatial and temporal distribution of energy release. State of the art continuum methods have been used to study this approach to the materials design. Cheetah has been used to produce data for a set of fictitious explosive formulations based on C-4 to study the partitioning of the available energy between internal and kinetic energy in the detonation. The equation of state information from Cheetah has been used in ALE3D to develop an understanding of the relationship between variations in the formulation parameters and the internal energy cycle in the products.

  20. Rapid expansion and fracture of metallic cylinders driven by explosive loads

    International Nuclear Information System (INIS)

    Hiroe, T.; Fujiwara, K.; Abe, T.; Yoshida, M.

    2004-01-01

    Smooth walled tubular specimens of stainless steel and low-carbon steels were explosively expanded to fragmentation. The driver was a column of the high explosive PETN inserted into the central bore and initiated by exploding a fine copper wire using a discharge current from a high-voltage capacitor bank. The variation of wall thickness and the effect of different explosive driver diameters are reported. A fully charged casing model was also exploded with initiation at the end surface for comparison. Streak and framing photos show both radially and axially symmetric expansion of cylinders at average strain rates of above 104 s-1 and a wall velocity of 417-1550 m/s. Some framing photos indicate the initiation and spacing of fractures during the bursting of the cylinders. Hydro codes have been applied to simulate the experimental behavior of the cylinders, examining numerical stresses, deformation and fracture criteria. Most of the fragments were successfully recovered inside a cushion-filled chamber, and the circumferential fracture spacing of measured fragments is investigated using a fragmentation model

  1. Decreasing Friction Sensitivity for Primary Explosives

    Science.gov (United States)

    Matyáš, Robert; Šelešovský, Jakub

    2014-04-01

    Primary explosives are a group of explosives that are widely used in various initiating devices. One of their properties is sufficient sensitivity to initiating stimuli. However, their sensitivity often introduces a safety risk during their production and subsequent handling. It is generally known that water can be used to desensitize these compounds. The most commonly used industrial primary explosives (lead azide, lead styphnate, tetrazene, and diazodinitrophenol) were mixed with water in various ratios and the sensitivity to friction was determined for all mixtures. It was found that even a small addition of water (5-10%) considerably lowered the friction sensitivity.

  2. Contained fission explosion breeder reactor system

    International Nuclear Information System (INIS)

    Juhl, N.H.; Marwick, E.F.

    1983-01-01

    A reactor system for producing useful thermal energy and valuable isotopes, such as plutonium-239, uranium-233, and/or tritium, in which a pair of sub-critical masses of fissile and fertile actinide slugs are propelled into an ellipsoidal pressure vessel. The propelled slugs intercept near the center of the chamber where the concurring slugs become a more than prompt configuration thereby producing a fission explosion. Re-useable accelerating mechanisms are provided external of the vessel for propelling the slugs at predetermined time intervals into the vessel. A working fluid of lean molten metal slurry is injected into the chamber prior to each explosion for the attenuation of the explosion's effects, for the protection of the chamber's walls, and for the absorbtion of thermal energy and debris from the explosion. The working fluid is injected into the chamber in a pattern so as not to interfere with the flight paths of the slugs and to maximize the concentration of working fluid near the chamber's center. The heated working fluid is drained from the vessel and is used to perform useful work. Most of the debris from the explosion is collected as precipitate and is used for the manufacture of new slugs

  3. Bulk-loaded emulsion explosives technology

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.G. [Blasting Analysis International, Inc., Allentown, PA (United States)

    1995-01-01

    The largest use of emulsion explosives and emulsion-Anfo blends is in surface mining operations. An emulsion explosive is a two-phase system: the inner phase is madeup of an oxidizer solution; the outer phase is made up of oils or an oil/wax blend. Emulsion Anfo blends have been used to expand drill patterns, increase fragmentation, and provide extra energy for blast casting. 3 tabs.

  4. Testing Event Discrimination over Broad Regions using the Historical Borovoye Observatory Explosion Dataset

    Science.gov (United States)

    Pasyanos, Michael E.; Ford, Sean R.; Walter, William R.

    2014-03-01

    We test the performance of high-frequency regional P/S discriminants to differentiate between earthquakes and explosions at test sites and over broad regions using a historical dataset of explosions recorded at the Borovoye Observatory in Kazakhstan. We compare these explosions to modern recordings of earthquakes at the same location. We then evaluate the separation of the two types of events using the raw measurements and those where the amplitudes are corrected for 1-D and 2-D attenuation structure. We find that high-frequency P/S amplitudes can reliably identify earthquakes and explosions, and that the discriminant is applicable over broad regions as long as propagation effects are properly accounted for. Lateral attenuation corrections provide the largest improvement in the 2-4 Hz band, the use of which may successfully enable the identification of smaller, distant events that have lower signal-to-noise at higher frequencies. We also find variations in P/S ratios among the three main nuclear testing locations within the Semipalatinsk Test Site which, due to their nearly identical paths to BRVK, must be a function of differing geology and emplacement conditions.

  5. Regional moment: Magnitude relations for earthquakes and explosions

    Energy Technology Data Exchange (ETDEWEB)

    Patton, H.J.; Walter, W.R. (Lawrence Livermore National Lab., CA (United States))

    1993-02-19

    The authors present M[sub o]:m[sub b] relations using m[sub b](P[sub n]) and m[sub b](L[sub g]) for earthquakes and explosions occurring in tectonic and stable areas. The observations for m[sub b](P[sub n]) range from about 3 to 6 and show excellent separation between earthquakes and explosions on M[sub o]:m[sub b] plots, independent of the magnitude. The scatter in M[sub o]:M[sub b] observations for NTS explosions is small compared to the earthquake data. The M[sub o]:m[sub b](L[sub g]) data for Soviet explosions overlay the observations for US explosions. These results, and the small scatter for NTS explosions, suggest weak dependence of M[sub o]:m[sub b] relations on emplacement media. A simple theoretical model is developed which matches all these observations. The model uses scaling similarity and conservation of energy to provide a physical link between seismic moment and a broadband seismic magnitude. Three factors, radiation pattern, material property, and apparent stress, contribute to the separation between earthquakes and explosions. This theoretical separation is independent of broadband magnitude. For US explosions in different media, the material property and apparent stress contributions are shown to compensate for one another, supporting the observations that M[sub o]:M[sub b] is nearly independent of source geology. 19 refs., 2 figs., 1 tab.

  6. Peaceful nuclear explosions and thermodynamics

    International Nuclear Information System (INIS)

    Prieto, F.E.

    1975-01-01

    Some theoretical advances in the thermodynamics of very high pressures are reviewed. A universal (system-independent) formulation of the thermodynamics is sketched, and some of the equations more frequently used are written in system-independent form. Among these equations are: Hugoniot pressure and temperature as functions of volume; the Mie-Gruneisen equation; and an explicit form for the equation of state. It is also shown that this formalism can be used to interpret and predict results from peaceful nuclear explosions. (author)

  7. Explosion-proof lighting units according to EC standards

    Energy Technology Data Exchange (ETDEWEB)

    Olenik, H; Weyer, K

    1982-03-01

    Electrical equipment, e.g. lights, may be the cause of ignition in explosive atmospheres unless special measures are taken to prevent ignition. For an exact definition and description of explosion protection measures, the German VDE regulations contain specifications for construction and testing. There is a special administrative procedure to ensure that these explosion protection measures are checked by an official testing authority and that electrical equipment will receive a certificate of its suitability for explosive environments. The construction specifications have been elaborated by a VDE commission and are constantly updated.

  8. Dimensional analysis of small-scale steam explosion experiments

    International Nuclear Information System (INIS)

    Huh, K.; Corradini, M.L.

    1986-01-01

    Dimensional analysis applied to Nelson's small-scale steam explosion experiments to determine the qualitative effect of each relevant parameter for triggering a steam explosion. According to experimental results, the liquid entrapment model seems to be a consistent explanation for the steam explosion triggering mechanism. The three-dimensional oscillatory wave motion of the vapor/liquid interface is analyzed to determine the necessary conditions for local condensation and production of a coolant microjet to be entrapped in fuel. It is proposed that different contact modes between fuel and coolant may involve different initiation mechanisms of steam explosions

  9. 77 FR 55108 - Explosive Siting Requirements

    Science.gov (United States)

    2012-09-07

    ... energy, or a chemical explosion requiring a chemical reaction. Furthermore, an accident may happen... for energetic liquids. \\4\\ Crowl, D.A., Understanding Explosions, AIAA Center for Chemical Process... chemical hazards of energetic liquids used at commercial launch sites. Finally, a site map must now be at a...

  10. Excitation of nonaxisymmetric perturbations by the axisymmetric explosive magnetorotational instability in Keplerian discs

    Science.gov (United States)

    Shtemler, Yu.; Mond, M.; Liverts, E.

    2018-02-01

    The excitation of nonaxisymmetric quasi-resonant triads by clustering around a dominant axisymmetric explosively unstable magnetorotational instability (MRI) in Keplerian discs is investigated. Clustering, namely, the mutual interactions of a large number of quasi-resonant triads that are connected by a single dominant explosively unstable axisymmetric triad, is invoked in order to provide a viable mechanism for the stabilization of the explosive nature of the latter. The results, however, are of wider scope as the proposed clustering scenario also provides a strong mechanism for the excitation of high-amplitude nonaxisymmetric perturbations. The latter play a major role in the nonlinear evolution of the MRI on the route to fully developed turbulence.

  11. Active sampling technique to enhance chemical signature of buried explosives

    Science.gov (United States)

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  12. Cavity structural integrity evaluation of steam explosion using LS-DYNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Young; Park, Chang-Hwan [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Kim, Kap-sun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    For investigating the mechanical response of the newly-designed NPP against an steam explosion, the cavity structural integrity evaluation was performed, in which the mechanical load resulted from a steam explosion in the reactor cavity was calculated. In the evaluation, two kinds of approach were considered, one of which is a deterministic manner and the other is a probabilistic one. In this report, the procedure and the results of the deterministic analysis are presented When entering the severe accident, the core is relocated to the lower head. In this case, an Ex-Vessel Steam Explosion(EVSE) can occur. It can threaten the structural integrity of the cavity due to the load applied to the walls or slabs of the cavity. The large amount of the energy transmitted from interaction between the molten corium and the water causes a dynamic loading onto the concrete walls resulting not only to affect the survivability of the various equipment but also to threaten the integrity of the containment. In this report, the response of the cavity wall structure is analyzed using the nonlinear finite element analysis (FEA) code. The resulting stress and strain of the structure were evaluated by the criteria in NEI07-13. Until now, deterministic analysis was performed via finite element analysis for the dynamic load generated by the steam explosion to investigate the effect on the cavity structure. A deterministic method was used in this study using the specific values of material properties and clearly defined steam explosion pressure curve. The results showed that the rebar and the liner are kept intact even at the high pressure pulse given by the steam explosion. The liner integrity is more critical to judge the preservation of the lean-tightness. In the meantime, there were found cracks in concrete media.

  13. Multi-scale fracture damage associated with underground chemical explosions

    Science.gov (United States)

    Swanson, E. M.; Sussman, A. J.; Wilson, J. E.; Townsend, M. J.; Prothro, L. B.; Gang, H. E.

    2018-05-01

    Understanding rock damage induced by explosions is critical for a number of applications including the monitoring and verification of underground nuclear explosions, mine safety issues, and modeling fluid flow through fractured rock. We use core observations, televiewer logs, and thin section observations to investigate fracture damage associated with two successive underground chemical explosions (SPE2 and SPE3) in granitic rock at both the mesoscale and microscale. We compare the frequency and orientations of core-scale fractures, and the frequency of microfractures, between a pre-experiment core and three post-experiment cores. Natural fault zones and explosion-induced fractures in the vicinity of the explosive source are readily apparent in recovered core and in thin sections. Damage from faults and explosions is not always apparent in fracture frequency plots from televiewer logs, although orientation data from these logs suggests explosion-induced fracturing may not align with the pre-existing fracture sets. Core-scale observations indicate the extent of explosion-induced damage is 10.0 m after SPE2 and 6.8 m after SPE3, despite both a similar size and location for both explosions. At the microscale, damage is observed to a range distance of 10.2 ± 0.9 m after SPE2, and 16.6 ± 0.9 and 11.2 ± 0.6 in two different cores collected after SPE3. Additional explosion-induced damage, interpreted to be the result of spalling, is readily apparent near the surface, but only in the microfracture data. This depth extent and intensity of damage in the near-surface region also increased after an additional explosion. This study highlights the importance of evaluating structural damage at multiple scales for a more complete characterization of the damage, and particularly shows the importance of microscale observations for identifying spallation-induced damage.

  14. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1995-01-01

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL's current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency's (EPA's) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL's existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility

  15. The concept of explosives malfunctioning in rock blasting

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q.

    1993-11-01

    The purpose is to identify the critical conditions that cause malfunctioning for some commonly used explosives. Experiments are described that measure sympathetic detonation, desensitization, and cut-offs for two variables: spacing and delay. Explosive malfunctioning is depicted on a delay spacing chart that has different regions. On the chart, the shape and size of each region can vary from one explosive to another. Results are presented from over 70 blasts, that were conducted in the underground drift at the CANMET Experimental Mine, to identify the malfunctioning characteristics of specific emulsion, water gel, and dynamite explosives. For each experiment, two parallel blastholes (with diameter of 32 mm and depth of 1.7 m) were drilled downwards, and full coupling was achieved. The results are presented for the three types of explosives tested. 11 refs., 7 figs.

  16. Acoustic and tephra records of explosive eruptions at West Mata submarine volcano, NE Lau Basin

    Science.gov (United States)

    Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Caplan-Auerbach, J.; Mack, C. J.; Embley, R. W.; Merle, S. G.; Walker, S. L.; Lau, T. A.

    2013-12-01

    West Mata is a 1200 m deep submarine volcano where explosive boninite eruptions were directly observed in May 2009. Here we present long-term acoustic and tephra records of West Mata explosion activity from three deployments of hydrophone and particle sensor moorings beginning on 8 January 2009. These records provide insights into the character of explosive magma degassing occurring at the volcano's summit vent until the decline and eventual cessation of the eruption during late 2010 and early 2011. The detailed acoustic records show three types of volcanic signals, 1) discrete explosions, 2) diffuse explosions, and 3) volcanic tremor. Discrete explosions are short duration, high amplitude broad-band signals caused by rapid gas bubble release. Diffuse signals are likely a result of 'trap-door' explosions where a quench cap of cooled lava forms over the magmatic vent but gas pressure builds underneath the cap. This pressure eventually causes the cap to breach and gas is explosively released until pressure reduces and the cap once again forms. Volcanic tremor is typified by narrow-band, long-duration signals with overtones, as well as narrow-band tones that vary frequency over time between 60-100 Hz. The harmonic tremor is thought to be caused by modulation of rapid, short duration gas explosion pulses and not a magma resonance phenomenon. The variable frequency tones may be caused by focused degassing or hydrothermal fluid flow from a narrow volcanic vent or conduit. High frequency (>30 Hz) tremor-like bands of energy are a result of interference caused by multipath wide-band signals, including sea-surface reflected acoustic phases, that arrive at the hydrophone with small time delays. Acoustic data suggest that eruption velocities for a single explosion range from 4-50 m s-1, although synchronous arrival of explosion signals has complicated our efforts to estimate long-term gas flux. Single explosions exhibit ~4-40 m3 s-1 of total volume flux (gas and rock) but

  17. High-power explosive magnetic energy sources for thermonuclear and physical applications (overview)

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshev, V K [All-Russian Scientific Institute of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    High-power energy sources unavailable up to now are needed to carry out any one project on inertially confined controlled thermonuclear fusion (CTF). Considerable advances have been made in the area of explosive magnetic generators (EGG) as for their output characteristics (high power combined with high energy content). To develop the concept of magnetic cumulation proposed by A.D. Sakharov in 1951, two new approaches to increasing EMC fast operation by two orders (from tens of microseconds to tenths of microseconds) and increasing at the same time the current pulse amplitude by more than one order, were proposed at VNIIEF in the early sixties. The concept aimed at solving the CTF problem by target magnetic compression (MACO) under the effect of an fast-increasing field was proposed (1972) based on VNIIEF achievements, discussed (1976) at the USSR Academy of Sciences and published (1979). The key physical questions are analyzed, the problems to be solved are posed and the results achieved in the experiments with fast-operating high-power EMGs, fast-opening switches, transmitting lines and insulation systems are discussed here. The results obtained in experiments on liner acceleration as well as those on preliminary plasma magnetization and heating, carried out at the constructed EMGs, are discussed briefly. The conclusion is reached that the MACO system is the most suitable one to provide the ignition because the designing of high-power energy sources to be used in this system is practically complete and the concept itself does not need any intermediate transformations of one type of energy into another always accompanied by a decrease in total efficiency. (author). 4 tabs., 14 figs., 21 refs.

  18. The Interplay of Opacities and Rotation in Promoting the Explosion of Core-Collapse Supernovae

    Science.gov (United States)

    Vartanyan, David; Burrows, Adam; Radice, David

    2018-01-01

    For over five decades, the mechanism of explosion in core-collapse supernovae has been a central unsolved problem in astrophysics, challenging both our computational capabilities and our understanding of relevant physics. Current simulations often produce explosions, but they are at times underenergetic. The neutrino mechanism, wherein a fraction of emitted neutrinos is absorbed in the mantle of the star to reignite the stalled shock, remains the dominant model for reviving explosions in massive stars undergoing core collapse. We present here a diverse suite of 2D axisymmetric simulations produced by FORNAX, a highly parallelizable multidimensional supernova simulation code. We explore the effects of various corrections, including the many-body correction, to neutrino-matter opacities and the possible role of rotation in promoting explosion amongst various core-collapse progenitors.

  19. Analysis of the Effect of Prevailing Weather Conditions on the Occurrence of Grain Dust Explosions.

    Science.gov (United States)

    Sanghi, Achint; Ambrose, R P Kingsly

    2016-07-27

    Grain dust explosions have been occurring in the U.S. for the past twenty years. In the past ten years, there have been an average of ten explosions a year, resulting in nine fatalities and 93 injuries. In more than half of these cases, the ignition source remains unidentified. The effect of ambient humidity on the likelihood of a dust explosion has been discussed for many years. However, no investigation into a possible link between the two has been carried out. In this study, we analyzed local weather data and grain dust explosions during the period 2006 to 2014 to measure potential relationships between the two events. The 84 analyzed explosions do not show any trend with regard to prevailing temperatures, or relative or absolute humidity. In addition, the ignition source could not be identified in 54 of the incidents. The majority of grain dust explosion incidents occurred at grain elevator facilities, where the dust generation potential was high compared with grain processing industries. Copyright© by the American Society of Agricultural Engineers.

  20. An effect of corium composition variations on occurrence of a steam explosion in the TROI experiments

    International Nuclear Information System (INIS)

    Kim, J. W.; Park, I. K.; Hong, S. W.; Min, B. T.; Shin, Y. S.; Song, J. H.; Kim, H. D.

    2003-01-01

    Recently series of steam explosion experiments have been performed in the TROI facility using corium melts of various compositions. The compositions (UO 2 : ZrO 2 ) of the corium were 0 : 100, 50 : 50, 70 : 30, 80 : 20 and 87 : 13 in weight percent and the mass of the corium was about 10kg. An experiment using 0 : 100 corium (pure zirconia) caused a steam explosion. An experiment using 50 : 50 corium did not cause a steam explosion while a steam spike occurred in an experiment using 70 : 30 corium which was the eutectic point of corium. A steam spike is considered to be the fact that a triggering of a steam explosion occurred but a propagation process does not occur so as to cause a weak interaction. However, the possibility of a steam explosion with this composition can not be ruled out since many steam explosions occurred in the previous experiments. In the two experiments using 80 : 20 corium, a steam spike occurred in one experiment but no steam explosion occurred in the other experiment. However, the triggerability of a steam explosion with this composition is not clear since few steam explosions occurred in the previous experiments. And no steam explosion occurred in an experiment using 87 : 13 corium of which urania content was the greatest among the experiments performed in the TROI facility. From this, the possibility of a steam explosion or a steam spike is appeared to be high in the non-mush zone. It is considered that an explosive interaction could easily occur with the eutectic composition. Since the solidification temperature around the eutectic point is low, the melt is likely to maintain its liquid state at the time of triggering so as to cause an explosive phenomenon

  1. Vapour cloud explosion hazard greater with light feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Windebank, C.S.

    1980-03-03

    Because lighter chemical feedstocks such as propylene and butylenes are more reactive than LPG's they pose a greater risk of vapor cloud explosion, particularly during their transport. According to C.S. Windebank (Insurance Tech. Bur.), percussive unconfined vapor cloud explosions (PUVCE's) do not usually occur below the ten-ton threshold for saturated hydrocarbons but can occur well below this threshold in the case of unsaturated hydrocarbons such as propylene and butylenes. Boiling liquid expanding vapor explosions (BLEVE's) are more likely to be ''hot'' (i.e., the original explosion is associated with fire) than ''cold'' in the case of unsaturated hydrocarbons. No PUVCE or BLEVE incident has been reported in the UK. In the US, 16 out of 20 incidents recorded between 1970 and 1975 were related to chemical feedstocks, including propylene and butylenes, and only 4 were LPG-related. The average losses were $20 million per explosion. Between 1968 and 1978, 8% of LPG pipeline spillages led to explosions.

  2. Progress in the development of explosives materials detectors

    International Nuclear Information System (INIS)

    Williams, W.D.; Conrad, F.J.; Sandlin, L.L.; Burrows, T.A.

    1978-01-01

    Five hand-held explosives vapor detectors (Elscint Model EXD-2, ITI Model 70, Leigh-Marsland Model S-201, Pye Dynamics Model PD.2.A, and Xonics Model GC-710) were evaluated for sensitivity to a variety of explosives, identification of false alarm agents, and general performance and maintenance characteristics. The results of this evaluation, as presented, indicate that there is no single explosives detector which is best-suited for use at all nuclear facilities. Rather, there are several site-specific elements which must be considered when choosing an explosives detector. There are several new explosives detector technologies being developed which will out-perform existing commercial equipment. Some of these new detectors may be commercially available by the end of fiscal year 1980 and will be cost-effective to purchase and operate. The following areas of explosives detection research are discussed: nitrogen-phosphorous detectors, plasma chromatography, mass spectroscopy, small animal olfactory, vapor preconcentration, nuclear quadrupole resonance, far infrared radiation imaging, nuclear magnetic resonance, thermal neutron activation, and computerized tomography

  3. Extreme explosions supernovae, hypernovae, magnetars, and other unusual cosmic blasts

    CERN Document Server

    Stevenson, David S

    2013-01-01

    What happens at the end of the life of massive stars? At one time we thought all these stars followed similar evolutionary paths. However, new discoveries have shown that things are not quite that simple. This book focuses on the extreme -the most intense, brilliant and peculiar- of astronomical explosions. It features highly significant observational finds that push the frontiers of astronomy and astrophysics, particularly as before these objects were only predicted in theory.  This book is for those who want the latest information and ideas about the most dramatic and unusual explosions dete

  4. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    International Nuclear Information System (INIS)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R.

    2008-03-01

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to the

  5. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R. [Royal Institute of Technology (KTH), (Sweden)

    2008-03-15

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to

  6. UHPC for Blast and Ballistic Protection, Explosion Testing and Composition Optimization

    Science.gov (United States)

    Bibora, P.; Drdlová, M.; Prachař, V.; Sviták, O.

    2017-10-01

    The realization of high performance concrete resistant to detonation is the aim and expected outcome of the presented project, which is oriented to development of construction materials for larger objects as protective walls and bunkers. Use of high-strength concrete (HSC / HPC - “high strength / performance concrete”) and high-fiber reinforced concrete (UHPC / UHPFC -“Ultra High Performance Fiber Reinforced Concrete”) seems to be optimal for this purpose of research. The paper describes the research phase of the project, in which we focused on the selection of specific raw materials and chemical additives, including determining the most suitable type and amount of distributed fiber reinforcement. Composition of UHPC was optimized during laboratory manufacture of test specimens to obtain the best desired physical- mechanical properties of developed high performance concretes. In connection with laboratory testing, explosion field tests of UHPC specimens were performed and explosion resistance of laboratory produced UHPC testing boards was investigated.

  7. Nuclear Explosions 1945-1998

    Energy Technology Data Exchange (ETDEWEB)

    Bergkvist, Nils-Olov; Ferm, Ragnhild

    2000-07-01

    The main part of this report is a list of nuclear explosions conducted by the United States, the Soviet Union, the United Kingdom, France, China, India and Pakistan in 1945-98. The list includes all known nuclear test explosions and is compiled from a variety of sources including officially published information from the USA, Russia and France. The details given for each explosion (date, origin time, location, yield, type, etc.) are often compiled from more than one source because the individual sources do not give complete information. The report includes a short background to nuclear testing and provides brief information on the Comprehensive Nuclear-Test-Ban Treaty and the verification regime now being established to verify compliance with the treaty. It also summarizes nuclear testing country by country. The list should be used with some caution because its compilation from a variety of sources means that some of the data could be incorrect. This report is the result of cooperation between the Defence Research Establishment (FOA) and the Stockholm International Peace Research Institute (SIPRI)

  8. Optimal Modes for the Fabrication of Aluminum Nanopowders by the Electrical Explosion of Wires

    Directory of Open Access Journals (Sweden)

    Alexei Pustovalov

    2017-01-01

    Full Text Available The paper is aimed at studying the impact of initial conditions of electrical explosion of wires on energy characteristics of the explosion and some other properties of the obtained aluminum powders. Explosion modes where the energy input into the wire has the maximal level were found. These modes are optimal for fabrication of powders with the best properties. The powders have the highest value of the specific surface of 14.5 m2/g, a narrow histogram of the particle size distribution, and a narrow distribution histogram with a high polydispersity coefficient of 0.7.

  9. The Ranchero explosive pulsed power system

    International Nuclear Information System (INIS)

    Goforth, J.H.; Atchison, W.L.; Bartram, D.E.

    1997-01-01

    The authors are currently developing a high explosive pulsed power system concept that they call Ranchero. Ranchero systems consist of series-parallel combinations of simultaneously initiated coaxial magnetic flux compression generators, and are intended to operate in the range from 50 MA to a few hundred MA currents. One example of a Ranchero system is shown here. The coaxial modules lend themselves to extracting the current output either from one end or along the generator midplane. They have previously published design considerations related to the different module configurations, and in this paper they concentrate on the system that they will use for their first imploding liner tests. A single module with end output. The module is 1.4-m long and expands the armature by a factor of two to reach the 30-cm OD stator. The first heavy liner implosion experiments will be conducted in the range of 40--50 MA currents. Electrical tests, to date, have employed high explosive (HE) charges 43-cm long. They have performed tests and related 1D MHD calculations at the 45-MA current level with small loads. From these results, they determine that they can deliver currents of approximately 50 MA to loads of 8 nH

  10. Statistical estimation of loads from gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Hoeiset, Stian

    1998-12-31

    In the design of structures in the offshore and process industries, the possibility of a gas explosion must always be considered. The main uncertainties in computerized simulation of gas explosions are the assumptions of the gas cloud, the location of the ignition point and the properties of the simulator itself. This thesis quantifies the levels of these uncertainties by performing a large number of simulations on three offshore modules and one onshore plant. It is found that (1) there is an approximate linear relation between pressure and gas volume, (2) it may be possible to find a linear relation between pressure and impulse, (3) there is an inverse relation between pressure and duration, (4) the response of offshore structures exposed to gas explosions are rarely in the impulsive regime, (5) loading rates vary widely in magnitude, (6) an assumption of a triangular explosion pulse is often correct, (7) louvres increase pressure, impulse and duration of an explosion. The effect of ignition point location is studied in detail. It is possible to derive an ignition point uncertainty load factor that shows predictable behaviour by generalizing the non-parametric properties of the explosion pressure. A model for taking into account the uncertainties regarding gas volume, ignition point location and simulator imperfectness is proposed. The model is intended to produce a characteristic load for structural design. 68 refs., 51 figs., 36 tabs.

  11. Experimental simulation of microinteractions in large scale explosions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Luo, R.; Yuen, W.W.; Theofanous, T.G. [California Univ., Santa Barbara, CA (United States). Center for Risk Studies and Safety

    1998-01-01

    This paper presents data and analysis of recent experiments conducted in the SIGMA-2000 facility to simulate microinteractions in large scale explosions. Specifically, the fragmentation behavior of a high temperature molten steel drop under high pressure (beyond critical) conditions are investigated. The current data demonstrate, for the first time, the effect of high pressure in suppressing the thermal effect of fragmentation under supercritical conditions. The results support the microinteractions idea, and the ESPROSE.m prediction of fragmentation rate. (author)

  12. Standoff laser-induced thermal emission of explosives

    Science.gov (United States)

    Galán-Freyle, Nataly Y.; Pacheco-Londoño, Leonardo C.; Figueroa-Navedo, Amanda; Hernandez-Rivera, Samuel P.

    2013-05-01

    A laser mediated methodology for remote thermal excitation of analytes followed by standoff IR detection is proposed. The goal of this study was to determine the feasibility of using laser induced thermal emission (LITE) from vibrationally excited explosives residues deposited on surfaces to detect explosives remotely. Telescope based FT-IR spectral measurements were carried out to examine substrates containing trace amounts of threat compounds used in explosive devices. The highly energetic materials (HEM) used were PETN, TATP, RDX, TNT, DNT and ammonium nitrate with concentrations from 5 to 200 μg/cm2. Target substrates of various thicknesses were remotely heated using a high power CO2 laser, and their mid-infrared (MIR) thermally stimulated emission spectra were recorded. The telescope was configured from reflective optical elements in order to minimize emission losses in the MIR frequencies and to provide optimum overall performance. Spectral replicas were acquired at a distance of 4 m with an FT-IR interferometer at 4 cm- 1 resolution and 10 scans. Laser power was varied from 4-36 W at radiation exposure times of 10, 20, 30 and 60 s. CO2 laser powers were adjusted to improve the detection and identification of the HEM samples. The advantages of increasing the thermal emission were easily observed in the results. Signal intensities were proportional to the thickness of the coated surface (a function of the surface concentration), as well as the laser power and laser exposure time. For samples of RDX and PETN, varying the power and time of induction of the laser, the calculated low limit of detections were 2 and 1 μg/cm2, respectively.

  13. 27 CFR 555.180 - Prohibitions relating to unmarked plastic explosives.

    Science.gov (United States)

    2010-04-01

    ... unmarked plastic explosives. 555.180 Section 555.180 Alcohol, Tobacco Products, and Firearms BUREAU OF... Marking of Plastic Explosives § 555.180 Prohibitions relating to unmarked plastic explosives. (a) No person shall manufacture any plastic explosive that does not contain a detection agent. (b) No person...

  14. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Short Jr., Billy Joe [Naval Postgraduate School, Monterey, CA (United States)

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  15. The Air Blast Wave from a Nuclear Explosion

    Science.gov (United States)

    Reines, Frederick

    The sudden, large scale release of energy in the explosion of a nuclear bomb in air gives rise, in addition to nuclear emanations such as neutrons and gamma rays, to an extremely hot, rapidly expanding mass of air.** The rapidly expanding air mass has an initial temperature in the vicinity of a few hundred thousand degrees and for this reason it glows in its early stages with an intensity of many suns. It is important that the energy density in this initial "ball of fire" is of the order of 3 × 103 times that found in a detonating piece of TNT and hence that the initial stages of the large scale air motion produced by a nuclear explosion has no counterpart in an ordinary. H. E. explosion. Further, the relatively low temperatures ˜2,000°C associated with the initial stages of an H. E. detonation implies that the thermal radiation which it emits is a relatively insignificant fraction of the total energy involves. This point is made more striking when it is remembered that the thermal energy emitted by a hot object varies directly with the temperature in the Rayleigh Jeans region appropriate to the present discussion. The expansion of the air mass heated by the nuclear reaction produces, in qualitatively the same manner as in an H.E. explosion or the bursting of a high pressure balloon, an intense sharp pressure pulse, a shock wave, in the atmosphere. As the pressure pulse spreads outward it weakens due to the combined effects of divergence and the thermodynamically irreversible nature of the shock wave. The air comprising such a pressure pulse or blast wave moves first radially outward and then back towards the center as the blast wave passes. Since a permanent outward displacement of an infinite mass of air would require unlimited energy, the net outward displacement of the air distant from an explosion must approach zero with increasing distance. As the distance from the explosion is diminished the net outward displacement due to irreversible shock heating of

  16. Modelling of vapour explosion in stratified geometrie

    International Nuclear Information System (INIS)

    Picchi, St.

    1999-01-01

    When a hot liquid comes into contact with a colder volatile liquid, one can obtain in some conditions an explosive vaporization, told vapour explosion, whose consequences can be important on neighbouring structures. This explosion needs the intimate mixing and the fine fragmentation between the two liquids. In a stratified vapour explosion, these two liquids are initially superposed and separated by a vapor film. A triggering of the explosion can induce a propagation of this along the film. A study of experimental results and existent models has allowed to retain the following main points: - the explosion propagation is due to a pressure wave propagating through the medium; - the mixing is due to the development of Kelvin-Helmholtz instabilities induced by the shear velocity between the two liquids behind the pressure wave. The presence of the vapour in the volatile liquid explains experimental propagation velocity and the velocity difference between the two fluids at the pressure wave crossing. A first model has been proposed by Brayer in 1994 in order to describe the fragmentation and the mixing of the two fluids. Results of the author do not show explosion propagation. We have therefore built a new mixing-fragmentation model based on the atomization phenomenon that develops itself during the pressure wave crossing. We have also taken into account the transient aspect of the heat transfer between fuel drops and the volatile liquid, and elaborated a model of transient heat transfer. These two models have been introduced in a multi-components, thermal, hydraulic code, MC3D. Results of calculation show a qualitative and quantitative agreement with experimental results and confirm basic options of the model. (author)

  17. Behavior of explosion debris clouds

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    In the normal course of events the behavior of debris clouds created by explosions will be of little concern to the atomic energy industry. However, two situations, one of them actual and one postulated, exist where the rise and spread of explosion clouds can affect site operations. The actual occurrence would be the detonation of nuclear weapons and the resultant release and transport of radioactive debris across the various atomic energy installations. Although the activity of the diffusing cloud is not of biological concern, it may still be sufficiently above background to play havoc with the normal readings of sensitive monitoring instruments. If it were not known that these anomalous readings resulted from explosion debris, considerable time and expense might be required for on-site testing and tracing. Fortunately it is usually possible, with the use of meteorological data and forecasts, to predict when individual sites are affected by nuclear weapon debris effects. The formation rise, and diffusion of weapon clouds will be discussed. The explosion of an atomic reactor is the postulated situation. It is common practice in reactor hazard analysis to assume a combination of circumstances which might result in a nuclear incident with a release of material to the atmosphere. It is not within the scope of this report to examine the manifold plausibilities that might lead to an explosion or the possible methods of release of gaseous and/or particulates from such an occurrence. However, if the information of a cloud is assumed and some idea of its energy content is obtainable, estimates of the cloud behavior in the atmosphere can be made

  18. The role of fragmentation mechanism in large-scale vapor explosions

    International Nuclear Information System (INIS)

    Liu, Jie

    2003-01-01

    A non-equilibrium, multi-phase, multi-component code PROVER-I is developed for propagation phase of vapor explosion. Two fragmentation models are used. The hydrodynamic fragmentation model is the same as Fletcher's one. A new thermal fragmentation model is proposed with three kinds of time scale for modeling instant fragmentation, spontaneous nucleation fragmentation and normal boiling fragmentation. The role of fragmentation mechanisms is investigated by the simulations of the pressure wave propagation and energy conversion ratio of ex-vessel vapor explosion. The spontaneous nucleation fragmentation results in a much higher pressure peak and a larger energy conversion ratio than hydrodynamic fragmentation. The instant fragmentation gives a slightly larger energy conversion ratio than spontaneous nucleation fragmentation, and the normal boiling fragmentation results in a smaller energy conversion ratio. The detailed analysis of the structure of pressure wave makes it clear that thermal detonation exists only under the thermal fragmentation circumstance. The high energy conversion ratio is obtained in a small vapor volume fraction. However, in larger vapor volume fraction conditions, the vapor explosion is weak. In a large-scale vapor explosion, the hydrodynamic fragmentation is essential when the pressure wave becomes strong, so a small energy conversion ratio is expected. (author)

  19. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  20. Temperature Dependent Characterization of Terahertz Vibrations of Explosives and Related Threat Materials

    Science.gov (United States)

    2010-12-10

    2 N. Laman , 2 and D. Grischkowsky 2 1Naval Research Laboratory, Electronics Science and Technology Division, Code 6812, Washington, D.C. 20375...spectra of single crystals of high explosives using terahertz time-domain spectroscopy,” J. Phys. Chem. A 109(15), 3501–3505 (2005). 5. N. Laman , S. Sree...Express 16(6), 4094–4105 (2008). 6. J. S. Melinger, N. Laman , and D. Grischkowsky, “The underlying terahertz spectrum of explosive solids,” Appl

  1. Mathematical modelling of the decomposition of explosives

    International Nuclear Information System (INIS)

    Smirnov, Lev P

    2010-01-01

    Studies on mathematical modelling of the molecular and supramolecular structures of explosives and the elementary steps and overall processes of their decomposition are analyzed. Investigations on the modelling of combustion and detonation taking into account the decomposition of explosives are also considered. It is shown that solution of problems related to the decomposition kinetics of explosives requires the use of a complex strategy based on the methods and concepts of chemical physics, solid state physics and theoretical chemistry instead of empirical approach.

  2. CFD analysis of gas explosions vented through relief pipes.

    Science.gov (United States)

    Ferrara, G; Di Benedetto, A; Salzano, E; Russo, G

    2006-09-21

    Vent devices for gas and dust explosions are often ducted to safe locations by means of relief pipes. However, the presence of the duct increases the severity of explosion if compared to simply vented vessels (i.e. compared to cases where no duct is present). Besides, the identification of the key phenomena controlling the violence of explosion has not yet been gained. Multidimensional models coupling, mass, momentum and energy conservation equations can be valuable tools for the analysis of such complex explosion phenomena. In this work, gas explosions vented through ducts have been modelled by a two-dimensional (2D) axi-symmetric computational fluid dynamic (CFD) model based on the unsteady Reynolds Averaged Navier Stokes (RANS) approach in which the laminar, flamelet and distributed combustion models have been implemented. Numerical test have been carried out by varying ignition position, duct diameter and length. Results have evidenced that the severity of ducted explosions is mainly driven by the vigorous secondary explosion occurring in the duct (burn-up) rather than by the duct flow resistance or acoustic enhancement. Moreover, it has been found out that the burn-up affects explosion severity due to the reduction of venting rate rather than to the burning rate enhancement through turbulization.

  3. Surface and body waves from surface and underground explosions

    International Nuclear Information System (INIS)

    Kusubov, A.S.

    1976-06-01

    The characteristics of surface and ground waves were recorded for surface and underground explosions up to 100 tons and 40 kt in magnitude, respectively, and a preliminary analysis of these results is presented. The experiments were conducted at NTS in the Yucca Flats, Nevada. Ground motions were detected with triaxial geophones along seismic lines extending up to 16 miles from the point of explosions. A comparison of Rayleigh waves generated by surface and underground explosions in the same lake bed is presented indicating a very different behavior of surface and ground waves from the two types of explosions. The magnitude of the transverse wave for surface shots was smaller by a factor of two than its longitudinal counterpart. The dependence of apparent periods on the blast energy was not apparent at a fixed distance from the explosions. Changes in the apparent period with distance for both types of explosion are compared indicating a strong layering effect of the lake bed. The ground motion study was complimented by excavation of cavities generated by the explosions

  4. Charging method of water hole with ANFO explosive

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Susumu

    1988-02-28

    It has been investigated how to charge a water hole with an inexpensive explosive for blasting. An experiment was made using the combination of a plasticized resin hose and the ANFO charger as the method for making the most of the ANFO explosive aiming at charging a hole with the explosive at a low cost without damaging the hole wall. The experimental result indicates that any water hole with spring water can be charged with the explosive using the ANFO charger combined with the plasticized resin hose. The method is superior to conventional methods in cost and workability because the working atmosphere is not aggravated and the hole wall is not damaged without using an expensive vacuum collector. Charging a blasting hole 165 mm or less in diameter with the explosive will be investigated for commercialization in future. (4 figs)

  5. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  6. "Fooling fido"--chemical and behavioral studies of pseudo-explosive canine training aids.

    Science.gov (United States)

    Kranz, William D; Strange, Nicholas A; Goodpaster, John V

    2014-12-01

    Genuine explosive materials are traditionally employed in the training and testing of explosive-detecting canines so that they will respond reliably to these substances. However, challenges arising from the acquisition, storage, handling, and transportation of explosives have given rise to the development of "pseudo-explosive" training aids. These products attempt to emulate the odor of real explosives while remaining inert. Therefore, a canine trained on a pseudo-explosive should respond to its real-life analog. Similarly, a canine trained on an actual explosive should respond to the pseudo-explosive as if it was real. This research tested those assumptions with a focus on three explosives: single-base smokeless powder, 2,4,6-trinitrotoluene (TNT), and a RDX-based plastic explosive (Composition C-4). Using gas chromatography-mass spectrometry with solid phase microextraction as a pre-concentration technique, we determined that the volatile compounds given off by pseudo-explosive products consisted of various solvents, known additives from explosive formulations, and common impurities present in authentic explosives. For example, simulated smokeless powders emitted terpenes, 2,4-dinitrotoluene, diphenylamine, and ethyl centralite. Simulated TNT products emitted 2,4- and 2,6-dinitrotoluene. Simulated C-4 products emitted cyclohexanone, 2-ethyl-1-hexanol, and dimethyldinitrobutane. We also conducted tests to determine whether canines trained on pseudo-explosives are capable of alerting to genuine explosives and vice versa. The results show that canines trained on pseudo-explosives performed poorly at detecting all but the pseudo-explosives they are trained on. Similarly, canines trained on actual explosives performed poorly at detecting all but the actual explosives on which they were trained.

  7. New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends.

    Science.gov (United States)

    Talawar, M B; Jangid, S K; Nath, T; Sinha, R K; Asthana, S N

    2015-12-30

    This review presents the work carried out by the international community in the area of sheet explosive formulations and its applications in various systems. The sheet explosive is also named as PBXs and is a composite material in which solid explosive particles like RDX, HMX or PETN are dispersed in a polymeric matrix, forms a flexible material that can be rolled/cut into sheet form which can be applied to any complex contour. The designed sheet explosive must possess characteristic properties such as flexible, cuttable, water proof, easily initiable, and safe handling. The sheet explosives are being used for protecting tanks (ERA), light combat vehicle and futuristic infantry carrier vehicle from different attacking war heads etc. Besides, sheet explosives find wide applications in demolition of bridges, ships, cutting and metal cladding. This review also covers the aspects such as risks and hazard analysis during the processing of sheet explosive formulations, effect of ageing on sheet explosives, detection and analysis of sheet explosive ingredients and the R&D efforts of Indian researchers in the development of sheet explosive formulations. To the best of our knowledge, there has been no review article published in the literature in the area of sheet explosives. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Explosive performance on the non-proliferation experiment

    Energy Technology Data Exchange (ETDEWEB)

    McKown, T.O.

    1994-03-01

    The non-proliferation experiment, originally called the chemical kiloton experiment, was planned and executed by Lawrence Livermore National Laboratory to investigate the seismic yield relationship and distinguishing seismic signals between a nuclear event and a large mass conventional explosion. The Los Alamos National Laboratory planned and conducted experiments to further their studies of the source function for signals observed seismically. Since all investigations were contingent on the performance of the emplaced chemical explosive, an array of diagnostic measurements was fielded in the emplaced explosive. The CORRTEX system was used to investigate the explosive initiation and to determine the detonation velocities in multiple levels and in numerous directions. A description of the CORRTEX experiments fielded, a review of the data obtained and some interpretations of the data are reported.

  9. Explosive composition with group VIII metal nitroso halide getter

    Science.gov (United States)

    Walker, F.E.; Wasley, R.J.

    1982-06-22

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1,500 and 10,000 meters per second and a minor amount of a getter additive comprising a non-explosive compound or mixture of non-explosive compounds capable of chemically reacting with free radicals or ions under shock initiation conditions of 2,000 calories/cm[sup 2] or less of energy fluence.

  10. Degassing Processes at Persistently Active Explosive Volcanoes

    Science.gov (United States)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with Indonesia), a volcano that has been producing cycles of repeated explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly

  11. Sunset Crater, AZ: Evolution of a highly explosive basaltic eruption as indicated by granulometry and clast componentry

    Science.gov (United States)

    Allison, C. M.; Clarke, A. B.; Pioli, L.; Alfano, F.

    2011-12-01

    Basaltic scoria cone volcanoes are the most abundant volcanic edifice on Earth and occur in all tectonic settings. Basaltic magmas have lower viscosities, higher temperatures, and lower volatile contents than silicic magmas, and therefore generally have a lower potential for explosive activity. However, basaltic eruptions display great variability in eruptive style, from mild lava flows to more energetic explosions with large plumes. The San Francisco Volcanic Field (SFVF) in northern Arizona, active from 6 Ma-present, consists of over 600 volcanoes, mostly alkali basalt scoria cones, and five silicic centers [Wood and Kienle (1990), Cambridge University Press]. The eruption of Sunset Crater in the SFVF during the Holocene was an anomalously large basaltic explosive eruption, consisting of eight tephra-bearing phases and three lava flows [Amos (1986), MS thesis, ASU]. Typical scoria cone-forming eruptions have volumes sorted. Future work will include textural analysis of bubbles and crystals to understand the ascent and cooling history of the different clast types, and also to better interpret differences in abundance as related to variations in eruption or vent dynamics.

  12. Installation for low temperature vapor explosion experiment

    International Nuclear Information System (INIS)

    Nilsuwankosit, Sunchai; Archakositt, Urith

    2000-01-01

    A preparation for the experiment on the low temperature vapor explosion was planned at the department of Nuclear Technology, Chulalongkorn University, Thailand. The objective of the experiment was to simulate the interaction between the molten fuel and the volatile cooling liquid without resorting to the high temperature. The experiment was expected to involve the injection of the liquid material at a moderate temperature into the liquid material with the very low boiling temperature in order to observe the level of the pressurization as a function of the temperatures and masses of the applied materials. For this purpose, the liquid nitrogen and the water were chosen as the coolant and the injected material for this experiment. Due to the size of the installation and the scale of the interaction, only lumped effect of various parameters on the explosion was expected from the experiment at this initial stage. (author)

  13. Effect of degree of subcooling on vapor explosion

    International Nuclear Information System (INIS)

    Xu Zhihong; Yang Yanhua; Li Tianshu

    2010-01-01

    In order to investigate the mechanism of the vapor explosion, an observable experiment equipment for low-temperature molten materials to be dropped into water was designed. In the experiment, molten material jet was injected into water to experimentally obtain the visualized information. This experiment results show that the degree of subcooling restrains the explosion. In order to validate the result by other aspects, the breakup experiment was conducted. Results show that the degree of water subcooling is important to melt breakup. High temperature of water is easy to increase the vapor generation during molten material falling, which decrease the drag and accelerated the molten material falling. At the same time, more vapor appear around the molten metal decrease the heat transfer amount between water and molten materials. The two experimental results coincide. (authors)

  14. Ocular injuries from carbonated soft drink bottle explosions.

    Science.gov (United States)

    Al Salem, M; Sheriff, S M

    1984-04-01

    Sixteen cases of ocular injuries serious enough to require admission to Ibn-Sina Hospital, Kuwait, Arabian Gulf, due to explosion of glass bottles of carbonated soft drinks are reported over a period of 14 months from the beginning of July 1981 to the end of August 1982. Prevalence was much greater in the summer months and among children. Explosions of bottles without prior agitation occurred in 11 cases (68.7%). High environmental temperature and defective bottles were the most important predisposing factors. Preventive measures we suggest are better standards for manufacturers, more careful inspection of returnable bottles to detect defective ones, a separate detailed warning label on all bottles, and health education especially of school children about this and other risks of serious injury to the eyes and other parts of the body.

  15. Explosive bonding and its application in the Advanced Photon Source front-end and beamline components design

    International Nuclear Information System (INIS)

    Shu, D.; Li, Y.; Ryding, D.; Kuzay, T.M.

    1994-01-01

    Explosive bonding is a bonding method in which the controlled energy of a detonating explosive is used to create a metallurgical bonding between two or more similar or dissimilar materials. Since 1991, a number of explosive-bonding joints have been designed for high-thermal-load ultrahigh-vacuum (UHV) compatible components in the Advanced Photon Source. A series of standardized explosive bonded joint units has also been designed and tested, such as: oxygen-free copper (OFHC) to stainless-steel vacuum joints for slits and shutters, GlidCop to stainless-steel vacuum joints for fixed masks, and GlidCop to OFHC thermal and mechanical joints for shutter face-plates, etc. The design and test results for the explosive bonding units to be used in the Advanced Photon Source front ends and beamlines will be discussed in this paper

  16. Monte Carlo simulation of explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator.

    Science.gov (United States)

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Advances in impact resistance testing for explosion-proof electrical equipment

    Directory of Open Access Journals (Sweden)

    Pasculescu Vlad Mihai

    2017-01-01

    Full Text Available The design, construction and exploitation of electrical equipment intended to be used in potentially explosive atmospheres presents a series of difficulties. Therefore, the approach of these phases requires special attention concerning technical, financial and occupational health and safety aspects. In order for them not to generate an ignition source for the explosive atmosphere, such equipment have to be subjected to a series of type tests aiming to decrease the explosion risk in technological installations which operate in potentially explosive atmospheres. Explosion protection being a concern of researchers and authorities worldwide, testing and certification of explosion-proof electrical equipment, required for their conformity assessment, are extremely important, taking into account the unexpected explosion hazard due to potentially explosive atmospheres, risk which has to be minimized in order to ensure the occupational health and safety of workers, for preventing material losses and for decreasing the environmental pollution. Besides others, one of the type tests, which shall be applied, for explosion-proof electrical equipment is the impact resistance test, described in detail in EN 60079 which specifies the general requirements for construction, testing and marking of electrical equipment and Ex components intended for use in explosive atmospheres. This paper presents an analysis on the requirements of the impact resistance test for explosion-proof electrical equipment and on the possibilities to improve this type of test, by making use of modern computer simulation tools based on finite element analysis, techniques which are widely used nowadays in the industry and for research purposes.

  18. Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays

    Science.gov (United States)

    Lichtenstein, Amir; Havivi, Ehud; Shacham, Ronen; Hahamy, Ehud; Leibovich, Ronit; Pevzner, Alexander; Krivitsky, Vadim; Davivi, Guy; Presman, Igor; Elnathan, Roey; Engel, Yoni; Flaxer, Eli; Patolsky, Fernando

    2014-06-01

    The capability to detect traces of explosives sensitively, selectively and rapidly could be of great benefit for applications relating to civilian national security and military needs. Here, we show that, when chemically modified in a multiplexed mode, nanoelectrical devices arrays enable the supersensitive discriminative detection of explosive species. The fingerprinting of explosives is achieved by pattern recognizing the inherent kinetics, and thermodynamics, of interaction between the chemically modified nanosensors array and the molecular analytes under test. This platform allows for the rapid detection of explosives, from air collected samples, down to the parts-per-quadrillion concentration range, and represents the first nanotechnology-inspired demonstration on the selective supersensitive detection of explosives, including the nitro- and peroxide-derivatives, on a single electronic platform. Furthermore, the ultrahigh sensitivity displayed by our platform may allow the remote detection of various explosives, a task unachieved by existing detection technologies.

  19. Thermal explosion models

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Tso Chin [Malaya Univ., Kuala Lumpur (Malaysia)

    1984-12-01

    The phenomenon of thermal explosion arises in several important safety problems, yet scientists are still baffled by its origin. This article reviews some of the models that have been proposed to explain the phenomenon.

  20. Current trends in development of explosives in world mining

    Energy Technology Data Exchange (ETDEWEB)

    Dobnikar, S.

    1987-01-01

    Surveys development of manufacturing industrial explosives in the 19th and 20th centuries, from first use of black powder, ammonium nitrate and TNT to the use of ANFO, slurries and water gel type explosives. Achievements of explosive producers with worldwide reputation (Ireco Chemicals, Du Pont, Atlas Powder Chemical, Nitro Nobel, Nippon Oil and Fats Co., Thermex Energy Co.) for manufacturing safe, reliable explosives used in surface and underground coal and ore mining (including gassy coal mines) and for quarrying are mentioned. Main characteristics of IREMITE, IREGEL, TOVEX, POURVEX, DRIVEX, Detagel, ANFO (both gel- and emulsion-type), Emulgite and Emulite are presented. A critical opinion about future trends in industrial explosive development is given. 10 refs., 7 tabs.

  1. Investigation on energetics of ex-vessel vapor explosion based on spontaneous nucleation fragmentation

    International Nuclear Information System (INIS)

    Liu, Jie; Koshizuka, Seiichi; Oka, Yoshiaki

    2002-01-01

    A computer code PROVER-I is developed for propagation phase of vapor explosion. A new thermal fragmentation model is proposed with three kinds of time scale for modeling instant fragmentation, spontaneous nucleation fragmentation and normal boiling fragmentation. The energetics of ex-vessel vapor explosion is investigated based on different fragmentation models. A higher pressure peak and a larger mechanical energy conversion ratio are obtained by spontaneous nucleation fragmentation. A smaller energy conversion ratio results from normal boiling fragmentation. When the delay time in thermal fragmentation model is near 0.0 ms, the pressure propagation behavior tends to be analogous with that in hydrodynamic fragmentation. If the delay time is longer, pressure attenuation occurs at the shock front. The high energy conversion ratio (>4%) is obtained in a small vapor volume fraction together with spontaneous nucleation fragmentation. These results are consistent with fuel-coolant interaction experiments with alumina melt. However, in larger vapor volume fraction conditions (α υ >0.3), the vapor explosion is weak. For corium melt, a coarse mixture with void fraction of more than 30% can be generated in the pre-mixing process because of its physical properties. In the mixture with such a high void fraction the energetic vapor explosion hardly takes place. (author)

  2. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Material and High Explosives

    International Nuclear Information System (INIS)

    Seabury, E. H.; Chichester, D. L.; Wharton, C. J.; Caffrey, A. J.

    2009-01-01

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a 252 Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  3. 49 CFR 173.60 - General packaging requirements for explosives.

    Science.gov (United States)

    2010-10-01

    ... explosives contained in the package, so that neither interaction between the explosives and the packaging... 49 Transportation 2 2010-10-01 2010-10-01 false General packaging requirements for explosives. 173...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1...

  4. Instant detection and identification of concealed explosive-related compounds: Induced Stokes Raman versus infrared.

    Science.gov (United States)

    Elbasuney, Sherif; El-Sherif, Ashraf F

    2017-01-01

    The instant detection of explosives and explosive-related compounds has become an urgent priority in recent years for homeland security and counter-terrorism applications. Modern techniques should offer enhancement in selectivity, sensitivity, and standoff distances. Miniaturisation, portability, and field-ruggedisation are crucial requirements. This study reports on instant and standoff identification of concealed explosive-related compounds using customized Raman technique. Stokes Raman spectra of common explosive-related compounds were generated and spectrally resolved to create characteristic finger print spectra. The scattered Raman emissions over the band 400:2000cm -1 were compared to infrared absorption using FTIR. It has been demonstrated that the two vibrational spectroscopic techniques were opposite and completing each other. Molecular vibrations with strong absorption in infrared (those involve strong change in dipole moments) induced weak signals in Raman and vice versa. The tailored Raman offered instant detection, high sensitivity, and standoff detection capabilities. Raman demonstrated characteristic fingerprint spectra with stable baseline and sharp intense peaks. Complete correlations of absorption/scattered signals to certain molecular vibrations were conducted to generate an entire spectroscopic profile of explosive-related compounds. This manuscript shades the light on Raman as one of the prevailing technologies for instantaneous detection of explosive-related compounds. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Seismic coupling of nuclear explosions

    International Nuclear Information System (INIS)

    Larson, D.B.

    1989-01-01

    The new Giant Magnet Experimental Facility employing digital recording of explosion induced motion has been constructed and successfully tested. Particle velocity and piezoresistance gage responses can be measured simultaneously thus providing the capability for determining the multi-component stress-strain history in the test material. This capability provides the information necessary for validation of computer models used in simulation of nuclear underground testing, chemical explosion testing, dynamic structural response, earth penetration response, and etc. This report discusses fully coupled and cavity decoupled explosions of the same energy (0.622 kJ) were carried out as experiments to study wave propagation and attenuation in polymethylmethacrylate (PMMA). These experiments produced particle velocity time histories at strains from 2 x 10 -3 to as low as 5.8 x 10 -6 . Other experiments in PMMA, reported recently by Stout and Larson 8 provide additional particle velocity data to strains of 10 -1

  6. Numerical Simulation of Energy Conversion Mechanism in Electric Explosion

    Science.gov (United States)

    Wanjun, Wang; Junjun, Lv; Mingshui, Zhu; Qiubo, Fu; EFIs Integration R&D Group Team

    2017-06-01

    Electric explosion happens when micron-scale metal films such as copper film is stimulated by short-time current pulse, while generating high temperature and high pressure plasma. The expansion process of the plasma plays an important role in the study of the generation of shock waves and the study of the EOS of matter under high pressure. In this paper, the electric explosion process is divided into two stages: the energy deposition stage and the quasi-isentropic expansion stage, and a dynamic EOS of plasma considering the energy replenishment is established. On this basis, flyer driven by plasma is studied numerically, the pressure and the internal energy of plasma in the energy deposition stage and the quasi - isentropic expansion stage are obtained by comparing the velocity history of the flyer with the experimental results. An energy conversion model is established, and the energy conversion efficiency of each process is obtained, and the influence of impedance matching relationship between flyer and metal plasma on the energy conversion efficiency is proposed in this paper.

  7. Thermal explosion models

    International Nuclear Information System (INIS)

    Tso Chin Ping

    1984-01-01

    The phenomenon of thermal explosion arises in several important safety problems, yet scientists are still baffled by its origin. This article reviews some of the models that have been proposed to explain the phenomenon. (author)

  8. HSE assessment of explosion risk analysis in offshore safety cases

    Energy Technology Data Exchange (ETDEWEB)

    Brighton, P.W.M.; Fearnley, P.J.; Brearley, I.G. [Health and Safety Executive, Bootle (United Kingdom). Offshore Safety Div.

    1995-12-31

    In the past two years HSE has assessed around 250 Safety Cases for offshore oil and gas installations, building up a unique overview of the current state of the art on fire and explosion risk assessment. This paper reviews the explosion risk methods employed, focusing on the aspects causing most difficulty for assessment and acceptance of Safety Cases. Prediction of overpressures in offshore explosions has been intensively researched in recent years but the justification of the means of prevention, control and mitigation of explosions often depends on much additional analysis of the frequency and damage potential of explosions. This involves a number of factors, the five usually considered being: leak sizes; gas dispersion; ignition probabilities; the frequency distribution of explosion strength; and the prediction of explosion damage. Sources of major uncertainty in these factors and their implications for practical risk management decisions are discussed. (author)

  9. Detonation and combustion of explosives: A selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Dobratz, B. [comp.

    1998-08-01

    This bibliography consists of citations pertinent to the subjects of combustion and detonation of energetic materials, especially, but not exclusively, of secondary solid high explosives. These references were selected from abstracting sources, conference proceedings, reviews, and also individual works. The entries are arranged alphabetically by first author and numbered sequentially. A keyword index is appended.

  10. Newest Developments in the German Explosive Safety Quantitative Risk Analysis Software (ESQRA-GE)

    Science.gov (United States)

    2010-07-01

    Software (ESQRA-GE) F.K.F. Radtke , I. Stacke, C. Rizzuti, B. Brombacher, M. Voss, I. Häring Fraunhofer-Institute for High-Speed Dynamics – Ernst-Mach...Institute, Am Klingelberg 1, 79588 Efringen-Kirchen, Germany radtke @emi.fhg.de, haering@emi.fhg.de Keywords: explosive ordnance disposal, EOD...Prescribed by ANSI Std Z39-18 34th DoD Explosives Safety Seminar 2010, Portland, Oregon 2 Brief presenter biography Frank Radtke started his

  11. Explosives trace detection in the process of biometrical fingerprint identification for access control

    Science.gov (United States)

    Bertseva, Elena V.; Savin, Andrey V.

    2007-02-01

    A method for trace detection of explosives on the surface of biometric fingerprint scanner is proposed and its sensitivity explored. The method is based on attenuated total reflection mid-infrared spectroscopy. The detection limit is about several microgram and the detectivity increases with the wavelength used for scanning. The advantages of the proposed method include high selectivity and thus low false alarm level, applicability to low vapor pressure explosives and low cost.

  12. Steam explosions of single drops of pure and alloyed molten aluminum

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1995-01-01

    Studies of steam explosion phenomena have been performed related to the hypothetical meltdown of the core and other components of aluminum alloy-fueled production reactors. Our objectives were to characterise the triggers, if any, required to initiate these explosions and to determine the energetics and chemical processes associated with these events. Three basic studies have been carried out with 1-10 g single drops of molten aluminum or aluminum-based alloys: untriggered experiments in which drops of melt were released into water; triggered experiments in which thermal-type steam explosions occurred; and one triggered experiment in which an ignition-type steam explosion occurred. In untriggered experiments, spontaneous steam explosions never occurred during the free fall through water of single drops of pure Al or of the alloys studied here. Moreover, spontaneous explosions never occurred upon or during contact of the globules with several underwater surfaces. When Li was present in the alloy, H 2 was generated as a stream of bubbles as the globules fell through the water, and also as they froze on the bottom surface of the chamber. The triggered experiments were performed with pure Al and the 6061 alloy. Bare bridgewire discharges and those focused with cylindrical reflectors produced a small first bubble that collapsed and was followed by a larger second bubble. When the bridgewire was discharged at one focus of an ellipsoidal reflector, a melt drop at the other focus triggered only very mildly in spite of a 30-fold increase in peak pressure above that of the bridgewire discharge without the reflector. Experiments were also performed with globules of high purity Al in which the melt release temperature was progressively increased. Moderate thermal-type explosions were produced over the temperature range 1273-1673 K. At about 1773 K, however, one experiment produced a brilliant flash of light and bubble growth about an order of magnitude faster than normal; it

  13. Path of an atomic explosion aerosol. [In German

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, W; Philipp, K

    1953-01-01

    Experiments at Wittental show that during October 16 to 24, 1951, a high value of the radioactive background was discovered. A similar high value had been reported at Helena, Montana, between October 6 to 16, 1951. It is suggested that the same air mass was at these two places at the different times and that radioactivity measurements permit the path of the air mass in which the explosion occurred to be plotted.

  14. Phase velocity enhancement of linear explosive shock tubes

    Science.gov (United States)

    Loiseau, Jason; Serge, Matthew; Szirti, Daniel; Higgins, Andrew; Tanguay, Vincent

    2011-06-01

    Strong, high density shocks can be generated by sequentially detonating a hollow cylinder of explosives surrounding a thin-walled, pressurized tube. Implosion of the tube results in a pinch that travels at the detonation velocity of the explosive and acts like a piston to drive a shock into the gas ahead of it. In order to increase the maximum shock velocities that can be obtained, a phase velocity generator can be used to drag an oblique detonation wave along the gas tube at a velocity much higher than the base detonation velocity of the explosive. Since yielding and failure of the gas tube is the primary limitation of these devices, it is desirable to retain the dynamic confinement effects of a heavy-walled tamper without interfering with operation of the phase velocity generator. This was accomplished by cutting a slit into the tamper and introducing a phased detonation wave such that it asymmetrically wraps around the gas tube. This type of configuration has been previously experimentally verified to produce very strong shocks but the post-shock pressure and shock velocity limits have not been investigated. This study measured the shock trajectory for various fill pressures and phase velocities to ascertain the limiting effects of tube yield, detonation obliquity and pinch aspect ratio.

  15. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-03

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL`s current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency`s (EPA`s) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL`s existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility.

  16. Parameterization of strombolian explosions: constraint from simultaneous physical and geophysical measurements (Invited)

    Science.gov (United States)

    gurioli, L.; Harris, A. J.

    2013-12-01

    Stromboli, and other volcanoes like it, are to plot in the strombolian fields of deposit-based classifications. We also quenched a number of bombs soon explosion at Stromboli. This enabled us to quantify the degassing history and rheology of the magma(s) resident in the shallow, near-surface, system. The different textural facies observed in these bombs showed that fresh magma, mingled with partially or completely degassed, oxidized, re-crystallized, evolved and high viscosity magma, was ejected. The degassed magma appears to sit at the top of the conduit, playing only a passive role in the explosive process. Our best model, is that the degassed, oxidized magma forms a plug, or rheologically defined layer, at the top of the conduit, through which the fresh magma bursts. Integration of geophysical measurements with sample analyses, indicates that popular (bubble-bursting) models may not fit this case, thus also changeling the model-based definition of this eruption type.

  17. Shallow magma diversions during explosive diatreme-forming eruptions.

    Science.gov (United States)

    Le Corvec, Nicolas; Muirhead, James D; White, James D L

    2018-04-13

    The diversion of magma is an important mechanism that may lead to the relocation of a volcanic vent. Magma diversion is known to occur during explosive volcanic eruptions generating subterranean excavation and remobilization of country and volcanic rocks. However, feedbacks between explosive crater formation and intrusion processes have not been considered previously, despite their importance for understanding evolving hazards during volcanic eruptions. Here, we apply numerical modeling to test the impacts of excavation and subsequent infilling of diatreme structures on stress states and intrusion geometries during the formation of maar-diatreme complexes. Explosive excavation and infilling of diatremes affects local stress states which inhibits magma ascent and drives lateral diversion at various depths, which are expected to promote intra-diatreme explosions, host rock mixing, and vent migration. Our models demonstrate novel mechanisms explaining the generation of saucer-shaped sills, linked with magma diversion and enhanced intra-diatreme explosive fragmentation during maar-diatreme volcanism. Similar mechanisms will occur at other volcanic vents producing crater-forming eruptions.

  18. Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Zang Jianfeng; Guo Chunxian; Hu Fengping [School of Chemical and Biomedical Engineering and Center for Advanced Bionanosystems, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 (Singapore); Yu Lei [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269 (United States); Li Changming, E-mail: ecmli@ntu.edu.sg [School of Chemical and Biomedical Engineering and Center for Advanced Bionanosystems, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 (Singapore)

    2011-01-10

    A sensitive electrochemical sensor has been fabricated to detect ultratrace nitroaromatic explosives using ordered mesoporus carbon (OMC). OMC was synthesized and characterized by scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption measurements. Glassy carbon electrodes functionalized with OMC show high sensitivity of 62.7 {mu}A cm{sup -2} per ppb towards 2,4,6-trinitrotoluene (TNT). By comparison with other materials such as carbon nanotubes and ordered mesoporous silica, it is found that the high performance of OMC toward sensing TNT is attributed to its large specific surface area and fast electron transfer capability. As low as 0.2 ppb TNT, 1 ppb 2,4-dinitrotoluene and 1 ppb 1,3-dinitrobenzene can be detected on OMC based electrodes. This work renders new opportunities to detect ultratrace explosives for applications of environment protections and home securities against chemical warfare agents.

  19. 49 CFR 1544.213 - Use of explosives detection systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Use of explosives detection systems. 1544.213...: AIR CARRIERS AND COMMERCIAL OPERATORS Operations § 1544.213 Use of explosives detection systems. (a... explosives detection system approved by TSA to screen checked baggage on international flights. (b) Signs and...

  20. Use of chemical explosives for emergency solar flare shelter construction and other excavations on the Martian surface

    International Nuclear Information System (INIS)

    Dick, R.D.; Blacic, J.D.; Pettitt, D.R.

    1985-01-01

    The necessity to shelter people on the Martian surface from solar flare particles at short notice and the need for long-term habitats with thick cosmic ray shielding suggests that explosives could be used effectively for excavation of such structures. Modern insensitive high explosives are safe, efficient, and reliable for rock breakage and excavation. Extensive Earth-bound experience leads us to propose several strategies for explosively-constructed shelters based on tunneling, cratering, and rock casting techniques