WorldWideScience

Sample records for processed-kaolin particle film

  1. Side effects of kaolin particle films on apple orchard bug, beetle and spider communities

    NARCIS (Netherlands)

    Marko, V.; Bogya, S.; Kondorosy, E.; Blommers, L.H.M.

    2010-01-01

    The effects of multiple applications of hydrophobic kaolin particle film on apple orchard bug (Heteroptera), beetle (Coleoptera) and spider (Araneae) assemblages were studied in the Netherlands. Insecticide-free orchard plots served as a control. The kaolin applications significantly reduced the

  2. Potential of kaolin-based particle film barriers for Formosan subterranean termite (Isoptera: Rhinotermitidae) control

    Science.gov (United States)

    Wiltz, B.A.; Woodson, W.D.; Puterka, G.J.

    2010-01-01

    Effects of three particle film products on Formosan subterranean termites, Coptotermes formosanus Shiraki, were evaluated in feeding, tunneling, and contact assays. The particle films, hydrophobic M96-018 and hydrophilic Surround and Surround WP are based on the inert clay mineral kaolin. In 2-week long no-choice feeding tests, significant mortality occurred only with M96-018-coated wood. When a choice was provided, M96-018 and Surround were consumed at higher rates than untreated wood. Surround WP did not differ from controls in either test. In the tunneling assay termites were given the option of crossing a kaolin-sand mixture to reach an alternate food source. After 3-weeks, rates of 1% and 5% M96-018 provided an effective barrier to Formosan termite tunneling, while termites were not stopped by rates as high as 20% Surround and Surround WP. Dust treatments of all three formulations caused significant increases in mortality within 24 h, with mortality rates ranging from 72.0 - 97.3% within 72 h of treatment. The particle films were most effective when moisture levels were low, suggesting that desiccation was the mechanism for mortality. All particle films showed potential for use in above ground applications while hydrophobic M06-018 has the most potential as a soil barrier to subterranean termites.

  3. Kaolin particle films suppress many apple pests, disrupt natural enemies and promote woolly apple aphid

    NARCIS (Netherlands)

    Markó, V.; Blommers, L.H.M.; Bogya, S.; Helsen, H.H.M.

    2008-01-01

    Multiple applications of hydrophobic kaolin particle film in apple orchards suppressed numbers of blossom weevil (Anthonomus pomorum), brown leaf weevil (Phyllobius oblongus), attelabid weevil (Caenorhinus pauxillus), leafhoppers (Empoasca vitis and Zygina flammigera) and green apple aphid (Aphis

  4. Effects of kaolin particle films on the life span of an orb-weaver spider.

    Science.gov (United States)

    Benhadi-Marín, Jacinto; Pereira, José Alberto; Santos, Sónia A P

    2016-02-01

    Araniella cucurbitina (Araneae: Araneidae) is a widespread orb-weaver spider commonly found in agroecosystems. Mineral particle films such as kaolin, due to their protective or anti-feeding action, can represent an alternative to pesticides, especially in organic farming systems, but little is known about its effects on A. cucurbitina. Therefore, we tested the effect of kaolin sprays on the life span of A. cucurbitina under laboratory conditions. Four treatments were tested encompassing different exposure routes. Thus, kaolin sprays were applied on (i) the surface, (ii) the prey (fly), (iii) the spider and (iv) both spider & prey. A control group was tested with water in each treatment. Results showed that sprays of kaolin significantly affected the survival of A. curcubitina when applications were done on the surface and on both spider & prey registering a reduction of 48% and 56%, respectively. Spiders in control obtained higher probability of reaching alive at the end of the assay than those treated with kaolin. Differences observed can be explained by the feeding behavior of the species and may depend on the consumption of the web by the spider and the ratio spider/fly for body size. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. ADSORPTION OF PARAQUAT DICHLORIDE TO KAOLIN PARTICLES AND TO MIXTURES OF KAOLIN AND HEMATITE PARTICLES

    Directory of Open Access Journals (Sweden)

    Dina Alexandra Martins

    2015-03-01

    Full Text Available Deliberate contamination with pesticides is a potential risk to water security, due to the availability of these contaminants and the fact that they do not need special expertise to handle or apply. Adsorption of the herbicide paraquat from an aqueous solution to suspended particles of kaolin and kaolin/hematite mixture was investigated by kinetic and equilibrium assays, taking into consideration several parameters such as initial pH, sorbent dosage and agitation speed. The results showed that the adsorption process is quite fast, reaching an 18% reduction in paraquat concentration in a very short period of time. The addition of hematite particles to kaolin suspension had no apparent effect on the maximum amount of paraquat adsorbed. Kinetic parameters were determined by fitting the pseudo-second order model to the experimental data (correlation coefficients close to 1. Isotherm studies indicate an inhibitory effect, promoted by hematite particles, that was not detected in the adsorption assays. Equilibrium data was best adjusted using the Langmuir model which yielded higher correlation coefficient values and smaller normalized standard deviations.

  6. Processed kaolin affects the probing and settling behavior of Diaphorina citri (Hemiptera: Lividae).

    Science.gov (United States)

    Miranda, Marcelo P; Zanardi, Odimar Z; Tomaseto, Arthur F; Volpe, Haroldo Xl; Garcia, Rafael B; Prado, Ernesto

    2018-03-05

    Alternative methods that have the potential to reduce the entry of Diaphorina citri Kuwayama (Hemiptera: Liviidae), the major citrus pest worldwide, into commercial groves could be a viable approach for huanglongbing management. Kaolin is an aluminum silicate that when sprayed on plants forms a white particle film that interferes with host recognition by the insects. Diaphorina citri orients towards the host plants by visual and olfactory cues. The purpose of the study was to determine the effect of processed kaolin on D. citri settling (no-choice) and probing behavior [electrical penetration graph (EPG) technique] under laboratory conditions, and to study its host plant finding ability and dispersal under field conditions in the absence and presence of young shoots. Under laboratory conditions, kaolin caused an overall reduction of 40% in the number of psyllids settled on treated seedlings; furthermore, the proportion of individuals that were able to reach the phloem was 50% lower on kaolin-treated plants than on untreated plants. In the field, the plant finding ability of D. citri was disrupted on kaolin-treated trees (overall reduction of 96%), regardless of the vegetative condition, and psyllid dispersal was slower in kaolin-treated plots than in the untreated control. This study clearly demonstrates that processed kaolin interferes negatively with different aspects of the host plant finding ability of D. citri. These findings suggest that processed kaolin has a high potential to reduce huanglongbing primary infection. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  7. Effect of kaolin particle size and loading on the characteristics of kaolin ceramic support prepared via phase inversion technique

    Directory of Open Access Journals (Sweden)

    Siti Khadijah Hubadillah

    2016-06-01

    Full Text Available In this study, low cost ceramic supports were prepared from kaolin via phase inversion technique with two kaolin particle sizes, which are 0.04–0.6 μm (denoted as type A and 10–15 μm (denoted as type B, at different kaolin contents ranging from 14 to 39 wt.%, sintered at 1200 °C. The effect of kaolin particle sizes as well as kaolin contents on membrane structure, pore size distribution, porosity, mechanical strength, surface roughness and gas permeation of the support were investigated. The support was prepared using kaolin type A induced asymmetric structure by combining macroporous voids and sponge-like structure in the support with pore size of 0.38 μm and 1.05 μm, respectively, and exhibited ideal porosity (27.7%, great mechanical strength (98.9 MPa and excellent gas permeation. Preliminary study shows that the kaolin ceramic support in this work is potential to gas separation application at lower cost.

  8. Tough and Reinforced Polypropylene/Kaolin Composites using Modified Kaolin

    Science.gov (United States)

    Yao, J. L.; Zhu, H. X.; Qi, Y. B.; Guo, M. J.; Hu, Q.; Gao, L.

    2018-05-01

    Polypropylene (PP)/kaolin composites have been prepared by filling modified kaolin with diethylenetriaminepentaacetic acid (DTPA) into the PP matrix. The surface modification of kaolin particles effectively improves the compatibility between kaolin and PP matrix. It is conducive for uniform dispersion of inorganic particles in the matrix, and enhances the mechanical performance of the composites. Compared with plain kaolin, the mechanical properties of the modified composites exhibit higher tensile strength, bending strength, impact strength and melt index simultaneously. The DTPA modification of kaolin overall enhances the mechanical properties of PP composites. It meets the requirements in various applications, and makes the modified experiment interesting in modern teaching.

  9. X-ray diffraction and thermal analysis of kaolins particle size fractions

    Directory of Open Access Journals (Sweden)

    Patricia dos Santos

    2013-09-01

    Full Text Available Kaolins are common geological materials and have high concentrations of kaolinite as well as the clay fraction of tropical and subtropical soils of Brazil. The characterization of kaolin is a proxy of assessing the contribution of kaolinite to important soil chemical and mineralogical attributes. This study evaluated four kaolins (commercial kaolin A (CCA, commercial kaolin B (CCB, pink sandy kaolin A (CRA and green sandy kaolin A (CVA in the original form and after particle size separation into: sand (200-53 mm, coarse silt (53-20 m, fine silt (20-2 m, large clay (2-1m, medium clay (1-0.5 m and fine clay (<0.5m fractions. The minerals were identified by X-ray diffraction (XRD and evaluated for crystallinity (kaolinite and halloysite through indexes Hughes and Brown, Amigó, Bramão and the dehydroxylation temperature. The physical fractionation was efficient to concentrate minerals in specific size fractions which were not identified in the original material. In CCA kaolin was concentrated one mineral which remains unidentified in fine fractions, in kaolin CRA, zircon was concentrated in the coarse silt and different silicates in the fine fractions, in kaolin CCB were concentrated kaolinite and a silicate in the medium and coarse clay fractions. The estimate by X-ray diffraction overestimated the amount of kaolinite and halloysite underestimated when compared to quantification by thermal gravimetric analysis The crystallinity index exhibit different behaviors depending on the mineralogy of each material, thus the correlation between the crystallinity of kaolinite and / or halloysite and other variables, may be compromised, especially in materials with distinct geological origins.

  10. Waste characterization emanated from kaolin submitted the improvement to process hydrocycloning

    International Nuclear Information System (INIS)

    Barbosa Neto, M.C.; Nunes, A.S.; Caetano, A.L.A.; Marques, V.C.; Macedo, D.A.; Ferreira, H.S.; Dutra, R.P.S.

    2016-01-01

    The hydrocyclones are equipment commonly used for separation of particles by size. The resulting material of this process usually presents different characteristics of the material, which was not subjected to treatment. Therefore, a study of the waste characteristics derived from kaolin processing submitted to hydrocycloning process compared to the same residue without going through the process was executed. The different samples were characterized by X-ray diffraction, X-ray fluorescence, particle size analysis and thermal analysis. The results indicate that the hydrocycloning not modify the mineralogical structure nor chemical material. The particle size analysis identified that the fine fraction, resulting from the process, presented particle size lower than the reference material. (author)

  11. Associated minerals and their influence on the optical properties of jordanian kaolin

    International Nuclear Information System (INIS)

    Awwad, A. M.; Ahmad, R.; Alsyouri, H.

    2009-01-01

    Kaolin samples from AL-Disi kaolin deposits in southeastren of Jordan are associated with mineral impurities, wich impart color to this kaolin and adverseely affect its application in paper and paint industries. The associated mineral impurities with kaolin were separated by deflocculating particles in polymeric sodium polyphosphate solution. The crude kaolin, deflocculated kaolin (suspended kaolin), and the associated mineral impurities with kaolin (residue) were determined by X-ray flourescence, X-ray diffraction, FTIR spectroscopy, and spectroscopic studies. The composition of the residue separated from Al-Disi kaolin composed mainaly from quartz, feldspar, and hematite. The separation of these associated mineral impurities from al-Disi kaolin by deflocculating process improves the brightness of kaolin to be suitable for processing to produce kaolin that meets specifications for paper making, filler, cosmetics and other uses that demand high whiteness and low impurity content . (authors).

  12. Chemical treatment of kaolin. Case study of kaolin from the Tamazert– Jijel mine

    Directory of Open Access Journals (Sweden)

    Mohamed Chouafa

    2016-01-01

    Full Text Available The Tamazert-Jijel kaolin deposit is located in eastern Algeria, It was formed during a process of hydro-thermal alteration of feldspars rich in potassium. Kaolin, obtained at the mine, mainly contains varying amounts of impurities such as iron oxide (Fe2O3 and anatase (TiO2. These components negatively affect the quality of the commercial product. This research was performed to improve the quality of kaolin to be used in the paper industry with the goal of reducing the impurities of iron and titanium oxides. Different sized fractions of the original sample were analyzed by XRD. The results obtained showed that the mineralogical composition is: quartz, muscovite, kaolinite, dolomite, albite and orthoclase. Kaolin, like all clays, has a thin dissemination of minerals throughout it. After processing kaolin, the particle size fraction of less than 45μm, corresponding to the liberation mesh size, was retained for purification by chemical treatment with different acids of different concentrations (hydrochloric acid, sulfuric acid, acetic acid, heated to boiling point temperatures. The kaolin samples treated with the various acids above were analyzed by X-ray fluorescence and by XRD. The results obtained from the sample treated with hydrochloric acid show that the iron oxide content of acid is reduced by 1.65% to 0.88%. Meanwhile, the brightness of the sample reached 90% under the effect of the treatment with hydrochloric acid at concentration of 2 mole/dm3.

  13. Adsorption characteristics of brilliant green dye on kaolin

    International Nuclear Information System (INIS)

    Nandi, B.K.; Goswami, A.; Purkait, M.K.

    2009-01-01

    Experimental investigations were carried out to adsorb toxic brilliant green dye from aqueous medium using kaolin as an adsorbent. Characterization of kaolin is done by measuring: (i) particle size distribution using particle size analyzer, (ii) BET surface area using BET surface analyzer, and (iii) structural analysis using X-ray diffractometer. The effects of initial dye concentration, contact time, kaolin dose, stirring speed, pH and temperature were studied for the adsorption of brilliant green in batch mode. Adsorption experiments indicate that the extent of adsorption is strongly dependent on pH of solution. Free energy of adsorption (ΔG 0 ), enthalpy (ΔH 0 ) and entropy (ΔS 0 ) changes are calculated to know the nature of adsorption. The calculated values of ΔG 0 at 299 K and 323 K indicate that the adsorption process is spontaneous. The estimated values of ΔH 0 and ΔS 0 both show the negative sign, which indicate that the adsorption process is exothermic and the dye molecules are organized on the kaolin surface in less randomly fashion than in solution. The adsorption kinetic has been described by first-order, pseudo-second-order and intra-particle-diffusion models. It was observed that the rate of dye adsorption follows pseudo-second-order model for the dye concentration range studied in the present case. Standard adsorption isotherms were used to fit the experimental equilibrium data. It was found that the adsorption of brilliant green on kaolin follows the Langmuir adsorption isotherm

  14. Comparing Kaolin and Pinolene to Improve Sustainable Grapevine Production during Drought.

    Science.gov (United States)

    Brillante, Luca; Belfiore, Nicola; Gaiotti, Federica; Lovat, Lorenzo; Sansone, Luigi; Poni, Stefano; Tomasi, Diego

    2016-01-01

    Viticulture is widely practiced in dry regions, where the grapevine is greatly exposed to water stress. Optimizing plant water use efficiency (WUE) without affecting crop yield, grape and wine quality is crucial to limiting use of water for irrigation and to significantly improving viticulture sustainability. This study examines the use in vineyards of particle film technology (engineered kaolin) and compares it to a film-forming antitranspirant (pinolene), traditionally used to limit leaf water loss, and to an untreated control. The trial was carried out under field conditions over three growing seasons, during which moderate to very severe plant water stress (down to -1.9 MPa) was measured through stem water potential. Leaf stomatal conductance (gs) and photosynthesis rate (An) were measured during the seasons and used to compute intrinsic WUE (WUEi, defined as An/gs ratio). Leaf temperature was also recorded and compared between treatments. Bunch quantity, bunch and berry weight, sugar accumulation, anthocyanin and flavonoid contents were measured. Finally, microvinifications were performed and resultant wines subjected to sensory evaluation.Results showed that the use of kaolin increased grapevine intrinsic WUE (+18% on average as compared to unsprayed vines) without affecting berry and bunch weight and quantity, or sugar level. Anthocyanin content increased (+35%) in kaolin treatment, and the wine was judged more attractive (p-value wine was the least appreciated. This study demonstrates that particle film technology can improve vine WUEi and wine quality at the same time, while traditional antitranspirants were not as effective for these purposes. This positive effect can be used in interaction with other already-demonstrated uses of particle film technology, such as pest control and sunburn reduction, in order to achieve more sustainable vineyard management.

  15. Particle film affects black pecan aphid (Homoptera: Aphididae) on pecan.

    Science.gov (United States)

    Cottrell, Ted E; Wood, Bruce W; Reilly, Charles C

    2002-08-01

    Three species of aphids attack pecan foliage, Carya illinoensis (Wang.) K. Koch, and cause economic damage. We tested a kaolin-based particle film against one of these aphid species, black pecan aphid, Melanocallis caryaefoliae (Davis). Effect of particle film on host selection, adult mortality, and production of nymphs by M. caryaefoliae was tested on seedling pecans in the laboratory. Fewer M. caryaefoliae adults selected treated foliage compared with untreated foliage. A higher percentage of adults that did select treated foliage were recovered from upper leaf surfaces compared with the percentage of adults recovered from upper leaf surfaces of untreated leaves. Observations with a microscope revealed an accumulation of particle film on aphid body parts, especially on tarsi, and strongly suggests that aphid mobility was restricted. Adult mortality was higher on treated foliage and led to an overall decrease in production of nymphs on those seedlings. In addition, we measured spectral properties of treated seedling pecan foliage. Light reflectance by treated foliage was increased and absorptance decreased compared with control foliage whereas transmittance of light through control and particle film-treated leaves was similar. We did not detect any phytotoxic effect on pecan due to application of particle film.

  16. Comparing Kaolin and Pinolene to Improve Sustainable Grapevine Production during Drought

    OpenAIRE

    Brillante, Luca; Belfiore, Nicola; Gaiotti, Federica; Lovat, Lorenzo; Sansone, Luigi; Poni, Stefano; Tomasi, Diego

    2016-01-01

    Viticulture is widely practiced in dry regions, where the grapevine is greatly exposed to water stress. Optimizing plant water use efficiency (WUE) without affecting crop yield, grape and wine quality is crucial to limiting use of water for irrigation and to significantly improving viticulture sustainability. This study examines the use in vineyards of particle film technology (engineered kaolin) and compares it to a film-forming antitranspirant (pinolene), traditionally used to limit leaf wa...

  17. Method removing radioactivity from kaolin

    International Nuclear Information System (INIS)

    Conley, R.F.

    1978-01-01

    A method of reducing the radioactivity found in naturally occurring kaolins to about 40% below its native value, and the leachable radiogenic components to less than 20% is described. This reduction is achieved by removing from the kaolin particles of a size less than 0.5 microns. This removal may be carried out by gravitational settling, flocculation of non-colloidal particles, or acid leaching

  18. Comparing Kaolin and Pinolene to Improve Sustainable Grapevine Production during Drought.

    Directory of Open Access Journals (Sweden)

    Luca Brillante

    Full Text Available Viticulture is widely practiced in dry regions, where the grapevine is greatly exposed to water stress. Optimizing plant water use efficiency (WUE without affecting crop yield, grape and wine quality is crucial to limiting use of water for irrigation and to significantly improving viticulture sustainability. This study examines the use in vineyards of particle film technology (engineered kaolin and compares it to a film-forming antitranspirant (pinolene, traditionally used to limit leaf water loss, and to an untreated control. The trial was carried out under field conditions over three growing seasons, during which moderate to very severe plant water stress (down to -1.9 MPa was measured through stem water potential. Leaf stomatal conductance (gs and photosynthesis rate (An were measured during the seasons and used to compute intrinsic WUE (WUEi, defined as An/gs ratio. Leaf temperature was also recorded and compared between treatments. Bunch quantity, bunch and berry weight, sugar accumulation, anthocyanin and flavonoid contents were measured. Finally, microvinifications were performed and resultant wines subjected to sensory evaluation.Results showed that the use of kaolin increased grapevine intrinsic WUE (+18% on average as compared to unsprayed vines without affecting berry and bunch weight and quantity, or sugar level. Anthocyanin content increased (+35% in kaolin treatment, and the wine was judged more attractive (p-value <0.05 and slightly more appreciated (p-value < 0.1 than control. Pinolene did not increase WUEi, limiting An more than gs; grapes with this treatment contained lower sugar and anthocyanin content than control, and the obtained wine was the least appreciated. This study demonstrates that particle film technology can improve vine WUEi and wine quality at the same time, while traditional antitranspirants were not as effective for these purposes. This positive effect can be used in interaction with other already

  19. DMC-grafted cellulose as green-based flocculants for agglomerating fine kaolin particles

    Directory of Open Access Journals (Sweden)

    Meng Li

    2018-04-01

    Full Text Available Novel cellulose based flocculants C-g-P (DMC with various chain architectures are synthesized through a situ graft copolymerization. The cationic ammonium chloride group (DMC is grafted onto cellulose by two separate inverse emulsion polymerization with γ-methacryloxypropyl trimethoxy silane (KH-570 and double bond addition reactions, which is a new and simple method to employ KH-570 as a bridge for the connection of cellulose matrix and DMC group. The effects of pH, flocculant dose, standing time on turbidity of kaolin suspensions and particle sizes have been studied systematically. In addition, the response surface methodology (RSM study confirms that PAC and C-g-P (DMC have synergy in turbidity removal with a higher removal efficiency of 98.32%. Moreover, C-g-P (DMC 1 has higher removal efficiency with 96.5% at a low dosage of 0.6 mg L−1 and better floc properties than C-g-P (DMC 2 and C-g-P (DMC 3, suggesting that the length and quantity of cationic branch chains play a crucial role in Kaolin flocculation due to their dramatically enhanced bridging effects. Keywords: Cellulose, Cationic flocculant, Inverse emulsion polymerization, Kaolin suspension

  20. Deposition of waste kaolin in aluminum alloy by electrolytic plasma technique

    International Nuclear Information System (INIS)

    Palinkas, Fabiola Bergamasco da Silva Marcondes; Antunes, Maria Lucia Pereira; Cruz, Nilson Cristino; Rangel, Elidiane Cipriano; Souza, Jose Antonio da Silva

    2016-01-01

    Full text: Kaolin is a widely explored mineral for various industrial purposes and its processing generates up to 90% of waste, corresponding to 500 thousand tons annually. The Deposition of Kaolin residue on aluminum alloys by electrolytic plasma has objective of a valorization of the residue. It was evaluated the mineralogical composition by X-ray diffraction (XRD), using PANalytical diffractometer X'Pert Pro. The scanning electron microscopy (SEM) and the spectrometry of dispersive of energy (EDS) evaluated the morphology and elementary chemical composition by microscope scanning electron JEOL JSM-6010LA. The Infrared Spectroscopy (FTIR) has used a Spectrometer the Perkin-Elmer 1760X FT-IR with spectral range 4000-400 cm -1 . XRD results indicate peaks of kaolinite as the main constituent. The morphology of the particles correspond to pseudo-hexagonal lamellar crystals characteristic of kaolinite, analysis by EDS allows to identify the composition of the particles as Al and Si. The samples were deposited at concentrations of 5, 10 and 15 mg of the residue and each concentration were considered deposition times of 5, 10 and 15 minutes. Tests evaluate the films as the wettability, chemical composition, morphology, mechanical strength and corrosion resistance. Results indicate the presence of kaolinite, alumina and mullite in the obtained coatings. (author)

  1. Surface modification of calcined kaolin with toluene diisocyanate based on high energy ball milling

    International Nuclear Information System (INIS)

    Yuan, Yongbing; Chen, Hongling; Lin, Jinbin; Ji, Yan

    2013-01-01

    The surface of calcined kaolin particle was modified with toluene diisocyanate (TDI) by using high energy ball milling. The prepared hybrids were characterized by FT-IR, MAS NMR, thermal analysis (TGA-DSC), static water contact angle (CA), apparent viscosity and transmission electron microscopy (TEM). FT-IR and MAS NMR spectra demonstrated that TDI molecules were chemically anchored to kaolin surface after modification. The results of thermal analysis showed that the maximum grafting ratio reached up to 446.61% when the mass ratio of TDI/kaolin was 0.5:1.0, and CA measurements revealed that the resultant hybrids exhibited strong hydrophobicity (148.82°). Apparent viscosity and TEM were employed to examine the dispersion properties of blank and modified kaolin particles in poly (dimenthylsiloxane) matrix. The results illustrated that the dispersion stability depended strongly on the grafting ratio of TDI, neither too low nor too high achieved uniform and stable dispersion, and the favorable grafting ratio was obtained when the mass ratio of TDI/kaolin was 0.2:1.0. Further modification of TDI/kaolin (mass ration of TDI/kaolin, 1.0:1.0) particles with bis(aminopropyl)-terminated-poly(dimethylsiloxane) (APS) was also investigated. TEM evidenced that the dispersion properties of the obtained TDI/APS/kaolin particles were remarkably improved in octamethyl cyclotetrasiloxane compared with the original TDI/kaolin particles.

  2. Surface modification of calcined kaolin with toluene diisocyanate based on high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yongbing; Chen, Hongling, E-mail: hlchen@njut.edu.cn; Lin, Jinbin; Ji, Yan

    2013-11-01

    The surface of calcined kaolin particle was modified with toluene diisocyanate (TDI) by using high energy ball milling. The prepared hybrids were characterized by FT-IR, MAS NMR, thermal analysis (TGA-DSC), static water contact angle (CA), apparent viscosity and transmission electron microscopy (TEM). FT-IR and MAS NMR spectra demonstrated that TDI molecules were chemically anchored to kaolin surface after modification. The results of thermal analysis showed that the maximum grafting ratio reached up to 446.61% when the mass ratio of TDI/kaolin was 0.5:1.0, and CA measurements revealed that the resultant hybrids exhibited strong hydrophobicity (148.82°). Apparent viscosity and TEM were employed to examine the dispersion properties of blank and modified kaolin particles in poly (dimenthylsiloxane) matrix. The results illustrated that the dispersion stability depended strongly on the grafting ratio of TDI, neither too low nor too high achieved uniform and stable dispersion, and the favorable grafting ratio was obtained when the mass ratio of TDI/kaolin was 0.2:1.0. Further modification of TDI/kaolin (mass ration of TDI/kaolin, 1.0:1.0) particles with bis(aminopropyl)-terminated-poly(dimethylsiloxane) (APS) was also investigated. TEM evidenced that the dispersion properties of the obtained TDI/APS/kaolin particles were remarkably improved in octamethyl cyclotetrasiloxane compared with the original TDI/kaolin particles.

  3. Synthesis and characterization of kaolin with polystyrene via in-situ polymerization and their application on polypropylene

    International Nuclear Information System (INIS)

    Zhao, Songfang; Qiu, Shangchang; Zheng, Yuying; Cheng, Lei; Guo, Yong

    2011-01-01

    To improve both the mechanical and thermal properties of kaolin/polypropylene (PP) composites, kaolin was modified by using 3-(trimethoxysilyl) propylmethacrylate (YDH-570) as a coupling agent to form polymerizable particle. Styrene was radically polymerized through the immobilized vinyl using benzoyl peroxide (BPO) as an initiator. Fourier transform-infrared (FTIR) spectroscopy, particle size distribution, X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA) well demonstrated that the kaolin-polystyrene particles were successfully synthesized via in-situ polymerization. While the modified kaolin and raw kaolin were introduced into the PP matrix, it could be concluded that modified kaolin/PP composites have better mechanical and thermal properties than raw kaolin/PP composites, and these improvements were attributed to the desirable dispersion of kaolin in PP matrix.

  4. Use of kaolin waste for production os soil-lime blocks

    International Nuclear Information System (INIS)

    Anjos, C.M. dos; Neves, G.A.

    2011-01-01

    There is an evident growth in waste generation over the last decades, especially in developing countries. The mining industry produces large quantities and different kinds and levels of dangerousness, such as the kaolin processing industry, which produces waste based on silica, mica and kaolinite. Disposal of this material in an inappropriate location causes significant environmental impacts, which could be minimized with the use of waste as raw material for use in construction. This paper has as main objective to study the incorporation of the kaolin processing waste into soil-lime. The residues of kaolin were calcined at a temperature of 800 ° C for evaluation of pozzolanic activity. Raw materials and conventional alternatives were characterized by means of test particle size analysis by laser diffraction, chemical analysis, X-ray diffraction. Then, blocks conventional soil-lime and soil-lime with the introduction of residual kaolin in proportions of 10%, 20%, 30% and 40% were cast and cured in a moist chamber for periods of 28, 60 and 90 days. The technological tests of compressive strength results obtained within the specifications of the ABNT. The best results were for 90 days of healing and 20% residue. (author)

  5. Particle morphology and mineral structure of heavy metal-contaminated kaolin soil before and after electrokinetic remediation.

    Science.gov (United States)

    Roach, Nicole; Reddy, Krishna R; Al-Hamdan, Ashraf Z

    2009-06-15

    This study aims to characterize the physical distribution of heavy metals in kaolin soil and the chemical and structural changes in kaolinite minerals that result from electrokinetic remediation. Three bench-scale electrokinetic experiments were conducted on kaolin that was spiked with Cr(VI) alone, Ni (II) alone, and a combination of Cr(VI), Ni(II) and Cd(II) under a constant electric potential of 1VDC/cm for a total duration of 4 days. Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses were performed on the soil samples before and after electrokinetic remediation. Results showed that the heavy metal contaminant distribution in the soil samples was not observable using TEM and EDX. EDX detected nickel and chromium on some kaolinite particles and titanium-rich, high-contrast particles, but no separate phases containing the metal contaminants were detected. Small amounts of heavy metal contaminants that were detected by EDX in the absence of a visible phase suggest that ions are adsorbed to kaolinite particle surfaces as a thin coating. There was also no clear correlation between semiquantitative analysis of EDX spectra and measured total metal concentrations, which may be attributed to low heavy metal concentrations and small size of samples used. X-ray diffraction analyses were aimed to detect any structural changes in kaolinite minerals resulting from EK. The diffraction patterns showed a decrease in peak height with decreasing soil pH value, which indicates possible dissolution of kaolinite minerals during electrokinetic remediation. Overall this study showed that the changes in particle morphology were found to be insignificant, but a relationship was found between the crystallinity of kaolin and the pH changes induced by the applied electric potential.

  6. Particle morphology and mineral structure of heavy metal-contaminated kaolin soil before and after electrokinetic remediation

    International Nuclear Information System (INIS)

    Roach, Nicole; Reddy, Krishna R.; Al-Hamdan, Ashraf Z.

    2009-01-01

    This study aims to characterize the physical distribution of heavy metals in kaolin soil and the chemical and structural changes in kaolinite minerals that result from electrokinetic remediation. Three bench-scale electrokinetic experiments were conducted on kaolin that was spiked with Cr(VI) alone, Ni (II) alone, and a combination of Cr(VI), Ni(II) and Cd(II) under a constant electric potential of 1 VDC/cm for a total duration of 4 days. Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses were performed on the soil samples before and after electrokinetic remediation. Results showed that the heavy metal contaminant distribution in the soil samples was not observable using TEM and EDX. EDX detected nickel and chromium on some kaolinite particles and titanium-rich, high-contrast particles, but no separate phases containing the metal contaminants were detected. Small amounts of heavy metal contaminants that were detected by EDX in the absence of a visible phase suggest that ions are adsorbed to kaolinite particle surfaces as a thin coating. There was also no clear correlation between semiquantitative analysis of EDX spectra and measured total metal concentrations, which may be attributed to low heavy metal concentrations and small size of samples used. X-ray diffraction analyses were aimed to detect any structural changes in kaolinite minerals resulting from EK. The diffraction patterns showed a decrease in peak height with decreasing soil pH value, which indicates possible dissolution of kaolinite minerals during electrokinetic remediation. Overall this study showed that the changes in particle morphology were found to be insignificant, but a relationship was found between the crystallinity of kaolin and the pH changes induced by the applied electric potential.

  7. Nitrate Adsorption on Clay Kaolin: Batch Tests

    Directory of Open Access Journals (Sweden)

    Morteza Mohsenipour

    2015-01-01

    Full Text Available Soils possessing kaolin, gibbsite, goethite, and hematite particles have been found to have a natural capacity to attenuate pollution in aqueous phase. On the other hand, the hydroxyl group in soil increases anion exchange capacity under a low pH condition. The main objective of this paper was to evaluate effects of kaolin on nitrate reduction under acidic condition. In order to analyze the kaolin adsorption behaviour under various conditions, four different concentrations of nitrate, 45, 112.5, 225, and 450 mgNO3-/L, with a constant pH equal to 2, constant temperature equal to 25°C, and exposure period varying from 0 to 150 minutes were considered. The capacity of nitrate adsorption on kaolin has also been studied involving two well-known adsorption isotherm models, namely, Freundlich and Longmuir. The results revealed that approximately 25% of the nitrate present in the solution was adsorbed on clay kaolin. The laboratory experimental data revealed that Freundlich adsorption isotherm model was more accurate than Longmuir adsorption model in predicting of nitrate adsorption. Furthermore, the retardation factor of nitrate pollution in saturated zone has been found to be approximately 4 in presence of kaolin, which indicated that kaolin can be used for natural scavenger of pollution in the environment.

  8. Potassium Capture by Kaolin, Part 1: KOH

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao

    2018-01-01

    -capture level. The effect of reaction temperature,K-concentration in the flue gas, and, thereby, molar ratio of K/(Al+Si) in reactants, gas residence time, and solid particle size on K-capture reaction was systematically investigated. Corresponding equilibrium calculations were conducted with FactSage 7.......0. The experimental results showed that kaolin reached almost full conversion to K-aluminosilicates under suspension-fired conditions at 1100–1450 °C for a residence time of 1.2 s and a particle size of D50 = 5.47 μm. The amount of potassium captured by kaolin generally followed the equilibrium at temperatures above...

  9. Usability of Particle Film Technology and Water Holding Materials to Improve Drought Tolerance in Gossypium hirsutum L. Plants

    Science.gov (United States)

    Roy, K.; Zwieniecki, M.

    2017-12-01

    Cotton (Gossypium hirsutum L.) is relatively drought resistant and thus is planted widely in many semi-arid and arid parts of the world, many of which are usually deprived of modern water management technologies. Since the productivity of cotton plants depends on water availability, we carried out the present research aiming at testing two different low cost and arid-environment friendly water efficient techniques: application of particle film technology on leaves to reduce the transpiration rate (kaolin dust), and use of organic material to improve the soil water holding capacity (cotton wool). In details, kaolin (3% and 5%; weight:volume) mixed in water was sprayed on the upper surface of the leaves of young plants, and small amounts of cotton wool (0.1%, 0.3% and 0.5%; weight:weight) were mixed into the soils. The study showed that kaolin spray was useful as a transpiration reducing agent only if plants have adequate water in the soil (well irrigated) but not under water stress conditions. In addition, mixing a small amount of cotton wool into the soil can significantly increase the amount of water available to the plants, and extend the benefit of kaolin application on plants.

  10. Infrared detection of the mineralogical aspects that influence the processing of calcined kaolin

    Science.gov (United States)

    Groenheide, Stefan; Guatame-Garcia, Adriana; Buxton, Mike; van der Werff, Harald

    2017-04-01

    Calcined kaolin is an industrial minerals product used in the production of paper, paint, rubber and other specialty applications. It is produced from kaolinite through a series of refinement steps and final calcination at temperatures of above 900°C, with the aim of generating a whiter and more abrasive material. The raw kaolin ore is a mixture of clay minerals, quartz and feldspars, where kaolinite is the main constituent. The optimal kaolin ores to feed the processing plant should ideally have high kaolinite abundance, be free in Fe-bearing mineralogy (to avoid influence in the colour of the product), and the kaolinite itself should be of high crystallinity (to ensure the correct abrasiveness after calcination). This work presents a case study from the kaolin deposits in the St. Austell Granite (South-West England), which are known for their high quality and world-class size. In this area, the kaolin is of primary-hydrothermal origin, with mineral associations that are related to the genetic history. The eventual depletion of the high-quality reserves is bringing now the attention to the lower grade zones, where the amount of impurities increases. As a consequence, it is critical to developing strategies that ensure the supply of high-quality ore to the processing plant. For this, it is necessary to acquire a thorough knowledge of the ore, including relative abundance of the minerals and their textural relationships. Hyperspectral images in the visible-near infrared (VNIR) and short-wave infrared (SWIR) ranges were collected from drill cores and run-off-mine (ROM) samples, obtained from one of the kaolin pits in the St. Austell area, where the kaolin quality is known to be lower than in the rest of the deposit. A series of mineral maps were generated to assess the distribution, texture and abundance of the Fe-bearing mineralogy and the other kaolin-associated minerals, as well as the variations in the crystallinity of kaolinite. The mineral maps enabled the

  11. Study of a Particle Based Films Cure Process by High-Frequency Eddy Current Spectroscopy

    Directory of Open Access Journals (Sweden)

    Iryna Patsora

    2016-12-01

    Full Text Available Particle-based films are today an important part of various designs and they are implemented in structures as conductive parts, i.e., conductive paste printing in the manufacture of Li-ion batteries, solar cells or resistive paste printing in IC. Recently, particle based films were also implemented in the 3D printing technique, and are particularly important for use in aircraft, wind power, and the automotive industry when incorporated onto the surface of composite structures for protection against damages caused by a lightning strike. A crucial issue for the lightning protection area is to realize films with high homogeneity of electrical resistance where an in-situ noninvasive method has to be elaborated for quality monitoring to avoid undesirable financial and time costs. In this work the drying process of particle based films was investigated by high-frequency eddy current (HFEC spectroscopy in order to work out an automated in-situ quality monitoring method with a focus on the electrical resistance of the films. Different types of particle based films deposited on dielectric and carbon fiber reinforced plastic substrates were investigated in the present study and results show that the HFEC method offers a good opportunity to monitor the overall drying process of particle based films. Based on that, an algorithm was developed, allowing prediction of the final electrical resistance of the particle based films throughout the drying process, and was successfully implemented in a prototype system based on the EddyCus® HFEC device platform presented in this work. This prototype is the first solution for a portable system allowing HFEC measurement on huge and uneven surfaces.

  12. Mineralogical characteristics of Cretaceous-Tertiary kaolins of the Douala Sub-Basin, Cameroon

    Science.gov (United States)

    Bukalo, Nenita N.; Ekosse, Georges-Ivo E.; Odiyo, John O.; Ogola, Jason S.

    2018-05-01

    As a step in evaluating the quality of Cretaceous-Tertiary kaolins of the Douala Sub-Basin, their mineralogical characteristics were determined. The X-ray diffractometry technique was used to identify and quantify the mineral phases present in bulk and smectite > illite, with mean values of 33.01 > 11.20 > 4.41 wt %; and 72.23 > 10.69 > 4.69 wt %, in bulk and <2 μm fractions, respectively. The kaolins, micromorphologically, consisted of pseudo-hexagonal and thin platy particles; swirl-textured particles; and books or stacks of kaolinite particles. Three main reactions occurred during heating of the kaolins: a low temperature endothermic reaction, observed between 48 and 109 °C; a second low temperature peak, observed between 223 and 285 °C; and a third endothermic peak was found between 469 and 531 °C. In addition, an exothermic reaction also occurred between 943 and 988 °C in some of the samples. The absence of primary minerals such as feldspars and micas in most of these kaolins is an indication of intensive weathering, probably due to the humid tropical climate of the region. The different morphologies suggested that these kaolins might have been transported. Therefore, a humid tropical climate was responsible for the formation of Cretaceous-Tertiary kaolins of the Douala Sub-Basin through intense weathering of surrounding volcanic and metamorphic rocks.

  13. Mineralogical variation in the size fractions of a Ranong kaolin, southern Thailand

    Science.gov (United States)

    Pisutha-Arnond, Visut; Phuvichit, Suraphol; Leepowpanth, Quanchai

    A representative crude Ranong kaolin from the Thungkla-Ranong mine was separated into > 2 mm (granule), 2-1 mm (very coarse sand), 1-0.5 mm (coarse sand), 0.5-0.25 mm (medium sand), 0.25-0.125 mm (fine sand), 0.125-0.062 mm (very fine sand) and 62-28, 28-14, 17-7, 7-4, 4-2, 2-1 and dispersive X-ray spectrometer (EDX). Kaolin group minerals were differentiated by using XRD in combination with various chemical and heat treatments together with TEM, SEM and DTA. The Ranong kaolin consists predominantly of tubular halloysite, poorly crystallized kaolinite and quartz with minor amounts of mica and K-feldspars. Other trace constituents include gibbsite, tourmaline, zircon and colored impurities (i.e. extractable iron hydroxide coating on clay mineral surface). The kaolin minerals are found in all size fractions by which their contents and halloysite/kaolinite ratios increase as the particle sizes become finer. Quartz and mica are also detected in almost all size fractions. They are, however, more abundant with coarsening particle size. Gibbsite, K-feldspar and tourmaline are mainly concentrated in the fine sand to silt size fractions. Crystallinity of kaolin minerals as measured by XRD varied moderately with size. Relatively pure kaolin minerals, predominantly halloysite and kaolinite, can be obtained in the particle size below 1 or 2 μm.

  14. Waste characterization emanated from kaolin submitted the improvement to process hydrocycloning; Caracterizacao do residuo provindo do beneficiamento do caulim submetido ao processo de hidrociclonagem

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa Neto, M.C.; Nunes, A.S.; Caetano, A.L.A.; Marques, V.C.; Macedo, D.A.; Ferreira, H.S.; Dutra, R.P.S., E-mail: netobarbosa.2@gmail.com [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Engenharia de Materiais

    2016-07-01

    The hydrocyclones are equipment commonly used for separation of particles by size. The resulting material of this process usually presents different characteristics of the material, which was not subjected to treatment. Therefore, a study of the waste characteristics derived from kaolin processing submitted to hydrocycloning process compared to the same residue without going through the process was executed. The different samples were characterized by X-ray diffraction, X-ray fluorescence, particle size analysis and thermal analysis. The results indicate that the hydrocycloning not modify the mineralogical structure nor chemical material. The particle size analysis identified that the fine fraction, resulting from the process, presented particle size lower than the reference material. (author)

  15. Sintering mechanism of blast furnace slag-kaolin ceramics

    International Nuclear Information System (INIS)

    Mostafa, Nasser Y.; Shaltout, Abdallah A.; Abdel-Aal, Mohamed S.; El-maghraby, A.

    2010-01-01

    A general ceramics processing scheme by cold uniaxial pressing and conventional sintering process have been used to prepare ceramics from mixtures of blast furnace slag (BFS) and kaolin (10%, 30% and 50% kaolin). The properties of the ceramics were studied by measuring linear shrinkage, bulk density, apparent porosity and mechanical properties of samples heated at temperatures from 800 o C to 1100 o C. The formed crystalline phases were characterized using X-ray diffraction (XRD) and scanning electron microscope (SEM). Slag melt formed at relatively low temperatures (800-900 o C) modified the sintering process to liquid phase sintering mechanism. Combination of BFS with 10% kaolin gave the highest mechanical properties, densification and shrinkage at relatively low firing temperatures. The crystalline phases were identified as gehlenite (Ca 2 Al 2 SiO 7 ) in both BFS and BFS with 10% kaolin samples. Anorthite (CaAl 2 Si 2 O 8 ) phase increased with increasing kaolin contents. In the case of kaolin-rich mixtures (30% and 50% kaolin), increased expansion took place during firing at temperatures in the range 800-1000 o C. This effect could be attributed to the entrapment of released gases.

  16. Removal of Phenol in Aqueous Solution Using Kaolin Mineral Clay

    International Nuclear Information System (INIS)

    Sayed, M.S.

    2008-01-01

    Kaolin clay were tested for phenol removal as toxic liquid waste from aqueous waste water. Several experimental conditions such as weight and particle size of clay were investigated to study batch kinetic techniques, also the ph and concentration of the phenol solution were carried out. The stability of the Langmuir adsorption model of the equilibrium data were studied for phenol sorbent clay system. Infrared spectra, thermogravimetric and differential thermal analysis techniques were used to characterize the behavior of kaolin clay and kaolin clay saturated with phenol. The results obtained showed that kaolin clay could be used successfully as an efficient sorbent material to remove phenol from aqueous solution

  17. Treatment of Waste Lubricating Oil by Chemical and Adsorption Process Using Butanol and Kaolin

    Science.gov (United States)

    Riyanto; Ramadhan, B.; Wiyanti, D.

    2018-04-01

    Treatment of waste lubricating oil by chemical and adsorption process using butanol and kaolin has been done. Quality of lubricating oil after treatment was analysis using Atomic Absorption Spectrophotometer (AAS) and Gas Chromatography-Mass Spectrometry (GC-MS). The effects of the treatment of butanol, KOH, and kaolin to metals contain in waste lubricating oil treatment have been evaluated. Treatment of waste lubricating oil has been done using various kaolin weight, butanol, and KOH solution. The result of this research show metal content of Ca, Mg, Pb, Fe and Cr in waste lubricating oil before treatment are 1020.49, 367.02, 16.40, 36.76 and 1,80 ppm, respectively. The metal content of Ca, Mg, Pb, Fe and Cr in the waste lubricating oil after treatment are 0.17, 9.85, 34.07, 78.22 and 1.20 ppm, respectively. The optimum condition for treatment of waste lubricating oil using butanol, KOH, and kaolin is 30 mL, 3.0 g and 1.5 g, respectively. Chemical and adsorption method using butanol and kaolin can be used for decrease of metals contain in waste lubricating oil.

  18. Evaluation of the potential of waste processing of secondary kaolin of Para for use in porcelain

    International Nuclear Information System (INIS)

    Junior, V.G.L.; Fernandes, L.L.; Fagury Neto, E.; Rabelo, A.A.

    2012-01-01

    The kaolin waste evaluated is characterized as secondary due be coming from the steps of centrifugation, magnetic separation, bleaching and filtering, which gives a ratio which provides a significant residue, about 26% of their gross, that is intended for embankments. This study aimed to evaluate the potential of reusing the kaolin waste processing from Imerys RCC in the region of Barcarena (PA) in formulation of ceramic bodies for porcelain tiles production, seeking to property of maximum water absorption of 0.5 % for this type of product. The residue from the production of kaolin had been previously characterized by X-ray diffraction and there is a significant amount of kaolinite concentration. After the ceramic processing to obtain the test specimens with different amounts of residue replacing the kaolin, these were sintered using 1200, 1220 and 1240 °C for 2 hours. The formulations were evaluated by water absorption, linear firing shrinkage and modulus of rupture at a three-point bending setup of the pieces produced. (author)

  19. 1.7. Acid decomposition of kaolin clays of Ziddi Deposit. 1.7.1. The hydrochloric acid decomposition of kaolin clays and siallites

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Mirzoev, D.Kh.; Boboev, Kh.E.

    2016-01-01

    Present article of book is devoted to hydrochloric acid decomposition of kaolin clays and siallites. The chemical composition of kaolin clays and siallites was determined. The influence of temperature, process duration, acid concentration on hydrochloric acid decomposition of kaolin clays and siallites was studied. The optimal conditions of hydrochloric acid decomposition of kaolin clays and siallites were determined.

  20. Free-Standing and Self-Crosslinkable Hybrid Films by Core–Shell Particle Design and Processing

    Directory of Open Access Journals (Sweden)

    Steffen Vowinkel

    2017-11-01

    Full Text Available The utilization and preparation of functional hybrid films for optical sensing applications and membranes is of utmost importance. In this work, we report the convenient and scalable preparation of self-crosslinking particle-based films derived by directed self-assembly of alkoxysilane-based cross-linkers as part of a core-shell particle architecture. The synthesis of well-designed monodisperse core-shell particles by emulsion polymerization is the basic prerequisite for subsequent particle processing via the melt-shear organization technique. In more detail, the core particles consist of polystyrene (PS or poly(methyl methacrylate (PMMA, while the comparably soft particle shell consists of poly(ethyl acrylate (PEA and different alkoxysilane-based poly(methacrylates. For hybrid film formation and convenient self-cross-linking, different alkyl groups at the siloxane moieties were investigated in detail by solid-state Magic-Angle Spinning Nuclear Magnetic Resonance (MAS, NMR spectroscopy revealing different crosslinking capabilities, which strongly influence the properties of the core or shell particle films with respect to transparency and iridescent reflection colors. Furthermore, solid-state NMR spectroscopy and investigation of the thermal properties by differential scanning calorimetry (DSC measurements allow for insights into the cross-linking capabilities prior to and after synthesis, as well as after the thermally and pressure-induced processing steps. Subsequently, free-standing and self-crosslinked particle-based films featuring excellent particle order are obtained by application of the melt-shear organization technique, as shown by microscopy (TEM, SEM.

  1. Effect of surface modified kaolin on properties of polypropylene grafted maleic anhydride

    Science.gov (United States)

    Yang, Ni; Zhang, Zuo-Cai; Ma, Ning; Liu, Huan-Li; Zhan, Xue-Qing; Li, Bing; Gao, Wei; Tsai, Fang-Chang; Jiang, Tao; Chang, Chang-Jung; Chiang, Tai-Chin; Shi, Dean

    To achieve reinforcement of mechanical and thermal performances of polypropylene (PP) product, this work aimed at fabrication of surface modified kaolin (M-kaolin) filled polypropylene grafted maleic anhydride (PP-g-MAH) composites with varying contents of fillers and investigation of their mechanical and thermal properties. And the prepared PP-g-MAH/M-kaolin composites were characterized by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Fracture analysis by SEM showed M-kaolin particles were well dispersed in the PP-g-MAH matrix. Mechanical behaviors were determined by tensile strength, tensile strain at break and impact strength analysis. Impact strength of PP-g-MAH/2 wt% M-kaolin composites was improved up to 30% comparing with unfilled composites. Thermostability had been found enhanced when M-kaolin added. The results revealed PP-g-MAH/M-kaolin composites showed the optimal thermal and mechanical properties when 2 wt% of M-kaolin was added.

  2. Characterization of kaolin wastes from kaolin mining industry from the amazon region as raw material for pozzolans production

    International Nuclear Information System (INIS)

    Barata, M.S.; Angelica, R.S.

    2012-01-01

    Capim and Jari are the two most important kaolin mining districts of the Brazilian Amazon region. They encompass the major Brazilian reserves of high quality kaolin for the paper coating industry. The kaolin is mined and processed by three major companies responsible for about 500,000 ton of a residue mainly composed of kaolinite. The wastes come mainly from the centrifugation phase of the kaolin beneficiation process and their final destinations are huge sedimentation basins that occupy large areas. The main purpose of this work is to evaluate the physical, chemical and mineralogical characteristics of the kaolin wastes processed from the Capim and Jari region, in order to obtain meta kaolinite, a high reactive pozzolans for the cement industry. When incorporated to ordinary Portland cement such pozzolans increases the concrete and mortars performance. All the residues studied in this work were characterized by means of: X-ray diffraction analysis, differential thermal analysis, infrared spectroscopy, scanning electron microscopy, X-ray fluorescence spectrometry and laser diffraction. Both residues are mainly constitutes by at least 92% of low granulometry kaolinite with specific surface area above 8 m2 /g and mean diameter below 1 μm. Free silica (quartz) contents are below 3%. The high concentration of kaolinite in these residues dispenses rigid control parameters for removal of impurities usually employed in pozzolans production. The Jari kaolin exhibits high disordered kaolinite in comparison with the high ordered kaolinite of the Capim region and gives rise to higher desidroxilation degree at lower temperatures. It points to energy saving and reducing costs during the production of a pozzolans. The results are satisfactory and reveal that both kaolin wastes are excellent raw material for the production of high reactive meta kaolin. (author)

  3. Rheological and Thermal Behavior of Polypropylene-Kaolin Composites

    International Nuclear Information System (INIS)

    Teng, S.T.; Nor Azura Abdul Rahim; Lan, D.N.U

    2014-01-01

    Kaolins effect on rheological behaviour of polypropylene-kaolin composites was investigated. The research found that not only the kaolin content influence the rheological behaviour but also the compounding using internal mixer and twin screw extruder. In details, viscosity and shear stress increased with addition of kaolin content. These characteristics also exhibited higher in polypropylene-kaolin composite suspensions compounded using twin screw extruder than using internal mixer. Chain scission was assumed to occur and affect the melt properties. Further justification characterized by Differential Scanning Calorimeter (DSC) showed that the effect of kaolin and loading content were more evident on the onset melting temperature and crystallinity. Besides, due to the different cooling operation in both processes, the effect of compounding on melting characteristic was conspicuous. (author)

  4. Sample size clay kaolin of primary in pegmatites regions Junco Serido - PB and Equador - RN

    International Nuclear Information System (INIS)

    Meyer, M.F.; Sousa, J.B.M.; Sales, L.R.; Silva, P.A.S.; Lima, A.D.D.

    2016-01-01

    Kaolin is a clay formed mainly of kaolinite resulting from feldspar weathering or hydrothermal. This study aims to investigate the way of occurrence, kaolin particle size of the pegmatites of the Borborema Province Pegmatitic in the regions of Junco do Serido-PB and Ecuador-RN. These variables were analyzed considering granulometric intervals obtained from wet sieving of samples of pegmatite mines in the region. Kaolin was received using sieves of 200, 325, 400 and 500 mesh and the sieve fractions retained by generating statistical parameters histograms. kaolin particles are extremely fine and pass in its entirety through 500 mesh sieve. The characterization of minerals in fine fractions by diffraction of X-rays showed that the relative amount of sericite in fractions retained in sieves 400 and 500 mesh impairing the whiteness and mineralogical texture kaolin production. (author)

  5. Fluoride retention by kaolin clay

    DEFF Research Database (Denmark)

    Kau, P. M. H.; Smith, D. W.; Binning, Philip John

    1997-01-01

    To evaluate the potential effectiveness of kaolin clay liners in storage of fluoride contaminated waste, an experimental study of the sorption and desorption behaviour of fluoride in kaolin clay was conducted. The degree of fluoride sorption by kaolin was found to depend on solution p......H and available fluoride concentration with equilibrium being achieved within 24 h. A site activation process involving the uptake of fluoride was also observed at the initial stages of sorption. This behaviour was attributed to a layer expansion process of the clay during sorption. The maximum fluoride sorption...... capacity was found to be 18.3 meq/100 g at pH 6 and 8.6 meq/100 g at pH 7. A competitive Langmuir sorption isotherm where sorption is dependant on both pH and fluoride concentration is employed to characterise the experimental sorption and desorption data. The sorption and desorption isotherms revealed...

  6. XANES at the silicon k-edge in the kaolin-meta kaolin-geopolymer system

    International Nuclear Information System (INIS)

    Lima, F.T.; Silva, F.J.; Thaumaturgo, C.

    2005-01-01

    The geo polymer synthesis process optimization pretends to control the re logical and mechanical properties. The Al/Si ratio is the main variable that governs the geo polymerization process. This control occurs by changing temperature, pressure and chemical composition of the geo polymer. Thermal analysis (DTA/DSC), microscopic (SEM/TEM) and spectroscopic (FTIR, XRD, SAXS, EXAFS and XANES) techniques have been used to characterize these inorganic systems. In this work, XANES spectra of the k-edge silicon (Si) of the kaolin-meta kaolin-geo polymer are presented. The XANES spectra provides the oxidation state and structural information about the present studied atom: Silicon (Si). (author)

  7. Facile Fabrication of a Hierarchical Superhydrophobic Coating with Aluminate Coupling Agent Modified Kaolin

    OpenAIRE

    Hui Li; Mengnan Qu; Zhe Sun; Jinmei He; Anning Zhou

    2013-01-01

    A superhydrophobic coating was fabricated from the dispersion of unmodified kaolin particles and aluminate coupling agent in anhydrous ethanol. Through surface modification, water contact angle of the coating prepared by modified kaolin particles increased dramatically from 0° to 152°, and the sliding angle decreased from 90° to 3°. Scanning electron microscopy was used to examine the surface morphology. A structure composed of micro-nano hierarchical component, combined with the surface modi...

  8. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials

    International Nuclear Information System (INIS)

    Lv, Peizhao; Liu, Chenzhen; Rao, Zhonghao

    2016-01-01

    Highlights: • Different particle sizes of kaolin were employed to load paraffin. • The effects and reasons of particle size on thermal conductivity were studied. • Thermal property and thermal stability of the composites were investigated. • The leakage and thermal storage and release rate of the composites were studied. • The effect of vacuum impregnation method on thermal conductivity was investigated. - Abstract: In this paper, different particle sizes of kaolin were employed to incorporate paraffin via vacuum impregnation method. The paraffin/kaolin composites were characterized by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimeter (DSC) and Thermogravimetry (TG). The results showed that the paraffin/kaolin composite with the largest particle size of kaolin (K4) has the highest thermal conductivity (0.413 W/(m K) at 20 °C) among the diverse composites. The latent heat capacity of paraffin/K4 is 119.49 J/g and the phase change temperature is 62.4 °C. In addition, the thermal properties and thermal conductivities of paraffin/K4 with different mass fraction of K4 (0–60%) were investigated. The thermal conductivities of the composites were explained in microcosmic field. The phonon mean free path determines the thermal conductivity, and it can be significantly affected by temperature and the contact surface area. The leaks, thermal storage and release properties of pure paraffin and paraffin/kaolin composites were investigated and the composites presented good thermal stabilities.

  9. The contribution of lateritization processes to the formation of the kaolin deposits from eastern Amazon

    Science.gov (United States)

    da Costa, Marcondes Lima; Sousa, Daniel José Lima; Angélica, Rômulo Simões

    The eastern region of the Amazon is home to the most important kaolin bauxite producing district in Brazil, referred to as the Paragominas-Capim kaolin bauxite district, which has a reserve of at least 1.0 billion tons of high-quality kaolin used in the paper coating industry. The kaolin deposits are closely related to sedimentary rocks of the Parnaíba basin and their lateritic cover. Two large deposits are already being mined: IRCC (Ipixuna) and PPSA (Paragominas). The geology of the IRCC mine is comprised of the kaolin-bearing lower unit (truncated mature laterite succession derived from the Ipixuna/Itapecuru formation) and the upper unit (immature lateritized Barreiras formation). The lower kaolin unit is characterized by a sandy facies at the bottom and a soft (ore) with flint facies at the top. It is formed by kaolinite, quartz, some iron oxi-hydroxides, mica and several accessories and heavy minerals. The mangrove covering; and immature lateritization - partial kaolin ferruginization during the Pleistocene.

  10. Synthesis and characterization of mesoporous NaY zeolite from natural Blitar’s kaolin

    Science.gov (United States)

    Khalifah, S. N.; aini, Z. N.; Hayati, E. K.; Aini, N.; Prasetyo, A.

    2018-03-01

    Mesoporous NaY Zeolite has been synthesized from calcined natural Blitar’s kaolin with the addition of NaOH and CTABr surfactant as mesoporous template by hydrothermal method. Natural kaolin was calcinated with different time and temperature to change kaolin to metakaolin. X-ray diffraction data showed that mesoporous NaY zeolite was formed with impurities compound of sodalite, kaolin and quartz phases. The BET analysis resulted that the pore of NaY Zeolite belongs to mesoporous type with pore size 9,421 nm. Characterization from FTIR confirmed about the functional group of zeolites (988, 776, 663, 464 cm-1). Scanning electron microscopy characterization showed that the morphological of mesoporous NaY zeolites have uniform and crystalline particles formed.

  11. PHYSICAL PROPERTIES OF KAOLIN/SAND SLURRY USED DURING SUBMERSIBLE MIXER PUMP TESTS AT TNX

    International Nuclear Information System (INIS)

    HANSEN, ERICH

    2005-01-01

    The purpose of this task is to characterize the physical properties of the kaolin/sand slurries used during the testing of a new submersible mixer pump (SMP) which had undergone performance testing at the TNX Waste Tank mockup facility from July 2004 through May 2005. During this time period, four identical SMPs were subjected to various water tests and four different tests using different batches of kaolin/sand slurries. The physical properties of the kaolin/sand slurries were measured for three of the four tests. In these tests, three different sample locations were used to pull samples, the SMP cooling water exit (CWE), the SMP fluid flow field (FFF), and SMP effective cleaning radius (ECR). The physical properties measured, though not for each sample, included rheology, weight percent total solids (wt% TS), density, kaolin/sand slurry particle size distribution (PSD), weight percent and particles size distribution of material greater than 45 microns

  12. ADSORPTION OF GIBBERELLIC ACID ONTO NATURAL KAOLIN FROM TATAKAN, SOUTH KALIMANTAN

    Directory of Open Access Journals (Sweden)

    Sunardi Sunardi

    2010-06-01

    Full Text Available Adsorption of gibberellic acid (GA3 onto raw and purified kaolin from Tatakan, South Kalimantan was investigated in this study. Purification process was done by sedimentation to obtain relative pure kaolinite. Raw and purified kaolin samples were characterized by Fourier transformed infrared (FTIR spectroscopy and X-ray diffractometer (XRD. The adsorption process was carried out in a batch system and the effect of pH, contact time and GA3 concentration were experimentally studied to evaluate the adsorption capacity. The amount of GA3 adsorbed was determined by UV spectrophotometer. The result showed that the raw kaolin from South Kalimantan consist of 53.36% kaolinite, 29.47% halloysite, 4.47% chlorite, 11.32% quartz and 1.38% christobalite and the purified kaolin consist of 73.03% kaolinite, 22.6% halloysite, 0.77% chlorite, 1.37% quartz and 2.23% christobalite Adsorption experimental indicate that the optimum adsorption took place at pH 7 and contact time for 4 h. Adsorption of GA3 was described by the Langmuir adsorption isotherm model with adsorption capacity of 8.91 mg/g on raw kaolin and 10.38 mg/g on purified kaolin.   Keywords: kaolin, gibberellic acid, adsorption

  13. Characterization of kaolin dispersion using acoustic and electroacoustic spectroscopy

    Directory of Open Access Journals (Sweden)

    Dohnalová Ž.

    2008-01-01

    Full Text Available The objective of this work is the investigation of the kaolin dispersion by the ultrasonic techniques. In contact with aqueous solution clay minerals show cation - exchange properties and certain degree of dissolution or rather selective leaching of components. The work is divided into two main parts - determination of zeta potential and particle size distribution. The first part is focused on measuring of zeta potential. Effects of concentration of solid, different kind of electrolytes (0.01 M KCl, 0.01 M MgCl2 and 0.01 M CaCl2, pH and temperature of the dispersions are investigated. The isoelectric points (IEP of kaolin suspension are about pH 4-5. Electrolytes containing monovalent cations such as K+ become zeta potential more negative compared to the values obtained with water. Such behavior is explained by the exchange of K+ ions with H+ ions in the system. When the electrolyte is formed by divalent cations such as Mg2+ or Ca2+, the values of zeta potential become less negative than zeta potential of kaolin in water. The second part is focused on the determination of particle size distribution with respect to dispersing conditions, such as the optimal dispersing agent (Na2SiO3, (NaPO36, Na4P2O7 or Busperse, time and power of ultrasonication and also the tracking of dispersion stability that is expressed by the measuring of particle size distribution during certain time period.

  14. A Study on Kaolin and Titanium dioxide affecting Physical Properties of Electrocoating

    International Nuclear Information System (INIS)

    Yang, Wonseog; Hwang, Woonsuk

    2013-01-01

    The electrocoating for automotive bodies is pigmented with a mixture of titanium dioxide and kaolin. In this study, the effects of titanium dioxide and kaolin contents in coating on electrodeposition process, drying, and surface properties such as surface roughness, gloss, impact resistance and corrosion resistance were investigated. Titanium dioxide and kaolin in coating do not have a decisive effect on curing reaction during drying and corrosion resistance but on gloss, surface roughness, impact resistance and electrodeposition process of coating. According to its size and shape on coating surface, pigment contents increased during drying process. However, the contents of kaolin and TiO 2 in coating didn't affect the corrosion resistance on zinc phosphated substrate, and the curing properties

  15. Contemporary technology of enrichment of Angren deposit of kaolins. I. Using a ultrasonic dispersion for shallowing of raw materials

    International Nuclear Information System (INIS)

    Krivorotov, V.F.; Usmanov, Zh.M.; Fridman, A.A.

    2012-01-01

    Optimal parameters of ultrasonic dispersion at enrichment of Angren kaolins are presented. It has been stated that the granule sizes of the kaolin-powder produced by this technology are 0.15-4.0 μm, and 75% of particles have sizes 0.15-1.5 μm. The whiteness of the kaolin-powder amounts 80 - 82%. (authors)

  16. Physical properties and chemical composition of Segamat Kaolin, Johor, Malaysia

    International Nuclear Information System (INIS)

    Umar Hamzah; Learn, K.K.; Sahibin Rahim

    2010-01-01

    Kaolin is a source of secondary mineral as a product of a weathering process of primary minerals. Its main component is fine grain kaolinite (< 2 μm) and it also contains other elements such as aluminium and iron phyllosilicate as the pigment. Aluminium rich kaolin is light in colour with high plasticity and is normally used in the ceramic, plastic, paint, paper, pesticide, pharmacology and cosmetic industries. The physical and chemical characteristics of kaolins are important for its potential application. In this study, about 25 kaolin samples were hand-augered from depths of 1-2 m at Buloh Kasap Segamat, Johor, Malaysia. Chemical analysis carried out included determination of oxides and types of minerals by X-ray diffraction and X-ray fluorescence. Shrinkage rate, rupture modulus and water absorption rate tests were carried out in the physical properties analysis. Plastic and liquid limits of the kaolin were also measured for plastic index. The Segamat kaolin was light in colour due to its high silicate composition. The highest mineral content in the kaolin was kaolinite and quartz occurred as impurities. The low shrinkage rate showed that the kaolin was dense with little voids, hence very suitable for use in the ceramic industry. This kaolin has low water absorption, plasticity and durable according to the rupture modulus test. (author)

  17. 21 CFR 186.1256 - Clay (kaolin).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Clay (kaolin). 186.1256 Section 186.1256 Food and... Substances Affirmed as GRAS § 186.1256 Clay (kaolin). (a) Clay (kaolin) Al2O3.2SiO2.nH2O, Cas Reg. No. 1332-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain...

  18. Kaolin

    Science.gov (United States)

    Virta, R.L.

    2013-01-01

    Nineteen companies mined kaolin in eight states in 2012. Production, on the basis of preliminary data, was estimated to be 5.88 Mt (6.48 million st) valued at $841 million, an increase from 5.77 Mt (6.36 million st) valued at $817 million in 2011. Production in Georgia, the top producing state, increased to an estimated 5.45 Mt (6.01 million st) valued at $804 million in 2012 from 5.34 Mt (5.89 million st) valued at $781 million in 2011. Georgia accounted for 93 percent of U.S. production tonnage and nearly the entire domestic water-washed, delaminated and pigment-grade calcined kaolin production.

  19. Study of the sodalite Bayer synthesis process from reject of kaolin of the Amazon region, Brazil

    International Nuclear Information System (INIS)

    Maia, A.A.B.; Neves, R.F.; Angelica, R.S.; Pöllmann, H.

    2011-01-01

    This work presents an application for the kaolin rejects from Amazonia through the synthesis of sodalite, in addition, the series of sodalites was synthesized with the same conditions of the Bayer process to understand and control their formation when necessary. These tailings are generated by companies located in the state of Para and are mainly composed of kaolinite, thus forming an excellent starting material for the production of zeolites. The synthesis process was carried out in autoclaves and two synthesis temperatures, 150 and 200 deg C, were evaluated, the same ones used in the Bayer process. The anions used in the reaction mixture to obtain the sodalite series were: carbonate chloride and sulfate, and NaOH solution was used as the sodium source. Sodalite was produced in all the synthesis conditions, showing that through the kaolin rejects from the Amazon it was possible to study the sodalite synthesis process.

  20. Bacterial cellulose–kaolin nanocomposites for application as biomedical wound healing materials

    International Nuclear Information System (INIS)

    Wanna, Dwi; Alam, Parvez; Alam, Catharina; Toivola, Diana M

    2013-01-01

    This short communication provides preliminary experimental details on the structure–property relationships of novel biomedical kaolin–bacterial cellulose nanocomposites. Bacterial cellulose is an effective binding agent for kaolin particles forming reticulated structures at kaolin–cellulose interfaces and entanglements when the cellulose fraction is sufficiently high. The mechanical performance of these materials hence improves with an increased fraction of bacterial cellulose, though this also causes the rate of blood clotting to decrease. These composites have combined potential as both short-term (kaolin) and long-term (bacterial cellulose) wound healing materials. (paper)

  1. 1.7.2. The hydrochloric acid decomposition of pre-baked kaolin clays and siallites

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Mirzoev, D.Kh.; Boboev, Kh.E.

    2016-01-01

    Present article of book is devoted to hydrochloric acid decomposition of pre-baked kaolin clays and siallites. The chemical composition of kaolin clays and siallites was determined. The influence of temperature, process duration, acid concentration on hydrochloric acid decomposition of pre-baked kaolin clays and siallites was studied. The optimal conditions of hydrochloric acid decomposition of pre-baked kaolin clays and siallites were determined.

  2. Facile Fabrication of a Hierarchical Superhydrophobic Coating with Aluminate Coupling Agent Modified Kaolin

    Directory of Open Access Journals (Sweden)

    Hui Li

    2013-01-01

    Full Text Available A superhydrophobic coating was fabricated from the dispersion of unmodified kaolin particles and aluminate coupling agent in anhydrous ethanol. Through surface modification, water contact angle of the coating prepared by modified kaolin particles increased dramatically from 0° to 152°, and the sliding angle decreased from 90° to 3°. Scanning electron microscopy was used to examine the surface morphology. A structure composed of micro-nano hierarchical component, combined with the surface modification by aluminate coupling agent which reduced the surface energy greatly, was found to be responsible for the superhydrophobicity. The method adopted is relatively simple, facile, and cost-effective and can potentially be applied to large water-repellent surface coatings.

  3. Facile Selective and Diverse Fabrication of Superhydrophobic, Superoleophobic-Superhydrophilic and Superamphiphobic Materials from Kaolin.

    Science.gov (United States)

    Qu, Mengnan; Ma, Xuerui; He, Jinmei; Feng, Juan; Liu, Shanshan; Yao, Yali; Hou, Lingang; Liu, Xiangrong

    2017-01-11

    As the starting material, kaolin is selectively and diversely fabricated to the superhydrophobic, superoleophobic-superhydrophilic, and superamphiphobic materials, respectively. The wettability of the kaolin surface can be selectively controlled and regulated to different superwetting states by choosing the corresponding modification reagent. The procedure is facile to operate, and no special technique or equipment is required. In addition, the procedure is cost-effective and time-saving and the obtained super-repellent properties are very stable. The X-ray photoelectron spectroscopy analysis demonstrates different changes of kaolin particles surfaces which are responsible for the different super-repellency. The scanning electron microscopy displays geometric micro- and nanometer structures of the obtained three kinds of super-repellent materials. The results show that kaolin has good applications in many kinds of superwetting materials. The method demonstrated in this paper provides a new strategy for regulating and controlling the wettability of solid surfaces selectively, diversely, and comprehensively.

  4. Synthesis of microporous material faujasite-type from kaolin waste

    International Nuclear Information System (INIS)

    Hildebrando, E.A.; Valenzuela-Diaz, F.R.; Angelica, R.S.; Neves, R.F.

    2010-01-01

    Zeolite with structure faujasite was synthesized using kaolin waste from kaolin processing industries for paper coating as predominant source of silicon and aluminum; the starting material was characterized by XRF, XRD, DTA/TG, SEM, and products obtained by XRD and SEM. Synthesis in hydrothermal conditions occurred on autoclave and time-temperature effects, as well as the relationship Si/Al were considered. The results show that the methodology developed with the waste of calcined kaolin reacting at 90 deg C for 20 hours in an alkaline medium, in the presence of an additional source of silica was obtained zeolite Y as single phase present in the product. (author)

  5. Mussel inspired preparation of amine-functionalized Kaolin for effective removal of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiang; Liu, Meiying; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China); Huang, Hongye; Xu, Dazhuang; Zeng, Guangjian [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wei, Yen [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-09-15

    Adsorption has been well regarded as a promising and efficient method for the removal of low concentration heavy metal ions in aqueous solutions. And kaolin has been considered as a kind of low cost and environment-friendly adsorbent for its abundant in nature. But the low adsorption capacity to heavy metal ions and severe aggregation in solution restrains its application. In this work, an environment-friendly adsorbent (denoted as Kaolin-PDA-PEI) was prepared based on mussel inspired chemistry and Michael addition reaction between high reaction activity of polydopamine (PDA) and polyethyleneimine (PEI), which was possesses a number of amine groups. The amine groups have displayed strong adsorption affinity towards copper ions. The successful modification of Kaolin by PDA and PEI was confirmed by a series of analyses, such as Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetry analysis and X-ray photoelectron spectroscopy. The effects of various parameters such as contact time, pH, initial concentrations of copper ions and temperature on copper ion adsorption by Kaolin-PDA-PEI were investigated. Kaolin-PDA-PEI shows higher adsorption capacity as compared with the raw Kaolin. The kinetic adsorption data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The Langmuir isotherm and Freundlich isotherm equilibrium model were applied to adsorption isotherm data to find the better fit isotherm. The results showed that adsorption process was well fitted by Langmuir isotherm model. The values of thermodynamics constants such as entropy change (ΔS{sup 0}), enthalpy change (ΔH{sup 0}) and Gibbs free energy (ΔG{sup 0}) were also calculated. The results indicated that the adsorption process of Kaolin-PDA-PEI were endothermic and spontaneous. - Graphical abstract: Amino groups functionalized Kaolin was facilely prepared via mussel inspired chemistry. The modified Kaolin exhibited much

  6. Mussel inspired preparation of amine-functionalized Kaolin for effective removal of heavy metal ions

    International Nuclear Information System (INIS)

    Huang, Qiang; Liu, Meiying; Deng, Fengjie; Wang, Ke; Huang, Hongye; Xu, Dazhuang; Zeng, Guangjian; Zhang, Xiaoyong; Wei, Yen

    2016-01-01

    Adsorption has been well regarded as a promising and efficient method for the removal of low concentration heavy metal ions in aqueous solutions. And kaolin has been considered as a kind of low cost and environment-friendly adsorbent for its abundant in nature. But the low adsorption capacity to heavy metal ions and severe aggregation in solution restrains its application. In this work, an environment-friendly adsorbent (denoted as Kaolin-PDA-PEI) was prepared based on mussel inspired chemistry and Michael addition reaction between high reaction activity of polydopamine (PDA) and polyethyleneimine (PEI), which was possesses a number of amine groups. The amine groups have displayed strong adsorption affinity towards copper ions. The successful modification of Kaolin by PDA and PEI was confirmed by a series of analyses, such as Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetry analysis and X-ray photoelectron spectroscopy. The effects of various parameters such as contact time, pH, initial concentrations of copper ions and temperature on copper ion adsorption by Kaolin-PDA-PEI were investigated. Kaolin-PDA-PEI shows higher adsorption capacity as compared with the raw Kaolin. The kinetic adsorption data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The Langmuir isotherm and Freundlich isotherm equilibrium model were applied to adsorption isotherm data to find the better fit isotherm. The results showed that adsorption process was well fitted by Langmuir isotherm model. The values of thermodynamics constants such as entropy change (ΔS"0), enthalpy change (ΔH"0) and Gibbs free energy (ΔG"0) were also calculated. The results indicated that the adsorption process of Kaolin-PDA-PEI were endothermic and spontaneous. - Graphical abstract: Amino groups functionalized Kaolin was facilely prepared via mussel inspired chemistry. The modified Kaolin exhibited much enhanced adsorption

  7. Fire performance of fiber board coated with nano kaolin-clay film

    Science.gov (United States)

    Zhijia Liu; John F. Hunt; Zhiyong Cai

    2013-01-01

    Fiberboard is a common interior material used both in China and the United States of America. The increase in demand for interior materials has raised concerns regarding combustibility of the materials. The pyrolysis characteristics of fiber, phenolic resin (PF), and nano kaolin-clay (NK) were investigated using thermogravimetry. The fire performances of samples coated...

  8. Engineering Characteristics of Chemically Treated Water-Repellent Kaolin

    Directory of Open Access Journals (Sweden)

    Youngmin Choi

    2016-12-01

    Full Text Available Water-repellent soils have a potential as alternative construction materials that will improve conventional geotechnical structures. In this study, the potential of chemically treated water-repellent kaolin clay as a landfill cover material is explored by examining its characteristics including hydraulic and mechanical properties. In order to provide water repellency to the kaolin clay, the surface of clay particle is modified with organosilanes in concentrations (CO ranging from 0.5% to 10% by weight. As the CO increases, the specific gravity of treated clay tends to decrease, whereas the total organic carbon content of the treated clay tends to increase. The soil-water contact angle increases with an increase in CO until CO = 2.5%, and then maintains an almost constant value (≈134.0°. Resistance to water infiltration is improved by organosilane treatment under low hydrostatic pressure. However, water infiltration resistance under high hydrostatic pressure is reduced or exacerbated to the level of untreated clay. The maximum compacted dry weight density decreases with increasing CO. As the CO increases, the small strain shear modulus increases, whereas the effect of organosilane treatment on the constrained modulus is minimal. The results indicate that water-repellent kaolin clay possesses excellent engineering characteristics for a landfill cover material.

  9. Engineering Characteristics of Chemically Treated Water-Repellent Kaolin

    Science.gov (United States)

    Choi, Youngmin; Choo, Hyunwook; Yun, Tae Sup; Lee, Changho; Lee, Woojin

    2016-01-01

    Water-repellent soils have a potential as alternative construction materials that will improve conventional geotechnical structures. In this study, the potential of chemically treated water-repellent kaolin clay as a landfill cover material is explored by examining its characteristics including hydraulic and mechanical properties. In order to provide water repellency to the kaolin clay, the surface of clay particle is modified with organosilanes in concentrations (CO) ranging from 0.5% to 10% by weight. As the CO increases, the specific gravity of treated clay tends to decrease, whereas the total organic carbon content of the treated clay tends to increase. The soil-water contact angle increases with an increase in CO until CO = 2.5%, and then maintains an almost constant value (≈134.0°). Resistance to water infiltration is improved by organosilane treatment under low hydrostatic pressure. However, water infiltration resistance under high hydrostatic pressure is reduced or exacerbated to the level of untreated clay. The maximum compacted dry weight density decreases with increasing CO. As the CO increases, the small strain shear modulus increases, whereas the effect of organosilane treatment on the constrained modulus is minimal. The results indicate that water-repellent kaolin clay possesses excellent engineering characteristics for a landfill cover material. PMID:28774098

  10. Potassium Capture by Kaolin, Part 2: K2CO3, KCI, and K2SO4

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao

    2018-01-01

    residence time on the reaction was investigated. The results showed that the K-capture level (C-K) (g potassium reacted by per g kaolin available) of K2CO3 and KCI by kaolin generally followed the equilibrium predictions at temperatures above 1100 degrees C, when using a kaolin particle size of D50 = 5.......47 mu m and a residence time of 1.2 s. This revealed that a nearly full conversion was obtained without kinetic or transport limitations at the conditions applied. At 800 and 900 degrees C, the measured conversions were lower than the equilibrium predictions, indicating that the reactions were either...

  11. Technological properties of kaolin from Para

    International Nuclear Information System (INIS)

    Hildebrando, E.; Martin-Cortes, G.R.; Esper, F.J.; Wiebeck, H.; Alves Junior, P.; Valenzuela-Diaz, F.R.

    2011-01-01

    The NE of the State of Para, is notable for its large reserves of kaolin for paper. Kaolin is a mineral composed of hydrated aluminum silicates such as kaolinite and halloysite. The exploitation of these reserves to generate products with higher commercial value, especially in the industries of adsorbents and catalysts, is what motivates the continuous study of technological properties of the Amazon kaolin's. Thus, this paper presents a technological characterization of a sample of kaolin from Para State by X-ray diffraction, SEM - scanning electron microscopy and infrared spectroscopy. The results of preliminary tests indicate that the sample consists for the most part by kaolinite present in low concentrations of quartz and anatase. (author)

  12. Assessment of the adsorptive capacity of the Kaolin deposit targeting its use on the removal of colors in aqueous solution

    International Nuclear Information System (INIS)

    Matos, S.C.; Hildebrando, E.A.

    2016-01-01

    The Amazonic region has large and valuable kaolin deposits. The state of Para by itself comprises three large industries which process kaolin. It has been noticed that the waste resulting from the processing of kaolin is rich in silico-aluminate, presenting potential in adsorption processes. Thus, this research's objective is to assess the kaolin waste produced during the processing phase, aiming at its application as low cost adsorbent material. For that, the kaolin waste has been characterized by X-ray diffraction and chemical analysis (XRF), and then sieved and calcined at 700 ° C, being then subjected to the adsorption process and observed qualitatively its capacity of retention by methylene blue (AM). Preliminary results show that the kaolin waste has satisfactory adsorption capacity at concentrations of up to 50.0 mg / MP, demonstrating the potential that it be used in the removal of dyes in wastewater treatment. (author)

  13. Recent development of high gradient superconducting magnetic separator for kaolin in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zian; Wang, Meifen; Ning, Fei Peng; Yang, Huan; Zhang, Guoqing; Hou, Zhi Long; Liu, Zhaong Xiu; Dai, Zhong [Institute of High Energy Physics and University of Chinese Academy of Sciences, Beijing (China); Li, Pei Yong; Zhang, Yiting; Wang, Zhaolian [Weifang Xinli Superconducting Technology Co.,Ltd., Weifang (China)

    2017-03-15

    A series of high gradient superconducting magnetic separator (HGMS) for kaolin has been developed. It is used for processing kaolin to increase the brightness or whiteness whether it is for paper or ceramic applications. The HGMS system mainly consists of a solenoid magnet with a zero boil-off helium cryostat, a double reciprocating canisters system, and a PLC (Process Logic Controller) fully automatic control system based on SCADA (Supervisory Control and Data Acquisition) system. We have successfully developed CGC-5.5/300 and CGC-5.0/500 HGMS systems in the recent years, and now three sets of them are on-site operation in different customers. This paper will present recent progress of the HGMS system, the results of some experiments on processing kaolin clay used HGMS, and the on-site operation.

  14. Recent development of high gradient superconducting magnetic separator for kaolin in China

    International Nuclear Information System (INIS)

    Zhu, Zian; Wang, Meifen; Ning, Fei Peng; Yang, Huan; Zhang, Guoqing; Hou, Zhi Long; Liu, Zhaong Xiu; Dai, Zhong; Li, Pei Yong; Zhang, Yiting; Wang, Zhaolian

    2017-01-01

    A series of high gradient superconducting magnetic separator (HGMS) for kaolin has been developed. It is used for processing kaolin to increase the brightness or whiteness whether it is for paper or ceramic applications. The HGMS system mainly consists of a solenoid magnet with a zero boil-off helium cryostat, a double reciprocating canisters system, and a PLC (Process Logic Controller) fully automatic control system based on SCADA (Supervisory Control and Data Acquisition) system. We have successfully developed CGC-5.5/300 and CGC-5.0/500 HGMS systems in the recent years, and now three sets of them are on-site operation in different customers. This paper will present recent progress of the HGMS system, the results of some experiments on processing kaolin clay used HGMS, and the on-site operation

  15. Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers

    Directory of Open Access Journals (Sweden)

    B.B. Kenne Diffo

    2015-03-01

    Full Text Available Kaolin samples of the same mass were treated at 700 °C for the same duration of 30 min by varying the rate of calcination (1, 2.5, 5, 10, 15 and 20 °C/min in order to obtain metakaolins which were used to produce geopolymers. Depending on the nature of each type of material, kaolin, metakaolins and geopolymers were characterized using thermal analysis, chemical analysis, XRD, FTIR, particle size distribution, specific surface area, bulk density, setting time and compressive strength. FTIR and XRD analyses showed that metakaolins except at 1 °C/min contained residual kaolinite whose quantity increased with the rate of calcination of kaolin and which influenced the characteristics of geopolymers. Thus as the rate of calcination of kaolin increased, the setting time increased (226 min (rate of 1 °C/min–773 min (rate of 20 °C/min while the compressive strength reduced (49.4 MPa (rate of 1 °C/min–20.8 MPa (rate of 20 °C/min. From the obtained results the production of geopolymers having high compressive strength along with low setting time requires that the calcination of kaolin be carried out at a low rate.

  16. Viscosity of particle laden films

    Directory of Open Access Journals (Sweden)

    Timounay Yousra

    2017-01-01

    Full Text Available We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  17. Viscosity of particle laden films

    Science.gov (United States)

    Timounay, Yousra; Rouyer, Florence

    2017-06-01

    We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  18. Incorporation of feasibility study of residue thin kaolin in of porcelain formulations production

    International Nuclear Information System (INIS)

    Almeida, V.S. de; Ferreira, E.C.; Oliveira, T.M. de; Freitas, K.D. de Araujo; Soares Filho, J.E.; Sousa, F.J.P. de

    2016-01-01

    The porcelain is the more advanced product among traditional ceramics due to the high technology used in its manufacture and its excellent technological and aesthetic properties. Due to the continuing worldwide development, kaolin processing industries have increased their productivity and consequently generating large amounts of waste, contributing to environmental degradation. Studies are being conducted to analyze the incorporation of such wastes in the ceramic mass compositions. The objective of this study was to evaluate 4 formulations of porcelain as the possibility of using waste coming from the last stage of kaolin processing. Processing occurred by wet grinding process, with uniaxial compacting pressure of 45 MPa after heat treatment at 1250 ° C. Technological tests were carried out physical and mechanical product. The results showed that the addition of fine kaolin residue was presented as an efficient alternative for the porcelain industry. (author)

  19. Performance of Kaolin Clay on the Concrete Pavement

    Science.gov (United States)

    Abdullah, M. E.; Jaya, R. P.; Shahafuddin, M. N. A.; Yaacob, H.; Ibrahim, M. H. Wan; Nazri, F. M.; Ramli, N. I.; Mohammed, A. A.

    2018-05-01

    This paper investigates the performance of concrete pavement containing kaolin clay with their engineering properties and to determine the optimum kaolin clay content. The concrete used throughout the study was designed as grade 30 MPa strength with constant water to cement ratio of 0.49. The compressive strength, flexural strength and water absorption test was conducted in this research. The concrete mix designed with kaolin clay as cement replacement comprises at 0%, 5%, 10% and 15% by the total weight of cement. The results indicate that the strength of pavement concrete decreases as the percentage of kaolin clay increases. It also shows that the water absorption increases with the percentage of cement replacement. However, 5% kaolin clay is found to be the optimum level to replace cement in a pavement concrete.

  20. Rheological properties of kaolin and chemically simulated waste

    International Nuclear Information System (INIS)

    Selby, C.L.

    1981-12-01

    The Savannah River Laboratory is conducting tests to determine the best operating conditions of pumps used to transfer insoluble radioactive sludges from old to new waste tanks. Because it is not feasible to conduct these tests with real or chemically simulated sludges, kaolin clay is being used as a stand-in for the solid waste. The rheology tests described herein were conducted to determine whether the properties of kaolin were sufficiently similar to those of real sludge to permit meaningful pump tests. The rheology study showed that kaolin can be substituted for real waste to accurately determine pump performance. Once adequately sheared, kaolin properties were found to remain constant. Test results determined that kaolin should not be allowed to settle more than two weeks between pump tests. Water or supernate from the waste tanks can be used to dilute sludge on an equal volume basis because they identically affect the rheological properties of sludge. It was further found that the fluid properties of kaolin and waste are insensitive to temperature

  1. Behaviour of major, minor and trace elements (including REEs during kaolinization processes at Zonouz deposit, northeast of Marand, East Azarbaidjan province

    Directory of Open Access Journals (Sweden)

    Vahideh Alipour

    2011-11-01

    Full Text Available The Zonouz kaolin deposit is located ~15 km northeast of Marand, East-Azarbaidjan province. Based on physical features in field investigations, such as color, five distinct kaolin types including (1 white, (2 lemon, (3 gray, (4 brown, and (5 yellow are distinguished in the deposit. Field evidence and petrographic studies indicate that the deposit is genetically close to trachy-andesite rocks. According to mineralogical data, the deposit contains quartz, kaolinite, montmorillonite, calcite, pyrophyllite, chlorite, muscovite-illite, dolomite, hematite, and anatase minerals. Geochemical data indicate that function of alteration processes on trachy-andesite rocks during development of Zonouz ore deposit was accompanied by leaching of elements such as Al, Na, K, Rb, Ba, V, Hf, Cu, Zr, Tm, Yb, and Lu, enrichment of elements such as U, Nb, and Ta, and leaching-fixation of elements such as Si, Fe, Ca, Mg, Ti, Mn, P, Cs, Sr, Th, Co, Cr, Ni, Y, Ga, LREE, Tb, Dy, Ho, and Er. Incorporation of obtained results from mineralogical and geochemical studies show that physico-chemical conditions of alteration environment, the relative stability of primary minerals, surface adsorption, preferential sorption by metallic oxides, existing of organic matters, scavenging and concentration processes, and fixation in neomorphic mineralogical phases played important role in distribution of elements in the deposit. Geochemical studies show that development of the deposit is relative to two types of processes, (1 hypogene and (2 supergene. The distribution pattern of REEs indicates that differentiation degree of LREEs from HREEs in supergene kaolins is more than hypogene kaolins. Geochemical studies indicate that minerals such as Mn-oxides, zircon, anatase, hematite, cerianite, and secondary phosphates (monazite, rhabdophane, churchite, and zenotime are the potential hosts for rare earth elements in this deposit.

  2. Characterization of kaolin dispersion using acoustic and electroacoustic spectroscopy

    OpenAIRE

    Dohnalová Ž.; Svoboda L.; Šulcová P.

    2008-01-01

    The objective of this work is the investigation of the kaolin dispersion by the ultrasonic techniques. In contact with aqueous solution clay minerals show cation - exchange properties and certain degree of dissolution or rather selective leaching of components. The work is divided into two main parts - determination of zeta potential and particle size distribution. The first part is focused on measuring of zeta potential. Effects of concentration of solid, different kind of electrolytes (0.01...

  3. Molecular dynamics simulations of the embedding of a nano-particle into a polymer film

    International Nuclear Information System (INIS)

    Ochoa, J G Diaz; Binder, K; Paul, W

    2006-01-01

    In this work we report on molecular dynamics simulations of the embedding process of a nano-particle into a polymeric film as a function of temperature. This process has been employed experimentally in recent years to test for a shift of the glass transition of a material due to the confined film geometry and to test for the existence of a liquid-like layer on top of a glassy polymer film. The embedding process is governed thermodynamically by the prewetting properties of the polymer on the nano-particle. We show that the dynamics of the process depends on the Brownian motion characteristics of the nano-particle in and on the polymer film. It displays large sample to sample variations, suggesting that it is an activated process. On the timescales of the simulation an embedding of the nano-particle is only observed for temperatures above the bulk glass transition temperature of the polymer, agreeing with experimental observations on noble metal clusters of comparable size

  4. Entrained Flow Reactor Test of Potassium Capture by Kaolin

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    In the present study a method to simulate the reaction between gaseous KCl and kaolin at suspension fired condition was developed using a pilot-scale entrained flow reactor (EFR). Kaolin was injected into the EFR for primary test of this method. By adding kaolin, KCl can effectively be captured...

  5. Sample size clay kaolin of primary in pegmatites regions Junco Serido - PB and Equador - RN; Granulometria de argila caulim primario dos pegmatitos nas regioes do Junco do Serido - PB e Equador - RN

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.F.; Sousa, J.B.M.; Sales, L.R.; Silva, P.A.S.; Lima, A.D.D., E-mail: mauro.meyer@ifrn.edu.br [Instituto Federal do Rio Grande do Norte (IFRN), RN (Brazil)

    2016-07-01

    Kaolin is a clay formed mainly of kaolinite resulting from feldspar weathering or hydrothermal. This study aims to investigate the way of occurrence, kaolin particle size of the pegmatites of the Borborema Province Pegmatitic in the regions of Junco do Serido-PB and Ecuador-RN. These variables were analyzed considering granulometric intervals obtained from wet sieving of samples of pegmatite mines in the region. Kaolin was received using sieves of 200, 325, 400 and 500 mesh and the sieve fractions retained by generating statistical parameters histograms. kaolin particles are extremely fine and pass in its entirety through 500 mesh sieve. The characterization of minerals in fine fractions by diffraction of X-rays showed that the relative amount of sericite in fractions retained in sieves 400 and 500 mesh impairing the whiteness and mineralogical texture kaolin production. (author)

  6. Infrared Spectroscopic Study on Structural Change and Interfacial Interaction in Rubber Composites Filled with Silica-Kaolin Hybrid Fillers

    Science.gov (United States)

    Chen, Y.; Guan, J.; Hu, H.; Gao, H.; Zhang, L.

    2016-07-01

    A series of natural rubber/styrene butadiene rubber/polybutadiene rubber composites was prepared with nanometer silica and micron kaolin by a dry modification process, mechanical compounding, and mold vulcanization. Fourier transform infrared spectroscopy and a scanning electron microscope were used to investigate the structural changes and interfacial interactions in composites. The results showed that the "seesaw" structure was formed particularly with the incorporation of silica particles in the preparation process, which would be beneficial to the dispersibility of fillers in the rubber matrix. The kaolinite platelets were generally arranged in directional alignment. Kaolinite with smaller particle size and low-defect structure was more stable in preparation, but kaolinite with larger particle size and high defect structure tended to change the crystal structure. The composite prepared in this research exhibited excellent mechanical and thermal properties.

  7. Geochemistry of Selected Kaolins from Cameroon and Nigeria

    Directory of Open Access Journals (Sweden)

    Bukalo Nenita N.

    2017-12-01

    Full Text Available The geochemical characteristics of selected kaolins from Cameroon and Nigeria are presented, with an attempt to elucidate on their possible industrial applications by comparing them to world-known kaolin deposits. Major oxides concentrations were subjected to factor analyses in interpreting their relationships. Geochemical indices, including chemical index of alteration (CIA, chemical index of weathering (CIW and the index of compositional variability (ICV were computed and plotted on binary and ternary diagrams to determine the intensity of weathering of the kaolins and discriminate their different source rock types. Kaolinite was the major phase, followed by quartz, illite and goethite as minor phases. Minerals in trace phases included smectite, anatase, muscovite, gibbsite, microcline, palygorskite and calcite. Mean abundances of major oxides in wt% were: SiO2 (56.96>Al2O3 (24.09>Fe2O3 (3.78>TiO2 (1.53> K2O (1.26> MgO (0.27>CaO (0.20>Na2O (0.17>P2O5 (0.05>MnO (0.04. The CIW versus CIA and ICV versus CIA plots showed that most of the kaolins clearly depicted extreme silicate weathering. The current applications of kaolins from Cameroon and Nigeria include ceramics and manufacturing of bricks and tiles. Low MgO, CaO, Na2O, K2O and TiO2 further position the kaolins for pharmaceutics, cosmetics, rubber and plastic applications. Thus, the studied kaolins have the potential to contribute to improved economic development of these countries.

  8. Geochemistry of Selected Kaolins from Cameroon and Nigeria

    Science.gov (United States)

    Bukalo, Nenita N.; Ekosse, Georges-Ivo E.; Odiyo, John O.; Ogola, Jason S.

    2017-12-01

    The geochemical characteristics of selected kaolins from Cameroon and Nigeria are presented, with an attempt to elucidate on their possible industrial applications by comparing them to world-known kaolin deposits. Major oxides concentrations were subjected to factor analyses in interpreting their relationships. Geochemical indices, including chemical index of alteration (CIA), chemical index of weathering (CIW) and the index of compositional variability (ICV) were computed and plotted on binary and ternary diagrams to determine the intensity of weathering of the kaolins and discriminate their different source rock types. Kaolinite was the major phase, followed by quartz, illite and goethite as minor phases. Minerals in trace phases included smectite, anatase, muscovite, gibbsite, microcline, palygorskite and calcite. Mean abundances of major oxides in wt% were: SiO2 (56.96)>Al2O3 (24.09)>Fe2O3 (3.78)>TiO2 (1.53)> K2O (1.26)> MgO (0.27)>CaO (0.20)>Na2O (0.17)>P2O5 (0.05)>MnO (0.04). The CIW versus CIA and ICV versus CIA plots showed that most of the kaolins clearly depicted extreme silicate weathering. The current applications of kaolins from Cameroon and Nigeria include ceramics and manufacturing of bricks and tiles. Low MgO, CaO, Na2O, K2O and TiO2 further position the kaolins for pharmaceutics, cosmetics, rubber and plastic applications. Thus, the studied kaolins have the potential to contribute to improved economic development of these countries.

  9. Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process

    International Nuclear Information System (INIS)

    Wang, J.-Y.; Huang, X.-J.; Kao, Jimmy C.M.; Stabnikova, Olena

    2007-01-01

    Kaolins contaminated with heavy metals, Cu and Pb, and organic compounds, p-xylene and phenanthrene, were treated with an upward electrokinetic soil remediation (UESR) process. The effects of current density, cathode chamber flushing fluid, treatment duration, reactor size, and the type of contaminants under the vertical non-uniform electric field of UESR on the simultaneous removal of the heavy metals and organic contaminants were studied. The removal efficiencies of p-xylene and phenanthrene were higher in the experiments with cells of smaller diameter or larger height, and with distilled water flow in the cathode chamber. The removal efficiency of Cu and Pb were higher in the experiments with smaller diameter or shorter height cells and 0.01 M HNO 3 solution as cathode chamber flow. In spite of different conditions for removal of heavy metals and organics, it is possible to use the upward electrokinetic soil remediation process for their simultaneous removal. Thus, in the experiments with duration of 6 days removal efficiencies of phenanthrene, p-xylene, Cu and Pb were 67%, 93%, 62% and 35%, respectively. The experiment demonstrated the feasibility of simultaneous removal of organic contaminants and heavy metals from kaolin using the upward electrokinetic soil remediation process

  10. Flotation of kaolinite from tailings of kaolin-washing plants by cationic collectors

    OpenAIRE

    Barani Kianoush

    2016-01-01

    Traditional processing of kaolin is achieved by dispersion of the mined ore and classification by means of multistage hydrocyclones. The inefficiencies inherent to cyclones produce a middling product that is commonly disposed back to the quarry. In this research recovery of kaolinite from tailings of the Zonoupz kaolin washing plant, which is located in Iran, was investigated by cationic flotation. Flotation experiments showed that flotation of kaolinite from tailings was much better in an ac...

  11. Characterization of kaolin wastes from kaolin mining industry from the amazon region as raw material for pozzolans production; Caracterizacao dos residuos cauliniticos das industrias de mineracao de caulim da amazonia como materia-prima para producao de pozolanas de alta reatividade

    Energy Technology Data Exchange (ETDEWEB)

    Barata, M.S.; Angelica, R.S., E-mail: msb@amazon.com.br, E-mail: angelica@ufpa.br [Instituto de Geociencias, Universidade Federal do Para, Belem, PA (Brazil)

    2012-01-15

    Capim and Jari are the two most important kaolin mining districts of the Brazilian Amazon region. They encompass the major Brazilian reserves of high quality kaolin for the paper coating industry. The kaolin is mined and processed by three major companies responsible for about 500,000 ton of a residue mainly composed of kaolinite. The wastes come mainly from the centrifugation phase of the kaolin beneficiation process and their final destinations are huge sedimentation basins that occupy large areas. The main purpose of this work is to evaluate the physical, chemical and mineralogical characteristics of the kaolin wastes processed from the Capim and Jari region, in order to obtain meta kaolinite, a high reactive pozzolans for the cement industry. When incorporated to ordinary Portland cement such pozzolans increases the concrete and mortars performance. All the residues studied in this work were characterized by means of: X-ray diffraction analysis, differential thermal analysis, infrared spectroscopy, scanning electron microscopy, X-ray fluorescence spectrometry and laser diffraction. Both residues are mainly constitutes by at least 92% of low granulometry kaolinite with specific surface area above 8 m2 /g and mean diameter below 1 {mu}m. Free silica (quartz) contents are below 3%. The high concentration of kaolinite in these residues dispenses rigid control parameters for removal of impurities usually employed in pozzolans production. The Jari kaolin exhibits high disordered kaolinite in comparison with the high ordered kaolinite of the Capim region and gives rise to higher desidroxilation degree at lower temperatures. It points to energy saving and reducing costs during the production of a pozzolans. The results are satisfactory and reveal that both kaolin wastes are excellent raw material for the production of high reactive meta kaolin. (author)

  12. The hydrogen isotopic composition of kaolin minerals in Japan

    International Nuclear Information System (INIS)

    Marumo, Katsumi; Nagasawa, Keinosuke; Kuroda, Yoshimasu.

    1979-01-01

    Hydrogen isotopic composition (D/H ratio) was determined for kaolin minerals from geothermal areas and sedimentary and hydrothermal kaolin deposits in Japan. On the Ohnuma, Matsukawa, and Ohtake geothermal areas, the hydrogen isotopic fractionation factor between kaolin minerals and water was calculated to fall between 0.97 and 0.99 for the temperature range of 50 to 200 0 C, a fact which shows that the temperature of formation has no important effect on the D/H ratio of kaolin minerals. D/H ratio of kaolinites and dickites from many kaolin deposits shows local variation, and seems to correlate with isotopic variation of the present-day meteoric surface water. Exceptions are seen in some kaolin deposits such as Shokozan, Hiroshima Prefecture, where kaolinite and dickite have considerably high values of D/H ratio, and seem to have reacted with water rich in deuterium. D/H ratio of halloysite is not correlated with that of the present-day meteoric surface water. As Lawrence and Taylor (1971) pointed out, the original D/H ratio of constitutional water of halloysite is not preserved because of the isotopic exchange between the interlayer water and the constitutional water. (author)

  13. Mineralizer effects on mullite formation from kaolin processing wastes in Para-Brazil

    International Nuclear Information System (INIS)

    Martelli, Marlice Cruz; Angelica, Romulo Simoes; Neves, Roberto de Freitas

    2009-01-01

    Mullite is a relatively rare mineral in nature, formed under exceptional conditions of high temperature and pressure, which can be used to synthesize this mineral. Mullite presents good chemical and thermal stability among others properties that explain the importance of mullite in traditional and advanced ceramics. This research proposes the development of a process to synthesize mullite using the wastes from kaolin processing industries located in the Rio Jari (Monte Dourado-PA) and Rio Capim (Ipixuna-PA) districts. The synthesized materials will be studied for application as silicon-aluminum refractory bricks. The steps are mineralogical and chemical characterization, verifying the differences between the materials processing through firing of the wastes at increasing levels of temperature with 100 deg C increments, ranging from 600 to 1000 deg C and 1200 to 1500 deg C, during 3 hours at each level. Methods include the study of temperature and impurities effects through X-ray-powder and scanning electron microscopy. (author)

  14. Adsorption of U(VI) onto kaolin studied by batch method

    International Nuclear Information System (INIS)

    Hongxia Zhang; Zhi Liu; Peizhuo Hu; Tonghuan Liu; Wangsuo Wu

    2013-01-01

    Adsorption of U(VI) on purified kaolin was studied by batch methods under ambient conditions, including contact time, pH, fulvic acid, etc. Three kinetic models were used to model the kinetic adsorption which was very well described by the pseudo-second-order rate equation, and the activation energy of adsorption was 52.20 kJ/mol. The Freundlich and Dubinin-Radushkevich models fitted the experimental data better than the Langmuir model for the adsorption and desorption isotherms. The thermodynamic parameters indicated that the adsorption of U(VI) on kaolin was an endothermic and spontaneous process. (author)

  15. For production of ceramic plates coating using waste kaolin, granite and marble

    International Nuclear Information System (INIS)

    Sales, J.L.; Morais, C.R.S.; Lima, L.M.R.; Altidis, M.E.D.

    2011-01-01

    The objective is to benefit and characterize waste from kaolin, marble and granite studying their thermal properties and spectroscopic in employment perspective on ceramic production of flooring boards. The residues were benefited through the process of dry grinding mill in greyhounds and passed through sieve 0.074 mm (ABNT No. 200), observing their suitability for the formulation of ceramic pastes. Tests were performed physicochemical characterization (particle size analysis, X-ray fluorescence and X-ray diffraction) and thermal (differential thermal analysis and thermogravimetry). The results showed that these residues showed satisfactory properties for the purpose for which it proposes, and contribute to reducing environmental impacts, allowing the reuse of the production of ceramic plates (author)

  16. PENGARUH METODE AKTIVASI PADA KEMAMPUAN KAOLIN SEBAGAI ADSORBEN BESI (FE AIR SUMUR GARUDA

    Directory of Open Access Journals (Sweden)

    Tirta Indah Wulan Sari

    2016-10-01

    Full Text Available Kaolin is a mineral found in sedimentary rocks known as clay stone. Kaolin widely applied in industries such as paper, ceramics, rubber, plastics, paint, glassfiber, and cosmetics. This study aimed to determine the effect on the ability of kaolin activation methods as adsorbent. The study was conducted by activation of kaolin in physics, chemistry, and chemistry-physics. Physical activation was done by heating kaolin at 700 ° C in a furnace for 30 minutes and for the chemical activation, the addition of 0.25 M HCl in kaolin with stirring speed of 200 rpm for 60 minutes, while the chemical-physical activation, the addition of 0.25 M HCl to the kaolin and continued warming in furnace at 700 ° C. The kaolin activation was to produce an adsorbent that is able to absorb iron (Fe optimally. From this study, the optimum activation obtained for kaolin in adsorbing Fe is the chemical activation. Chemical activated kaolin adsorbent having a large adsorption capacity of the ion Fe which resulted in decreased content of iron (Fe to 0.04 mg / L.

  17. Motion of Adsorbed Nano-Particles on Azobenzene Containing Polymer Films

    Directory of Open Access Journals (Sweden)

    Sarah Loebner

    2016-12-01

    Full Text Available We demonstrate in situ recorded motion of nano-objects adsorbed on a photosensitive polymer film. The motion is induced by a mass transport of the underlying photoresponsive polymer material occurring during irradiation with interference pattern. The polymer film contains azobenzene molecules that undergo reversible photoisomerization reaction from trans- to cis-conformation. Through a multi-scale chain of physico-chemical processes, this finally results in the macro-deformations of the film due to the changing elastic properties of polymer. The topographical deformation of the polymer surface is sensitive to a local distribution of the electrical field vector that allows for the generation of dynamic changes in the surface topography during irradiation with different light interference patterns. Polymer film deformation together with the motion of the adsorbed nano-particles are recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the surface deformation. The particles undergo either translational or rotational motion. The direction of particle motion is towards the topography minima and opposite to the mass transport within the polymer film. The ability to relocate particles by photo-induced dynamic topography fluctuation offers a way for a non-contact simultaneous manipulation of a large number of adsorbed particles just in air at ambient conditions.

  18. Fluorescence of Bacteria, Pollens, and Naturally Occurring Airborne Particles: Excitation/Emission Spectra

    Science.gov (United States)

    2009-02-01

    35 Figure 29. EEM spectra of kaolin particles, dry...Warrington, PA. Glass beads were obtained from Peirce Chemical Co., Rockford, IL. Kaolin particles were obtained from Particle Information Services...solution concentration of 1 mg/ml. The samples were vortexed and pipetted vigorously to disperse aggregates. Stock bacteria solutions were diluted to a

  19. Performance assessment of adding Cu-ultrafine particles into falling film desiccant

    International Nuclear Information System (INIS)

    Al-Mulla Ali, A.

    2006-01-01

    The concept of dehumidification between air and liquid desiccant for the improvement of the efficiency of heating and cooling fluids in industrial applications was discussed. The use of solid/liquid desiccants has received much attention in recent years because liquid desiccants can take moisture from surrounding air at low temperature and then release the moisture at high temperature to provide a continuous process of dehumidification of air and regeneration of liquid desiccant. This process can be used with conventional vapor compression cycles. This paper presented a comparative numerical study between parallel and counter flow configurations that examined the effects of various parameters on heat and mass transfer for the dehumidification and cooling processes of air and regeneration rate of liquid desiccant. Ultrafine particles were added to the falling film desiccant to investigate heat and mass transfer enhancement for both parallel and counter flow channels. The Cu-volume fraction in the falling film desiccant and dispersion effect were the important parameters. A mathematical model was therefore developed to account for the addition of Cu-ultrafine particles into the film desiccant. The dehumidification and cooling rate processes were found to improve with an increase in the Cu-ultrafine particles and dispersion effect. The new hybrid AC system was shown to improve indoor air quality, reduce energy consumption, and be environmentally safe. It was concluded that although the volume fraction and dispersion factor improve the dehumidification and cooling processes of the air, the improvements are not significant due to the small thickness of the falling-film desiccant. The regeneration process did not improve for either controlling parameter because of the small thickness of the film desiccant. 14 refs., 10 figs

  20. Flotation of kaolinite from tailings of kaolin-washing plants by cationic collectors

    Directory of Open Access Journals (Sweden)

    Barani Kianoush

    2016-01-01

    Full Text Available Traditional processing of kaolin is achieved by dispersion of the mined ore and classification by means of multistage hydrocyclones. The inefficiencies inherent to cyclones produce a middling product that is commonly disposed back to the quarry. In this research recovery of kaolinite from tailings of the Zonoupz kaolin washing plant, which is located in Iran, was investigated by cationic flotation. Flotation experiments showed that flotation of kaolinite from tailings was much better in an acidic than in an alkaline medium containing cationic collectors.

  1. Instantaneous preparation of CuInSe2 films from elemental In, Cu, Se particles precursor films in a non-vacuum process

    International Nuclear Information System (INIS)

    Kaigawa, R.; Uesugi, T.; Yoshida, T.; Merdes, S.; Klenk, R.

    2009-01-01

    CuInSe 2 (CIS) films are successfully prepared by means of non-vacuum, instantaneous, direct synthesis from elemental In, Cu, Se particles precursor films without prior synthesis of CIS nanoparticle precursors and without selenization with H 2 Se or Se vapor. Our precursor films were prepared on metal substrates by spraying the solvent with added elemental In, Cu, and Se particles. Precursor films were instantaneously sintered using a spot welding machine. When the electric power was fixed to 0.6 kVA, elemental In, Cu, or Se peaks were not observed and only peaks of CIS are observed by X-ray diffraction (XRD) on the film sintered for 7/8 s. We can observe XRD peaks indicative of the chalcopyrite-type structure, such as (101), (103) and (211) diffraction peaks. We conclude that the synthesized CIS crystals have chalcopyrite-type structure with high crystallinity

  2. Bio-beneficiation of kaolin and feldspar and its effect on fired

    Indian Academy of Sciences (India)

    Presence of iron compounds as impurities in kaolin and feldspar, impart reddish colour to ceramic products manufactured using these minerals. The quality of kaolin and feldspar was enriched mainly through iron removal by biological methods. Bacteria isolated from kaolin of Indian origin were used for bioleaching.

  3. Bauxite and Kaolin Deposits of the Irwinton district, Georgia

    Science.gov (United States)

    Lang, Walter B.; Warren, Walter C.; Thompson, Raymond M.; Overstreet, Elizabeth F.

    1965-01-01

    The Irwinton district is in the central part of Georgia at the inner margin of the Coastal Plain province. The oldest rocks exposed in the district are crystalline rocks of the Piedmont province. They are unconformably overlain by nonmarine sedimentary strata of Late Cretaceous age, including gravel, micaceous sand, and lenses of kaolin. Bauxite has been found in a few of the kaolin lenses near the top of the sequence of these strata. During a long period prior to deposition of the over- lying marine beds of the Claiborne and Jackson Groups (middle and upper Eocene), the Upper Cretaceous strata were subjected to subaerial erosion. The bauxite deposits are considered to have formed during this period. They range in thickness from a few inches to more than 10 feet and occupy areas ranging from a few square feet to more than 5 acres. Most of the known bauxite deposits lie along the valleys of Commissioners Creek and Big Sandy Creek in Wilkinson County. The kaolin lenses are much larger than the bauxite deposits; some of the lenses underlie more than 200 acres and are more than 20 feet thick. Bauxite was discovered in the district in 1907 and was mined from 1910 to 1928. A few additional carloads of ore were shipped in 1941 and 1942, but no ore has been mined since that time. Reserves of high-grade bauxite are very small. Reserves of all grades of bauxite plus bauxitic clay may be about 400,000 long tons. The Irwinton district is the principal source of high-grade kaolin in the United States. The presence of kaolin here has been known since early colo- nial time, and it has been mined continuously since 1897. Production in 1959 was 1,940,279 short tons. The reserves of kaolin are very large but have never been adequately measured. Reserves of first and second grade kaolin may be 67 to 84 million short tons. Kaolin of lower grade is present in larger quantity.

  4. A Mexican kaolin deposit: XANES characterization, mineralogical phase analysis and applications

    Directory of Open Access Journals (Sweden)

    Martínez, A.

    2009-06-01

    Full Text Available A kaolin obtained from Villa de Reyes, a region near to San Luis Potosí (México was characterized by means of X-ray powder diffraction (XRD, optical microscopy (OM, scanning electron microscopy (SEM, X-ray fluorescence (XRF, X-Ray Absorption Near Edge Spectroscopy (XANES, thermal analysis (DTA/TGA, dilatometry (DIL, and chemical analysis. Mineralogical and morphological characteristics of the mineral are presented. The kaolin sample was formed mainly by kaolinite, but other minor phases were also detected such as quartz, cristobalite, tridymite, and dolomite. The high content of volcanic glass detected, by optical microscopy, revealed an incomplete kaolinization process of the raw material. The reddish color of the kaolin was associated with the free iron content in the form of limonite [FeO(OH], which was determined by XANES. The influence of the particle size on the whiteness of kaolin was evaluated. Dilatometric analysis revealed a strong thermal expansion between 110 y 240 °C, which would difficult the use of this material in traditional ceramic applications. On the other hand the presence of glass and high temperature phases of SiO2, such as cristobalite and tridymite will favor its use in the cement industry.El caolín obtenido de Villa de Reyes, una región cercana a San Luis Potosí, México, fue caracterizado por las siguientes técnicas: difracción de rayos-X en polvos (DRX, microscopía óptica (MO, microscopía electrónica de barrido (MEB, fluorescencia de rayos-X (FRX, espectroscopía de absorción de rayos-X (XANES, análisis térmico (DTA/TGA, dilatometría (DIL y análisis químico. Los resultados del análisis mineralógico mediante DRX mostraron un mineral constituido principalmente de caolinita, con una contribución minoritaria de cuarzo, cristobalita, tridimita y dolomita. El análisis por microscopía óptica reveló un alto contenido de material amorfo volcánico, indicando una caolinización incompleta del material v

  5. Merger of waste in kaolin panels medium density

    International Nuclear Information System (INIS)

    Bezerra, A.F.C.; Santana, L.N.L.; Neves, G.A.

    2011-01-01

    Medium-density panels are molded under pressure and temperature and have physical and mechanical properties similar to those of solid wood. Their composition involves fibers of eucalyptus and pine, but other residues as kaolin waste can be incorporated. The objective was to manufacture medium density panels incorporating kaolin waste and compare the physical, chemical and mechanical properties of these with other commercials. The residue was subjected to the following characterization tests: X-ray diffraction, chemical analysis, differential thermal analysis, thermal gravimetric analysis and size analysis.Through the process of pressing the samples were prepared, they were evaluated for their flexural strength and tensile strength perpendicular to the water absorption / swelling in thickness, density and moisture content. According to the analyzed results, we conclude that samples having the residue had lower levels of swelling, tensile and flexural strength and higher levels of absorption.(author)

  6. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    International Nuclear Information System (INIS)

    Zhang, Dongya; Dong, Guangneng; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-01

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm 2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  7. Evaluation of The Use of Bentonite, Kaolin and Feldspar For Immobilizing The Uranium Radionuclide Slugdewaste

    International Nuclear Information System (INIS)

    Prayitno

    2006-01-01

    The experimental investigation on the mixture of bentonite, kaolin, feldspar, sludge waste and with the ratio of bentonite, kaolin, feldspar for evaluating its effectiveness has been done. Experimentally, this investigation is the preliminary study of the use of bentonite, kaolin, feldspar as a material for the immobilization of sludge waste containing material element especially uranium. This investigation was conducted by mixing waste (2,5; 5; 7.5; 10; 12.5 and 15 %) of total weight sludge waste and bentonite, kaolin, feldspar with of 800, 900 and 1000 o C temperature. The obtained the process condition in which the uranium fraction immobilized could be kept in the limit of safety standard for the sludge waste. Therefore, it could be concluded that the addition of hay ash as an additive in the formation of block monolith tend to minimize the leached sludge waste in the leaching media. (author)

  8. A comparison of tackified, miniemulsion core-shell acrylic latex films with corresponding particle-blend films: structure-property relationships.

    Science.gov (United States)

    Canetta, Elisabetta; Marchal, Jeanne; Lei, Chun-Hong; Deplace, Fanny; König, Alexander M; Creton, Costantino; Ouzineb, Keltoum; Keddie, Joseph L

    2009-09-15

    Tackifying resins (TRs) are often added to pressure-sensitive adhesive films to increase their peel strength and adhesion energy. In waterborne adhesives, the TR is dispersed in water using surfactants and then blended with colloidal polymers in water (i.e., latex). In such waterborne systems, there are problems with the colloidal stability and difficulty in applying coatings of the particle blends; the films are often hydrophilic and subject to water uptake. Here, an alternative method of making waterborne, tackified adhesives is demonstrated. The TR is incorporated within the core of colloidal polymer particles via miniemulsion polymerization. Atomic force microscopy (AFM) combined with force spectroscopy analysis reveals there is heterogeneity in the distribution of the TR in films made from particle blends and also in films made from miniemulsion polymers. Two populations, corresponding to TR-rich and acrylic-rich components, were identified through analysis of the AFM force-displacement curves. The nanoscale maximum adhesion force and adhesion energy were found to be higher in a miniemulsion film containing 12 wt % tackifying resin in comparison to an equivalent blended film. The macroscale tack and viscoelasticity are interpreted by consideration of the nanoscale structure and properties. The incorporation of tackifying resin through a miniemulsion polymerization process not only offers clear benefits in the processing of the adhesive, but it also leads to enhanced adhesion properties.

  9. Shear Strength of Stabilized Kaolin Soil Using Liquid Polymer

    Science.gov (United States)

    Azhar, A. T. S.; Fazlina, M. I. S.; Nizam, Z. M.; Fairus, Y. M.; Hakimi, M. N. A.; Riduan, Y.; Faizal, P.

    2017-08-01

    The purpose of this research is to investigate the suitability of polymer in soil stabilization by examining its strength to withstand compressive strength. Throughout this research study, manufactured polymer was used as a chemical liquid soil stabilizer. The liquid polymer was diluted using a proposed dilution factor of 1 : 3 (1 part polymer: 3 parts distilled water) to preserve the workability of the polymer in kaolin mixture. A mold with a diameter of 50 mm and a height of 100 mm was prepared. Kaolin soil was mixed with different percentages of polymer from 10%, 15%, 20%, 25%, 30% and 35% of the mass of the kaolin clay sample. Kaolin mixtures were tested after a curing period of 3 days, 7 days, 14 days and 28 days respectively. The physical properties were determined by conducting a moisture content test and Atterberg limit test which comprise of liquid limit, plastic limit and shrinkage limit. Meanwhile, the mechanical properties of the soil shear strength were identified through an unconfined compressive strength (UCS) test. Stabilized kaolin soil showed the highest compressive strength value when it was mixed with 35% of polymer compared to other percentages that marked an increment in strength which are 45.72% (3 days), 67.57% (7 days), 81.73% (14 days) and 77.84% (28 days). Hence, the most effective percentage of liquid polymer which should be used to increase the strength of kaolin soil is 35%.

  10. Zeolite A synthesized from wastes of kaolin improvement process; Zeolita A sintetizada a partir de rejeitos do processo de beneficiamento de caulim

    Energy Technology Data Exchange (ETDEWEB)

    Santana, D.L.; Neves, R.F.; Silva, D.L., E-mail: danielaliraeq@yahoo.com.br, E-mail: dasilva@ufpa.br [Programa de Pos-Graduacao em Engenharia Quimica, Universidade Federal do Para - UFPA, Belem, PA (Brazil); Saraiva, A.C.F. [Centro de Tecnologia da Eletronorte, Belem, PA (Brazil)

    2012-04-15

    Raw materials were used to synthesize zeolite A as an alternative and more economical source of silica and aluminum, using waste from the kaolin of the paper industry. Zeolites are crystalline substances with a structure characterized by a framework of linked tetrahedra, each one consisting of four oxygen atoms surrounding a cation. The development of processes for the synthesis of zeolites is of great interest for use in the areas of purification, adsorption and catalysis. The starting materials for the synthesis of zeolite A consisted of wastes from kaolin beneficiation of paper companies of Para state, Brazil. The zeolite was obtained after calcination at 85 and 110 deg C during 24 h. The characterization of the starting material was performed by X-ray diffraction, chemical analysis, thermogravimetric and differential thermal analysis, and scanning electron microscopy. The characterization of zeolite A was done by X-ray diffraction and scanning electron microscopy. The kaolin waste used as starting material showed to be essentially kaolinite mineral. For the temperatures and time used in the synthesis it was possible to form the crystalline phase of zeolite A for the two starting materials. (author)

  11. Recovery of kaolinite from tailings of Zonouz kaolin-washing plant by flotation-flocculation method

    OpenAIRE

    Kianoush Barani; Masoud Kalantari

    2018-01-01

    The traditional processing of kaolin is achieved by dispersion of the mined ore and classification by multistage hydrocyclone plants. The inefficiencies inherent to cyclones produce a middling product that is commonly disposed back into the quarry. In this research, recovery of kaolinite from tailings of Zonouz kaolin washing plant, which is located in Iran was investigated by flotation and flotation- flocculation. Flotation experiments show that the flotation of kaolinite from the tailings i...

  12. Contemporary technology of enrichment of kaolins of Angren deposit. II. Removal of impurities and whitening of kaolins: using electrophysical and chemical methods of cleaning

    International Nuclear Information System (INIS)

    Krivorotov, V.F.; Usmanov, ZH.M.; Fridman, A.A.

    2012-01-01

    The contemporary methods of enrichment of Angren kaolins have been described. The electrophoresis and chemical whitening are demonstrated to be the most effective methods of scavenging. Application of ultrasonic dispersion, electrophoresis and chemical whitening methods allows one to obtain kaolin with whiteness ≅ 88% and content of iron oxides ≅ 0.4%. Using such kaolin as a sorbent at de coloration of plant oil have been shown good adsorption properties, meeting the level of world-wide standards for such class of materials. (authors)

  13. Characterization of kaolin and granite waste for formulation of porcelain stoneware tiles

    International Nuclear Information System (INIS)

    Luna da Silveira, G.C.; Acchar, W.; Gomes, U.U.; Silva, B.K.O.; Luna da Silveira, R.V.; Labrincha, J.A.; Costa, M.C.P.

    2016-01-01

    To produce a stoneware tiles is necessary develop a formulation that satisfies their structural characteristics, micro-structural, physical and mechanical properties. Thus, in order to create a formulation for porcelain stoneware tiles that give use to kaolin and granite waste used in the production of ceramic materials were asked the following characterizations: chemical analysis, mineralogical, thermal and particle size. We found that in the kaolin sample it presents a rate of silicon oxide and aluminum oxide similar to those found in the work of other investigators, about 45.23% SiO2 and 37.39% Al_2O_3. In the granite waste, the percentage of silicon oxide and aluminum oxide are also similar to those observed in other studies, with about 74.89% SiO2 and 10.54% Al_2O_3. Both the percentage of SiO_2 and Al_2O_3 founded in these two samples satisfy the percentage required in the manufacturing of porcelain stoneware tiles. (author)

  14. PES-Kaolin Mixed Matrix Membranes for Arsenic Removal from Water.

    Science.gov (United States)

    Marino, Tiziana; Russo, Francesca; Rezzouk, Lina; Bouzid, Abderrazak; Figoli, Alberto

    2017-09-30

    The aim of this work was the fabrication and the characterization of mixed matrix membranes (MMMs) for arsenic (As) removal from water. Membrane separation was combined with an adsorption process by incorporating the kaolin (KT2) Algerian natural clay in polymeric membranes. The effects of casting solution composition was explored using different amounts of polyethersufone (PES) as a polymer, polyvinyl-pyrrolidone (PVP K17) and polyethylene glycol (PEG 200) as pore former agents, N -methyl pyrrolidone (NMP) as a solvent, and kaolin. Membranes were prepared by coupling Non-solvent Induced Phase Separation and Vapour Induced Phase Separation (NIPS and VIPS, respectively). The influence of the exposure time to controlled humid air and temperature was also investigated. The MMMs obtained were characterized in terms of morphology, pore size, porosity, thickness, contact angle and pure water permeability. Adsorption membrane-based tests were carried out in order to assess the applicability of the membranes produced for As removal from contaminated water. Among the investigated kaolin concentrations (ranging from 0 wt % to 5 wt %), a content of 1.25 wt % led to the MMM with the most promising performance.

  15. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    Science.gov (United States)

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-09-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.

  16. Structure and properties of pregelatinized cassava starch/kaolin composites

    International Nuclear Information System (INIS)

    Kaewtatip, Kaewta; Tanrattanakul, Varaporn

    2012-01-01

    Highlights: ► Pregelatinized starch/kaolin composites were prepared using compression molding. ► The tensile strengths of the composites were higher than for thermoplastic starch. ► Degradation temperatures of the composites were higher than for thermoplastic starch. ► The retrogradation behavior of the composites was hindered by kaolin. -- Abstract: Pregelatinized cassava starch/kaolin composites were prepared using compression molding. The morphology of the fractured surfaces, retrogradation behavior, thermal decomposition temperatures and mechanical properties of the composites were investigated using scanning election microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and tensile testing, respectively. The tensile strengths and thermal degradation temperatures of the composites were higher than for thermoplastic starch (TPS). The retrogradation behavior of the composites was hindered by kaolin. The water absorption was measured after aging for 12 and 45 days at a relative humidity (RH) of 15% and 55%. It indicated that all the composites displayed lower water absorption values than TPS.

  17. Atividade pozolânica dos resíduos do beneficiamento do caulim para uso em argamassas para alvenaria Pozolanic activity of kaolin processing residues for use in masonry mortars

    Directory of Open Access Journals (Sweden)

    Romualdo R. Menezes

    2009-12-01

    Full Text Available A indústria do beneficiamento do caulim gera enorme quantidade de resíduos, descartados indiscriminadamente no meio ambiente; assim, este trabalho tem por objetivo analisar a viabilidade técnica e a atividade pozolânica dos resíduos do beneficiamento do caulim para a produção de argamassas. Os resíduos foram caracterizados através da determinação de sua distribuição granulométrica e composição química, difração de raios X e análise térmica diferencial e gravimétrica; em seguida, determinou-se o índice de atividade pozolânica dos resíduos de caulim com a cal e o cimento Portland. Argamassas de cimento:cal:areia foram preparadas e o resíduo, na condição natural e após queima a 600 °C por 2 h, substituiu parcialmente o cimento nas proporções de 5, 10, 15 e 20% em massa. Corpos-de-prova foram moldados e determinada sua resistência a compressão simples. Conclui-se, com base nos resultados, que os resíduos são constituídos de caulinita, mica e quartzo e que a utilização do resíduo calcinado aumenta a resistência das argamassas após 28 dias de cura em até 150%.The kaolin processing industry generates large amounts of waste, which is indiscriminately dumped in open-air sites. This work evaluates the technical suitability and pozolanic activity of kaolin processing wastes for the production of mortars. The wastes were characterized by particle size distribution and chemical composition determination, X-ray diffraction and thermal differential and gravimetric analyses. The pozolanic activity index was determined using lime and Portland cement. Cement:lime:sand mortars were formulated and the kaolin wastes replaced cement by 5, 10, 15 and 20% on weight basis. The kaolin wastes were used in their natural condition and after thermal treatment at 600 °C for 2 h. Test specimens were produced and their compression strength determined. The results indicated that the waste consists of quartz, kaolinite and mica, and

  18. Synthesis of type A zeolite from calcinated kaolin

    International Nuclear Information System (INIS)

    Rodrigues, E.C.; Neves, R.F.; Souza, J.A.S.; Moraes, C.G.; Macedo, E.N.

    2011-01-01

    The mineral production has caused great concern in environmental and industrial scenario due to the effects caused to the environment. The industries of processing kaolin for paper are important economically for the state of Para, but produce huge quantities of tailings, which depend on large areas to be stocked. This material is rich in silico-aluminates can be recycled and used as raw material for other industries. The objective is to synthesize zeolite A at different temperatures of calcination and synthesis. The starting materials and synthesis of zeolite A have been identified and characterized through analysis of X-ray diffraction (DRX) and scanning electron microscopy (MEV). The synthesis process of zeolite A, using as source of silica and the aluminum metakaolin, which was calcined at temperatures of 700 ° C and 800 ° C for 2 hours of landing in a burning furnace type muffle. Observed in relation to the calcination of kaolin as the main phase, the metakaolin. This is just a removal of water from its structure, so we opted for the lower temperature, less energy consumption. The synthesis process of zeolite A, produced good results for the formation of zeolites type A, which were characterized with high purities. (author)

  19. Preparation of Modified Kaolin Filler with Cesium and Its Application in Security Paper

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2013-01-01

    Full Text Available In this study, cesium was added intentionally during paper manufacture for protecting the papers against forgery and counterfeiting by sorbing cesium ions (Cs+ on kaolin, used as special filler in papermaking. The sorption of cesium from aqueous solution by kaolin was studied as a function of pH, shaking time, cesium initial concentration, and mass of kaolin using batch technique. The results showed that a solution containing 10 mg/L Cs+ and 250 mg of kaolin at pH 6 can be used to modify the kaolin. Paper handsheets were prepared containing various percentages of the modified kaolin. The mechanical and optical properties of paper handsheets were studied. The prepared paper handsheets were irradiated by gamma irradiation using different doses. Fourier transform infrared (FTIR spectroscopy was used to study the effect of kaolin modification by cesium and gamma irradiation on paper handsheets properties. The results indicated that modified kaolin enhanced the mechanical and optical properties of paper handsheets. Electron spin resonance (ESR spectroscopy and laser-induced breakdown spectroscopy (LIBS were also used. They provided rapid, sensitive and nondestructive techniques in differentiating between different questioned documents. This study presents a new concept in manufacturing security papers and anticounterfeiting applications.

  20. Synthesis and characterization of kaolin assisted metal nanocomposite and its tremendous adsorptive and photo catalytic applications

    International Nuclear Information System (INIS)

    Tahir, H.; Saad, M.; Saleem, U.

    2018-01-01

    The present work demonstrates the synthesis of Kaolin assisted Ag nanocomposite (Ag-KNC) by co-precipitation method. The surface morphology of them was studied through SEM and chemical constituents by EDS techniques. The removal of efficaciousness of Ag-KNC was tested by Malachite Green Oxalate (MGO) dye through batch adsorption and photocatalytic strategies. The sorption experiments were preceded under the optimized conditions like amount of adsorbent, stay time and pH. The feasibility of the process was determined by employing Freundlich, Langmuir and D-R (Dubinin –Radushkevich) adsorption isotherms. The pH at point of zero charge (pHpzc) was conjointly calculable to work out the surface neutrality of the system. The salt effect for the removal of MGO dye was investigated. Thermodynamic parameters like free energy (∆Go), entropy (∆So) and enthalpy (∆Ho), of the system was investigated. Adsorption Kinetic was resolute by Intra particle diffusion (IPD) and Boyd’s models. An attempt was made to prepare (Ag-KCN) nanophoto catalyst by UV light assisted degradation of Malachite Green Oxalate (MGO) dye. They were prepared by the reduction of Ag+ ion under alkaline conditions on kaolin surface. The photo degradation (PD) process was initiated by photo generated electrons. The present study recommended that projected strategies were successfully applied for the remediation of environmental problems. (author)

  1. Effects of Kaolin Application on Light Absorption and Distribution, Radiation Use Efficiency and Photosynthesis of Almond and Walnut Canopies

    Science.gov (United States)

    Rosati, Adolfo; Metcalf, Samuel G.; Buchner, Richard P.; Fulton, Allan E.; Lampinen, Bruce D.

    2007-01-01

    Background and Aims Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. Methods Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. Key Results Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6·3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on

  2. Use of airborne gamma-ray spectrometry for kaolin exploration

    Science.gov (United States)

    Tourlière, B.; Perrin, J.; Le Berre, P.; Pasquet, J. F.

    2003-08-01

    Airborne gamma-ray spectrometry was used to define targets with kaolin potential in the Armorican Massif of Brittany, France. This exploration method is based on the principle that kaolinite, an aluminosilicate clay mineral constituting kaolin, is formed by the hydrolysis of potash feldspar with the elimination of potassium. Therefore, potassium contrast between favourable host-rock such as a leucogranite and kaolin occurrence is likely a significant pathfinder. As the relationship between the potassium-40 recorded by an airborne gamma-ray spectrometer and total potassium is constant, such data provide us a direct measurement of the potassium content of the ground flown over. Our study tested this by calculating, for each geological unit, the difference between the measured and average potassium content calculated for a given geological formation. The study was based on (i) a recent (1998) high-definition airborne geophysical survey over the Armorican Massif undertaken on behalf of the French Government, and (ii) new geological compilation maps covering the same region. Depleted zones, where the measured potassium is less than the average potassium content calculated target areas with high potential of containing kaolin, provided that the unit was originally rich in potash feldspar. By applying this method to the entire Armorican Massif, it was possible to identify 150 potassium-depleted zones, including 115 that were subjected to rapid field checks and 36 that contained kaolin (21 new discoveries). This method, which is both safe for the environment and easy to use, is therefore a good tool for rapidly defining targets with kaolin potential at a regional scale. The method may also have possibilities in exploring for other types of deposit characterised by an enrichment or depletion in U, K and/or Th.

  3. Novel kaolin/polysiloxane based organic-inorganic hybrid materials: Sol-gel synthesis, characterization and photocatalytic properties

    Science.gov (United States)

    dos Reis, Glaydson Simões; Lima, Eder Cláudio; Sampaio, Carlos Hoffmann; Rodembusch, Fabiano Severo; Petter, Carlos Otávio; Cazacliu, Bogdan Grigore; Dotto, Guillherme Luiz; Hidalgo, Gelsa Edith Navarro

    2018-04-01

    New hybrid materials using kaolin and the organosilicas methyl-polysiloxane (MK), methyl-phenyl-polysiloxane (H44), tetraethyl-ortho-silicate (TEOS) and 3-amino-propyl-triethoxysilane (APTES) were obtained by sol-gel process. These materials presented specific surfaces areas (SBET) in the range of 20-530 m2 g-1. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed remarkable differences between the kaolin and hybrid structures. Thermogravimetric analysis (TGA) revealed that the hybrid materials presented higher thermal stability when compared with their precursors. The electronic properties of the materials were also studied by Ultraviolet-Visible Diffuse Reflectance Absorption (DRUV) and Diffuse Reflectance spectroscopy (DR), where a new absorption band was observed located around 400-660 nm. In addition, these materials exhibit a decrease in DR from 30% to 70% in the blue-cyan green region and are significantly more transparent in the UV region than the kaolin, which could be useful for photocatalysis applications. These results show that the electronic structure of the final material was changed, indicating a significant interaction between the kaolin and the respective silica derivative. These findings support the main idea of the hybridization afforded by pyrolysis between kaolin and organosilica precursors. In addition, as a proof of concept, these hybrid materials were successfully employed as photocatalyst in the photoreduction of Cr(VI) to Cr(III).

  4. Electrical Properties of Zinc-Kaolin Composites below its Percolation ...

    African Journals Online (AJOL)

    In this paper, we present some electrical properties of the zinc-kaolin cermet resistors with zinc metal fillers below the percolation threshold. Rectangular cermet rods of dimensions 65 mm by 6.5 mm by 3.2 mm were produced in a mould with semi-dry the zinc/kaolin powder mixture which is compressed with a force of about ...

  5. Technological properties of kaolin from Para; Propriedades tecnologicas do caulin do Para

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrando, E.; Martin-Cortes, G.R.; Esper, F.J.; Wiebeck, H.; Alves Junior, P.; Valenzuela-Diaz, F.R., E-mail: germac@usp.br [Universidade de Sao Paulo (PMT/EP/USP), Sao Paulo, SP (Brazil). Escola Politecnica. Departamento de Engenharia Metalurgica e de Materiais

    2011-07-01

    The NE of the State of Para, is notable for its large reserves of kaolin for paper. Kaolin is a mineral composed of hydrated aluminum silicates such as kaolinite and halloysite. The exploitation of these reserves to generate products with higher commercial value, especially in the industries of adsorbents and catalysts, is what motivates the continuous study of technological properties of the Amazon kaolin's. Thus, this paper presents a technological characterization of a sample of kaolin from Para State by X-ray diffraction, SEM - scanning electron microscopy and infrared spectroscopy. The results of preliminary tests indicate that the sample consists for the most part by kaolinite present in low concentrations of quartz and anatase. (author)

  6. Electrochemical oxidation of pulp and paper making wastewater assisted by transition metal modified kaolin

    International Nuclear Information System (INIS)

    Wang Bo; Gu Lin; Ma Hongzhu

    2007-01-01

    The electrochemical oxidation of pulp and paper making wastewater assisted by transition metal (Co, Cu) modified kaolin in a 200 ml electrolytic batch reactor with graphite plate as electrodes was investigated. H 2 O 2 , which produced on the surface of porous graphite cathode, would react with the catalysts to form strong oxidant (hydroxyl radicals) that can in turn destruct the pollutants adsorbed on the surface of kaolin. The transition metal (Co, Cu) modified kaolin was also characterized by XRD and SEM before and after the modification and the results showed that the transition metals were completely supported on kaolin and formed a porous structure with big BET surface. The mechanism was proposed on the basis of XPS analysis of the catalyst after the degradation process. Series of experiments were also done to prove the synergetic effect of the combined oxidation system and to find out the optimal operating parameters such as initial pH, current density and amount of catalyst. From the results it can be founded that when the initial pH was at 3, current density was 30 mA cm -2 ; catalyst dose was 30 g dm -3 , COD (chemical oxygen demand) removal could reach up to 96.8% in 73 min

  7. Stability of thin liquid films containing surface active particles

    Science.gov (United States)

    Umashankar, Hariharan; Kalpathy, Sreeram; Dixit, Harish

    2017-11-01

    The stability and dynamics of thin liquid films(industrial settings like coating and printing processes and extraction of oil from porous rocks. In this study a hydrodynamic model is introduced to capture the long term evolution of a Newtonian liquid film containing insoluble surfaceactive particles.We consider here the possibility of four distinct interaction regimes based on the surface rheological effects of the particles, such that either, both or neither of Marangoni and surface viscosity effects would be present at the leading order in the governing equations. The liquid film is bounded by a rigid impermeable solid below and covered by passive air phase above.A standard linear stability analysis and nonlinear simulations are performed on the set of highly coupled partial differential evolution equations. Linear stability analysis gives insights on whether a particular imposed perturbationwavenumber will grow or decay in time and also evaluating the fastest growing wavenumber. Parametric studies for all four regimes provides a strong confirmation that surface viscosity and Marangoni effects are indeed rupture delaying effects.

  8. Effects of neutral particle beam on nano-crystalline silicon thin films, with application to thin film transistor backplane for flexible active matrix organic light emitting diodes

    International Nuclear Information System (INIS)

    Jang, Jin Nyoung; Song, Byoung Chul; Lee, Dong Hyeok; Yoo, Suk Jae; Lee, Bonju; Hong, MunPyo

    2011-01-01

    A novel deposition process for nano-crystalline silicon (nc-Si) thin films was developed using neutral beam assisted chemical vapor deposition (NBaCVD) technology for the application of the thin film transistor (TFT) backplane of flexible active matrix organic light emitting diode (AMOLED). During the formation of a nc-Si thin film, the energetic particles enhance nano-sized crystalline rather microcrystalline Si in thin films. Neutral Particle Beam (NPB) affects the crystallinity in two ways: (1) NPB energy enhances nano-crystallinity through kinetic energy transfer and chemical annealing, and (2) heavier NPB (such as Ar) induces damage and amorphization through energetic particle impinging. Nc-Si thin film properties effectively can be changed by the reflector bias. As increase of NPB energy limits growing the crystalline, the performance of TFT supports this NPB behavior. The results of nc-Si TFT by NBaCVD demonstrate the technical potentials of neutral beam based processes for achieving high stability and reduced leakage in TFT backplanes for AMOLEDs.

  9. Moisture expansion of ceramic tiles produced using kaolin and granite wastes; Expansao por umidade de revestimentos ceramicos incorporados com residuos de granito e caulim

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, A.M.G.D.; Cartaxo, J.M.; Santana, L.N.L; Neves, G.A.; Ferreira, H.C., E-mail: ana.duartemendonca@gmail.com, E-mail: gelmires@dema.ufcg.edu.br, E-mail: lisiane@dema.ufcg.edu.br [Unidade Academica de Engenharia de Materiais, Universidade Federal de Campina Grande,Campina Grande, PB (Brazil); Menezes, R.R. [Departamento de Engenharia de Materiais, Universidade Federal da Paraiba, Joao Pessoa, PB (Brazil)

    2012-04-15

    Moisture expansion (ME) is the term used to describe the expansion of ceramic materials due to the adsorption of water. ME usually occurs slowly and is relatively small, but, it can damage the ceramic tiles adhesion to the underlayment, craze the glaze and lead to the development of cracks on ceramics bricks. In this work kaolin and granite wastes were incorporated in ceramic compositions aiming study their influence on the ME of ceramic tiles. Raw materials were processed and submitted to characterization: physical and mineralogical by laser diffraction particle size analysis, chemical analysis, thermo differential and thermogravimetric analysis and X-ray diffraction. Results showed that kaolin and granite wastes can be incorporated in ceramic composition because display characteristics similar to conventional not plastic ceramic materials, providing satisfactory ME results when compared to the ME limit value of 0.6 mm/m (0.06%) indicated by the ABNT for ceramic tiles. Compositions containing up to 20% of waste can be produced when firing above 1000 deg C. (author)

  10. Process to decontaminate a superficial soil layer contaminated with radioactive particles and decontaminating solution

    International Nuclear Information System (INIS)

    Jouve, A.; Mary, N.

    1993-01-01

    The process consists to dissolve a micronised powder of anionic and crosslinked polyacrilamide, to spray the obtained decontamination solution on the floor to be traited allowing to dry to form a dry polyacrilamide film, to rehydrate the film by spraying with water and to recover the film bonded to the floor particles and the polluting particles by cleaning means. 1 fig

  11. Efficient production of nanoparticle-loaded orodispersible films by process integration in a stirred media mill.

    Science.gov (United States)

    Steiner, Denise; Finke, Jan Henrik; Kwade, Arno

    2016-09-25

    Orodispersible films possess a great potential as a versatile platform for nanoparticle-loaded oral dosage forms. In this case, poorly water-soluble organic materials were ground in a stirred media mill and embedded into a polymer matrix. The aim of this study was the shortening of this manufacturing process by the integration of several process steps into a stirred media mill without facing disadvantages regarding the film quality. Furthermore, this process integration is time conserving due to the high stress intensities provided in the mill and applicable for high solids contents and high suspension viscosities. Two organic materials, the model compound Anthraquinone and the active pharmaceutical ingredient Naproxen were investigated in this study. Besides the impact of the film processing on the crystallinity of the particles in the orodispersible film, a particle load of up to 50% was investigated with the new developed processing route. Additionally, a disintegration test was developed, combining an appropriate amount of saliva substitute and a clear endpoint determination. In summary, high nanoparticle loads in orodispersible films with good particle size preservation after film redispersion in water as well as a manufacturing of the film casting mass within a few minutes in a stirred media mill was achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Synthesis and characterization of ZSM-5 and calcined kaolin evaluation using the content of structure-directing

    International Nuclear Information System (INIS)

    Rodrigues, J.J.; Silva, V.J. da; Rodrigues, M.G.F.

    2012-01-01

    This study aims to evaluate the effect of the structure-directing content, tetrapropylammonium bromide, on the structural and morphological characteristics of ZSM-5 zeolite obtained using calcined kaolin as silicon and aluminum. The samples were characterized by XRD, EDX, SEM and Physics Adsorption N 2 . Trough X ray diffraction patterns was possible to observed the formation of the structure of ZSM-5 with intense peaks and well-defined characteristic of crystalline. The micrographs showed that the samples consist of agglomerates and/or aggregates of particles characteristic of the MFI structure typical of ZSM-5 zeolite. And through the adsorption-desorption isotherms physical N2 was possible to observe that the samples show hysteresis type I typical of microporous materials with specific surface areas of 218 and 222 m 2 /g. Therefore, the use of calcined kaolin to obtain ZSM-5 zeolite was effective. (author)

  13. Kaolin modulates ABA and IAA dynamics and physiology of grapevine under Mediterranean summer stress.

    Science.gov (United States)

    Dinis, L-T; Bernardo, S; Luzio, A; Pinto, G; Meijón, M; Pintó-Marijuan, M; Cotado, A; Correia, C; Moutinho-Pereira, J

    2018-01-01

    The foliar exogenous application of kaolin, a radiation-reflecting inert mineral, has proven to be an effective short-term climate change mitigation strategy for Mediterranean vineyards. In this work, we address the hypothesis that kaolin could improve both the hormonal dynamics and physiological responses of grapevines growing in Douro Region, northern Portugal. For this purpose, the leaf water potential, gas exchange and chlorophyll a fluorescence parameters were monitored, as well as the abscisic acid (ABA) and indole-3-acetic acid (IAA) quantification and immunolocalization were assessed. The study revealed a slight decrease in ABA and an increase in IAA in the kaolin treatment, which in turn were associated with the improvement of physiological performance. A month after spraying, kaolin improves the water potential respectively, 30% and 17% in the predawn and midday periods. Besides, plants treated with kaolin showed higher values of stomatal conductance, net CO 2 assimilation rate and intrinsic water use efficiency. Kaolin also ameliorates the effective PSII efficiency (67%), as well as the maximum quantum efficiency of photosystem II and the photosynthetic electron transport rate (>73%). These results were consistent with the higher photochemical quenching and the lower non-photochemical quenching observed in treated leaves and with the better performance obtained by the JIP test parameters. Physiological and hormonal analysis confirmed that kaolin effectively enhance grapevine summer stress tolerance. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Facile Fabrication of a PDMS@Stearic Acid-Kaolin Coating on Lignocellulose Composites with Superhydrophobicity and Flame Retardancy

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2018-05-01

    Full Text Available The disadvantages such as swelling after absorbing water and flammability restrict the widespread applications of lignocellulose composites (LC. Herein, a facile and effective method to fabricate superhydrophobic surfaces with flame retardancy on LC has been investigated by coating polydimethylsiloxane (PDMS and stearic acid (STA modified kaolin (KL particles. The as-prepared coatings on the LC exhibited a good repellency to water (a contact angle = 156°. Owing to the excellent flame retardancy of kaolin particles, the LC coated with PDMS@STA-KL displayed a good flame retardancy during limiting oxygen index and cone calorimeter tests. After the coating treatment, the limiting oxygen index value of the LC increased to 41.0. Cone calorimetry results indicated that the ignition time of the LC coated with PDMS@STA-KL increased by 40 s compared with that of uncoated LC. Moreover, the peak heat release rate (PHRR and the total heat release (THR of LC coated with PDMS@STA-KL reduced by 18.7% and 19.2% compared with those of uncoated LC, respectively. This LC coating with improved water repellency and flame retardancy can be considered as a potential alternative to protect the lignocellulose composite.

  15. Statistical treatment of bleaching kaolin by iron removal

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez H, R. A.; Legorreta G, F.; Hernandez C, L. E. [Universidad Autonoma del Estado de Hidalgo, Area Academica de Ciencias de la Tierra y Materiales, Carretera Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, 42184 Hidalgo (Mexico); Martinez L, A., E-mail: angelitofox3@hotmail.com [Universidad Autonoma de Coahuila, Blvd. V. Carranza y Gonzalez Lobo s/n, 25280 Saltillo, Coahuila (Mexico)

    2013-07-01

    In the present study, oxalic acid was used as a leaching reagent to remove iron from a kaolin mineral. Statistical analysis was conducted to determine the most influential factors in the dissolution of iron from the kaolin mineral. Our goal was ferric iron solubilization and its reduction to ferrous iron to improve the iron removal in the acid medium. Leaching experiments were conducted at atmospheric pressure. A two-level factorial design of the type 2{sup 4} was utilized. The dependent variable was the percentage of dissolved iron, and the dependent variables in this study were acid concentration (0.35 and 0.50 M), temperature (75 C and 100 C), leaching time (2 and 4 h), and ph (1.5 and 2.5). An analysis of variance revealed that the effects of the factors temperature (b), ph (d), and the combined effects of temperature and time (b c) resulted in the maximum dissolution of iron of 88% at 100 C, giving a kaolin mineral with a whiteness index 93.50. For the mineralogical analysis the X-ray diffraction technique was used. (Author)

  16. Statistical treatment of bleaching kaolin by iron removal

    International Nuclear Information System (INIS)

    Hernandez H, R. A.; Legorreta G, F.; Hernandez C, L. E.; Martinez L, A.

    2013-01-01

    In the present study, oxalic acid was used as a leaching reagent to remove iron from a kaolin mineral. Statistical analysis was conducted to determine the most influential factors in the dissolution of iron from the kaolin mineral. Our goal was ferric iron solubilization and its reduction to ferrous iron to improve the iron removal in the acid medium. Leaching experiments were conducted at atmospheric pressure. A two-level factorial design of the type 2 4 was utilized. The dependent variable was the percentage of dissolved iron, and the dependent variables in this study were acid concentration (0.35 and 0.50 M), temperature (75 C and 100 C), leaching time (2 and 4 h), and ph (1.5 and 2.5). An analysis of variance revealed that the effects of the factors temperature (b), ph (d), and the combined effects of temperature and time (b c) resulted in the maximum dissolution of iron of 88% at 100 C, giving a kaolin mineral with a whiteness index 93.50. For the mineralogical analysis the X-ray diffraction technique was used. (Author)

  17. Assessment of the adsorptive capacity of the Kaolin deposit targeting its use on the removal of colors in aqueous solution; Avaliacao da capacidade adsortiva do rejeito de caulim visando seu uso na remocao de corantes em solucao aquosa

    Energy Technology Data Exchange (ETDEWEB)

    Matos, S.C.; Hildebrando, E.A., E-mail: matos.cintia68@gmail.com [Universidade Federal do Para (FEMat/UFPA), PA (Brazil). Faculdade de Engenharia de Materiais

    2016-07-01

    The Amazonic region has large and valuable kaolin deposits. The state of Para by itself comprises three large industries which process kaolin. It has been noticed that the waste resulting from the processing of kaolin is rich in silico-aluminate, presenting potential in adsorption processes. Thus, this research's objective is to assess the kaolin waste produced during the processing phase, aiming at its application as low cost adsorbent material. For that, the kaolin waste has been characterized by X-ray diffraction and chemical analysis (XRF), and then sieved and calcined at 700 ° C, being then subjected to the adsorption process and observed qualitatively its capacity of retention by methylene blue (AM). Preliminary results show that the kaolin waste has satisfactory adsorption capacity at concentrations of up to 50.0 mg / MP, demonstrating the potential that it be used in the removal of dyes in wastewater treatment. (author)

  18. Hetero-Colloidal Metal Particle Multilayer Films Grown Using Electrostatic Interactions at the Air-water Interface

    International Nuclear Information System (INIS)

    Sastry, Murali; Mayya, K.S.

    2000-01-01

    The formation of nanoparticle multilayer films by electrostatic immobilization of surface-modified colloidal particles at the air-water interface has been recently demonstrated by us. In this paper, we extend our study to show that multilayer assemblies consisting of metal particles of different chemical nature (hetero-colloidal particle superlattices) and size can be deposited by the versatile Langmuir-Blodgett technique. Multilayer films consisting of a different number of bilayers of gold and silver colloidal particles have been deposited and characterized using quartz crystal microgravimetry and UV-visible spectroscopy measurements. It is observed that while layer-by-layer deposition of the different colloidal particle assemblies is possible by this technique without a detectable variation in the cluster density in the different layers, a degree of post-deposition reorganization of the clusters occurs in the film. In addition to this aging behavior, the effect of different organic solvents on the reorganization process has also been studied

  19. 国内外玻璃纤维用高岭土的质量差距及提高我国高岭土质量的对策%Differences of Kaolin Quality for Glass Fibers Made in China and Abroad and Improving Measures of Kaolin Quality Made in China

    Institute of Scientific and Technical Information of China (English)

    韩利雄; 姚远; 刘国斌

    2011-01-01

    Kaolins are one of important materials for E-glass fibers, which accounts for about 1/3 of blend mass. But the high-end market of kaolin for glass fibers was dominated by imports in China. Three kinds of kaolin samplespro-duced by ITC.Yichang and Yunnan for glass fibers were studied in this paper. The differences in chemical composition, phase,microstructure and granulometric composition were compared in detail by XRS,XRD,SEM and LPS. The research found that products of ITC had obvious advantages in product purity, particle size control and quality stability. In fact,the quality of domestic Kaolins is not bad,but because it is lack of specific quality standard and limited by the processing level of domestic non-metallic mineral, high-quality products cannot be obtained. In the future, kaolin industry should become bigger and stronger by integration as soon as possible, and try hard to improve the processing level of kaolin such as ore dressing,homogenization,etc,to fill the gap in the high-grade kaolin products for glass fibers.%高岭土是E-玻璃纤维的重要原料之一,其用量可占配合料的三分之一,但国内玻纤用高岭土高端市场一直被进口产品所占据.选取了美国ITC进口高岭土、宜昌硬质高岭土和云南水洗高岭土这三种有代表性的玻纤用高岭土,通过荧光光谱分析、X射线衍射分析、扫描电镜分析和激光粒度分析详细对比了它们在化学成分、物相组成、微观形貌和粒度分布四方面的差异.研究发现,美国玻纤用高岭土在产品纯度、粒度控制和质量稳定性方面有明显优势;国内玻纤用高岭土矿源品质并不差,只是由于缺乏专门的质量标准,同时受限于国内非金属矿产加工水平,而无法生产出高质量的产品.未来我国高岭土行业应尽快通过整合做大做强,努力提高高岭土选矿、均化等加工工艺水平,填补国内高档玻纤用高岭土产品空白.

  20. Cracking in thin films of colloidal particles on elastomeric substrates

    Science.gov (United States)

    Smith, Michael; Sharp, James

    2012-02-01

    The drying of thin colloidal films of particles is a common industrial problem (e.g paint drying, ceramic coatings). An often undesirable side effect is the appearance of cracks. As the liquid in a suspension evaporates, particles are forced into contact both with each other and the substrate, forming a fully wetted film. Under carefully controlled conditions the observed cracks grow orthogonal to the drying front, spaced at regular intervals along it. In this work we investigated the role of the substrate in constraining the film. Atomic force microscopy, was used to image the particle arrangements on the top and bottom surfaces of films, dried on liquid and glass substrates. We present convincing evidence that the interface prevents particle rearrangements at the bottom of the film, leading to a mismatch strain between upper and lower surfaces of the film which appears to drive cracking. We show that when the modulus of the substrate becomes comparable to the stresses measured in the films, the crack spacing is significantly altered. We also show that cracks do not form on liquid substrates. These combined experiments highlight the importance of substrate constraint in the crack formation mechanism.[4pt] [1] M.I. Smith, J.S. Sharp, Langmuir 27, 8009 (2011)

  1. Influence of Sulfonated-Kaolin On Cationic Exchange Capacity Swelling Degree and Morphology of Chitosan/Kaolin Composites

    Directory of Open Access Journals (Sweden)

    Ozi Adi Saputra

    2016-06-01

    Full Text Available Preparation of sulfonated-kaolin (sKao has been conducted and used as filler on chitosan matrix via solution casting method, namely chitosan/sKao (Cs/sKao. Swelling degree, cationic exchange capacity and thermal stability were evaluated to determine chitosan/sKao membranes performance as proton exchange membrane in fuel cell. Functional group analysis of chitosan, sKao and synthesized products were studied using Fourier Transform Infra-Red (FTIR spectroscopy. In this study, swelling degree and swelling area of Cs/sKao are also studied to determine of membrane ability to swelling which compare to unmodified chitosan/kaolin (Cs/Kao. The presence of sKao in chitosan matrix was able to improve cationic exchange capacity (CEC which proved by morphological study of membrane surface after CEC test. Moreover, Thermal stability of Cs/sKao showed the membrane has meet requirement for PEM application.

  2. Visualization modeling of thin film growth in photodeposition processes

    International Nuclear Information System (INIS)

    Mirchin, N.; Sidi, M.; Muchnik, Y.; Peled, A.

    2003-01-01

    A computer visualization technique, which analyzes and predicts the spatio-temporal evolution of thin film deposition and growth processes is given. It relies on microscopy sampled or computer generated synthetic micrographs of particles. These are then simulated for deposition, aggregation and coagulation during thin film growth by frequency domain transform techniques. Particle sources and diffusion operators on surfaces are used to predict with high temporal resolution, unattained by real world microscopy the surface structure evolution as time samples and time movies. The simulation program was used to investigate deposition and diffusive profiles in photodeposition experiments, starting from initial synthetic micrographs based on real world scanning electron microscopy (SEM) images. The surface microstructure time 'tracking' scheme described here relies on transforming the original image of the deposited particles into a Fourier spatial frequency domain image. The physical models used are that of a material random deposition source and subsequent surface redistribution due to diffusion and other coalescence material surface flow mechanisms. The 2-D inverse Fourier transform (IFT) is finally used to obtain back the real space-time images representing the surface spatio-temporal films morphology changes. False color representation of the images allows for a better discrimination of the films growing details especially during the fast pre-compact thin film layer formation on the substrate

  3. Synthesis of cadmium tungstate films via sol-gel processing

    Energy Technology Data Exchange (ETDEWEB)

    Lennstrom, Kirk; Limmer, Steven J.; Cao Guozhong

    2003-06-23

    Cadmium tungstate is a scintillator material with excellent intrinsic photoluminescent properties. It is highly resistant to gamma radiation, has an almost non-existent afterglow and is highly efficient. Cadmium tungstate is also non-hydroscopic, unlike the more prevalent thallium-doped alkali halide scintillators. In order to create thin films of cadmium tungstate with precise stoichiometric control, a sol-gel processing technique has been applied to produce this material for the first time. In addition to lower processing temperatures, sol-gel-derived cadmium tungstate is cheaper and easier than other technologies, particularly for thin films. Furthermore, it has the potential to produce nanostructured materials with good optical quality. X-Ray diffraction results of sol-gel-derived materials fired at various temperatures imply crystallization of cadmium tungstate without the intermediate formation of either tungsten oxide or cadmium oxide. Scanning electron microscopy analysis shows the formation of nano-sized particles prior to heat treatment, which form meso-sized particles after the heat treatment. Photoluminesce analysis indicates emission of derived films at 480 nm, which agrees with other published data. Finally, the efficiency of derived films was approximately 6%{+-}1.8%.

  4. Kaolin in the diet and its effects on performance, litter moisture and intestinal morphology of broiler chickens

    Directory of Open Access Journals (Sweden)

    Marina Jorge de Lemos

    2015-10-01

    Full Text Available The objective of this study was to evaluate the effect of the addition of kaolin in the diet on performance, litter moisture and intestinal morphology of broiler chickens. Four hundred ninety-two broiler chickens distributed in a completely randomized design with three treatments and four replicates of 41 birds each, divided into three periods (15-21; 22-34; 35-52 days were used. The following treatments were: Control - reference diet without added kaolin; treatment 1 - reference diet + 0.75% kaolin; Treatment 2 - reference diet + 1.5% kaolin. The variables analyzed were: feed intake, average weight, average weight gain, feed conversion, litter moisture, villus height and crypt depth. The inclusion of kaolin in the diet significantly reduced feed intake, increased weight and average weight gain and improved feed conversion of broilers. The litter moisture decreased significantly after the inclusion of kaolin in the diet. The height of the duodenal villi of broilers increased significantly after inclusion of kaolin, while crypt depth was not influenced. The inclusion 0.75% of kaolin in the diet improved the performance, decreased litter moisture and benefited the intestinal integrity of broilers.

  5. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    OpenAIRE

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-01-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins w...

  6. Novel method to deposit metal particles on transition metal oxide films and its application in lithium-ion batteries

    International Nuclear Information System (INIS)

    Pan Qinmin; Wang Min; Wang Hongbo; Zhao Jianwei; Yin Geping

    2008-01-01

    A novel method to modify the surfaces of transition metal oxides (MO) film-electrode was proposed in this study. At first, a monolayer of terephthalic acid was covalently bonded to the surfaces of Cu 2 O films. Then silver (Ag) particles were electrodeposited on the monolayer-grafted films by a potential-step process. The resulting Ag-Cu 2 O films exhibited improved electrochemical performance as negative electrodes in lithium-ion batteries compared to the original Cu 2 O films. An increase in electrical contact between Cu 2 O particles was considered to be responsible for the improvement in the electrochemical properties

  7. Influence of the type of aqueous sodium silicate on the stabilization and rheology of kaolin clay suspensions

    Science.gov (United States)

    Izak, Piotr; Ogłaza, Longin; Mozgawa, Włodzimierz; Mastalska-Popławska, Joanna; Stempkowska, Agata

    2018-05-01

    To avoid agglomeration and sedimentation of grains, ceramic slurries should be modified by stabilizers in order to increase the electrostatic interactions between the dispersed particles. In this study we present the spectral analysis of aqueous sodium silicates obtained by different synthesis methods and their influence on the rheological properties of kaolin based slurries. Infrared and Raman spectra can be used to describe the structure of silicate structural units present in aqueous sodium silicates. It was confirmed that the best stabilization results possess aqueous sodium silicates of the silicate moduli of about 2 and the optimal concentration of the used fluidizer is 0.3 wt% to the kaolin clay dry mass. One of the most important conclusions is that the synthesis method of the fluidizer has no significant effect on its stabilization properties but used medium does create adequate stabilization mechanism depending on the silicate structures present in the sodium silicate solution.

  8. Evolution of insoluble eutectic Si particles in anodic oxidation films during adipic-sulfuric acid anodizing processes of ZL114A aluminum alloys

    Science.gov (United States)

    Hua, Lei; Liu, Jian-hua; Li, Song-mei; Yu, Mei; Wang, Lei; Cui, Yong-xin

    2015-03-01

    The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.

  9. Characterization of silica polymorphs in kaolins by X-ray diffraction before and after phosphoric acid digestion and thermal treatment

    International Nuclear Information System (INIS)

    Kahraman, Sibel; Oenal, Mueserref; Sarikaya, Yueksel; Bozdogan, Ihsan

    2005-01-01

    To characterize silica polymorphs (silicas) in some kaolins, orthophosphoric acid digestion (240 deg. C, 15 min), and thermal treatment (1050 deg. C, 24 h) were applied to eight samples. The original, digested, and heated samples were examined by X-ray diffraction (XRD). Crystalline silica quartz (SiO 2 ) was identified from the standard XRD patterns of the original kaolins; all contained quartz. On the other hand, hydrated partially crystalline silicas (SiO 2 .nH 2 O), such as well-ordered opal-C and opal-CT, were not readily distinguished from high-temperature crystalline silica, α-cristobalite, using standard XRD patterns of the original kaolins because, sharp and intense characteristic XRD peaks (h k l = 1 0 1) centered near 0.4 nm for opal-C, opal-CT, and α-cristobalite coincided. In order to distinguish these silicas the XRD patterns of the digested and heated samples were evaluated. It was observed that the 1 0 1 peaks disappear and sharpen in the course of digestion and heating, respectively. Because, the crystallinity of α-cristobalite does not change by these treatments, it was concluded that the kaolins contain opal-C and opal-CT or their mixtures in amorphous opal-A (SiO 2 .nH 2 O), but not α-cristobalite, which is probably human carcinogen. Because, the crystallinity increases in order opal-CT and opal-C, the narrowing in width at half-maximum peak height (FWHM) 1 0 1 must be more for opal-CT than opal-C by heating. Therefore, to distinguish opal-CT and opal-C from each other, the FWHM values before and after the heating process, were examined. Based on the results, it was estimated that six kaolins contain opal-CT in opal-A matrix, one kaolin contains only opal-A in a trace amount, and one kaolin contains non-opals

  10. Production and Structural Investigation of Polyethylene Composites with Modified Kaolin

    International Nuclear Information System (INIS)

    Domka, L.; Malicka, A.; Stachowiak, N.

    2008-01-01

    The study was undertaken to evaluate the effect of the filler (kaolin) modification with silane coupling agents on the properties of the polyethylene (HDPE Hostalen ACP 5831) composites. Powder mineral fillers are added to polymers to modify the properties of the latter and to reduce the cost of their production. A very important factor is the filler dispersion in the polymer matrix. Kaolin modified with 3-methacryloxypropyltrimethoxysilane and pure kaolin were characterised by surface area, pore size, water absorbing capacity, paraffin oil absorbing capacity, bulk density, scanning electron microscopy observations and X-ray diffraction measurements. Their performance was characterised by determination of the mechanical resistance upon static stretching and tearing, and their structure was observed in scanning electron microscopy images. The results were compared to those obtained for the composites with unmodified filler and pure HDPE. (authors)

  11. Production and Structural Investigation of Polyethylene Composites with Modified Kaolin

    Science.gov (United States)

    Domka, L.; Malicka, A.; Stachowiak, N.

    2008-08-01

    The study was undertaken to evaluate the effect of the filler (kaolin) modification with silane coupling agents on the properties of the polyethylene (HDPE Hostalen ACP 5831) composites. Powder mineral fillers are added to polymers to modify the properties of the latter and to reduce the cost of their production. A very important factor is the filler dispersion in the polymer matrix. Kaolin modified with 3-methacryloxypropyltrimethoxysilane and pure kaolin were characterised by surface area, pore size, water absorbing capacity, paraffin oil absorbing capacity, bulk density, scanning electron microscopy observations and X-ray diffraction measurements. Their performance was characterised by determination of the mechanical resistance upon static stretching and tearing, and their structure was observed in scanning electron microscopy images. The results were compared to those obtained for the composites with unmodified filler and pure HDPE.

  12. Synthesis of zeolite using as precursor reject of kaolin of the Amazon Region: application as an adsorbent in gas drying

    International Nuclear Information System (INIS)

    Morais, M.R.C.; Santana, D.L. de; Martelli, M.C.; Neves, R.F.

    2011-01-01

    Zeolites have large variety of technological applications, accounting for an increasing interest in various industries. In the State of Para, located three industries from kaolin for paper, where large amounts of waste are stored in ponds in becoming environmental problem. This work aims to develop a process for obtaining a zeolite P from the kaolin waste as the starting material. The synthesis was performed with kaolin waste from Capim River region, calcined at 700 ° C for 2 h, and reacted in the presence of aqueous NaOH and diatomite (silica source supplement), and the process hydrothermal temperature of 110 ° C for varied times. The characterization of the starting material and the synthesized materials was carried out using XRD and SEM. At the end of the experiment, the zeolite P synthesized was tested for moisture adsorption and was effective for this purpose. (author)

  13. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Vapor film collapse behavior on high temperature particle surface. JAERI's nuclear research promotion program, H10-027-3. Contract research

    International Nuclear Information System (INIS)

    Abe, Yutaka

    2002-03-01

    The experimental researches were conducted to study vapor film collapse behavior on high temperature melted core material coarsely mixed in the coolant under the film boiling condition. The film collapse is very important incipient incident of the trigger process for the vapor explosion in sever accident of nuclear reactor. In the experiment, pressure pulse was applied to the vapor film on a high temperature particle surface simulating melted core material to observed microscopic vapor film collapse behavior with a high-speed video camera of 40,500 fps. The particle surface temperature and pressure around the particle were simultaneously measured. The transition of the vapor film thickness and two-dimensional vapor-liquid interface movement and the velocity were estimated with visual data analysis technique, PIV and digital data analysis technique. Furthermore, heat conduction analysis was performed to estimate the vapor-liquid interfacial temperature with the measured temperature and estimated vapor film thickness. As the results, it was clarified that the vapor-liquid interface changed white from transparent view for all the experimental conditions. It is also clarified that the vapor-liquid interfacial temperature decreased under the saturation temperature when the pressure pulse arrive at the particle. The experimental facts indicates the possibility that the vapor film collapse occurs due to the liquid phase homogeneous moving toward the particle drove by the pressure reduction caused by the phase change inside the vapor film. (author)

  14. An evaluation of soluble cations and anions on the conductivity and rate of flocculation of kaolins

    Science.gov (United States)

    Fulton, Deborah Lee

    1998-10-01

    The focus of this project was to learn how ionic concentrations and their contributions to electric conductivity influence the flocculation behavior of kaolin/water suspensions. Sodium silicate, calcium chloride, and magnesium sulfate were used as chemical additives. The specific surface areas, particle size distributions, and methylene blue indices for two kaolins were measured. The SSA and MBI for these kaolins indicated that they possessed inherent differences in SSA and flocculation behaviors. Rheological studies were also performed. Testing included simultaneous gelation, deflocculation, and pH tests. Viscosity, pH, temperature, and chemical additive concentrations were monitored at each point. Testing was performed at 45/55 wt% solids. Effects of additions of various levels of deflocculant and flocculant to each of the kaolin/water suspensions were studied by making several suspensions from each kaolin. The concentrations of dispersant, and flocculant levels and types were varied to produce suspensions with different chemical additive "histories," but all with similar final apparent viscosities. Slurry filtrates were analyzed for conductivity, pH, temperature, and ion concentrations of (Al3+, Fe2+,3+, Ca 2+, Mg+, Na+, SO4 2--, and Cl--). Plastic properties were calculated to determine how variations in suspension histories affected conductivities, pH, and detectable ion contents of the suspensions. These analyses were performed on starting slurries which were under-, completely-, and over-deflocculated before further additions of flocculants and deflocculant were added to tune the slurries to the final, constant, target viscosity. Results showed that rates of flocculation and conductivities increased as concentrations of ions increased. By increasing conductivity correlations with increases in flocculation occurs, which yields higher rates of buildup, or RBU [1]. This is the single most important slip control property in the whitewares industry. Shear

  15. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    Science.gov (United States)

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  16. Visualization modeling of thin film growth in photodeposition processes

    Energy Technology Data Exchange (ETDEWEB)

    Mirchin, N.; Sidi, M.; Muchnik, Y.; Peled, A

    2003-03-15

    A computer visualization technique, which analyzes and predicts the spatio-temporal evolution of thin film deposition and growth processes is given. It relies on microscopy sampled or computer generated synthetic micrographs of particles. These are then simulated for deposition, aggregation and coagulation during thin film growth by frequency domain transform techniques. Particle sources and diffusion operators on surfaces are used to predict with high temporal resolution, unattained by real world microscopy the surface structure evolution as time samples and time movies. The simulation program was used to investigate deposition and diffusive profiles in photodeposition experiments, starting from initial synthetic micrographs based on real world scanning electron microscopy (SEM) images. The surface microstructure time 'tracking' scheme described here relies on transforming the original image of the deposited particles into a Fourier spatial frequency domain image. The physical models used are that of a material random deposition source and subsequent surface redistribution due to diffusion and other coalescence material surface flow mechanisms. The 2-D inverse Fourier transform (IFT) is finally used to obtain back the real space-time images representing the surface spatio-temporal films morphology changes. False color representation of the images allows for a better discrimination of the films growing details especially during the fast pre-compact thin film layer formation on the substrate.

  17. Synthesis of microporous material faujasite-type from kaolin waste; Sintese de material microporoso do tipo faujasita a partir de rejeito de caulim

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrando, E.A.; Valenzuela-Diaz, F.R., E-mail: edemarino@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Metalurgica e de Materiais. Lab. de Materias-Primas Particuladas e Solidos nao Metalicos; Angelica, R.S. [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Inst. de Geociencias. Fac. de Geologia; Neves, R.F. [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Inst. de Tecnologia. Fac. de Engenharia Quimica

    2010-07-01

    Zeolite with structure faujasite was synthesized using kaolin waste from kaolin processing industries for paper coating as predominant source of silicon and aluminum; the starting material was characterized by XRF, XRD, DTA/TG, SEM, and products obtained by XRD and SEM. Synthesis in hydrothermal conditions occurred on autoclave and time-temperature effects, as well as the relationship Si/Al were considered. The results show that the methodology developed with the waste of calcined kaolin reacting at 90 deg C for 20 hours in an alkaline medium, in the presence of an additional source of silica was obtained zeolite Y as single phase present in the product. (author)

  18. Monitoring of Radiation Levels in Mines of Kaolin Located in the Region Serido-PB, Brazil

    International Nuclear Information System (INIS)

    Guerra Spacov, Isabel Cristina; Dos Santos Amaral, Milton; Araujo dos Santos Junior, Jose

    2015-01-01

    Kaolin is formed mainly by kaolinite and is used in many industrial sectors. Kaolin may be associated with by-products such as quartz, mica, feldspar and sand. The background radiation from nature is very important, since it represents the main source of human exposure to radiation. In kaolin, radionuclides are present as the 40 K and series 238 U and 232 Th. This study aimed to obtain the rates of effective doses of kaolin mines in the region of Serido-PB, Brazil, where there are several productions and mineral occurrences, including kaolin and uranium at nearby areas. Four kaolin mines located in the Serido-PB region were monitored by a portable discriminator detector NaI(Ti). Measurements were obtained outdoors in triplicate, at a distance of 1.0 meters from the Earth's surface. According to the report of UNSCEAR, the world average effective dose from exposure to natural radiation sources is 2.42 mSvy -1 . the rates of effective doses identified in this study ranged from 1.37 mSvy -1 , and provided the construction of isodose curves. The highest dose rate obtained may be related to pegmatite bodies in a nearby area that contain uranium minerals. However, based on the development of this research, the results indicate that further study in this area is needed in order to infer damage associated with mining of kaolin in the Serido-PB area. (Author)

  19. Film processing

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    The processing was made not only to show what are in the film but also to produce radiograph with high quality where the information gathered really presented level of the quality of the object inspected. Besides that, good procedure will make the film with good quality can keep the film in long time for reference. Here, more detailed on how the dark room functioned and its design. So, the good procedure while processed the film will be discussed detailed in this chapter from entering the dark room to exit from there.

  20. Investigation on the effect of sintering temperature on kaolin hollow fibre membrane for dye filtration.

    Science.gov (United States)

    Mohtor, Nur Hamizah; Othman, Mohd Hafiz Dzarfan; Ismail, Ahmad Fauzi; Rahman, Mukhlis A; Jaafar, Juhana; Hashim, Nur Awanis

    2017-07-01

    Despite its extraordinary price, ceramic membrane can still be able to surpass polymeric membrane in the applications that require high temperature and pressure conditions, as well as harsh chemical environment. In order to alleviate the high cost of ceramic material that still becomes one of the major factors that contributes to the high production cost of ceramic membrane, various attempts have been made to use low cost ceramic materials as alternatives to well-known expensive ceramic materials such as alumina, silica, and zirconia in the fabrication of ceramic membrane. Thus, local Malaysian kaolin has been chosen as the ceramic material in this study for the preparation of kaolin hollow fibre membrane since it is inexpensive and naturally abundant in Malaysia. Due to the fact that the sintering process plays a prominent role in obtaining the desired morphology, properties, and performances of prepared ceramic membrane, the aim of this work was to study the effect of different sintering temperatures applied (ranging from 1200 to 1500 °C) in the preparation of kaolin hollow fibre membrane via dry/wet phase inversion-based spinning technique and sintering process. The morphology and properties of membrane were then characterised by SEM, AFM, FTIR, XRD, and three-point bending test, while the performances of membrane were investigated by conducting water permeation and Reactive Black 5 (RB5) dye rejection tests. From the experimental results obtained, the sintering temperature of 1400 °C could be selected as the optimum sintering temperature in preparing the kaolin hollow fibre membrane with the dense sponge-like structure of separation layer that resulted in the good mechanical strength of 70 MPa with the appreciable water permeation of 75 L/h m 2  bar and RB5 rejection of 68%.

  1. Parasitoids of boll weevil Anthonomus grandis and resident predators in kaolin-treated cotton

    Directory of Open Access Journals (Sweden)

    Roberta Leme Santos

    2013-12-01

    Full Text Available Simultaneous use of control methods is essential to reach success in managing arthropod pests. The current study investigated the effect of kaolin application on resident predators in the cotton plant canopy and parasitism of boll weevil on abscised squares in the field, and parasitism of boll weevil in the laboratory. Predators Araneae, Formicidae, Chrysopidae, and Coccinellidae showed similar seasonal densities for kaolin-treated and untreated cotton fields as well as the emergence rate of the parasitoids Bracon vulgaris Ashmead (Hymenoptera: Braconidae and Catolaccus grandis Burks (Hymenoptera: Pteromalidae from abscised field-collected structures. Under laboratory conditions, the parasitism of boll weevil larvae infesting squares was similar when treated and untreated squares with kaolin were offered to the parasitoid under free choice test. Therefore, the results show that spraying cotton fields with kaolin does not affect the natural biological control by parasitoids of boll weevil and pink bollworm and resident predators naturally occurring in cotton fields.

  2. Process effects on radio frequency diode reactively sputtered ZrO2 films

    International Nuclear Information System (INIS)

    Yang, M.M.; Reith, T.M.; Lin, C.J.

    1990-01-01

    The ZrO 2 thin film is deposited by means of a reactive radio frequency diode sputtering from an elemental zirconium target in an argon--oxygen mixture gas. The influence of the deposition process parameters on the microinstructure, composition, film stress, and refractive index is investigated. It is noted that the process parameters, in particular substrate bias, have a profound effect on the structure and properties. The possible mechanism, in terms of bombardment of energetic particles and adatom mobility on the film surface, is discussed

  3. Long-Chain Diacrylate Crosslinkers and Use of PEG Crosslinks in Poly(potassium acrylate-acrylic acid/Kaolin Composite Superabsorbents

    Directory of Open Access Journals (Sweden)

    Koroush Kabiri

    2013-01-01

    Full Text Available Long-chain diacrylate crosslinkers based on linear α,ω-diols were synthesized and characterized using FTIR and 1H NMR spectroscopy. The highest reaction yield (99.5% was due to polyethylene glycol diacrylate 1000 (PEGDA-1000. Then, kaolin-containing poly(potassium acrylate-acrylic acid superabsorbent composites and kaolin-free counterparts were synthesized using PEGDA-1000.The effect of the crosslinker concentration on swelling, rheological and thermo-mechanical properties was investigated. Absorption capacity of the composite hydrogels (having ~38% kaolin was unexpectedly higher than that of kaolin-free hydrogels. This was attributed to an interfering effect of kaolin during the polymerization. Glass transition temperature was increased with crosslinker concentration enhancement and addition of kaolin up to about 10oC and 28oC, respectively. Making such K-containing superabsorbents may be taken as an effective action to achieve more durable and cheaper superabsorbents for agricultural uses.

  4. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Vapor film collapse behavior on high temperature particle surface. JAERI's nuclear research promotion program, H10-027-3. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Yutaka [Tsukuba Univ., Institute of Engineering Mechanics and Systems, Tsukuba, Ibaraki (Japan)

    2002-03-01

    The experimental researches were conducted to study vapor film collapse behavior on high temperature melted core material coarsely mixed in the coolant under the film boiling condition. The film collapse is very important incipient incident of the trigger process for the vapor explosion in sever accident of nuclear reactor. In the experiment, pressure pulse was applied to the vapor film on a high temperature particle surface simulating melted core material to observed microscopic vapor film collapse behavior with a high-speed video camera of 40,500 fps. The particle surface temperature and pressure around the particle were simultaneously measured. The transition of the vapor film thickness and two-dimensional vapor-liquid interface movement and the velocity were estimated with visual data analysis technique, PIV and digital data analysis technique. Furthermore, heat conduction analysis was performed to estimate the vapor-liquid interfacial temperature with the measured temperature and estimated vapor film thickness. As the results, it was clarified that the vapor-liquid interface changed white from transparent view for all the experimental conditions. It is also clarified that the vapor-liquid interfacial temperature decreased under the saturation temperature when the pressure pulse arrive at the particle. The experimental facts indicates the possibility that the vapor film collapse occurs due to the liquid phase homogeneous moving toward the particle drove by the pressure reduction caused by the phase change inside the vapor film. (author)

  5. Atomistic scale nanoscratching behavior of monocrystalline Cu influenced by water film in CMP process

    Science.gov (United States)

    Shi, Junqin; Chen, Juan; Fang, Liang; Sun, Kun; Sun, Jiapeng; Han, Jing

    2018-03-01

    The effect of water film on the nanoscratching behavior of monocrystalline Cu was studied by molecular dynamics (MD) simulation. The results indicate that the friction force acting on abrasive particle increases due to the resistance of water film accumulating ahead of particle, but the water film with lubrication decreases friction force acting on Cu surface. The accumulation of water molecules around particle causes the anisotropy of ridge and the surface damage around the groove, and the water molecules remaining in the groove lead to the non-regular groove structure. The dislocation evolution displays the re-organization of the dislocation network in the nanoscratching process. The evaluation of removal efficiency shows the number of removed Cu atoms decreases with water film thickness. It is considered that an appropriate rather than a high removal efficiency should be adopted to evaluate the polishing process in real (chemical mechanical polishing) CMP. These results are helpful to reveal the polishing mechanism under the effect of water film from physical perspective, which benefits the development of ultra-precision manufacture and miniaturized components, as well as the innovation of CMP technology.

  6. Phase and electrical properties of PZT thin films embedded with CuO nano-particles by a hybrid sol-gel route

    Science.gov (United States)

    Sreesattabud, Tharathip; Gibbons, Brady J.; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda

    2013-07-01

    Pb(Zr0.52Ti0.48)O3 or PZT thin films embedded with CuO nano-particles were successfully prepared by a hybrid sol-gel process. In this process, CuO (0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 wt. %) nanopowder was suspended in an organometallic solution of PZT, and then coated on platinised silicon substrate using a spin-coating technique. The influence of CuO nano-particles' dispersion on the phase of PZT thin films was investigated. XRD results showed a perovskite phase in all films. At the CuO concentration of 0.4-1 wt. %, a second phase was observed. The addition of CuO nano-particles affected the orientation of PZT thin films. The addition was also found to reduce the ferroelectric properties of PZT thin films. However, at 0.2 wt. % CuO concentration, the film exhibited good ferroelectric properties similar to those of PZT films. In addition, the fatigue retention properties of the PZT/CuO system was observed, and it showed 14% fatigue at 108 switching bipolar pulse cycles while the fatigue in PZT thin films was found to be 17% at the same switching bipolar pulse cycles.

  7. High-temperature CO2 capture cycles of hydrated limestone prepared with aluminum (hydr)oxides derived from kaolin

    International Nuclear Information System (INIS)

    Wang, Ke; Zhao, Pengfei; Guo, Xin; Han, Dongtai; Chao, Yang

    2014-01-01

    Highlights: • Hydrated limestone exhibited a higher reactivity and stability. • Microstructure of hydrated limestone was significantly improved. • Hydrated limestone still suffered less loss-incapacity. • Hydrated limestone sorbents with kaolin-based binders were prepared and characterized. • Sorbents prepared from hydrated limestone and Al(OH) 3 binder are a promising sorbent. - Abstract: A simple and convenient process was used to improve the utilization of natural limestone and kaolin for calcium looping technology and environmental applications. The calcined natural limestone modified with the distilled water (denoted as Limestone-W), was systematically studied and compared with the other CaO sorbents (calcium acetate, calcium D-gluconate and calcined natural limestone). These CaO-based sorbents were tested for their CO 2 capture behavior through 20 carbonation/calcination cycles in a thermo-gravimetric analyzer (TGA). Their morphology, pore structure and phase composition before and after carbonation/calcination cycles were determined by scanning electron microscopy, nitrogen adsorption, and X-ray diffraction. The first-cycle and multicycle sorption results revealed that the Limestone-W sorbent exhibited a relatively faster reaction rate and higher cyclic CO 2 capture. The characterization data indicated that the Limestone-W was composed of a special calcium oxide structure with lower crystalline and higher porosity nanoparticles, which appeared to be the main reasons for its higher CO 2 capture capability. However, the Limestone-W still suffered loss of reactivity, even though it was less pronounced than the other CaO sorbent. To avoid this unfavorable effect, a thermally stable inert material (aluminum hydroxide derived from kaolin) was incorporated into the Limestone-W structure. This new sorbent revealed higher stability because the formation of a stable framework of Ca 12 Al 14 O 33 particles hindered densification and sintering of the CaO phase

  8. Kaolin Quality Prediction from Samples: A Bayesian Network Approach

    International Nuclear Information System (INIS)

    Rivas, T.; Taboada, J.; Ordonez, C.; Matias, J. M.

    2009-01-01

    We describe the results of an expert system applied to the evaluation of samples of kaolin for industrial use in paper or ceramic manufacture. Different machine learning techniques - classification trees, support vector machines and Bayesian networks - were applied with the aim of evaluating and comparing their interpretability and prediction capacities. The predictive capacity of these models for the samples analyzed was highly satisfactory, both for ceramic quality and paper quality. However, Bayesian networks generally proved to be the most useful technique for our study, as this approach combines good predictive capacity with excellent interpretability of the kaolin quality structure, as it graphically represents relationships between variables and facilitates what-if analyses.

  9. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  10. Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications

    International Nuclear Information System (INIS)

    Bakhshayesh, A.M.; Mohammadi, M.R.

    2013-01-01

    A novel simple synthetic procedure for fabrication of high surface area nanostructured TiO 2 electrode with uniform particles for photovoltaic application is reported. Modifying the TiO 2 particulate sol by pH adjustment together with employment of a polymeric agent, so-called polymeric gel process, was developed. The polymeric gel process was used to deposit nanostructured thick electrode by dip coating incorporated in dye-sensitized solar cells (DSSCs). X-ray diffraction (XRD) analysis revealed that deposited film was composed of primary nanoparticles with average crystallite size in the range 21-39 nm. Field emission scanning electron microscope (FE-SEM) images showed that deposited film had nanostructured and porous morphology containing uniform spherical particles with diameter about 2.5 μm. The spherical particles were made of small nanoparticles with average grain size of 60 nm improving light scattering and dye loading of the DSSC. Moreover, atomic force microscope (AFM) analysis verified that the roughness mean square of prepared electrode was low, enhancing electron transport to the counter electrode. Photovoltaic measurements showed that solar cell made of polymeric gel process had higher photovoltaic performance than that made of conventional paste. An enhancement of power conversion efficiency from 4.54%, for conventional paste, to 6.21%, for polymeric gel process, was achieved. Electrochemical impedance spectroscopy (EIS) study showed that the recombination process in solar cell made of polymeric gel process was slower than that in solar cell made of conventional paste. The presented strategy would open up new insight into fabrication of low-cost TiO 2 DSSCs with high power conversion efficiency

  11. Synthesis and characterization of zeolite NaP using kaolin waste as a source of silicon and aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrando, Edemarino Araujo, E-mail: edemarino@ufpa.br [Universidae Federal do Para (UFPA), Maraba, PA (Brazil). Fac. de Engenharia de Materias. Lab. de Materiais Ceramicos; Andrade, Christiano Gianesi Bastos; Valenzuela-Diaz, Francisco Rolando [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Dept. de Metalurgia e Engenharia de Materiais; Rocha Junior, Carlos Augusto Ferreira da; Neves, Roberto de Freitas [Universidae Federal do Para (UFPA), Maraba, PA (Brazil). Int. de Tecnologia. Fac. de Engenharia Quimica; Angelica, Romulo Simoes [Universidae Federal do Para (UFPA), Maraba, PA (Brazil). Inst. de Geociencias. Fac. de Geologia

    2014-08-15

    The synthesis of zeolite NaP using kaolin waste, from the Amazon region, as a predominant source of silicon and aluminum has been studied. The zeolitisation process occurred in hydrothermal conditions using static autoclaving and the effects of time, temperature, and the Si/Al ratio were investigated. The starting material and the phases formed as reaction products were characterized by XRD, SEM and FTIR. The results showed that pure zeolite NaP is hydrothermally synthesized, at 100 °C for 20 hours, using meta kaolin waste material in alkaline medium in presence of additional silica. The XRD and SEM analyses indicate that the synthesized zeolite presents good crystallinity. (author)

  12. Synthesis and characterization of zeolite NaP using kaolin waste as a source of silicon and aluminum

    International Nuclear Information System (INIS)

    Hildebrando, Edemarino Araujo; Andrade, Christiano Gianesi Bastos; Valenzuela-Diaz, Francisco Rolando; Rocha Junior, Carlos Augusto Ferreira da; Neves, Roberto de Freitas; Angelica, Romulo Simoes

    2014-01-01

    The synthesis of zeolite NaP using kaolin waste, from the Amazon region, as a predominant source of silicon and aluminum has been studied. The zeolitisation process occurred in hydrothermal conditions using static autoclaving and the effects of time, temperature, and the Si/Al ratio were investigated. The starting material and the phases formed as reaction products were characterized by XRD, SEM and FTIR. The results showed that pure zeolite NaP is hydrothermally synthesized, at 100 °C for 20 hours, using meta kaolin waste material in alkaline medium in presence of additional silica. The XRD and SEM analyses indicate that the synthesized zeolite presents good crystallinity. (author)

  13. Synthesis of Zeolite A from Kaolin (Shwe Taung Clay)

    International Nuclear Information System (INIS)

    Mie Mie Han Htun; Mu Mu Htay

    2010-12-01

    The synthesis of Zeolite A from locally available kaolin clay (Shwe Taung) in Myanmar has been attempted. The kaolinite was converted to metakaoli, by treating with NaOH at 820C for 1hr, and hydrothermal treatment.It was found that the solution of fused clay powder can be crystallized at 100C under ambient pressure to synthesize Zeolite A. The process variables for synthesis have been optimized in order to produce Zeolite A at a lower price. The mole ratio of SiO2/Al2O3 for kaolin was fixed at 2.54. The effects of various factors (aging time and agitation time) on the structure of the sample were extensively investigated. The Shwe Taung clay was characterized by X-ray Diffraction (XRD), X-ray fluorescence (XRF) and Scanning Electron Microscopy (SEM). The samples were characterized by XRD. The results show that the pure form Zeolite A can be prepared with a molar composition of (2.54 SiO3: Al2O3: 5.8Na2O: 256 H2O) by agitation at room temperature for 30min. The mixture was aged for 24 hour at the same temperature and crystallized at 100C for 48 hour.

  14. Study on the effect of subcooling on vapor film collapse on high temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke; Yanagida, Hiroshi

    2000-01-01

    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface is needed to be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcooling condition is qualitatively different from the vapor film collapse behavior in high subcooling condition. In case of vapor film collapse by pressure pulse, homogeneous vapor generation occurred all over the surface of steel particle in low subcooling condition. On the other hand, heterogeneous vapor generation was observed for higher subcooling condition. In case of vapor film collapse spontaneously, fluctuation of the gas-liquid interface after quenching propagated from bottom to top of the steel particle heterogeneously in low subcooling condition. On the other hand, simultaneous vapor generation occurred for higher subcooling condition. And the time transient of pressure, particle surface temperature, water temperature and visual information were simultaneously measured in the vapor film collapse experiment by external pressure pulse. Film thickness was estimated by visual data processing technique with the pictures taken by the high-speed video camera. Temperature and heat flux at the vapor-liquid interface were estimated by solving the heat condition equation with the measured pressure, liquid temperature and vapor film thickness as boundary conditions. Movement of the vapor-liquid interface were estimated with the PIV technique with the visual observation

  15. Modeling of flash calcination process during clay activation

    International Nuclear Information System (INIS)

    Borrajo Perez, Ruben; Gonzalez Bayon, Juan Jose; Sanchez Rodriguez, Andy A.

    2011-01-01

    Pozzolanic activity in some materials can be increased by means of different processes, among them, thermal activation is one of the most promising. The activation process, occurring at high temperatures and velocities produces a material with better characteristics. In the last few years, high reactivity pozzolan during cure's early days has been produced. Temperature is an important parameter in the activation process and as a consequence, the activation units must consider temperature variation to allow the use of different raw materials, each one of them with different characteristics. Considering the high prices of Kaolin in the market, new materials are being tested, the clayey soil, which after a sedimentation process produces a clay that has turned out to be a suitable raw material, when the kinetics of the pozzolanic reaction is considered. Additionally, other material with higher levels of kaolin are being used with good results. This paper is about the modeling of thermal, hydrodynamics and dehydroxilation processes suffering for solids particles exposed to a hot gas stream. The models employed are discussed; the velocity and temperature of particles are obtained as a function of carrier gas parameters. The calculation include the heat losses and finally the model predict the residence time needed for finish the activation process. (author)

  16. Incorporation of feasibility study of residue thin kaolin in of porcelain formulations production; Estudo da viabilidade da incorporacao do residuo fino do caulim na concepcao de formulacoes de porcelanatos

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, V.S. de; Ferreira, E.C.; Oliveira, T.M. de; Freitas, K.D. de Araujo; Soares Filho, J.E.; Sousa, F.J.P. de, E-mail: vanessaalmeida90@gmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2016-07-01

    The porcelain is the more advanced product among traditional ceramics due to the high technology used in its manufacture and its excellent technological and aesthetic properties. Due to the continuing worldwide development, kaolin processing industries have increased their productivity and consequently generating large amounts of waste, contributing to environmental degradation. Studies are being conducted to analyze the incorporation of such wastes in the ceramic mass compositions. The objective of this study was to evaluate 4 formulations of porcelain as the possibility of using waste coming from the last stage of kaolin processing. Processing occurred by wet grinding process, with uniaxial compacting pressure of 45 MPa after heat treatment at 1250 ° C. Technological tests were carried out physical and mechanical product. The results showed that the addition of fine kaolin residue was presented as an efficient alternative for the porcelain industry. (author)

  17. Direct numerical simulation of 3D particle motion in an evaporating liquid film

    International Nuclear Information System (INIS)

    Hwang, Ho Chan; Son, Gi Hun

    2016-01-01

    A direct numerical simulation method is developed for 3D particle motion in liquid film evaporation. The liquid-gas and fluid-solid interfaces are tracked by a sharp-interface Level-set (LS) method, which includes the effects of evaporation, contact line and solid particles. The LS method is validated through simulation of the interaction between two particles falling in a single-phase fluid. The LS based DNS method is applied to computation of the particle motion in liquid film evaporation to investigate the particle-interface and particle-particle interactions

  18. Microstructural analysis of ceramic masses with waste kaolin addition for the red ceramic production

    International Nuclear Information System (INIS)

    Vida, Talita Almeida; Fagury Neto, Elias; Rabelo, Adriano Alves

    2010-01-01

    Incorporating reject industrial ceramic mixtures has proved viable in the reduction of environmental liabilities. In this study, we sought to study the potential use of ceramic formulations with the addition of tailings from the production of kaolin clay to the region of the city of Maraba-PA. Formulations were obtained with two clays of this region with the addition of up to 60% by weight of kaolin waste. The microstructural analyses were carried out from the preparation of specimens that were sintered at 1000 and 1200 °C with level 3 hours. The samples prepared were used to observe the microstructure by optical microscope, to determine the constituents of each formulation after burning. And later analysis was performed X-rays diffraction, to quantify the phases present. It was observed that increasing the content of the mixture of kaolin clay caused the reaction of kaolinite forming the primary mullite from 1000 ° C. For a firing temperature around 1200 ° C showed the presence of mullite even the addition of 20% kaolin, noting also the presence of secondary kaolinite. (author)

  19. Impact of dynamic distribution of floc particles on flocculation effect

    Institute of Scientific and Technical Information of China (English)

    NAN Jun; HE Weipeng; Song Xinin; LI Guibai

    2009-01-01

    Polyaluminum chloride (PAC) was used as coagulant and suspended particles in kaolin water. Online instruments including turbidimeter and particle counter were used to monitor the flocculation process. An evaluation model for demonstrating the impact on the flocculation effect was established based on the multiple linear regression analysis method. The parameter of the index weight of channels quantitatively described how the variation of floc particle population in different size ranges cause the decrement of turbidity. The study showed that the floc particles in different size ranges contributed differently to the decrement of turbidity and that the index weight of channel could excellently indicate the impact degree of floc particles dynamic distribution on flocculation effect. Therefore, the parameter may significantly benefit the development of coagulation and sedimentation techniques as well as the optimal coagulant selection.

  20. Impact of dynamic distribution of floc particles on flocculation effect.

    Science.gov (United States)

    Nan, Jun; He, Weipeng; Song, Xinin; Li, Guibai

    2009-01-01

    Polyaluminum chloride (PAC) was used as coagulant and suspended particles in kaolin water. Online instruments including turbidimeter and particle counter were used to monitor the flocculation process. An evaluation model for demonstrating the impact on the flocculation effect was established based on the multiple linear regression analysis method. The parameter of the index weight of channels quantitatively described how the variation of floc particle population in different size ranges cause the decrement of turbidity. The study showed that the floc particles in different size ranges contributed differently to the decrease of turbidity and that the index weight of channel could excellently indicate the impact degree of floc particles dynamic distribution on flocculation effect. Therefore, the parameter may significantly benefit the development of coagulation and sedimentation techniques as well as the optimal coagulant selection.

  1. Application of molybdenum and phosphate modified kaolin in electrochemical treatment of paper mill wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Wang Bo; Wang Ying

    2007-01-01

    Pulp and paper mill wastewater is characterized by very high chemical oxygen demand (COD) values that inhibit the activity of microorganisms during biological oxidations. The electrochemical degradation of pulp and paper mill wastewater catalyzed by molybdenum and phosphate (Mo-P) modified kaolin with graphite as anode and cathode was investigated. The catalyst was characterized by XRD, XPS and SEM spectra and the effects of pH, metal ion and introduction of NaCl on the efficiency of the electrochemical degradation process were also studied. It was found out that the modified kaolin loaded with Fe 3+ had higher electrochemical catalytic activity in the electrochemical degradation of paper mill wastewater at pH 4. A 96% COD removal efficiency was obtained in 40 min of electrochemical treatment of the wastewater at current density 30 mA cm -2 . A possible mechanism for degradation of the mill wastewater constituents was also proposed

  2. Highly Magneto-Responsive Elastomeric Films Created by a Two-Step Fabrication Process

    KAUST Repository

    Marchi, Sophie

    2015-08-24

    An innovative method for the preparation of elastomeric magnetic films with increased magneto-responsivity is presented. Polymeric films containing aligned magnetic microchains throughout their thickness are formed upon the magnetophoretic transport and assembly of microparticles during polymer curing. The obtained films are subsequently magnetized at a high magnetic field of 3 T directed parallel to the orientation of the microchains. We prove that the combination of both alignment of the particles along a favorable direction during curing and the subsequent magnetization of the solid films induces an impressive increase of the films’ deflection. Specifically, the displacements reach few millimeters, up to 85 times higher than those of the nontreated films with the same particle concentration. Such a process can improve the performance of the magnetic films without increasing the amount of magnetic fillers and, thus, without compromising the mechanical properties of the resulting composites. The proposed method can be used for the fabrication of magnetic films suitable as components in systems in which large displacements at relatively low magnetic fields are required, such as sensors and drug delivery or microfluidic systems, especially where remote control of valves is requested to achieve appropriate flow and mixing of liquids.

  3. Highly Magneto-Responsive Elastomeric Films Created by a Two-Step Fabrication Process

    KAUST Repository

    Marchi, Sophie; Casu, Alberto; Bertora, Franco; Athanassiou, Athanassia; Fragouli, Despina

    2015-01-01

    An innovative method for the preparation of elastomeric magnetic films with increased magneto-responsivity is presented. Polymeric films containing aligned magnetic microchains throughout their thickness are formed upon the magnetophoretic transport and assembly of microparticles during polymer curing. The obtained films are subsequently magnetized at a high magnetic field of 3 T directed parallel to the orientation of the microchains. We prove that the combination of both alignment of the particles along a favorable direction during curing and the subsequent magnetization of the solid films induces an impressive increase of the films’ deflection. Specifically, the displacements reach few millimeters, up to 85 times higher than those of the nontreated films with the same particle concentration. Such a process can improve the performance of the magnetic films without increasing the amount of magnetic fillers and, thus, without compromising the mechanical properties of the resulting composites. The proposed method can be used for the fabrication of magnetic films suitable as components in systems in which large displacements at relatively low magnetic fields are required, such as sensors and drug delivery or microfluidic systems, especially where remote control of valves is requested to achieve appropriate flow and mixing of liquids.

  4. Kaolin from Acoculco (Puebla, Mexico) as a raw material: mineralogical and thermal characterization

    OpenAIRE

    Garcia Vallès, Maite; Pi, T.; Alfonso, P.; Canet, C.; Martínez Manent, Salvador; Jiménez-Franco, A.; Tarragó Aymerich, Mariona; Hernández-Cruz, B.

    2015-01-01

    The present study determined the mineralogy and thermal properties of kaolin from Acoculco (Puebla), at the eastern Trans-Mexican Volcanic Belt and compared it with the nearby deposits of Agua Blanca (Hidalgo) and Huayacocotla (Veracruz). The mineralogy of the kaolins was determined by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Thermal behaviour was studied by differential thermal analysis, dilatometry and hot-stage microscopy. The Acoculco deposit is composed ...

  5. Physicochemical Evaluation of Industrial Potentialities of Getso Kaolin

    African Journals Online (AJOL)

    2017-08-13

    Aug 13, 2017 ... manufacturing sector. In this study kaolin from Getso, Kano state, northern part of Nigeria was characterized ... foreign import, leaving a supply gap of over. 250,000 .... the presence of mica; the strong band at 3694 cm-1. 80.53.

  6. FIB-SEM investigation of trapped intermetallic particles in anodic oxide films on AA1050 aluminium

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Møller, Per; Dunin-Borkowski, Rafal E.

    2011-01-01

    -containing intermetallic particles incorporated into the anodic oxide films on industrially pure aluminium (AA1050, 99.5 per cent) has been investigated. AA1050 aluminium was anodized in a 100?ml/l sulphuric acid bath with an applied voltage of 14?V at 20°C ±2°C for 10 or 120?min. The anodic film subsequently was analyzed......Purpose - The purpose of this investigation is to understand the structure of trapped intermetallics particles and localized composition changes in the anodized anodic oxide film on AA1050 aluminium substrates. Design/methodology/approach - The morphology and composition of Fe......-shaped particles were embedded in the anodic oxide film as a thin strip structure and located near the top surface of the film, whereas the round-shaped particles were trapped in the film with a spherical structure, but partially dissolved and were located throughout the thickness of the anodic film. The Fe...

  7. Preparation and characterization of CuInSe2 particles via the hydrothermal route for thin-film solar cells

    International Nuclear Information System (INIS)

    Wu, Chung-Hsien; Chen, Fu-Shan; Lin, Shin-Hom; Lu, Chung-Hsin

    2011-01-01

    Highlights: → A new hydrothermal process for preparing copper indium diselenide (CuInSe 2 ). → Well-crystallized CuInSe 2 particles are obtained at 180 deg. C for 1 h. → Densified CuInSe 2 thin films are prepared from ink printing. → Increasing temperatures result in an improvement of properties of CuInSe 2 films. - Abstract: CuInSe 2 powders with a chalcopyrite structure used in thin-film solar cells were successfully prepared via a hydrothermal method at low temperatures within short durations. Well-crystallized CuInSe 2 particles were formed via the hydrothermal reaction at 180 deg. C for 1 h. The concentrations of stabilizer, triethanolamine (TEA), significantly affected the purity, morphology and particle sizes of the prepared powders. Increasing the reaction duration and temperatures led to decrease the amount of second phase In(OH) 3 and resulted in the formation of pure CuInSe 2 . Densified CuInSe 2 thin films were prepared from ink printing with the addition of the flux. Increasing the selenization temperatures increased the grain size and improved the crystallinity of CuInSe 2 films.

  8. Why Wet Kaolin can be used as a Crustal Analog and its Application to Fault Evolution at Restraining Bends

    Science.gov (United States)

    Cooke, M. L.; van der Elst, N.; Schottenfeld, M. T.

    2010-12-01

    To simulate geologic deformation on observable time and length scales within the lab, a subset of analog modelers have used wet kaolin. Unlike the more often used sand, wet kaolin beautifully exhibits detailed fault structures. Furthermore, faults within the kaolin are more readily reactivated than those in sand. The low plasticity of kaolin (compared to other clays) gives it low shear strength. Consequently, the clay is a suitable analog material if we assume that the wet kaolin deforms by coulomb frictional failure. Koalin generally deforms as a Bingham solid and exhibits more complex deformation than the perfectly plastic behavior assumed with Coulomb failure. We performed fall cone and rheometric tests on wet kaolin to refine our quantitative understanding of its rheology. We use North American wet kaolin with density 1.65-1.7 g/cm3 and water content of 37.5-38.5%. The fall cone tests reveal that the undrained shear strength (100-160 Pa) is greater than previously measured with a viscometer. The rheometer tests show that the wet koalin exhibits many of the same properties of crustal materials including: 1) elastic behavior at low strains, 2) stress relaxation at near-failure strains, 3) creep under static load, 4) yield strength sensitive to strain rate and 5) rate and state dependent failure. Armed with quantitative values for this complex deformation, we can better scale the length and strain rate of the wet koalin experiments to specific crustal settings. Experiments of deformation around restraining bends show features very similar to those found in natural examples. The detailed fault structures produced in the wet kaolin can be analyzed to understand the evolution of active faulting at restraining bends.

  9. Nanostructured films of metal particles obtained by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Muniz-Miranda, M., E-mail: muniz@unifi.it [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Gellini, C. [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Giorgetti, E.; Margheri, G.; Marsili, P. [Istituto Sistemi Complessi (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Lascialfari, L.; Becucci, L. [Dipartimento di Chimica “U. Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Trigari, S. [Istituto Sistemi Complessi (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Giammanco, F. [Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)

    2013-09-30

    Colloidal dispersions of silver and gold nanoparticles were obtained in pure water by ablation with nanosecond pulsed laser. Then, by filtration of the metal particles on alumina, we fabricated nanostructured films, whose surface morphology was examined by atomic force microscopy (AFM) and related to surface-enhanced Raman scattering (SERS) after adsorption of adenine. - Highlights: • Ag and Au colloidal nanoparticles were obtained by laser ablation. • Nanostructured Ag and Au films were fabricated by filtration of metal nanoparticles. • Surface morphology of metal films was investigated by atomic force microscopy. • Surface-enhanced Raman spectra (SERS) of adenine on metal films were obtained. • SERS enhancements were related to the surface roughness of the metal films.

  10. Adhesion enhancement of diamond-like carbon thin films on Ti alloys by incorporation of nanodiamond particles

    International Nuclear Information System (INIS)

    Zhang, C.Z.; Tang, Y.; Li, Y.S.; Yang, Q.

    2013-01-01

    Coating adherent diamond-like carbon (DLC) thin films directly on Ti alloys is technologically difficult. This research incorporates nanodiamond particles to form a diamond/DLC composite interlayer to enhance the adhesion of DLC thin films on Ti6Al4V substrates. Initially, nanodiamond particles were deposited on Ti6Al4V substrates by microwave plasma enhanced chemical vapor deposition from a methane–hydrogen gas mixture. A DLC thin film was then deposited, on top of the nanodiamond particles, by direct ion beam deposition. Scanning electron microscopy, Atomic force microscopy, X-ray Diffraction and Raman spectroscopy were used to characterize the microstructure and chemical bonding of the deposited particles and films, and Rockwell indentation testing was used to evaluate the adhesion of the deposited films. The results indicate that the pre-deposited nanodiamond particles significantly enhance the interfacial adhesion between the DLC thin film and the Ti6Al4V substrate, possibly by enhanced interfacial bonding, mechanical interlocking, and stress relief. - Highlights: ► Nanodiamond particles were deposited on Ti6Al4V before DLC deposition. ► Diamond/DLC composite film was formed by incorporation of nanodiamond particles. ► Greatly enhanced adhesion of diamond/DLC composite film on Ti6Al4V was achieved. ► Enhanced adhesion is by increased interfacial bonding and mechanical interlocking

  11. Adhesion enhancement of diamond-like carbon thin films on Ti alloys by incorporation of nanodiamond particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.Z.; Tang, Y. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9 (Canada); Li, Y.S. [Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, SK, Canada S7N 5E2 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9 (Canada)

    2013-01-01

    Coating adherent diamond-like carbon (DLC) thin films directly on Ti alloys is technologically difficult. This research incorporates nanodiamond particles to form a diamond/DLC composite interlayer to enhance the adhesion of DLC thin films on Ti6Al4V substrates. Initially, nanodiamond particles were deposited on Ti6Al4V substrates by microwave plasma enhanced chemical vapor deposition from a methane–hydrogen gas mixture. A DLC thin film was then deposited, on top of the nanodiamond particles, by direct ion beam deposition. Scanning electron microscopy, Atomic force microscopy, X-ray Diffraction and Raman spectroscopy were used to characterize the microstructure and chemical bonding of the deposited particles and films, and Rockwell indentation testing was used to evaluate the adhesion of the deposited films. The results indicate that the pre-deposited nanodiamond particles significantly enhance the interfacial adhesion between the DLC thin film and the Ti6Al4V substrate, possibly by enhanced interfacial bonding, mechanical interlocking, and stress relief. - Highlights: ► Nanodiamond particles were deposited on Ti6Al4V before DLC deposition. ► Diamond/DLC composite film was formed by incorporation of nanodiamond particles. ► Greatly enhanced adhesion of diamond/DLC composite film on Ti6Al4V was achieved. ► Enhanced adhesion is by increased interfacial bonding and mechanical interlocking.

  12. Geology and industrial mineral resources of the Macon-Gordon Kaolin District, Georgia

    Science.gov (United States)

    Buie, Bennett Frank; Hetrick, J.H.; Patterson, S.H.; Neeley, C.L.

    1979-01-01

    The Macon-Gordon kaolin district is about 80 miles (130 km) southeast of Atlanta, Georgia. It extends across the boundary between, and includes parts of, the Piedmont and Atlantic Coastal Plain physiographic provinces. The rocks in the Piedmont are mainly intensely folded sericite schist and granite gneiss containing irregular masses of amphibolite and feldspathic biotite gneiss and scattered igneous intrusive rocks. Most of the crystalline rocks are thought to be of Paleozoic age, but some of the intrusive rocks may be younger. The crystalline rocks are cut by a major unconformity and are overlain by sedimentary formations ranging in age from Cretaceous to Miocene. The valuable kaolin deposits occur in the Cretaceous beds, undivided, and in the Huber Formation which is of Paleocene to middle Eocene age. The resources of kaolin in the district are estimated in millions of metric tons as follows: reserves, 100; subeconomic resources, 700 to 900; undiscovered resources, probably 700 to 1,000. In addition to kaolin, the leading mineral commodity mined in the district, crushed stone and sand are now being produced, and fuller's earth and a minor amount of limestone were formerly produced. The crushed stone is quarried from igneous rocks in the Piedmont province. The sand is washed from the Cretaceous beds, undivided. The fuller's earth was mined from the Twiggs Clay Member of the Barnwell Formation, and limestone was dug from the Tivola Limestone.

  13. CERAMIC PROPERTIES OF PUGU KAOLIN CLAYS. PART 2 ...

    African Journals Online (AJOL)

    a

    PART 2: EFFECT OF PHASE COMPOSITION ON FLEXURAL STRENGTH ... working in this field have established factors controlling the various ... The raw materials selected were kaolin clays from Pugu deposit in Tanzania, Norfloat potash .... the total mullite contents present in the samples since the method used does.

  14. Modeling of thermal, electronic, hydrodynamic, and dynamic deposition processes for pulsed-laser deposition of thin films

    International Nuclear Information System (INIS)

    Liu, C.L.; LeBoeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Chen, K.R.; Puretzky, A.A.

    1994-11-01

    Various physical processes during laser ablation of solids for pulsed-laser deposition (PLD) are studied using a variety of computational techniques. In the course of the authors combined theoretical and experimental effort, they have been trying to work on as many aspects of PLD processes as possible, but with special focus on the following areas: (a) the effects of collisional interactions between the particles in the plume and in the background on the evolving flow field and on thin film growth, (b) interactions between the energetic particles and the growing thin films and their effects on film quality, (c) rapid phase transformations through the liquid and vapor phases under possibly nonequilibrium thermodynamic conditions induced by laser-solid interactions, (d) breakdown of the vapor into a plasma in the early stages of ablation through both electronic and photoionization processes, (c) hydrodynamic behavior of the vapor/plasma during and after ablation. The computational techniques used include finite difference (FD) methods, particle-in-cell model, and atomistic simulations using molecular dynamics (MD) techniques

  15. Reversible Formation of Silver Clusters and Particles in Polymer Films

    National Research Council Canada - National Science Library

    Gaddy, G. A; Korchev, A. S; McLain, Jason L; Black, J. R; Mills, German; Bratcher, Matthew S; Slaten, B. L

    2004-01-01

    .... The formation of Ag clusters and particles is monitored using UV-VIS spectroscopy. Films treated with H2O2 exhibit bleaching of the UV-VIS signals corresponding to Ag clusters and Ag particles that were generated during the photo reduction...

  16. Influence of inert fillers on shrinkage cracking of meta-kaolin geo-polymers

    International Nuclear Information System (INIS)

    Kuenzel, C.; Boccaccini, A.R.

    2012-01-01

    Geo-polymers contain a network of tetrahedral coordinated aluminate and silicate, and are potential materials to immobilize/encapsulate nuclear wastes. They can exhibit shrinkage cracking when water is removed by drying, and in order to use geo-polymers for waste encapsulation this effect needs to be investigated and controlled. In this study, six different fillers were mixed with meta-kaolin and sodium silicate solution at high pH to form geo-polymers, and the influence of filler addition on mechanical properties has been determined. The fillers used were Fe 2 O 3 , Al 2 O 3 , CaCO 3 , sand, glass and rubber and these do not react during geo-polymerisation reactions. Geo-polymers were prepared containing 30 weight percent of filler. The mechanical properties of the geo-polymers were influenced by the type of filler, with low density fillers increasing mortar viscosity. Geo-polymer samples containing fine filler particles exhibited shrinkage cracking on drying. This was not observed when coarser particles were added and these samples also had significantly improved mechanical properties. (authors)

  17. Phase coexistence in thin liquid films stabilized by colloidal particles: equilibrium and non-equilibrium properties

    International Nuclear Information System (INIS)

    Blawzdziewicz, J.; Wajnryb, E.

    2005-01-01

    Phase equilibria between regions of different thickness in thin liquid films stabilized by colloidal particles are investigated using a quasi-two-dimensional thermodynamic formalism. Appropriate equilibrium conditions for the film tension, normal pressure, and chemical potential of the particles in the film are formulated, and it is shown that the relaxation of these parameters occurs consecutively on three distinct time scales. Film stratification is described quantitatively for a hard-sphere suspension using a Monte-Carlo method to evaluate thermodynamic equations of state. Coexisting phases are determined for systems in constrained- and full-equilibrium states that correspond to different stages of film relaxation. We also evaluated the effective viscosity coefficients for two-dimensional compressional and shear flows of a film and the self and collective mobility coefficients of the stabilizing particles. The hydrodynamic calculations were performed using a multiple-reflection representation of Stokes flow between two free surfaces. In this approach, the particle-laden film is equivalent to a periodic system of spheres with a unit cell that is much smaller in the transverse direction than in the lateral direction. (author)

  18. For production of ceramic plates coating using waste kaolin, granite and marble; Caracterizacao de residuos de caulim, granito e marmore para uso em massas ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Sales, J.L.; Morais, C.R.S.; Lima, L.M.R.; Altidis, M.E.D., E-mail: josyanne27@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2011-07-01

    The objective is to benefit and characterize waste from kaolin, marble and granite studying their thermal properties and spectroscopic in employment perspective on ceramic production of flooring boards. The residues were benefited through the process of dry grinding mill in greyhounds and passed through sieve 0.074 mm (ABNT No. 200), observing their suitability for the formulation of ceramic pastes. Tests were performed physicochemical characterization (particle size analysis, X-ray fluorescence and X-ray diffraction) and thermal (differential thermal analysis and thermogravimetry). The results showed that these residues showed satisfactory properties for the purpose for which it proposes, and contribute to reducing environmental impacts, allowing the reuse of the production of ceramic plates (author)

  19. Nibelung-Kaoline-Black band fluit clay - the new key-horizon in the carboniferous system of the Ruhr coal field

    Energy Technology Data Exchange (ETDEWEB)

    Burger, K.; Otte, M.U. (Bergbau A.G. Lippe, Gelsenkirchen (Germany, F.R.). Abt. Markscheidewesen); Pfisterer, W. (Bergbau A.G. Lippe, Herne (Germany, F.R.). Hauptlaboratorium)

    1979-10-01

    Based upon the stratigraphic distribution of the kaoline-black-band flint clay in the carbon strata of the Ruhr, the Nibelung-Kaoline-black-band flint clay found in the upper Westphal C (Dorsten strata) is defined to be the new keyhorizon. The position of the discoveries of the kaoline-black-band flint clay, its stratigraphic positions as well as its macroscopic and microscopic characteristics together with the chemical composition are given. Investigations of the structure and minerals content show that the Nibelung-Kaolin-black-band flint clay is a new keyhorizon and is of great importance for the stratigraphy of the upper Westfal C. Its position within the system is represented by strata sections.

  20. Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process

    Science.gov (United States)

    Kang, Dong Hee; Kang, Hyun Wook

    2016-11-01

    Electrospinning is a nano-scale fiber production method with various polymer materials. This technique allows simple fiber diameters control by changing the physical conditions such as applied voltage and polymer solution viscosity during the fabrication process. The electrospun polymer fibers form a thin porous film with high surface area to volume ratio. Due to these unique characteristics, it is widely used for many application fields such as photocatalyst, electric sensor, and antibacterial scaffold for tissue engineering. Filtration is one of the main applications of electrospun polymer fibers for specific application of filtering out dust particles and dehumidification. Most polymers which are commonly used in electrospinning are hard to perform the filtering and dehumidification simultaneously because of their low hygroscopic property. To overcome this obstacle, the desiccant polymers are developed such as polyacrylic acid and polysulfobetaine methacrylate. However, the desiccant polymers are generally expensive and need special solvent for electrospinning. An alternating way to solve these problems is mixing desiccant material like zeolite in polymer solution during an electrospinning process. In this study, the free surface energy characteristics of electrospun polyvinylidene fluoride (PVDF) film with various zeolite concentrations are investigated to control the hygroscopic property of general polymers. Fundamental physical property of wettability with PVDF shows hydrophobicity. The electrospun PVDF film with small weight ratio with higher than 0.1% of zeolite powder shows diminished contact angles that certifying the wettability of PVDF can be controlled using desiccant material in electrospinning process. To quantify the surface energy of electrospun PVDF films, sessile water droplets are introduced on the electrospun PVDF film surface and the contact angles are measured. The contact angles of PVDF film are 140° for without zeolite and 80° for with 5

  1. Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology

    International Nuclear Information System (INIS)

    Wang, J.-Y.; Huang, X.-J.; Kao, Jimmy C.M.; Stabnikova, Olena

    2006-01-01

    An upward electrokinetic soil remedial (UESR) technology was proposed to remove heavy metals from contaminated kaolin. Unlike conventional electrokinetic treatment that uses boreholes or trenches for horizontal migration of heavy metals, the UESR technology, applying vertical non-uniform electric fields, caused upward transportation of heavy metals to the top surface of the treated soil. The effects of current density, treatment duration, cell diameter, and different cathode chamber influent (distilled water or 0.01 M nitric acid) were studied. The removal efficiencies of heavy metals positively correlated to current density and treatment duration. Higher heavy metals removal efficiency was observed for the reactor cell with smaller diameter. A substantial amount of heavy metals was accumulated in the nearest to cathode 2 cm layer of kaolin when distilled water was continuously supplied to the cathode chamber. Heavy metals accumulated in this layer of kaolin can be easily excavated and disposed off. The main part of the removed heavy metals was dissolved in cathode chamber influent and moved away with cathode chamber effluent when 0.01 M nitric acid was used, instead of distilled water. Energy saving treatment by UESR technology with highest metal removal efficiencies was provided by two regimes: (1) by application of 0.01 M nitric acid as cathode chamber influent, cell diameter of 100 mm, duration of 18 days, and constant voltage of 3.5 V (19.7 kWh/m 3 of kaolin) and (2) by application of 0.01 M nitric acid as cathode chamber influent, cell diameter of 100 cm, duration of 6 days, and constant current density of 0.191 mA/cm 2 (19.1 kWh/m 3 of kaolin)

  2. Preparation and Characterization of Acid and Alkaline Treated Kaolin Clay

    Directory of Open Access Journals (Sweden)

    Sachin Kumar

    2013-06-01

    Full Text Available Kaolin was refluxed with HNO3, HCl, H3PO4, CH3COOH, and NaOH of 3M concentration at 110 °C for 4 hours followed by calcination at 550 °C for 2 hours. The physico-chemical characteristics of resulted leached kaolinite clay were studied by XRF, XRD, FTIR, TGA, DTA, SEM and N2 adsorption techniques. XRF and FTIR study indicate that acid treatment under reflux conditions lead to the removal of the octahedral Al3+ cations along with other impurities. XRD of acid treated clay shows that, the peak intensity was found to decrease. Extent of leaching of Al3+ ions is different for different acid/base treatment. The acid treatment increased the Si/Al ratio, surface area and pore volume of the clay. Thus, the treated kaolin clay can be used as promising adsorbent and catalyst supports. © 2013 BCREC UNDIP. All rights reservedReceived: 1st March 2013; Revised: 9th April 2013; Accepted: 19th April 2013[How to Cite: Kumar, S., Panda, A. K., Singh, R.K. (2013. Preparation and Characterization of Acids and Alkali Treated Kaolin Clay. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 61-69. (doi:10.9767/bcrec.8.1.4530.61-69][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4530.61-69] |View in  |

  3. Cu and Cu2O films with semi-spherical particles grown by electrochemical deposition

    International Nuclear Information System (INIS)

    Zheng, Jin You; Jadhav, Abhijit P.; Song, Guang; Kim, Chang Woo; Kang, Young Soo

    2012-01-01

    Cu and Cu 2 O films can be prepared on indium-doped tin oxide glass substrates by simple electrodeposition in a solution containing 0.1 M Cu(NO 3 ) 2 and 3 M lactic acid at different pH values. At low pH (pH = 1.2), the uniform Cu films were obtained; when pH ≥ 7, the pure Cu 2 O films can be deposited. Especially, at pH = 11, the deposited Cu 2 O films exhibited cubic surface morphology exposing mainly {100} plane; in contrast, the films consisting of semi-spherical particles were obtained when the solution was being stirred for 2 weeks prior to use. The possible growth process and mechanism were comparatively discussed. - Highlights: ► Cu and Cu 2 O films were prepared by facile electrodeposition. ► Electrodeposition was preformed in electrolyte at different pH values. ► Dendritic Cu films were obtained at 1.2 pH with relatively high deposition potential. ► Semi-spherical Cu 2 O films were obtained with solution at 11 pH and stirred for 2 weeks. ► The possible growth mechanism of semi-spherical Cu 2 O films was discussed.

  4. Quality assurance of alpha-particle dosimetry using peeled-off Gafchromic EBT3® film

    International Nuclear Information System (INIS)

    Ng, C.Y.P.; Chun, S.L.; Yu, K.N.

    2016-01-01

    A novel alpha-particle dosimetry technique using Gafchromic EBT3 film has recently been proposed for calibrating the activity of alpha-emitting radiopharmaceuticals. In the present paper, we outlined four measures which could further help assure the quality of the method. First, we suggested an alternative method in fabricating the peeled-off EBT3 film. Films with a chosen size were cut from the original films and all the edges were sealed with silicone. These were immersed into deionized water for 19 d and the polyester covers of the EBT3 films could then be easily peeled off. The active layers in these peeled-off EBT3 films remained intact, and these films could be prepared reproducibly with ease. Second, we proposed a check on the integrity of the peeled-off film by comparing the responses of the pristine and peeled-off EBT3 films to the same X-ray irradiation. Third, we highlighted the importance of scanning directions of the films. The “landscape” and “portrait” scanning directions were defined as the scanning directions perpendicular and parallel to the long edge of the original EBT3 films, respectively. Our results showed that the responses were different for different scanning directions. As such, the same scanning direction should be used every time. Finally, we cautioned the need to confirm the uniformity of the alpha-particle source used for calibration. Radiochromic films are well known for their capability of providing two-dimensional dosimetric information. As such, EBT3 films could also be conveniently used to check the uniformity of the alpha-particle source. - Highlights: • Proposed method to fabricate peeled-off EBT3 films for alpha dosimetry. • Proposed integrity check of peeled-off EBT3 films using X-ray irradiation. • Highlighted importance of scanning directions of EBT3 films. • Cautioned the need for uniformity check on alpha-particle source.

  5. Composite pigments based on surface coated kaolin and metakaolin

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Popelková, Daniela; Matys Grygar, Tomáš

    2014-01-01

    Roč. 101, NOV (2014), s. 149-158 ISSN 0169-1317 R&D Projects: GA MPO FR-TI1/006 Institutional support: RVO:61388980 Keywords : Kaolin * Homogeneous hydrolysis * Thioacetamide * Urea * Mullite * Metakaolin Subject RIV: CA - Inorganic Chemistry Impact factor: 2.467, year: 2014

  6. Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic exchange for adsorption of arsenic

    International Nuclear Information System (INIS)

    Resmini Melo, Carolina; Gracher Riella, Humberto; Cabral Kuhnen, Nivaldo; Angioletto, Elidio; Melo, Aline Resmini; Bernardin, Adriano Michael; Rocha, Marcio Roberto da; Silva, Luciano da

    2012-01-01

    Highlights: ► We synthesize 4A zeolite from kaolin by hydrothermal reaction with sodium hydroxide. ► The 4A zeolite synthesized underwent ion exchange with calcium ions, with different parameters, to obtain 5A zeolites. ► The best 4A zeolite obtained was used as adsorbent material for arsenic ions. ► The results showed that the 5A zeolite material obtained is a good adsorber of heavy ions. - Abstract: The synthesis of adsorbing zeolite materials requires fine control of the processing variables. There are distinct process variable settings for obtaining specific desired types of zeolites. The intent of this study was to obtain 4A zeolites from kaolin in order to obtain 5A zeolites through ionic exchange with the previously synthesized zeolite. This zeolite 5A was used as an adsorbent for arsenic ions. The results obtained were satisfactory.

  7. Comparative studies on physico-mechanical properties of composite materials of low density polyethylene and raw/calcined kaolin

    Directory of Open Access Journals (Sweden)

    Amit Mallik

    2015-06-01

    Full Text Available The paper describes the preparation of the composite materials of low density polyethylene (LDPE as the base mixed separately with raw kaolin and the same calcined at 800 °C under the same variation in weight percentage using single-screw extruder and a mixing machine operated at a temperature between 190 and 200 °C. Some of the mechanical and physical properties such as Young's modulus, elongation at break, shore hardness and water absorption were determined at different weight fractions of filler (0, 2, 7, 10 and 15%. It was found that the addition of filler increases the mechanical properties. Absorption test was done in water at different immersion times for different composites. The degree of water absorption of composite materials was found to decrease with increasing wt% of kaolin filler (0–15% according to Fick's law. Calcined kaolin produces better mechanical properties than raw kaolin.

  8. Effects of Dietary Kaolin Supplementation on the Growth ...

    African Journals Online (AJOL)

    One hundred and sixty (160) Anak 2000 day-old broiler chicks were used to investigate the effects of kaolin on the haematology and growth performance of broilers. The chicks were randomly assigned to four treatments, each treatment consisting of four pens with 10 chicks per pen. The four treatments were; basal diet only ...

  9. Electrical Properties of Zinc-Kaolin Composites below its Percolation ...

    African Journals Online (AJOL)

    Bheema

    In this paper, we present some electrical properties of the zinc-kaolin cermet resistors ..... The temperature coefficient of resistance of a material is generally defined as .... Characterisation and morphological Studies of palladium modified carbon ... conduction and microstructural properties of semiconducting Co-doped TiO2.

  10. A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation.

    Science.gov (United States)

    Albijanic, Boris; Ozdemir, Orhan; Nguyen, Anh V; Bradshaw, Dee

    2010-08-11

    Bubble-particle attachment in water is critical to the separation of particles by flotation which is widely used in the recovery of valuable minerals, the deinking of wastepaper, the water treatment and the oil recovery from tar sands. It involves the thinning and rupture of wetting thin films, and the expansion and relaxation of the gas-liquid-solid contact lines. The time scale of the first two processes is referred to as the induction time, whereas the time scale of the attachment involving all the processes is called the attachment time. This paper reviews the experimental studies into the induction and attachment times between minerals and air bubbles, and between oil droplets and air bubbles. It also focuses on the experimental investigations and mathematical modelling of elementary processes of the wetting film thinning and rupture, and the three-phase contact line expansion relevant to flotation. It was confirmed that the time parameters, obtained by various authors, are sensitive enough to show changes in both flotation surface chemistry and physical properties of solid surfaces of pure minerals. These findings should be extended to other systems. It is proposed that measurements of the bubble-particle attachment can be used to interpret changes in flotation behaviour or, in conjunction with other factors, such as particle size and gas dispersion, to predict flotation performance. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Application Of Bacterial Iron Reduction For The Removal Of Iron Impurities From Industrial Silica Sand And Kaolin

    Science.gov (United States)

    Zegeye, A.; Yahaya, S.; Fialips, C. I.; White, M.; Manning, D. A.; Gray, N.

    2008-12-01

    Biogeochemical evidence exists to support the potential importance of crystalline or amorphous Fe minerals as electron acceptor for Fe reducing bacteria in soils and subsurface sediments. This microbial metabolic activity can be exploited as alternative method in different industrial applications. For instance, the removal of ferric iron impurities from minerals for the glass and paper industries currently rely on physical and chemical treatments having substantial economical and environmental disadvantages. The ability to remove iron by other means, such as bacterial iron reduction, may reduce costs, allow lower grade material to be mined, and improve the efficiency of mineral processing. Kaolin clay and silica sand are used in a wide range of industrial applications, particularly in paper, ceramics and glass manufacturing. Depending on the geological conditions of deposition, they are often associated with iron (hydr)oxides that are either adsorbed to the mineral surfaces or admixed as separate iron bearing minerals. In this study, we have examined the Fe(III) removal efficiency from kaolin and silica sand by a series of iron- reducing bacteria from the Shewanella species (S. alga BrY, S. oneidensis MR-1, S. putrefaciens CN32 and S. putrefaciens ATCC 8071) in the presence of anthraquinone 2,6 disulfonate (AQDS). We have also investigated the effectiveness of a natural organic matter, extracted with the silica sand, as a substitute to AQDS for enhancing Fe(III) reduction kinetics. The microbial reduction of Fe(III) was achieved using batch cultures under non-growth conditions. The rate and the extent of Fe(III) reduction was monitored as a function of the initial Fe(III) content, Shewanella species and temperature. The bacterially- treated minerals were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) to observe any textural and mineralogical transformation. The whiteness and ISO brightness of the kaolin was also measured by

  12. Attenuation measurements of ultrasound in a kaolin-water slurry. A linear dependence upon frequency

    International Nuclear Information System (INIS)

    Greenwood, M.S.; Mai, J.L.; Good, M.S.

    1993-01-01

    The attenuation of ultrasound through a kaolin-water slurry was measured for frequencies ranging from 0.5 to 3.0 MHz. The maximum concentration of the slurry was for a weight percentage of 44% (or a volume fraction of 0.24). The goal of these measurements was to assess the feasibility of using ultrasonic attenuation to determine the concentration of a slurry of known composition. The measurements were obtained by consecutively adding kaolin to the slurry and measuring the attenuation at each concentration. After reaching a maximum concentration a dilution technique was used, in which an amount of slurry was removed and water was added, to obtain the attenuation as a function of the concentration. The dilution technique was the more effective method to obtain calibration data. These measurements were carried out using two transducers, having a center frequency of 2.25 MHz, separated by 0.1016m (4.0 in.). The maximum attenuation measured in these experiments was about 100Np/m, but the experimental apparatus has the capability of measuring a larger attenuation if the distance between the two transducers is decreased. For a given frequency, the data show that ln V/V 0 depends linearly upon the volume fraction (V is the received voltage for the slurry and V 0 is that obtained for water). This indicated that each particle acts independently in attenuating ultrasound. 12 refs., 7 figs., 3 tabs

  13. Cure characteristics, crosslink density and degree of filler dispersion of kaolin-filled natural rubber compounds in the presence of alkanolamide

    Science.gov (United States)

    Surya, I.; Hayeemasae, N.; Ginting, M.

    2018-03-01

    The effects of alkanolamide (ALK) addition on cure characteristics, crosslink density and degree of filler dispersion of kaolin-filled natural rubber (NR) compounds were investigated. The kaolin filler was incorporated into NR compounds with a fixed loading, 30.0 phr. The ALK was prepared from Refined Bleached Deodorized Palm Stearin (RBDPS), a waste product of cooking oil production, and diethanolamine. The ALK is an oily material and added into the filled NR compounds as a rubber additive at different loadings, 0.0, 3.0, 5.0 and 7.0. The kaolin-filled NR compounds with and without ALK were vulcanized using a semi-efficient vulcanization system. It was found that ALK decreased the scorch and cure times and improved filler dispersion of the kaolin-filled NR compounds. The higher the ALK loading, the shorter were the scorch and cure times. It was also found that ALK increased the crosslink density of kaolin-filled NR compound up to 5.0 phr of loading. Due to its oily properties, The ALK acted as an internal plasticizer which decreased the minimum torque and improved the degree of kaolin dispersion in NR phases. The higher the ALK loading; the lower the minimum torque and better the filler dispersion.

  14. Determination of the area density and composition of alloy film using dual alpha particle energy loss

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaojun, E-mail: maxj802@163.com [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Bo; Gao, Dangzhong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Xu, Jiayun [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Tang, Yongjian [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2017-02-01

    A novel method based on dual α-particles energy loss (DAEL) is proposed for measuring the area density and composition of binary alloy films. In order to obtain a dual-energy α-particles source, an ingenious design that utilizes the transmitted α-particles traveling the thin film as a new α-particles source is presented. Using the DAEL technique, the area density and composition of Au/Cu film are determined accurately with an uncertainty of better than 10%. Finally, some measures for improving the combined uncertainty are discussed.

  15. Quality assurance of alpha-particle dosimetry using peeled-off Gafchromic EBT3® film

    Science.gov (United States)

    Ng, C. Y. P.; Chun, S. L.; Yu, K. N.

    2016-08-01

    A novel alpha-particle dosimetry technique using Gafchromic EBT3 film has recently been proposed for calibrating the activity of alpha-emitting radiopharmaceuticals. In the present paper, we outlined four measures which could further help assure the quality of the method. First, we suggested an alternative method in fabricating the peeled-off EBT3 film. Films with a chosen size were cut from the original films and all the edges were sealed with silicone. These were immersed into deionized water for 19 d and the polyester covers of the EBT3 films could then be easily peeled off. The active layers in these peeled-off EBT3 films remained intact, and these films could be prepared reproducibly with ease. Second, we proposed a check on the integrity of the peeled-off film by comparing the responses of the pristine and peeled-off EBT3 films to the same X-ray irradiation. Third, we highlighted the importance of scanning directions of the films. The ;landscape; and ;portrait; scanning directions were defined as the scanning directions perpendicular and parallel to the long edge of the original EBT3 films, respectively. Our results showed that the responses were different for different scanning directions. As such, the same scanning direction should be used every time. Finally, we cautioned the need to confirm the uniformity of the alpha-particle source used for calibration. Radiochromic films are well known for their capability of providing two-dimensional dosimetric information. As such, EBT3 films could also be conveniently used to check the uniformity of the alpha-particle source.

  16. Preparation of LiMn2O4 cathode thin films for thin film lithium secondary batteries by a mist CVD process

    International Nuclear Information System (INIS)

    Tadanaga, Kiyoharu; Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro; Duran, Alicia; Aparacio, Mario

    2014-01-01

    Highlights: • LiMn 2 O 4 thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn 2 O 4 thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn 2 O 4 cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles

  17. Effects of biochar on hydraulic conductivity of compacted kaolin clay.

    Science.gov (United States)

    Wong, James Tsz Fung; Chen, Zhongkui; Wong, Annie Yan Yan; Ng, Charles Wang Wai; Wong, Ming Hung

    2018-03-01

    Compacted clay is widely used as capillary barriers in landfill final cover system. Recently, biochar amended clay (BAC) has been proposed as a sustainable alternative cover material. However, the effects of biochar on saturated hydraulic conductivity (k sat ) of clay with high degree of compaction is not yet understood. The present study aims to investigate the effects of biochar on k sat of compacted kaolin clay. Soil specimens were prepared by amending kaolin clay with biochar derived from peanut-shell at 0, 5 and 20% (w/w). The k sat of soil specimens was measured using a flexible water permeameter. The effects of biochar on the microstructure of the compacted clay was also investigated using MIP. Adding 5% and 20% of biochar increased the k sat of compacted kaolin clay from 1.2 × 10 -9 to 2.1 × 10 -9 and 1.3 × 10 -8 ms -1 , respectively. The increase in k sat of clay was due to the shift in pore size distribution of compacted biochar-amended clay (BAC). MIP results revealed that adding 20% of biochar shifted the dominant pore diameter of clay from 0.01-0.1 μm (meso- and macropores) to 0.1-4 μm (macropores). Results reported in this communication revealed that biochar application increased the k sat of compacted clay, and the increment was positively correlated to the biochar percentage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Particle processing technology

    Science.gov (United States)

    Sakka, Yoshio

    2014-02-01

    includes two papers on the fabrication of mechanically reliable nanocomposites by dispersing graphene into a ceramic matrix, and on supercapacitors with high energy densities in a Co(OH)2 system decorated with graphene and carbon nanotubes. As a novel preparation method of oxide films, the fabrication of alumina films with laminated structures by ac anodization is reviewed. Moreover a new type of nanosheet has been fabricated by the exfoliation of layered, ternary transition-metal carbide and nitride compounds, known as Mn + 1AXn phases (or MAX phases) where M is an early transition metal, such as Ti or Nb, A is an A group element, such as Si or Al, X is carbon and/or nitrogen and n = 1-3 [4]. Among the MAX phases, those containing Mo have been theoretically calculated by first-principles calculations to be a source for obtaining Mo2C nanosheets with potentially unique properties. As an example of improving bulk ceramic properties, texturing by using a high magnetic field [5] and sintering by the electric current activated/assisted sintering (ECAS) technology [6] have been demonstrated for ultra-high temperature ceramics with high-temperature strength. A project on the development of materials and particle processing for the field of environment and energy has been ongoing at the National Institute for Materials Science since April 2011. This project employs various core competence technologies for particle processing such as ion beam irradiation for nanoparticle fabrication [7], fullerene nanomaterial processing using liquid-liquid interface precipitation [8], a gas reduction nitridation process to obtain Si3N4-based phosphor materials [9], advanced phosphors via novel processing [10, 11], ultra-high pressure technology for processing and in situ analysis [12, 13], colloidal processing in a high magnetic field to obtain laminated, textured ceramics [1, 3, 5], the ECAS process for nanostructuring ceramics [6] and so forth. Here, I would like to introduce some research

  19. Processes of conversion of a hot metal particle into aerogel through clusters

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. M., E-mail: bmsmirnov@gmail.com [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    Processes are considered for conversion into a fractal structure of a hot metal micron-size particle that is located in a buffer gas or a gas flow and is heated by an external electric or electromagnetic source or by a plasma. The parameter of this heating is the particle temperature, which is the same in the entire particle volume because of its small size and high conductivity. Three processes determine the particle heat balance: particle radiation, evaporation of metal atoms from the particle surface, and heat transport to the surrounding gas due to its thermal conductivity. The particle heat balance is analyzed based on these processes, which are analogous to those for bulk metals with the small particle size, and its high temperature taken into account. Outside the particle, where the gas temperature is lower than on its surface, the formed metal vapor in a buffer gas flow is converted into clusters. Clusters grow as a result of coagulation until they become liquid, and then clusters form fractal aggregates if they are removed form the gas flow. Subsequently, associations of fractal aggregates join into a fractal structure. The rate of this process increases in medium electric fields, and the formed fractal structure has features of aerogels and fractal fibers. As a result of a chain of the above processes, a porous metal film may be manufactured for use as a filter or catalyst for gas flows.

  20. Fiscal 1998 research report on micro-particle control process technology; 1998 nendo micro ryushi seigyo process gijutsu no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For establishment of process technology realizing control of forms and structures of micro-particles on practical equipment, research was made on related elementary technologies and current technologies. The research was promoted aiming at synthesis of micro-particles from nanometer to micrometer in size and their application to functional materials, establishment of the methodology for correlating the microstructure and function of micro-particle materials with fabrication process, and establishment of a common-base technology system in chemical technology aiming at fabrication of functional materials. As for the common- base technology, to clarify its importance, research was made on the fabrication method and dispersion mechanism of nano- particles, particle arraying method by coating, device fabrication technique by coating, and one-step synthesis and coating of nano-particles. As for the project research, synthesis of monodispersed nano-particles at large production rates, fabrication of thin films and bulk materials by arraying and coating. (NEDO)

  1. Fixed-film processes. Part 2

    International Nuclear Information System (INIS)

    Canziani, R.

    1999-01-01

    Recently, full scale fixed-film or mixed suspended have been applied in many wastewater treatments plants. These processes no longer depend on biomass settle ability and can be used to improve the performance of existing plants as required by more stringent discharge permit limits, especially for nutrients suspended solids. Also, processes may work at high rates making is possible to build small footprint installations. Fixed-film processes include trickling filters (and combined suspended and fixed-films processes), rotating biological contactors, biological aerated submerged, filters moving bed reactors, fluidized bed reactors. In the first part, the theoretical based governing fixed-film processes are briefly outlined, with some simple examples of calculations, underlining the main differences with conventional activate sludge processes. In the second part, the most common types of reactors are reviewed [it

  2. Nanodiamond particles/PVDF nanocomposite flexible films: thermal, mechanical and physical properties

    Science.gov (United States)

    Jaleh, Babak; Sodagar, Shima; Momeni, Amir; Jabbari, Ameneh

    2016-08-01

    Recently, polymer nanocomposites reinforced with nanoparticles have attracted a lot of attention due to their unique physical and mechanical properties. In this work, poly (vinylidene fluoride)/nanodiamond particles nanocomposite films were prepared by solution casting method with various nanodiamond particles contents. The samples were investigated by Fourier transform infrared spectroscopy and x-ray diffraction technique. The results revealed an obvious α to β-phase transformation compared to pure PVDF. The most (or the maximum) phase transformation from α to β-phase (>90%) was found for nanocomposite film with 8% wt nanodiamond particles. Scanning electron micrographs showed considerable decrease in the size of spherulitic crystal structure of PVDF with adding nanoparticles. The photoluminescence property of nanocomposite films was investigated by photoluminescence spectroscopy and the optical band gap value was calculated from the UV-visible absorption spectra. The results showed that after the incorporation of nanoparticles into PVDF, the value of optical band gap decreased. Thermal stability of samples was studied by thermogravimetric analysis. Due to an increase in the electroactive phase (β) percentage by adding nanoparticles, the resistance of samples to thermal degradation improved. The mechanical properties of samples were investigated by tensile test and hardness measurements. The elastic modulus and hardness of samples were enhanced by adding nanodiamond particles and elongation to fracture decreased.

  3. Flocculation of kaolin and lignin by bovine blood and hemoglobin

    Science.gov (United States)

    Polymeric flocculants are used extensively for water purification, inhibition of soil erosion, and reduction in water leakage from unlined canals. Production of highly active, renewable polymeric flocculants to replace synthetic flocculants is a priority. Using suspensions of kaolin, flocculation ...

  4. Detection of tPA-Induced Hyperfibrinolysis in Whole Blood by RapidTEG, KaolinTEG, and Functional FibrinogenTEG in Healthy Individuals

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Ostrowski, Sisse Rye; Sørensen, Anne Marie

    2012-01-01

    hyperfibrinolysis, as compared to standard KaolinTEG, is unknown. To investigate this, the ability of RapidTEG, KaolinTEG, and functional fibrinogenTEG (FFTEG) to detect tPA-induced (tissue plasminogen activator) lysis in whole blood from healthy individuals was investigated. Our hypothesis was that the initial...... powerful clot formation in the RapidTEG assay would reduce the sensitivity as compared to the normally used KaolinTEG assay. We also evaluated the FFTEG assay. Methods: In vitro comparison of the sensitivity of RapidTEG, KaolinTEG, and FFTEG to 1.8 nmol/L tPA in citrated whole blood (299 ± 23 ng/mL plasma......) induced hyperfibrinolysis in 10 healthy individuals and duplicate titration of the tPA whole blood (WB) concentration from 0.09 to 7.2 nmol/L (14-1144 ng/mL plasma) in 1 healthy donor. Results: At 1.8 nmol/L tPA, KaolinTEG, RapidTEG, and FFTEG all detected fibrinolysis but with different sensitivities...

  5. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    Science.gov (United States)

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.

  6. Polarization-resolved optical response of plasmonic particle-on-film nanocavities

    Science.gov (United States)

    Zhang, Q.; Li, G.-C.; Lo, T. W.; Lei, D. Y.

    2018-02-01

    Placing a metal nanoparticle atop a metal film forms a plasmonic particle-on-film nanocavity. Such a nanocavity supports strong plasmonic coupling that results in rich hybridized plasmon modes, rendering the cavity a versatile platform for exploiting a wide range of plasmon-enhanced spectroscopy applications. In this paper, we fully address the polarization-resolved, orientation-dependent far-field optical responses of plasmonic monomer- and dimer-on-film nanocavities by numerical simulations and experiments. With polarization-resolved dark-field spectroscopy, the distinct plasmon resonances of these nanocavities are clearly determined from their scattering spectra. Moreover, the radiation patterns of respective plasmon modes, which are often mixed together in common dark-field imaging, can be unambiguously resolved with our proposed quasi-multispectral imaging method. Explicitly, the radiation pattern of the monomer-on-film nanocavity gradually transitions from a solid spot in the green imaging channel to a doughnut ring in the red channel when tuning the excitation polarization from parallel to perpendicular to the sample surface. This observation holds true for the plasmonic dimer-on-film nanocavity with the dimer axis aligned in the incidence plane; when the dimer axis is normal to the incidence plane, the pattern transitions from a solid spot to a doughnut ring both in the red channel. These studies not only demonstrate a flexible polarization control over the optical responses of plasmonic particle-on-film nanostructures but also enrich the optical tool kit for far-field imaging and spectroscopy characterization of various plasmonic nanostructures.

  7. Factors that determine the presence of particles in YBCO films grown by PLD

    International Nuclear Information System (INIS)

    Barrales-Guadarrama, V R; Rodríguez-Rodríguez, E M; Barrales-Guadarrama, R; Reyes Ayala, N

    2017-01-01

    The method of growing thin films PLD, is widely used in applications and possesses great potential in thin YBa 2 Cu 3 O 7-δ films production with outstanding physical properties. However, it is limited in nano and micro technology due to the presence of particles on the surface of the films. This article describes some causes that create these particles. YBa 2 Cu 3 O 7-δ films have been grown on electrolytic copper used as a variable model the distance target-substrate. The effects are studied through Scanning Electronic Microscopy. It is observed particles with a large variety of shapes and distributions. The results show that ranging the target-substrate distance, the superficial morphology is modified. An evidence of it, is that the evaporation of d B-S = 7 cm, is more coherent that d B-S = 3 cm. Therefore, exist a relation between the morphology and the parameters of growing. Also affect, the structural change that exists among the substrate and the film formation, the substrate preparation and it must not be monocrystalline, these factors define a kinetic and a mechanism of growing that promotes a heterogeneous nucleation. (paper)

  8. synthesis of zeolite-a using kaolin samples from darazo, bauchi ...

    African Journals Online (AJOL)

    henry mgbemere

    ekpeikenna@gmail.com, ... 13]. Kaolin is a naturally occurring mineral of the clay family and may contain a ..... Properties," World Journal of Nano Science and ... Treatment on Kankara Kaolinite," Opticon1826, vol. 15, pp. 1-5, 2013. .... 36(2) 444-451.

  9. Influence of kaolin addition on the dynamics of oxygen mass transport in polyvinyl alcohol dispersion coatings

    OpenAIRE

    Nyflött, Åsa; Axrup, Lars; Gunilla, Carlsson; Järnström, Lars; Lestelius, Magnus; Moons, Ellen; Wahlström, Torbjörn

    2015-01-01

    The permeability of dispersion barriers produced from polyvinyl alcohol (PVOH) and kaolin clay blends coated onto polymeric supports has been studied by employing two different measurement methods: the oxygen transmission rate (OTR) and the ambient oxygen ingress rate (AOIR). Coatings with different thicknesses and kaolin contents were studied. Structural information of the dispersion-barrier coatings was obtained by Fourier transform infrared spectroscopy (FTIR) spectroscopy and scanning ele...

  10. Super-rapid medical film processing system

    International Nuclear Information System (INIS)

    Honda, C.; Iwata, M.; Nozaki, H.

    1988-01-01

    A new super-rapid medical film processing system cuts processing time from 90 to 45 seconds, a critical advantage in traumatic injury, surgical operation, and other time-vital applications. The system consists of new films new processing chemicals (developer and fixer), and a new high-speed medical film processor. The system's creation is made possible by three new technologies. In film, multilayered monodispersed grains reduce processing time. In processing chemicals, an innovative design maximizes processing speed. And in the processor itself, a new drying apparatus increases drying efficiency. Together, these technologies achieve 45-second processing without degradation of image quality

  11. Cationic polyelectrolyte induced separation of some inorganic contaminants and their mixture (zirconium silicate, kaolin, K-feldspar, zinc oxide) as well as of the paraffin oil from water.

    Science.gov (United States)

    Ghimici, Luminita

    2016-03-15

    The flocculation efficiency of a cationic polyelectrolyte with quaternary ammonium salt groups in the backbone, namely PCA5 was evaluated on zirconium silicate (kreutzonit), kaolin, K- feldspar and zinc oxide (ZnO) suspensions prepared either with each pollutant or with their mixture. The effect of several parameters such as settling time, polymer dose and the pollutant type on the separation efficacy was evaluated and followed by optical density and zeta potential measurements. Except for ZnO, the interactions between PCA5 and suspended particles led to low residual turbidity values (around 4% for kreutzonit, 5% for kaolin and 8% for K-feldspar) as well as to the reduction of flocs settling time (from 1200 min to 30 min and 120 min in case of kaolinit and K-feldspar, respectively), that meant a high efficiency in their separation. The negative value of the zeta potential and flocs size measurements, at the optimum polymer dose, point to contribution from charge patch mechanism for the particles flocculation. A good efficiency of PCA5 in separation of paraffin oil (a minimum residual turbidity of 9.8%) has been also found. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The mechanical and thermal characteristics of phenolic foam reinforced with kaolin powder and glass fiber fabric

    Science.gov (United States)

    Xiao, Wenya; Huang, Zhixiong; Ding, Jie

    2017-12-01

    In this work, kaolin powder and glass fiber fabric were added to PF in order to improve its thermal stability and mechanical property. Micro-structures of carbonized PF with kaolin powder were inspected by scanning electron microscopy (SEM) to demonstrate the filler’s pinning effect. SEM results illustrated modified PF had well morphology after high-temperature heat treatment. The Fourier transform infrared spectrometer (FTIR) test was carried out and found that kaolin powder only physically dispersed in PF. The compression test and thermal weight loss test were done on two groups of modified PF (Group A: add powder and fabric; Group B: add powder only). Results showed that all modified PF were better than pure PF, while foams with powder and fabric showed better mechanical characteristic and thermal stability compared with foams with powder only.

  13. Alternatif Pembuatan Biodiesel Melalui Transesterifikasi Minyak Castor (Ricinus communis Menggunakan Katalis Campuran Cangkang Telur Ayam dan Kaolin

    Directory of Open Access Journals (Sweden)

    Soni - Setiadji

    2017-05-01

    Full Text Available Biodiesel was produced by transesterification of castor oil (Ricinus communis using a catalyst of CaO and kaolin (CaO / kaolin had been performed. CaO was obtained from the calcination of eggshell. Castor oil is selected as biodiesel feedstock because it belongs to non-food oil and easy to cultivate. In general, the research method aims to comprise the CaO / Kaolin catalysts with a ratio of 15 mmol CaO per 1 gram of kaolin activated using impregnation method and biodiesel produced through transesterification of castor oil using the catalyst at 65 ºC for 8 hours with ratio of castor oil: methanol: catalyst (1: 15: 5% w / w. The reaction is carried out on the reflux system. The XRD analysis show the presence of silica and potassium aluminum silicate hydroxide in the catalyst. The EDS results show the catalyst-forming components CaO and silica. The FTIR analysis results show the absorption peak in the functional group forming the methyl ester compound. Based on the characterization of GC-MS, the largest methyl ester components contained in biodiesel are methyl risinoleate, methyl elaidat, methyl stearate, methyl linoleate, and methyl palmitate. The overall conversion of castor oil to methyl ester using CaO / kaolin catalyst is 97.36%. The largest component in castor oil is risinoleic acid, has been successfully converted to methyl risinoleate by 74.75%.DOI: http://dx.doi.org/10.15408/jkv.v0i0.4778

  14. Particle morphology as a control of permeation in polymer films obtained from MMA/nBA colloidal dispersions.

    Science.gov (United States)

    Lestage, David J; Urban, Marek W

    2004-07-20

    The combination of precision-controlled weight loss measurements and spectroscopic surface FT-IR analysis allowed us to identify unique behaviors of poly(methyl methacrylate) (p-MMA). When MMA and n-butyl acrylate (nBA) are polymerized into p-MMA and p-nBA homopolymer blends, MMA/nBA random copolymers, and p-MMA/p-nBA core-shell morphologies, a controlled mobility and stratification of low molecular weight components occurs in films formed from coalesced colloidal dispersions. Due to different affinities toward water, p-MMA and p-nBA are capable of releasing water at different rates, depending upon particle morphological features of initial dispersions. As coalescence progresses, water molecules are released from the high free volume p-nBA particles, whereas p-MMA retains water molecules for the longest time due to its hydrophilic nature. As a result, water losses at extended coalescence times are relatively small for p-MMA. MMA/nBA copolymer and p-MMA/p-nBA blends follow the same trends, although the magnitudes of changes are not as pronounced. The p-MMA/p-nBA core-shell behavior resembles that of p-nBA homopolymer, which is attributed to significantly lower content of the p-MMA component in particles. Annealing of coalesced colloidal films at elevated temperatures causes migration of SDOSS to the F-A interface, but for films containing primarily p-nBA, reverse diffusion back into the bulk is observed. These studies illustrate that the combination of different particle morphologies and temperatures leads to controllable permeation processes through polymeric films. Copyright 2004 American Chemical Society

  15. Synthesis of Gamma-Alumina from Kankara Kaolin as Potential ...

    African Journals Online (AJOL)

    Engr Solomn Gajere

    Large specific surface area gamma-alumina (γ-Al2O3) was synthesized by hydrothermal method using Kankara kaolin as starting material. Thermal treatment of ammonium alum prepared from the filtrate of the dealuminated metakaolin was employed to obtain the alumina. Crystalline aluminum sulfate with 39 wt% Al2O3 ...

  16. Electrokinetic remediation of heavy metals contaminated kaolin by a CNT-covered polyethylene terephthalate yarn cathode

    International Nuclear Information System (INIS)

    Yuan, Lizhu; Li, Haiyan; Xu, Xingjian; Zhang, Jing; Wang, Nana; Yu, Hongwen

    2016-01-01

    In the current study, carbon nanotube (CNT) covered polyethylene terephthalate yarns (PET-CNT) electrode has been investigated as a novel cathode material for the electrokinetic (EK) remediation of multi-metals (Cd, Cu, Ni, Pb, Zn) contaminated kaolin. The results of scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) showed that CNT was successfully covered on the surface of PET. The results obtained from EK process showed that PET-CNT as a cathode obviously elevated electric current and electro-osmotic flow (EOF), significantly decreased kaolin pH, and enhanced heavy metals removal efficiencies. The removal efficiencies of Cd, Cu, Ni, Pb, and Zn in PET-CNT treatment were 89.7%, 63.6%, 90.7%, 19.2%, and 88.7%, respectively. In comparison with the Pt/Ti and graphite treatments, the removal efficiencies of Cd, Ni, and Zn were improved at least about 30%, Cu and Pb were improved at least 16.6% and 6.9%, respectively. Our results demonstrated the PET-CNT was a good alternative cathode material for enhancing efficiency of EK remediation.

  17. Pulsed laser deposition of metallic films on the surface of diamond particles for diamond saw blades

    International Nuclear Information System (INIS)

    Jiang Chao; Luo Fei; Long Hua; Hu Shaoliu; Li Bo; Wang Youqing

    2005-01-01

    Ti or Ni films have been deposited on the diamond particle surfaces by pulsed laser deposition. Compressive resistance of the uncoated and coated diamond particles was measured, respectively, in the experiments. The compressive resistance of the Ti-coated diamonds particles was found much higher than that of the uncoated ones. It increased by 39%. The surface morphology is observed by the metallography microscope. The surface of the uncoated diamonds particles had many hollows and flaws, while the surface of Ni-coated diamond particles was flat and smooth, and the surface of Ti-coated diamond particles had some metal masses that stood out of the surface of the Ti-coated film. The components of the metallic films of diamond particles were examined by X-ray diffractometry (XRD). TiC was found formed on the Ti-coated diamond surface, which resulted in increased surface bonding strength between the diamond particles and the Ti films. Meanwhile, TiC also favored improving the bonding strength between the coated diamond particles and the binding materials. Moreover, the bending resistance of the diamond saw blade made of Ti-coated diamond was drastically higher than that of other diamond saw blades, which also played an important role in improving the blade's cutting ability and lifetime. Therefore, it was most appropriate that the diamond saw blade was made of Ti-coated diamond particles rather than other materials

  18. An Observation of Diamond-Shaped Particle Structure in a Soya Phosphatidylcohline and Bacteriorhodopsin Composite Langmuir Blodgett Film Fabricated by Multilayer Molecular Thin Film Method

    Science.gov (United States)

    Tsujiuchi, Y.; Makino, Y.

    A composite film of soya phosphatidylcohline (soya PC) and bacteriorhodopsin (BR) was fabricated by the multilayer molecular thin film method using fatty acid and lipid on a quartz substrate. Direct Force Microscopy (DFM), UV absorption spectra and IR absorption spectra of the film were characterized on the detail of surface structure of the film. The DFM data revealed that many rhombus (diamond-shaped) particles were observed in the film. The spectroscopic data exhibited the yield of M-intermediate of BR in the film. On our modelling of molecular configuration indicate that the coexistence of the strong inter-molecular interaction and the strong inter-molecular interaction between BR trimmers attributed to form the particles.

  19. Characterization of ceramic masses using raw material of Para, Brazil: kaolin in natura

    International Nuclear Information System (INIS)

    Vida, T.A.; Facury Neto, E.; Rabelo, A.A.

    2009-01-01

    The incorporation rejects to the mixtures has if shown viable in the reduction of the environmental liability and for the obtaining of a better quality of the ceramic mass. In the present work, is tried to study the potentiality of the use of ceramic formulations with the addition of kaolin in natura to the clays. Formulations with two clays of the area of the municipal district of Maraba with addition of up to 60% in kaolin weight were prepared and characterized. For the determination of the physical and mechanical properties proof bodies were made by prensagem uniaxial and later burned in temperature from 900 to 1200 deg C with landing of 3 hours. The raw materials were characterized through diffraction of rays X (DRX) and thermogravimetric analysis. The proof bodies prepared were used for determination of the lineal retraction (RL), absorption of water, apparent porosity, apparent density, loss to the fire and rupture module the flexing. The results were satisfactory for the smallest kaolin tenors in the ceramic mass, and the mass with 20% presented rupture module elevated, in the temperature of 1200 deg C. (author)

  20. Synthesis of Gamma-Alumina from Kankara Kaolin as Potential ...

    African Journals Online (AJOL)

    In compounded zeolite catalyst it serves as the active matrix which aids the conversion of the bulkiest molecules in the feed owing to its larger pore size than zeolite. Large specific surface area gamma-alumina (γ-Al2O3) was synthesized by hydrothermal method using Kankara kaolin as starting material. Thermal treatment ...

  1. Fixed-film processes. Part 1

    International Nuclear Information System (INIS)

    Canziani, R.

    1999-01-01

    Recently, full scale fixed-film or mixed suspended and fixed biomass bioreactors have been applied in many wastewater treatments plants. These process no longer depend on biomass settle ability and can be used to improve the performance of existing plants as required by more stringent discharge permit limits, especially for nutrients and suspended solid. Also, processes may work at high rates making it possible to build small footprint installations. Fixed-film process include trickling filter, moving bed reactors fluidized bed reactors. In the first part, the theoretical base governing fixed-film processes are briefly outlined with some simple examples of calculations underlining the main differences with conventional activated sludge processes [it

  2. Recovery of kaolinite from tailings of Zonouz kaolin-washing plant by flotation-flocculation method

    Directory of Open Access Journals (Sweden)

    Kianoush Barani

    2018-04-01

    Full Text Available The traditional processing of kaolin is achieved by dispersion of the mined ore and classification by multistage hydrocyclone plants. The inefficiencies inherent to cyclones produce a middling product that is commonly disposed back into the quarry. In this research, recovery of kaolinite from tailings of Zonouz kaolin washing plant, which is located in Iran was investigated by flotation and flotation- flocculation. Flotation experiments show that the flotation of kaolinite from the tailings is better in an acidic than in an alkaline medium containing cationic collectors. Flotation under acidic condition causes problems such as equipment corrosion at industrial scale. As a result, the cationic flotation of kaolinite is enhanced by addition of polyacrylamide as a flocculant. The results showed flocculation by polyacrylamide improved flotation of kaolinite within a range of pH. With 300 g/t dodecylamine, 500 g/t aluminum chloride, 50 g/t pine oil (frother, 15 g/t polyacrylamide, at pH = 7 and without de-slimming a product has 37.19% Al2O3, 54.19% SiO2 and 34.43% mass recovery was archived. Keywords: Kaolinite, Flotation, Flocculation, Cetylpyridinium chloride, Dodecylamine, Aluminum chloride, Polyacrylamide

  3. Process and apparatus for irradiating film, and irradiated film

    International Nuclear Information System (INIS)

    1981-01-01

    A process for irradiating film is described, which consists of passing the film through an electron irradiation zone having an electron reflection surface disposed behind and generally parallel to the film; and disposing within the irradiation zone adjacent the edges of the film a lateral reflection member for reflecting the electrons toward the reflection surface to further reflect the reflected electrons towards the adjacent edges of the film. (author)

  4. Nature of the pulsed laser process for the deposition of high T/sub c/ superconducting thin films

    International Nuclear Information System (INIS)

    Venkatesan, T.; Wu, X.D.; Inam, A.

    1988-01-01

    The pulsed laser thin-film deposition process can enable preparation of thin films of complex composition with good control over the film stoichiometry. The film compositions are similar to that of the target pellet and as a consequence this technique appears to be an ideal method for preparing high T/sub c/ thin films on a variety of substrates.The factors which contribute to this beneficial phenomenon have been explored by a laser ionization mass spectrometry (LIMS) and a post ablation ionization (PAI) neutral velocity analysis technique in order to determine the mass and velocities of the laser ejected material. In addition, x-ray absorption measurements on films deposited onto substrates at room temperature were performed in order to identify the presence of short-range crystalline order in the films. Both of these studies rule out the ejection of stoichiometric clusters of material from the pellet during the laser ablation/deposition process. Instead, binary and ternary suboxides are emitted from the target pellet. These suboxides most likely have unit sticking coefficient to the substrate which could contribute to the preservation of the film stoichiometry. The velocity distribution of several neutral species (e.g., BaO) indicates that particles have energies of several eV. Thus the effective temperatures of the emitted species are ∼15 x 10 3 K, and these energetic particles may facilitate growth of the crystalline films at low substrate temperatures

  5. 40 CFR 180.1180 - Kaolin; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... Kaolin, when used on crops (apples, apricots, bananas, beans, cane berries, citrus fruits, corn, cotton... permit the marketing of the food commodities in this paragraph when treated in accordance with the...

  6. Integrated mined-area reclamation and land-use planning. Volume 3C. A case study of surface mining and reclamation planning: Georgia Kaolin Company Clay Mines, Washington County, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Guernsey, J L; Brown, L A; Perry, A O

    1978-02-01

    This case study examines the reclamation practices of the Georgia Kaolin's American Industrial Clay Company Division, a kaolin producer centered in Twiggs, Washington, and Wilkinson Counties, Georgia. The State of Georgia accounts for more than one-fourth of the world's kaolin production and about three-fourths of U.S. kaolin output. The mining of kaolin in Georgia illustrates the effects of mining and reclaiming lands disturbed by area surface mining. The disturbed areas are reclaimed under the rules and regulations of the Georgia Surface Mining Act of 1968. The natural conditions influencing the reclamation methodologies and techniques are markedly unique from those of other mining operations. The environmental disturbances and procedures used in reclaiming the kaolin mined lands are reviewed and implications for planners are noted.

  7. Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface

    Science.gov (United States)

    Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.

    2018-06-01

    Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.

  8. Switching and memory effects in composite films of semiconducting polymers with particles of graphene and graphene oxide

    Science.gov (United States)

    Krylov, P. S.; Berestennikov, A. S.; Aleshin, A. N.; Komolov, A. S.; Shcherbakov, I. P.; Petrov, V. N.; Trapeznikova, I. N.

    2015-08-01

    The effects of switching were investigated in composite films based on multifunctional polymers. i.e., derivatives of carbazole (PVK) and fluorene (PFD), as well as based on particles of graphene (Gr) and graphene oxide (GO). The concentration of Gr and GO particles in the PVK(PFD) matrix was varied in the range of 2-3 wt %, which corresponded to the percolation threshold in these systems. The atomic composition of the composite films PVK: GO was examined using X-ray photoelectron spectroscopy. It was found that the effect of switching in structures of the form Al/PVK(PFD): GO(Gr)/ITO/PET manifests itself in a sharp change of the electrical resistance of the composite film from a low-conducting state to a relatively high-conducting state when applying a bias to Al-ITO electrodes of ˜0.1-0.3 V ( E ˜ 3-5 × 104 V/cm), which is below the threshold switching voltages for similar composites. The mechanism of resistance switching, which is associated with the processes of capture and accumulation of charge carriers by Gr (GO) particles introduced into the matrices of the high-molecular-weight (PVK) and relatively low-molecular-weight (PFD) polymers, was discussed.

  9. Direct observation of atomic-level nucleation and growth processes from an ultrathin metallic glass films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K. Q.; Cao, C. R.; Sun, Y. T.; Li, J.; Bai, H. Y.; Zheng, D. N., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn; Wang, W. H., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Gu, L., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2016-01-07

    Till date, there have been no direct atomic-level experimental observations of the earliest stages of the nucleation and growth processes of nanocrystals formed by thermally induced crystallization in ultrathin metallic glasses (MGs). Here, we present a study of the crystallization process in atomically thin and highly stable MG films using double spherical aberration-corrected scanning transmission electron microscopy (Cs-TEM). Taking advantage of the stability of MG films with a slow crystallization process and the atomic-level high resolution of Cs-TEM, we observe the formation of the nucleus precursor of nanocrystals formed by atom aggregation followed by concomitant coalescence and stepwise evolution of the shape of the nanocrystals with a monodispersed and separated bimodal size distribution. Molecular dynamics simulation of the atomic motion in the glass film on a rigid amorphous substrate confirms the stepwise evolution processes of atom aggregation, cluster formation, cluster movement on the substrate, and cluster coalescence into larger crystalline particles. Our results might provide a better fundamental understanding of the nucleation and growth processes of nanocrystals in thin MG films.

  10. Thin Film Coatings for Suppressing Electron Multipacting in Particle Accelerators

    CERN Document Server

    Costa Pinto, P; Chiggiato, P; Neupert, H; Shaposhnikova, E N; Taborelli, M; Vollenberg, W; Yin Vallgren, C

    2011-01-01

    Thin film coatings are an effective way for suppressing electron multipacting in particle accelerators. For bakeable beam pipes, the TiZrV Non Evaporable Getter (NEG) developed at CERN can provide a Secondary Electron Yield (SEY) of 1.1 after activation at 180oC (24h). The coating process was implemented in large scale to coat the long straight sections and the experimental beam pipes for the Large Hadron Collider (LHC). For non bakeable beam pipes, as those of the Super Proton Synchrotron (SPS), CERN started a campaign to develop a coating having a low SEY without need of in situ heating. Magnetron sputtered carbon thin films have shown SEY of 1 with marginal deterioration when exposed in air for months. This material is now being tested in both laboratory and accelerator environment. At CERN’s SPS, tests with electron cloud monitors attached to carbon coated chambers show no degradation of the coating after two years of operation interleaved with a total of 3 months of air exposure during shutdown periods...

  11. Caulins brasileiros: alguns aspectos da geologia e da mineralogia Brazilian kaolins: some aspects of the geology and mineralogy

    Directory of Open Access Journals (Sweden)

    Ian Richard Wilson

    1998-08-01

    Full Text Available A dimensão do Brasil e a diversidade da geologia se reflete em vários meios nos quais montagens de caulinita foram formadas. Os meios geológicos dos caulins brasileiros podem ser divididos nos seguintes grupos - caulins sedimentares, caulins oriundos de pegmatitas, de rochas graníticas, de rochas vulcânicas, e caulins derivados de anortosito. As argilas sedimentares são encontradas principalmente na bacia amazônica e aquelas adjacentes ao rio Jari estão sendo exploradas comercialmente para exportação como argilas para recobrimento de papel. Os caulins amazônicos são caracterizados por alto teor de ferro e titânia (estruturais com baixos níveis de álcalis e exibindo cristais de caulinita euédricos. As pegmatitas do sudeste, quando não recobertas com óxido de ferro, tem extremamente baixos teores de ferro e titânia e uma mistura de caulinita 7Å / haloisita 10Å ocorre em todos depósitos. As pegmatitas do nordeste produzem caulins constituídos somente por caulinitas euédricas com ausência de haloisita. Os caulins de granito tem geralmente maiores teores de ferro quando comparados com pegmatitas e são raros os depósitos constituídos somente por caulinita, sendo comum uma mistura de caulinita 7Å / haloisita. Os caulins obtidos da pegmatita e do granito são utilizados como cobertura de papel e em cerâmica em geral. Argilas de origem vulcânica são utilizadas em cerâmicas na região. Os caulins obtidos de anortosito são semelhantes em níveis de ferro e titânia àqueles obtidos de caulins graníticos. Montagens de caulinita e pequenas quantidades de haloisita 7Å são encontrados. Essas argilas são usadas tanto em cerâmicas de mesa quanto em preenchimentos para papel.The size of Brazil and the diversity of geology is reflected in varying environments in which kaolinite assemblages have been formed. The geological environments of the Brazilian kaolin may be divided into the following groups - sedimentary kaolin

  12. Study of the effect of Kaolin in the mortar of cement matrices by confinement of ion exchange resins

    Directory of Open Access Journals (Sweden)

    Labied S.

    2018-01-01

    Full Text Available Radioactive waste arising as a result of nuclear activities should be safely managed from its generation to final disposal in an appropriate conditioned form to reduce the risk of radiation exposure of technical personnel and of the public and to limit contamination of the environment. The immobilization of low and intermediate level radioactive wastes in cementitious matrices is the most commonly used technique to produce inexpensive waste matrix that complies with regulatory requirements in order to protect humans and the environment against nuisance caused by ionizing radiation. Cement based materials are used in radioactive waste management to produce stable waste forms. This matrix constitutes the first build engineering barrier in disposal facilities. In this work, the kaolin is used to enhance the mechanical performance of the matrix of confinement of ion exchange resins by gradually replacing the sand in mortar with kaolin clay. The Kaolin clay sample was a special pure product, sourced from a foreign country. The maximum quantity of resins that can be incorporated into the mortar formulation without the packages losing their strength is 13.915% which results in a better mechanical strength at 6.7686 MPA compression with kaolin.

  13. Effects of Melatonin on the Cerebellum of Infant Rat Following Kaolin-Induced Hydrocephalus: a Histochemical and Immunohistochemical Study.

    Science.gov (United States)

    Uyanıkgil, Yiğit; Turgut, Mehmet; Baka, Meral

    2017-02-01

    Hydrocephalus is a developmental disorder causing abnormally collected cerebrospinal fluid within the cerebral ventricles. It leads to bigger skulls and many dysfunctions related to the nervous system. Here, we addressed whether exogenous melatonin administration could reverse the clinical features of kaolin-induced hydrocephalus in infantile rats. A controlled double-blinded study was conducted in 2-week-old 45 Wistar albino rats, which were divided into three groups: Group A, the control group, received intracisternal sham injection with solely the needle insertion; group B, the hydrocephalus group, was treated with isotonic NaCl after kaolin injection; and group C, the hydrocephalus + melatonin group, was given i.p. exogenous melatonin at a dose of 0.5 mg/100 g body weight after kaolin injection. Histological and immunohistochemical analyses were performed after the induction of hydrocephalus and melatonin administration. Glial fibrillary acidic protein was stained by immunohistochemical method. TUNEL method was used to define and quantitate apoptosis in the cerebellar tissues. Statistical analysis was performed by nonparametric Kruskal-Wallis H test, and once significance was determined among means, post hoc pairwise comparisons were carried out using Mann-Whitney U test. We found that melatonin administration significantly ameliorated ratio of substantia grisea area/substantia alba area in the cerebellum of infantile rats. Histologically, there was a significant reduction in the number of cerebellar apoptotic cells after the hydrocephalus induced by kaolin (P cerebellum were reversed by systemic melatonin administration in infantile rats with kaolin-induced hydrocephalus. Nevertheless, further studies are needed to suggest melatonin as a candidate protective drug in children with hydrocephalus.

  14. Preparation of LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries by a mist CVD process

    Energy Technology Data Exchange (ETDEWEB)

    Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Duran, Alicia; Aparacio, Mario [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, Kelsen 5 (Campus de Cantoblanco), Madrid, 28049 (Spain)

    2014-05-01

    Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.

  15. Processing and thin film formation of TiO{sub 2}-Pt nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Es-Souni, M.; Kartopu, G.; Habouti, S.; Piorra, A.; Solterbeck, C.H. [Institute for Materials and Surface Technology, Kiel University of Applied Sciences, Grenzstr. 3, 24149 Kiel (Germany); Es-Souni, Mar.; Brandies, H.F. [Faculty of Dentistry, Christian-Albrecht University, Kiel (Germany)

    2008-02-15

    Thin films of TiO{sub 2}-Pt nanocomposites containing 4 at% Pt have been processed via spin-coating. Film characterization involved XRD, Raman as well as XPS and scanning surface potential microscopy (SSPM). After annealing at 500 C the thin films consisted of nanocrystalline anatase and a few nm Pt nanoclusters. Annealing at 600 C resulted in the formation of a high volume fraction of rutile, {proportional_to}70%, and a coarsening of the microstructure, including Pt nanoparticles which attained a mean particle size of up to 11 nm. These results contrasted with those of pure TiO{sub 2} films obtained at 600 C which showed only a limited amount of rutile formation, namely 9%. Raman spectra of Pt-containing samples exhibited a fluorescence emission, as background to the Raman features, which was attributed to photoinduced luminescence from Pt nanoparticles supported by their surface plasmon resonance. Emission intensity being much higher in 600 C film indicated a difference between the two films in terms of the (Pt) particle size and crystallinity, in agreement with the XRD results. XPS investigations revealed different oxidation states of Pt at the surface and in the film interior. The spectra suggested a slight oxidation of Pt at the surface while mainly metallic Pt was revealed in the film interior. The morphology and distribution of the Pt nanoparticles in the films annealed at 600 C were investigated using SSPM. Discrete Pt nanoparticles, mainly distributed in the vicinity of TiO{sub 2} grain boundaries were revealed. Nanocomposite film formation, Pt distribution and morphology are explained in terms of the limited solubility of Pt in the TiO{sub 2} lattice and its higher surface energy in comparison to that of TiO{sub 2}. Both effects are believed to lead to the formation of Pt nanoparticles at the (anatase or rutile) grain boundaries. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Peroxidation of the dried thin film of lipid by high-energy alpha particles from a cyclotron

    International Nuclear Information System (INIS)

    Agarwal, S.; Chatterjee, S.N.

    1984-01-01

    High-energy α particles produced a dose-dependent linear increase in different lipid peroxidation products (e.g., malondialdehyde (MDA), conjugated dienes, and hydroperoxides) in the dried thin film state. An inverse dose-rate effect was observed when the dose rate was varied by changing either the α-particle fluence rate or the α-particle energy. The antioxidants α-tocopherol and butylated hydroxytoluene (BHT) suppressed the α-particle-induced lipid peroxidation in the dried thin film state, and in this respect α-tocopherol was found superior to BHT. It was found that α-tocopherol was equally efficient in inhibiting lipid peroxidations by α particles and ultraviolet light

  17. Long-Chain Diacrylate Crosslinkers and Use of PEG Crosslinks in Poly(potassium acrylate-acrylic acid)/Kaolin Composite Superabsorbents

    OpenAIRE

    Koroush Kabiri; Siavash Nafisi; Mohammad jalaledin Zohuriaan-Mehr; Ali Akbar Yousefi

    2013-01-01

    Long-chain diacrylate crosslinkers based on linear α,ω-diols were synthesized and characterized using FTIR and 1H NMR spectroscopy. The highest reaction yield (99.5%) was due to polyethylene glycol diacrylate 1000 (PEGDA-1000). Then, kaolin-containing poly(potassium acrylate-acrylic acid) superabsorbent composites and kaolin-free counterparts were synthesized using PEGDA-1000.The effect of the crosslinker concentration on swelling, rheological and thermo-mechanical properties was investigated...

  18. Characterization of kaolin and granite waste for formulation of porcelain stoneware tiles; Caracterizacao de caulim e de residuo de granito para formulacao de gres porcelanato

    Energy Technology Data Exchange (ETDEWEB)

    Luna da Silveira, G.C. [Instituto Federal do Rio Grande do Norte (IFRN), RN (Brazil); Acchar, W.; Gomes, U.U.; Silva, B.K.O.; Luna da Silveira, R.V. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil); Labrincha, J.A.; Costa, M.C.P., E-mail: glebacoelli@hotmail.com [Universidade de Aveiro (Portugal)

    2016-07-01

    To produce a stoneware tiles is necessary develop a formulation that satisfies their structural characteristics, micro-structural, physical and mechanical properties. Thus, in order to create a formulation for porcelain stoneware tiles that give use to kaolin and granite waste used in the production of ceramic materials were asked the following characterizations: chemical analysis, mineralogical, thermal and particle size. We found that in the kaolin sample it presents a rate of silicon oxide and aluminum oxide similar to those found in the work of other investigators, about 45.23% SiO2 and 37.39% Al{sub 2}O{sub 3}. In the granite waste, the percentage of silicon oxide and aluminum oxide are also similar to those observed in other studies, with about 74.89% SiO2 and 10.54% Al{sub 2}O{sub 3}. Both the percentage of SiO{sub 2} and Al{sub 2}O{sub 3} founded in these two samples satisfy the percentage required in the manufacturing of porcelain stoneware tiles. (author)

  19. Morphology-controlled electrodeposition of Cu2O microcrystalline particle films for application in photocatalysis under sunlight

    International Nuclear Information System (INIS)

    Wu, Guodong; Zhai, Wei; Sun, Fengqiang; Chen, Wei; Pan, Zizhao; Li, Weishan

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► PEG was used to electro-deposit Cu 2 O microcrystalline particle films. ► Morphologies of Cu 2 O microcrystals could be controlled by the amount of PEG. ► The films showed regularly varied photocatalytic activities under sunlight. ► The films could be recycled and showed stable activities. -- Abstract: Morphology-controlled Cu 2 O microcrystalline particle films had been successfully electrodeposited on tin-doped indium oxide glass substrates in CuSO 4 solutions containing different amounts of polyethylene glycol (PEG) additives. With an increase of PEG, microcrystals gradually changed from irregular shapes to cubes, octahedrons, and spherical shapes. Sizes increasingly became smaller with an increase of PEG under the same deposition time. These films had been first used as recyclable photocatalysts and showed excellent and photocatalytic activities in photodegradation of methylene blue (MB) under sunlight. Activities were regularly varied relative to the morphologies of films controlled by the amount of PEG and could be further enhanced by adding a little amount of hydrogen peroxide in the MB solution. The method for controllable preparation of Cu 2 O microcrystals with photocatalytic activities was simple and inexpensive. The as-prepared particle films could also be used in photodegradation of many other pollutants under sunlight.

  20. Surface-coated fly ash used as filler in biodegradable poly(vinyl alcohol) composite films: Part 1-The modification process

    International Nuclear Information System (INIS)

    Nath, D.C.D.; Bandyopadhyay, S.; Gupta, S.; Yu, A.; Blackburn, D.; White, C.

    2010-01-01

    The surfaces of fly ash (FA) particles were modified by surfactant, sodium lauryl sulphate (SLS) and used in fabrication of composite films with polyvinyl alcohol (PVA). Both unmodified fly ash (FA) and modified fly ash (SLS-FA) samples were examined using a range of analytical tools including X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The distribution patterns of SLS-FA particles were shifted to the higher regions compared to FA by adding 1.2-4.2 μm in the ranges between 2 and 25 μm, whereas the modification process reduced the size of the particles over 25 μm due to grinding during the activation process. The increased 1.2-4.2 μm in average can be considered the thickness of the surfactant on the SLS-FA surface. On the oxides based chemical analysis by XRF, the compositions were almost unchanged. SEM and TEM were visualised the irregular sizes morphology mostly spherical of the particles, although it is impossible to capture the images of exactly same particles in modified and unmodified forms. The composite films reinforced with SLS-FA showed 33% higher strength than those of FA filled films. The enhancement of tensile strength attributed from the level of physical bonding between SLS-FA and PVA surfaces.

  1. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  2. Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xiaoying; Chen, Zhengxian [Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Zhou, Rongbing [Institute of Environ Sci and Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018 (China); Chen, Zuliang, E-mail: Zuliang.chen@unisa.edu.au [Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2015-01-15

    Graphical abstract: UV–visible spectra of DFBG solution using K-nZVI (1:1) nanoparticles. (a) Before reaction; (b) during reaction; (c) after reaction. - Highlights: • Kaolin-supported Fe{sup 0} nanoparticle (K-nZVI) was synthesized. • Degradation of Direct Fast Black by K-nZVI was studied. • K-nZVI was characterized by SEM, XRD, UV and FIIR. • Degradation mechanism of Direct Fast Black was proposed. - Abstract: Calcinated kaolin supported nanoscale zero-valent iron (K-nZVI) was synthesized and used for the removal of tetrad azo-group dye-Direct Fast Black G (DFBG) from aqueous solution. The results demonstrated that after reacting for 10 min with an initial concentration of DFBG 100 mg L{sup −1} (pH 9.49), 78.60% of DFBG was removed using K-nZVI, while only 41.39% and 12.56% of DFBG were removed using nZVI and kaolin, respectively. K-nZVI with a mass ratio of nZVI nanoparticles versus kaolin at 1:1 was found to have a high degree of reactivity. Furthermore, scanning electron microscopy (SEM) confirmed that nZVI was better dispersed when kaolin was present. XRD patterns indicated that iron oxides were formed after reaction. Fourier transforms infrared spectra (FTIR) and UV–visible demonstrated that the peak in the visible light region of DFBG was degraded and new bands were observed. Kinetics studies showed that the degradation of DFBG fitted well to the pseudo first-order model. The degradation of DFBG by K-nZVI was based on its adsorption onto kaolin and iron oxides, and subsequently reduction using nZVI was proposed. A significant outcome emerged in that 99.84% of DFBG in wastewater was removed using K-nZVI after reacting for 60 min.

  3. Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution

    International Nuclear Information System (INIS)

    Jin, Xiaoying; Chen, Zhengxian; Zhou, Rongbing; Chen, Zuliang

    2015-01-01

    Graphical abstract: UV–visible spectra of DFBG solution using K-nZVI (1:1) nanoparticles. (a) Before reaction; (b) during reaction; (c) after reaction. - Highlights: • Kaolin-supported Fe 0 nanoparticle (K-nZVI) was synthesized. • Degradation of Direct Fast Black by K-nZVI was studied. • K-nZVI was characterized by SEM, XRD, UV and FIIR. • Degradation mechanism of Direct Fast Black was proposed. - Abstract: Calcinated kaolin supported nanoscale zero-valent iron (K-nZVI) was synthesized and used for the removal of tetrad azo-group dye-Direct Fast Black G (DFBG) from aqueous solution. The results demonstrated that after reacting for 10 min with an initial concentration of DFBG 100 mg L −1 (pH 9.49), 78.60% of DFBG was removed using K-nZVI, while only 41.39% and 12.56% of DFBG were removed using nZVI and kaolin, respectively. K-nZVI with a mass ratio of nZVI nanoparticles versus kaolin at 1:1 was found to have a high degree of reactivity. Furthermore, scanning electron microscopy (SEM) confirmed that nZVI was better dispersed when kaolin was present. XRD patterns indicated that iron oxides were formed after reaction. Fourier transforms infrared spectra (FTIR) and UV–visible demonstrated that the peak in the visible light region of DFBG was degraded and new bands were observed. Kinetics studies showed that the degradation of DFBG fitted well to the pseudo first-order model. The degradation of DFBG by K-nZVI was based on its adsorption onto kaolin and iron oxides, and subsequently reduction using nZVI was proposed. A significant outcome emerged in that 99.84% of DFBG in wastewater was removed using K-nZVI after reacting for 60 min

  4. The Effects of Flocculation on the Propagation of Ultrasound in Dilute Kaolin Slurries.

    Science.gov (United States)

    Austin; Challis

    1998-10-01

    A broadband ultrasonic spectrometer has been used to measure ultrasonic attenuation and phase velocity dispersion as functions of frequency in kaolin suspensions over a range of solid volume fractions from phi = 0.01 to phi = 0.08 and over a pH range from 3 to 9. The Harker and Temple theory was used to simulate ultrasound propagation in the suspension, using measured slope viscosity, particle size, and size distribution. Simulated results for ultrasonic attenuation and phase velocity agree well with measured values. Both sets of results agree well and show that for volume fractions above phi approximately 0.05 attenuation and velocity dispersion increase for increasing floc size, whereas for volume fractions below phi approximately 0.05 attenuation and velocity dispersion both decrease. It is proposed that the mechanism for this change in behavior around phi approximately 0.05 involves changes in floc density and floc size distribution with phi and pH. Copyright 1998 Academic Press.

  5. Process for forming thin film, heat treatment process of thin film sheet, and heat treatment apparatus therefor

    International Nuclear Information System (INIS)

    Watanabe, S.

    1984-01-01

    The invention provides a process for forming a magnetic thin film on a base film, a heat treatment process of a thin film sheet consisting of the base film and the magnetic thin film, and an apparatus for performing heat treatment of the thin film sheet. Tension applied to the thin film sheet is substantially equal to that applied to the base film when the magnetic thin film is formed thereon. Then, the thin film sheet is treated with heat. The thin film sheet is heated with a given temperature gradient to a reactive temperature at which heat shrinkage occurs, while the tension is being applied thereto. Thereafter, the thin film sheet to which the tension is still applied is cooled with substantially the same temperature gradient as applied in heating. The heat treatment apparatus has a film driving unit including a supply reel, a take-up reel, a drive source and guide rollers; a heating unit including heating plates, heater blocks and a temperature controller for heating the sheet to the reactive temperature; and a heat insulating unit including a thermostat and another temperature controller for maintaining the sheet at the nonreactive temperature which is slightly lower than the reactive temperature

  6. Utilisation of Sand from Kaolin Washing for the Manufacture of Alkali-activated Artificial Sandstone

    Science.gov (United States)

    Vavro, Martin; Vavro, Leona; Mec, Pavel; Soucek, Kamil; Pticen, Frantisek; Reiterman, Pavel

    2017-04-01

    Sandstones represent a traditional natural stones which are widely used in Czech architecture and sculpture over a long time. Thanks to their relatively easy workability, sandstones provide a wide range of stone products and also represent a popular material for architectural and sculptural purposes. In the field of restoration of artworks, they are therefore often used for manufacturing stone statue copies originally made from the same or similar type of stone. Despite a relatively common and varied occurrence of natural sandstones, the method of the artificial stone facsimiles creation in the form of various cast elements is also often applied in restoration practice. The history of application of artificial stones in civil engineering and architecture goes back to the ancient times, i.e. to Roman antiquity and possibly up to the time of ancient Egypt. The lack of appropriate natural rock, suitable in the view of colour, grain size or texture is the main reason of manufacturing copies based on synthetic mixtures. The other reason is high financial costs to create a sculpture copy from natural materials. Mixtures made from white and/or grey cements, sands, carefully selected crushed stone or well graded natural gravels, and mineral coloring pigments or mixtures with acrylate, polyester, and epoxy resins binder are the most frequently used artificial materials for cast stone manufacturing. This paper aims to bring information about composition and properties of artificial sandstones made from alkali-activated binder mixtures based on metakaolin and granulated blast furnace slag. The filler of this artificial stone is represented by fine-grained sand generated during kaolin wet processing. Used sand is mainly formed by quartz, feldspars, micas (muscovite > biotite), residual kaolin, and to a lesser extent also by Fe oxyhydroxides ("limonite"), titanium dioxide mineral (probably anatase), and carbonate mineral unidentified in detail. Annual Czech production of this

  7. Magnetic coupling mechanisms in particle/thin film composite systems

    Directory of Open Access Journals (Sweden)

    Giovanni A. Badini Confalonieri

    2010-12-01

    Full Text Available Magnetic γ-Fe2O3 nanoparticles with a mean diameter of 20 nm and size distribution of 7% were chemically synthesized and spin-coated on top of a Si-substrate. As a result, the particles self-assembled into a monolayer with hexagonal close-packed order. Subsequently, the nanoparticle array was coated with a Co layer of 20 nm thickness. The magnetic properties of this composite nanoparticle/thin film system were investigated by magnetometry and related to high-resolution transmission electron microscopy studies. Herein three systems were compared: i.e. a reference sample with only the particle monolayer, a composite system where the particle array was ion-milled prior to the deposition of a thin Co film on top, and a similar composite system but without ion-milling. The nanoparticle array showed a collective super-spin behavior due to dipolar interparticle coupling. In the composite system, we observed a decoupling into two nanoparticle subsystems. In the ion-milled system, the nanoparticle layer served as a magnetic flux guide as observed by magnetic force microscopy. Moreover, an exchange bias effect was found, which is likely to be due to oxygen exchange between the iron oxide and the Co layer, and thus forming of an antiferromagnetic CoO layer at the γ-Fe2O3/Co interface.

  8. Atomic layer deposition of titanium oxide films on As-synthesized magnetic Ni particles: Magnetic and safety properties

    International Nuclear Information System (INIS)

    Uudeküll, Peep; Kozlova, Jekaterina; Mändar, Hugo; Link, Joosep; Sihtmäe, Mariliis; Käosaar, Sandra; Blinova, Irina; Kasemets, Kaja; Kahru, Anne; Stern, Raivo; Tätte, Tanel; Kukli, Kaupo; Tamm, Aile

    2017-01-01

    Spherical nickel particles with size in the range of 100–400 nm were synthesized by non-aqueous liquid phase benzyl alcohol method. Being developed for magnetically guided biomedical applications, the particles were coated by conformal and antimicrobial thin titanium oxide films by atomic layer deposition. The particles retained their size and crystal structure after the deposition of oxide films. The sensitivity of the coated particles to external magnetic fields was increased compared to that of the uncoated powder. Preliminary toxicological investigations on microbial cells and small aquatic crustaceans revealed non-toxic nature of the synthesized particles.

  9. Atomic layer deposition of titanium oxide films on As-synthesized magnetic Ni particles: Magnetic and safety properties

    Energy Technology Data Exchange (ETDEWEB)

    Uudeküll, Peep, E-mail: peep.uudekull@ut.ee [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Kozlova, Jekaterina; Mändar, Hugo [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Link, Joosep [Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Sihtmäe, Mariliis [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Käosaar, Sandra [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Faculty of Chemical and Materials Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Blinova, Irina; Kasemets, Kaja; Kahru, Anne [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Stern, Raivo [Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Tätte, Tanel [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Kukli, Kaupo [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Tamm, Aile [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia)

    2017-05-01

    Spherical nickel particles with size in the range of 100–400 nm were synthesized by non-aqueous liquid phase benzyl alcohol method. Being developed for magnetically guided biomedical applications, the particles were coated by conformal and antimicrobial thin titanium oxide films by atomic layer deposition. The particles retained their size and crystal structure after the deposition of oxide films. The sensitivity of the coated particles to external magnetic fields was increased compared to that of the uncoated powder. Preliminary toxicological investigations on microbial cells and small aquatic crustaceans revealed non-toxic nature of the synthesized particles.

  10. Influence of film dimensions on film droplet formation.

    Science.gov (United States)

    Holmgren, Helene; Ljungström, Evert

    2012-02-01

    Aerosol particles may be generated from rupturing liquid films through a droplet formation mechanism. The present work was undertaken with the aim to throw some light on the influence of film dimensions on droplet formation with possible consequences for exhaled breath aerosol formation. The film droplet formation process was mimicked by using a purpose-built device, where fluid films were spanned across holes of known diameters. As the films burst, droplets were formed and the number and size distributions of the resulting droplets were determined. No general relation could be found between hole diameter and the number of droplets generated per unit surface area of fluid film. Averaged over all film sizes, a higher surface tension yielded higher concentrations of droplets. Surface tension did not influence the resulting droplet diameter, but it was found that smaller films generated smaller droplets. This study shows that small fluid films generate droplets as efficiently as large films, and that droplets may well be generated from films with diameters below 1 mm. This has implications for the formation of film droplets from reopening of closed airways because human terminal bronchioles are of similar dimensions. Thus, the results provide support for the earlier proposed mechanism where reopening of closed airways is one origin of exhaled particles.

  11. Physico-Chemical Properties of Kaolin-Organic Acid

    Directory of Open Access Journals (Sweden)

    Yeo S.W.

    2017-01-01

    Full Text Available Soil with more than 20% of organic content is classified as organic soil in Malaysia. Contents of organic soil consist of different types of organic and inorganic matter. Each type of organic matter has its own characteristic and its effect on the properties of the soil is different. Hence, a good understanding on the effect of specific organic and inorganic matter on the physico-chemical characteristic of organic soils can serve as a guide for predicting the properties of organic soils. The main objective is to unveil the effect of organic acid on the physico-chemical properties of soil. Artificial organic soil (kaolin mixed with organic acid was utilized in order to minimize the geochemical variability of studied soil. The organic acid which consists of humic acid and fulvic acid was extracted from highly humificated plant–based compost. The effect of organic acid on the physico-chemical properties of soil was determined by varying the concentration of organic acid. The specific gravity, Atterberg limits, pH, bulk chemical composition and the functional group of kaolin-organic acid were determined. It was found that the plasticity index, specific gravity and pH value were decreased with lowered concentration of organic acid. However, the liquid limits and plastic limits were found to be increased with the concentration decrement of organic acid. The analysis of XRF on the bulk chemical composition and analysis of FTIR spectra on the functional group of artificial organic soils with different concentration have confirmed little geochemical variability between samples.

  12. Applications of alpha particles detectors made of nitrocellulose film

    International Nuclear Information System (INIS)

    Segovia, N.; Salinas, B.; Pineda, H.

    1978-01-01

    We describe the experiments realized in order to probe the response of the alpha particles detectors manufactured in our laboratory and their suitability to some important applications. The detection system is a nitrocellulose film which register the transit of the charged particles. The traces left by the particles during their transit are manifested through a controlled chemical attack and counted after that with a microscope. This monitor system was utilized in the following applications: 1) uranium prospection 2) alpha autoradiography 4) determination of air pollution by alpha emitters. The results which were obtained are satisfactory and in spite that in these first applications only qualitative measurements were made the method could be used for quantitative determinations when we will have a better knowledge of the effect of factors which are not under our control. (author)

  13. Feasible synthesis of TiO2 deposited on kaolin for photocatalytic applications

    Czech Academy of Sciences Publication Activity Database

    Henych, Jiří; Štengl, Václav

    2013-01-01

    Roč. 61, 3-4 (2013), s. 165-176 ISSN 0009-8604 R&D Projects: GA MPO FR-TI1/006 Institutional support: RVO:61388980 Keywords : Homogeneous Hydrolysis * Kaolin * Photocatalysis * TiO2 * Urea Subject RIV: CA - Inorganic Chemistry Impact factor: 1.398, year: 2013

  14. Quality Assessment of Film Processing Chemicals in Dentistry

    International Nuclear Information System (INIS)

    Han, Mi Ra; Kang, Byung Chul

    1999-01-01

    The purpose of this study was to compare the qualities of the four different processing chemicals (solutions). With EP 21 films (Ektaspeed plus film, Kodak Co., USA), nine unexposed and nine exposed films of a step wedge were processed utilizing automatic film processor (XR 24, Durr Co., Germany) for 5 days. During 5 days, the total number of processed films including out-patient's intraoral films were about 400-500 for each brand. Base plus fog density, film density, contrast of processed films were measured with densitometer (model 07-443 digital densitometer, Victoreen Co., USA). These measurements were analyzed for comparison. The results were as follows,1. For the base plus fog density, there was significant difference among the four chemicals (p<0.05). The sequence of the base plus fog densities was in ascending order by Kodak, X-dol 90, Agfa and Konica. 2. For the film density, all chemicals showed useful range of photographic densities (0.25-2.5). The sequence of the film densities was in ascending order by Kodak, X-dol 90, Konica and Agfa. But there was no statistically significant difference of film density between X-dol and Kodak (p<0.05). 3. The sequence of the contrasts was in ascending order by Konica, X-dol 90, Kodak and Agfa. But there was no statistically significant difference of contrast between X-dol and Konica (p<0.05). These results indicated that the four processing chemicals had the clinically useful film density and contrast, but only Kodak processing chemical had useful base plus fog density.

  15. Production of zeolite A come from rio Capim Kaolin: Study on recycle of sodium hydroxide solution

    International Nuclear Information System (INIS)

    Moraes, C.G.; Rodrigues, E.C.; Rocha Junior, C.A.F.; Macedo, E.N.; Neves, R.F.

    2011-01-01

    The kaolin processing industry is an important economic sector in the State of Para, but produces huge amounts of wastes composed essentially of kaolinite. The production processes of zeolites typically use sodium hydroxide in excess, are discarded. So the objective is the development process for production of zeolite A which allows the reuse of the solution of sodium hydroxide used in excess through your recycling. Presents the results of XRD, SEM of the zeolites produced in five consecutive cycles performed at a temperature of 110°C/24h as a source of sodium hydroxide solution of sodium 5 M, using a molar ratio of Si/Al = 1 and Na/Al = 1,26. (author)

  16. Elaboration and characterization of mullite-anorthite-albite porous ceramics prepared from Algerian kaolin

    International Nuclear Information System (INIS)

    Rouabhia, F.; Nemamcha, A.; Moumeni, H.

    2018-01-01

    Mullite-anorthite-albite porous ceramic materials were successfully prepared by a solid-state reaction between kaolin clay and two different additives (CaCO 3 and Na 2 CO 3 ). The starting raw material was characterized by X-ray fluorescence, X-ray diffraction (XRD) and dynamic light scattering techniques. The effect of CaCO 3 and Na 2 CO 3 concentration (10 to 70 wt%) on structure, morphology and thermal properties of the obtained ceramics was investigated by XRD, scanning electron microscopy and differential scanning calorimetry (DSC) techniques. The XRD patterns showed that mullite (3Al 2 O 3 .2SiO 2 ), anorthite (CaO.Al 2 O 3 .2SiO 2 ) and albite (Na 2 O.Al 2 O 3 .6SiO 2 ) were the main crystalline phases present in the materials. The morphology investigation revealed the porous texture of obtained ceramics characterized by the presence of sponge-like structure mainly due to the additive decomposition at high temperatures. The DSC results confirm the presence of four temperature regions related to the kaolin thermal transformations and the formation of minerals. The temperature and enthalpy of mineral formation are additive concentration dependent. As a result, the optimal content of additives which allowed the coexistence of the three phases, a spongelike morphology, and high porosity without cracks corresponded to 15 wt% CaCO 3 , 15 wt% Na 2 CO 3 , and 70 wt% kaolin. (author)

  17. Thermodynamic analysis of stability in iron removal from kaolin by using oxalic acid

    Directory of Open Access Journals (Sweden)

    C. Ocampo-López

    2013-06-01

    Full Text Available The graphical representation of global stability for a system, or Pourbaix diagram, was constructed to perform a thermodynamic study of iron removal from kaolin using oxalic acid as an oxidant. To do this the free energies of formation of the oxalate complex of the system were calculated, and it was found that the more stable specie is Fe(C2O43-3, with a calculated free energy of formation of -3753.88 kcal/mol. Thermodynamic stability functions were estimated for the system as a function of pH and Eh known as potential of oxide reduction. It was built a global stability diagram for the removal system; it showed that the specie trioxalate Fe(C2O43-3 is the only oxalate in equilibrium with other compounds associated with the removal of iron in kaolin.

  18. Synthesis and characterization of mangan oxide coated sand from Capkala kaolin

    Science.gov (United States)

    Destiarti, Lia; Wahyuni, Nelly; Prawatya, Yopa Eka; Sasri, Risya

    2017-03-01

    Synthesis and characterization of mangan oxide coated sand from quartz sand fraction of Capkala kaolin has been conducted. There were two methods on synthesis of Mangan Oxide Coated Sand (MOCS) from Capkala Kaolin compared in this research. Characterization of MOCS was done by using Scanning Electron Microscope/Energy Dispersive X-Ray Spectrometer (SEM/EDX) and X-Ray Diffraction (XRD). The MOCS was tested to reduce phosphate in laundry waste. The result showed that the natural sand had bigger agregates and a relatively uniform structural orientation while both MOCS had heterogen structural orientation and manganese oxide formed in cluster. Manganese in first and second methods were 1,93% and 2,63%, respectively. The XRD spectrum showed clear reflections at 22,80°, 36,04°, 37,60° and a broad band at 26,62° (SiO2). Based on XRD spectrum, it can be concluded that mineral constituents of MOCS was verified corresponding to pyrolusite (MnO2). The former MOCS could reduce almost 60% while the later could reduce 70% phosphate in laundry waste.

  19. Análise da co-utilização do resíduo do beneficiamento do caulim e serragem de granito para produção de blocos e telhas cerâmicos Analysis of the use of kaolin processing waste and granite sawing waste together for the production of ceramic bricks and roof tiles

    Directory of Open Access Journals (Sweden)

    R. R. Menezes

    2007-06-01

    high amounts of wastes. This work has as aim the characterization of the kaolin processing waste and granite sawing waste and the evaluation of their use together for the production of bricks and roof tiles. The wastes were characterized by chemical composition determination, X-ray diffraction, differential thermal and gravimetric analyses, particle size distribution determination, and morphological analysis by electronic scanning microscopy. Several formulations were prepared and samples bodies were prepared by extrusion. The sample bodies were fired at 800, 900 and 1000 ºC. Fired samples were characterized in terms of water absorption and mechanical strength. The results showed that the kaolin waste is composed by kaolinite, mica and quartz and that the granite waste is composed by quartz, mica, albite and calcite, and that, the wastes have significantly distinct particles size distributions. It could also be concluded that are possible incorporations of up to 50% of wastes in formulation for the production of ceramic bricks and roof tiles, and that, the use of the kaolin waste and granite waste together provide better physical properties than those observed in samples bodies with incorporations of only kaolin waste.

  20. Studying effects of Magnolol on alpha-particle induced bystander effects using PADC-film based dishes

    Energy Technology Data Exchange (ETDEWEB)

    Wong, T.P.W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Tse, A.K.W.; Fong, W.F. [Research and Development Division, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.h [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2009-10-15

    Radiation-induced bystander effect refers to the biological response found in cells (called bystander cells) which are not irradiated directly by ionizing radiation but are next to cells irradiated directly by ionizing radiation. In the present paper, the effects of Magnolol, an extract from the bark of Magnolia officinalis which is used as a traditional Chinese medicine, were studied on alpha-particle induced bystander effects. In our experiments, Chinese hamster ovary (CHO) cells were cultured in PADC-film based dishes and were irradiated with low fluences of alpha particles passing through the PADC films. The precise number of cells traversed or missed by alpha particles could be determined by studying the alpha-particle tracks developed on the PADC films upon subsequent chemical etching. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was employed to analyze the biological response of bystander cells in terms of DNA strand breaks. With the pretreatment of Magnolol, the DNA strand breaks in bystander cells were reduced, which showed that the alpha-particle induced bystander effects were suppressed with the presence of Magnolol. Since Magnolol is an antioxidant which can scavenge reactive oxygen species (ROS), our results give support to that ROS play a role in the bystander signal transmission in our experiments.

  1. Studying effects of Magnolol on alpha-particle induced bystander effects using PADC-film based dishes

    International Nuclear Information System (INIS)

    Wong, T.P.W.; Tse, A.K.W.; Fong, W.F.; Yu, K.N.

    2009-01-01

    Radiation-induced bystander effect refers to the biological response found in cells (called bystander cells) which are not irradiated directly by ionizing radiation but are next to cells irradiated directly by ionizing radiation. In the present paper, the effects of Magnolol, an extract from the bark of Magnolia officinalis which is used as a traditional Chinese medicine, were studied on alpha-particle induced bystander effects. In our experiments, Chinese hamster ovary (CHO) cells were cultured in PADC-film based dishes and were irradiated with low fluences of alpha particles passing through the PADC films. The precise number of cells traversed or missed by alpha particles could be determined by studying the alpha-particle tracks developed on the PADC films upon subsequent chemical etching. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was employed to analyze the biological response of bystander cells in terms of DNA strand breaks. With the pretreatment of Magnolol, the DNA strand breaks in bystander cells were reduced, which showed that the alpha-particle induced bystander effects were suppressed with the presence of Magnolol. Since Magnolol is an antioxidant which can scavenge reactive oxygen species (ROS), our results give support to that ROS play a role in the bystander signal transmission in our experiments.

  2. Search for charged-particle d-d fusion products in an encapsulated Pd thin film

    International Nuclear Information System (INIS)

    Lopez, E.; Neuhauser, B.; Ziemba, F.; Jackson, J.; Mapoles, E.; McVittie, J.; Powell, R.

    1991-01-01

    Motivated by reports by Fleischmann and Pons and also Jones et al. of nuclear fusion occurring at room temperature, we attempted to look for charged particle reaction products from d-d fusion in a deuterated palladium thin film. A silicon nitride encapsulated palladium thin film (340 nanometers thick and one square centimeter in area) was fabricated on top of a semiconductor particle detector and implanted with an 80 keV D 2 + beam. The purpose of the nitride cap was to prevent deuterium from diffusing out or from being sputtered away during implantation. The detector temperature was maintained below 200 K in order to reduce pressure on the cap. During the first run of this experiment, after the ion implanter had been turned off, apparent charged particle pulses as well as bursts of activity in two nearby Geiger counters were observed with the film loaded to a nominal 150% deuterium-to-palladium ratio and a 1.3% does of 6 Li. No spectrum was obtained because of equipment malfunction. In a second run no apparent charged particles pulses were observed, but a record of the neutron flux due to induced fusion during implantation suggested that the nitride cap had failed. More experimental runs are expected in the near future

  3. New organophilic kaolin clays based on single-point grafted 3-aminopropyl dimethylethoxysilane.

    Science.gov (United States)

    Zaharia, A; Perrin, F-X; Teodorescu, M; Radu, A-L; Iordache, T-V; Florea, A-M; Donescu, D; Sarbu, A

    2015-10-14

    In this study, the organophilization procedure of kaolin rocks with a monofunctional ethoxysilane- 3 aminopropyl dimethyl ethoxysilane (APMS) is depicted for the first time. The two-step organophilization procedure, including dimethyl sulfoxide intercalation and APMS grafting onto the inner hydroxyl surface of kaolinite (the mineral) layers was tested for three sources of kaolin rocks (KR, KC and KD) with various morphologies and kaolinite compositions. The load of APMS in the kaolinite interlayer space was higher than that of 3-aminopropyl triethoxysilane (APTS) due to the single-point grafting nature of the organophilization reaction. A higher long-distance order of kaolinite layers with low staking was obtained for the APMS, due to a more controllable organiphilization reaction. Last but not least, the solid state (29)Si-NMR tests confirmed the single-point grafting mechanism of APMS, corroborating monodentate fixation on the kaolinite hydroxyl facets, with no contribution to the bidentate or tridentate fixation as observed for APTS.

  4. Multiple scattering wavelength dependent backscattering of kaolin dust in the IR: Measurements and theory

    Science.gov (United States)

    Ben-David, Avishai

    1992-01-01

    Knowing the optical properties of aerosol dust is important for designing electro-optical systems and for modeling the effect on propagation of light in the atmosphere. As CO2 lidar technology becomes more advanced and is used for multiwavelength measurements, information on the wavelength dependent backscattering of aerosol dust particles is required. The volume backscattering coefficient of aerosols in the IR is relatively small. Thus, only a few field measurements of backscattering, usually at only a few wavelengths, are reported in the literature. We present spectral field measurements of backscattering of kaolin dust in the 9-11 micron wavelength range. As the quantity of dust increases, multiple scattering contributes more to the measured backscattered signal. The measurements show the effect of the dust quantity of the spectral backscatter measurements. A simple analytical two stream radiative transfer model is applied to confirm the measurements and to give insight to the multiple scattering spectra of backscattering.

  5. Control of the Mexican bean weevil Zabrotes subfasciatus with kaolin Controle do caruncho-do-feijão Zabrotes subfasciatus com caulim

    Directory of Open Access Journals (Sweden)

    Adriana Yatie Mikami

    2010-07-01

    Full Text Available The Mexican bean weevil Zabrotes subfasciatus (Coleoptera: Chrysomelidae: Bruchinae is an important pest of stored beans in tropical regions. The efficiency of kaolin [with or without neem (Azadirachta indica oil] and diatomaceous earth (DE (standard treatment was studied in laboratory aiming to obtain alternatives for chemical control of this insect. Insects were confined in plastic vials containing beans treated with kaolin (2, 4 and 8g kg-1, kaolin + neem [2g kg-1(5% neem oil], diatomaceous earth (1g kg-1 and control. Mortality of adult insects, number of eggs and F1generation beetles emergency were assessed. Kaolin caused mortality of Z. subfasciatus, however higher periods and doses than DE were necessary to promote high mortality (100% or close. Kaolin treatments also affected female behavior because many eggs were placed in the vials walls. Number of emerged adults (F1 was similar between DE and kaolin; hence, kaolin constitutes a promising tool to the management of Z. subfasciatus. The mixture of kaolin and neem oil was not efficient in the control of Z. subfasciatus.O caruncho-do-feijão Zabrotes subfasciatus (Coleoptera: Chrysomelidae: Bruchinae é uma importante praga de grãos de feijão armazenado nas regiões tropicais. A eficiência do caulim [com ou sem óleo de nim (Azadirachta indica] e terra diatomácea (TD (tratamento padrão foi estudada em laboratório com o intuito de obter alternativas para o controle químico deste inseto. Insetos foram confinados em frascos de plástico com feijão tratado com caulim (2, 4 e 8g kg-1, caulim + nim [2g kg-1(5% óleo de nim], terra diatomácea (1g kg-1 e controle. Mortalidade de insetos adultos, número de ovos e emergência da geração F1 foram avaliados. Caulim causou a mortalidade de Z. subfasciatus, porém foram necessários maiores períodos e doses que a TD para promover elevada mortalidade (100% ou aproximadamente. Os tratamentos com caulim também afetaram o comportamento da f

  6. Use of kaolin as a potential low-cost adsorbent for the removal of malachite green from colored effluents

    Energy Technology Data Exchange (ETDEWEB)

    Foletto, E.L.; Caponi, N.; Collazzo, G.C.; Jahn, S.L.; Dotto, G.L.; Mazutti, M.A. [Universidade Federal de Santa Maria (UFSM), RS (Brazil)

    2016-07-01

    Full text: This study investigated the potential of raw kaolin as a low-cost adsorbent for the removal Malachite Green (MG) from colored effluents. The morphology, chemical structure and the surface properties of the adsorbent were investigated by characterization techniques such as X-ray diffraction, N2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, X-ray fluorescence spectroscopy and scanning electron microscopy. A possible technological application of kaolin is the MG removal from aqueous media, which was investigated by batch adsorption experiments. The adsorption kinetics was studied using the pseudo-first order, pseudo-second order and Elovich models. The adsorption isotherms were studied using Langmuir, Freundlich and Sips models. Maximum adsorption capacity was found to be 128 mg g-1, and this satisfactory result may be associated to some properties of adsorbent. Therefore, the results of this investigation revealed that kaolin can be utilized as a promising low-cost adsorbent to remove MG from colored effluents. (author)

  7. Preparation of Li4Ti5O12 electrode thin films by a mist CVD process with aqueous precursor solution

    Directory of Open Access Journals (Sweden)

    Kiyoharu Tadanaga

    2015-03-01

    Full Text Available Spinel Li4Ti5O12 thin films were prepared by a mist CVD process, using an aqueous solution of lithium nitrate and a water-soluble titanium lactate complex as the source of Li and Ti, respectively. In this process, mist particles ultrasonically atomized from a source aqueous solution were transferred by nitrogen gas to a heating substrate to prepare thin films. Scanning electron microscopy observation showed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 500 nm were obtained. In the X-ray diffraction analysis, formation of Li4Ti5O12 spinel phase was confirmed in the obtained thin film sintered at 700 °C for 4 h. The cell with the thin films as an electrode exhibited a capacity of about 110 mAh g−1, and the cell showed good cycling performance during 10 cycles.

  8. Visualization of nanosecond laser-induced dewetting, ablation and crystallization processes in thin silicon films

    Science.gov (United States)

    Qi, Dongfeng; Zhang, Zifeng; Yu, Xiaohan; Zhang, Yawen

    2018-06-01

    In the present work, nanosecond pulsed laser crystallization, dewetting and ablation of thin amorphous silicon films are investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 7 ns temporal width are irradiated on silicon film. Below the dewetting threshold, crystallization process happens after 400 ns laser irradiation in the spot central region. With the increasing of laser fluence, it is observed that the dewetting process does not conclude until 300 ns after the laser irradiation, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to solidification of transported matter at about 500 ns following the laser pulse exposure.

  9. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.; Ryder, Olivia S.; Stokes, M. Dale; Beall, Charlotte M.; Collins, Douglas B.; Santander, Mitchell V.; Burrows, Susannah M.; Sultana, Camille M.; Prather, Kimberly A.

    2017-06-19

    Covering 71% of the Earth’s surface, oceans represent a significant global source of atmospheric aerosols. The size and composition of sea spray aerosols (SSA) affect their ability to serve as cloud seeds and thus understanding the factors controlling their composition is critical to predicting their impact on clouds and climate. SSA particles have been shown to be an external mixture of particles with different compositions. Film and jet drop production mechanisms ultimately determine the individual particle compositions which are comprised of an array of salt/organic mixtures ranging from pure sea salt to nearly pure organic particles. It is often assumed that the majority of submicron SSA are formed by film drops produced from bursting hydrophobic organic-rich bubble film caps at the sea surface, and in contrast, jet drops are postulated to produce larger supermicron particles from underlying seawater comprised largely of salts and water soluble organic species. However, here we show that jet drops produced by bursting sub-100 m bubbles account for up to 40 % of all submicron particles. They have distinct chemical compositions, organic volume fractions and ice nucleating activities from submicron film drops. Thus a substantial fraction of submicron particles will not necessarily be controlled by the composition of the sea surface microlayer as has been assumed in many studies. This finding has significant ramifications for the size-resolved mixing states of SSA particles which must be taken into consideration when accessing SSA impacts on clouds.

  10. Correlation between hardness and water absorption properties of Saudi kaolin and white clay geopolymer coating

    Science.gov (United States)

    Ramasamy, Shamala; Abdullah, Mohd Mustafa Al Bakri; Huang, Yue; Hussin, Kamarudin; Wang, Jin; Shahedan, Noor Fifinatasha

    2017-09-01

    Geopolymer is an uprising technology that is being studied worldwide. Geopolymer raw materials are basically aluminosilicate source materials. However, this technology is yet to infiltrate into pipelines and coating industries which initiated our research idea. The idea of creating universal geopolymer based coating material is mainly to help oil and gas industry reduce its maintenance cost. Kaolin based geopolymer paste was coated on glass reinforced epoxy (GRE) substrates which are majorly used as pipeline material in the oil and gas industry at Saudi Arabia. Kaolin and white clay was chosen as raw material to study the possibilities of utilizing underused aluminosilicate raw materials for geopolymer coating. To obtain suitable formulation, Na2SiO3/NaOH ratio was varied from 0.40 untill 0.60 while other parameters such as solid/liquid ratio and NaOH molarity were kept constant at values as per previous works. Geopolymer coated GRE substrates were then subjected to water absorption, flexural strength and hardness test to validate our findings. Water absorption is a crucial test as for coating materials which justifies the pratical usability of the coating product. Upon testing, kaolin and white clay based geopolymer coating each shows promising properties at Na2SiO3/NaOH ratio of 0.45 and 0.50 each.

  11. Nickel films: Nonselective and selective photochemical deposition and properties

    International Nuclear Information System (INIS)

    Smirnova, N.V.; Boitsova, T.B.; Gorbunova, V.V.; Alekseeva, L.V.; Pronin, V.P.; Kon'uhov, G.S.

    2006-01-01

    Nickel films deposited on quartz surfaces by the photochemical reduction of a chemical nickel plating solution were studied. It was found that the deposition of the films occurs after an induction period, the length of which depends on the composition of the photolyte and the light intensity. Ni particles with a mean diameter of 20-30 nm were detected initially by transmission electron microscopy. The particles then increased in size (50 nm) upon irradiation and grouped into rings consisting of 4-5 particles. Irradiation with high-intensity light produces three-dimensional films. The calculated extinction coefficient of the nickel film was found to be 4800 L mol -1 cm -1 . Electron diffraction revealed that the prepared amorphous nickel films crystallize after one day of storage. It was determined that the films exhibit catalytic activity in the process of nickel deposition from nickel plating solution. The catalytic action remains for about 5-7 min after exposure of the films to air. The processes of selective and nonselective deposition of the nickel films are discussed. The use of poly(butoxy titanium) in the process of selective photochemical deposition enables negative and positive images to be prepared on quartz surfaces

  12. Development of a model to describe organic films on aerosol particles and cloud droplets. Final report; Entwicklung eines Modells zur Beschreibung organischer Filme auf Aerosolteilchen und Wolkentropfen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Forkel, R. (ed.); Seidl, W.

    2000-12-01

    Organic substances with polar groups are enriched on water surfaces and can form monomolecular surface films which can reduce the surface tension. A new model to describe surface films is presented, which describes in detail the film forming properties of fatty acids with up to 22 carbon atoms. The model is applied to measured concentrations of fatty acids (from the literature) in rain water and on aerosol particles and cloud droplets. An investigation of the sources of fatty acids has shown, that abrasion of the wax layer on leaves and needles is the main sources for surface film material in the western USA. Anthropogenic sources in urban areas are meat preparation and cigarette smoke. The agreement between model results and measurements when the model was applied to rain water confirms the original assumption that fatty acids are a main compound of surface films in rain water. For humid aerosol particles the application of the model on measured concentrations of fatty acids only showed strongly diluted films. Only for remote forest areas in western USA concentrated films were found, with the surface tension reduced by 20 to 30%. On cloud droplets the surface films is still more diluted than on aerosol particles. For all investigated cases the films was too much diluted to have an effect on the activation process of cloud droplets. (orig.) [German] Organische Substanzen mit polaren Gruppen reichern sich an der Wasseroberflaeche an und koennen monomolekulare Oberflaechenfilme bilden, die zu einer Verringerung der Oberflaechenspannung fuehren. Es wird ein neues Modell zur Beschreibung eines Oberflaechenfilms beschrieben, das detailliert die filmbildenden Eigenschaften der Fettsaeuren mit bis zu 22 Kohlenstoffatomen erfasst. Dieses Modell ist auf gemessene Konzentrationen von Fettsaeuren (Literaturdaten) in Regenwasser und auf atmosphaerischen Aerosolteilchen und Wolkentropfen angewandt worden. Eine Betrachtung der Quellen der Fettsaeuren zeigte, dass der Abrieb der

  13. Particles on surfaces of laser ablated Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} films

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X.Y.; Zhu, S. [Tennessee Univ., Knoxville, TN (United States); Lowndes, D.H.; Warmack, R.J. [Oak Ridge National Lab., TN (United States)

    1993-09-01

    Pulsed laser deposition of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} films grown at heater temperature of 720 and 800 C on SrTiO{sub 3} and MgO substrates with thickness ranging from a nominal 5 unit cells to 200 nm were studied by STM and SEM. Size and density of particles present in the films were found to depend on film thickness, growth temperature and substrate. STM images indicate a correlation between film growth mode and particle density: the onset of big particles comes after the growth mode changes from layer-like to island growth.

  14. Processing of thin SU-8 films

    International Nuclear Information System (INIS)

    Keller, Stephan; Blagoi, Gabriela; Lillemose, Michael; Haefliger, Daniel; Boisen, Anja

    2008-01-01

    This paper summarizes the results of the process optimization for SU-8 films with thicknesses ≤5 µm. The influence of soft-bake conditions, exposure dose and post-exposure-bake parameters on residual film stress, structural stability and lithographic resolution was investigated. Conventionally, the SU-8 is soft-baked after spin coating to remove the solvent. After the exposure, a post-exposure bake at a high temperature T PEB ≥ 90 °C is required to cross-link the resist. However, for thin SU-8 films this often results in cracking or delamination due to residual film stress. The approach of the process optimization is to keep a considerable amount of the solvent in the SU-8 before exposure to facilitate photo-acid diffusion and to increase the mobility of the monomers. The experiments demonstrate that a replacement of the soft-bake by a short solvent evaporation time at ambient temperature allows cross-linking of the thin SU-8 films even at a low T PEB = 50 °C. Fourier-transform infrared spectroscopy is used to confirm the increased cross-linking density. The low thermal stress due to the reduced T PEB and the improved structural stability result in crack-free structures and solve the issue of delamination. The knowledge of the influence of different processing parameters on the responses allows the design of optimized processes for thin SU-8 films depending on the specific application

  15. Fabrication of barium titanate nanoparticles/poly (methylmethacrylate composite films by a combination of deposition process and spin-coating technique

    Directory of Open Access Journals (Sweden)

    Yoshio Kobayashi

    2014-10-01

    Full Text Available The present work proposes a method for fabricating poly(methylmethacrylate (PMMA film containing barium titanate (BT nanoparticles (BT/PMMA film. BT particles with an average size of 77.6 ± 30.5 nm and a crystal size of 28.1 nm were synthesized by adding sodium hydroxide aqueous solution to titanium tetraisopropoxide/acetylacetone/i-propanol solution suspending barium hydroxide. A sodium glass plate, of which surface was modified with polyvinylpyrrolidone, was immersed into water suspending the BT particles, which resulted in deposition of the BT particles on the plate. A BT/PMMA film was fabricated by twice performance of a process composed of spin-coating of N-methyl-2-pyrrolidone (NMP dissolving PMMA on the plate, and then drying the coated plate in the atmosphere at room temperature. Spin-coating of a PMMA/NMP solution with a PMMA concentration of 150 g/L at a rotating speed of 5000 rpm provided fabrication of a BT/PMMA film with a BT volume fraction of 35.5%, a thickness of ca. 300 nm, and a transmittance of ca. 90% in the visible light region.

  16. Optical Detection and Sizing of Single Nano-Particles Using Continuous Wetting Films

    Science.gov (United States)

    Hennequin, Yves; McLeod, Euan; Mudanyali, Onur; Migliozzi, Daniel; Ozcan, Aydogan; Dinten, Jean-Marc

    2013-01-01

    The physical interaction between nano-scale objects and liquid interfaces can create unique optical properties, enhancing the signatures of the objects with sub-wavelength features. Here we show that the evaporation on a wetting substrate of a polymer solution containing sub-micrometer or nano-scale particles creates liquid micro-lenses that arise from the local deformations of the continuous wetting film. These micro-lenses have properties similar to axicon lenses that are known to create beams with a long depth of focus. This enhanced depth of focus allows detection of single nanoparticles using a low magnification microscope objective lens, achieving a relatively wide field-of-view, while also lifting the constraints on precise focusing onto the object plane. Hence, by creating these liquid axicon lenses through spatial deformations of a continuous thin wetting film, we transfer the challenge of imaging individual nano-particles to detecting the light focused by these lenses. As a proof of concept, we demonstrate the detection and sizing of single nano-particles (100 and 200 nm), CpGV granuloviruses as well as Staphylococcus epidermidis bacteria over a wide field of view of e.g., 5.10×3.75 mm2 using a ×5 objective lens with a numerical aperture of 0.15. In addition to conventional lens-based microscopy, this continuous wetting film based approach is also applicable to lensfree computational on-chip imaging, which can be used to detect single nano-particles over a large field-of-view of e.g., >20-30 mm2. These results could be especially useful for high-throughput field-analysis of nano-scale objects using compact and cost-effective microscope designs. PMID:23889001

  17. Thin-Film Material Science and Processing | Materials Science | NREL

    Science.gov (United States)

    Thin-Film Material Science and Processing Thin-Film Material Science and Processing Photo of a , a prime example of this research is thin-film photovoltaics (PV). Thin films are important because cadmium telluride thin film, showing from top to bottom: glass, transparent conducting oxide (thin layer

  18. Preparação e caracterização de materiais compósitos SiC/caulim/Al via "squeeze-casting" Preparation and characterization of SiC/kaolin/Al composite materials by squeeze- casting

    Directory of Open Access Journals (Sweden)

    M. Freitas

    2009-09-01

    manufacturing these composites is the process of metal casting infiltration under pressure called squeeze-casting. This process offers some advantages, such as ease of producing the composite, low cost and ability to form network structures. In this work were produced and characterized Al-SiC composites, with concentrations in kaolin ranging between 10 and 50% in place to SiC majority phase. The ceramic pre-forms were produced to controlling the fraction of the size SiC/kaolin for better infiltration. These pre-forms after sintering at 1100 ºC/1 h resulted highly porous, and the porosity increased with the increase of kaolin in place to SiC particles. XRD analysis showed the existence of quartz particles beyond the SiC phase. During the infiltration and heat treatment process, the liquid aluminum reacted preferably with quartz and other aluminosilicates particles of the pre-form reducing them, precipitating alumina and silicon in the microstructure, which also presented aluminum in excess that not reacted in the process. The silica and silicates of pre-form, reacted preferably with the aluminum, preventing the formation of Al4C3 phase, which is highly hygroscopic and causes the composite degradation. Depending on the composition, the SiC - kaolin - Al composite developed in this work, can be used in applications involving high bending mechanical resistance (240 to 300 MPa, low density and hardness surface between 180 and 380 kgf/mm².

  19. Uranium in mining water of kaolin open pit in Zarów (Lower Silesia); methodology of determination and genetic remarks.

    Science.gov (United States)

    Chau, N D; Wyszomirski, P; Chruściel, E; Ochoński, A

    1999-11-01

    In this paper, a method of determination of uranium 238 and 234 in mining waters of Andrzej kaolin open pit in Zarów (Lower Silesia) is presented. The method is based on independent measurements of alpha and beta radiation intensities by means of a liquid scintillation spectrometer alpha/beta. The initial volume of water sample was 3 dm3, then it was diminished by chemical preparation to 6 cm3, and then 12 cm3 of scintillator was added. The lower limit of detection (for the measurement time of 8 h) for both 234U and 238U amounted to 0.02 Bq/dm3. For determination of the uranium content in ferruginous sediments precipitating from mining waters of the above-mentioned open pit, gamma ray spectrometry was used. The obtained results may be viewed as a contribution to studies on anomalous uranium concentration within this kaolin deposit. The elevated uranium content, in comparison with its average concentration in the Earth crust, is characteristic for parent rocks of Andrzej kaolin deposit, which are granitoids of Strzegom-Sobótka massif. In connection with it, the high uranium content can be observed not only in kaolin and weakly kaolinised granitoids from the deposit in question, but also in mining waters genetically related with them.

  20. Bulk Fluidity and Apparent Wall Slip of Aqueous Kaolin Suspensions Studied Using the Cone-Cone (KK) Sensor: Effect of the Sensor Surface Quality.

    Czech Academy of Sciences Publication Activity Database

    Pěnkavová, Věra; Tihon, Jaroslav; Wein, Ondřej

    2017-01-01

    Roč. 533, NOV 20 (2017), s. 338-346 ISSN 0927-7757 EU Projects: Foundation for Science and Technology(XE) MP1305 Institutional support: RVO:67985858 Keywords : aqueous kaolin suspensions * rotational AWS viscometry * apparent wall slip Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.714, year: 2016

  1. Effects of using kaolin waste and granite waste as raw materials for the production of low-water absorption ceramic tiles

    International Nuclear Information System (INIS)

    Freires, H.P.; Argonz, R.; Nogueira, R.E.F.Q.; Sasaki, J.M.; Sales, J.C.

    2012-01-01

    This study aims to evaluate the potential of co-use of granite waste (Rain Forest) and kaolin waste as raw material for the manufacture of ceramic coating of low water absorption. Raw materials were characterized by X-ray diffraction. Kaolin residue was added to the residue of granite in the following proportions (in wt%): 0, 10, 20, 30, 40 and 50%. Specimens were fabricated by uniaxial pressing and fired at 1175,1200 and 1225 deg C. Studies of firing linear shrinkage, water absorption, apparent porosity, apparent density and tensile bending test (or rupture modulus) were conducted. The temperature of 1225 deg C allowed the use of a mixture of 50% granite residue and 50% kaolin residue. Ceramic parts made from that mixture exhibited the maximum values required by the Brazilian Standard NBR 13818 for water absorption, shrinkage and density. (author)

  2. Synthesis, characterization and application of nanozeolite NaX from Vietnamese kaolin

    International Nuclear Information System (INIS)

    Ngoc, Don Ta; Pham, Thanh Huyen; Hong Nguyen, Khanh Dieu

    2013-01-01

    This paper presents the results of synthesis of nanozeolite NaX from Vietnamese kaolin. Influence factors on the control of crystal sizes and application of synthesized materials as adsorbent for organic compound are discussed. The results show that there are several factors that influence the synthesis. When water content in gel increases, crystal size of NaX increases sharply. The increase of alkaline and silica contents increases the crystallinity and decreases the particle size of nano NaX, and the particle size reaches the minimum at Na 2 O/Al 2 O 3 = 5.0 and SiO 2 /Al 2 O 3 = 4.0. Crystal sizes formed at low crystallizing temperature are smaller than those formed at higher temperature. Ageing time and crystallizing time strongly influence the crystallinity and crystal size, which is related to the number of crystal seeds formed during ageing period, the growth of seed and the partial solubility of crystal at maximum formation. Nano NaX was characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) adsorption, Fourier transform infrared (FTIR) and simultaneous thermogravimetry–differential scanning calorimetry (TG/DSC). At optimized synthesis conditions, nano NaX has surface area of 573 m 2 g −1 with external surface area of 92 m 2 g −1 , pore size distribution at 0.81 and 10.8 nm, average crystal size of 25 nm and thermal stability up to 789 °C. This material can adsorb cumene rapidly with high adsorption capacity and stability. (paper)

  3. Response of radiochromic dye films to low energy heavy charged particles

    CERN Document Server

    Buenfil, A E; Gamboa-Debuen, I; Aviles, P; Avila, O; Olvera, C; Robledo, R; Rodriguez-Ponce, M; Mercado-Uribe, H; Rodriguez-Villafuerte, M; Brandan, M E

    2002-01-01

    We have studied the possible use of radiochromic dye films (RCF) as heavy charged particle dosemeters. We present the results of irradiating two commercial RCF (GafChromic HD-810 and MD-55-1) with 1.5, 2.9 and 4.4 MeV protons, 1.4, 2.8, 4.7, 5.9, 6.8 MeV sup 4 He ions and 8.5 and 12.4 MeV sup 1 sup 2 C ions, at proton doses from about 1 Gy up to 3 kGy, helium ions doses from 3 Gy to 5 kGy and carbon ion doses from 30 Gy to 20 kGy. The films were scanned and digitized using commercial equipment. For a given particle, the response per unit dose at different energies indicates an energy dependence of the sensitivity, which is discussed. Comparison was made for the use of a standard spectrophotometer to obtain optical density readings versus a white light scanner.

  4. Influence of processing parameters on PZT thick films

    International Nuclear Information System (INIS)

    Huang, Oliver; Bandyopadhyay, Amit; Bose, Susmita

    2005-01-01

    We have studied influence of processing parameters on the microstructure and ferroelectric properties of lead zirconate titanate (PZT)-based thick films in the range of 5-25 μm. PZT and 2% La-doped PZT thick films were processed using a modified sol-gel process. In this process, PZT- and La-doped PZT powders were first prepared via sol-gel. These powders were calcined and then used with respective sols to form a slurry. Slurry composition was optimized to spin-coat thick films on platinized Si substrate (Si/SiO 2 /Ti/Pt). Spinning rate, acceleration and slurry deposition techniques were optimized to form thick films with uniform thickness and without any cracking. Increasing solids loading was found to enhance the surface smoothness of the film and decrease porosity. Films were tested for their electrical properties and ferroelectric fatigue response. The maximum polarization obtained was 40 μC/cm 2 at 250 kV/cm for PZT thick film and 30 μC/cm 2 at 450 kV/cm for La-doped PZT thick film. After 10 9 cycles of fatiguing at 35 kHz, La-doped PZT showed better resistance for ferroelectric fatigue compared with un-doped PZT films

  5. Influence of Kaolin in Fly Ash Based Geopolymer Concrete: Destructive and Non-Destructive Testing

    Science.gov (United States)

    Yahya, Z.; Abdullah, M. M. A. B.; Ramli, N. Mohd; Burduhos-Nergis, D. D.; Razak, R. Abd

    2018-06-01

    Development of geopolymer concrete is mainly to reduce the production of ordinary Portland cement (OPC) that adverse the natural effect. Fly ash is a by-product collected from electrical generating power plant which resulted from burning pulverized coal. Since fly ash is waste materials, it can be recycled for future advantages particularly as pozzolanic materials in construction industry. This study focused on the feasibility of fly ash based geopolymer concrete to which kaolin has been added. The main constituents of geopolymer production for this study were class F fly ash, sodium silicate and sodium hydroxide (NaOH) solution. The concentration of NaOH solution was fixed at 12 Molar, ratio of fly ash/alkaline activator and sodium silicate/NaOH fixed at 1.5 and 2.5, respectively. Kaolin was added in range 5% to 15% from the mass of fly ash and all the samples were cured at room temperature. Destructive and non-destructive test were performed on geopolymer concrete to evaluate the best mix proportions that yield the highest strength as well as the quality of the concrete. Compressive strength, flexural strength, rebound hammer and ultrasonic pulse velocity (UPV) result have been obtained. It shown that 5% replacement of kaolin contributed to maximum compressive strength and flexural strength of 40.4 MPa and 12.35 MPa at 28 days. These result was supported by non-destructive test for the same mix proportion.

  6. Application of a tablet film coating model to define a process-imposed transition boundary for robust film coating.

    Science.gov (United States)

    van den Ban, Sander; Pitt, Kendal G; Whiteman, Marshall

    2018-02-01

    A scientific understanding of interaction of product, film coat, film coating process, and equipment is important to enable design and operation of industrial scale pharmaceutical film coating processes that are robust and provide the level of control required to consistently deliver quality film coated product. Thermodynamic film coating conditions provided in the tablet film coating process impact film coat formation and subsequent product quality. A thermodynamic film coating model was used to evaluate film coating process performance over a wide range of film coating equipment from pilot to industrial scale (2.5-400 kg). An approximate process-imposed transition boundary, from operating in a dry to a wet environment, was derived, for relative humidity and exhaust temperature, and used to understand the impact of the film coating process on product formulation and process control requirements. This approximate transition boundary may aid in an enhanced understanding of risk to product quality, application of modern Quality by Design (QbD) based product development, technology transfer and scale-up, and support the science-based justification of critical process parameters (CPPs).

  7. Síntese e caracterização de hidrogéis compósitos a partir de copolímeros acrilamida-acrilato e caulim: efeito da constituição de diferentes caulins do nordeste brasileiro Synthesis and characterization of poly (acrylamide-co-acrylate and kaolin hydrogel composites: effect of the constitution of different kaolins from northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Carlos W. de Q. Brito

    2013-01-01

    Full Text Available Superabsorbent hydrogels based on poly (acrylamide-co-acrylate and different kaolins, were prepared by free-radical aqueous copolymerization. FTIR and WAXS techniques were employed for characterization of a series of hydrogels, obtained by varying the percentage of clay, crosslinking and constitution of kaolin. The water absorbency at equilibrium (Weq decreased with increasing clay content and the amount of crosslinking agent. Superabsorbent hydrogel (Weq > 1084 g H2O/g gel was obtained as 10 wt% of white kaolin and 0.05 mol% of crosslinking agent were used. The hydrogel proved sensitive to pH variation and the presence of salts.

  8. Partitioning of hexachlorobenzene in a kaolin/humic acid/surfactant/water system: Combined effect of surfactant and soil organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Jinzhong; Wang, Lingling [Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu, Xiaohua, E-mail: hust-esri2009@hotmail.com [Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074 (China); Lin, Yusuo; Zhang, Shengtian [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of China, Nanjing 210042 (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer We study HCB partitioning in a kaolin/humic acid/TX100/water system. Black-Right-Pointing-Pointer We reveal influence of TX100-HA interaction on TX100 and HA sorption to kaolin. Black-Right-Pointing-Pointer We verify combined effect of TX100 and HA on HCB desorption from clay. - Abstract: Understanding the combined effect of soil organic matter (SOM) and surfactants on the partitioning of hydrophobic organic compounds in soil/water systems is important to predict the effectiveness of surfactant-enhanced remediation (SER). In the present study we investigate the partitioning of hexachlorobenzene (HCB) within a humic acid (HA)-coated kaolin/Triton X-100 (TX100)/water system, with special emphasis on the interaction between TX100 and HA, and their combined effect on HCB sorption. HA firstly enhanced then suppressed TX100 sorption to kaolin as the amounts of HA increased, while the addition of TX100 led to a consistent reduction in HA sorption. In the HA-coated kaolin/TX100/water system, TX100 played a primary role in enhancing desorption of HCB, while the role could be suppressed and then enhanced as HA coating amounts increased. Only at HA coating above 2.4%, dissolved HA outcompeted clay-bound HA for HCB partitioning, resulting in dissolved HA enhanced desorption. The presence of dissolved HA at these conditions further promoted the effectiveness of TX100 enhanced desorption. Despite a reduced TX100 sorption to clay was achieved due to the presence of dissolved HA, the effect on HCB desorption was comparatively slight. A reliable cumulative influence of HA and TX100 on HCB desorption was observed, although HCB desorption by HA/TX100 mixed was less than the sum of HA and TX100 individually. Our study suggests that for soils of high organic contents, the combined effect of SOM and surfactants on HOCs desorption can be applied to improve the performance of SER.

  9. Effect of heavy particles in low-energy light-particle processes

    International Nuclear Information System (INIS)

    Chan, L.H.; Hagiwara, T.; Ovrut, B.

    1979-01-01

    The ''decoupling theorem'' of Appelquist and Carazzone is found not always to be applicable to light-scalar-particle processes in spontaneously broken theories. If the Higgs scalar is considered to be light, then Higgs-scalar processes see the effect of heavy fermions and heavy vector gauge bosons at the one-loop level. If there is more than one scalar multiplet in a spontaneously broken gauge theory, the effect of a heavy Higgs particle in light-scalar-particle processes is significant at the tree level. In the latter case, such an effect can be absorbed completely into an effective phi 4 coupling constant, lambda/sub eff/, of the light particle provided that lambda/sub eff/ is positive definite

  10. Adsorpce toxických oxoaniontů Se na povrchově upravený kaolin

    Czech Academy of Sciences Publication Activity Database

    Herzogová, L.; Doušová, B.; Lhotka, M.; Machovič, Vladimír; Schweigstillová, Jana; Koloušek, D.

    2012-01-01

    Roč. 106, č. 8 (2012), s. 759-764 ISSN 0009-2770 Institutional research plan: CEZ:AV0Z30460519 Keywords : adsorption * oxoanions Se * surface-modified kaolins Subject RIV: CA - Inorganic Chemistry Impact factor: 0.453, year: 2012 http://www.chemicke-listy.cz/docs/full/2012_08_759-764.pdf

  11. A new radiochromic film for radiation processing

    International Nuclear Information System (INIS)

    Sidney, L.N.; Lynch, D.C.; Willett, P.S.; Englund, W.J.

    1990-01-01

    Acid-sensitive leuco dyes in combination with a chlorine-containing polymer have been used to make a new kind of radiochromic film for radiation processing. When exposed to gamma, electron beam, or high intensity ultraviolet radiation, these films undergo a color change from colorless to royal blue, fuschia, or black, depending on the dye. The dose response for gamma and electron beam radiation has been characterized using reflection and transmission spectrophotometry over an adsorbed dose range of 1 to 100 kGy. The primary features of the films include improved color stability before and after irradiation and improved moisture resistance. The response and stability of the films make them useful for indicator (qualitative) or dosimeter (quantitative) films or labels for sterilization of medical products, food (especially meat, poultry, and spices), pharmaceuticals, and cosmetics, and the crosslinking of plastics, and the curing of polymer coatings. Large pieces of the film could be used in dose mapping when setting up and validating radiation processes and medical treatments

  12. Properties of amorphous silicon thin films synthesized by reactive particle beam assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyeong-Ho; Jang, Jin-Nyoung; Hong, MunPyo; Kwon, Kwang-Ho; Park, Hyung-Ho

    2010-01-01

    Amorphous silicon thin films were formed by chemical vapor deposition of reactive particle beam assisted inductively coupled plasma type with various reflector bias voltages. During the deposition, the substrate was heated at 150 o C. The effects of reflector bias voltage on the physical and chemical properties of the films were systematically studied. X-ray diffraction and Raman spectroscopy results showed that the deposited films were amorphous and the films under higher reflector voltage had higher internal energy to be easily crystallized. The chemical state of amorphous silicon films was revealed as metallic bonding of Si atoms by using X-ray photoelectron spectroscopy. An increase in reflector voltage induced an increase of surface morphology of films and optical bandgap and a decrease of photoconductivity.

  13. Factors affecting color strength of printing on film-coated tablets by UV laser irradiation: TiO2 particle size, crystal structure, or concentration in the film, and the irradiated UV laser power.

    Science.gov (United States)

    Hosokawa, Akihiro; Kato, Yoshiteru

    2011-08-01

    The purpose of this article is to study factors affecting color strength of printing on film-coated tablets by ultraviolet (UV) laser irradiation: particle size, crystal structure, or concentration of titanium dioxide (TiO2) in film, and irradiated UV laser power. Hydroxypropylmethylcellulose films containing 4.0% of TiO2, of which BET particle sizes were ranging from 126.1 to 219.8 nm, were irradiated 3.14W of UV laser at a wavelength 355 nm to study effects of TiO2 particle size and crystal structure on the printing. The films containing TiO2 concentration ranging from 1.0 to 7.7% were irradiated 3.14 or 5.39W of the UV laser to study effect of TiO2 concentration on the printing. The film containing 4.0% of TiO2, was irradiated the UV laser up to 6.42W to study effect of the UV laser power on the printing. The color strength of the printed films was estimated by a spectrophotometer as total color difference (dE). Particle size, crystal structure, and concentration of TiO2 in the films did not affect the printing. In the relationship between the irradiated UV laser power and dE, there found an inflection point (1.6W). When the UV laser power was below 1.6W, the films were not printed. When it was beyond the point, total color difference increased linearly in proportion with the irradiated laser power. The color strength of the printing on film was not changed by TiO2 particle size, crystal structure, and concentration, but could be controlled by regulating the irradiated UV laser power beyond the inflection point.

  14. Mineralogical characterization and beneficiation study of kaolin from Equador (RN) and Junco do Serido (PB) to increase the brightness index

    International Nuclear Information System (INIS)

    Campos, V.M.J.S.; Bertolino, L.C.; Alves, O.C.

    2017-01-01

    Kaolin is a rock composed mainly of kaolinite. It is used in many industrial segments, such as paper and ceramics. However, for these uses it is necessary to submit the ore to appropriate beneficiation, which generally involves magnetic separation and chemical bleaching, aiming to remove iron oxide and hydroxide, raising brightness index. This work reports the mineralogical characterization and analysis of the beneficiation of three samples of kaolin, two from Equador (Rio Grande do Norte - RN) and the third from Junco do Serido (Paraiba - PB). The samples were submitted to granulometric classification in sieve of 44 μm, magnetic separation in a magnetic induction of 14000 gauss, and chemical bleaching with sodium dithionite during 240 min. The processes were divided into two beneficiation routes. X-ray diffraction, chemical analysis by X-ray fluorescence and scanning electron microscopy were used for mineralogical characterization of the ore and measurement of the brightness index, while electron paramagnetic resonance was applied to study the variation of iron oxides and hydroxides during beneficiation. The results indicate that just 30 min of chemical bleaching without magnetic separation was sufficient to increase the brightness index from 78.2 to 90.2% and from 91.3 to 95.7% in the two samples from Equador (RN) and from 86.9 to 90.4% in the sample from Junco do Serido (PB). The magnetic separation, although causing a small increase in the brightness index, was inefficient for removal of iron oxides and hydroxides. The results indicated no need for using magnetic separation in plants for beneficiation of kaolin from these two locations, providing the reduction of production costs allowing better exploitation of the ore. (author)

  15. Effect of SiC particles on microarc oxidation process of magnesium matrix composites

    International Nuclear Information System (INIS)

    Wang, Y.Q.; Wang, X.J.; Gong, W.X.; Wu, K.; Wang, F.H.

    2013-01-01

    SiC particles are an important reinforced phase in metal matrix composites. Their effect on the microarc oxidation (MAO, also named plasma electrolytic oxidation-PEO) process of SiC p /AZ91 Mg matrix composites (MMCs) was studied and the mechanism was revealed. The corrosion resistance of MAO coating was also investigated. Voltage–time curves during MAO were recorded to study the barrier film status on the composites. Scanning electron microscopy was used to characterize the existing state of SiC particles in MAO. Energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the coating. Corrosion resistance of the bare and coated composites was evaluated by potentiodynamic polarization curves in 3.5% NaCl solution. Results showed that the integrality and electrical insulation properties of the barrier film on the composites were destroyed by the SiC particles. Consequently, the sparking discharge at the early stage of MAO was inhibited, and the growth efficiency of the MAO coating decreased with the increase in the volume fraction of SiC particles. SiC particles did not exist stably during MAO; they were oxidized or partially oxidized into SiO 2 before the overall sparking discharge. The transformation from semi-conductive SiC to insulating SiO 2 by oxidation restrained the current leakage at the original SiC positions and then promoted sparking discharge and coating growth. The corrosion current density of SiC p /AZ91 MMCs was reduced by two orders of magnitude after MAO treatment. However, the corrosion resistances of the coated composites were lower than that of the coated alloy.

  16. Modification of thin film properties by ion bombardment during deposition

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Gambino, R.J.; Kaufman, H.R.

    1984-01-01

    Many thin film deposition techniques involve some form of energetic particle bombardment of the growing film. The degree of bombardment greatly influences the film composition, structure and other properties. While in some techniques the degree of bombardment is secondary to the original process design, in recent years more deposition systems are being designed with the capability for controlled ion bombardment of thin films during deposition. The highest degree of control is obtained with ion beam sources which operate independently of the vapor source providing the thin film material. Other plasma techniques offer varying degrees of control of energetic particle bombardment. Deposition methods involving ion bombardment are described, and the basic processes with which film properties are modified by ion bombardment are summarized. (Auth.)

  17. Corrosion and magnetic properties of encapsulated carbonyl iron particles in aqueous suspension by inorganic thin films for magnetorheological finishing application

    Science.gov (United States)

    Esmaeilzare, Amir; Rezaei, Seyed Mehdi; Ramezanzadeh, Bahram

    2018-04-01

    Magnetorheological fluid is composed of micro-size carbonyl iron (CI) particles for polishing of optical substrates. In this paper, the corrosion resistance of carbonyl iron (CI) particles modified with three inorganic thin films based on rare earth elements, including cerium oxide (CeO2), lanthanum oxide (La2O3) and praseodymium oxide (Pr2O3), was investigated. The morphology and chemistry of the CI-Ce, CI-Pr and CI-La particles were examined by high resolution Field Emission-Scanning Electron Microscopy (FE-SEM), X-ray energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests were carried out to investigate the corrosion behavior of CI particles in aquatic environment. In addition, the Vibrating Sample Magnetometer (VSM) technique was utilized for determination of magnetic saturation properties of the coated particles. Afterwards, gas pycnometry and contact angle measurement methods were implemented to evaluate the density and hydrophilic properties of these particles. The results showed that deposition of all thin films increased the hydrophilic nature of these particles. In addition, it was observed that the amount of magnetic saturation properties attenuation for Pr2O3 and La2O3 films is greater than the CeO2 film. The EIS and polarization tests results confirmed that the CI-Ce had the maximum corrosion resistant among other samples. In addition, the thermogravimetric analysis (TGA) showed that the ceria coating provided particles with enhanced surface oxidation resistance.

  18. Investigation of the effect of kaolin and tissue factor-activated citrated whole blood, on clot forming variables, as evaluated by thromboelastograph

    DEFF Research Database (Denmark)

    Johansson, Per Ingemar; Bochsen, L.; Andersen, S.

    2008-01-01

    ), and maximum clot strength (amplitude [MA]) were evaluated, together with day-to-day variation, the coefficient of variance (CV%), and the effect of citrate storage time. RESULTS: Clot formation variables were equally affected by TF 1:17,000 and kaolin activation, whereas R was significantly longer when TF 1......:42,500 was used. The CV for the different variables varied from 3 to 13 percent with no significant differences between assays. Storage of citrated WB significantly affected the TEG variables in a hypercoagulable direction. Only the R, however, was significantly affected (12%) when samples rested for 0 and 30...... minutes were evaluated with kaolin as the activator. CONCLUSION: The TEG assays evaluated were reproducible and present with an acceptable CV% for routine clinical practice. Kaolin and TF 1:17,000 equally affected the clot formation variables. Storage of WB for up to 30 minutes in citrate did not, except...

  19. Effect of Particle Association on 2,2'-Bipyridyl Adsorption onto Kaolinite.

    Science.gov (United States)

    Helmy, A. K.; Ferreiro, E. A.; de Bussetti, S. G.

    2000-05-15

    The effect of particle concentration, in kaolin suspensions, on the adsorption of 2,2'-bipyridyl was studied. Adsorption expressed in units of micromoles per gram decreased as a result of the increase in particle concentration and also as a result of the presence of coagulant (0.25 M NaCl). Dispersion treatment with sodium hexametaphosphate increased the adsorption of bipyridyl. The decrease in adsorption with the increase in particle concentration suggests a possible relation between adsorption and flocculation phenomena. On the basis of classic flocculation theory a straight-line relation was obtained between the square root of the adsorption maximum (mmol/L) and particle concentration (g/L). It is concluded that particle association, which is a function of particle concentration, reduces the surface/aqueous interface and consequently the adsorption of bipyridyl. Copyright 2000 Academic Press.

  20. Passivation of pigment-grade TiO2 particles by nanothick atomic layer deposited SiO2 films

    International Nuclear Information System (INIS)

    King, David M; Liang Xinhua; Weimer, Alan W; Burton, Beau B; Akhtar, M Kamal

    2008-01-01

    Pigment-grade TiO 2 particles were passivated using nanothick insulating films fabricated by atomic layer deposition (ALD). Conformal SiO 2 and Al 2 O 3 layers were coated onto anatase and rutile powders in a fluidized bed reactor. SiO 2 films were deposited using tris-dimethylaminosilane (TDMAS) and H 2 O 2 at 500 deg. C. Trimethylaluminum and water were used as precursors for Al 2 O 3 ALD at 177 deg. C. The photocatalytic activity of anatase pigment-grade TiO 2 was decreased by 98% after the deposition of 2 nm SiO 2 films. H 2 SO 4 digest tests were performed to exhibit the pinhole-free nature of the coatings and the TiO 2 digest rate was 40 times faster for uncoated TiO 2 than SiO 2 coated over a 24 h period. Mass spectrometry was used to monitor reaction progress and allowed for dosing time optimization. These results demonstrate that the TDMAS-H 2 O 2 chemistry can deposit high quality, fully dense SiO 2 films on high radius of curvature substrates. Particle ALD is a viable passivation method for pigment-grade TiO 2 particles

  1. Helical instability in film blowing process: Analogy to buckling instability

    Science.gov (United States)

    Lee, Joo Sung; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun

    2017-12-01

    The film blowing process is one of the most important polymer processing operations, widely used for producing bi-axially oriented film products in a single-step process. Among the instabilities observed in this film blowing process, i.e., draw resonance and helical motion occurring on the inflated film bubble, the helical instability is a unique phenomenon portraying the snake-like undulation motion of the bubble, having the period on the order of few seconds. This helical instability in the film blowing process is commonly found at the process conditions of a high blow-up ratio with too low a freezeline position and/or too high extrusion temperature. In this study, employing an analogy to the buckling instability for falling viscous threads, the compressive force caused by the pressure difference between inside and outside of the film bubble is introduced into the simulation model along with the scaling law derived from the force balance between viscous force and centripetal force of the film bubble. The simulation using this model reveals a close agreement with the experimental results of the film blowing process of polyethylene polymers such as low density polyethylene and linear low density polyethylene.

  2. A transmission and reflection coupled ultrasonic process tomography based on cylindrical miniaturized transducers using PVDF films

    Science.gov (United States)

    Gu, J.; Yang, H.; Fan, F.; Su, M.

    2017-12-01

    A transmission and reflection coupled ultrasonic process tomography has been developed, which is characterized by a proposed dual-mode (DM) reconstruction algorithm, as well as an adaptive search approach to determine an optimal image threshold during the image binarization. In respect of hardware, to improve the accuracy of time-of-flight (TOF) and extend the lowest detection limit of particle size, a cylindrical miniaturized transducer using polyvinylidene fluoride (PVDF) films is designed. Besides, the development of range-gating technique for the identification of transmission and reflection waves in scanning is discussed. A particle system with four iron particles is then investigated numerically and experimentally to evaluate these proposed methods. The sound pressure distribution in imaging area is predicted numerically, followed by the analysis of the relationship between the emitting surface width of transducer and particle size. After the processing of experimental data for effective waveform extraction and fusion, the comparison between reconstructed results from transmission-mode (TM), reflection-mode (RM), and dual-mode reconstructions is carried out and the latter manifests obvious improvements from the blurring reduction to the enhancement of particle boundary.

  3. Synthesis of thin films by the pyrosol process

    Directory of Open Access Journals (Sweden)

    Tucić Aleksandar

    2002-01-01

    Full Text Available Among many aerosol routes, the Pyrosol process, due to its simplicity, low cost and quality of obtained films, represents a promising technique for the synthesis of thin films. The pyrosol process is based on the transport and pyrolysls of an aerosol of processor solution, generated in an ultrasonic atomizer, on a heated substrate. The theoretical principles of the pyrosol process are presented in this paper, as well as the influence of some synthesis parameters on the deposition of SnO2 thin films.

  4. Incorporation of waste and fiber kaolin caroa panels in Medium Density Fiberboard - MDF

    International Nuclear Information System (INIS)

    Bezerra, A.F.C.; Santana, L.N.L.; Neves, G.A.; Carvalho, L.H. de; Lopes, F.F.M.

    2012-01-01

    Medium-density panels are composites molded under high temperature and pressure which have physical and mechanical properties similar to those of solid wood. Their composition includes eucalyptus grandis fibers and pinus elliotii fibers, but other fibers can be used such as caroa fibers. The goal of this work was to manufacture panels which kaolin waste and caroa fibers and compare their physical, chemical and mechanical of these panels with a others. Both residue and the fibers were characterized by: differential thermal analysis, thermal gravimetric analysis and Xray diffraction. Through the process of pressing the test specimens were fabricated, test samples were evaluated by three point bending, internal bond, water absorption and swelling in thickness. The samples have low levels of thickness swelling, flexural strength and higher tensile and absorption content relative to commercial MDF. (author)

  5. Global Skin-Friction Measurements Using Particle Image Surface FLow Visualization and a Luminescent Oil-Film

    Science.gov (United States)

    Husen, Nicholas; Roozeboom, Nettie; Liu, Tianshu; Sullivan, John P.

    2015-01-01

    A quantitative global skin-friction measurement technique is proposed. An oil-film is doped with a luminescent molecule and thereby made to fluoresce in order to resolve oil-film thickness, and Particle Image Surface Flow Visualization is used to resolve the velocity field of the surface of the oil-film. Skin-friction is then calculated at location x as (x )xh, where x is the displacement of the surface of the oil-film and is the dynamic viscosity of the oil. The data collection procedure and data analysis procedures are explained, and preliminary experimental skin-friction results for flow over the wing of the CRM are presented.

  6. Properties of supersymmetric particles and processes

    International Nuclear Information System (INIS)

    Barnett, R.M.

    1986-01-01

    The motivations for experimental searches for supersymmetric particles are discussed. The role of R-parity in these searches is described. The production and decay characteristics of each class of supersymmetric particles are investigated in the context of both e+e- and hadron machines. There is a detailed presentation of a sample calculation of a supersymmetric process. Emphasis is given to the signatures for detection of supersymmetric particles and processes. The current limits for supersymmetric particles are given. 125 refs., 50 figs

  7. Numerical simulations on a high-temperature particle moving in coolant

    International Nuclear Information System (INIS)

    Li Xiaoyan; Shang Zhi; Xu Jijun

    2006-01-01

    This study considers the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Taking momentum and energy equations of the vapor film into account, a transient single particle model under FCI conditions has been established. The numerical simulations on a high-temperature particle moving in coolant have been performed using Gear algorithm. Adaptive dynamic boundary method is adopted during simulating to matching the dynamic boundary that is caused by vapor film changing. Based on the method presented above, the transient process of high-temperature particles moving in coolant can be simulated. The experimental results prove the validity of the HPMC model. (authors)

  8. Low-Concentration Indium Doping in Solution-Processed Zinc Oxide Films for Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Xue Zhang

    2017-07-01

    Full Text Available We investigated the influence of low-concentration indium (In doping on the chemical and structural properties of solution-processed zinc oxide (ZnO films and the electrical characteristics of bottom-gate/top-contact In-doped ZnO thin-film transistors (TFTs. The thermogravimetry and differential scanning calorimetry analysis results showed that thermal annealing at 400 °C for 40 min produces In-doped ZnO films. As the In content of ZnO films was increased from 1% to 9%, the metal-oxygen bonding increased from 5.56% to 71.33%, while the metal-hydroxyl bonding decreased from 72.03% to 9.63%. The X-ray diffraction peaks and field-emission scanning microscope images of the ZnO films with different In concentrations revealed a better crystalline quality and reduced grain size of the solution-processed ZnO thin films. The thickness of the In-doped ZnO films also increased when the In content was increased up to 5%; however, the thickness decreased on further increasing the In content. The field-effect mobility and on/off current ratio of In-doped ZnO TFTs were notably affected by any change in the In concentration. Considering the overall TFT performance, the optimal In doping concentration in the solution-processed ZnO semiconductor was determined to be 5% in this study. These results suggest that low-concentration In incorporation is crucial for modulating the morphological characteristics of solution-processed ZnO thin films and the TFT performance.

  9. Plot of charged nuclear particles in polymers

    International Nuclear Information System (INIS)

    Gallardo H, J.I.L.

    1975-01-01

    Experiments were made in order to obtain particle tracks and fission fragments in polymers. To increase the damage the polymer is attacked chemically with a solution of KOH, NaOH or other chemical agent, whose concentration depends of the polymer to be treated, maintaining a constant temperature during the process. To count the tracks which perforate the film, a spark counter with controlled nitrogen atmosphere was constructed. In the experiments which were made in order to detect particles, films of cellulose nitrate known as xylonite, daicel and red paper were used. For the detection of fission products, cellulose triacetate and cellulose polycarbonate films, known as kodacel and kimfol were used. The particle tracks on the treated films were optically counted with a microscope. They had a diameter between 12 and 30 microns, and when the thickness of the film permitted it the tracks consisted in perforations from one to another side of the film. The obtained results have permitted to have the necessary reproducibility for the realization of quantitative analysis of irradiations which can be applied to neutron dosimetry. (author)

  10. Influence of kaolin and firing temperature on the mullite formation in porous mullite-corundum materials

    International Nuclear Information System (INIS)

    Mahnicka, L; Svinka, R; Svinka, V

    2011-01-01

    The refractory ceramics became very important in both the traditional and the advanced materials applications as it has outstanding thermal and mechanical properties. The refractoriness of ceramics can be achieved by getting the mullite-corundum. Refractory ceramics with high porosity serve as a heat insulator and constructional material. Three series of porous mullite-corundum ceramic samples were prepared from Al 2 O 3 (Nabalox, Germany) and pure SiO 2 in 2.57:1 ratio that was conformed to mullite compositions (3Al 2 O 3 ·2SiO 2 ). α-Al 2 O 3 (d 50 = 4 μm) and γ-Al 2 O 3 (d 50 = 80 μm) were in 1:3 ratio. Quantity of kaolin (MEKA, Germany) was 10, 20 and 30 wt.%. Porous materials were prepared by slip casting of suspension of raw materials, where the aluminium paste (0.18 wt.%) was used as a pore former. Water content in the suspensions was 38-40 wt.%. Pore formation occured in result of hydrogen formation in chemical reaction between aluminium paste and water. The samples were sintered at 1650, 1700 and 1750°C temperature for one hour. SiO 2 and γ-Al 2 O 3 on the contrary reduced mechanical properties, but decreased shrinkage. Using of α-, γ-Al 2 O 3 , SiO 2 and kaolin in corresponding ratios the samples with open porosity of 30 to 54 vol% were acquired. The relative amounts of pores depended on the initial content of kaolin and on firing temperature.

  11. Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: yang.liu@helmholtz-berlin.de; Plate, Paul, E-mail: paul.plate@helmholtz-berlin.de; Hinrichs, Volker; Köhler, Tristan; Song, Min; Manley, Phillip; Schmid, Martina [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany); Bartsch, Peter [Beuth Hochschule für Technik Berlin, Fachbereich VIII Maschinenbau, Veranstaltungstechnik, Verfahrenstechnik (Germany); Fiechter, Sebastian; Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany); Fischer, Christian-Herbert [Freie Universität Berlin, Institute of Chemistry and Biochemistry (Germany)

    2017-04-15

    Ag nanoparticles have attracted interest for plasmonic absorption enhancement of solar cells. For this purpose, well-defined particle sizes and densities as well as very low deposition temperatures are required. Thus, we report here a new spray chemical vapour deposition method for producing Ag NP films with independent size and density control at substrate temperatures even below 100 °C, which is much lower than for many other techniques. This method can be used on different substrates to deposit Ag NP films. It is a reproducible, low-cost process which uses trimethylphosphine (hexafluoroacetylacetonato) silver as a precursor in alcoholic solution. By systematic variation of deposition parameters and classic experiments, mechanisms of particle growth and of deposition processes as well as the low decomposition temperature of the precursor could be explained. Using the 3D finite element method, absorption spectra of selected samples were simulated, which fitted well with the measured results. Hence, further applications of such Ag NP films for generating plasmonic near field can be predicted by the simulation.

  12. Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation

    International Nuclear Information System (INIS)

    Liu, Yang; Plate, Paul; Hinrichs, Volker; Köhler, Tristan; Song, Min; Manley, Phillip; Schmid, Martina; Bartsch, Peter; Fiechter, Sebastian; Lux-Steiner, Martha Ch.; Fischer, Christian-Herbert

    2017-01-01

    Ag nanoparticles have attracted interest for plasmonic absorption enhancement of solar cells. For this purpose, well-defined particle sizes and densities as well as very low deposition temperatures are required. Thus, we report here a new spray chemical vapour deposition method for producing Ag NP films with independent size and density control at substrate temperatures even below 100 °C, which is much lower than for many other techniques. This method can be used on different substrates to deposit Ag NP films. It is a reproducible, low-cost process which uses trimethylphosphine (hexafluoroacetylacetonato) silver as a precursor in alcoholic solution. By systematic variation of deposition parameters and classic experiments, mechanisms of particle growth and of deposition processes as well as the low decomposition temperature of the precursor could be explained. Using the 3D finite element method, absorption spectra of selected samples were simulated, which fitted well with the measured results. Hence, further applications of such Ag NP films for generating plasmonic near field can be predicted by the simulation.

  13. Kinetic study of formation of sodalite from a kaolin waste of Jari river - PA, Brazil

    International Nuclear Information System (INIS)

    Silva, L.N. da; Paz, S.P.A. da; Angelica, R.S.; Neves, R.F.

    2011-01-01

    Zeolites are materials with a wide industrial application, which has motivated the development of a large number of scientific papers on this topic. This work presents a kinetic study of the formation process of sodalite produced from the reaction of the kaolin waste in the presence of sodium hydroxide solution (5M) performed at temperatures of 80, 100, 120 and 150 ° C. The process was conducted in batch, static, and autoclaves lined with Teflon, and monitoring the kinetics was performed by ex situ XRD analysis of the materials obtained in the time interval from 2 to 24 hours. The kinetic model that best describes this transformation is zero-order homogeneous reaction. Finally, we conclude that the technique of X-ray diffraction is a powerful tool to study the kinetics of phase transformation ex situ. (author)

  14. Features of film growth during plasma anodizing of Al 2024/SiC metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Xue Wenbin [Key Laboratory for Radiation Beam Technology and Materials Modification, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: xuewb@bnu.edu.cn

    2006-07-15

    Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed.

  15. Features of film growth during plasma anodizing of Al 2024/SiC metal matrix composite

    International Nuclear Information System (INIS)

    Xue Wenbin

    2006-01-01

    Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed

  16. Influence of film structure on the dewetting kinetics of thin polymer films in the solvent annealing process.

    Science.gov (United States)

    Zhang, Huanhuan; Xu, Lin; Lai, Yuqing; Shi, Tongfei

    2016-06-28

    On a non-wetting solid substrate, the solvent annealing process of a thin polymer film includes the swelling process and the dewetting process. Owing to difficulties in the in situ analysis of the two processes simultaneously, a quantitative study on the solvent annealing process of thin polymer films on the non-wetting solid substrate is extremely rare. In this paper, we design an experimental method by combining spectroscopic ellipsometry with optical microscopy to achieve the simultaneous in situ study. Using this method, we investigate the influence of the structure of swollen film on its dewetting kinetics during the solvent annealing process. The results show that for a thin PS film with low Mw (Mw = 4.1 kg mol(-1)), acetone molecules can form an ultrathin enriched layer between the PS film and the solid substrate during the swelling process. The presence of the acetone enriched layer accounts for the exponential kinetic behavior in the case of a thin PS film with low Mw. However, the acetone enriched layer is not observed in the case of a thin PS film with high Mw (Mw = 400 kg mol(-1)) and the slippage effect of polymer chains is valid during the dewetting process.

  17. Heat Dissipation of Resonant Absorption in Metal Nanoparticle-Polymer Films Described at Particle Separation Near Resonant Wavelength

    Directory of Open Access Journals (Sweden)

    Jeremy R. Dunklin

    2017-01-01

    Full Text Available Polymer films containing plasmonic nanostructures are of increasing interest for development of responsive energy, sensing, and therapeutic systems. The present work evaluates heat dissipated from power absorbed by resonant gold (Au nanoparticles (NP with negligible Rayleigh scattering cross sections randomly dispersed in polydimethylsiloxane (PDMS films. Finite element analysis (FEA of heat transport was coordinated with characterization of resonant absorption by Mie theory and coupled dipole approximation (CDA. At AuNP particle separation greater than resonant wavelength, correspondence was observed between measured and CDA-predicted optical absorption and FEA-derived power dissipation. At AuNP particle separation less than resonant wavelength, measured extinction increased relative to predicted values, while FEA-derived power dissipation remained comparable to CDA-predicted power absorption before lagging observed extinguished power at higher AuNP content and resulting particle separation. Effects of isolated particles, for example, scattering, and particle-particle interactions, for example, multiple scattering, aggregation on observed optothermal activity were evaluated. These complementary approaches to distinguish contributions to resonant heat dissipation from isolated particle absorption and interparticle interactions support design and adaptive control of thermoplasmonic materials for a variety of implementations.

  18. Size-dependent photodegradation of CdS particles deposited onto TiO2 mesoporous films by SILAR method

    International Nuclear Information System (INIS)

    Ahmed, Rasin; Will, Geoffrey; Bell, John; Wang Hongxia

    2012-01-01

    The particle size, size distribution and photostability of CdS nanoparticles incorporated onto mesoporous TiO 2 films by a successive ionic layer adsorption and reaction (SILAR) method were investigated by Raman spectroscopy, UV–Visible spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). High-resolution TEM indicated that the synthesized CdS particles were hexagonal phase and the particle sizes were less than 5 nm for up to nine SILAR deposition cycles. Quantum size effect was found with the CdS-sensitized TiO 2 films prepared with up to nine SILAR cycles. The band gap of CdS nanoparticles decreased from 2.65 to 2.37 eV with the increase of the SILAR cycles from 1 to 11. The investigation of the stability of the CdS/TiO 2 films in air under illumination (440.6 μW/cm 2 ) showed that the photodegradation rate was up to 85 % per day for the sample prepared with three SILAR cycles. XPS analysis indicated that the photodegradation was due to the oxidation of CdS, leading to the transformation from sulphide to sulphate (CdSO 4 ). Furthermore, the degradation rate was strongly dependent upon the particle size of CdS. Smaller particles showed faster degradation rate. The size-dependent photo-induced oxidization was rationalized with the variation of size-dependent distribution of surface atoms of CdS particles. Molecular dynamics-based theoretical calculation has indicated that the surface sulphide anion of a large CdS particle such as CdS made with 11 cycles (CdS × 11, average particle size = 5.6 nm) accounts for 9.6 % of the material whereas this value is increased to 19.2 % for (CdS × 3)-based smaller particles (average particle size = 2.7 nm). The photostability of CdS nanoparticles was significantly enhanced when coated with ZnS particles deposited with four SILAR cycles. The growth mechanism of ZnS upon CdS nanoparticles was discussed.

  19. Submerged process of bio films; Procesos sumergidos de biopelicula

    Energy Technology Data Exchange (ETDEWEB)

    Hontoria, E.; Zamorano, M.; Gomez, M.A.; Gonzalez, J. [Departamento de Ingeneria Civil, Universidad de Granada (Spain)

    1995-07-01

    The bio film process is the most frequently used one for the water treatment. This article presents the advantages of the bio film process, and its conclusion is: the increase of bio film takes place in 9 days, the appearance of nitrites and the small importance of feeding coefficients for the temperature of water.

  20. Determination of iron and titanium in kaolins by the method of non-dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Bialy, N.; Kierzek, J.; Parus, J.

    1976-01-01

    The possibility of application of the radioactive source excited X-ray fluorescence analysis for titanium and iron determination in kaolins to the routine test of the refinement process has been studied. The iron content can be determined with a simple counting system using a single-channel pulse height analyser, argon filled proportional counter and 109 Cd source of 3 mCi for the excitation of K Fe rays. The samples were analyzed both as pellets and powders. The iron content ranged from 0.2-2.5% and titanium from 0.1-0.64%. The best values of precision and determination limit have been achieved for iron with 238 Pu and for titanium with 55 Fe. The precision and accuracy of the X-ray fluorescence method of iron and titanium determination in kaolins are comparable to those of the chemical method. For the simultaneous iron and titanium determination in the discussed region of concentration it is the most advantageous to use the plutonium source with the activity of several tens of mCi and Si(Li) detector with a moderate resolution (250-300 eV for 5.9 keV). The time of the analysis carried out by the described method is several times shorter than the chemical method. The apparatus used in this method is relatively simple, the sample preparation does not require any chemical treatment and the cost of labour of the sample preparation is minimal. (T.G.)

  1. Determination of the zero point of charge of kaolin waste from the Northeast of Para, BR

    International Nuclear Information System (INIS)

    Pinto, R.L.S.; Maia, R.F.S.; Felipe, A.M.P.F.

    2012-01-01

    The Para contributes with more than 50% of national production of kaolin of which 12.5% correspond to the waste generated, which has similar composition to benefited kaolin, can be used as adsorbent of heavy metals. The viscosity influences the design of equipment that can reuse that waste. The pH changes the pulp viscosity and the determination of the zero point of charge can estimate this variation. This study analyzes the influence of pH on the pulp rheology by the determination of the zero point of charge. Tests were made by Scanning Electron Microscopy, Energy Dispersive Spectroscopy, potentiometric titulation and rheological analysis. The results showed zero point of charge equal to 3.7 and confirmed that the viscosity increase at pH values near the zero point of charge and decrease at pH values away from this. (author)

  2. Development of Biopolymer Composite Films Using a Microfluidization Technique for Carboxymethylcellulose and Apple Skin Particles

    Directory of Open Access Journals (Sweden)

    Inyoung Choi

    2017-06-01

    Full Text Available Biopolymer films based on apple skin powder (ASP and carboxymethylcellulose (CMC were developed with the addition of apple skin extract (ASE and tartaric acid (TA. ASP/CMC composite films were prepared by mixing CMC with ASP solution using a microfluidization technique to reduce particle size. Then, various concentrations of ASE and TA were incorporated into the film solution as an antioxidant and an antimicrobial agent, respectively. Fourier transform infrared (FTIR, optical, mechanical, water barrier, and solubility properties of the developed films were then evaluated to determine the effects of ASE and TA on physicochemical properties. The films were also analyzed for antioxidant effect on 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and antimicrobial activities against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, and Shigella flexneri. From the results, the ASP/CMC film containing ASE and TA was revealed to enhance the mechanical, water barrier, and solubility properties. Moreover, it showed the additional antioxidant and antimicrobial properties for application as an active packaging film.

  3. Phase-transfer and film formation of silver nanoparticles.

    Science.gov (United States)

    Sarkar, Anjana; Chadha, Ridhima; Biswas, Nandita; Mukherjee, Tulsi; Kapoor, Sudhir

    2009-04-01

    In this article, a simple method for either transfer of silver nanoparticles from formamide to chloroform or to form a film at their interface is demonstrated. The transfer of the particles is a two-step size-dependent process. The size distribution of the colloidal hydrophobic silver particles in chloroform was almost the same as that before its transfer. Particles can be isolated by evaporation of chloroform. During evaporation, the hydrophobic particles become hydrophilic (charged) due to the formation of bilayer of CTAB over their surface. The isolated particles can be re-dispersed easily in polar solvents such as water and methanol. Nanocrystalline film of Ag is also prepared at the formamide-chloroform interface using suitable stabilizers in two immiscible layers. The nanocrystals have been characterized by various microscopic and spectroscopic techniques. The free standing film could be easily transferred on solid support.

  4. Dissociation of carbon dioxide and creation of carbon particles and films at room temperature

    Science.gov (United States)

    Fukuda, Takahiro; Maekawa, Toru; Hasumura, Takashi; Rantonen, Nyrki; Ishii, Koji; Nakajima, Yoshikata; Hanajiri, Tatsuro; Yoshida, Yoshikazu; Whitby, Raymond; Mikhalovsky, Sergey

    2007-09-01

    As fluids approach their gas-liquid critical points, the physical properties such as the specific heat and compressibility diverge due to the formation of large molecular clusters. Incident light cannot penetrate near-critical fluids because of the large clusters, a phenomenon known as critical opalescence. In this paper, we irradiate near-critical carbon dioxide (ncCO2), the critical temperature and pressure of which are 31.0°C and 7.38 MPa, with a laser beam of 213, 266, 355 and 532 nm wavelength and show that CO2 is dissociated and particles are produced when the system is set so close to the critical point that critical opalescence occurs in the case of 213 and 266 nm wavelength, whereas no particles are produced when the temperature is made to deviate from the critical value. We also apply a dc electric field to ncCO2 during irradiation with a laser beam of 213 and 266 nm wavelength and find that particles are formed on both anode and cathode. As the intensity of the electric field increases, films are formed on the electrodes. Electron diffraction patterns and energy-dispersive x-ray, Auger electron, x-ray photoelectron and Raman spectroscopic analyses show that the particles and films are composed of amorphous carbon.

  5. Dissociation of carbon dioxide and creation of carbon particles and films at room temperature

    International Nuclear Information System (INIS)

    Fukuda, Takahiro; Maekawa, Toru; Hasumura, Takashi; Rantonen, Nyrki; Ishii, Koji; Nakajima, Yoshikata; Hanajiri, Tatsuro; Yoshida, Yoshikazu; Whitby, Raymond; Mikhalovsky, Sergey

    2007-01-01

    As fluids approach their gas-liquid critical points, the physical properties such as the specific heat and compressibility diverge due to the formation of large molecular clusters. Incident light cannot penetrate near-critical fluids because of the large clusters, a phenomenon known as critical opalescence. In this paper, we irradiate near-critical carbon dioxide (ncCO 2 ), the critical temperature and pressure of which are 31.0 0 C and 7.38 MPa, with a laser beam of 213, 266, 355 and 532 nm wavelength and show that CO 2 is dissociated and particles are produced when the system is set so close to the critical point that critical opalescence occurs in the case of 213 and 266 nm wavelength, whereas no particles are produced when the temperature is made to deviate from the critical value. We also apply a dc electric field to ncCO 2 during irradiation with a laser beam of 213 and 266 nm wavelength and find that particles are formed on both anode and cathode. As the intensity of the electric field increases, films are formed on the electrodes. Electron diffraction patterns and energy-dispersive x-ray, Auger electron, x-ray photoelectron and Raman spectroscopic analyses show that the particles and films are composed of amorphous carbon

  6. One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness

    International Nuclear Information System (INIS)

    Maedler, Lutz; Lall, Anshuman A; Friedlander, Sheldon K

    2006-01-01

    A method is described for designing nanoparticle agglomerate films with desired film porosity and film thickness. Nanoparticle agglomerates generated in aerosol reactors can be directly deposited on substrates to form uniform porous films in one step, a significant advance over existing technologies. The effect of agglomerate morphology and deposition mechanism on film porosity and thickness are discussed. Film porosity was calculated for a given number and size of primary particles that compose the agglomerates, and fractal dimension. Agglomerate transport was described by the Langevin equation of motion. Deposition enhancing forces such as thermophoresis are incorporated in the model. The method was validated for single spherical particles using previous theoretical studies. An S-shape film porosity dependence on the particle Peclet number typical for spherical particles was also observed for agglomerates, but films formed from agglomerates had much higher porosities than films from spherical particles. Predicted film porosities compared well with measurements reported in the literature. Film porosities increased with the number of primary particles that compose an agglomerate and higher fractal dimension agglomerates resulted in denser films. Film thickness as a function of agglomerate deposition time was calculated from the agglomerate deposition flux in the presence of thermophoresis. The calculated film thickness was in good agreement with measured literature values. Thermophoresis can be used to reduce deposition time without affecting the film porosity

  7. Magnetic zeolites a and p synthesized from kaolin: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Bessa, R.A.; Oliveira, C.P.; Nascimento, R.F.; Bohn, F.; Loiola, A.R. [Universidade Federal do Ceara (UFCE), CE (Brazil)

    2016-07-01

    Full text: Zeolites are hydrated aluminosilicates of open chain, formed by silica and alumina tetrahedral structures linked by common oxygen atoms, generating interconnected pores and cages with molecular dimensions and well defined sizes that limit matter transference between internal surface and application medium. They can be found naturally or synthesized using different aluminum and silicon sources that may modify the produced zeolite. Their industrial application has grown enormously over the last century. However, a big issue that still remains is the difficulty in retrieving zeolite powders when used in aqueous media. This work reports the use of kaolin as an alternative raw material for zeolite syntheses by means of hydrothermal route and subsequent preparation of magnetic composites through magnetite impregnation. The syntheses of two different zeolites were carried out by mixing appropriate amounts of metakaolin (kaolin previously calcined at 600 deg C for 2 h), sodium metasilicate and sodium hydroxide solution, aged for 18 h and heated at 100 °C for 4-48 h. After these processes, the final materials were washed several times with distilled water, filtered and dried at 80 deg C for 12 h. Magnetic composites were prepared by impregnating the zeolites with of Fe3O4 nanoparticles (NP) synthesized by the partial oxidation and precipitation of Fe2+ ions. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy, FTIR spectroscopy and magnetization measurements. The results of XRD and FTIR provide evidence of the success in the synthesis of both zeolites A and P as well as Fe3O4. Subsequently, composites were formed by mixtures of zeolite A + NP and zeolite P + NP. The existence of secondary crystalline phases was also confirmed. However, it did not interfered significantly in the results as these phases appear as minor amounts and are most likely residues from the clay used as the main silica and alumina sources. Scanning

  8. Examining Wetting and Dewetting Processes in Thin-films on Crystalline Substrates at the Nanoscale

    Science.gov (United States)

    Hihath, Sahar

    Controlling the wetting and dewetting of ultra-thin films on solid substrates is important for a variety of technological and fundamental research applications. These applications include film deposition for semiconductor manufacturing, the growth of nanowires through nanoparticle-based catalysis sites, to making ordered arrays of nanoscale particles for electronic and optical devices. However, despite the importance of these processes, the underlying mechanisms by which a film wets a surface or dewets from it is still often unclear and widely debated. In this dissertation we examine wetting and dewetting processes in three materials systems that are relevant for device applications with the ultimate goal of understanding what mechanisms drive the wetting (or dewetting) process in each case. First, we examine the formation of wetting layers between nanoparticle films and highly conductive GaAs substrates for spintronic applications. In this case, the formation of a wetting layer is important for nanoparticle adhesion on the substrate surface. Wetting layers can be made by annealing these systems, which causes elemental diffusion from nanoparticles into the substrate, thereby adhesion between the nanoparticles and the substrate. Here we investigate the feasibility of forming a wetting layer underneath nanoparticles post-annealing in a system of Fe3O4 nanoparticles on a (100) GaAs substrate by studying the interface structure and composition via Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), Electron Energy Loss Spectroscopy (EELS) and Energy Dispersive X-ray Spectroscopy (EDXS). Electron Energy-Loss fine structures of the Fe-L 3,2 and O-K absorption edges were quantitatively analyzed to gain insight about the compositional gradient of the interface between the nanoparticles and the GaAs substrate. Additionally, real-space density functional theory calculations of the dynamical form factor was performed to confirm the

  9. Parallel nanostructuring of GeSbTe film with particle mask

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.B.; Hong, M.H.; Wang, Q.F.; Chong, T.C. [Data Storage Institute, DSI Building, 5 Engineering Drive 1, 117608, Singapore (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 119260, Singapore (Singapore); Luk' yanchuk, B.S.; Huang, S.M.; Shi, L.P. [Data Storage Institute, DSI Building, 5 Engineering Drive 1, 117608, Singapore (Singapore)

    2004-09-01

    Parallel nanostructuring of a GeSbTe film may significantly improve the recording performance in data storage. In this paper, a method that permits direct and massively parallel nanopatterning of the substrate surface by laser irradiation is investigated. Polystyrene spherical particles were deposited on the surface in a monolayer array by self-assembly. The array was then irradiated with a 248-nm KrF laser. A sub-micron nanodent array can be obtained after single-pulse irradiation. These nanodents change their shapes at different laser energies. The optical near-field distribution around the particles was calculated according to the exact solution of the light-scattering problem. The influence of the presence of the substrate on the optical near field was also studied. The mechanisms for the generation of the nanodent structures are discussed. (orig.)

  10. Thermoplastic processing of proteins for film formation--a review.

    Science.gov (United States)

    Hernandez-Izquierdo, V M; Krochta, J M

    2008-03-01

    Increasing interest in high-quality food products with increased shelf life and reduced environmental impact has encouraged the study and development of edible and/or biodegradable polymer films and coatings. Edible films provide the opportunity to effectively control mass transfer among different components in a food or between the food and its surrounding environment. The diversity of proteins that results from an almost limitless number of side-chain amino-acid sequential arrangements allows for a wide range of interactions and chemical reactions to take place as proteins denature and cross-link during heat processing. Proteins such as wheat gluten, corn zein, soy protein, myofibrillar proteins, and whey proteins have been successfully formed into films using thermoplastic processes such as compression molding and extrusion. Thermoplastic processing can result in a highly efficient manufacturing method with commercial potential for large-scale production of edible films due to the low moisture levels, high temperatures, and short times used. Addition of water, glycerol, sorbitol, sucrose, and other plasticizers allows the proteins to undergo the glass transition and facilitates deformation and processability without thermal degradation. Target film variables, important in predicting biopackage performance under various conditions, include mechanical, thermal, barrier, and microstructural properties. Comparisons of film properties should be made with care since results depend on parameters such as film-forming materials, film formulation, fabrication method, operating conditions, testing equipment, and testing conditions. Film applications include their use as wraps, pouches, bags, casings, and sachets to protect foods, reduce waste, and improve package recyclability.

  11. Monitoring tablet surface roughness during the film coating process

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Heinämäki, Jyrki; Rantanen, Jukka

    2006-01-01

    The purpose of this study was to evaluate the change of surface roughness and the development of the film during the film coating process using laser profilometer roughness measurements, SEM imaging, and energy dispersive X-ray (EDX) analysis. Surface roughness and texture changes developing during...... the process of film coating tablets were studied by noncontact laser profilometry and scanning electron microscopy (SEM). An EDX analysis was used to monitor the magnesium stearate and titanium dioxide of the tablets. The tablet cores were film coated with aqueous hydroxypropyl methylcellulose, and the film...... coating was performed using an instrumented pilot-scale side-vented drum coater. The SEM images of the film-coated tablets showed that within the first 30 minutes, the surface of the tablet cores was completely covered with a thin film. The magnesium signal that was monitored by SEM-EDX disappeared after...

  12. Mineralogical characterization and beneficiation study of kaolin from Equador (RN and Junco do Seridó (PB to increase the brightness index

    Directory of Open Access Journals (Sweden)

    V. M. J. S. Campos

    Full Text Available Abstract Kaolin is a rock composed mainly of kaolinite. It is used in many industrial segments, such as paper and ceramics. However, for these uses it is necessary to submit the ore to appropriate beneficiation, which generally involves magnetic separation and chemical bleaching, aiming to remove iron oxide and hydroxide, raising brightness index. This work reports the mineralogical characterization and analysis of the beneficiation of three samples of kaolin, two from Equador (Rio Grande do Norte - RN and the third from Junco do Seridó (Paraíba - PB. The samples were submitted to granulometric classification in sieve of 44 μm, magnetic separation in a magnetic induction of 14000 gauss, and chemical bleaching with sodium dithionite during 240 min. The processes were divided into two beneficiation routes. X-ray diffraction, chemical analysis by X-ray fluorescence and scanning electron microscopy were used for mineralogical characterization of the ore and measurement of the brightness index, while electron paramagnetic resonance was applied to study the variation of iron oxides and hydroxides during beneficiation. The results indicate that just 30 min of chemical bleaching without magnetic separation was sufficient to increase the brightness index from 78.2 to 90.2% and from 91.3 to 95.7% in the two samples from Equador (RN and from 86.9 to 90.4% in the sample from Junco do Seridó (PB. The magnetic separation, although causing a small increase in the brightness index, was inefficient for removal of iron oxides and hydroxides. The results indicated no need for using magnetic separation in plants for beneficiation of kaolin from these two locations, providing the reduction of production costs allowing better exploitation of the ore.

  13. Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars

    International Nuclear Information System (INIS)

    Afridi, M.U.K.; Ohama, Y.; Demura, K.; Iqbal, M.Z.

    2003-01-01

    This paper evaluates and compares the coalescence of polymer particles (continuous polymer films formation) in powdered polymer-modified mortars (PPMMs) and aqueous polymer-modified mortars (APMMs). Polymer-modified mortars (PMMs) using various redispersible polymer powders (powdered cement modifiers) and polymer dispersions (aqueous cement modifiers) were prepared by varying the polymer-cement ratio (P/C) and were tested for the characterization of polymer films using a scanning electron microscope (SEM) after curing for 28 days. It is concluded from the test results that mortar constituents of unmodified mortar (UMM) are loosely joined with each other due to the absence of polymer films, thus having a structure with comparatively lower mechanical and durability characteristics. By contrast, mortar constituents in PPMMs and APMMs are compactly joined with each other due to the presence of interweaving polymer films, thereby forming a monolithic structure with improved mechanical and durability characteristics. However, the results make obvious the poor coalescence of polymer particles or development of inferior quality polymers films in PPMMs as compared to that observed in APMMs. Moreover, PPMMs show less uniform distribution of polymer films as compared to that in APMMs. Different powdered cement modifiers have different film-forming capabilities. However, such difference is hardly recognized in aqueous cement modifiers. The polymer films in PPMMs and APMMs may acquire different structures. They may appear as mesh-like, thread-like, rugged, dense or fibrous with fine or rough surfaces. Development of coherent polymer films is not well pronounced at a P/C of 5% in PPMMs, whereas sometimes coherent polymer films are observed at a P/C of 5% in APMMs. At a P/C of 10% or more, fully developed, coherent polymer films are observed in both PPMMs and APMMs

  14. Limitations of retarded (bisulfite) x-ray film processing

    International Nuclear Information System (INIS)

    Stoering, J.P.; Dittmore, C.

    1979-01-01

    We demonstrate the limitations of using retarded (bisulfite) developer to abate film sensitivity of x-ray films that have been exposed to intense radiation. We compared the measured densities of a large number of Kodak Type-M x-ray film samples exposed to a known fluence of monochromatic x-rays. These film samples were processed in three separate batches of bisulfite developer mixed in the same proportions. We concluded that reproducible film-density information cannot be obtained using different batches of (bisulfite) developer solutions

  15. Ordering process of sputtered FePt films

    International Nuclear Information System (INIS)

    Takahashi, Y.K.; Ohnuma, M.; Hono, K.

    2003-01-01

    We have investigated the in situ ordering process of sputtered FePt thin films deposited on heated substrates at 300 deg. C with different thicknesses. The films thinner than 50 nm were composed of nanograins (∼5 nm) of disordered FePt phase. Recrystallization occurred when films were grown thicker than 100 nm, and transformation twins were observed in recrystallized grains, in which ordering to the L1 0 structure was confirmed

  16. The α-particle excited scintillation response of YAG:Ce thin films grown by liquid phase epitaxy

    International Nuclear Information System (INIS)

    Prusa, Petr; Nikl, Martin; Mares, Jiri A.; Nitsch, Karel; Beitlerova, Alena; Kucera, Miroslav

    2009-01-01

    Y 3 Al 5 O 12 :Ce (YAG:Ce) thin films were grown from PbO-,BaO-, and MoO 3 -based fluxes using the liquid phase epitaxy (LPE) method. Photoelectron yield, its time dependence within 0.5-10 μs shaping time, and energy resolution of these samples were measured under α-particle excitation. For comparison a sample of the Czochralski grown bulk YAG:Ce single crystal was measured as well. Photoelectron yield values of samples grown from the BaO-based flux were found superior to other LPE films and comparable with that of the bulk single crystal. The same is valid also for the time dependence of photoelectron yield. Obtained results are discussed taking into account the influence of the flux and technology used. Additionally, α particle energy deposition in very thin films is modelled and discussed. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. High-coercivity FePt nanoparticle assemblies embedded in silica thin films

    International Nuclear Information System (INIS)

    Yan, Q; Purkayastha, A; Singh, A P; Li, H; Ramanath, G; Li, A; Ramanujan, R V

    2009-01-01

    The ability to process assemblies using thin film techniques in a scalable fashion would be a key to transmuting the assemblies into manufacturable devices. Here, we embed FePt nanoparticle assemblies into a silica thin film by sol-gel processing. Annealing the thin film composite at 650 deg. C transforms the chemically disordered fcc FePt phase into the fct phase, yielding magnetic coercivity values H c >630 mT. The positional order of the particles is retained due to the protection offered by the silica host. Such films with assemblies of high-coercivity magnetic particles are attractive for realizing new types of ultra-high-density data storage devices and magneto-composites.

  18. Development of Antibacterial Composite Films Based on Isotactic Polypropylene and Coated ZnO Particles for Active Food Packaging

    Directory of Open Access Journals (Sweden)

    Clara Silvestre

    2016-01-01

    Full Text Available This study was aimed at developing new films based on isotactic polypropylene (iPP for food packaging applications using zinc oxide (ZnO with submicron dimension particles obtained by spray pyrolysis. To improve compatibility with iPP, the ZnO particles were coated with stearic acid (ZnOc. Composites based on iPP with 2 wt % and 5 wt % of ZnOc were prepared in a twin-screw extruder and then filmed by a calender. The effect of ZnOc on the properties of iPP were assessed and compared with those obtained in previous study on iPP/ZnO and iPP/iPPgMA/ZnO. For all composites, a homogeneous distribution and dispersion of ZnOc was obtained indicating that the coating with stearic acid of the ZnO particles reduces the surface polarity mismatch between iPP and ZnO. The iPP/ZnOc composite films have relevant zinc oxide with respect to E. coli, higher thermal stability and improved mechanical and impact properties than the pure polymer and the composites iPP/ZnO and iPP/iPPgMA/ZnO. This study demonstrated that iPP/ZnOc films are suitable materials for potential application in the active packaging field.

  19. Films of covalently bonded gold nanoparticles synthesized by a sol–gel process

    International Nuclear Information System (INIS)

    Dell’Erba, Ignacio E.; Hoppe, Cristina E.; Williams, Roberto J. J.

    2012-01-01

    Gold nanoparticles (NPs) with a size close to 1.5 nm, coated with organic ligands bearing Si(OEt) 3 groups, were synthesized and used to obtain self-standing films by a sol–gel process catalyzed by formic acid. Using FESEM images, FTIR, and UV–visible spectra, it was observed that very small gold NPs self-assembled by Si–O–Si covalent bonds forming crosslinked clusters with sizes up to about 50 nm in which NPs preserve their individuality. The possibility of fixing very small gold NPs in a crosslinked film opens a variety of potential applications based on the specific properties of small-size particles. As an example, we illustrated the way in which one can take advantage of the low melting temperature of these NPs to generate tiny gold crystals partially embedded at the surface, a process that might be used for the development of catalysts or sensors. Besides, the shift and change in the intensity of the plasmon band produced by heating to 100 °C may be employed to develop an irreversible sensor of undesirable temperature excursions during the life-time of a specific product.

  20. Natural mineral particles are cytotoxic to rainbow trout gill epithelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Christian Michel

    Full Text Available Worldwide increases in fluvial fine sediment are a threat to aquatic animal health. Fluvial fine sediment is always a mixture of particles whose mineralogical composition differs depending on the sediment source and catchment area geology. Nonetheless, whether particle impact in aquatic organisms differs between mineral species remains to be investigated. This study applied an in vitro approach to evaluate cytotoxicity and uptake of four common fluvial mineral particles (quartz, feldspar, mica, and kaolin; concentrations: 10, 50, 250 mg L(-1 in the rainbow trout epithelial gill cell line RTgill-W1. Cells were exposed for 24, 48, 72, and 96 h. Cytotoxicity assays for cell membrane integrity (propidium iodide assay, oxidative stress (H2DCF-DA assay, and metabolic activity (MTT assay were applied. These assays were complemented with cell counts and transmission electron microscopy. Regardless of mineral species, particles ≤ 2 µm in diameter were taken up by the cells, suggesting that particles of all mineral species came into contact and interacted with the cells. Not all particles, however, caused strong cytotoxicity: Among all assays the tectosilicates quartz and feldspar caused sporadic maximum changes of 0.8-1.2-fold compared to controls. In contrast, cytotoxicity of the clay particles was distinctly stronger and even differed between the two particle types: mica induced concentration-dependent increases in free radicals, with consistent 1.6-1.8-fold-changes at the 250 mg L(-1 concentration, and a dilated endoplasmic reticulum. Kaolin caused concentration-dependent increases in cell membrane damage, with consistent 1.3-1.6-fold increases at the 250 mg L(-1 concentration. All effects occurred in the presence or absence of 10% fetal bovine serum. Cell numbers per se were marginally affected. Results indicate that (i. natural mineral particles can be cytotoxic to gill epithelial cells, (ii. their cytotoxic potential differs between mineral

  1. Surface Modification of Solution-Processed ZrO2 Films through Double Coating for Pentacene Thin-Film Transistors

    Science.gov (United States)

    Kwon, Jin-Hyuk; Bae, Jin-Hyuk; Lee, Hyeonju; Park, Jaehoon

    2018-03-01

    We report the modification of surface properties of solution-processed zirconium oxide (ZrO2) dielectric films achieved by using double-coating process. It is proven that the surface properties of the ZrO2 film are modified through the double-coating process; the surface roughness decreases and the surface energy increases. The present surface modification of the ZrO2 film contributes to an increase in grain size of the pentacene film, thereby increasing the field-effect mobility and decreasing the threshold voltage of the pentacene thin-film transistors (TFTs) having the ZrO2 gate dielectric. Herein, the molecular orientation of pentacene film is also studied based on the results of contact angle and X-ray diffraction measurements. Pentacene molecules on the double-coated ZrO2 film are found to be more tilted than those on the single-coated ZrO2 film, which is attributed to the surface modification of the ZrO2 film. However, no significant differences are observed in insulating properties between the single-and the double-coated ZrO2 dielectric films. Consequently, the characteristic improvements of the pentacene TFTs with the double-coated ZrO2 gate dielectric film can be understood through the increase in pentacene grain size and the reduction in grain boundary density.

  2. Size-dependent photodegradation of CdS particles deposited onto TiO{sub 2} mesoporous films by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rasin; Will, Geoffrey; Bell, John; Wang Hongxia, E-mail: hx.wang@qut.edu.au [Queensland University of Technology, School of Chemistry, Physics and Mechanical Engineering (Australia)

    2012-09-15

    The particle size, size distribution and photostability of CdS nanoparticles incorporated onto mesoporous TiO{sub 2} films by a successive ionic layer adsorption and reaction (SILAR) method were investigated by Raman spectroscopy, UV-Visible spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). High-resolution TEM indicated that the synthesized CdS particles were hexagonal phase and the particle sizes were less than 5 nm for up to nine SILAR deposition cycles. Quantum size effect was found with the CdS-sensitized TiO{sub 2} films prepared with up to nine SILAR cycles. The band gap of CdS nanoparticles decreased from 2.65 to 2.37 eV with the increase of the SILAR cycles from 1 to 11. The investigation of the stability of the CdS/TiO{sub 2} films in air under illumination (440.6 {mu}W/cm{sup 2}) showed that the photodegradation rate was up to 85 % per day for the sample prepared with three SILAR cycles. XPS analysis indicated that the photodegradation was due to the oxidation of CdS, leading to the transformation from sulphide to sulphate (CdSO{sub 4}). Furthermore, the degradation rate was strongly dependent upon the particle size of CdS. Smaller particles showed faster degradation rate. The size-dependent photo-induced oxidization was rationalized with the variation of size-dependent distribution of surface atoms of CdS particles. Molecular dynamics-based theoretical calculation has indicated that the surface sulphide anion of a large CdS particle such as CdS made with 11 cycles (CdS Multiplication-Sign 11, average particle size = 5.6 nm) accounts for 9.6 % of the material whereas this value is increased to 19.2 % for (CdS Multiplication-Sign 3)-based smaller particles (average particle size = 2.7 nm). The photostability of CdS nanoparticles was significantly enhanced when coated with ZnS particles deposited with four SILAR cycles. The growth mechanism of ZnS upon CdS nanoparticles was discussed.

  3. The film thickness dependent thermal stability of Al{sub 2}O{sub 3}:Ag thin films as high-temperature solar selective absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Xiudi; Xu Gang, E-mail: xiudixiao@163.com; Xiong Bin; Chen Deming; Miao Lei [Chinese Academy of Sciences, Key Laboratory of Renewable Energy and Gas Hydrates, Guangzhou Institute of Energy Conversion (China)

    2012-03-15

    The monolayer Al{sub 2}O{sub 3}:Ag thin films were prepared by magnetron sputtering. The microstructure and optical properties of thin film after annealing at 700 Degree-Sign C in air were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and spectrophotometer. It revealed that the particle shape, size, and distribution across the film were greatly changed before and after annealing. The surface plasmon resonance absorption and thermal stability of the film were found to be strongly dependent on the film thickness, which was believed to be associated with the evolution process of particle diffusion, agglomeration, and evaporation during annealing at high temperature. When the film thickness was smaller than 90 nm, the film SPR absorption can be attenuated until extinct with increasing annealing time due to the evaporation of Ag particles. While the film thickness was larger than 120 nm, the absorption can keep constant even after annealing for 64 h due to the agglomeration of Ag particles. On the base of film thickness results, the multilayer Al{sub 2}O{sub 3}:Ag solar selective thin films were prepared and the thermal stability test illustrated that the solar selectivity of multilayer films with absorbing layer thickness larger than 120 nm did not degrade after annealing at 500 Degree-Sign C for 70 h in air. It can be concluded that film thickness is an important factor to control the thermal stability of Al{sub 2}O{sub 3}:Ag thin films as high-temperature solar selective absorbers.

  4. Isotopic method for investigation of process of periodic sedimentation of argillaceous suspensions

    International Nuclear Information System (INIS)

    Kohman, L.; Woznicki, T.

    1976-01-01

    The process of periodic sedimentation of kaolinic suspension in water has been investigated, by isotopic tracer method. the tracer was either the irradiated matrix material or 198 Au, adsorbed on the kaolin grains. The velocity of suspension level lowering (the sedimentation curve) and the variation in density in vertical section of sediment layer have been determined. (author)

  5. Dissociation of carbon dioxide and creation of carbon particles and films at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Takahiro [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Maekawa, Toru [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Hasumura, Takashi [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Rantonen, Nyrki [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Ishii, Koji [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Nakajima, Yoshikata [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Hanajiri, Tatsuro [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Yoshida, Yoshikazu [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585 (Japan); Whitby, Raymond [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockroft Building, Lewes Road, Brighton BN2 4GJ (United Kingdom); Mikhalovsky, Sergey [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockroft Building, Lewes Road, Brighton BN2 4GJ (United Kingdom)

    2007-09-15

    As fluids approach their gas-liquid critical points, the physical properties such as the specific heat and compressibility diverge due to the formation of large molecular clusters. Incident light cannot penetrate near-critical fluids because of the large clusters, a phenomenon known as critical opalescence. In this paper, we irradiate near-critical carbon dioxide (ncCO{sub 2}), the critical temperature and pressure of which are 31.0{sup 0}C and 7.38 MPa, with a laser beam of 213, 266, 355 and 532 nm wavelength and show that CO{sub 2} is dissociated and particles are produced when the system is set so close to the critical point that critical opalescence occurs in the case of 213 and 266 nm wavelength, whereas no particles are produced when the temperature is made to deviate from the critical value. We also apply a dc electric field to ncCO{sub 2} during irradiation with a laser beam of 213 and 266 nm wavelength and find that particles are formed on both anode and cathode. As the intensity of the electric field increases, films are formed on the electrodes. Electron diffraction patterns and energy-dispersive x-ray, Auger electron, x-ray photoelectron and Raman spectroscopic analyses show that the particles and films are composed of amorphous carbon.

  6. Qualitative Analysis of Films: Cultural Processes in the Mirror of Film

    Directory of Open Access Journals (Sweden)

    Gloria Dahl

    2004-05-01

    Full Text Available A special qualitative psychological analysis of movies developed by Wilhelm SALBER is practiced at the Psychological Institute of the University of Cologne for more than 40 years. This kind of film-analysis does not have an end in itself, but also aids as access to research cultural structures. In this respect movies are seismographs of cultural trends expressing general visions and images of future development. They indicate as well the status of society in its genesis and complexity as developmental perspectives, providing information about crisis, narrowing scope of action and its immanent self-healing power. Comparable to the process of dream-interpretation, the "manifest" film narration is expanded with the associations and in-depth descriptions of the audience in order to reconstruct the latent "Komplexentwicklung," the development of psychological lines. Suspense and spellbound is based on activating a meaningful transformational experience—only movies stimulate such a process which touch the heart of the viewers. The psychological analysis works out the morphological dramaturgy of the film-experience, which is shaped into a specific dynamic figure. Paradox insoluble problem-constellations are the driving forces in this moving process. The mere examination of the screenplay or the film-story does not take into consideration that the audience is always part of the scene. Viewers modify the story in a characteristic way while they are watching it—according to the dynamic of the psychological process they are going through. A combination of joining in and maintaining an observing distance—as in therapy, in advertising or in education—is an integral part of this interplay. Because the significant factors work unconsciously, it is necessary to apply a specific qualitative method in order to be able to grasp this. Short exemplary analyses of the movies The Piano, Fight Club, Dogville, Punch-Drunk Love, Catch Me If You Can, The Hours

  7. Investigations on medical film processing in the city of Berlin

    International Nuclear Information System (INIS)

    Pape, U.

    1986-01-01

    An investigation on the methods of film processing in diagnostic radialogy departments can for instance be understood as a mere statistical representation of number and type of processing apparatus and film types, chemical methods and processing time, or it can be done as an attempt to objectively compare the film processing methods by means of a densitometric evaluation of equally exposed films of current usage within a given department. Such a comparative evaluation has been suggested by the diagnostics experts of the Berlin association of medical physicists, who presented their proposals within the course of project planning talks for a planned field test with a phantom for X-ray diagnostics, to be carried out in Berlin. (orig.) [de

  8. Monolith electroplating process

    Science.gov (United States)

    Agarrwal, Rajev R.

    2001-01-01

    An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.

  9. Controlling the electrical properties of ZnO films by forming zinc and oxide bridges by a plasma and electron-assisted process

    Directory of Open Access Journals (Sweden)

    Norihiro Shimoi

    2012-06-01

    Full Text Available A new method to produce electrically steady ZnO films without any heating process has been developed by using plasma and electron beams to facilitate bonding between the metallic component and the oxygen on coated ZnO films. Both plasma atmosphere and electron beams can function as sources of nonequilibrium bonding energy, forming bridges between the zinc present in the zinc complex and the oxygen in the ZnO particles to construct a zinc-oxide thin film. Our results confirm that it is possible to achieve low conductive characteristics by controlling the acceleration voltage of electrons used to irradiate the ZnO coating. The electrically steady films fabricated have various potential applications, being particularly well-suited to electrical devices on a plastic medium.

  10. Controlling the electrical properties of ZnO films by forming zinc and oxide bridges by a plasma and electron-assisted process

    Energy Technology Data Exchange (ETDEWEB)

    Shimoi, Norihiro; Tanaka, Yasumitsu [Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Harada, Takamitsu [Sendai Technology Center, Consumer-Professional and Devices Group, Sony Corporation, 3-4-1 Sakuragi, Tagajo 985-0842 (Japan); Tanaka, Shun-ichiro [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2012-06-15

    A new method to produce electrically steady ZnO films without any heating process has been developed by using plasma and electron beams to facilitate bonding between the metallic component and the oxygen on coated ZnO films. Both plasma atmosphere and electron beams can function as sources of nonequilibrium bonding energy, forming bridges between the zinc present in the zinc complex and the oxygen in the ZnO particles to construct a zinc-oxide thin film. Our results confirm that it is possible to achieve low conductive characteristics by controlling the acceleration voltage of electrons used to irradiate the ZnO coating. The electrically steady films fabricated have various potential applications, being particularly well-suited to electrical devices on a plastic medium.

  11. Fly ash/Kaolin based geopolymer green concretes and their mechanical properties

    Directory of Open Access Journals (Sweden)

    F.N. Okoye

    2015-12-01

    Full Text Available Geopolymer concrete mixes were cast using fly ash, kaolin, sodium hydroxide, potassium hydroxide, sodium silicate and aggregates. Portland cement concrete (M30 was used as a reference sample. The effect of silica fume, temperature (40 °C, 60 °C, 80 °C, 100 °C and 120 °C, sodium and potassium hydroxides and different superplasticizers on the compressive strength are reported [1]. Maximum strength was found at 100 °C and 14 M alkali solution [1].

  12. Novel micro-patterning processes for thin film NiTi vascular devices

    International Nuclear Information System (INIS)

    Chun, Y J; Mohanchandra, K P; Carman, G P; Levi, D S; Fishbein, M C

    2010-01-01

    In order to create microscale features in thin film NiTi for use in vascular endografts, a novel 'lift-off process' was developed for use with deep reactive ion etching. A wet etching approach is compared to two variations of this new 'lift-off' process. The first lift-off process (lift-off I) used Si posts to define the features of NiTi film deposited on the Si substrate. This method produced fractures in the NiTi when the film was released. The lift-off II process used Si islands as substrate for the film while the Si wafer defined the specific geometric features. Lift-off II process allowed for the creation of various shape patterns (i.e., ellipse, diamond, circle, square, etc) in the range of 5–180 µm. The lift-off II process produced smooth and well aligned micro-patterns in thin film NiTi without the undercutting found in wet etching techniques. The micro-patterned thin film NiTi formed from the lift-off II process was used to cover a stent. In vivo tests were performed to evaluate the endothelialization though patterned thin films. Angiography, histopathology and SEM showed patency of the artery and uniformly promoted endothelial layer covering without thrombosis in both a medium and small artery

  13. A transient single particle model under FCI conditions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Yan; SHANG Zhi; XU Ji-Jun

    2005-01-01

    The paper is focused on the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Based on the continuity, momentum and energy equations of the vapor film, a transient two-dimensional single particle model has been established. This paper contains a detailed description of HPMC (High-temperature Particle Moving in Coolant) model for studying some aspects of the premixing stage of fuel-coolant interactions (FCIs). The transient process of high-temperature particles moving in coolant can be simulated. Comparisons between the experiment results and the calculations using HPMC model demonstrate that HPMC model achieves a good agreement in predicting the time-varying characteristic of high-temperature spheres moving in coolant.

  14. Excimer laser processing of ZnO thin films prepared by the sol-gel process

    International Nuclear Information System (INIS)

    Winfield, R.J.; Koh, L.H.K.; O'Brien, Shane; Crean, Gabriel M.

    2007-01-01

    ZnO thin films were prepared on soda-lime glass from a single spin-coating deposition of a sol-gel prepared with anhydrous zinc acetate [Zn(C 2 H 3 O 2 ) 2 ], monoethanolamine [H 2 NC 2 H 4 OH] and isopropanol. The deposited films were dried at 50 and 300 deg. C. X-ray analysis showed that the films were amorphous. Laser annealing was performed using an excimer laser. The laser pulse repetition rate was 25 Hz with a pulse energy of 5.9 mJ, giving a fluence of 225 mJ cm -2 on the ZnO film. Typically, five laser pulses per unit area of the film were used. After laser processing, the hexagonal wurtzite phase of zinc oxide was observed from X-ray diffraction pattern analysis. The thin films had a transparency of greater than 70% in the visible region. The optical band-gap energy was 3.454 eV. Scanning electron microscopy and profilometry analysis highlighted the change in morphology that occurred as a result of laser processing. This comparative study shows that our sol-gel processing route differs significantly from ZnO sol-gel films prepared by conventional furnace annealing which requires temperatures above 450 deg. C for the formation of crystalline ZnO

  15. Rice Starch Particle Interactions at Air/Aqueous Interfaces—Effect of Particle Hydrophobicity and Solution Ionic Strength

    Science.gov (United States)

    McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-01-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film. PMID:29868551

  16. Chemical Processing effects on the radiation doses measured by Film Dosimeter System

    International Nuclear Information System (INIS)

    Mihai, F.

    2009-01-01

    Halide film dosimetry is a quantitative method of measurement of the radiation doses. The fog density and chemical processing of the dosimeter film affect the radiation dose measurement accuracy. This work presents the effect of the developer solution concentration on the response of the dosimetric film which different fog densities. Thus, three batches of film, dosimeters with following fog density 0.312 ± 1.31 %, 0.71 ± 0.59% and 0.77 ± 0.81 %, were irradiated to 137 Cs standard source to dose value of 1mSv. The halide films have been chemical processed at different concentrations of the developer solution: 20 %; 14.29 %; 11.11%; all other physics-chemical conditions in baths of development have been kept constants. Concentration of 20% is considered to be chemical processed standard conditions of the films. In case of the films exposed to 1 mSv dose, optical density recorded on the low fog films processed at 20% developer solution is rather closed of high fog film optical densities processed at 11.11% developer solution concentration. Also, the chemical processing effect on the image contrast was taken into consideration

  17. Equilibrium, kinetic and thermodynamic studies of adsorption of Th(IV) from aqueous solution onto kaolin

    International Nuclear Information System (INIS)

    Hongxia Zhang; Zhiwei Niu; Zhi Liu; Zhaodong Wen; Weiping Li; Xiaoyun Wang; Wangsuo Wu

    2015-01-01

    The kinetics and thermodynamics of the adsorption of Th(IV) on the kaolin were studied by using batch method. In addition, the experimental data were studied by dynamic and thermodynamic models. The results showed that the adsorption capacity of the adsorbent increased with increasing temperature and solid liquid ratio, but decreased with increasing initial Th(IV) ion concentration, and the best fit was obtained for the pseudo-second-order kinetics model. The calculated activation energy for adsorption was about 45 kJ/mol, which indicated the adsorption process to be chemisorption. The adsorption isotherm data could be well described by the Langmuir as well as Dubinin-Radushkevich model. The mean free energy (E) of adsorption was calculated to be about 15 kJ/mol. The thermodynamic data calculated showed that the adsorption was spontaneous and enhanced at higher temperature. Considering kinetics and equilibrium studies, the adsorption on the sites was the rate-limiting step and that adsorption was mainly a chemisorption process through cation exchange. (author)

  18. Mineralogical association in the zone of argillic advanced alteration in a kaolin deposit of Patagonia Argentina

    International Nuclear Information System (INIS)

    Rainoldi, A; Oviedo, P.; Maiza, P.; Marfil, S.

    2010-01-01

    This work is about the mineralogical and petrological relations of the para genetic association of advanced argillic zone in the kaolin deposit in Patagonia.This study allowed to establish the sequence of events that took place in the deposit as well as the conditions under which they were generated

  19. Zirconia thin films from aqueous precursors: Processing, microstructural development, and epitaxial growth

    International Nuclear Information System (INIS)

    Miller, K.T.

    1991-01-01

    Thin films of ZrO 2 (Y 2 O 3 ) were prepared from aqueous salt precursors by spin coating. Films were pyrolyzed to produce porous polycrystalline thin films of 5-10 nm grain size. Subsequent microstructural development depends greatly upon the nature of the substrate. Upon randomly oriented sapphire, the films initially sintered to full density; further heat treatment and grain growth causes these films to break into interconnected islands and finally isolated particles. Thermodynamic calculations predict that breakup is energetically favorable when the grain-size film-thickness ratio exceeds a critical value. Upon basal-plane-oriented sapphire, grain growth and breakup prefer the (100) oriented grains, presumably because this orientation is a special interface of low energy. The isolated, oriented grains produced by film breakup act as seeds for the growth of newly deposited material. Upon (100) cubic zirconia, true epitaxial films develop. Epitaxial growth was observed for lattice mismatches up to 1.59%. Growth proceeds from a fine epitaxial layer which is produced during the initial stages of heat treatment, consuming the porous polycrystalline material and producing a dense epitaxial thin film whose misfit is accommodated by a combination of film strain and misfit dislocations

  20. TiO2 thin-films on polymer substrates and their photocatalytic activity

    International Nuclear Information System (INIS)

    Yang, Jae-Hun; Han, Yang-Su; Choy, Jin-Ho

    2006-01-01

    We have developed dip-coating process for TiO 2 -thin film on polymer substrates (acrylonitrile-butadiene-styrene polymer: ABS, polystyrene: PS). At first, a monodispersed and transparent TiO 2 nano-sol solution was prepared by the controlled hydrolysis of titanium iso-propoxide in the presence of acetylacetone and nitric acid catalyst at 80 deg. C. Powder X-ray diffraction patterns of the dried particles are indicative of crystalline TiO 2 with anatase-type structure. According to the XRD and transmission electron microscopy (TEM) studies, the mean particle size was estimated to be ca. 5 nm. The transparent thin films on ABS and PS substrates were fabricated by dip-coating process by changing the processing variables, such as the number of dip-coating and TiO 2 concentration in nano-sol solution. Scanning electron microscopic (SEM) analysis for the thin film samples reveals that the acetylacetone-modified TiO 2 nano-sol particles are effective for enhancing the interfacial adherence between films and polymeric substrates compared to the unmodified one. Photocatalytic degradation of methylene blue (MB) on the TiO 2 thin-films has also been systematically investigated

  1. Effect of Rice Husk and Diatomite on the Insulating Properties of Kaolin - Clay Firebricks

    Directory of Open Access Journals (Sweden)

    Emmanuel Ogo ONCHE

    2007-09-01

    Full Text Available This work was carried out to investigate the effect of rice husk and diatomite on the insulating properties of kaolin-clay firebrick. Five firebrick samples of different compositions were fired at 900°C, 1000°C, 1100°C, and 1200°C. Samples A-E are all insulating firebricks that can withstand temperatures ranging from 900°C to 1200°C since none of the samples crumbled during firing. The results showed that they all had good insulating characteristics with their highly porous structure making them suitable for backup insulation. Mixing ratios of 3:2:4:1 representing weight in grams of kaolin, plastic clay, rice husk and diatomite respectively for sample D gave the optimum performance values in terms of modulus of rupture, apparent porosity, apparent density, bulk density, and thermal conductivity at all temperatures. At 1200°C, the values are 22.57kgf/cm2 for modulus of rupture, 98.25% for apparent porosity, 2.38g/cm3 for apparent density, 1.11g/cm3 for bulk density, and 0.038w/mK for thermal conductivity.

  2. A plasmaless, photochemical etch process for porous organosilicate glass films

    Science.gov (United States)

    Ryan, E. Todd; Molis, Steven E.

    2017-12-01

    A plasmaless, photochemical etch process using ultraviolet (UV) light in the presence of NH3 or O2 etched porous organosilicate glass films, also called pSiCOH films, in a two-step process. First, a UV/NH3 or UV/O2 treatment removed carbon (mostly methyl groups bonded to silicon) from a pSiCOH film by demethylation to a depth determined by the treatment exposure time. Second, aqueous HF was used to selectively remove the demethylated layer of the pSiCOH film leaving the methylated layer below. UV in the presence of inert gas or H2 did not demethylate the pSiCOH film. The depth of UV/NH3 demethylation followed diffusion limited kinetics and possible mechanisms of demethylation are presented. Unlike reactive plasma processes, which contain ions that can damage surrounding structures during nanofabrication, the photochemical etch contains no damaging ions. Feasibility of the photochemical etching was shown by comparing it to a plasma-based process to remove the pSiCOH dielectric from between Cu interconnect lines, which is a critical step during air gap fabrication. The findings also expand our understanding of UV photon interactions in pSiCOH films that may contribute to plasma-induced damage to pSiCOH films.

  3. In situ polymerization process of polypyrrole ultrathin films

    International Nuclear Information System (INIS)

    Onoda, Mitsuyoshi; Tada, Kazuya; Shinkuma, Akira

    2006-01-01

    A novel thin film processing technique has been developed for the fabrication of ultrathin films of conducting polymers with molecular-level control over thickness and multilayer architecture. This new self-assembly process opens up vast possibilities in applications which require large area, ultrathin films of conducting polymers and more importantly in applications that can take advantage of the unique interactions achievable in the complex, supermolecular architectures of multilayer films. In in situ polymerized polypyrrole (PPy), the deposition process strongly depends on the nature of the substrate surface. That is, for a surface that is negatively charged, there is a linear correspondence between dipping time and the amount of PPy deposited on the substrate. However, in the case of a positively charged surface, there is an apparent rest period of approximately 10-20 min, during which no PPy is deposited. From optical absorption spectroscopy and photoelectron emission studies etc., it became clear that oligomers of pyrrole were adsorbed on the positively charged surface during the rest period, as a result the polymerization reaction of PPy could proceed

  4. A nanogravimmetric investigation of the charging processes on ruthenium oxide thin films and their effect on methanol oxidation

    International Nuclear Information System (INIS)

    Santos, M.C.; Cogo, L.; Tanimoto, S.T.; Calegaro, M.L.; Bulhoes, L.O.S

    2006-01-01

    The charging processes and methanol oxidation that occur during the oxidation-reduction cycles in a ruthenium oxide thin film electrode (deposited by the sol-gel method on Pt covered quartz crystals) were investigated by using cyclic voltammetry, chronoamperometry and electrochemical quartz crystal nanobalance techniques. The ruthenium oxide rutile phase structure was determined by X-ray diffraction analysis. The results obtained during the charging of rutile ruthenium oxide films indicate that in the anodic sweep the transition from Ru(II) to Ru(VI) occurs followed by proton de-intercalation. In the cathodic sweep, electron injection occurs followed by proton intercalation, leading to Ru(II). The proton intercalation/de-intercalation processes can be inferred from the mass/charge relationship which gives a slope close to 1 g mol -1 (multiplied by the Faraday constant) corresponding to the molar mass of hydrogen. From the chronoamperometric measurements, charge and mass saturation of the RuO 2 thin films was observed (440 ng cm -2 ) during the charging processes, which is related to the total number of active sites in these films. Using the electrochemical quartz crystal nanobalance technique to study the methanol oxidation reaction at these films was possible to demonstrate that bulk oxidation occurs without the formation of strongly adsorbed intermediates such as CO ads , demonstrating that Pt electrodes modified by ruthenium oxide particles can be promising catalysts for the methanol oxidation as already shown in the literature

  5. Spheronization process particle kinematics determined by discrete element simulations and particle image velocimentry measurements.

    Science.gov (United States)

    Koester, Martin; García, R Edwin; Thommes, Markus

    2014-12-30

    Spheronization is an important pharmaceutical manufacturing technique to produce spherical agglomerates of 0.5-2mm diameter. These pellets have a narrow size distribution and a spherical shape. During the spheronization process, the extruded cylindrical strands break in short cylinders and evolve from a cylindrical to a spherical state by deformation and attrition/agglomeration mechanisms. Using the discrete element method, an integrated modeling-experimental framework is presented, that captures the particle motion during the spheronization process. Simulations were directly compared and validated against particle image velocimetry (PIV) experiments with monodisperse spherical and dry γ-Al2O3 particles. demonstrate a characteristic torus like flow pattern, with particle velocities about three times slower than the rotation speed of the friction plate. Five characteristic zones controlling the spheronization process are identified: Zone I, where particles undergo shear forces that favors attrition and contributes material to the agglomeration process; Zone II, where the static wall contributes to the mass exchange between particles; Zone III, where gravitational forces combined with particle motion induce particles to collide with the moving plate and re-enter Zone I; Zone IV, where a subpopulation of particles are ejected into the air when in contact with the friction plate structure; and Zone V where the low poloidal velocity favors a stagnant particle population and is entirely controlled by the batch size. These new insights in to the particle motion are leading to deeper process understanding, e.g., the effect of load and rotation speed to the pellet formation kinetics. This could be beneficial for the optimization of a manufacturing process as well as for the development of new formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Gravimetric and conductometric studies of the sedimentation kinetics in aqueous dispersions of kaoline

    International Nuclear Information System (INIS)

    Bulavyin, L.A.; Khrapatij, S.V.; Koval'chuk, V.Yi.; Klepko, V.V.; Lebovka, M.Yi.

    2006-01-01

    Using gravimetric and conductometric methods, the sedimentation kinetics in aqueous suspensions of Alekseev kaoline has been studied for pH value range from 4 to 10. It has been found that pH increasing leads to the decreasing of mean radii of flocks linearly. We found that sedimentation kinetics for intermediate pH values can be described by scaling equations that crossover time defined transition from a gravitational mechanism of deposition to the diffusion one

  7. Morphological Influence of Solution-Processed Zinc Oxide Films on Electrical Characteristics of Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Hyeonju Lee

    2016-10-01

    Full Text Available We report on the morphological influence of solution-processed zinc oxide (ZnO semiconductor films on the electrical characteristics of ZnO thin-film transistors (TFTs. Different film morphologies were produced by controlling the spin-coating condition of a precursor solution, and the ZnO films were analyzed using atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and Hall measurement. It is shown that ZnO TFTs have a superior performance in terms of the threshold voltage and field-effect mobility, when ZnO crystallites are more densely packed in the film. This is attributed to lower electrical resistivity and higher Hall mobility in a densely packed ZnO film. In the results of consecutive TFT operations, a positive shift in the threshold voltage occurred irrespective of the film morphology, but the morphological influence on the variation in the field-effect mobility was evident. The field-effect mobility in TFTs having a densely packed ZnO film increased continuously during consecutive TFT operations, which is in contrast to the mobility decrease observed in the less packed case. An analysis of the field-effect conductivities ascribes these results to the difference in energetic traps, which originate from structural defects in the ZnO films. Consequently, the morphological influence of solution-processed ZnO films on the TFT performance can be understood through the packing property of ZnO crystallites.

  8. The radiochromic dye film dose meter as a possible test of particle track theory

    International Nuclear Information System (INIS)

    Hansen, J.W.; Jensen, M.; Katz, R.

    1980-09-01

    The response characteristic of the thin-film radiometric dye cyanide plastic dose meter to ionizing radiation of electrons and heavy charged particles is investigated as a possible test of the particle track theory worked out by Robert Katz and coworkers. Dose response curves for low-LET radiation have been investigated and are used for a quality estimation of the response for protons and oxygen ions at 16 and 4 MeV/amu, respectively. A bleaching effect on the colouration at high doses intimates that the target cannot be interpreted lieerally, but it might still be possinle to transfer the function of the macroscopic dose response to a theoretical dose response curve in a microscopic scale for a single ion. From this relation the macroscopic dose response curve can be determined qhen the film is irradiated with heavy ions. It will be shown theoretically that for protons there is no saturation in the track core, whereas calculations for oxygen ions show a heavy saturation in the track core, which means that a part of the ions loose their energy ineffectively. We can conclude that itis possible qualitatively to predict the dose response curve for high-LET particles by means of the dose response curve for low-LET radiation. (author)

  9. Sedimentation Characteristics of Kaolin and Bentonite in Concentrated Solutions

    Directory of Open Access Journals (Sweden)

    Abdulah Obut

    2005-11-01

    Full Text Available The sedimentation characteristics of two clays, namely kaolinite and bentonite, were determinated at high clay (5 % wt/vol and electrolyte (1 N concentrations using various inorganic-organic compounds. It was observed that the settling behaviour of kaolinite (1:1 clay and montmorillonite (2:1 clay is quite different due to the structural differences between these minerals. Although, similar initial settling rates and final sediment volumes were obtained after 24 hours of settling time for kaolin suspensions, the corresponding rates and volumes for bentonite suspensions varied greatly with the used chemical compound. According to the experimental results, a further intensive theoretical and experimental investigation is needed to reveal the mechanism underlying the sedimentation characteristics of clay minerals at high clay and electrolyte concentrations.

  10. A methodology for the preparation of nanoporous polyimide films with low dielectric constants

    International Nuclear Information System (INIS)

    Jiang Lizhong; Liu Jiugui; Wu Dezhen; Li Hangquan; Jin Riguang

    2006-01-01

    A method to generate nanoporous polyimide films with low dielectric constants was proposed. The preparation consisted of two steps. Firstly, a polyimide/silica hybrid film was prepared via sol-gel process. Secondly, the hybrid film was treated with hydrofluoric acid to remove the dispersed silica particles, leaving pores with diameters between 20 and 120 nm, depending on the size of silica particles. Both hybrid and porous films were subjected to a variety of characterizations including transmission electron microscopy observation, dielectric constant measurement and tensile strength measurement

  11. Dye film dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Humphreys, J.C.; McLaughlin, W.L.

    1981-01-01

    Commercially available plastic films containing dyes or dye precursors are convenient dosimeters and imaging media for electron beams or photons used for industrial radiation processing. As ''grainless'' imaging systems having thicknesses down to a few micrometers, they provide high spatial resolution for determining detailed absorbed dose distributions through microdensitometric analysis. The radiation absorption properties of these systems are adjusted by changing film composition so that the dosimeter materials can be made to simulate the material of interest undergoing irradiation. Other advantages include long-term stability, dose-rate independence, and ease of use and calibration. Radiochromic dye films with thicknesses varying from 0.005 to 1 mm are presently used to monitor electron-beam or gamma-ray doses from 10 to 10 5 Gy (10 3 to 10 7 rad), typical of those encountered in medical applications, radiation curing of polymeric composites, wire and cable insulation, shrinkable plastic tubing and film, as well as sterilization of medical supplies and treatment of municipal and industrial wastes. An NBS calibration service to industry involves the traceability of standard 60 Co gamma ray absorbed dose measurements by means of these films employed as transfer standards

  12. Rapid deposition process for zinc oxide film applications in pyroelectric devices

    International Nuclear Information System (INIS)

    Hsiao, Chun-Ching; Yu, Shih-Yuan

    2012-01-01

    Aerosol deposition (AD) is a rapid process for the deposition of films. Zinc oxide is a low toxicity and environmentally friendly material, and it possesses properties such as semiconductivity, pyroelectricity and piezoelectricity without the poling process. Therefore, AD is used to accelerate the manufacturing process for applications of ZnO films in pyroelectric devices. Increasing the temperature variation rate in pyroelectric films is a useful method for enhancing the responsivity of pyroelectric devices. In the present study, a porous ZnO film possessing the properties of large heat absorption and high temperature variation rate is successfully produced by the AD rapid process and laser annealing for application in pyroelectric devices. (paper)

  13. Preparation of copper doped DLC films by DC PE-CVD method

    International Nuclear Information System (INIS)

    Marton, M.; Vojs, M.; Kotlar, M.; Michniak, P.; Flickyngerova, S.; Vesely, M.; Redhammer, R.

    2012-01-01

    We used PECVD method for deposition of Cu incorporated DLC thin films from CH 4 /Ar gas mixture. The size of nanoparticles varied with changing the deposition conditions in the range of tenth to hundreds of nm. After annealing process, new small Cu particles appeared in the space between the as deposited ones, and all the particles were distributed more homogenous within the films. The resistivity of the DLC films decreased first with adding of copper to 10 to 6·10 3 Ωcm, and second with the annealing process to 4·10 -2 to 3 Ωcm. Raman spectra show the tendency of DLCs to become more graphitic with increasing annealing temperature, which may be one possible contribution to increased conductivity of the annealed Cu-DLC films. (authors)

  14. Gamma-induced radiation polymerization of kaolin composite for sorption of lanthanum, europium and uranium ions from low-grade monazite leachate

    International Nuclear Information System (INIS)

    Metwally, S.S.; Hassan, R.S.; El-Masry, E.H.; Borai, E.H.

    2018-01-01

    Gamma radiation polymerization method was used for the modification of kaolin to produce (poly acrylamide-acrylic acid)-Kaolin (PAM-AA-K). Monazite ore is one of the main resources of uranium and lanthanide elements, therefore, this work focused on sorption of uranium, lanthanum and europium ions from low grade monazite leachate. The removal percent for Eu 3+ , La 3+ and UO 2 2+ are 94.6, 91.6 and 73.4%, respectively. Monolayer capacity of Eu 3+ , La 3+ and UO 2 2+ were found to be 54.64, 45.87 and 37.59 mg/g, respectively. The sorption mechanism of lanthanum and europium ions on PAM-AA-K composite mainly takes place as Ln(OH) 2+ , and for uranium as uranyl ion, UO 2 2+ . (author)

  15. Effect of Kaolin Clay and Alumina on Thermal Performance and Char Morphology of Intumescent fire retardant coating

    Directory of Open Access Journals (Sweden)

    aziz Hammad

    2014-07-01

    Full Text Available Intumescent fire retardant coating (IFRC have been developed by using ammonium polyphosphate, expandable graphite, melamine, boric acid, kaolin clay and alumina as fillers bound together with epoxy resin and cured with the help of curing agent. Five different formulations were developed with and without using fillers. Cured samples were burned in furnace at 500°C for 2h for char expansion. Bunsen burner test was performed for 1h using UL-94 vertical burning test to investigate the thermal performance of IFRC. The resultant char obtained after burning of coated samples were characterized by using field emission scanning electron microscopy for char morphology. Char composition was analyzed by using fourier transform infrared spectroscopy. Thermogravimetric analysis was carried out to investigate the residual weight of coating. Results showed that formulation with 0.5 weight % of kaolin clay and 0.5 weight % of alumina provide best thermal performance, uniform and multi-porous char structure with high anti-oxidation property.

  16. Influência da adição de resíduo de caulim nas propriedades tecnológicas de uma massa padrão de porcelanato produzido em escala industrial Influence of kaolin waste addition on technological properties of a standard stoneware formulation produced in industrial scale

    Directory of Open Access Journals (Sweden)

    M. L. Varela

    2009-06-01

    tiles was here studied. This work aims to characterize and to study the processing of the kaolin waste from the industry of kaolin processing by adding of a "standard mass" supplied by an industry of ceramic tiles. The waste was characterized by X-ray diffraction, X-ray fluorescence and determination of particle size. Water absorption, apparent porosity, linear firing after sintering, apparent density and bending modulus of rupture analyses were carried out to determine the materials technological properties. Preliminary results show that the studied waste can be considered as a potential raw material for the industry of floor and ceramic tile.

  17. Study of influence of catechins on bystander responses in alpha-particle radiobiological experiments using thin PADC films

    Energy Technology Data Exchange (ETDEWEB)

    Law, Y.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.h [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2009-10-15

    In this study, Chinese hamster ovary (CHO) cells were cultured in custom-made petri dishes with thin PADC films as substrates. Alpha particles with energies of 5 MeV were then irradiated from the bottom of PADC films. The DNA strand breaks in the bystander cells induced by irradiation were quantified with the use of terminal dUTP transferase-mediated nick end-labeling (TUNEL) assay. To study the influence of catechins on the bystander responses, catechins were added into the medium before alpha-particle irradiation of the cells. Fewer DNA strand breaks in the bystander cells were observed. As catechins are ROS (reactive oxygen species)-scavengers, the studied bystander cells might have been protected from radiation through scavenging of ROS by catechins.

  18. Study of influence of catechins on bystander responses in alpha-particle radiobiological experiments using thin PADC films

    International Nuclear Information System (INIS)

    Law, Y.L.; Yu, K.N.

    2009-01-01

    In this study, Chinese hamster ovary (CHO) cells were cultured in custom-made petri dishes with thin PADC films as substrates. Alpha particles with energies of 5 MeV were then irradiated from the bottom of PADC films. The DNA strand breaks in the bystander cells induced by irradiation were quantified with the use of terminal dUTP transferase-mediated nick end-labeling (TUNEL) assay. To study the influence of catechins on the bystander responses, catechins were added into the medium before alpha-particle irradiation of the cells. Fewer DNA strand breaks in the bystander cells were observed. As catechins are ROS (reactive oxygen species)-scavengers, the studied bystander cells might have been protected from radiation through scavenging of ROS by catechins.

  19. Interpretation of the stiffness and permeability of Sand-Kaolin mixtures in the framework of homogenization

    Directory of Open Access Journals (Sweden)

    Claude Boutin

    2010-03-01

    Full Text Available This study deals with the behaviour of mixtures of sand and saturated kaolin paste considered as composite materials made of permeable and deformable (with non-linear behaviour matrix (the kaolin paste with rigid and impervious inclusions (the sand grains. Oedometric and permeability tests conducted on such mixtures highlight the key role of the state of the clay paste, and show the existence of a threshold of sand grain concentration above which a structuring effect influences both modulus and permeability. At the light of these experiments, the usual and tangent homogenization process (with simplifying assumptions to make the problem manageable has been applied to estimate the mixture permeability and tangent compressibility. Qualitative and quantitative comparisons with experimental data point out the domain of interest and the limitations of such approaches.O estudo lida com o comportamento de misturas compostas por areia e uma pasta de caulinita considerada um material composto feito de uma matriz (caulinita permeável e deformável (com comportamento não-linear com inclusões rígidas e impermeáveis (grãos de areia. Testes de permeabilidade e odométricos conduzidos nestas misturas enfatizam o papel chave de estado da pasta argilosa e mostram a existência de uma concentração crítica de grãos de areia com efeito estruturante que influencia o módulo e a permeabilidade. Sob a luz destes experimentos o processo de homogeneização usual e tangente (com hipóteses simplificadoras para tornar o problema tratável foi aplicado para estimar a permeabilidade da mistura e a compressibilidade tangente. Comparações qualitativas e quantitativas com dados experimentais apontam o domínio de interesse bem como a limitação destas abordagens.

  20. Fabrication of micropillar substrates using replicas of alpha-particle irradiated and chemically etched PADC films

    International Nuclear Information System (INIS)

    Ng, C.K.M.; Chong, E.Y.W.; Roy, V.A.L.; Cheung, K.M.C.; Yeung, K.W.K.; Yu, K.N.

    2012-01-01

    We proposed a simple method to fabricate micropillar substrates. Polyallyldiglycol carbonate (PADC) films were irradiated by alpha particles and then chemically etched to form a cast with micron-scale spherical pores. A polydimethylsiloxane (PDMS) replica of this PADC film gave a micropillar substrate with micron-scale spherical pillars. HeLa cells cultured on such a micropillar substrate had significantly larger percentage of cells entering S-phase, attached cell numbers and cell spreading areas. - Highlights: ► We proposed a simple method to fabricate micropillar substrates. ► Polyallyldiglycol carbonate films were irradiated and etched to form casts. ► Polydimethylsiloxane replica then formed the micropillar substrates. ► Attachment and proliferation of HeLa cells were enhanced on these substrates.

  1. All-solution-processed flexible thin film piezoelectric nanogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Sung Yun; Kim, Sunyoung; Kim, Kyongjun [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744 (Korea, Republic of); Lee, Ju-Hyuck; Kim, Sang-Woo [SKKU Advanced Institute of Nanotechnology, School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Kang, Chong-Yun; Yoon, Seok-Jin [Electronic Materials Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, Youn Sang [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744 (Korea, Republic of); Advanced Institutes of Convergence Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of)

    2012-11-27

    An all-solution-processed flexible thin film piezoelectric nanogenerator is demonstrated using reactive zinc hydroxo-condensation and a screen-printing method. The highly elastic thin film allows the piezoelectric energy to be generated through the mechanical rolling and muscle stretching of the piezoelectric unit. This flexible all solution-processed nanogenerator is promising for use in future energy harvesters such as wearable human patches and mobile electronics. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Entanglement of identical particles and the detection process

    DEFF Research Database (Denmark)

    Tichy, Malte C.; de Melo, Fernando; Kus, Marek

    2013-01-01

    We introduce detector-level entanglement, a unified entanglement concept for identical particles that takes into account the possible deletion of many-particle which-way information through the detection process. The concept implies a measure for the effective indistinguishability of the particles...... statistical behavior depends on their initial entanglement. Our results show that entanglement cannot be attributed to a state of identical particles alone, but that the detection process has to be incorporated in the analysis....

  3. Introduction of Nickel Coated Silicon Carbide Particles in Aluminum Metal Matrix Hardfaced by MIG/TIG Processes on Precoated Flux Layer

    Directory of Open Access Journals (Sweden)

    V. Kamburov

    2018-03-01

    Full Text Available The aim of the study was to investigate an aluminium metal matrix surface layer hardfaced by shielded gas metal arc welding processes applying either metal inert gas (MIG or tungsten inert gas (TIG, with standard wire filler onto the precoated flux layer - a baked resistant film containing electroless nickel coated micro/nano SiC particles. During baking, the components of the flux (MgCl2, NaCl, KCl and Na3AlF6 form a low melting eutectic, which: protects the hardfaced surface from oxidation, provides electrical conductance and keeps the particles on the surface during welding, as well as facilitates particles wettability and their interfacial bonding with the molten metal into the weld puddle.

  4. The crystallization processes in the aluminum particles production technology

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2015-01-01

    Full Text Available The physical and mathematical model of the crystallization process of liquid aluminum particles in the spray-jet of the ejection-type atomizer was proposed. The results of mathematical modeling of two-phase flow in the spray-jet and the crystallization process of fluid particles are given. The influence of the particle size, of the flow rate and the stagnation temperature gas in the ranges of industrial technology implemented for the production of powders aluminum of brands ASD, on the crystallization characteristics were investigated. The approximations of the characteristics of the crystallization process depending on the size of the aluminum particles on the basis of two approaches to the mathematical description of the process of crystallization of aluminum particles were obtained. The results allow to optimize the process parameters of ejection-type atomizer to produce aluminum particles with given morphology.

  5. Synthesis and characterization of a novel Mg–Al hydrotalcite-loaded kaolin clay and its adsorption properties for phosphate in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lin, E-mail: denglinlyn@126.com; Shi, Zhou, E-mail: 369329062@qq.com

    2015-07-15

    Highlights: • Kaolin clay was coalesced with Mg–Al hydrotalcite to form composite adsorbent (MKC). • MKC was synthesized through modified co-precipitation method. • MKC gave high adsorption of phosphate over a wide pH range of 2.5–9.5. • MKC is an economical and environmentally friendly adsorbent for phosphate removal and recycling. - Abstract: The mesoporous modified kaolin clay (MKC) was synthesized by loading Mg–Al hydrotalcite onto kaolin clay through coprecipitation method and applied for adsorption of phosphate from aqueous solution. Several techniques, including Brunauer–Emmett–Teller (BET), thermal analysis (TG–DTA), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the adsorbents. The effects of adsorbent dosage, solution pH, initial phosphate concentration, contact time, temperature, and coexistent anions on phosphate adsorption have been investigated. MKC exhibited a strong uptake affinity to phosphate in a wide pH range of 2.5–9.5, with the maximum adsorptive removal of 98.03%, at adsorbent dosage of 0.2 g/50 mL, pH 7.5, and initial phosphate concentration 25 mg L{sup −1}. The adsorption kinetics followed the pseudo-second-order kinetic model. The Langmuir isothermal model well described the adsorption isotherm data, showing a maximum adsorption capacity for phosphate up to 11.92 mg g{sup −1} at 298 K. The obtained thermodynamic parameters revealed that the adsorption of phosphate onto MKC was an exothermic and spontaneous process. Coexistent chloride, nitrate, and sulfate ions displayed an adverse effect on phosphate adsorption following the order of SO{sub 4}{sup 2−} > NO{sub 3}{sup −} > Cl{sup −}. A mechanism of adsorption that involved (i) electrostatic attraction of hydroxyl groups of the adsorbent with negatively charged phosphate ions, and (ii) anion exchange of NO{sub 3}{sup −} ions that were associated with the surface or interlayer of the adsorbent with anionic phosphate ions in

  6. Synthesis and characterization of a novel Mg–Al hydrotalcite-loaded kaolin clay and its adsorption properties for phosphate in aqueous solution

    International Nuclear Information System (INIS)

    Deng, Lin; Shi, Zhou

    2015-01-01

    Highlights: • Kaolin clay was coalesced with Mg–Al hydrotalcite to form composite adsorbent (MKC). • MKC was synthesized through modified co-precipitation method. • MKC gave high adsorption of phosphate over a wide pH range of 2.5–9.5. • MKC is an economical and environmentally friendly adsorbent for phosphate removal and recycling. - Abstract: The mesoporous modified kaolin clay (MKC) was synthesized by loading Mg–Al hydrotalcite onto kaolin clay through coprecipitation method and applied for adsorption of phosphate from aqueous solution. Several techniques, including Brunauer–Emmett–Teller (BET), thermal analysis (TG–DTA), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the adsorbents. The effects of adsorbent dosage, solution pH, initial phosphate concentration, contact time, temperature, and coexistent anions on phosphate adsorption have been investigated. MKC exhibited a strong uptake affinity to phosphate in a wide pH range of 2.5–9.5, with the maximum adsorptive removal of 98.03%, at adsorbent dosage of 0.2 g/50 mL, pH 7.5, and initial phosphate concentration 25 mg L −1 . The adsorption kinetics followed the pseudo-second-order kinetic model. The Langmuir isothermal model well described the adsorption isotherm data, showing a maximum adsorption capacity for phosphate up to 11.92 mg g −1 at 298 K. The obtained thermodynamic parameters revealed that the adsorption of phosphate onto MKC was an exothermic and spontaneous process. Coexistent chloride, nitrate, and sulfate ions displayed an adverse effect on phosphate adsorption following the order of SO 4 2− > NO 3 − > Cl − . A mechanism of adsorption that involved (i) electrostatic attraction of hydroxyl groups of the adsorbent with negatively charged phosphate ions, and (ii) anion exchange of NO 3 − ions that were associated with the surface or interlayer of the adsorbent with anionic phosphate ions in solution, was proposed

  7. BaF2 POST-DEPOSITION REACTION PROCESS FOR THICK YBCO FILMS

    International Nuclear Information System (INIS)

    SUENAGA, M.; SOLOVYOV, V.F.; WU, L.; WIESMANN, H.J.; ZHU, Y.

    2001-01-01

    The basic processes of the so-called BaF 2 process for the formation of YBa 2 Cu 3 O 7 , YBCO, films as well as its advantages over the in situ formation processes are discussed in the previous chapter. The process and the properties of YBCO films by this process were also nicely described in earlier articles by R. Feenstra, (et al.) Here, we will discuss two pertinent subjects related to fabrication of technologically viable YBCO conductors using this process. These are (1) the growth of thick (>> 1 microm) c-axis-oriented YBCO films and (2) their growth rates. Before the detail discussions of these subjects are given, we first briefly discuss what geometrical structure a YBCO-coated conductor should be. Then, we will provide examples of simple arguments for how thick the YBCO films and how fast their growth rates need to be. Then, the discussions in the following two sections are devoted to: (1) the present understanding of the nucleation and the growth process for YBCO, and why it is so difficult to grow thick c-axis-oriented films (> 3 microm), and (2) our present understanding of the YBCO growth-limiting mechanism and methods to increase the growth rates. The values of critical-current densities J c in these films are of primary importance for the applications,. and the above two subjects are intimately related to the control of J c of the films. In general, the lower the temperatures of the YBCO formation are the higher the values of J c of the films. Thus, the present discussion is limited to those films which are reacted at ∼735 C. This is the lowest temperature at which c-axis-oriented YBCO films (1-3 microm thick) are comfortably grown. It is also well known that the non-c-axis oriented YBCO platelets are extremely detrimental to the values of J c such that their effects on J c dwarf essentially all of other microstructural effects which control J c . Hence, the discussion given below is mainly focused on how to avoid the growth of these crystallites

  8. Bio-films and processes of bio-corrosion and bio-deterioration in oil-and gas-processing industry

    Energy Technology Data Exchange (ETDEWEB)

    Kholodenko, V.P.; Irkhina, I.A.; Chugunov, V.A.; Rodin, V.B.; Zhigletsova, S.K.; Yermolenko, Z.M.; Rudavin, V.V. [State Research Center for Applied Microbiology, Obolensk, Moscow region (Russian Federation)

    2004-07-01

    As a rule, oil- and gas-processing equipment and pipelines are attacked by different microorganisms. Their vital ability determines processes of bio-deterioration and bio-corrosion that lead often to technological accidents and severe environmental contamination. Bio-films presenting a complex association of different microorganisms and their metabolites are responsible for most of damages. In this context, to study the role bio-films may play in processes of bio-damages and in efficacy of protective measures is important. We have developed method of culturing bio-films on the surface of metal coupons by using a natural microbial association isolated from oil-processing sites. Simple and informative methods of determining microbiological parameters of bio-films required to study bio-corrosion processes are also developed. In addition, a method of electron microscopic analysis of bio-films and pitting corrosion is offered. Using these methods, we conducted model experiments to determine the dynamics of corrosion processes depending on qualitative and quantitative composition of bio-films, aeration conditions and duration of the experiment. A harmful effect of soil bacteria and micro-mycetes on different pipeline coatings was also investigated. Experiments were conducted within 3-6 months and revealed degrading action of microorganisms. This was confirmed by axial tension testing of coatings. All these approaches will be used for further development of measures to protect gas- and oil-processing equipment and pipelines against bio-corrosion and bio-damages (first of all biocides). (authors)

  9. Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization

    Science.gov (United States)

    Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei

    2012-07-01

    The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.

  10. Radiological impacts of the usability of Dolerite and Kaolin as raw materials for construction works in Abia State, Nigeria

    International Nuclear Information System (INIS)

    Enyinna, P.I.; Avwiri, G. O.

    2011-01-01

    This research study is aimed at carrying out radiometric analyses of the natural radioactivity resulting from the presence of radionuclides in dolerite and kaolin which are raw materials widely used in construction works. The activity concentrations of the identified natural radionuclides of 226 Ra, 228 Ra and 40 K in 40 samples of these solid minerals collected from 4 mining sites were determined by gamma ray spectroscopic technique using a well calibrated [NaI(Tl)] detector. The mean values of the activity concentrations of 226 Ra, 228 Ra and 40 K for the dolerite samples were found to be 10.989Bq/kg, 6.956Bq/kg, 723.253Bq/kg and 10.735Bq/kg, 6.175Bq/kg, 714.895Bq/kg respectively (for the 2 dolerite mining sites); and for the kaolin samples, 8.507Bq/kg, 7.33Bq/kg, 87.511Bq/kg and 8.416Bq/kg, 7.354Bq/kg, 86.727Bq/kg respectively (for the 2 kaolin mining sites). The radium equivalent activity, the absorbed dose rate, the equivalent dose rate, the external and internal hazard indices, the annual outdoor and indoor effective dose rates were computed and compared with international radiological standards to ascertain if these minerals pose any radiological hazard. The results obtained were found to conform within the limits of acceptable international radiological standards and may not pose any immediate threat to the public and users of these two solid minerals for construction works.

  11. Effect of TiO2/Al2O3 film coated diamond abrasive particles by sol-gel technique

    Science.gov (United States)

    Hu, Weida; Wan, Long; Liu, Xiaopan; Li, Qiang; Wang, Zhiqi

    2011-04-01

    The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.

  12. An Application of X-ray Fluorescence as Process Analytical Technology (PAT) to Monitor Particle Coating Processes.

    Science.gov (United States)

    Nakano, Yoshio; Katakuse, Yoshimitsu; Azechi, Yasutaka

    2018-03-30

    An attempt to apply X-ray Fluorescence (XRF) analysis to evaluate small particle coating process as a Process Analytical Technologies (PAT) was made. The XRF analysis was used to monitor coating level in small particle coating process with at-line manner. The small particle coating process usually consists of multiple coating processes. This study was conducted by a simple coating particles prepared by first coating of a model compound (DL-methionine) and second coating by talc on spherical microcrystalline cellulose cores. The particles with two layered coating are enough to demonstrate the small particle coating process. From the result by the small particle coating process, it was found that the XRF signal played different roles, resulting that XRF signals by first coating (layering) and second coating (mask coating) could demonstrate the extent with different mechanisms for the coating process. Furthermore, the particle coating of the different particle size has also been investigated to evaluate size effect of these coating processes. From these results, it was concluded that the XRF could be used as a PAT in monitoring particle coating processes and become powerful tool in pharmaceutical manufacturing.

  13. Production of strange particles in hadronization processes

    International Nuclear Information System (INIS)

    Hofmann, W.

    1987-08-01

    Strange particles provide an important tool for the study of the color confinement mechanisms involved in hadronization processes. We review data on inclusive strange-particle production and on correlations between strange particles in high-energy reactions, and discuss phenomenological models for parton fragmentation. 58 refs., 24 figs

  14. Protein resistance of dextran and dextran-PEG copolymer films

    Science.gov (United States)

    Kozak, Darby; Chen, Annie; Bax, Jacinda; Trau, Matt

    2011-01-01

    The protein resistance of dextran and dextran-poly(ethylene glycol) (PEG) copolymer films was examined on an organosilica particle-based assay support. Comb-branched dextran-PEG copolymer films were synthesized in a two step process using the organosilica particle as a solid synthetic support. Particles modified with increasing amounts (0.1-1.2 mg m−2) of three molecular weights (10 000, 66 900, 400 000 g mol−1) of dextran were found to form relatively poor protein-resistant films compared to dextran-PEG copolymers and previously studied PEG films. The efficacy of the antifouling polymer films was found to be dependent on the grafted amount and its composition, with PEG layers being the most efficient, followed by dextran-PEG copolymers, and dextran alone being the least efficient. Immunoglobulin gamma (IgG) adsorption decreased from ~ 5 to 0.5 mg m−2 with increasing amounts of grafted dextran, but bovine serum albumin (BSA) adsorption increased above monolayer coverage (to ~2 mg m−2) indicating ternary adsorption of the smaller protein within the dextran layer. PMID:21614699

  15. Organization of film data processing in the PPI-SA automated system

    International Nuclear Information System (INIS)

    Ovsov, Yu.V.; Perekatov, V.G.

    1984-01-01

    Organization of processing nuclear interaction images at PUOS - type standard devices using the PPI-SA automated system is considered. The system is made in the form of a complete module comprising two scanning measuring projectors and a scan-ning automatic device which operate in real time on line with the BESM-4-computer. The system comprises: subsystem for photographic film scanning, selection of events for measurements and preliminary encoding; subsystem for formation and generation of libraries with data required for monitoring the scanning automatic device; subsystem for precision measurements separate coordinates on photo images of nuclear particle tracks and ionization losses. The system software comprises monitoring programs for the projectors and scanning automatic device as well as test functional control programs and operating system. The programs are organized a modular concept. By changing the module set the system can be modified and adapted for image processing in different fields of science and technology

  16. Optical characterization of YBa{sub 2}Cu{sub 3}O{sub 7−δ} thin film modified gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Naujok, P.; Katzer, C. [Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 5, 07743 Jena (Germany); Schmidl, G., E-mail: gabriele.schmidl@ipht-jena.de [Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745 Jena (Germany); Jatschka, J.; Fritzsche, W. [Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745 Jena (Germany); Schmidl, F. [Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 5, 07743 Jena (Germany)

    2015-12-01

    Highlights: • Different thick YBCO layers allow an active control of particle sizes and density distributions on film surfaces. • The gold volume on the YBCO film surface decreases with increasing YBCO layer thickness. • Combining SEM and dark-field microscopy via image processing. • Clear correlation of scattering spectrum and addressed particles supporting by a new Ti-marker technology. - Abstract: We report on the influence of YBa{sub 2}Cu{sub 3}O{sub 7−δ} (YBCO) thin films on the self-organized formation of gold nanoparticles. A thickness variation of the YBCO film allows one to actively control the size of the particles and their density distribution. In this context, the particle forming process is discussed. The YBCO matrix can be removed in order to reduce the particle density on the substrate. The remaining modified particles can be used in plasmonic applications. Combining scanning electron microscopy and dark-field microscopy permits one to identify a correlation of the measured scattering spectra with the physical properties of each studied particle. A clear assignment of spectrum and particle is supported by a new Ti-marker technology and image processing. Growth parameters allow the scientist to tune the spectral peak position of the plasmon resonance and the spectral bandwidth.

  17. Formation of Ag nanoparticles in percolative Ag–PbTiO3 composite thin films through lead-rich Ag–Pb alloy particles formed as transitional phase

    International Nuclear Information System (INIS)

    Hu, Tao; Wang, Zongrong; Su, Yanbo; Tang, Liwen; Shen, Ge; Song, Chenlu; Han, Gaorong; Weng, Wenjian; Ma, Ning; Du, Piyi

    2012-01-01

    The Ag nanoparticle dispersed percolative PbTiO 3 ceramic thin film was prepared in situ by sol–gel method with excess lead introduced into a sol precursor. The influence of excess lead and the heat treatment time on the formation of Ag nanoparticles was investigated by energy dispersive X-ray spectra, scanning electron microscopy, X-ray diffraction, and ultraviolet–visible absorption spectra. Results showed that the excess lead introduced into the sol precursor was in favor of the crystallization of the thin film and in favor of formation of the perovskite phase without the pyrochlore phase. Lead-rich Ag–Pb alloy particles first formed in the thin films and then decomposed to become large numbers of Ag nanoparticles of about 3 nm in size in the thin films when the heat treatment time was longer than 2 min. The content of the Ag nanoparticles increased with increasing the heat treatment time. The percolative behavior appears typically in the Ag nanoparticle dispersed thin films. The dielectric constant of the thin film was about 3 times of that without Ag nanoparticles. - Highlights: ► The Ag nanoparticles formed in the PbTiO 3 percolative ceramic thin film. ► The Ag–Pb alloy particles formed as transitional phase during thin film preparation. ► The lead-rich Ag–Pb alloy particles decomposed to form Ag nanoparticles in the film. ► Permittivity of the thin film is 3 times higher than that without Ag nanoparticles.

  18. Fabrication of micropillar substrates using replicas of alpha-particle irradiated and chemically etched PADC films

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.K.M. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chong, E.Y.W. [Department of Orthopaedics and Traumatology, University of Hong Kong (Hong Kong); Roy, V.A.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Cheung, K.M.C.; Yeung, K.W.K. [Department of Orthopaedics and Traumatology, University of Hong Kong (Hong Kong); Yu, K.N., E-mail: appetery@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2012-07-15

    We proposed a simple method to fabricate micropillar substrates. Polyallyldiglycol carbonate (PADC) films were irradiated by alpha particles and then chemically etched to form a cast with micron-scale spherical pores. A polydimethylsiloxane (PDMS) replica of this PADC film gave a micropillar substrate with micron-scale spherical pillars. HeLa cells cultured on such a micropillar substrate had significantly larger percentage of cells entering S-phase, attached cell numbers and cell spreading areas. - Highlights: Black-Right-Pointing-Pointer We proposed a simple method to fabricate micropillar substrates. Black-Right-Pointing-Pointer Polyallyldiglycol carbonate films were irradiated and etched to form casts. Black-Right-Pointing-Pointer Polydimethylsiloxane replica then formed the micropillar substrates. Black-Right-Pointing-Pointer Attachment and proliferation of HeLa cells were enhanced on these substrates.

  19. Collisional Penrose process with spinning particles

    Science.gov (United States)

    Mukherjee, Sajal

    2018-03-01

    In this article, we have investigated collisional Penrose process (CPP) using spinning particles in a Kerr spacetime. Recent studies have shown that the collision between two spinning particles can produce a significantly high energy in the center of mass frame. Here, we explicitly compute the energy extraction and efficiency as measured by an observer at infinity. We consider the colliding particles as well as the escaping particles may contain spins. It has been shown that the energy extraction is larger than the non-spinning case and also their possibility to escape to infinity is wider than the geodesics.

  20. Flow Kinematics and Particle Orientations during Composite Processing

    International Nuclear Information System (INIS)

    Chiba, Kunji

    2007-01-01

    The mechanism of orientation of fibers or thin micro-particles in various flows involving the processing of composite materials has not been fully understood although it is much significant to obtain the knowledge of the processing operations of particle reinforced composites as well as to improve the properties of the advanced composites. The objective of this paper is to introduce and well understand the evolution of the particle orientation in a suspension flow and flow kinematics induced by suspended particles by means of our two research work

  1. Process Modeling With Inhomogeneous Thin Films

    Science.gov (United States)

    Machorro, R.; Macleod, H. A.; Jacobson, M. R.

    1986-12-01

    Designers of optical multilayer coatings commonly assume that the individual layers will be ideally homogeneous and isotropic. In practice, it is very difficult to control the conditions involved in the complex evaporation process sufficiently to produce such ideal films. Clearly, changes in process parameters, such as evaporation rate, chamber pressure, and substrate temperature, affect the microstructure of the growing film, frequently producing inhomogeneity in structure or composition. In many cases, these effects are interdependent, further complicating the situation. However, this process can be simulated on powerful, interactive, and accessible microcomputers. In this work, we present such a model and apply it to estimate the influence of an inhomogeneous layer on multilayer performance. Presently, the program simulates film growth, thermal expansion and contraction, and thickness monitoring procedures, and includes the effects of uncertainty in these parameters or noise. Although the model is being developed to cover very general cases, we restrict the present discussion to isotropic and nondispersive quarterwave layers to understand the particular effects of inhomogeneity. We studied several coating designs and related results and tolerances to variations in evaporation conditions. The model is composed of several modular subprograms, is written in Fortran, and is executed on an IBM-PC with 640 K of memory. The results can be presented in graphic form on a monochrome monitor. We are currently installing and implementing color capability to improve the clarity of the multidimensional output.

  2. Densification effects on solution-processed indium-gallium-zinc-oxide films and their thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Rim, You Seung; Kim, Hyun Jae [School of Electrical and Electronic Engineering, Yonsei University, Seoul (Korea, Republic of)

    2014-09-15

    We report the effects of high-pressure annealing (HPA) on solution-processed InGaZnO (IGZO) thin-film transistors (TFTs). HPA increased the density of IGZO films. In particular, annealing in O{sub 2} at 1.0 MPa and 350 C resulted in a high-density and low-porosity IGZO film, as characterized using X-ray reflectivity (XRR) and ellipsometry measurements. This was attributed to the oxidative and compressive effects on the oxygen-deficient solution-processed IGZO film. TFTs annealed in O{sub 2} at 1.0 MPa and 350 C exhibited an increase in the field-effect mobility by a factor of approximately five compared with TFTs annealed in air at 0.1 MPa and 350 C. Furthermore, improvements in reliability under negative and positive bias stresses were also observed following HPA. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Structural-morphological variations in pseudo-barrier films of anode aluminium oxide under irradiation with high-energy particles

    International Nuclear Information System (INIS)

    Chernykh, M.A.; Belov, V.T.

    1988-01-01

    Comparative study of structural-morphological variations under electron beam effect in pseudo-barrier films of anode aluminium oxide, obtained in seven different solutions and proton or X-rays pre-irradiated to determine structure peculiarities of anode aluminium oxides, is presented. Such study is a matter of interest from the solid-phase transformation theory point of view and for anode aluminium films application under radiation. Stability increase of pseudo-barrier films of anode aluminium oxide to the effect of UEhMV-100 K microscope electron beam at standard modes of operation (75 kV) due to proton or X-rays irradiation is found. Difference in structural-monorphological variations obtained in different solutions of anode aluminium films under high-energy particles irradiation is determined. Strucural-phase microinhomogeneity of amorphous pseudo-barrier films of anode aluminium oxide and its influence on solid-phase transformations character under electron bean of maximal intensity are detected

  4. Effects of structural modification via high-pressure annealing on solution-processed InGaO films and thin-film transistors

    International Nuclear Information System (INIS)

    Rim, You Seung; Choi, Hyung-Wook; Kim, Kyung Hwan; Kim, Hyun Jae

    2016-01-01

    We investigated the structural modification of solution-processed nanocrystalline InGaO films via high-pressure annealing and fabricated thin-film transistors. The grain size of InGaO films annealed in the presence of oxygen under high pressure was significantly changed compared the films annealed without high pressure ambient. The O1s XPS peak distribution of InGaO films annealed under high pressure at 350 °C showed a peak similar to that of the non-pressure annealed film at 500 °C. The high-pressure annealing process promoted the elimination of organic residues and dehydroxylation of the metal hydroxide (M–OH) complex. We confirmed the improved device performance of high-pressure annealed InGaO-based thin-film transistors owing to the reduction in charge-trap density. (paper)

  5. High frequency sonar variability in littoral environments: Irregular particles and bubbles

    Science.gov (United States)

    Richards, Simon D.; Leighton, Timothy G.; White, Paul R.

    2002-11-01

    Littoral environments may be characterized by high concentrations of suspended particles. Such suspensions contribute to attenuation through visco-inertial absorption and scattering and may therefore be partially responsible for the observed variability in high frequency sonar performance in littoral environments. Microbubbles which are prevalent in littoral waters also contribute to volume attenuation through radiation, viscous and thermal damping and cause dispersion. The attenuation due to a polydisperse suspension of particles with depth-dependent concentration has been included in a sonar model. The effects of a depth-dependent, polydisperse population of microbubbles on attenuation, sound speed and volume reverberation are also included. Marine suspensions are characterized by nonspherical particles, often plate-like clay particles. Measurements of absorption in dilute suspensions of nonspherical particles have shown disagreement with predictions of spherical particle models. These measurements have been reanalyzed using three techniques for particle sizing: laser diffraction, gravitational sedimentation, and centrifugal sedimentation, highlighting the difficulty of characterizing polydisperse suspensions of irregular particles. The measurements have been compared with predictions of a model for suspensions of oblate spheroids. Excellent agreement is obtained between this model and the measurements for kaolin particles, without requiring any a priori knowledge of the measurements.

  6. Thin-Film Materials Synthesis and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a wide capability for deposition and processing of thin films, including sputter and ion-beam deposition, thermal evaporation, electro-deposition,...

  7. Quality control procedure for dental x-ray film processing

    International Nuclear Information System (INIS)

    Tingey, D.R.C.

    1983-08-01

    Methods of obtaining the optimum processing from dental films are discussed. A method of quality control of developing conditions for dental x-ray films has been developed. It is relatively easy to maintain and is sufficiently accurate for practical purposes

  8. Nanoscale particles in technological processes of beneficiation

    Directory of Open Access Journals (Sweden)

    Sergey I. Popel

    2014-04-01

    Full Text Available Background: Cavitation is a rather common and important effect in the processes of destruction of nano- and microscale particles in natural and technological processes. A possible cavitation disintegration of polymineral nano- and microparticles, which are placed into a liquid, as a result of the interaction of the particles with collapsed cavitation bubbles is considered. The emphasis is put on the cavitation processes on the interface between liquid and fine solid particles, which is suitable for the description of the real situations.Results: The results are illustrated for the minerals that are most abundant in gold ore. The bubbles are generated by shock loading of the liquid heated to the boiling temperature. Possibilities of cavitation separation of nano- and microscale monomineral fractions from polymineral nano- and microparticles and of the use of cavitation for beneficiation are demonstrated.Conclusion: The cavitation disintegration mechanism is important because the availability of high-grade deposits in the process of mining and production of noble metals is decreasing. This demands for an enhancement of the efficiency in developing low-grade deposits and in reprocessing ore dumps and tailings, which contain a certain amount of noble metals in the form of finely disseminated fractions. The cavitation processes occuring on the interface between liquid and fine solid particles are occasionally more effective than the bulk cavitation processes that were considered earlier.

  9. Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles

    Science.gov (United States)

    Bridger, K.; Watts, J.; Tadros, M.; Xiao, Gang; Liou, S. H.; Chien, C. L.

    1987-04-01

    Uniform, cubic 0.05-μm iron oxide particles were formed by forced hydrolysis of ferric perchlorate. These particles were reduced to α-Fe by heating in hydrogen at temperatures between 300 and 500 °C. The effect of reduction temperature and various prereduction treatments on the microstructure of the iron particles will be discussed. Complete reduction to α-Fe was established by 57Fe Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements on epoxy and polyurethane films containing these particles with various mass fractions gave coercivities as high as 1000 Oe. The relationship between the magnetic measurements and the microstructure will be discussed. Na2SiO3 is found to be the best coating material for the process of reducing iron oxide particles to iron.

  10. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  11. Visualization study on hot particle-water interaction by using neutron radiography

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.; Saito, Y.; Moriyama, Kiyofumi; Sugimoto, Jun

    1999-01-01

    In relation to severe accident research of a nuclear reactor, an experiment was performed to simulate the premixing process in the vapor explosion by dropping hot stainless-steel particle into heavy water filled in a rectangular tank. The test rig consisted of a furnace and a rectangular tank (400 mm in height, 100 mm in width and 30 mm in depth) filled with heavy water kept at 4degC. The particle diameter used in the experiment were 6, 9 and 12 mm, and the initial temperature of the particle ranged from 600 to 1000degC. The behavior of gas dome generated by heated particle-subcooled water interaction was successfully visualized by high-frame-rate neutron radiography at the recording speed of 500 frames/s. Temporal and spatial variations of void fraction in the gas dome were measured by processing the images obtained. The void fraction measurement indicated the possibility that the ambient fluid was superheated by the hot particle-water contact and the vapor was generated in proportion to the particle size and temperature. Preliminary calculations of heat transfer from hot particle to water were conducted by using and empirical correlation for steady film boiling. Comparison between experimental and calculated results suggested that the transient heat transfer around the hot particle could not be explained only by steady film boiling but some other heat transfer mechanisms such as unsteady film boiling or hear transfer due to direct contact may be needed. (author)

  12. Solution processed pentacene thin films and their structural properties

    International Nuclear Information System (INIS)

    Tao Chunlan; Zhang Xuhui; Zhang Fujia; Liu Yiyang; Zhang Haoli

    2007-01-01

    The paper reported the solution process of pentacene thin films from organic solvent O-dichlorobenzene. The pentacene thin films obtained from different conditions were characterized by X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), and UV-vis spectroscopy. The result shows that the pentacene solution was successfully obtained at a minimum temperature of 40 deg. C. The optimum temperature of forming pentacene thin films was 100 deg. C

  13. Particle Induced X-ray Emission (PIXE) Approach for the Quantification of Thin Al Films

    International Nuclear Information System (INIS)

    Younes, G; Zahraman, K; Nsouli, B; Soueidan, M; Ferro, G

    2008-01-01

    Particle Induced X-ray Emission (PIXE) has been used as a fast and non-destructive technique for sensitive characterization of ultra thin Al films deposited by evaporation onto Si substrate. In this work the PIXE technique was optimized, using proton beam at different energies and different angles of incidence, for the characterization of ultra thin Al films (few nanometers) deposited onto Si substrate. The PIXE results showed that a proton beam of 300 keV under tilting angle of 80 degree permits an accurate determination of Al with high sensitivity within few minutes of acquisition time and a LOD of less than 0.2 nm. The LOD versus energy and tilting angle will be presented and discussed. (author)

  14. Toxicological evaluation of natural rubber films from vulcanized latex by the conventional process and the alternative process with ionizing radiation

    International Nuclear Information System (INIS)

    Campos, Vania Elisabeth

    1997-01-01

    The industrial vulcanization of natural rubber latex (NRL) is made all over the world by conventional process using sulphur and heat but it can be made by an alternative process using ionizing radiation. In this research the NRL was tested by 13 physical, chemical and mechanical assays which showed its good quality. It was done a preliminary study of the toxicological properties of 4 natural rubber films obtained by casting process of NRL: one non vulcanized, other vulcanized by the conventional process and two vulcanized by the alternative process. In the alternative process the films were obtained by irradiation of NRL by gamma rays from the 60 Co source at 250 kGy in the absence of sensitizer and irradiated NRL at 12 kGy in the presence of 4ph r of n-butyl acrylate / 0.2 phr of KOH. These vulcanization doses were determined from broken tensile strength. In the conventional process, sulphur vulcanized NRL was made using a classical composition. Another film was made with non vulcanized NRL. The preliminary evaluation of the toxicological properties was made from in vitro cytotoxicity and in vivo systemic toxicity assays. The LBN films vulcanized by the alternative process have less cytotoxicity than the NRL film vulcanized by the conventional process. The sensitized vulcanized films by gamma rays and non vulcanized films showed similar cytotoxicity while the vulcanized films without sensitizer showed a slight lower cytotoxicity. The non vulcanized NRL film and the NRL films vulcanized by the alternative process did not show toxic effects int he 72 hours period of the systemic toxicity assay. However the NRL film vulcanized with sulphur induced effects like allaying and motor in coordination on the animals treated with an oil extract at the fourth hour and recovering after that. The alternative process promoted lower toxic effects than conventional process because there was no toxic substances present. (author)

  15. Etching processes of transparent carbon nanotube thin films using laser technologies

    International Nuclear Information System (INIS)

    Lin, H.K.; Lin, R.C.; Li, C.H.

    2010-01-01

    Carbon nanotubes (CNTs) have potential as a transparent conductive material with good mechanical and electrical properties. However, carbon nanotube thin film deposition and etching processes are very difficult to pattern the electrode. In this study, transparent CNT film with a binder is coated on a PET flexible substrate. The transmittance and sheet resistance of carbon nanotube film are 84% and 1000 Ω/□, respectively. The etching process of carbon nanotube film on flexible substrates was investigated using 355 nm and 1064 nm laser sources. Experimental results show that carbon nanotube film can be ablated using laser technology. With the 355 nm UV laser, the minimum etched line width was 20 μm with a low amount of recast material of the ablated sections. The optimal conditions of laser ablation were determined for carbon nanotube film.

  16. Contrasting respirable quartz and kaolin retention of lecithin surfactant and expression of membranolytic activity following phospholipase A2 digestion.

    Science.gov (United States)

    Wallace, W E; Keane, M J; Mike, P S; Hill, C A; Vallyathan, V; Regad, E D

    1992-11-01

    Respirable-sized quartz, a well-established fibrogenic mineral dust, is compared with kaolin in erythrocyte hemolysis assays after treatment with saline dispersion of dipalmitoyl phosphatidylcholine, a primary phospholipid component of pulmonary surfactant. Both dusts are rendered inactive after treatment, but the membranolytic activity is partly to fully restored after treatment with phospholipase A2, an enzyme normally associated with cellular plasma membranes and lysosomes. Phospholipid-coated dusts were incubated for periods of 2-72 h at a series of applied enzyme concentrations, and the adsorbed lipid species and hemolytic activity were quantitated at each time for both dusts. Surfactant was lost more readily from quartz than from kaolin, with consequent more rapid restoration of mineral surface hemolytic activity for quartz. Interactions of surfactant and mineral surface functional groups responsible for the mineral-specific rate differences, and implications for determining the mineral surface bioavailability of silica and silicate dusts, are discussed.

  17. Characterization of magnetization processes in nanostructured rare earth-transition metal films

    International Nuclear Information System (INIS)

    Zheng Guangping; Zhan Yangwen; Liu Peng; Li Mo

    2003-01-01

    We synthesize rare earth-transition metal (RE-TM) amorphous films using the electrodeposition method (RE=Nd, Gd and TM=Co). Nanocrystructured RE-TM films are prepared by thermal treatment of as-synthesized films below the glass-crystal transition temperature. Based on the magnetoelastic effect, the magnetization processes in nanostructured samples are characterized by acoustic internal friction measurements using the vibrating-reed technique. Since internal friction and the Young's modulus are sensitive to grain boundary and magnetic domains movement, this technique seems to characterize the effects of nanostructures on the magnetization processes in RE-TM films well. We find that the magnetoelastic effect in nanostructured RE-TM film increases with an increase in grain size

  18. Transparent megahertz circuits from solution-processed composite thin films.

    Science.gov (United States)

    Liu, Xingqiang; Wan, Da; Wu, Yun; Xiao, Xiangheng; Guo, Shishang; Jiang, Changzhong; Li, Jinchai; Chen, Tangsheng; Duan, Xiangfeng; Fan, Zhiyong; Liao, Lei

    2016-04-21

    Solution-processed amorphous oxide semiconductors have attracted considerable interest in large-area transparent electronics. However, due to its relative low carrier mobility (∼10 cm(2) V(-1) s(-1)), the demonstrated circuit performance has been limited to 800 kHz or less. Herein, we report solution-processed high-speed thin-film transistors (TFTs) and integrated circuits with an operation frequency beyond the megahertz region on 4 inch glass. The TFTs can be fabricated from an amorphous indium gallium zinc oxide/single-walled carbon nanotube (a-IGZO/SWNT) composite thin film with high yield and high carrier mobility of >70 cm(2) V(-1) s(-1). On-chip microwave measurements demonstrate that these TFTs can deliver an unprecedented operation frequency in solution-processed semiconductors, including an extrinsic cut-off frequency (f(T) = 102 MHz) and a maximum oscillation frequency (f(max) = 122 MHz). Ring oscillators further demonstrated an oscillation frequency of 4.13 MHz, for the first time, realizing megahertz circuit operation from solution-processed semiconductors. Our studies represent an important step toward high-speed solution-processed thin film electronics.

  19. Immobilization of horseradish peroxidase onto kaolin by glutaraldehyde method and its application in decolorization of anthraquinone dye

    Directory of Open Access Journals (Sweden)

    Šekuljica Nataša Ž.

    2016-01-01

    Full Text Available The problem of environmental pollution day by day becomes more worrisome, primarily due to the large amounts of wastewater contaminated with various harmful organic compounds, discharged into the environment untreated or partially clean. Feasibility of use of horseradish peroxidase (Amoracia rusticana in the synthetic dyes decolorization was approved by many researchers. Among a number of supports used for the immobilization, it was found that natural clay, kaolin has excellent features which are a precondition for obtaining biocatalysts with the excellent performances. For this reason, a horseradish peroxidase was immobilized onto kaolin using glutaraldehyde as a cross-linking agent. Obtained biocatalyst was applied in the decolorization of anthraquinone dye C. I. Acid Violet 109. Under determined optimal conditions (pH 4.0, hydrogen peroxide concentration 0.6 mM, dye concentration 30 mg L-1, temperature 24ºC around 76 % of dye decolorization was achieved. Reusability study showed that resulting biocatalyst was possible to apply four times in the desired reaction with relatively high decolorization percentage. [Projekat Ministarstva nauke Republike Srbije, br. III-46010 i br. 172013

  20. PVD processes of thin films deposition using Hall-current discharge

    International Nuclear Information System (INIS)

    Svadkovskij, I.V.

    2007-01-01

    Results of research and developments in the field of PVD processes of thin films deposition using Hall-current discharge have been summarized. Effects of interaction of ions with surface during deposition have been considered. Also features of application and prospects of devices based on ion beam and magnetron sputtering systems in thin films technologies have been analyzed. The aspects in the field plasma physics, technology and equipment plasma PVD processes of thin films deposition have been systematized, on the base of investigations made by author and other scientists. (authors)

  1. Synthesis of Nano- alumina Powder from Impure Kaolin and its Application for Arsenite Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ahmad Khodadadi Darban

    2013-07-01

    Full Text Available Adsorption is considered a cost-effective procedure, safer to handle with high removal efficiency. Activated alumina is the most commonly used adsorbent for the removal of arsenic from aqueous solutions. However, activated alumina has a low adsorption capacity and acts kinetically in a slow manner. An ideal adsorbent should have a high surface area, physical and/or chemical stability and be inexpensive. To meet this requirement, nanomeso porous γ-alumina with a high surface area (201.53 m2/g and small particle size (22–36 nm was prepared from inexpensive kaolin as the raw material, by precipitation method. The research results showed that adsorbent has the high adsorption capacity (for initial arsenite concentration up to 10 mg/L, in which 97.65% recovery was achieved. Optimal experimental conditions including pH, initial arsenite concentration and contact time were determined. Langmuir, Freundlich and Dubinin– Radushkevich isotherm models were applied to analyze the experimental data. The best interpretation for the experimental data was given by Langmuir adsorption isotherm equation and the maximum arsenite adsorbed by synthesized nano γ–alumina (qe was found to be 40 (mg/g.

  2. Influences on particle shape in underwater pelletizing processes

    Energy Technology Data Exchange (ETDEWEB)

    Kast, O., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Musialek, M., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Geiger, K., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15

    Underwater pelletizing has gained high importance within the last years among the different pelletizing technologies, due to its advantages in terms of throughput, automation, pellet quality and applicability to a large variety of thermoplastics. The resulting shape and quality of pellets, however, differ widely, depending on material characteristics and effects not fully understood yet. In an experimental set-up, pellets of different volumes and shapes were produced and the medium pellet mass, the pellet surface and the bulk density were analyzed in order to identify the influence of material properties and process parameters. Additionally, the shaping kinetics at the die opening were watched with a specially developed camera system. It was found that rheological material properties correlate with process parameters and resulting particle form in a complex way. Higher cutting speeds were shown to have a deforming influence on the pellets, leading to less spherical s and lower bulk densities. More viscous materials, however, showed a better resistance against this. Generally, the viscous properties of polypropylene proofed to be dominant over the elastic ones in regard to their influence on pellet shape. It was also shown that the shapes filmed at the die opening and the actual form of the pellets after a cooling track do not always correlate, indicating a significant influence of thermodynamic properties during the cooling.

  3. Process Simulation and Characterization of Substrate Engineered Silicon Thin Film Transistor for Display Sensors and Large Area Electronics

    International Nuclear Information System (INIS)

    Hashmi, S M; Ahmed, S

    2013-01-01

    Design, simulation, fabrication and post-process qualification of substrate-engineered Thin Film Transistors (TFTs) are carried out to suggest an alternate manufacturing process step focused on display sensors and large area electronics applications. Damage created by ion implantation of Helium and Silicon ions into single-crystalline n-type silicon substrate provides an alternate route to create an amorphized region responsible for the fabrication of TFT structures with controllable and application-specific output parameters. The post-process qualification of starting material and full-cycle devices using Rutherford Backscattering Spectrometry (RBS) and Proton or Particle induced X-ray Emission (PIXE) techniques also provide an insight to optimize the process protocols as well as their applicability in the manufacturing cycle

  4. Application of kaolin-based catalysts in biodiesel production via transesterification of vegetable oils in excess methanol.

    Science.gov (United States)

    Dang, Tan Hiep; Chen, Bing-Hung; Lee, Duu-Jong

    2013-10-01

    Biodiesel production from transesterification of vegetable oils in excess methanol was performed by using as-prepared catalyst from low-cost kaolin clay. This effective heterogeneous catalyst was successfully prepared from natural kaolin firstly by dehydroxylation at 800°C for 10h and, subsequently, by NaOH-activation hydrothermally at 90°C for 24h and calcined again at 500°C for 6h. The as-obtained catalytic material was characterized with instruments, including FT-IR, XRD, SEM, and porosimeter (BET/BJH analysis). The as-prepared catalyst was advantageous not only for its easy preparation, but also for its cost-efficiency and superior catalysis in transesterification of vegetable oils in excess methanol to produce fatty acid methyl esters (FAMEs). Conversion efficiencies of soybean and palm oils to biodiesel over the as-prepared catalysts reached 97.0±3.0% and 95.4±3.7%, respectively, under optimal conditions. Activation energies of transesterification reactions of soybean and palm oils in excess methanol using these catalysts are 14.09 kJ/mol and 48.87 kJ/mol, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. CineGlobe Film Festival presents Particle Fever in celebration of CERN's 60th anniversary | 20 September

    CERN Multimedia

    2014-01-01

    The film Particle Fever follows six brilliant scientists during the launch of the Large Hadron Collider, which marked the start-up of the biggest and most expensive experiment in the history of the planet, pushing the boundaries of human innovation.    Seeking to unravel the mysteries of the universe, 10,000 scientists from over 100 countries joined forces in pursuit of a single goal: to recreate the conditions that existed just moments after the Big Bang and find the Higgs boson, potentially explaining the origin of all matter. But our heroes face an even bigger challenge: have we reached the limit of our capacity to understand why we exist? Directed by Mark Levinson, a physicist turned filmmaker, and masterfully edited by Walter Murch (Apocalypse Now, The English Patient), Particle Fever is a celebration of discovery, revealing the very human stories behind this epic machine. The film will be followed by a panel discussion with director Mark Levinson, Academy Award-winning editor Walt...

  6. CineGlobe Film Festival presents Particle Fever in celebration of CERN's 60th anniversary | 20 September

    CERN Multimedia

    2014-01-01

    The film Particle Fever follows six brilliant scientists during the launch of the Large Hadron Collider, which marked the start-up of the biggest and most expensive experiment in the history of the planet, pushing the boundaries of human innovation.    Seeking to unravel the mysteries of the universe, 10,000 scientists from over 100 countries joined forces in pursuit of a single goal: to recreate the conditions that existed just moments after the Big Bang and find the Higgs boson, potentially explaining the origin of all matter. But our heroes face an even bigger challenge: have we reached the limit of our capacity to understand why we exist? Directed by Mark Levinson, a physicist turned filmmaker, and masterfully edited by Walter Murch (Apocalypse Now, The English Patient), Particle Fever is a celebration of discovery, revealing the very human stories behind this epic machine. The film will be followed by a panel discussion with director Mark Levinson, Academy Award-winning editor Wal...

  7. Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunhong, E-mail: y.jiang@leeds.ac.uk [University of Leeds, Institute of Particle Science and Engineering (United Kingdom); O’Neill, Alex J. [University of Leeds, School of Molecular and Cellular Biology (United Kingdom); Ding, Yulong [University of Leeds, Institute of Particle Science and Engineering (United Kingdom)

    2015-04-15

    In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, but exhibited no antifungal activity against Aspergillus flavus and Penicillium citrinum. Smaller particles (100 nm) exhibited more potent antibacterial activity than larger particles (1000 nm). All ZnO-coated films maintained antibacterial activity after 30 days in water.

  8. A Study on Sealing Process of Anodized Al Alloy Film

    Science.gov (United States)

    Tsujita, Takeshi; Sato, Hiroshi; Tsukahara, Sonoko; Ishikawa, Yuuichi

    Since sealing is an important process to improve the corrosion resistance in practical application of anodized aluminum, we prepared anodic oxide films on A5052 alloy in an oxalic acid bath and a sulfuric acid bath, sealed them at various conditions, and analyzed them by scanning electron microscopy, acid-dissolution examination, admittance measurements and infrared spectroscopy. The pore radius of the oxalic acid anodized film was about 5 times larger than that of sulfuric acid anodized film, while the corrosion resistance of the former showed about 2 times higher value than the latter with the same sealed state and amount of hydroxide formed by sealing process of the former was 6 times larger than the latter, respectively. Steam sealing formed dense hydroxide and boiling water sealing formed big coral-like hydroxide, whereas the corrosion resistance of the film sealed by the former showed about 1.5 times higher value than that sealed by the latter, respectively. Thus microstructure of anodic oxide films and their surface morphology after sealing process clearly depended on their anodizing solution and the sealing condition and showed obvious relation to electric and corrosive properties.

  9. An interacting particle process related to Young tableaux

    OpenAIRE

    Borodin, Alexei; Olshanski, Grigori

    2013-01-01

    We discuss a stochastic particle system consisting of a two-dimensional array of particles living in one space dimension. The stochastic evolution bears a certain similarity to Hammersley's process, and the particle interaction is governed by combinatorics of the Young tableaux.

  10. Effect of selenization time on the structural and morphological properties of Cu(In,Ga)Se2 thin films absorber layers using two step growth process

    Science.gov (United States)

    Korir, Peter C.; Dejene, Francis B.

    2018-04-01

    In this work two step growth process was used to prepare Cu(In, Ga)Se2 thin film for solar cell applications. The first step involves deposition of Cu-In-Ga precursor films followed by the selenization process under vacuum using elemental selenium vapor to form Cu(In,Ga)Se2 film. The growth process was done at a fixed temperature of 515 °C for 45, 60 and 90 min to control film thickness and gallium incorporation into the absorber layer film. The X-ray diffraction (XRD) pattern confirms single-phase Cu(In,Ga)Se2 film for all the three samples and no secondary phases were observed. A shift in the diffraction peaks to higher 2θ (2 theta) values is observed for the thin films compared to that of pure CuInSe2. The surface morphology of the resulting film grown for 60 min was characterized by the presence of uniform large grain size particles, which are typical for device quality material. Photoluminescence spectra show the shifting of emission peaks to higher energies for longer duration of selenization attributed to the incorporation of more gallium into the CuInSe2 crystal structure. Electron probe microanalysis (EPMA) revealed a uniform distribution of the elements through the surface of the film. The elemental ratio of Cu/(In + Ga) and Se/Cu + In + Ga strongly depends on the selenization time. The Cu/In + Ga ratio for the 60 min film is 0.88 which is in the range of the values (0.75-0.98) for best solar cell device performances.

  11. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun-Young; Ha, Tae-Jun, E-mail: taejunha0604@gmail.com

    2017-08-15

    Highlights: • We demonstrate the potential of solution-processed boron nitride (BN) thin films for nanoelectronics. • Improved interfacial characteristics reduced the leakage current by three orders of magnitude. • The BN encapsulation improves all the device key metrics of low-voltage SWCNT-TFTs. • Such improvements were achieved by reduced interaction of interfacial localized states. - Abstract: In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  12. Study progression in application of process analytical technologies on film coating

    Directory of Open Access Journals (Sweden)

    Tingting Peng

    2015-06-01

    Full Text Available Film coating is an important unit operation to produce solid dosage forms, thereby, the monitoring of this process is helpful to find problems in time and improve the quality of coated products. Traditional methods adopted to monitor this process include measurement of coating weight gain, performance of disintegration and dissolution test, etc. However, not only do these methods cause destruction to the samples, but also consume time and energy. There have recently emerged the applications of process analytical technologies (PAT on film coating, especially some novel spectroscopic and imaging technologies, which have the potential to real-time track the progress in film coating and optimize production efficiency. This article gives an overview on the application of such technologies for film coating, with the goal to provide a reference for the further researches.

  13. Nuclear analytical techniques and applications to materials processing

    International Nuclear Information System (INIS)

    Blondiaux, G.; Debrun, J.L.

    1993-01-01

    This paper will present the application of Rutherford backscattering spectrometry to thin film steochiometry determination and application to optimization of the film process elaboration in the case of dielectric films (Ge,Pb,O) and ionic conductors films (Na,Al,O). After we shall present the application of particles induced gamma emission (PIGE) for the characterization of ternary compounds (B,Si,C) used as coating to protect composites materials. The last part of this paper will describe the determination of oxygen in the bulk of fluoride glasses with charged particles activation analysis. (orig.)

  14. Insecticide Effect of Zeolites on the Tomato Leafminer Tuta absoluta (Lepidoptera: Gelechiidae

    Directory of Open Access Journals (Sweden)

    Caroline De Smedt

    2016-12-01

    Full Text Available (1 Background: The tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae is a key tomato insect pest. At present, it is considered to be a serious threat in various countries in Europe, North Africa, and Middle East. The extensive use and the developed resistance of T. absoluta to spinosad causes some concern, which leads to the need for alternative products. (2 Materials and Methods: Several laboratory experiments were conducted to investigate the ovicidal properties of a zeolite particle film on T. absoluta. The toxicity of three different zeolites and six zeolite formulations to T. absoluta eggs and larvae was determined using different exposure methods. (3 Results: In general, the formulated zeolites yielded higher egg and larvae mortality values, especially when the zeolite particle film was residually applied. Notable differences in mortality rates from exposure to zeolites compared to other products, such as kaolin, its formulated product Surround, and the insecticide spinosad, were observed. Kaolin and Surround exhibited little or no effect for both application methods, while the hatch rate was reduced by 95% when spinosad was applied topically. Spinosad yielded egg and larvae mortality rates of 100% for both application methods. Additionally, increased oviposition activity was observed in adults exposed to the wettable powder (WP formulations. These WP formulations increased egg deposition, while Surround and spinosad elicited a negative oviposition response. (4 Conclusions: It can be derived that the tested products, zeolites BEA (Beta polymorph A, FAU (Faujasite, LTA (Linde type A, and their formulations, had no real insecticidal activity against the eggs of T. absoluta. Nevertheless, egg exposure to zeolites seemed to affect the development process by weakening the first instar larvae and increasing their mortality. Subsequently, based on the choice test, no significant difference was observed between the number of eggs laid on

  15. Microscale interfacial behavior at vapor film collapse on high-temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke

    2009-01-01

    It has been pointed out that vapor film on a premixed high-temperature droplet surface should be collapsed to trigger vapor explosion. Thus, it is important to clarify the micromechanism of vapor film collapse behavior for the occurrence of vapor explosion. In the present study, microscale vapor-liquid interface behavior upon vapor film collapse caused by an external pressure pulse is experimentally observed and qualitatively analyzed. In the analytical investigation, interfacial temperature and interface movement were estimated with heat conduction analysis and visual data processing technique. Results show that condensation can possibly occur at the vapor-liquid interface when the pressure pulse arrived. That is, this result indicates that the vapor film collapse behavior is dominated not by fluid motion but by phase change. (author)

  16. Quasi-epitaxial barium hexaferrite thin films prepared by a topotactic reactive diffusion process

    Science.gov (United States)

    Meng, Siqin; Yue, Zhenxing; Zhang, Xiaozhi; Li, Longtu

    2014-01-01

    Quasi-epitaxial barium hexaferrite thin films (BaM) with crystallographic c-axis parallel to film normal were prepared through a topotactic reactive diffusion process using two-step solution deposition on c-plane sapphire. The two-step spin coating process involves preparing an epitaxial hematite film, coating the film with barium precursor solution and thermal annealing. The crystal orientation and magnetic anisotropy of BaM thin films were investigated by X-ray diffraction analysis, SEM observation and magnetic measurements. Hysteresis loops showed good magnetic anisotropy and high remanence ratio (RR) Mr/Ms = 0.97. The films fabricated by two-step spin coating process displayed wider rocking curve width but better magnetic anisotropy than one-step spin coating. The possible mechanism of this discrepancy is discussed in this paper.

  17. Quasi-epitaxial barium hexaferrite thin films prepared by a topotactic reactive diffusion process

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Siqin; Yue, Zhenxing, E-mail: yuezhx@tsinghua.edu.cn; Zhang, Xiaozhi; Li, Longtu

    2014-01-30

    Quasi-epitaxial barium hexaferrite thin films (BaM) with crystallographic c-axis parallel to film normal were prepared through a topotactic reactive diffusion process using two-step solution deposition on c-plane sapphire. The two-step spin coating process involves preparing an epitaxial hematite film, coating the film with barium precursor solution and thermal annealing. The crystal orientation and magnetic anisotropy of BaM thin films were investigated by X-ray diffraction analysis, SEM observation and magnetic measurements. Hysteresis loops showed good magnetic anisotropy and high remanence ratio (RR) Mr/Ms = 0.97. The films fabricated by two-step spin coating process displayed wider rocking curve width but better magnetic anisotropy than one-step spin coating. The possible mechanism of this discrepancy is discussed in this paper.

  18. Development of diamond thin film-based alpha particle detectors for online assay of plutonium content in corrosive liquid medium

    International Nuclear Information System (INIS)

    Nuwad, J.; Jain, Dheeraj; Manoj, N.; Sudarsan, V.; Panja, S.; Dhami, P.S.

    2014-01-01

    In the present work, diamond thin films were prepared using microwave plasma chemical vapor deposition (MPCVD) method and characterized using XRD, OES, SEM, Raman spectroscopy and I-V techniques. These films were subjected to annealing and chemical cleaning for further improving the film quality. Surface metallization was obtained by gold deposition using PVD. These films were configured in semiconductor-insulator-metal heterostructure and mounted in SS shells. Gold coated growth surface (detector's active area) was sealed by chemical resistant sealing. Suitable bias was applied between the front and back electrical contacts to enable charge collection generated upon alpha particle interaction with diamond. The photograph of developed detector in the lab is shown

  19. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang; He, Jianying, E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Kristiansen, Helge [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway); Njagi, John; Goia, Dan V. [Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814 (United States); Redford, Keith [Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway)

    2016-07-25

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  20. The Particle Distribution in Liquid Metal with Ceramic Particles Mould Filling Process

    Science.gov (United States)

    Dong, Qi; Xing, Shu-ming

    2017-09-01

    Adding ceramic particles in the plate hammer is an effective method to increase the wear resistance of the hammer. The liquid phase method is based on the “with the flow of mixed liquid forging composite preparation of ZTA ceramic particle reinforced high chromium cast iron hammer. Preparation method for this system is using CFD simulation analysis the particles distribution of flow mixing and filling process. Taking the 30% volume fraction of ZTA ceramic composite of high chromium cast iron hammer as example, by changing the speed of liquid metal viscosity to control and make reasonable predictions of particles distribution before solidification.

  1. Dispersion de phyllosilicates et processus de frittage de céramiques silicatées

    OpenAIRE

    Houta , Nadia

    2015-01-01

    This thesis is devoted to improve both densification and stress to rupture values of silicate ceramics mainly elaborated from kaolin. This improvement is achieved by replacing a proportion of kaolin by halloysite. Indeed, this way also allows to highlight the influence of the shape of particles and their organization on microstructural properties. First, the dispersion of suspensions containing only kaolin or a mixture of kaolin and halloysite was optimized by reducing the size of agglomerate...

  2. The cognitive processing of film and musical soundtracks.

    Science.gov (United States)

    Boltz, Marilyn G

    2004-10-01

    Previous research has demonstrated that musical soundtracks can influence the interpretation, emotional impact, and remembering of film information. The intent here was to examine how music is encoded into the cognitive system and subsequently represented relative to its accompanying visual action. In Experiment 1, participants viewed a set of music/film clips that were either congruent or incongruent in their emotional affects. Selective attending was also systematically manipulated by instructing viewers to attend to and remember the music, film, or both in tandem. The results from tune recognition, film recall, and paired discrimination tasks collectively revealed that mood-congruent pairs lead to a joint encoding of music/film information as well as an integrated memory code. Incongruent pairs, on the other hand, result in an independent encoding in which a given dimension, music or film, is only remembered well if it was selectively attended to at the time of encoding. Experiment 2 extended these findings by showing that tunes from mood-congruent pairs are better recognized when cued by their original scenes, while those from incongruent pairs are better remembered in the absence of scene information. These findings both support and extend the "Congruence Associationist Model" (A. J. Cohen, 2001), which addresses those cognitive mechanisms involved in the processing of music/film information.

  3. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film.

    Science.gov (United States)

    Zhu, Benpeng; Xu, Jiong; Li, Ying; Wang, Tian; Xiong, Ke; Lee, Changyang; Yang, Xiaofei; Shiiba, Michihisa; Takeuchi, Shinichi; Zhou, Qifa; Shung, K Kirk

    2016-03-01

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d 33 = 270pC/N and k t = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  4. Characterization of ceramic masses using raw material of Para, Brazil: kaolin in natura; Caracterizaco de massas ceramicas utilizando materia--prima do Para: caulim in natura

    Energy Technology Data Exchange (ETDEWEB)

    Vida, T.A.; Facury Neto, E.; Rabelo, A.A. [Universidade Federal do Para (UFPA), Maraba, PA (Brazil). Fac. de Engenharia de Materiais

    2009-07-01

    The incorporation rejects to the mixtures has if shown viable in the reduction of the environmental liability and for the obtaining of a better quality of the ceramic mass. In the present work, is tried to study the potentiality of the use of ceramic formulations with the addition of kaolin in natura to the clays. Formulations with two clays of the area of the municipal district of Maraba with addition of up to 60% in kaolin weight were prepared and characterized. For the determination of the physical and mechanical properties proof bodies were made by prensagem uniaxial and later burned in temperature from 900 to 1200 deg C with landing of 3 hours. The raw materials were characterized through diffraction of rays X (DRX) and thermogravimetric analysis. The proof bodies prepared were used for determination of the lineal retraction (RL), absorption of water, apparent porosity, apparent density, loss to the fire and rupture module the flexing. The results were satisfactory for the smallest kaolin tenors in the ceramic mass, and the mass with 20% presented rupture module elevated, in the temperature of 1200 deg C. (author)

  5. Laser process for extended silicon thin film solar cells

    International Nuclear Information System (INIS)

    Hessmann, M.T.; Kunz, T.; Burkert, I.; Gawehns, N.; Schaefer, L.; Frick, T.; Schmidt, M.; Meidel, B.; Auer, R.; Brabec, C.J.

    2011-01-01

    We present a large area thin film base substrate for the epitaxy of crystalline silicon. The concept of epitaxial growth of silicon on large area thin film substrates overcomes the area restrictions of an ingot based monocrystalline silicon process. Further it opens the possibility for a roll to roll process for crystalline silicon production. This concept suggests a technical pathway to overcome the limitations of silicon ingot production in terms of costs, throughput and completely prevents any sawing losses. The core idea behind these thin film substrates is a laser welding process of individual, thin silicon wafers. In this manuscript we investigate the properties of laser welded monocrystalline silicon foils (100) by micro-Raman mapping and spectroscopy. It is shown that the laser beam changes the crystalline structure of float zone grown silicon along the welding seam. This is illustrated by Raman mapping which visualizes compressive stress as well as tensile stress in a range of - 147.5 to 32.5 MPa along the welding area.

  6. Particle behavior in an ECR plasma etch tool

    International Nuclear Information System (INIS)

    Blain, M.G.; Tipton, G.D.; Holber, W.M.; Westerfield, P.L.; Maxwell, K.L.

    1993-01-01

    Sources of particles in a close-coupled electron cyclotron resonance (ECR) polysilicon plasma etch source include flaking of films deposited on chamber surfaces, and shedding of material from electrostatic wafer chucks. A large, episodic increase in the number of particles added to a wafer in a clean system is observed more frequently for a plasma-on than for a gas-only source condition. For polymer forming process conditions, particles were added to wafers by a polymer film which was observed to fracture and flake away from chamber surfaces. The presence of a plasma, especially when rf bias is applied to the wafer, caused more particles to be ejected from the walls and added to wafers than the gas-only condition; however, no significant influence was observed with different microwave powers. A study of effect of electrode temperatures on particles added showed that thermophoretic forces are not significant for this ECR configuration. Particles originating from the electrostatic chuck were observed to be deposited on wafers in much larger numbers in the presence of the plasma as compared to gas-only conditions

  7. The influence of Ac parameters in the process of micro-arc oxidation film electric breakdown

    Directory of Open Access Journals (Sweden)

    Ma Jin

    2016-01-01

    Full Text Available This paper studies the electric breakdown discharge process of micro-arc oxidation film on the surface of aluminum alloy. Based on the analysis of the AC parameters variation in the micro-arc oxidation process, the following conclusions can be drawn: The growth of oxide film can be divided into three stages, and Oxide film breakdown discharge occurs twice in the micro-arc oxidation process. The first stage is the formation and disruptive discharge of amorphous oxide film, producing the ceramic oxide granules, which belong to solid dielectric breakdown. In this stage the membrane voltage of the oxide film plays a key role; the second stage is the formation of ceramic oxide film, the ceramic oxide granules turns into porous structure oxide film in this stage; the third stage is the growth of ceramic oxide film, the gas film that forms in the oxide film’s porous structure is electric broken-down, which is the second breakdown discharge process, the current density on the oxide film surface could affect the breakdown process significantly.

  8. Influence of co-electrodeposited Gold particles on the electrocatalytic properties of CoHCF thin films

    International Nuclear Information System (INIS)

    Kumar, Alam Venugopal Narendra; Joseph, James

    2014-01-01

    The electrochemical modification of solid electrodes with metal hexacyanoferrate thin films for enhancing the interfacial properties has created interest for over the past three decades. The preparation of Prussian blue (PB) Au nano composites for the enhancement in the electrocatalytic properties of PB on glassy carbon electrode has been reported by us. The incorporation of Au nano particles in Cobalt hexacyanoferrate (CoHCF) films on Glassy carbon by co-electrodeposition is expected to benefit its interfacial electron transfer properties. The present work describes the effect on the interfacial properties by incorporated Au particles in CoHCF (CoHCF(Au)) modified electrodes. The CoHCF(Au) modified electrodes were characterized by UV-Vis spectrophotometry, Cyclic Voltammetry, AC Impedance, FE-SEM etc., Influence on the electrocatalytic properties of CoHCF(Au) films have been explored by performing two important reactions i) Hydrazine elecrtro-oxidation ii) Oxygen evolution reaction. Our results reveal that CoHCF(Au) modified GC electrode perform better in terms of charge transport in the redox film and also for the electrooxidation of hydrazine in comparision with simple CoHCF modified electrodes. By using the current-transient technique (chrono method i vs t curve) the hydrazine diffusion coefficient (D 0 ) were calculated. Diffusion coefficient of hydrazine was approximately three times higher on CoHCF(Au) electrode, 9.5 × 10 −5 cm 2 s −1 compared with simple CoHCF modified electrode, 3.3× 10 −5 cm 2 s −1 . Similarly, we also discuss results which reveal that CoHCF(Au) electrodes enhances electrocatalytic activity in splitting water to oxygen in 0.1 M NaOH solution compared to simple CoHCF and Au deposited on GC electrodes

  9. Porous Gold Films Fabricated by Wet-Chemistry Processes

    Directory of Open Access Journals (Sweden)

    Aymeric Pastre

    2016-01-01

    Full Text Available Porous gold films presented in this paper are formed by combining gold electroless deposition and polystyrene beads templating methods. This original approach allows the formation of conductive films (2 × 106 (Ω·cm−1 with tailored and interconnected porosity. The porous gold film was deposited up to 1.2 μm on the silicon substrate without delamination. An original zirconia gel matrix containing gold nanoparticles deposited on the substrate acts both as an adhesion layer through the creation of covalent bonds and as a seed layer for the metallic gold film growth. Dip-coating parameters and gold electroless deposition kinetics have been optimized in order to create a three-dimensional network of 20 nm wide pores separated by 20 nm thick continuous gold layers. The resulting porous gold films were characterized by GIXRD, SEM, krypton adsorption-desorption, and 4-point probes method. The process is adaptable to different pore sizes and based on wet-chemistry. Consequently, the porous gold films presented in this paper can be used in a wide range of applications such as sensing, catalysis, optics, or electronics.

  10. Dispersion of phyllosilicates in aqueous suspensions: role of the nature and amount of surfactant.

    Science.gov (United States)

    Houta, Nadia; Lecomte-Nana, Gisèle-Laure; Tessier-Doyen, Nicolas; Peyratout, Claire

    2014-07-01

    The present work aims at investigating the effect of pH values and additives on the dispersion of two 1:1 dioctahedral phyllosilicates in the presence of water. Two model clays are used for this purpose, BIP kaolin and NZCC halloysite, presenting the same surface chemistry but different morphologies. The effect of sodium hexametaphosphate, sodium silicate and sodium carbonate is discussed. Kaolin and halloysite powders were first characterized using X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. Subsequently, suspensions containing 8 mass% of each clay were prepared with or without additives. Experimental measurements regarding the pH values, the zeta potential and the rheological behavior were performed to determine the most suitable additive. Results show that the conformation of halloysite particles changes regarding pH values of suspensions and is strongly related to the surface charges of these particles. At their natural pH values, halloysite and kaolin suspensions exhibit zeta potentials equal to -50 and -20 mV respectively. This trend indicates that halloysite-based suspensions are well dispersed compared to kaolin-based suspensions. Sodium hexametaphosphate is the most suitable dispersant for both clays. The rheological characterization regarding further applications in casting process indicates a shear-thinning behavior for all studied compositions. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Adiabatic Processes Realized with a Trapped Brownian Particle

    Science.gov (United States)

    Martínez, Ignacio A.; Roldán, Édgar; Dinis, Luis; Petrov, Dmitri; Rica, Raúl A.

    2015-03-01

    The ability to implement adiabatic processes in the mesoscale is of key importance in the study of artificial or biological micro- and nanoengines. Microadiabatic processes have been elusive to experimental implementation due to the difficulty in isolating Brownian particles from their fluctuating environment. Here we report on the experimental realization of a microscopic quasistatic adiabatic process employing a trapped Brownian particle. We circumvent the complete isolation of the Brownian particle by designing a protocol where both characteristic volume and temperature of the system are changed in such a way that the entropy of the system is conserved along the process. We compare the protocols that follow from either the overdamped or underdamped descriptions, demonstrating that the latter is mandatory in order to obtain a vanishing average heat flux to the particle. We provide analytical expressions for the distributions of the fluctuating heat and entropy and verify them experimentally. Our protocols could serve to implement the first microscopic engine that is able to attain the fundamental limit for the efficiency set by Carnot.

  12. Reinforcement of LENRA film by in-situ generated silica produced by sol gel process

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Eda Yuhana Ariffin; Dahlan Mohd; Ibrahim Abdullah

    2008-08-01

    Liquid epoxidised natural rubber acrylate (LENRA) film was reinforced with silica-siloxane structures formed in-situ via sol gel process. Combination of these two components produces organic-inorganic composites. Tetraethylorthosilicate (TEOS) was used as precursor material for silica generation. Sol gel reaction was carried out at different concentrations of TEOS i.e. between 10 and 50 phr. Instrumental analysis was carried out by dynamic mechanical analysis (DMA), thermogravimetry analysis (TGA) and FTIR. It was found that miscibility between organic and inorganic components improved with the presence of silanol groups (Si-OH) and polar solvent i.e. THF, via hydrogen bonding formation between siloxane and LENRA. In this work, the effects of TEOS composition on mechanical properties and interaction that occurs between fillers and matrix have also been studied. It was observed that increasing the concentration of TEOS improved the scratch and stress properties of the film. Morphology study by the scanning electron microscopy (SEM) showed in-situ generated silica particles were homogenous and well dispersed at low concentrations of TEOS. (Author)

  13. Evaluation of advanced hot conditioning process for PHWRS

    International Nuclear Information System (INIS)

    Chandramohan, P.; Srinivasan, M.P.; Velmurugan, S.

    2015-01-01

    Hot-conditioning/hot functional test process is carried out to the PHT system of reactor before reactor going to critical/operational. The process is aimed in checking the component functionalities at high temperature and high pressure conditions, the process also checks/removes the suspended corrosion products in heat transport circuit. This process leads to formation of a passive or corrosion oxide film on the heat transport circuit surfaces which protects/mitigates the corrosion of the system circuits during the operation of plant. Major concerned alloy in the Primary Heat Transport (PHT) system of Indian PHWRs during the hot conditioning process and also during operation is the carbon steel due to its high corrosion. Hot-conditioning process mitigates the corrosion of carbon steel by the formation of iron oxide (Fe 3 O 4 ) as major oxide phase layer on the carbon steel surface with a typical thickness of 1.0 μm with particle size of 1μm after 336 h of process at 250 °C. But this passive oxide film thickness increase with time of operation of system with c.a. 10μm for 2.2 EFYP. The protectiveness of passive layer can be further enhanced by reducing the particle sizes in the passive film to nano meter range. The process can impact on the compactness of passive oxide layer with reduced pores in the oxide layer and properties of the nano nature oxide (transport properties) impacting the corrosion mitigation. The corrosion mitigation reduce the source term in the activated corrosion product generation. To achieve this a new process 'Advanced hot conditioning' was developed in water steam chemistry division, BARC for getting a passive oxide film with a lowered particle size in the passive film. The AHC process with 1g/L of PEG-8000 at 250 °C for 336 h showed a particle size <100 nm. The process was tested under the normal operating conditions as function of the time, the corrosion parameter like oxide film thickness, corrosion rate and metal ion

  14. Removal of virus to protozoan sized particles in point-of-use ceramic water filters.

    Science.gov (United States)

    Bielefeldt, Angela R; Kowalski, Kate; Schilling, Cherylynn; Schreier, Simon; Kohler, Amanda; Scott Summers, R

    2010-03-01

    The particle removal performance of point-of-use ceramic water filters (CWFs) was characterized in the size range of 0.02-100 microm using carboxylate-coated polystyrene fluorescent microspheres, natural particles and clay. Particles were spiked into dechlorinated tap water, and three successive water batches treated in each of six different CWFs. Particle removal generally increased with increasing size. The removal of virus-sized 0.02 and 0.1 microm spheres were highly variable between the six filters, ranging from 63 to 99.6%. For the 0.5 microm spheres removal was less variable and in the range of 95.1-99.6%, while for the 1, 2, 4.5, and 10 microm spheres removal was >99.6%. Recoating four of the CWFs with colloidal silver solution improved removal of the 0.02 microm spheres, but had no significant effects on the other particle sizes. Log removals of 1.8-3.2 were found for natural turbidity and spiked kaolin clay particles; however, particles as large as 95 microm were detected in filtered water. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering

    Directory of Open Access Journals (Sweden)

    Rachman Chaim

    2016-04-01

    Full Text Available Recently, local melting of the particle surfaces confirmed the formation of spark and plasma during spark plasma sintering, which explains the rapid densification mechanism via liquid. A model for rapid densification of flash sintered ceramics by liquid film capillary was presented, where liquid film forms by local melting at the particle contacts, due to Joule heating followed by thermal runaway. Local densification is by particle rearrangement led by spreading of the liquid, due to local attractive capillary forces. Electrowetting may assist this process. The asymmetric nature of the powder compact represents an invasive percolating system.

  16. Impact of residual by-products from tungsten film deposition on process integration due to nonuniformity of the tungsten film

    CERN Document Server

    Sidhwa, A; Gandy, T; Melosky, S; Brown, W; Ang, S; Naseem, H; Ulrich, R

    2002-01-01

    The effects of residual by products from a tungsten film deposition process and their impact on process integration due to the nonuniformity of the tungsten film were investigated in this work. The tungsten film deposition process involves three steps: nucleation, stabilization, and tungsten bulk fill. Six experiments were conducted in search for a solution to the problem. The resulting data suggest that excess nitrogen left in the chamber following the tungsten nucleation step, along with residual by products, causes a shift in the tungsten film uniformity during the tungsten bulk fill process. Data reveal that, due to the residual by products, an abnormal grain growth occurs causing a variation in the tungsten thickness across the wafer during the bulk fill step. Although several possible solutions were revealed by the experiments, potential integration problems limited the acceptable solutions to one. The solution chosen was the introduction of a 10 s pumpdown immediately following the nucleation step. Thi...

  17. PIV Analysis of Ludwig Prandtl's Historic Flow Visualization Films

    OpenAIRE

    Willert, Christian; Kompenhans, Jürgen

    2010-01-01

    Around 1930 Ludwig Prandtl and his colleagues O. Tietjens and W. M\\"uller published two films with visualizations of flows around surface piercing obstacles to illustrate the unsteady process of flow separation. These visualizations were achieved by recording the motion of fine particles sprinkled onto the water surface in water channels. The resulting images meet the relevant criteria of properly seeded recordings for particle image velocimetry (PIV). Processing these image sequences with mo...

  18. Materials science in microelectronics I the relationships between thin film processing and structure

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    Thin films play a key role in the material science of microelectronics, and the subject matter of thin-films divides naturally into two headings: processing / structure relationship, and structure / properties relationship.The first volume of Materials Science in Microelectronics focuses on the first relationship - that between processing and the structure of the thin-film. The state of the thin film's surface during the period that one monolayer exists - before being buried in the next layer - determines the ultimate structure of the thin film, and thus its properties. This

  19. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  20. Laser nanostructuring of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nedyalkov, N., E-mail: nned@ie.bas.bg [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522 (Japan); Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Koleva, M.; Nikov, R.; Atanasov, P. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Nakajima, Y.; Takami, A.; Shibata, A.; Terakawa, M. [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522 (Japan)

    2016-06-30

    Highlights: • Nanosecond laser pulse nanostructuring of ZnO thin films on metal substrate is demonstrated. • Two regimes of the thin film modification are observed depending on the applied laser fluence. • At high fluence regime the ZnO film is homogeneously decomposed into nanosized particles. • The characteristic size of the formed nanostructures corresponds to the domain size of the thin film. - Abstract: In this work, results on laser processing of thin zinc oxide films deposited on metal substrate are presented. ZnO films are obtained by classical nanosecond pulsed laser deposition method in oxygen atmosphere on tantalum substrate. The produced films are then processed by nanosecond laser pulses at wavelength of 355 nm. The laser processing parameters and the film thickness are varied and their influence on the fabricated structures is estimated. The film morphology after the laser treatment is found to depend strongly on the laser fluence as two regimes are defined. It is shown that at certain conditions (high fluence regime) the laser treatment of the film leads to formation of a discrete nanostructure, composed of spherical like nanoparticles with narrow size distribution. The dynamics of the melt film on the substrate and fast cooling are found to be the main mechanisms for fabrication of the observed structures. The demonstrated method is an alternative way for direct fabrication of ZnO nanostructures on metal which can be easy implemented in applications as resistive sensor devices, electroluminescent elements, solar cell technology.

  1. A study on properties of PLA/PBAT from blown film process

    International Nuclear Information System (INIS)

    Hongdilokkul, P; Keeratipinit, K; Chawthai, S; Suttiruengwong, S; Hararak, B; Seadan, M

    2015-01-01

    The aim of this work was to study the properties of films based on PLA/PBAT blend prepared by the reactive compounding. PLA/PBAT blends were prepared at the weight ratio of 80:20 together with peroxide as a reactive agent in a twin screw extruder with temperature profile of 160/170/180/210/220/190/175/150°C from feed to die zone. All blended samples, neat PLA, and neat PBAT were characterized for morphology, mechanical and rheological properties. SEM micrographs showed finely dispersed phases of PBAT in PLA in all cases. The particle sizes of PBAT were around 1 μm. The results indicated that the drawability and toughness properties of PLA were greatly improved when blended with 20%wt PBAT. The interface adhesion, and mechanical properties of PLA/PBAT blends were also improved when adding a very small quantity of peroxide. PLA/PBAT blends were then used to produce films. The film characteristics and mechanical properties were examined. Tensile strength of films was significantly improved in the machine direction in PLA/PBAT/peroxide blends whereas the good optical transparent property were remained the same compared with neat PLA. (paper)

  2. Front and backside processed thin film electronic devices

    Science.gov (United States)

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2010-10-12

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  3. Solution processed Cu2SnS3 thin films for visible and infrared photodetector applications

    Directory of Open Access Journals (Sweden)

    Sandra Dias

    2016-02-01

    Full Text Available The Cu2SnS3 thin films were deposited using an economic, solution processible, spin coating technique. The films were found to possess a tetragonal crystal structure using X-ray diffraction. The film morphology and the particle size were determined using scanning electron microscopy. The various planes in the crystal were observed using transmission electron microscopy. The optimum band gap of 1.23 eV and a high absorption coefficient of 104 cm−1 corroborate its application as a photoactive material. The visible and infrared (IR photo response was studied for various illumination intensities. The current increased by one order from a dark current of 0.31 μA to a current of 1.78 μA at 1.05 suns and 8.7 μA under 477.7 mW/cm2 IR illumination intensity, at 3 V applied bias. The responsivity, sensitivity, external quantum efficiency and specific detectivity were found to be 10.93 mA/W, 5.74, 2.47% and 3.47 × 1010 Jones respectively at 1.05 suns and 16.32 mA/W, 27.16, 2.53% and 5.10 × 1010 Jones respectively at 477.7 mW/cm2 IR illumination. The transient photoresponse was measured both for visible and IR illuminations.

  4. Thermoelectric properties of P-type Sb2Te3 thick film processed by a screen-printing technique and a subsequent annealing process

    International Nuclear Information System (INIS)

    Kim, Sun Jin; We, Ju Hyung; Kim, Jin Sang; Kim, Gyung Soo; Cho, Byung Jin

    2014-01-01

    Highlights: • We report on thermoelectric properties of screen-printed Sb 2 Te 3 thick film. • Subsequent annealing process determines thermoelectric properties of Sb 2 Te 3 film. • Annealing in tellurium powder ambient contributes to tellurium-rich Sb 2 Te 3 film. • Annealing in tellurium powder ambient enhances carrier mobility of Sb 2 Te 3 film. -- Abstract: We herein report the thermoelectric properties of Sb 2 Te 3 thick film fabricated by a screen-printing technique and a subsequent annealing process. Each step of the screen-printing fabrication process of Sb 2 Te 3 thick film is described in detail. It was found that the subsequent annealing process must be carefully designed to achieve good thermoelectric properties of the screen-printed film. The results show that the annealing of the screen-printed Sb 2 Te 3 thick film together with tellurium powder in the same process chamber significantly improves the carrier mobility by increasing the average scattering time of the carrier in the film, resulting in a large improvement of the power factor. By optimizing the annealing process, we achieved a maximum thermoelectric figure-of-merit, ZT, of 0.32 at room temperature, which is slightly higher than that of bulk Sb 2 Te 3 . Because screen-printing is a simple and low-cost process and given that it is easy to scale up to large sizes, this result will be useful for the realization of large, film-type thermoelectric devices

  5. Study of the Radiochromic Film for High Dose Measurement in Radiation Processing

    Directory of Open Access Journals (Sweden)

    CHEN Yi-zhen

    2016-02-01

    Full Text Available To establish the radiochromic film dosimeter for high dose level measurement during radiation processing, By corresponding formula and its preparation process research, batches of radiochromic film dosimeters were prepared using nylon as substrate and pararosaniline cyanide as dye. In Co-60 gamma reference radiation field, dosimetry response performance of radiochromic film was studied and results showed that the repeatability was good to 1.0%. The response curves demonstrated good linearity in the dose range of 5-210 kGy, and the signal of radiochromic film dosimeters after irradiation under the condition of low temperature storage within 2 weeks was stable. In addition, the radiochromic film dosimeters were not found to have noticeable dose rate dependence in the range of this experiment. In the linear dose range, radiochromic film dosimeter measures the absorbed dose, with extended uncertainty 4.2% (k=2 for Co-60 gamma rays. The film was suitable as dosimeters for the parameters measurement of the electron beam on the accelerator.

  6. Processing-structure-properties relationships in PLA nanocomposite films

    Science.gov (United States)

    Di Maio, L.; Scarfato, P.; Garofalo, E.; Galdi, M. R.; D'Arienzo, L.; Incarnato, L.

    2014-05-01

    This work deals on the possibility to improve performances of PLA-based nanocomposite films, for packaging applications, through conveniently tuning materials and processing conditions in melt compounding technology. In particular, two types of polylactic acid and different types of filler selected from montmorillonites and bentonites families were used to prepare the hybrid systems by using a twin-screw extruder. The effect of biaxial drawing on morphology and properties of the nanocomposites, produced by film blowing, was investigated.

  7. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    Directory of Open Access Journals (Sweden)

    Benpeng Zhu

    2016-03-01

    Full Text Available Single-beam acoustic tweezers (SBAT, used in laboratory-on-a-chip (LOC device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d33 = 270pC/N and kt = 0.51 was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (∼0.9, demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  8. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Benpeng, E-mail: benpengzhu@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xu, Jiong; Yang, Xiaofei [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Ying; Lee, Changyang; Zhou, Qifa; Shung, K. Kirk [Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles, California 90089-1111 (United States); Wang, Tian; Xiong, Ke [Department of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan 430072 (China); Shiiba, Michihisa; Takeuchi, Shinichi [Medical Engineering Course, Graduate School of Engineering, Toin University of Yokohama, Yokohama 225-8501 (Japan)

    2016-03-15

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d{sub 33} = 270 pC/N and k{sub t} = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50 MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  9. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    Science.gov (United States)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic miner