WorldWideScience

Sample records for processed bifeo3 compounds

  1. Ferroelectric and magnetic properties in high-pressure synthesized BiFeO3 compound

    International Nuclear Information System (INIS)

    Zhai, L.; Shi, Y.G.; Gao, J.L.; Tang, S.L.; Du, Y.W.

    2011-01-01

    Highlights: → A high-density polycrystalline BiFeO 3 compound was synthesized by high-pressure annealing method. → The sample showed weak ferromagnetic at room temperature, which could be attributed to the lattice distortion induced by the high-pressure annealing. → Irregular domains were observed on the surface of the sample by piezoresponse force microscopy, and a typical hysteresis loop was obtained. - Abstract: High-density polycrystalline BiFeO 3 compound was synthesized by high-pressure annealing. Measurements of crystal structure, magnetic, and ferroelectric properties were made on the sample. It was found that the sample was almost single phase with a distorted R3c structure. The results of the X-ray photoelectron spectra demonstrate that the oxidation state of Fe in the sample is Fe 3+ . The room-temperature field dependence of magnetization for BiFeO 3 exhibits a hysteretic behavior. The observed weak ferromagnetism could be ascribed to the lattice distortion induced by the high-pressure annealing. In addition, the local ferroelectric performance of the sample was studied by piezoresponse force microscopy.

  2. Enhanced photocatalytic property of BiFeO_3/N-doped graphene composites and mechanism insight

    International Nuclear Information System (INIS)

    Li, Pai; Li, Lei; Xu, Maji; Chen, Qiang; He, Yunbin

    2017-01-01

    Highlights: • A hydrothermal process was used to prepare BiFeO_3/N-doped graphene composites. • BiFeO_3/N-doped graphene exhibits superior photocatalytic activity and stability. • The energy band of BiFeO_3 bends downward by ∼1.0 eV at the composite interface. • Downward band bending leads to rapid electron transfer at the composite interface. • Holes and ·OH are predominant active species in the photo-degradation process. - Abstract: A series of BiFeO_3/(N-doped) graphene composites are prepared by a facile hydrothermal method. BiFeO_3/N-doped graphene shows photocatalytic performance superior to that of BiFeO_3/graphene and pristine BiFeO_3. The enhanced photo-degradation performance of BiFeO_3/N-doped graphene are mainly attributable to the improved light absorbance of the composite, abundant active adsorption sites and high electrical charge mobility of N-doped graphene, and the downward band bending of BiFeO_3 at the composite interface. In particular, X-ray photoelectron spectroscopy analyses reveal that the electron energy band of BiFeO_3 is downward bent by 1.0 eV at the interface of BiFeO_3/N-doped graphene, because of different work functions of both materials. This downward band bending facilitates the transfer of photogenerated electrons from BiFeO_3 to N-doped graphene and prompts the separation of photo-generated electron-hole pairs, leading eventually to the enhanced photocatalytic performance.

  3. Containerless solidification of BiFeO3 oxide under microgravity

    Science.gov (United States)

    Yu, Jianding; Arai, Yasutomo; Koshikawa, Naokiyo; Ishikawa, Takehito; Yoda, Shinichi

    1999-07-01

    Containerless solidification of BiFeO3 oxide has been carried out under microgravity with Electrostatic Levitation Furnace (ELF) aboard on the sounding rocket (TR-IA). It is a first containerless experiment using ELF under microgravity for studying the solidification of oxide insulator material. Spherical BiFeO3 sample with diameter of 5mm was heated by two lasers in oxygen and nitrogen mixing atmosphere, and the sample position by electrostatic force under pinpoint model and free drift model. In order to compare the solidification behavior in microgravity with on ground, solidification experiments of BiFeO3 in crucible and drop tube were carried out. In crucible experiment, it was very difficult to get single BiFeO3 phase, because segregation of Fe2O3 occured very fast and easily. In drop tube experiment, fine homogeneous BiFeO3 microstructure was obtained in a droplet about 300 μm. It implies that containerless processing can promote the phase selection in solidification. In microgravity experiment, because the heating temperature was lower than that of estimated, the sample was heated into Fe2O3+liquid phase region. Fe2O3 single crystal grew on the surface of the spherical sample, whose sample was clearly different from that observed in ground experiments.

  4. modified BiFeO3–BaTiO3

    Indian Academy of Sciences (India)

    based perovskite structures lead- free BiFeO3–BaTiO3 solid solutions are popularly studied due to the high Curie temperature (TC). It was reported that the BiFeO3–BaTiO3 system possessed high piezoelectric. ∗. Author for correspondence ...

  5. Enhanced magnetization in morphologically and magnetically distinct BiFeO3 and La0.7Sr0.3MnO3 composites

    Science.gov (United States)

    Pillai, Shreeja; Reshi, Hilal Ahmad; Bagwaiya, Toshi; Banerjee, Alok; Shelke, Vilas

    2017-09-01

    Nanomaterials exhibit properties different from those of their bulk counterparts. The modified magnetic characteristics of manganite nanoparticles were exploited to improve magnetization in multiferroic BiFeO3 compound. We studied the composite of two morphologically and magnetically distinct compounds BiFeO3 (BFO) and La0.7Sr0.3MnO3 (LSMO). The microcrystalline BiFeO3 sample was prepared by solid state reaction method and the nanocrystalline La0.7Sr0.3MnO3 by sol-gel method. Composites with nominal compositions (1-x)BiFeO3-(x)La0.7Sr0.3MnO3 were prepared by modified solid state reaction method. The phase purity and crystal structures were checked by using X-ray diffraction. The formation of composites with phase separated BFO and LSMO was confirmed using Raman and Fourier Transform Infrared spectroscopy studies. The composite samples showed relatively high value of magnetization with finite coercivity. This improvement in magnetic behavior is ascribed to the coexistence of multiple magnetic orderings in composite samples. We scrutinized the possibility of oxygen vacancy or Fe mixed valency formation in the samples using X-ray photoelectron spectroscopy technique.

  6. Combinatorial processing libraries for bulk BiFeO3-PbTiO3 piezoelectric ceramics

    International Nuclear Information System (INIS)

    Hu, W.; Tan, X.; Rajan, K.

    2010-01-01

    A high throughput approach for generating combinatorial libraries with varying processing conditions for bulk ceramics has been developed. This approach utilized the linear temperature gradient in a tube furnace to screen a whole temperature range for optimized preparation. With this approach, the processing of 0.98[0.6BiFeO 3 -0.4PbTiO 3 ]-0.02Pb(Mg 1/3 Nb 2/3 )O 3 ceramic powders and pellets for high-temperature piezoelectric applications was demonstrated to identify the best synthesis conditions for phase purity. The dielectric property measurement on the as-processed solid solution ceramics confirmed the high Curie temperature and the improved loss tangent with the Pb(Mg 1/3 Nb 2/3 )O 3 doping. (orig.)

  7. Multiferroic BiFeO3-BiMnO3 Nanocheckerboard From First Principles

    OpenAIRE

    Palova, L.; Chandra, P.; Rabe, K. M.

    2010-01-01

    We present a first principles study of an unusual heterostructure, an atomic-scale checkerboard of BiFeO3-BiMnO3, and compare its properties to the two bulk constituent materials, BiFeO3 and BiMnO3. The "nanocheckerboard" is found to have a multiferroic ground state with the desired properties of each constituent: polar and ferrimagnetic due to BiFeO3 and BiMnO3, respectively. The effect of B-site cation ordering on magnetic ordering in the BiFeO3-BiMnO3 system is studied. The checkerboard ge...

  8. BiFeO3 Crystal Structure at Low Temperatures

    International Nuclear Information System (INIS)

    Palewicz, A.; Sosnowska, I.; Przenioslo, R.; Hewat, A.W.

    2010-01-01

    The crystal and magnetic structure of BiFeO 3 have been studied with the use of high resolution neutron diffraction between 5 K and 300 K. The atomic coordinates in BiFeO 3 are almost unchanged between 5 K and 300 K. (authors)

  9. Anharmonic phonons and magnons in BiFeO3

    Energy Technology Data Exchange (ETDEWEB)

    Delaire, Olivier A [ORNL; Ma, Jie [ORNL; Stone, Matthew B [ORNL; Huq, Ashfia [ORNL; Gout, Delphine J [ORNL; Brown, Craig [National Institute of Standards and Technology (NIST); Wang, Kefeng [Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing; Ren, Zhifeng [Boston College, Chestnut Hill

    2012-01-01

    The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO3 were measured for temperatures 200 < T < 750K , using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO3 closely resembles that of similar Fe perovskites, such as LaFeO3, despite the cycloid modulation in BiFeO3. We do not find any evidence for a spin gap. A strong T-dependence of the phonon DOS was found, with a marked broadening of the whole spectrum, providing evidence of strong anharmonicity. This anharmonicity is corroborated by large amplitude motions of Bi and O ions observed with neutron diffraction. These results highlight the importance of spin-phonon coupling in this material.

  10. Unidirectional THz radiation propagation in BiFeO3

    Science.gov (United States)

    Room, Toomas

    The mutual coupling between magnetism and electricity present in many multiferroic materials permit the magnetic control of the electric polarization and the electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to write a magnetic state current-free by an electric voltage would provide a huge technological advantage. However, ME coupling changes the low energy electrodynamics of these materials in unprecedented way - optical ME effects give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. The transparent direction can be switched with dc magnetic or electric field, thus opening up new possibilities to manipulate the propagation of electromagnetic waves in multiferroic materials. We studied the unidirectional transmission of THz radiation in BiFeO3 crystals, the unique multiferroic compound offering a real potential for room temperature applications. The electrodynamics of BiFeO3 at 1THz and below is dominated by the spin wave modes of cycloidal spin order. We found that the optical magnetoelectric effect generated by spin waves in BiFeO3 is robust enough to cause considerable nonreciprocal directional dichroism in the GHz-THz range even at room temperature. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. Our work demonstrates that the nonreciprocal directional dichroism spectra of low energy excitations and their theoretical analysis provide microscopic model of ME couplings in multiferroic materials. Recent THz spectroscopy studies of multiferroic materials are an important step toward the realization of optical diodes, devices which transmit light in one but not in the opposite direction.

  11. Fabrication, Characterization, Properties, and Applications of Low-Dimensional BiFeO3 Nanostructures

    Directory of Open Access Journals (Sweden)

    Heng Wu

    2014-01-01

    Full Text Available Low-dimensional BiFeO3 nanostructures (e.g., nanocrystals, nanowires, nanotubes, and nanoislands have received considerable attention due to their novel size-dependent properties and outstanding multiferroic properties at room temperature. In recent years, much progress has been made both in fabrications and (microstructural, electrical, and magnetic in characterizations of BiFeO3 low-dimensional nanostructures. An overview of the state of art in BiFeO3 low-dimensional nanostructures is presented. First, we review the fabrications of high-quality BiFeO3 low-dimensional nanostructures via a variety of techniques, and then the structural characterizations and physical properties of the BiFeO3 low-dimensional nanostructures are summarized. Their potential applications in the next-generation magnetoelectric random access memories and photovoltaic devices are also discussed. Finally, we conclude this review by providing our perspectives to the future researches of BiFeO3 low-dimensional nanostructures and some key problems are also outlined.

  12. Photoelectrochemical Performance Observed in Mn-Doped BiFeO3 Heterostructured Thin Films

    Directory of Open Access Journals (Sweden)

    Hao-Min Xu

    2016-11-01

    Full Text Available Pure BiFeO3 and heterostructured BiFeO3/BiFe0.95Mn0.05O3 (5% Mn-doped BiFeO3 thin films have been prepared by a chemical deposition method. The band structures and photosensitive properties of these films have been investigated elaborately. Pure BiFeO3 films showed stable and strong response to photo illumination (open circuit potential kept −0.18 V, short circuit photocurrent density was −0.023 mA·cm−2. By Mn doping, the energy band positions shifted, resulting in a smaller band gap of BiFe0.95Mn0.05O3 layer and an internal field being built in the BiFeO3/BiFe0.95Mn0.05O3 interface. BiFeO3/BiFe0.95Mn0.05O3 and BiFe0.95Mn0.05O3 thin films demonstrated poor photo activity compared with pure BiFeO3 films, which can be explained by the fact that Mn doping brought in a large amount of defects in the BiFe0.95Mn0.05O3 layers, causing higher carrier combination and correspondingly suppressing the photo response, and this negative influence was more considerable than the positive effects provided by the band modulation.

  13. Self-Poling of BiFeO3 Thick Films.

    Science.gov (United States)

    Khomyakova, Evgeniya; Sadl, Matej; Ursic, Hana; Daniels, John; Malic, Barbara; Bencan, Andreja; Damjanovic, Dragan; Rojac, Tadej

    2016-08-03

    Bismuth ferrite (BiFeO3) is difficult to pole because of the combination of its high coercive field and high electrical conductivity. This problem is particularly pronounced in thick films. The poling, however, must be performed to achieve a large macroscopic piezoelectric response. This study presents evidence of a prominent and reproducible self-poling effect in few-tens-of-micrometer-thick BiFeO3 films. Direct and converse piezoelectric measurements confirmed that the as-sintered BiFeO3 thick films yield d33 values of up to ∼20 pC/N. It was observed that a significant self-poling effect only appears in cases when the films are heated and cooled through the ferroelectric-paraelectric phase transition (Curie temperature TC ∼ 820 °C). These self-poled films exhibit a microstructure with randomly oriented columnar grains. The presence of a compressive strain gradient across the film thickness cooled from above the TC was experimentally confirmed and is suggested to be responsible for the self-poling effect. Finally, the macroscopic d33 response of the self-poled BiFeO3 film was characterized as a function of the driving-field frequency and amplitude.

  14. Electric and Magnetic Properties of Sputter Deposited BiFeO3 Films

    Directory of Open Access Journals (Sweden)

    N. Siadou

    2013-01-01

    Full Text Available Polycrystalline BiFeO3 films have been magnetron sputter deposited at room temperature and subsequently heat-treated ex situ at temperatures between 400 and 700°C. The deposition was done in pure Ar atmosphere, as the use of oxygen-argon mixture was found to lead to nonstoichiometric films due to resputtering effects. At a target-to-substrate distance d=2′′ the BiFeO3 structure can be obtained in larger range process gas pressures (2–7 mTorr but the films do not show a specific texture. At d=6′′ codeposition from BiFeO3 and Bi2O3 has been used. Films sputtered at low rate tend to grow with the (001 texture of the pseudo-cubic BiFeO3 structure. As the film structure does not depend on epitaxy similar results are obtained on different substrates. A result of the volatility of Bi, Bi rich oxide phases occur after heat treatment at high temperatures. A Bi2SiO5 impurity phase forms on the substrate side, and does not affect the properties of the main phase. Despite the deposition on amorphous silicon oxide substrate weak ferromagnetism phenomena and displaced loops have been observed at low temperatures showing that their origin is not strain. Ba, La, Ca, and Sr doping suppress the formation of impurity phases and leakage currents.

  15. Effect of strain on voltage-controlled magnetism in BiFeO3-based heterostructures

    Science.gov (United States)

    Wang, J. J.; Hu, J. M.; Yang, T. N.; Feng, M.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

    2014-01-01

    Voltage-modulated magnetism in magnetic/BiFeO3 heterostructures can be driven by a combination of the intrinsic ferroelectric-antiferromagnetic coupling in BiFeO3 and the antiferromagnetic-ferromagnetic exchange interaction across the heterointerface. However, ferroelectric BiFeO3 film is also ferroelastic, thus it is possible to generate voltage-induced strain in BiFeO3 that could be applied onto the magnetic layer across the heterointerface and modulate magnetism through magnetoelastic coupling. Here, we investigated, using phase-field simulations, the role of strain in voltage-controlled magnetism for these BiFeO3-based heterostructures. It is predicted, under certain condition, coexistence of strain and exchange interaction will result in a pure voltage-driven 180° magnetization reversal in BiFeO3-based heterostructures. PMID:24686503

  16. BiFeO3 epitaxial thin films and devices: past, present and future

    Science.gov (United States)

    Sando, D.; Barthélémy, A.; Bibes, M.

    2014-11-01

    The celebrated renaissance of the multiferroics family over the past ten years has also been that of its most paradigmatic member, bismuth ferrite (BiFeO3). Known since the 1960s to be a high temperature antiferromagnet and since the 1970s to be ferroelectric, BiFeO3 only had its bulk ferroic properties clarified in the mid-2000s. It is however the fabrication of BiFeO3 thin films and their integration into epitaxial oxide heterostructures that have fully revealed its extraordinarily broad palette of functionalities. Here we review the first decade of research on BiFeO3 films, restricting ourselves to epitaxial structures. We discuss how thickness and epitaxial strain influence not only the unit cell parameters, but also the crystal structure, illustrated for instance by the discovery of the so-called T-like phase of BiFeO3. We then present its ferroelectric and piezoelectric properties and their evolution near morphotropic phase boundaries. Magnetic properties and their modification by thickness and strain effects, as well as optical parameters, are covered. Finally, we highlight various types of devices based on BiFeO3 in electronics, spintronics, and optics, and provide perspectives for the development of further multifunctional devices for information technology and energy harvesting.

  17. Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films

    Science.gov (United States)

    Prasannakumara, R.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.

  18. Enhanced magnetic properties of chemical solution deposited BiFeO3 thin film with ZnO buffer layer

    International Nuclear Information System (INIS)

    Rajalakshmi, R.; Kambhala, Nagaiah; Angappane, S.

    2012-01-01

    Highlights: ► Enhanced magnetization of BiFeO 3 is important for strong magnetoelectric coupling. ► BiFeO 3 film with ZnO buffer layer was successfully synthesized by chemical method. ► Magnetization of BiFeO 3 has increased by more than 10 times with ZnO buffer layer. ► A mechanism for enhancement in ferromagnetism of BiFeO 3 film is proposed. - Abstract: Magnetic properties of BiFeO 3 films deposited on Si substrates with and without ZnO buffer layer have been studied in this work. We adopted the chemical solution deposition method for the deposition of BiFeO 3 as well as ZnO films. The x-ray diffraction measurements on the deposited films confirm the formation of crystalline phase of BiFeO 3 and ZnO films, while our electron microscopy measurements help to understand the morphology of few micrometers thick films. It is found that the deposited ZnO film exhibit a hexagonal particulate surface morphology, whereas BiFeO 3 film fully covers the ZnO surface. Our magnetic measurements reveal that the magnetization of BiFeO 3 has increased by more than ten times in BiFeO 3 /ZnO/Si film compared to BiFeO 3 /Si film, indicating the major role played by ZnO buffer layer in enhancing the magnetic properties of BiFeO 3 , a technologically important multiferroic material.

  19. Structure and phase transition of BiFeO3 cubic micro-particles prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Zhou, Jian-Ping; Yang, Ruo-Lin; Xiao, Rui-Juan; Chen, Xiao-Ming; Deng, Chao-Yong

    2012-01-01

    Graphical abstract: Bismuth ferrite (BiFeO 3 ) cubic micro-particles with smooth surfaces were synthesized. BiFeO 3 has a hexagonal perovskite structure with a space group R3c below 370 °C and rhombohedral perovskite structure with a space group R3m below 755 °C, undergoes a phase transition in the temperature range of 755–817 °C to a cubic structure, then decompose to liquid and Fe 2 O 3 above 939 °C. Highlights: ► BiFeO 3 micro-particles with smooth surface were synthesized by hydrothermal method. ► BiFeO 3 enjoys hexagonal structure with well element ratio and chemical valence. ► BiFeO 3 transition from rhombohedral phase to cubic phase lasts 60 °C. -- Abstract: Single-phase bismuth ferrite (BiFeO 3 ) powders were synthesized with a hydrothermal method by controlling the experimental conditions carefully. The powder structure, morphology and composition were characterized by using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscope, Raman measurement and X-ray photoelectron spectroscopy. The particles change from irregular agglomerations to regular cubes with increasing KOH concentration. The large BiFeO 3 cubic particles enjoy much smooth surfaces with well-matched element ratio (Bi:Fe:O = 1:1:3) and chemical valence (Bi 3+ , Fe 3+ and O 2− ). The high temperature XRD and differential scanning calorimetry show that BiFeO 3 powders have a hexagonal perovskite structure with a space group R3c below 370 °C and a rhombohedral structure with a space group R3m below 755 °C. BiFeO 3 undergoes a phase transition in the temperature range of 755–817 °C from rhombohedral structure to a cubic phase, then decomposes to liquid and Fe 2 O 3 above 939 °C.

  20. Pressure-induced phase transitions of multiferroic BiFeO3

    OpenAIRE

    XiaoLi, Zhang; Ye, Wu; Qian, Zhang; JunCai, Dong; Xiang, Wu; Jing, Liu; ZiYu, Wu; DongLiang, Chen

    2013-01-01

    Pressure-induced phase transitions of multiferroic BiFeO3 have been investigated using synchrotron radiation X-ray diffraction with diamond anvil cell technique at room temperature. Present experimental data clearly show that rhombohedral (R3c) phase of BiFeO3 first transforms to monoclinic (C2/m) phase at 7 GPa, then to orthorhombic (Pnma) phase at 11 GPa, which is consistent with recent theoretical ab initio calculation. However, we observe another peak at 2{\\theta}=7{\\deg} in the pressure ...

  1. Photoconductivity in BiFeO3 thin films

    Science.gov (United States)

    Basu, S. R.; Martin, L. W.; Chu, Y. H.; Gajek, M.; Ramesh, R.; Rai, R. C.; Xu, X.; Musfeldt, J. L.

    2008-03-01

    The optical properties of epitaxial BiFeO3 thin films have been characterized in the visible range. Variable temperature spectra show an absorption onset near 2.17eV, a direct gap (2.667±0.005eV at 300K), and charge transfer excitations at higher energy. Additionally, we report photoconductivity in BiFeO3 films under illumination from a 100mW /cm2 white light source. A direct correlation is observed between the magnitude of the photoconductivity and postgrowth cooling pressure. Dark conductivities increased by an order of magnitude when comparing films cooled in 760 and 0.1Torr. Large increases in photoconductivity are observed in light.

  2. Nanoscale Control of Exchange Bias with BiFeO3 Thin Films

    NARCIS (Netherlands)

    Martin, Lane W.; Chu, Ying-Hao; Holcomb, Mikel B.; Huijben, Mark; Yu, Pu; Han, Shu-Jen; Lee, Donkoun; Wang, Shan X.; Ramesh, R.

    2008-01-01

    We demonstrate a direct correlation between the domain structure of multiferroic BiFeO3 thin films and exchange bias of Co0.9Fe0.1/BiFeO3 heterostructures. Two distinct types of interactions − an enhancement of the coercive field (exchange enhancement) and an enhancement of the coercive field

  3. A note on structural and dielectric properties of BiFeO3- PbTiO3 and BiFeO3- PbZrO3 composites

    International Nuclear Information System (INIS)

    Satpathy, S. K.; Mohanty, N. K.; Behera, A. K.; Behera, B.; Nayak, P.

    2015-01-01

    The composites of BiFeO 3 -PbTiO 3 (BF-PT) and BiFeO 3 -PbZrO 3 (BF-PZ) were prepared by mixed oxide method. Room temperature X-ray diffraction data confirms the rhombohedral and tetragonal crystal structure respectively. Dielectric constant of BF-PZ is found to give high value compared to BF-PT and hence, there is an increase value of ac conductivity for the former. Both the composites show negative temperature coefficient of resistance (NTCR) behavior. The activation energies of BF-PT and BF-PZ are found to be 0.35 eV and 0.53 eV respectively. The d 33 coefficients are found to be 2.0 and 2.1 pC/N for BF-PT and BF-PZ respectively

  4. Magneto-optical properties of BiFeO3 thin films using surface plasmon resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2014-01-01

    Indigeneously assembled surface plasmon resonance (SPR) set up has been exploited to study the magnetic field dependent optical properties of BiFeO 3 thin films. BiFeO 3 thin films have been deposited onto gold (Au) coated glass prism by using pulsed laser deposition technique. The surface plasmon modes in prism/Au/BiFeO 3 /air structure have been excited in Kretschmann configuration at the interface of Au/BiFeO 3 thin films. The SPR reflectance curves obtained for prism/Au/BiFeO 3 /air structure were utilized to investigate the optical properties of BiFeO 3 thin films at optical frequency (λ=633 nm) as a function of applied magnetic field. SPR curves shows a continuous shift towards lower angles with increasing applied magnetic field, which indicate the promising application of ferromagnetic BiFeO 3 film as a magnetic field sensor. Complex dielectric constant of deposited BiFeO 3 film was determined by fitting the experimental SPR data with Fresnel's equations. The variation of complex dielectric constant and refractive index of BiFeO 3 film was studied with increase in magnetic field, and the sensitivity of magnetic field sensor was found to be about 0.52 RIU/T

  5. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO3 thin film

    International Nuclear Information System (INIS)

    Gupta, Surbhi; Gupta, Vinay; Tomar, Monika; James, A. R.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar

    2014-01-01

    Multiferroic Bismuth Ferrite (BiFeO 3 ) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO 3 thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO 3 and Fe 2 O 3 to pure BiFeO 3 phase and, subsequently, to a mixture of BiFeO 3 and Bi 2 O 3 with increase in the concentration of excess Bi from 0% to 15%. BiFeO 3 thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe 2 O 3 ). Deterioration in ferroic properties of BiFeO 3 thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO 3 thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm 2 and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO 3 thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO 3 thin films exhibiting the improved multiferroic properties.

  6. Synthesis, microstructure and properties of BiFeO3-based multiferroic materials: A review

    Directory of Open Access Journals (Sweden)

    Bernardo, M. S.

    2014-02-01

    Full Text Available BiFeO3-based materials are currently one of the most studied multiferroics due to their possible applications at room temperature. However, among the large number of published papers there is much controversy. For example, possibility of synthesizing a pure BiFeO3 phase is still source of discussion in literature. Not even the nature of the binary Bi2O3-Fe2O3 diagram has been clarified yet. The difficulty in controlling the formation of parasite phases reaches the consolidation step. Accordingly, the sintering conditions must be carefully determined both to get dense materials and to avoid bismuth ferrite decomposition. However, the precise conditions to attain dense bismuth ferrite materials are frequently contradictory among different works. As a consequence, the reported properties habitually result opposed and highly irreproducible hampering the preparation of BiFeO3 materials suitable for practical applications. In this context, the purpose of the present review is to summarize the main researches regarding BiFeO3 synthesis, microstructure and properties in order to provide an easier understanding of these materials.Los materiales basados en BiFeO3 son en la actualidad uno de los multiferroicos más estudiados debido a sus posibles aplicaciones a temperatura ambiente. Sin embargo, entre la multitud de trabajos publicados referentes a estos materiales existe mucha controversia. Por ejemplo, la posibilidad de sintetizar una fase BiFeO3 pura es aún objeto de discusión en la bibliografía y la naturaleza de los diagramas de fases del sistema Bi2O3-Fe2O3 aún no está clara. La dificultad para controlar las fases parásitas se extiende al proceso de consolidación por lo que las condiciones de sinterización deben ser cuidadosamente controladas para obtener materiales densos y al mismo tiempo evitar la descomposición de la ferrita. No obstante, las condiciones precisas para obtener materiales densos de BiFeO3 son frecuentemente

  7. Superior Properties of Energetically Stable La2/3Sr1/3MnO3/Tetragonal BiFeO3 Multiferroic Superlattices

    KAUST Repository

    Feng, Nan; Mi, Wenbo; Wang, Xiaocha; Cheng, Yingchun; Schwingenschlö gl, Udo

    2015-01-01

    The superlattice of energetically stable La2/3Sr1/3MnO3 and tetragonal BiFeO3 is investigated by means of density functional theory. The superlattice as a whole exhibits a half-metallic character, as is desired for spintronic devices. The interfacial electronic states and exchange coupling are analyzed in details. We demonstrate that the interfacial O atoms play a key role in controlling the coupling. The higher ferroelectricity of tetragonal BiFeO3 and stronger response to the magnetic moment in La2/3Sr1/3MnO3/BiFeO3 superlattice show a strongly enhanced electric control of the magnetism as compared to the rhombohedral one. Therefore, it is particularly practical interest in the magnetoelectric controlled spintronic devices.

  8. Superior Properties of Energetically Stable La2/3Sr1/3MnO3/Tetragonal BiFeO3 Multiferroic Superlattices

    KAUST Repository

    Feng, Nan

    2015-04-30

    The superlattice of energetically stable La2/3Sr1/3MnO3 and tetragonal BiFeO3 is investigated by means of density functional theory. The superlattice as a whole exhibits a half-metallic character, as is desired for spintronic devices. The interfacial electronic states and exchange coupling are analyzed in details. We demonstrate that the interfacial O atoms play a key role in controlling the coupling. The higher ferroelectricity of tetragonal BiFeO3 and stronger response to the magnetic moment in La2/3Sr1/3MnO3/BiFeO3 superlattice show a strongly enhanced electric control of the magnetism as compared to the rhombohedral one. Therefore, it is particularly practical interest in the magnetoelectric controlled spintronic devices.

  9. Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition

    KAUST Repository

    Yang, Yang

    2014-11-01

    Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences. The symmetries of the fundamental Raman modes in 50-700 cm-1 were identified based on group theory. The symmetries of the high order Raman modes in 900-1500 cm-1 of BiFeO3 are determined for the first time, which can provide strong clarifications to the symmetry of the fundamental peaks in 400-700 cm-1 in return. Moreover, the lattice structures of BiFeO3 films are identified consequently on the basis of Raman spectroscopy. BiFeO3 films on SrRuO3 coated SrTiO3 (0 0 1) substrate, CaRuO3 coated SrTiO3 (0 0 1) substrate and tin-doped indium oxide substrate are found to be in the rhombohedral structure, while BiFeO3 film on SrRuO3 coated Nb: SrTiO3 (0 0 1) substrate is in the monoclinic structure. Our results suggest that polarized Raman spectroscopy would be a feasible tool to study the lattice structure of BiFeO3 films.

  10. Band-gap tuning and magnetic properties of heterovalent ions (Ba, Sr and Ca) substituted BiFeO_3 nanoparticles

    International Nuclear Information System (INIS)

    Chauhan, Sunil; Kumar, Manoj; Katyal, S. C.

    2016-01-01

    A Comparative study of heterovalent Ba, Sr and Ca ions substitution on the structural, vibrational, optical and magnetic properties of BiFeO_3 nanoparticles was carried out. The distorted rhombohedral structure was confirmed from both X-ray diffraction and Raman spectroscopy techniques in pure BiFeO_3 and Bi_0_._8_5A_0_._1_5FeO_3 (A= Ba, Sr and Ca) samples. UV-Visible spectroscopy results show that the band-gap of BiFeO_3 nanoparticles can be tuned by heterovalent ions substitution from 2.12 eV for BiFeO_3 to 2.10, 2.06 and 2.03 eV for Ca, Sr and Ba substituted BiFeO_3 nanoparticles respectively. The magnetic measurements indicate enhancement in magnetization for heterovalent A"2"+ substituted BiFeO_3 samples and the magnetization increases with increase of ionic radius of the substituted ions.

  11. Effect of surface modification of BiFeO3 on the dielectric, ferroelectric, magneto-dielectric properties of polyvinylacetate/BiFeO3 nanocomposites

    Directory of Open Access Journals (Sweden)

    O. P. Bajpai

    2014-09-01

    Full Text Available Bismuth ferrite (BiFeO3 is considered as one of the most promising materials in the field of multiferroics. In this work, a simple green route as well as synthetic routes has been used for the preparation of pure phase BiFeO3. An extract of Calotropis Gigantea flower was used as a reaction medium in green route. In each case so formed BiFeO3 particles are of comparable quality. These particles are in the range of 50–60 nm and exhibit mixed morphology (viz., spherical and cubic as confirmed by TEM analysis. These pure phase BiFeO3 nanoparticles were first time surface modified effectively by mean of two silylating agent’s viz., tetraethyl orthosilicate (TEOS and (3-Aminopropyltriethoxysilane (APTES. Modified and unmodified BiFeO3 nanoparticles were efficiently introduced into polyvinylacetate (PVAc matrix. It has been shown that nanocomposite prepared by modified BiFeO3 comprise superior dispersion characteristics, improved ferroelectric properties and favorable magneto-dielectric properties along with excellent wettability in compare to nanocomposite prepared by unmodified BiFeO3. These preliminary results demonstrate possible applications of this type of nanocomposites particularly in the field of multiferroic coating and adhesives.

  12. BiFeO3 thin films: Novel effects

    Indian Academy of Sciences (India)

    photolithography followed by etching of the silver film. Saturation ... Fe in +3 state. Films thus obtained are therefore highly resistive (ρ ∼ 108–109 cm) and hence exhibit saturated ferroelectric hysteresis loop (figure 3). Anomaly in ... BiFeO3 bulk sample by Rogniskaya et al [4] had indicated abrupt change in lattice parame-.

  13. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO3 thin films

    International Nuclear Information System (INIS)

    Sreenivas Puli, Venkata; Kumar Pradhan, Dhiren; Gollapudi, Sreenivasulu; Coondoo, Indrani; Panwar, Neeraj; Adireddy, Shiva; Chrisey, Douglas B.; Katiyar, Ram S.

    2014-01-01

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO 3 (BFO) thin films have been deposited on Pt/TiO 2 /SiO 2 /Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d 33 ) ∼94 pm/V at 0.6 MV/cm. High dielectric constant ∼900 and low dielectric loss ∼0.25 were observed at room temperature. M–H loops have shown relatively high saturation magnetization ∼35 emu/cm 3 at a maximum field of H ∼20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films. - Highlights: • Transition metal modified polycrystalline BiFeO 3 thin films prepared using PLD. • High ME-coupling response was observed in co-substituted BiFeO 3 thin films. • High magnetization ∼35 emu/cm 3 at a maximum field of H ∼20 kOe. • Low leakage current might be due to co-substitution in BiFeO 3 thin films. • A notable piezoelectric constant d 33 ∼94 pm/V was found in BiFeO 3 thin films

  14. Study of magnetization and magnetoelectricity in CoFe2O4/BiFeO3 core-shell composites

    Science.gov (United States)

    Kuila, S.; Tiwary, Sweta; Sahoo, M. R.; Barik, A.; Babu, P. D.; Siruguri, V.; Birajdar, B.; Vishwakarma, P. N.

    2018-02-01

    CoFe2O4 (core)/BiFeO3 (shell) nanoparticles are prepared by varying the relative molar concentration of core and shell materials (40%CoFe2O4-60%BiFeO3, 50%CoFe2O4-50%BiFeO3, and 60%CoFe2O4-40%BiFeO3). The core-shell nature is confirmed from transmission electron microscopy on these samples. A plot of ΔM (=MFC-MZFC) vs temperature suggests the presence of two types of spin dynamics: (a) particle size dependent spin blocking and (b) spin-disorder. These two spin dynamic processes are found to contribute independently to the generation of magnetoelectric voltage. Very clear first order and second order magnetoelectric voltages are recorded. The resemblance of the first order magnetoelectric coefficient vs temperature plot to that of building up of order parameters in the mean field theory suggests that spin disorder can act like one of the essential ingredients in building the magnetoelectric coupling. The best result is obtained for the 50-50 composition sample, which may be due to better coupling of magnetostrictive CoFe2O4, and piezoelectric BiFeO3, because of the optimum thickness of shell and core.

  15. Adsorption-controlled growth of BiFeO3 by MBE and integration with wide band gap semiconductors.

    Science.gov (United States)

    Ihlefeld, Jon F; Tian, Wei; Liu, Zi-Kui; Doolittle, W Alan; Bernhagen, Margitta; Reiche, Peter; Uecker, Reinhard; Ramesh, Ramamoorthy; Schlom, Darrell G

    2009-08-01

    BiFeO3 thin films have been deposited on (001) SrTiO3, (101) DyScO3, (011) DyScO3, (0001) AlGaN/GaN, and (0001) 6H-SiC single crystal substrates by reactive molecular beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth over-pressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO3 to control stoichiometry in accordance with thermodynamic calculations. Four-circle x-ray diffraction and transmission electron microscopy reveal phase-pure, epitaxial films with rocking curve full width at half maximum values as narrow as 7.2 arc seconds (0.002 degrees). Epitaxial growth of (0001)-oriented BiFeO3 thin films on (0001) GaN, including AlGaN HEMT structures, and (0001) SiC has been realized using intervening epitaxial (111) SrTiO3 / (100) TiO2 buffer layers. The epitaxial BiFeO3 thin films have 2 in-plane orientations: [1120] BiFeO3 || [1120] GaN (SiC) plus a twin variant related by a 180 degrees in-plane rotation. This epitaxial integration of the ferroelectric with the highest known polarization, BiFeO3, with high bandgap semiconductors is an important step toward novel field-effect devices.

  16. Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size

    International Nuclear Information System (INIS)

    Lotey, Gurmeet Singh; Verma, N. K.

    2012-01-01

    Pure and Gd-doped BiFeO 3 nanoparticles have been synthesized by sol–gel method. The significant effects of size and Gd-doping on structural, electrical, and magnetic properties have been investigated. X-ray diffraction study reveals that the pure BiFeO 3 nanoparticles possess rhombohedral structure, but with 10% Gd-doping complete structural transformation from rhombohedral to orthorhombic has been observed. The particle size of pure and Gd-doped BiFeO 3 nanoparticles, calculated using Transmission electron microscopy, has been found to be in the range 25–15 nm. Pure and Gd-doped BiFeO 3 nanoparticles show ferromagnetic character, and the magnetization increases with decrease in particle size and increase in doping concentration. Scanning electron microscopy study reveals that grain size decreases with increase in Gd concentration. Well-saturated polarization versus electric field loop is observed for the doped samples. Leakage current density decreases by four orders by doping Gd in BiFeO 3 . The incorporation of Gd in BiFeO 3 enhances spin as well as electric polarization at room temperature. The possible origin of enhancement in these properties has been explained on the basis of dopant and its concentration, phase purity, small particle, and grain size.

  17. Pressure-induced phase transitions of multiferroic BiFeO3

    International Nuclear Information System (INIS)

    Zhang Xiaoli; Dong Juncai; Liu Jing; Chen Dongliang; Wu Ye; Zhang Qian; Wu Xiang; Wu Ziyu

    2013-01-01

    Pressure-induced phase transitions of multiferroic BiFeO 3 have been investigated using synchrotron radiation X-ray diffraction with diamond anvil cell technique at room temperature. Present experimental data clearly show that rhombohedral (R3c) phase of BiFeO 3 first transforms to monoclinic (C2/m) phase at 7 GPa, then to orthorhombic (Pnma) phase at 11 GPa, which is consistent with recent theoretical ab initio calculation. However, we observe another peak at 2θ=7° in the pressure range of 5-7 GPa that has not been reported previously. Further analysis reveals that this reflection peak is attributed to the orthorhombic (Pbam) phase, indicating the coexistence of monoclinic phase with orthorhombic phase in low pressure range. (authors)

  18. Photocatalytic performances of BiFeO3 particles with the average size in nanometer, submicrometer, and micrometer

    International Nuclear Information System (INIS)

    Hao, Chunxue; FushengWen,; Xiang, Jianyong; Hou, Hang; Lv, Weiming; Lv, Yifei; Hu, Wentao; Liu, Zhongyuan

    2014-01-01

    Highlights: • Three different synthesis routes have been taken to successfully prepare the BiFeO 3 particles with the different morphologies and average size in 50, 500 nm, and 15 μm. • For photodegradation of dyes under visible irradiation in the presence of BiFeO 3 , the photocatalytic efficiency increases quickly with the decrease in size. • The enhanced photocatalytic efficiency of BiFeO 3 nanoparticles may attribute to more surface active catalytic-sites and shorter distances carriers have to migrate to the surface reaction sites. - Abstract: Three different synthesis routes were taken to successfully prepare the BiFeO 3 particles with the different morphologies and average size in 50, 500 nm, and 15 μm, respectively. The crystal structure was recognized to be a distorted rhombohedral one with the space group R3c. With the decrease in particle size, obvious decrease in peak intensity and redshift in peak position were observed for the Raman active bands. The narrow band gap was determined from the UV–vis absorption spectra, indicating the semiconducting nature of the BiFeO 3 . For photodegradation of dyes under visible irradiation in the presence of BiFeO 3 , the photocatalytic efficiency increased quickly with the decrease in size which may attribute to more surface active catalytic-sites and shorter distances carriers had to migrate to the surface reaction sites

  19. Photocatalytic and Magnetic Behaviors Observed in BiFeO3 Nanofibers by Electrospinning

    Directory of Open Access Journals (Sweden)

    Xuehui Zhang

    2013-01-01

    Full Text Available Perovskite-type BiFeO3 nanofibers with wave nodes-like morphology were prepared by electrospinning. The nanofibers show a highly enhanced visible-light-active photocatalytic property. The results also showed that the diameter could affect the band gap and photocatalytic performances of nanofibers. Additionally, weak ferromagnetic behaviors can be observed at room temperature, which should be correlated to the size-confinement effect on the magnetic ordering of BiFeO3 structure.

  20. Synthesis of BiFeO3 thin films on single-terminated Nb : SrTiO3 (111 substrates by intermittent microwave assisted hydrothermal method

    Directory of Open Access Journals (Sweden)

    Ivan Velasco-Davalos

    2016-06-01

    Full Text Available We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO3 (111 substrates and the deposition of ferroelectric BiFeO3 thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO34− or Ti4+ layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d111 and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO3 single crystal substrates. Multiferroic BiFeO3 thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO3 (111 substrates. Bi(NO33 and Fe(NO33 along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO3 films on Nb : SrTiO3 (100 substrates was verified by piezoresponse force microscopy.

  1. Synthesis of BiFeO 3 by carbonate precipitation

    Indian Academy of Sciences (India)

    Magnetoelectric multiferroic BiFeO3 (BFO) was synthesized by a simple carbonate precipitation technique of metal nitrate solutions. X-ray powder diffraction and thermo-gravimetric analysis (TGA) revealed that the precipitate consists of an intimate mixture of crystalline bismuth carbonate and an amorphous hydroxide of ...

  2. Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition

    KAUST Repository

    Yang, Yang; Yao, Yingbang; Zhang, Q.; Zhang, Xixiang

    2014-01-01

    Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences

  3. Controllable Photovoltaic Effect of Microarray Derived from Epitaxial Tetragonal BiFeO3 Films.

    Science.gov (United States)

    Lu, Zengxing; Li, Peilian; Wan, Jian-Guo; Huang, Zhifeng; Tian, Guo; Pan, Danfeng; Fan, Zhen; Gao, Xingsen; Liu, Jun-Ming

    2017-08-16

    Recently, the ferroelectric photovoltaic (FePV) effect has attracted great interest due to its potential in developing optoelectronic devices such as solar cell and electric-optical sensors. It is important for actual applications to realize a controllable photovoltaic process in ferroelectric-based materials. In this work, we prepared well-ordered microarrays based on epitaxially tetragonal BiFeO 3 (T-BFO) films by the pulsed laser deposition technique. The polarization-dependent photocurrent image was directly observed by a conductive atomic force microscope under ultraviolet illumination. By choosing a suitable buffer electrode layer and controlling the ferroelectric polarization in the T-BFO layer, we realized the manipulation of the photovoltaic process. Moreover, based on the analysis of the band structure, we revealed the mechanism of manipulating the photovoltaic process and attributed it to the competition between two key factors, i.e., the internal electric field caused by energy band alignments at interfaces and the depolarization field induced by the ferroelectric polarization in T-BFO. This work is very meaningful for deeply understanding the photovoltaic process of BiFeO 3 -based devices at the microscale and provides us a feasible avenue for developing data storage or logic switching microdevices based on the FePV effect.

  4. Ferroelectricity down to at least 2 nm in multiferroic BiFeO3 epitaxial thin films

    International Nuclear Information System (INIS)

    Bea, H.; Fusil, S.; Bouzehouane, K.; Sirena, M.; Herranz, G.; Jacquet, E.; Contour, J.-P.; Barthelemy, A.; Bibes, M.

    2006-01-01

    We report here on the preservation of ferroelectricity down to 2 nm in BiFeO 3 ultrathin films. The electric polarization can be switched reversibly and is stable over several days. Our findings insight on the fundamental problem of ferroelectricity at low thickness and confirm the potential of BiFeO 3 as a lead-free ferroelectric and multiferroic material for nanoscale devices. (author)

  5. Dipole pinning effect on photovoltaic characteristics of ferroelectric BiFeO3 films

    Science.gov (United States)

    Biswas, P. P.; Thirmal, Ch.; Pal, S.; Murugavel, P.

    2018-01-01

    Ferroelectric bismuth ferrite is an attractive candidate for switchable devices. The effect of dipole pinning due to the oxygen vacancy layer on the switching behavior of the BiFeO3 thin film fabricated by the chemical solution deposition method was studied after annealing under air, O2, and N2 environment. The air annealed film showed well defined and dense grains leading to a lower leakage current and superior electrical properties compared to the other two films. The photovoltage and transient photocurrent measured under positive and negative poling elucidated the switching nature of the films. Though the air and O2 annealed films showed a switchable photovoltaic response, the response was severely affected by oxygen vacancies in the N2 annealed film. In addition, the open circuit voltage was found to be mostly dependent on the polarization of BiFeO3 rather than the Schottky barriers at the interface. This work provides an important insight into the effect of dipole pinning caused by oxygen vacancies on the switchable photovoltaic effect of BiFeO3 thin films along with the importance of stoichiometric, defect free, and phase pure samples to facilitate meaningful practical applications.

  6. Magnetoelectric effect in (BiFeO3x–(BaTiO31-x solid solutions

    Directory of Open Access Journals (Sweden)

    Kowal Karol

    2015-03-01

    Full Text Available The aim of the present work was to study magnetoelectric effect (ME in (BiFeO3x-(BaTiO31-x solid solutions in terms of technological conditions applied in the samples fabrication process. The rapidly growing interest in these materials is caused by their multiferroic behaviour, i.e. coexistence of both electric and magnetic ordering. It creates possibility for many innovative applications, e.g. in steering the magnetic memory by electric field and vice versa. The investigated samples of various chemical compositions (i.e. x = 0.7, 0.8 and 0.9 were prepared by the solid-state sintering method under three sets of technological conditions differing in the applied temperature and soaking time. Measurements of the magnetoelectric voltage coefficient αME were performed using a dynamic lock-in technique. The highest value of αME was observed for 0.7BiFeO3-0.3BaTiO3 solid solution sintered at the highest temperature (T = 1153 K after initial electrical poling despite that the soaking time was reduced 10 times in this case.

  7. Annealing effect on the bipolar resistive switching behaviors of BiFeO3 thin films on LaNiO3-buffered Si substrates

    International Nuclear Information System (INIS)

    Chen Xinman; Zhang Hu; Ruan Kaibin; Shi Wangzhou

    2012-01-01

    Highlights: ► Annealing effect on the bipolar resistive switching behaviors of BiFeO 3 thin films with Pt/BiFeO 3 /LNO was reported. ► Rectification property was explained from the asymmetrical contact between top and bottom interfaces and the distinct oxygen vacancy density. ► The modification of Schottky-like barrier was suggested to be responsible for the resistance switching behaviors of Pt/BiFeO 3 /LNO devices. - Abstract: We reported the annealing effect on the electrical behaviors of BiFeO 3 thin films integrated on LaNiO 3 (LNO) layers buffered Si substrates by sol–gel spin-coating technique. All the BiFeO 3 thin films exhibit the reversible bipolar resistive switching behaviors with Pt/BiFeO 3 /LNO configuration. The electrical conduction mechanism of the devices was dominated by the Ohmic conduction in the low resistance state and trap-controlled space charged limited current in the high resistance state. Good diode-like rectification property was observed in device with BiFeO 3 film annealed at 500 °C, but vanished in device with BiFeO 3 film annealed at 600 °C. This was attributed to the asymmetrical contact between top and bottom interfaces as well as the distinct oxygen vacancy density verified by XPS. Furthermore, the modification of Schottky-like barrier due to the drift of oxygen vacancies was suggested to be responsible for the resistance switching behaviors of Pt/BiFeO 3 /LNO devices.

  8. Effects of Interfaces on the Structure and Novel Physical Properties in Epitaxial Multiferroic BiFeO3 Ultrathin Films

    Directory of Open Access Journals (Sweden)

    Chuanwei Huang

    2014-07-01

    Full Text Available In functional oxide films, different electrical/mechanical boundaries near film surfaces induce rich phase diagrams and exotic phenomena. In this paper, we review some key points which underpin structure, phase transition and related properties in BiFeO3 ultrathin films. Compared with the bulk counterparts, we survey the recent results of epitaxial BiFeO3 ultrathin films to illustrate how the atomic structure and phase are markedly influenced by the interface between the film and the substrate, and to emphasize the roles of misfit strain and depolarization field on determining the domain patterns, phase transformation and associated physical properties of BiFeO3 ultrathin films, such as polarization, piezoelectricity, and magnetism. One of the obvious consequences of the misfit strain on BiFeO3 ultrathin films is the emergence of a sequence of phase transition from tetragonal to mixed tetragonal & rhombohedral, the rhombohedral, mixed rhombohedral & orthorhombic, and finally orthorhombic phases. Other striking features of this system are the stable domain patterns and the crossover of 71° and 109° domains with different electrical boundary conditions on the film surface, which can be controlled and manipulated through the depolarization field. The external field-sensitive enhancements of properties for BiFeO3 ultrathin films, including the polarization, magnetism and morphotropic phase boundary-relevant piezoelectric response, offer us deeper insights into the investigations of the emergent properties and phenomena of epitaxial ultrathin films under various mechanical/electrical constraints. Finally, we briefly summarize the recent progress and list open questions for future study on BiFeO3 ultrathin films.

  9. The synthesis, structure and reactivity of iron-bismuth complexes : Potential Molecular Precursors for Multiferroic BiFeO3

    OpenAIRE

    Wójcik, Katarzyna

    2009-01-01

    The thesis presented here is focused on the synthesis of iron-bismuth alkoxides and siloxides as precursors for multiferroic BiFeO3 systems. Spectrum of novel cyclopentadienyl substituted iron-bismuth complexes of the general type [{Cpy(CO)2Fe}BiX2], as potential precursors for cyclopentadienyl iron-bismuth alkoxides or siloxides [{Cpy(CO)2Fe}Bi(OR)2] (R-OtBu, OSiMe2tBu), were obtained and characterised. The use of wide range of cyclopentadienyl rings in the iron carbonyl compounds allowed fo...

  10. Polarization-tuned diode behaviour in multiferroic BiFeO3 thin films

    KAUST Repository

    Yao, Yingbang; Zhang, Bei; Chen, Long; Yang, Yang; Wang, Zhihong; Alshareef, Husam N.; Zhang, Xixiang

    2012-01-01

    Asymmetric rectifying I-V behaviour of multiferroic BiFeO3 (BFO) thin films grown on transparent ITO-coated glass was quantitatively studied as a function of ferroelectric polarization. Different polarized states were established by unipolar

  11. Local Weak Ferromagnetism in Single-Crystalline Ferroelectric BiFeO3

    DEFF Research Database (Denmark)

    Ramazanoglu, M.; Laver, Mark; Ratcliff, W.

    2011-01-01

    Polarized small-angle neutron scattering studies of single-crystalline multiferroic BiFeO3 reveal a long-wavelength spin density wave generated by ∼1° spin canting of the spins out of the rotation plane of the antiferromagnetic cycloidal order. This signifies weak ferromagnetism within mesoscopic...

  12. Structural and electrical characterization of BiFeO3-NaTaO3 multiferroic

    International Nuclear Information System (INIS)

    Mohanty, Suchismita; Choudhary, R.N.P.; Parida, B.N.; Padhee, R.

    2014-01-01

    Using a standard high-temperature solid-state reaction technique, polycrystalline samples of (Bi 1-x , Na x ) (Fe 1-x , Ta x ) O 3 (x = 0.0, 0.5) were prepared. The formation of the desired materials was confirmed by X-ray diffraction. The surface texture of the prepared materials recorded by scanning electron microscope exhibits a uniform grain distribution with small voids suggesting the formation of high-density pellet samples. The impedance and dielectric properties of the materials were investigated as a function of temperature and frequency. The relative dielectric constant and loss tangent of BiFeO 3 decrease on addition of NaTaO 3 (x = 0.5). The effect of addition of NaTaO 3 on grain and grain boundary contributions in the resistive and capacitive components of BiFeO 3 was studied using complex impedance spectroscopy. The value of activation energy due to both grain and grain boundary of both the samples is nearly same. The nature of variation of dc conductivity confirms the Arrhenius behavior of the materials. Study of frequency dependence of ac conductivity suggests that the materials obey Jonscher's universal power law and the presence of ionic conductivity. (orig.)

  13. Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions.

    Science.gov (United States)

    Yamada, Hiroyuki; Garcia, Vincent; Fusil, Stéphane; Boyn, Sören; Marinova, Maya; Gloter, Alexandre; Xavier, Stéphane; Grollier, Julie; Jacquet, Eric; Carrétéro, Cécile; Deranlot, Cyrile; Bibes, Manuel; Barthélémy, Agnès

    2013-06-25

    Ferroelectric tunnel junctions enable a nondestructive readout of the ferroelectric state via a change of resistance induced by switching the ferroelectric polarization. We fabricated submicrometer solid-state ferroelectric tunnel junctions based on a recently discovered polymorph of BiFeO3 with giant axial ratio ("T-phase"). Applying voltage pulses to the junctions leads to the highest resistance changes (OFF/ON ratio >10,000) ever reported with ferroelectric tunnel junctions. Along with the good retention properties, this giant effect reinforces the interest in nonvolatile memories based on ferroelectric tunnel junctions. We also show that the changes in resistance scale with the nucleation and growth of ferroelectric domains in the ultrathin BiFeO3 (imaged by piezoresponse force microscopy), thereby suggesting potential as multilevel memory cells and memristors.

  14. Effects of magnetic annealing on structure and multiferroic properties of pure and dysprosium substituted BiFeO 3

    KAUST Repository

    Zhang, Shuxia; Yao, Yingbang; Chen, Yao; Wang, Dongliang; Zhang, Xianping; Awaji, Satoshi; Watanabe, Kazuo; Ma, Yanwei

    2012-01-01

    In this work, the effects of magnetic annealing on crystal structure and multiferroic properties of BiFeO 3 and Bi 0.85Dy 0.15FeO 3 have been investigated. It is found that the X-ray diffraction patterns of pure BiFeO 3 samples are obviously broadened after magnetic annealing, whereas those of Bi 0.85Dy 0.15FeO 3 samples are almost unchanged. Magnetic field annealing did not affect the magnetic properties of these two kinds of samples much. However, ferroelectric properties of the two materials exhibited different behaviors after magnetic field annealing. For pure BiFeO 3 samples, the remnant polarizations (P r) are suppressed; in contrast, for Bi 0.85Dy 0.15FeO 3 samples, P r is greatly enhanced. Possible mechanisms for the effects of magnetic field annealing have been discussed. © 2012 Elsevier B.V. All rights reserved.

  15. Effects of magnetic annealing on structure and multiferroic properties of pure and dysprosium substituted BiFeO 3

    KAUST Repository

    Zhang, Shuxia

    2012-07-01

    In this work, the effects of magnetic annealing on crystal structure and multiferroic properties of BiFeO 3 and Bi 0.85Dy 0.15FeO 3 have been investigated. It is found that the X-ray diffraction patterns of pure BiFeO 3 samples are obviously broadened after magnetic annealing, whereas those of Bi 0.85Dy 0.15FeO 3 samples are almost unchanged. Magnetic field annealing did not affect the magnetic properties of these two kinds of samples much. However, ferroelectric properties of the two materials exhibited different behaviors after magnetic field annealing. For pure BiFeO 3 samples, the remnant polarizations (P r) are suppressed; in contrast, for Bi 0.85Dy 0.15FeO 3 samples, P r is greatly enhanced. Possible mechanisms for the effects of magnetic field annealing have been discussed. © 2012 Elsevier B.V. All rights reserved.

  16. Structural, magnetic and dielectric properties of Pr-modified BiFeO3 multiferroic

    International Nuclear Information System (INIS)

    Varshney, Dinesh; Sharma, Poorva; Satapathy, S.; Gupta, P.K.

    2014-01-01

    Graphical abstract: -- Highlights: • BFO and Bi 0.95 Pr 0.05 FeO 3 prepared successfully via solid state reaction route. • XRD confirms rhombohedral structure with space group R3c. • Relaxation process is attributed to thermal motion and hopping of V O 2+ . • Magnetization is enhanced in Bi 0.95 Pr 0.05 FeO 3 sample. • Enhanced magnetization stem from suppression of the spiral spin modulation. -- Abstract: The structural, vibrational, magnetic and dielectric properties of polycrystalline BiFeO 3 and Bi 0.95 Pr 0.05 FeO 3 are investigated by combining X-ray diffraction, Raman scattering spectra, magnetometry and dielectric measurements. Structural symmetry with rhombohedral R3c phase is revealed for both parent and 5% Pr substitution at Bi site, serving no chemical pressure and causes no structural transition from R3c to any other phase is identified from X-ray diffraction patterns and Raman scattering spectra. The shifting of phonon modes towards higher frequency side is attributed to lower atomic mass of Pr ion as compared to Bi ion. The magnetic measurements at room temperature indicate that Pr substitution induces ferromagnetism and discerns large and non-zero remnant magnetization as compare to pristine BiFeO 3 . Both dielectric permittivity and loss factor of Bi 0.95 Pr 0.05 FeO 3 strongly decreases with increased frequency. Significant role of hopping of oxygen ion vacancies in Bi 0.95 Pr 0.05 FeO 3 is inferred from modulus spectra and ac conductivity analysis

  17. Síntese e caracterização de perovesquites do sistema BiFeO3

    OpenAIRE

    Carvalho, Teresa Maria Tranchete de

    2007-01-01

    Dissertação de Mestrado em Física e Química para o Ensino, apresentada à Universidade de Trás-os-Montes e Alto Douro Os materiais multiferróicos, como o caso do BiFeO3, são bastante promissores em termos tecnológicos, possuindo uma potencial aplicação em sensores, memórias não voláteis e actuadores. A perovesquite BiFeO3 apresenta vantagens relativamente a outros compostos multiferróicos: elevada temperatura de Curie (TC=1100 K); elevada temperatura de Néel (TN=640 K); não contém chumbo...

  18. BiFeO3-doped (Na0.5K0.5NbO3 lead-free piezoelectric ceramics

    Directory of Open Access Journals (Sweden)

    Xueyi Sun et al

    2008-01-01

    Full Text Available Lead-free piezoelectric ceramics (1−x(Na0.5K0.5NbO3-xBiFeO3 (x=0~0.07 were synthesized by the solid-state reaction. Differential scanning calorimetry (DSC measurements revealed that an increase in the amount of BiFeO3 dopant resulted in a decrease in the orthorhombic-tetragonal and tetragonal-cubic phase transition temperature of the material. One percent BiFeO3 additive suppressed grain growth, which not only benefits the sintering of ceramics but also enhances the piezoelectric and ferroelectric properties, where d33=145pC/N, kp=0.31, Qm=80, Pr=11.3 μC cm−2 and Ec=16.5 kV cm−1. As xBF>0.01, both piezoelectric and ferroelectric properties decreased rapidly with an increasing amount of dopant.

  19. The microscopic model of BiFeO3

    Science.gov (United States)

    Fishman, R. S.

    2018-05-01

    Many years and great effort have been spent constructing the microscopic model for the room temperature multiferroic BiFeO3. However, earlier models implicitly assumed that the cycloidal wavevector q was confined to one of the three-fold symmetric axes in the hexagonal plane normal to the electric polarization. Because recent measurements indicate that q can be rotated by a magnetic field, it is essential to properly treat the anisotropy that confines q at low fields. We propose that the anisotropy energy -K3S6sin6 θ cos 6 ϕ confines the wavevectors q to the three-fold axis ϕ = 0 and ± 2 π / 3 within the hexagonal plane with θ = π / 2 .

  20. Accuracy and Transferability of Ab Initio Electronic Band Structure Calculations for Doped BiFeO3

    Science.gov (United States)

    Gebhardt, Julian; Rappe, Andrew M.

    2017-11-01

    BiFeO3 is a multiferroic material and, therefore, highly interesting with respect to future oxide electronics. In order to realize such devices, pn junctions need to be fabricated, which are currently impeded by the lack of successful p-type doping in this material. In order to guide the numerous research efforts in this field, we recently finished a comprehensive computational study, investigating the influence of many dopants onto the electronic structure of BiFeO3. In order to allow for this large scale ab initio study, the computational setup had to be accurate and efficient. Here we discuss the details of this assessment, showing that standard density-functional theory (DFT) yields good structural properties. The obtained electronic structure, however, suffers from well-known shortcomings. By comparing the conventional DFT results for alkali and alkaline-earth metal doping with more accurate hybrid-DFT calculations, we show that, in this case, the problems of standard DFT go beyond a simple systematic error. Conventional DFT shows bad transferability and the more reliable hybrid-DFT has to be chosen for a qualitatively correct prediction of doping induced changes in the electronic structure of BiFeO3.

  1. Influence of the collector and heat treatment in the structure of BiFeO_3 electrospun nanofibers

    International Nuclear Information System (INIS)

    Melo, G.H.F.; Santos, J.P.F.; Bretas, R.E.S.

    2016-01-01

    The objective of this work was to analyze the influence of the collector type and heat treatment on the morphology and crystalline phases of BiFeO_3 electrospun nanofibers. A solution containing (Fe(NO_3)_3_._9H_2O and Bi(NO_3)_3_._5H_2O) as precursors together with a polyvinylpyrrolidone solution was electrospun using 2.8KV/cm as electrical field. The collector type was however, changed (aluminum and glass). After the electrospinning, the as-spun nanofibers were submitted to two different heat treatments: one at 550°C and the other at 750°C, both during 2h. The collector type changed the morphology of the nanofibers; while in the glass collector, a non-woven mat of flat and rough nanofibers was obtained, in the aluminum collector, mats of circular and smooth nanofibers were obtained. The thermal treatment also changed the morphology and amount of crystalline phases; at 550°C, the nanofiber morphology was maintained and only one crystalline phase (BiFeO_3) was detected. On the other hand, at 750°C, flakes were obtained of two crystalline phases (BiFeO_3 and Bi_2Fe_4O_9). (author)

  2. Rewritable ferroelectric vortex pairs in BiFeO3

    Science.gov (United States)

    Li, Yang; Jin, Yaming; Lu, Xiaomei; Yang, Jan-Chi; Chu, Ying-Hao; Huang, Fengzhen; Zhu, Jinsong; Cheong, Sang-Wook

    2017-08-01

    Ferroelectric vortex in multiferroic materials has been considered as a promising alternative to current memory cells for the merit of high storage density. However, the formation of regular natural ferroelectric vortex is difficult, restricting the achievement of vortex memory device. Here, we demonstrated the creation of ferroelectric vortex-antivortex pairs in BiFeO3 thin films by using local electric field. The evolution of the polar vortex structure is studied by piezoresponse force microscopy at nanoscale. The results reveal that the patterns and stability of vortex structures are sensitive to the poling position. Consecutive writing and erasing processes cause no influence on the original domain configuration. The Z4 proper coloring vortex-antivortex network is then analyzed by graph theory, which verifies the rationality of artificial vortex-antivortex pairs. This study paves a foundation for artificial regulation of vortex, which provides a possible pathway for the design and realization of non-volatile vortex memory devices and logical devices.

  3. Electronic conduction in doped multiferroic BiFeO3

    Science.gov (United States)

    Yang, Chan-Ho; Seidel, Jan; Kim, Sang-Yong; Gajek, M.; Yu, P.; Holcomb, M. B.; Martin, L. W.; Ramesh, R.; Chu, Y. H.

    2009-03-01

    Competition between multiple ground states, that are energetically similar, plays a key role in many interesting material properties and physical phenomena as for example in high-Tc superconductors (electron kinetic energy vs. electron-electron repulsion), colossal magnetoresistance (metallic state vs. charge ordered insulating state), and magnetically frustrated systems (spin-spin interactions). We are exploring the idea of similar competing phenomena in doped multiferroics by control of band-filling. In this paper we present systematic investigations of divalent Ca doping of ferroelectric BiFeO3 in terms of structural and electronic conduction properties as well as diffusion properties of oxygen vacancies.

  4. Structural, magnetic and electric properties of Nd and Ni co-doped BiFeO3 materials

    Directory of Open Access Journals (Sweden)

    Dao Viet Thang

    2017-09-01

    Full Text Available Multiferroic Bi1−xNdxFe0.975Ni0.025O3 (x = 0.00, 0.05, 0.10, 0.125, and 0.15 (BNFNO and BiFeO3 (BFO materials were synthesized by a sol-gel method. Crystal structure, ferromagnetic and ferroelectric properties of the as-synthesized materials were investigated. Results showed that Nd3+ and Ni2+ co-doping affected to the electrical leakage, enhanced ferroelectric polarization and magnetization of BiFeO3. Co-doped sample with 12.5 mol% of Nd3+ and 2.5 mol% of Ni2+ exhibited an enhancement in both ferromagnetism and ferroelectric properties up to MS ~ 0.528 emu/g and PS ~ 18.35 μC/cm2 with applied electric field at 5 kV/cm, respectively. The origins of ferromagnetism and ferroelectricity enhancement were discussed in the paper.

  5. Dielectric and piezoelectric properties of BiFeO3 modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Zhou Changrong; Liu Xinyu; Li Weizhou

    2008-01-01

    The (0.82 - x)Bi 0.5 Na 0.5 TiO 3 -0.18Bi 0.5 K 0.5 TiO 3 -xBiFeO 3 (x = 0-0.07) lead-free piezoelectric ceramics were fabricated by a conventional solid-state reaction method and the effect of BiFeO 3 addition on microstructure and electrical properties of the ceramics was investigated. The specimens with x ≤ 0.05 maintained a rhombohedral-tetragonal phase coexistence and changed into a rhombohedral phase when x > 0.05 in crystal structure. The addition of BiFeO 3 caused a promoted grain growth. All the specimens reveal a low-frequency dielectric dispersion in the frequency range of 40-1 MHz. The piezoelectric constant d 33 and the electromechanical coupling factor k p show an obvious improvement by the addition of small amount of BiFeO 3 , which shows optimum values of d 33 = 170 pC/N and k p = 0.366 at x = 0.03. Contrary to the enhancement of piezoelectric properties, Q m decreases with increasing BiFeO 3 content. The mechanisms of intrinsic and extrinsic contributions to the dielectric and piezoelectric responses have been proposed. Intrinsic contributions are from the relative ion/cation shift that preserves the ferroelectric crystal structure. The remaining extrinsic contributions are from the domain-wall motion and point defects

  6. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    Samarium (Sm 3+) doped BiFeO 3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopted a rapid heating as well as cooling during the sintering process. The pyroelectric coefficient increased from 93 to 137 μC/m 2 K as the Sm 3+ doping level increased from 1 mol% to 8 mol%. Temperature dependence of the pyroelectric coefficient showed an abrupt decrease above 80 °C in all samples, which was associated with the increase of electrical conductivity with temperature. This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased with increasing Sm 3+ doping level. On the basis of our results, the effects of Sm doping level on the pyroelectric and electrical properties of the BFO were revealed. © 2011 Elsevier Ltd. All rights reserved.

  7. Ultrathin limit and dead-layer effects in local polarization switching of BiFeO3

    NARCIS (Netherlands)

    Maksymovych, P.; Huijben, Mark; Pan, M.; Jesse, S.; Balke, N.; Chu, Y.H.; Chang, H.J.; Borisevich, A.Y.; Baddorf, A.P.; Rijnders, Augustinus J.H.M.; Blank, David H.A.; Ramesh, R.; Kalinin, S.V.

    2012-01-01

    Using piezoresponse force microscopy in an ultrahigh vacuum, polarization switching has been detected and quantified in epitaxial BiFeO3 films from 200 to about 4 unit cells thick. Local remnant piezoresponse was utilized to probe both ferroelectric properties and effects of imperfect electrical

  8. Understanding Strain-Induced Phase Transformations in BiFeO3 Thin Films.

    Science.gov (United States)

    Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M; Cooper, Valentino R

    2015-08-01

    Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO 3 thin films, which comprises a tetragonal-like ( T ') and an intermediate S ' polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T ' phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S ' phase is energetically very close to the T ' phase, but is structurally similar to the bulk rhombohedral ( R ) phase. By fully characterizing the intermediate S ' polymorph, it is demonstrated that the flat energy landscape resulting in the absence of an energy barrier between the T ' and S ' phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S ' and T ' polymorphs, which have very different octahedral rotation patterns and c / a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO 3 films. Additionally, a blueshift in the band gap when moving from R to S ' to T ' is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.

  9. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films

    Science.gov (United States)

    Yang, C.-H.; Seidel, J.; Kim, S. Y.; Rossen, P. B.; Yu, P.; Gajek, M.; Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; He, Q.; Maksymovych, P.; Balke, N.; Kalinin, S. V.; Baddorf, A. P.; Basu, S. R.; Scullin, M. L.; Ramesh, R.

    2009-06-01

    Many interesting materials phenomena such as the emergence of high-Tc superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A `dome-like' feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of ~1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO3.

  10. Ferroelectric control of magnetization in BiFeO3/CoFe heterostructures.

    Science.gov (United States)

    Gajek, Martin; Martin, Lane; Heron, John; Seidel, Jan; Ramesh, Ramamoorthy

    2009-03-01

    The cross coupling between ferroic order parameters in multiferroics opens an alternative for the control of magnetism in magnetoelectric devices by purely electrical means. We first report on the exchange coupling between BiFeO3, an antiferromagnetic ferroelectric , and CoFe. We then show that the domain structure of the ferromagnet can be changed by poling the ferroelectric layer. Finally, we will discuss the implementation of our findings into possible device schemes.

  11. Phase-Pure of BiFeO3 Ceramic Based on Citric Acid - Assisted Gel by Sintering Time Variation

    Science.gov (United States)

    Suastiyanti, Dwita; Ismojo

    2017-07-01

    Bismuth ferrite powder (BiFeO3/BFO) with high purity was synthesized by sol-gel process. It was used Bi5O(OH)9(NO3)4 and Fe(NO3)3.9H2O as main compound sources. Citric acid (C6H8O7) was used as fuell. As multiferroic material, BFO promises important technological applications in several devices like data strorage, spinotronics, sensor, actuator devices etc. This research would know the optimum process condition of sol-gel process to produce BFO powder by varying of sintering time. The novelty of this research is how to produce BFO in single phase by simple method. It was used calcination condition at 160°C for 4 hours and sintering condition at 600°C with varying of sintering time of 4, 6 and 8 hours. Thermogravimetric Analysis/Differential Thermal Analysis (TGA/DTA), X Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) were used to characterize the powder. Loss of mass and heat flow were seen at TGA/DTA test at 160°C approximately (used as reference of calcination temperature). BFO powder sintered at for 8 hours has no secondary phase, meanwhile for another sintering time (4 and 6 hours) it has Bi2O3 as secondary phase. It is also show at SEM observation result that powder with sintering time of 8 hours has finer grain than of 4 and 6 hours sintering at the same temperature. The grains of BFO powder has heterogenous in size, shape and still agglomerated.

  12. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy

    NARCIS (Netherlands)

    Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G.

    2017-01-01

    We measure the magnetotransport properties of individual 71 degrees domain walls in multiferroic BiFeO3 by means of conductive-atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of

  13. Optical spectroscopic study of multiferroic BiFeO3 and LuFe2O4

    Science.gov (United States)

    Xu, Xiaoshan

    2010-03-01

    Iron-based multiferroics such as BiFeO3 and LuFe2O4 exhibit the highest magnetic and ferroelectric ordering temperatures among known multiferroics. LuFe2O4 is a frustrated system with several phase transitions that result in electronically driven multiferroicity. To understand how this peculiar multiferroic mechanism correlates with magnetism, we studied electronic excitations by optical spectroscopy and other complementary techniques. We show that the charge order, which determines the dielectric properties, is due to the ``order by fluctuation'' mechanism, evidenced by the onset of charge fluctuation well below the charge ordering transition. We also find a low temperature monoclinic distortion driven by both temperature and magnetic field, indicating strong coupling between structure, magnetism and charge order. BiFeO3 is the only known single phase multiferroics with room temperature magnetism and ferroelectricity. To investigate the spin-charge coupling, we measured the optical properties of BiFeO3. We find that the absorption onset occurs due to on-site Fe^3+ excitations at 1.41 and 1.90 eV. Temperature and magnetic-field-induced spectral changes reveal complex interactions between on-site crystal-field and magnetic excitations in the form of magnon sidebands. The sensitivity of the magnon sidebands allows us to map out the magnetic-field temperature phase diagram which demonstrates optical evidence for spin spiral quenching above 20 T and suggests a spin domain reorientation near 10 T. Work done in collaboration with T.V. Brinzari, R.C. Rai, M. Angst, R.P. Hermann, A.D. Christianson, J.-W. Kim, Z. Islam, B.C. Sales, D. Mandrus, S. Lee, Y.H. Chu, L. W. Martin, A. Kumar, R. Ramesh, S.W. Cheong, S. McGill, and J.L. Musfeldt.

  14. Electric field control of magnetism using BiFeO3-based heterostructures

    International Nuclear Information System (INIS)

    Heron, J. T.; Schlom, D. G.; Ramesh, R.

    2014-01-01

    Conventional CMOS based logic and magnetic based data storage devices require the shuttling of electrons for data processing and storage. As these devices are scaled to increasingly smaller dimensions in the pursuit of speed and storage density, significant energy dissipation in the form of heat has become a center stage issue for the microelectronics industry. By taking advantage of the strong correlations between ferroic orders in multiferroics, specifically the coupling between ferroelectric and magnetic orders (magnetoelectricity), new device functionalities with ultra-low energy consumption can be envisioned. In this article, we review the advances and highlight challenges toward this goal with a particular focus on the room temperature magnetoelectric multiferroic, BiFeO 3 , exchange coupled to a ferromagnet. We summarize our understanding of the nature of exchange coupling and the mechanisms of the voltage control of ferromagnetism observed in these heterostructures

  15. Ferroelectric BiFeO3as an Oxide Dye in Highly Tunable Mesoporous All-Oxide Photovoltaic Heterojunctions

    KAUST Repository

    Wang, Lingfei; Ma, He; Chang, Lei; Ma, Chun; Yuan, Guoliang; Wang, Junling; Wu, Tao

    2016-01-01

    As potential photovoltaic materials, transition-metal oxides such as BiFeO3 (BFO) are capable of absorbing a substantial portion of solar light and incorporating ferroic orders into solar cells with enhanced performance. But the photovoltaic

  16. Giant Polarization Rotation in BiFeO3/SrTiO3 Thin Films.

    Science.gov (United States)

    Langner, M. C.; Chu, Y. H.; Martin, L. M.; Gajek, M.; Ramesh, R.; Orenstein, J.

    2008-03-01

    We use optical second harmonic generation to probe dynamics of the ferroelectric polarization in (111) oriented BiFeO3 thin films grown on SrTiO3 substrates. The second harmonic response indicates 3m point group symmetry and is consistent with a spontaneous polarization normal to the surface of the film. We measure large changes in amplitude and lowering of symmetry, consistent with polarization rotation, when modest electric fields are applied in the plane of the film. At room temperature the rotation is an order of magnitude larger than expected from reported values of the dielectric constant and increases further (as 1/T) as temperature is lowered. We propose a substrate interaction model to explain these results.

  17. First-principles approach to the dynamic magnetoelectric couplings for the non-reciprocal directional dichroism in BiFeO3

    International Nuclear Information System (INIS)

    Lee, Jun Hee; Fishman, Randy S; Kézsmáki, István

    2016-01-01

    Due to the complicated magnetic and crystallographic structures of BiFeO 3 , its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a first-principles approach, we uncover all possible ME couplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO 3 . First-principles calculations are used to understand the microscopic origins of the ME couplings. We find that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamic ME effects in BiFeO 3 . A model motivated by first principles reproduces the absorption difference of counter-propagating light beams called non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic ME couplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hidden ME couplings on the atomic scale and for exploiting optical ME effects in the next generation of technological devices such as optical diodes. (paper)

  18. Tetragonal BiFeO3 on yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Liu, Heng-Jui; Du, Yu-Hao; Gao, Peng; Ikuhara, Yuichi; Huang, Yen-Chin; Chen, Yi-Chun; Chen, Hsiao-Wen; Liu, Hsiang-Lin; He, Qing; Chu, Ying-Hao

    2015-01-01

    High structural susceptibility of multiferroic BiFeO 3 (BFO) makes it a potential replacement of current Pb-based piezoelectrics. In this study, a tetragonal phase is identified based on a combination of x-ray diffraction, scanning transmission electronic microscopy, x-ray absorption spectroscopy, and Raman spectroscopy when BFO is grown on yttria-stabilized zirconia (YSZ) substrates. To distinguish the discrepancy between this tetragonal phase and common cases of monoclinic BFO, piezoelectric force microscopy images and optical property are also performed. It shows a lower electrostatic energy of ferroelectric domains and a large reduction of band gap for BFO grown on YSZ substrate comparing to the well-known one grown on LaAlO 3 substrate. Our findings in this work can provide more insights to understand the structural diversity of multiferroic BFO system for further applications

  19. Local and average structure of Mn- and La-substituted BiFeO3

    Science.gov (United States)

    Jiang, Bo; Selbach, Sverre M.

    2017-06-01

    The local and average structure of solid solutions of the multiferroic perovskite BiFeO3 is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space group symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO3. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions.

  20. Phase pure synthesis of BiFeO3 nanopowders using diverse precursor via co-precipitation method

    International Nuclear Information System (INIS)

    Shami, M. Yasin; Awan, M.S.; Anis-ur-Rehman, M.

    2011-01-01

    Highlights: → Synthesized phase pure BiFeO 3 using diverse precursor by co-precipitation method. → Optimized synthesis and processing parameters. → Thermal behavior, structure and microstructure were analyzed. → Resistivity vs temperature and dielectric constant vs frequency were measured. → Multiferroicity at room temperature was confirmed by M-H and P-E loops. - Abstract: Amorphous powder of BiFeO 3 (BFO) was synthesized at low-temperature (80 deg. C) by co-precipitation method. Optimal synthesis conditions for phase pure BFO were obtained. Powders were calcined in the temperature range from 400 to 600 deg. C for 1 h. Iso-statically pressed powder was sintered at 500 deg. C for 2 h. Differential scanning calorimetric thermo-gram guided for phase transition, crystallization and melting temperatures. X-ray diffraction confirmed the amorphous nature of as synthesized powder and phase formation of calcined powders. Calcination at temperature ≥400 deg. C resulted in nano crystalline powders with perovskite structure. Average crystallite size increased with the increase in calcination temperature. Scanning electron microscopic studies revealed dense granular microstructure of the sintered samples. The sintered samples exhibited high dc resistivity at room temperature which decreased with the increase in temperature. Dielectric constant, dielectric loss tangent and ac conductivity measurements were carried out in the frequency range (10 Hz to 2 MHz). The samples responded weak electric and magnetic polarization at room temperature with unsaturated and hysteresis free loops, respectively.

  1. Effect of synthesis route on the multiferroic properties of BiFeO3: A comparative study between solid state and sol–gel methods

    International Nuclear Information System (INIS)

    Suresh, Pittala; Srinath, S.

    2015-01-01

    Polycrystalline BiFeO 3 (BFO) powder was prepared through optimized solid state (SS) and sol–gel (SG) reaction methods. The effect of preparation routes on the crystal purity and multiferroic properties of the BFO was investigated. Sol–gel synthesis results almost a single-phase material at relatively lower temperatures while the solid-state method results into BFO with a small amount of Bi 2 Fe 4 O 9 secondary phase. The grain size of SG processed sample reduces to half the size of the one that is prepared by SS. Elemental analysis shows a stoichiometric Bi:Fe content for SG samples by restricting the Bi loss. In comparison with the SS samples, dielectric constant of SG samples exhibit higher values with Maxwell–Wagner type dielectric dispersion. A cusp at 50 K was seen in M–T curves for SS samples, for which no frequency dependence was observed in a.c susceptibility measurements ruling out the earlier predictions of spin glass nature in this system. M−H loops show a typical antiferromagnetic nature at 300 K while a weak ferromagnetic behavior is found at 10 K. A slight increase in H C and M r was observed for SG samples over SS. The improved properties of SG processed BFO makes it more promising for applications. - Highlights: • Optimized conditions to attain the BiFeO 3 with minimized impurities are reported. • The influence of the impurities on the dielectric, magnetic properties is reported. • Maxwell–Wagner relaxation is found for BiFeO 3 prepared by sol–gel technique. • a.c. susceptibility measurements ruled out the possibility of spin glass nature. • The anomalous behavior of H C with the temperature is reported

  2. Multiferroic properties of BiFeO3/BaTiO3 multilayered thin films

    International Nuclear Information System (INIS)

    Sharma, Savita; Tomar, Monika; Kumar, Ashok; Puri, Nitin K.; Gupta, Vinay

    2014-01-01

    Multilayered structures of multiferroic BiFeO 3 (BFO) and ferroelectric BaTiO 3 (BTO) have been fabricated using pulsed laser deposition (PLD). Ferromagnetic and ferroelectric properties of the multilayered system (BFO/BTO) have been investigated. It could be inferred that the magnetization increases with the incorporation of BTO buffer layer, which indicates a coupling between the ferroelectric and ferromagnetic orders. Vibrating sample magnetometer (VSM) measurements performed on the prepared multiferroic samples show that the magnetization is significantly increased (M s =56.88 emu/cm 3 ) for the multilayer system with more number of layers (four) keeping the total thickness of the multilayered system constant (350 nm) meanwhile maintaining the sufficiently enhanced ferroelectric properties (P r =29.68 µC/cm 2 )

  3. Magnetic and dielectric properties of alkaline earth Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Yang, C.; Liu, C.Z.; Wang, C.M.; Zhang, W.G.; Jiang, J.S.

    2012-01-01

    Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles, Bi 0.8 Ca 0.2−x Ba x FeO 3 (x=0–0.20), were prepared by a sol–gel method. The phase structure, grain size, dielectric and magnetic properties of the prepared samples were investigated. The results showed that the lattice structure of the nanoparticles transformed from rhombohedral (x=0) to orthorhombic (x=0.07–0.19) and then to tetragonal (x=0.20) with x increased. The dielectric properties of the nanoparticles were affected by the properties of the substitutional ions as well as the crystalline structure of the samples. The magnetic properties of the nanoparticles were greatly improved and the T N of the nanoparticles was obviously increased. All the Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles presented the high ratio of M r /M from 0.527 to 0.571 and large coercivity from 4.335 to 5.163 KOe. - Highlights: ► Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles were prepared using a sol–gel method. ► The magnetic properties of the nanoparticles are greatly improved. ► The Neel temperature (T N ) of the nanoparticles is greatly increased. ► Doped ions and crystal structure affect the dielectric properties of the nanoparticles.

  4. Structural, electrical and multiferroic characteristics of thermo-mechanically fabricated BiFeO3-(BaSr)TiO3 solid solutions

    Science.gov (United States)

    Behera, C.; Choudhary, R. N. P.; Das, Piyush R.

    2018-05-01

    A solid solution consisting of two perovskite compounds (BiFeO3 and (BaSr)TiO3) of chemical composition (Bi1/2Ba1/4Sr1/4)(Fe1/2Ti1/2)O3 has been fabricated in the low dimensional regime by thermo-mechanical (ball milling and heating) approach. The effect of particle size on the structural, micro-structural, relative permittivity, switching (ferroelectric and magnetic) and conduction phenomena of the material has been studied using various experimental techniques such as x-rays diffraction, transmission and scanning electron microscopy, ferroelectric and magnetic hysteresis, dynamic magneto-electric coupling measurement and impedance spectroscopy techniques. All the above extracted properties are found to be particle size dependent. The first order magneto-electric coupling constant is found to be 2.56, 6.6 and 8.7 mV cm‑1.Oe for 30, 60 and 90 h milled calcined (hmc) sample respectively. As the above micro/nano-material with different particle size, has a high relative dielectric constant and low tangent loss, it can be used for some multifunctional devices including capacity energy storage device in nano-electronics.

  5. Local conductivity and the role of vacancies around twin walls of (001)-BiFeO3 thin films

    NARCIS (Netherlands)

    Farokhipoor, S.; Noheda, Beatriz

    2012-01-01

    BiFeO3 thin films epitaxially grown on SrRuO3-buffered (001)-oriented SrTiO3 substrates show orthogonal bundles of twin domains, each of which contains parallel and periodic 71 degrees domain walls. A smaller amount of 109 degrees domain walls are also present at the boundaries between two adjacent

  6. Crystal structure and Mössbauer effect in multiferroic 0.5BiFeO3-0.5Pb(Fe0.5Ta0.5O3 solid solution

    Directory of Open Access Journals (Sweden)

    Stoch Agata

    2017-06-01

    Full Text Available Multiferroic 0.5BiFeO3-0.5Pb(Fe0.5Ta0.5O3 solid solution is a material that exhibits ferroelectric and antiferromagnetic orderings in ambient temperature. The solid solution was obtained as a result of a conventional reaction in a solid state. The obtained material is a dense, fine-grained sinter whose surface was observed by scanning electron microscopy (SEM and stoichiometry was confirmed by energy dispersive X-ray spectroscopic (EDS analysis. According to the X-ray powder diffraction (XRD measurements, the main phase is R3c space group with admixture of Pm-3m regular phase. Small contribution of pyrochlore-like phase was also observed. Mössbauer spectroscopy suggested random distribution of Fe3+/Ta5+ cations in the B sites of ABO3 compound. Reduction of the magnetic hyperfine field with an increase in the substitution of Ta5+ in Fe3+ neighbourhood was also observed.

  7. Specific features of nonlinear optical properties of Eu3+ doped BiFeO3 nanopowders near antiferromagnetic transition

    Science.gov (United States)

    El Bahraoui, T.; Sekkati, M.; Taibi, M.; Abd-Lefdil, M.; El-Naggar, A. M.; AlZayed, N. S.; Albassam, A. A.; Kityk, I. V.; Maciag, A.

    2016-01-01

    The monitoring of the Eu3+ doped BiFeO3 nanopowders was performed near the antiferromagnetic transformation by photoinduced optical second harmonic generation. As photoinduced laser beams we have used bicolor coherent excitations of the Er:glass laser emitting at 1540 nm with frequency repetition about 15 ns. The studies of the photoinduced SHG were performed versus temperature including the temperature range of ferromagnetic-ferroelectric transition (350 °C…390 °C). The optimal light polarization and intensity ratio were chosen; the sensitivity of the photoinduced SHG to the multiferroic phase transitions was explored.

  8. Effects of (La, Sr) co-doping on electrical conduction and magnetic properties of BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Liu Li; Wang Shouyu; Yin Zi; Zhang Chuang; Li Xiu; Yang Jiabin; Liu Weifang; Xu Xunling

    2016-01-01

    Multiferroic material as a photovoltaic material has gained considerable attention in recent years. Nanoparticles (NPs) La 0.1 Bi 0.9−x Sr x FeO y (LBSF, x = 0, 0.2, 0.4) with dopant Sr 2+ ions were synthesized by the sol–gel method. A systematic change in the crystal structure from rhombohedral to tetragonal upon increasing Sr doping was observed. There is an obvious change in the particle size from 180 nm to 50 nm with increasing Sr substitution into LBFO. It was found that Sr doping effectively narrows the band gap from ∼ 2.08 eV to ∼ 1.94 eV, while it leads to an apparent enhancement in the electrical conductivity of LBSF NPs, making a transition from insulator to semiconductor. This suggests an effective way to modulate the conductivity of BiFeO 3 -based multiferroic materials with pure phase by co-doping with La and Sr at the A sites of BiFeO 3 . (paper)

  9. Electrical conduction at domain walls in multiferroic BiFeO3

    Science.gov (United States)

    Seidel, Jan; Martin, Lane; He, Qing; Zhan, Qian; Chu, Ying-Hao; Rother, Axel; Hawkridge, Michael; Maksymovych, Peter; Yu, Pu; Gajek, Martin; Balke, Nina; Kalinin, Sergei; Gemming, Sybille; Wang, Feng; Catalán, Gustau; Scott, James; Spaldin, Nicola; Orenstein, Joseph; Ramesh, Ramamoorthy

    2009-03-01

    We report the observation of room temperature electronic conductivity at ferroelectric domain walls in BiFeO3. The origin and nature of the observed conductivity is probed using a combination of conductive atomic force microscopy, high resolution transmission electron microscopy and first-principles density functional computations. We show that a structurally driven change in both the electrostatic potential and local electronic structure (i.e., a decrease in band gap) at the domain wall leads to the observed electrical conductivity. We estimate the conductivity in the wall to be several orders of magnitude higher than for the bulk material. Additionally we demonstrate the potential for device applications of such conducting nanoscale features.

  10. Investigation of electromagnetic properties of BiFeO3 by Time Differential Perturbed Angular Correlation (TDPAC) technique at ISOLDE

    CERN Document Server

    Efe, Ipek

    2017-01-01

    Time differential perturbed angular correlation (TDPAC) technique is one of the most sensitive techniques to study about the electric and magnetic fields at the individual lattice points. It benefits from the hyperfine interactions between the probe atom and its neighborhood. Multiferroic materials have been intensively studied to promote and understand the possibility of controlling magnetic properties by electric fields instead of magnetic fields which opens the path to faster, smaller, and more energy-efficient spintronic devices, such as memory elements, high-frequency magnetic devices, and micro-electro-mechanical systems, for data-storage technologies. BiFeO3 is one of the famous and important multiferroic materials since it shows both antiferromagnetic and ferroelectric behavior at room temperature. In this study, we report on the first time-differential perturbed angular correlation (TDPAC) measurements carried out on polycrystalline BiFeO3 samples using the nuclear probe 181Hf(181Ta) after implantati...

  11. Absence of morphotropic phase boundary effects in BiFeO3-PbTiO3 thin films grown via a chemical multilayer deposition method

    Science.gov (United States)

    Gupta, Shashaank; Bhattacharjee, Shuvrajyoti; Pandey, Dhananjai; Bansal, Vipul; Bhargava, Suresh K.; Peng, Ju Lin; Garg, Ashish

    2011-07-01

    We report an unusual behavior observed in (BiFeO3)1- x -(PbTiO3) x (BF- xPT) thin films prepared using a multilayer chemical solution deposition method. Films of different compositions were grown by depositing several bilayers of BF and PT precursors of varying BF and PT layer thicknesses followed by heat treatment in air. X-ray diffraction showed that samples of all compositions show mixing of two compounds resulting in a single-phase mixture, also confirmed by transmission electron microscopy. In contrast to bulk compositions, samples show a monoclinic (MA-type) structure suggesting disappearance of the morphotropic phase boundary (MPB) at x=0.30 as observed in the bulk. This is accompanied by the lack of any enhancement of the remanent polarization at the MPB, as shown by the ferroelectric measurements. Magnetic measurements showed an increase in the magnetization of the samples with increasing BF content. Significant magnetization in the samples indicates melting of spin spirals in the BF- xPT films, arising from a random distribution of iron atoms. Absence of Fe2+ ions was corroborated by X-ray photoelectron spectroscopy measurements. The results illustrate that thin film processing methodology significantly changes the structural evolution, in contrast to predictions from the equilibrium phase diagram, besides modifying the functional characteristics of the BP- xPT system dramatically.

  12. Approach to Exchange Bias Effect in La2/3Ca1/3MnO3/BiFeO3 and BiFeO3/ La2/3Ca1/3MnO3 Bilayers

    Science.gov (United States)

    Dominguez, Claribel; Ordonez, John; Diez, Sandra; Gomez, Maria; Guénon, Stefan; Schuller, Ivan

    2013-03-01

    We have grown bilayers of ferromagnetic La2/3Ca1/3MnO3 (LCMO) and multiferroic BiFeO3 (BFO) on (100) SrTiO3 (STO) substrates, by DC- and magnetron RF -sputtering technique, respectively, at high-oxygen pressures. We maintain constant the thickness of the layers (tBFO=72nm; tLCMO=80nm). Temperature dependence of the resistivity indicates that the MI-transition temperature of the manganite in the BFO/LCMO/STO is affected by the presence of the BFO layer in comparison with TMI for the single LCMO layer. Furthermore, temperature dependence of magnetization shows that the BFO/LCMO/STO bilayer has higher Curie temperature than that for LCMO/BFO/STO, indicating a strong structural dependence of the LCMO layer with magnetic response. The dependence of the magnetic moment with magnetic field after field cooling gives indication of the existence of Exchange Bias effect in the LCMO/BFO/STO bilayer. Isothermal loops also display dependence of the Exchange Bias magnitude with field cooling. This work has been supported by UNIVALLE Research Project CI 7864, and ``El Patrimonio Autónomo Fondo Nacional de Financiamiento para CT&I FJC,'' Contract RC - No. 275-2011, COLCIENCIAS-CENM, Colombia

  13. Joining Chemical Pressure and Epitaxial Strain to Yield Y-doped BiFeO3 Thin Films with High Dielectric Response

    Science.gov (United States)

    Scarisoreanu, N. D.; Craciun, F.; Birjega, R.; Ion, V.; Teodorescu, V. S.; Ghica, C.; Negrea, R.; Dinescu, M.

    2016-05-01

    BiFeO3 is one of the most promising multiferroic materials but undergoes two major drawbacks: low dielectric susceptibility and high dielectric loss. Here we report high in-plane dielectric permittivity (ε’ ∼2500) and low dielectric loss (tan δ priced target.

  14. Orthorhombic polar Nd-doped BiFeO3 thin film on MgO substrate

    International Nuclear Information System (INIS)

    Leontyev, I N; Janolin, P-E; Dkhil, B; Yuzyuk, Yu I; El-Marssi, M; Chernyshov, D; Dmitriev, V; Golovko, Yu I; Mukhortov, V M

    2011-01-01

    A Nd-doped BiFeO 3 thin film deposited on MgO substrate was studied by synchrotron diffraction. The ferroelectric nature of the film is proven by in-plane remanent polarization measurement. The highest possible symmetry of the film is determined to be orthorhombic, within the Fm2m space group. Such a structure is rotated by 45 0 with respect to the substrate and is consistent with tilts of oxygen octahedra doubling the unit cell. This polar structure presents a rather unusual strain-accommodation mechanism. (fast track communication)

  15. Pinning, rotation, and metastability of BiFeO3 cycloidal domains in a magnetic field

    Science.gov (United States)

    Fishman, Randy S.

    2018-01-01

    Earlier models for the room-temperature multiferroic BiFeO3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P . However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m . We show that the previously neglected threefold anisotropy K3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable below Bc 1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ =M ×B along P exceeds a threshold value τpin. Since τ =0 when m ⊥q , the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. The model developed in this paper also explains how the three multiferroic domains of BiFeO3 for a fixed P can be manipulated by a magnetic field.

  16. Transition metal modified bulk BiFeO3 with improved magnetization and linear magneto-electric coupling

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Kumar, A.; Panwar, N.; Panwar, I.C.; Katiyar, R.S.

    2011-01-01

    Highlights: → Present composition (Bi 0.9 Sm 0.10 Fe 0.95 Co 0.05 O 3 (BSFCO) have shown very high magnetization compared to parent BFO. → The magnetic hysteresis loops are well saturated with high saturation magnetization 2.89 emu/gm (unpoled and unleached) and 2.18 emu/gm (poled and unleached) respectively. → Converse ME coupling were found 0.8e-10 s m -1 (H||E) and 0.6-0.8 x 10 -10 s m -1 (H-perpendicular E) which are better than the single phase multiferroic obeying linear ME coupling. - Abstract: At present BiFeO 3 (BFO) is the most attractive and sole example, which possesses low magnetization value, high leakage current and low polarization in ceramic form. Single-phase room temperature multiferroics are rare in nature. This paper deals with the improved magnetic and observed linear magneto-electric coupling in Co and Sm co-doped BiFeO 3 ceramics synthesized by sol-gel process at low temperature ∼600 deg. C. As synthesized Bi 0.9 Sm 0.10 Fe 0.95 Co 0.05 O 3 (BSFCO) showed high impurities phases (20%) over wide range of calcination temperatures. Impurity phases reduced drastically from 20% to 5% after leaching with nitric acid. However the electrical and the magnetic properties were almost the same for both phases. Well-defined magnetic hysteresis with high magnetic moment was found at room temperature. Ferroelectric polarization studies demonstrated similar values and shape as reported in literature for the pure bulk BFO. Linear magneto-electric (ME) coupling and weak ME coefficient (α) ∼ 0.6 e-10 s m -1 were observed in the co-doped BFO. The origin of the strong ferromagnetic property in our samples may be due to the presence of rare earth and transition metal ions at the lattice sites of BFO or due to impurity phase, since we have not seen any change in magnetization with reduction of impurity phase the later effect is more unlikely.

  17. Structural transitions and multiferroic properties of high Ni-doped BiFeO3

    Science.gov (United States)

    Betancourt-Cantera, L. G.; Bolarín-Miró, A. M.; Cortés-Escobedo, C. A.; Hernández-Cruz, L. E.; Sánchez-De Jesús, F.

    2018-06-01

    Nickel doped bismuth ferrite powders, BiFe1-x NixO3 (0 ≤ x ≤ 0.5), were synthesized by high-energy ball milling followed by an annealing at 700 °C. A detailed study about the substitution of Fe3+ by Ni2+ on the crystal structure and multiferroic properties is presented. The X-ray diffraction patterns reveal the formation of rhombohedral structure with small amounts of Bi2Fe4O9 as a secondary phase for x behavior indicates the frustration of the G-antiferromagnetic order typical of the un-doped BiFeO3, caused by the presence of small amounts of Ni2+ (x Behavior modifications of electrical conductivity, permittivity and dielectric loss versus frequency are related with crystal structure transformations, when nickel concentration is increased.

  18. Ferroelectric and electrical characterization of multiferroic BiFeO3 at the single nanoparticle level

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Rama K [ORNL; Bogle, K A [University of New South Wales, Sydney, Australia; Kumar, Amit [ORNL; Jesse, Stephen [ORNL; Magaraggia, R [University of Glasgow; Stamps, R [University of Glasgow; Ogale, S [National Chemical Laboratory, India; Potdar, H S [National Chemical Laboratory, India

    2011-01-01

    Ferroelectric BiFeO3 (BFO) nanoparticles deposited on epitaxial substrates of SrRuO3 (SRO) and La1xSrxMnO3 (LSMO) were studied using band excitation piezoresponse spectroscopy (BEPS), piezoresponse force microscopy (PFM), and ferromagnetic resonance (FMR). BEPS confirms that the nanoparticles are ferroelectric in nature. Switching behavior of nanoparticle clusters were studied and showed evidence for inhomogeneous switching. The dimensionality of domains within nanoparticles was found to be fractal in nature, with a dimensionality constant of 1.4, on par with ferroelectric BFO thin-films under 100 nm in thickness. Ferromagnetic resonance studies indicate BFO nanoparticles only weakly affect the magnetic response of LSMO.

  19. Ferroelectric and electrical characterization of multiferroic BiFeO3 at the single nanoparticle level

    Science.gov (United States)

    Vasudevan, R. K.; Bogle, K. A.; Kumar, A.; Jesse, S.; Magaraggia, R.; Stamps, R.; Ogale, S. B.; Potdar, H. S.; Nagarajan, V.

    2011-12-01

    Ferroelectric BiFeO3 (BFO) nanoparticles deposited on epitaxial substrates of SrRuO3 (SRO) and La1-xSrxMnO3 (LSMO) were studied using band excitation piezoresponse spectroscopy (BEPS), piezoresponse force microscopy (PFM), and ferromagnetic resonance (FMR). BEPS confirms that the nanoparticles are ferroelectric in nature. Switching behavior of nanoparticle clusters were studied and showed evidence for inhomogeneous switching. The dimensionality of domains within nanoparticles was found to be fractal in nature, with a dimensionality constant of ˜1.4, on par with ferroelectric BFO thin-films under 100 nm in thickness. Ferromagnetic resonance studies indicate BFO nanoparticles only weakly affect the magnetic response of LSMO.

  20. First-principles approach to the dynamic magnetoelectric couplings for the non-reciprocal directional dichroism in BiFeO3

    Science.gov (United States)

    Lee, Jun Hee; Kézsmáki, István; Fishman, Randy S.

    2016-04-01

    Due to the complicated magnetic and crystallographic structures of BiFeO3, its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a first-principles approach, we uncover all possible ME couplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO3. First-principles calculations are used to understand the microscopic origins of the ME couplings. We find that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamic ME effects in BiFeO3. A model motivated by first principles reproduces the absorption difference of counter-propagating light beams called non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic ME couplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hidden ME couplings on the atomic scale and for exploiting optical ME effects in the next generation of technological devices such as optical diodes. This manuscript has been written by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan.

  1. Photovoltaic effect in transition metal modified polycrystalline BiFeO3 thin films

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Chrisey, Douglas B; Pradhan, Dhiren Kumar; Katiyar, Rajesh Kumar; Misra, Pankaj; Scott, J F; Katiyar, Ram S; Coondoo, Indrani; Panwar, Neeraj

    2014-01-01

    We report photovoltaic (PV) effect in multiferroic Bi 0.9 Sm 0.1 Fe 0.95 Co 0.05 O 3 (BSFCO) thin films. Transition metal modified polycrystalline BiFeO 3 (BFO) thin films have been deposited on Pt/TiO 2 /SiO 2 /Si substrate successfully through pulsed laser deposition (PLD). PV response is observed under illumination both in sandwich and lateral electrode configurations. The open-circuit voltage (V oc ) and the short-circuit current density (J sc ) of the films in sandwich electrode configuration under illumination are measured to be 0.9 V and −0.051 µA cm −2 . Additionally, we report piezoresponse for BSFCO films, which confirms ferroelectric piezoelectric behaviour. (paper)

  2. Influence of Co doping on structural, optical and magnetic properties of BiFeO3 films deposited on quartz substrates by sol-gel method

    Science.gov (United States)

    Peng, Lin; Deng, Hongmei; Tian, Jianjun; Ren, Qing; Peng, Cheng; Huang, Zhipeng; Yang, Pingxiong; Chu, Junhao

    2013-03-01

    Multiferroic BiFe1-xCoxO3 (x = 0, 0.03, 0.05, 0.1) thin films have been prepared on quartz substrates using a sol-gel technique. X-ray diffraction data confirms that Co atoms have been successfully incorporated into the host lattice. The scanning electron microscopy (SEM) exhibits that the surface morphologies of BiFe0.97Co0.03O3 and BiFe0.95Co0.05O3 thin films become more compact and uniform. With increasing Co dopant, the position of A1-1 and E-4 modes shift towards the lower wavenumber indicates that Co doping induces structural distortion of BiFeO3. With increasing Co composition, the fundamental absorption edges of BiFe1-xCoxO3 films show red shift. Furthermore, transmittance spectra demonstrates that the optical band gap of BiFe1-xCoxO3 films decreases from 2.66 eV to 2.53 eV with the increase of Co from x = 0 to 0.1. At the wavelength of 720 nm, the refractive index decreases and the extinction coefficient increases with increasing the amount of Co. Optical properties reveal that Co doping in BiFeO3 provides preliminary research for optoelectronic devices and infrared detectors. Compared with BiFeO3 prepared under similar conditions, the remanent magnetization Mr of BiFe1-xCoxO3 (x = 0.03, 0.05, 0.1) thin films significantly enhanced, which provides potential applications in information storage.

  3. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy.

    Science.gov (United States)

    Domingo, N; Farokhipoor, S; Santiso, J; Noheda, B; Catalan, G

    2017-08-23

    We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO 3 by means of conductive-atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall.

  4. Spatially Resolved Large Magnetization in Ultrathin BiFeO3

    KAUST Repository

    Guo, Er-Jia

    2017-06-19

    Here, a quantitative magnetic depth profile across the planar interfaces in BiFeO3 /La0.7 Sr0.3 MnO3 (BFO/LSMO) superlattices using polarized neutron reflectometry is obtained. An enhanced magnetization of 1.83 ± 0.16 μB /Fe in BFO layers is observed when they are interleaved between two manganite layers. The enhanced magnetic order in BFO persists up to 200 K. The depth dependence of magnetic moments in BFO/LSMO superlattices as a function of the BFO layer thickness is also explored. The results show the enhanced net magnetic moment in BFO from the LSMO/BFO interface extends 3-4 unit cells into BFO. The interior part of a thicker BFO layer has a much smaller magnetization, suggesting it still keeps the small canted AFM state. The results exclude charge transfer, intermixing, epitaxial strain, and octahedral rotations/tilts as dominating mechanisms for the large net magnetization in BFO. An explanation-one suggested by others previously and consistent with the observations-attributes the temperature dependence of the net magnetization of BFO to strong orbital hybridization between Fe and Mn across the interfaces. Such orbital reconstruction would establish an upper temperature limit for magnetic ordering of BFO.

  5. Structural phase transition and magnetic properties of Er-doped BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Li, Y T; Zhang, H G; Dong, X G; Li, Q; Mao, W W; Dong, C L; Ren, S L; Li, X A; Wei, S Q

    2013-01-01

    The structural phase transition and local structural distortion of Er-doped BiFeO 3 nanoparticles have been discussed in order to understand the variation of magnetic properties in this system. The X-ray diffraction patterns and X-ray absorption fine structure of these samples demonstrate that there is structural phase transition and no obvious local structural distortion with the increasing of doping concentration. Unfortunately, no ferromagnetic properties have been observed even at a lower temperature. And the X-ray absorption spectra of Fe 2p core level of these samples are totally same, especially the energy positions do not shift which means the consistent valence states of Fe ions.

  6. Enhancement of magnetic and ferroelectric properties of BiFeO3 by Er and transition element (Mn, Co) co-doping

    International Nuclear Information System (INIS)

    Han, Yumin; Mao, Weiwei; Quan, Chuye; Wang, Xingfu; Yang, Jianping; Yang, Tao; Li, Xing’ao

    2014-01-01

    Highlights: • BiFeO 3 , Bi 0.8 Er 0.2 FeO 3 , Bi 0.8 Er 0.2 Fe 0.9 Mn 0.1 O 3 and Bi 0.8 Er 0.2 Fe 0.9 Co 0.1 O 3 nanoparticles were prepared by sol–gel method. • The introduction of Er and Mn, Co into BiFeO 3 leads into a phase transition with reduced grain size. • The phase transformation combined with size reduction has significantly increased saturated polarization (Ps), remanent polarization (Pr) and saturated magnetization (Ms), remanent magnetization (Mr) behaviors of the doped samples with the same variation trend. • The formation of dipolar defect complexes (DDCs) in the doped samples may also contribute to the improved ferroelectric property. • Bi 0.8 Er 0.2 Fe 0.9 Mn 0.1 O 3 exhibits significantly improved ferroelectric and ferromagnetic properties. - Abstract: BiFeO 3 (BFO), Bi 0.8 Er 0.2 FeO 3 (BEFO), Bi 0.8 Er 0.2 Fe 0.9 Mn 0.1 O 3 (BEFMO) and Bi 0.8 Er 0.2 Fe 0.9 Co 0.1 O 3 (BEFCO) nanoparticles were prepared by sol–gel method having an average size of 200 nm for BFO, under100 nm for BEFO and under 60 nm for BEFMO and BEFCO. Phase transition from a rhombohedral symmetry (R3c) for BFO to an orthorhombic symmetry (Ibmm) for BEFO, BEFMO and BEFCO has been observed. The phase transformation combined with size reduction has significantly improved both ferroelectric and ferromagnetic behaviors of the doped samples in a similar way. The formation of dipolar defect complexes (DDCs) in the doped samples also contributes to the improved ferroelectric property with saturated polarization (Ps) of 0.375 μC/cm 2 and remanent polarization (Pr) of 0.244 μC/cm 2 for BEFMO. Size effect may also impact the simultaneously developed Pr for BEFMO and BEFCO. Owning to the interactions between the ferromagnetic and antiferromagnetic microdomains, improved saturated magnetization (Ms) and remanent magnetization (Mr) are also observed in BEFMO

  7. Application of BiFeO3-based on nickel foam composites with a highly efficient catalytic activity and easily recyclable in Fenton-like process under microwave irradiation

    Science.gov (United States)

    Li, Shuo; Zhang, Guangshan; Zheng, Heshan; Zheng, Yongjie; Wang, Peng

    2018-05-01

    In this study, BiFeO3 (BFO) powders decorated on nickel foam (NF) with a high catalytic activity are prepared via a one-step microwave-assisted hydrothermal method. The factors that influence the degradation of bisphenol A (BPA) with BFO/NFs as catalysts are optimized to improve the catalytic activity in a microwave-enhanced Fenton-like process. BFO/NF exhibit a superior catalytic activity with a high BPA removal ratio (98.4%) and TOC removal ratio (69.5%) within 5 min. Results indicate that NF significantly affect the improvement of the catalytic activity of BFO because it served as a source of hydroxyl radicals (•OH) during degradation. The amount of •OH generated by BFO/NF is approximately 1.65-fold higher than that by pure BFO. After six reaction cycles, the stability and reusability of •OH remain high. These findings provide new insights into the synthesis of composites on heterogeneous catalysts with high efficiency and easy recyclability for water treatment applications.

  8. Polarization-tuned diode behaviour in multiferroic BiFeO3 thin films

    KAUST Repository

    Yao, Yingbang

    2012-12-28

    Asymmetric rectifying I-V behaviour of multiferroic BiFeO3 (BFO) thin films grown on transparent ITO-coated glass was quantitatively studied as a function of ferroelectric polarization. Different polarized states were established by unipolar or bipolar poling with various applied electric fields. The effects of polarization relaxation and fatigue on the currents were also investigated. We found that the conduction currents and the associated rectifications were controlled by the amplitude and direction of the polarization. We clearly observed the linear dependence of the current on the polarization. It is suggested that the space-charge-limited conduction and the charge injection at the Schottky interface between the film and the electrodes dominate the current. The electrically controlled rectifying behaviour observed in this study may be useful in nonvolatile resistance memory devices or tunable diodes. © 2013 IOP Publishing Ltd.

  9. Critical slowing down of spin fluctuations in BiFeO3

    International Nuclear Information System (INIS)

    Scott, J F; Singh, M K; Katiyar, R S

    2008-01-01

    In earlier work we reported the discovery of phase transitions in BiFeO 3 evidenced by divergences in the magnon light-scattering cross-sections at 140 and 201 K (Singh et al 2008 J. Phys.: Condens. Matter 20 252203) and fitted these intensity data to critical exponents α = 0.06 and α' = 0.10 (Scott et al 2008 J. Phys.: Condens. Matter 20 322203), under the assumption that the transitions are strongly magnetoelastic (Redfern et al 2008 at press) and couple to strain divergences through the Pippard relationship (Pippard 1956 Phil. Mag. 1 473). In the present paper we extend those criticality studies to examine the magnon linewidths, which exhibit critical slowing down (and hence linewidth narrowing) of spin fluctuations. The linewidth data near the two transitions are qualitatively different and we cannot reliably extract a critical exponent ν, although the mean field value ν = 1/2 gives a good fit near the lower transition.

  10. Electric-field switchable magnetization via the Dzyaloshinskii-Moriya interaction: FeTiO3 versus BiFeO3

    International Nuclear Information System (INIS)

    Ederer, Claude; Fennie, Craig J

    2008-01-01

    In this paper we review and discuss a mechanism for coupling between electric polarization and magnetization that can ultimately lead to electric-field switchable magnetization. The basic idea is that a ferroelectric distortion in an antiferromagnetic material can 'switch on' the Dzyaloshinskii-Moriya interaction which leads to a canting of the antiferromagnetic sublattice magnetizations, and thus to a net magnetization. This magnetization M-vector is coupled to the polarization P-vector via a trilinear free energy contribution of the form P-vector·(M-vectorxxL-vector), where L-vector is the antiferromagnetic order parameter. In particular, we discuss why such an invariant is present in R3c FeTiO 3 but not in the isostructural multiferroic BiFeO 3 . Finally, we construct symmetry groups that in general allow for this kind of ferroelectrically-induced weak ferromagnetism.

  11. Enhancement of switching speed of BiFeO3 capacitors by magnetic fields

    Directory of Open Access Journals (Sweden)

    E. J. Guo

    2014-09-01

    Full Text Available The effect of a magnetic field on the ferroelectric switching kinetics of BiFeO3 (BFO capacitors with La0.8Ca0.2MnO3 (LCMO bottom electrode and Pt top contact has been investigated. We find a strong dependence of the remnant polarization and coercive field on the magnetic field. The switching time can be systematically tuned by magnetic field and reaches a tenfold reduction around the Curie temperature of LCMO at 4 T. We attribute this behavior to the splitting of the voltage drops across the BFO film and the LCMO bottom electrode, which can be strongly influenced by an external magnetic field due to the magnetoresistance. Further experiments on the BFO capacitors with SrRuO3 bottom electrodes show little magnetic field dependence of ferroelectric switching confirming our interpretation. Our results provide an efficient route to control the ferroelectric switching speed through the magnetic field, implying potential application in multifunctional devices.

  12. Tuning magnetic properties of magnetoelectric BiFeO 3-NiFe 2O 4 nanostructures

    Science.gov (United States)

    Crane, S. P.; Bihler, C.; Brandt, M. S.; Goennenwein, S. T. B.; Gajek, M.; Ramesh, R.

    2009-02-01

    Multifunctional thin film nanostructures containing soft magnetic materials such as nickel ferrite are interesting for potential applications in microwave signal processing because of the possibility to shrink the size of device architecture and limit device power consumption. An essential prerequisite to future applications of such a system is a firm understanding of its magnetic properties. We show that nanostructures composed of ferrimagnetic NiFe 2O 4 pillars in a multiferroic BiFeO 3 matrix can be tuned magnetically by altering the aspect ratio of the pillars by depositing films of varying thickness. Magnetic anisotropy is studied using ferromagnetic resonance, which shows that the uniaxial magnetic anisotropy in the growth direction changes sign upon increasing the film thickness. The magnitude of this anisotropy contribution can be explained via a combination of shape and magnetostatic effects, using the object-oriented micromagnetic framework (OOMMF). The key factors determining the magnetic properties of the films are shown to be the aspect ratio of individual pillars and magnetostatic interactions between neighboring pillars.

  13. Tuning magnetic properties of magnetoelectric BiFeO3-NiFe2O4 nanostructures

    International Nuclear Information System (INIS)

    Crane, S.P.; Bihler, C.; Brandt, M.S.; Goennenwein, S.T.B.; Gajek, M.; Ramesh, R.

    2009-01-01

    Multifunctional thin film nanostructures containing soft magnetic materials such as nickel ferrite are interesting for potential applications in microwave signal processing because of the possibility to shrink the size of device architecture and limit device power consumption. An essential prerequisite to future applications of such a system is a firm understanding of its magnetic properties. We show that nanostructures composed of ferrimagnetic NiFe 2 O 4 pillars in a multiferroic BiFeO 3 matrix can be tuned magnetically by altering the aspect ratio of the pillars by depositing films of varying thickness. Magnetic anisotropy is studied using ferromagnetic resonance, which shows that the uniaxial magnetic anisotropy in the growth direction changes sign upon increasing the film thickness. The magnitude of this anisotropy contribution can be explained via a combination of shape and magnetostatic effects, using the object-oriented micromagnetic framework (OOMMF). The key factors determining the magnetic properties of the films are shown to be the aspect ratio of individual pillars and magnetostatic interactions between neighboring pillars

  14. Magnetic Field Control of Cycloidal Domains and Electric Polarization in Multiferroic BiFeO3

    Science.gov (United States)

    Bordács, S.; Farkas, D. G.; White, J. S.; Cubitt, R.; DeBeer-Schmitt, L.; Ito, T.; Kézsmárki, I.

    2018-04-01

    The magnetic field induced rearrangement of the cycloidal spin structure in ferroelectric monodomain single crystals of the room-temperature multiferroic BiFeO3 is studied using small-angle neutron scattering. The cycloid propagation vectors are observed to rotate when magnetic fields applied perpendicular to the rhombohedral (polar) axis exceed a pinning threshold value of ˜5 T . In light of these experimental results, a phenomenological model is proposed that captures the rearrangement of the cycloidal domains, and we revisit the microscopic origin of the magnetoelectric effect. A new coupling between the magnetic anisotropy and the polarization is proposed that explains the recently discovered magnetoelectric polarization perpendicular to the rhombohedral axis.

  15. Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics

    KAUST Repository

    Zhang, Shuxia

    2012-04-06

    High quality Bi1− x Dy x FeO3 (0 ≤ x ≤ 0.15) ceramics have been fabricated by sintering Dy-doped BiFeO3 (BFO) precursor powders at a low temperature of 780 °C. The magnetic properties of BFO were improved by the introduction of Dy on the Bi-site. More importantly, well saturated ferroelectric hysteresis loops and polarization switching currents have been observed at room temperature. A large remnant polarization (2P r) value of 62 μC/cm2 is achieved, which is the highest value reported so far for rare-earth-doped BFO ceramics. Moreover, mechanisms for improved multiferroic properties depending on chemical doping-caused structure evolutions have also been discussed.

  16. Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics

    KAUST Repository

    Zhang, Shuxia; Wang, Lei; Chen, Yao; Wang, Dongliang; Yao, Yingbang; Ma, Yanwei

    2012-01-01

    High quality Bi1− x Dy x FeO3 (0 ≤ x ≤ 0.15) ceramics have been fabricated by sintering Dy-doped BiFeO3 (BFO) precursor powders at a low temperature of 780 °C. The magnetic properties of BFO were improved by the introduction of Dy on the Bi-site. More importantly, well saturated ferroelectric hysteresis loops and polarization switching currents have been observed at room temperature. A large remnant polarization (2P r) value of 62 μC/cm2 is achieved, which is the highest value reported so far for rare-earth-doped BFO ceramics. Moreover, mechanisms for improved multiferroic properties depending on chemical doping-caused structure evolutions have also been discussed.

  17. Electric-field control of spin waves in multiferroic BiFeO3: Theory

    Science.gov (United States)

    de Sousa, Rogério; Rovillain, P.; Gallais, Y.; Sacuto, A.; Méasson, M. A.; Colson, D.; Forget, A.; Bibes, M.; Barthélémy, A.; Cazayous, M.

    2011-03-01

    Our recent experiment demonstrated gigantic (30%) electric-field tuning of magnon frequencies in multiferroic BiFeO3. We demonstrate that the origin of this effect is related to two linear magnetoelectric interactions that couple the component of electric field perpendicular to the ferroelectric vector to a quadratic form of the Néel vector. We calculate the magnon spectra due to each of these interactions and show that only one of them is consistent with experimental data. At high electric fields, this interaction induces a phase transition to a homogeneous state, and the multi-magnon spectra will fuse into two magnon frequencies. We discuss the possible microscopic mechanisms responsible for this novel interaction and the prospect for applications in magnonics. We acknowledge support from NSERC-Discovery (Canada) and the Agence Nationale pour la Recherche (France).

  18. Structural, magnetic, and ferroelectric properties of T-like cobalt-doped BiFeO3 thin films

    Science.gov (United States)

    Young, T.; Sharma, P.; Kim, D. H.; Ha, Thai Duy; Juang, Jenh-Yih; Chu, Y.-H.; Seidel, J.; Nagarajan, V.; Yasui, S.; Itoh, M.; Sando, D.

    2018-02-01

    We present a comprehensive study of the physical properties of epitaxial cobalt-doped BiFeO3 films ˜50 nm thick grown on (001) LaAlO3 substrates. X-ray diffraction and magnetic characterization demonstrate high quality purely tetragonal-like (T') phase films with no parasitic impurities. Remarkably, the step-and-terrace film surface morphology can be fully recovered following a local electric-field-induced rhombohedral-like to T' phase transformation. Local switching spectroscopy experiments confirm the ferroelectric switching to follow previously reported transition pathways. Critically, we show unequivocal evidence for conduction at domain walls between polarization variants in T'-like BFO, making this material system an attractive candidate for domain wall-based nanoelectronics.

  19. Thin film composites in the BiFeO3–Bi4Ti3O12 system obtained by an aqueous solution-gel deposition methodology

    Directory of Open Access Journals (Sweden)

    Carlos Gumiel

    2018-01-01

    Full Text Available Thin film multiferroic composites, with a high quantity of interfaces between the different materials, represent a more feasible alternative to single phase systems in which the multifunctional response is usually hampered due to intrinsic physical constraints. Nowadays some of these composites can be produced by applying deposition techniques such as PLD, CVD, MBE or the like, which allow a high degree of crystallographic control. However, despite their effectiveness, all these techniques also involve a high consumption of energy in terms of temperature and/or vacuum. Within this frame, the present contribution proposes a sustainable chemical solution deposition process to prepare thin films of the multiferroic BiFeO3–Bi4Ti3O12 composite system. More specifically an aqueous solution-gel plus spin-coating methodology is employed which also avoids the organic solvents typically used in a conventional sol–gel method, so further keeping an eye on the environmentally friendly conditions. Attempts are conducted that demonstrate how by systematically controlling the processing parameters it is possible to obtain thin film composites with a promising 3-3 type connectivity at temperatures as low as 600 °C.

  20. Thin film composites in the BiFeO3–Bi4Ti3O12 system obtained by an aqueous solution-gel deposition methodology

    International Nuclear Information System (INIS)

    Gumiel, C.; Vranken, T.; Bernardo, M.S.; Jardiel, T.; Hardy, A.; Van Bael, M.K.; Peiteado, M.

    2018-01-01

    Thin film multiferroic composites, with a high quantity of interfaces between the different materials, represent a more feasible alternative to single phase systems in which the multifunctional response is usually hampered due to intrinsic physical constraints. Nowadays some of these composites can be produced by applying deposition techniques such as PLD, CVD, MBE or the like, which allow a high degree of crystallographic control. However, despite their effectiveness, all these techniques also involve a high consumption of energy in terms of temperature and/or vacuum. Within this frame, the present contribution proposes a sustainable chemical solution deposition process to prepare thin films of the multiferroic BiFeO3–Bi4Ti3O12 composite system. More specifically an aqueous solution-gel plus spin-coating methodology is employed which also avoids the organic solvents typically used in a conventional sol–gel method, so further keeping an eye on the environmentally friendly conditions. Attempts are conducted that demonstrate how by systematically controlling the processing parameters it is possible to obtain thin film composites with a promising 3-3 type connectivity at temperatures as low as 600°C. [es

  1. Electric Field Controlled Magnetism in BiFeO3/Ferromagnet Films

    Science.gov (United States)

    Holcomb, M. B.; Chu, Y. H.; Martin, L. W.; Gajek, M.; Seidel, J.; Ramesh, R.; Scholl, A.; Fraile-Rodriguez, A.

    2008-03-01

    Electric field control of magnetism is a hot technological topic at the moment due to its potential to revolutionize today's devices. Magnetoelectric materials, those having both electric and magnetic order and the potential for coupling between the two, are a promising avenue to approach electric control. BiFeO3, both a ferroelectric and an antiferromagnet, is the only single phase room temperature magnetoelectric that is currently known. In addition to other possibilities, its multiferroic nature has potential in the very active field of exchange bias, where an antiferromagnetic thin film pins the magnetic direction of an adjoining ferromagnetic layer. Since this antiferromagnet is electrically tunable, this coupling could allow electric-field control of the ferromagnetic magnetization. Direction determination of antiferromagnetic domains in BFO has recently been shown using linear and circular dichroism studies. Recently, this technique has been extended to look at the magnetic domains of a ferromagnetic grown on top of BFO. The clear magnetic changes induced by application of electric fields reveal the possibility of electric control.

  2. Interfacial effects on the electrical properties of multiferroic BiFeO3/Pt/Si thin film heterostructures

    International Nuclear Information System (INIS)

    Yakovlev, S.; Zekonyte, J.; Solterbeck, C.-H.; Es-Souni, M.

    2005-01-01

    Polycrystalline BiFeO 3 thin films of various thickness were fabricated on (111)Pt/Ti/SiO 2 /Si substrates via chemical solution deposition. The electrical properties were investigated using impedance and leakage current measurements. X-ray photoelectron spectroscopy (XPS) combined with Ar ion milling (depth profiling) was used to investigate elemental distribution near the electrode-film interface. It is shown that the dielectric constant depends on film thickness due to the presence of an interfacial film-electrode layer evidenced by XPS investigation. Direct current conductivity is found to be governed by Schottky and/or Poole-Frenkel mechanisms

  3. Interfacial effects revealed by ultrafast relaxation dynamics in BiFeO 3 / YBa 2 Cu 3 O 7 bilayers

    KAUST Repository

    Springer, D.

    2016-02-12

    The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO3 (BFO) and superconducting YBa2Cu3O7 (YBCO) grown on a (001) SrTiO3 substrate is studied by a time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCO interface as observed in magnetization data. An extension of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.

  4. Interfacial effects revealed by ultrafast relaxation dynamics in BiFeO 3 / YBa 2 Cu 3 O 7 bilayers

    KAUST Repository

    Springer, D.; Nair, Saritha K.; He, Mi; Lu, C. L.; Cheong, S. A.; Wu, Tao; Panagopoulos, C.; Chia, Elbert E. M.; Zhu, Jian-Xin

    2016-01-01

    The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO3 (BFO) and superconducting YBa2Cu3O7 (YBCO) grown on a (001) SrTiO3 substrate is studied by a time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCO interface as observed in magnetization data. An extension of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.

  5. Thickness-dependent piezoelectric behaviour and dielectric properties of lanthanum modified BiFeO3 thin films

    Directory of Open Access Journals (Sweden)

    Glenda Biasotto

    2011-03-01

    Full Text Available Bi0.85La0.15FeO3 (BLFO thin films were deposited on Pt(111/Ti/SiO2 /Si substrates by the soft chemical method. Films with thicknesses ranging from 140 to 280 nm were grown on platinum coated silicon substrates at 500°C for 2 hours. The X-ray diffraction analysis of BLFO films evidenced a hexagonal structure over the entire thickness range investigated. The grain size of the film changes as the number of the layers increases, indicating thickness dependence. It is found that the piezoelectric response is strongly influenced by the film thickness. It is shown that the properties of BiFeO3 thin films, such as lattice parameter, dielectric permittivity, piezoeletric coefficient etc., are functions of misfit strains.

  6. Study on superstructure in ion co-doped BiFeO3 by using transmission electron microscopy

    Science.gov (United States)

    Pu, Shi-Zhou; Guo, Chao; Li, Mei-Ya; Chen, Zhen-Lian; Zou, Hua-Min

    2015-04-01

    La3+ and V5+ co-doped BiFeO3 ceramics are synthesized by rapid liquid sintering technique. The modulated structure in Bi0.85La0.15Fe0.97V0.03O3 is investigated by using transmission electron microscopy (TEM). Two kinds of superstructures are observed in the samples. One is the component modulated superstructure and twin-domain, which is generated by La3+ ordered substitution for Bi3+ and frequently appears. The chemical composition of the superstructure is explored by x-ray energy dispersive spectroscopy (EDS). The model of the ordered structure is proposed. Simulation based on the model is conducted. The second is the fluorite-type δ-Bi2O3 related superstructure. The relation between the ferroelectric property and the microstructure of the sample is also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 51372174, 11074193, and 51132001) and the Fundamental Research Funds for the Central Universities.

  7. Influence of cobalt doping on structural and magnetic properties of BiFeO3 nanoparticles

    Science.gov (United States)

    Khan, U.; Adeela, N.; Javed, K.; Riaz, S.; Ali, H.; Iqbal, M.; Han, X. F.; Naseem, S.

    2015-11-01

    Nanocrystalline cobalt-doped bismuth ferrites with general formula of BiFe1- δ Co δ O3 (0 ≤ δ ≤ 0.1) have been synthesized using solution evaporation method. Structure and phase identification was performed with X-ray diffraction (XRD) technique. The results confirm the formation of rhombohedral-distorted Perovskite structure with R3c symmetry. A decrease in lattice parameters and an increase in X-ray density have been observed with increasing cobalt concentration in BiFeO3. Particle size determined by transmission electron microscope was in good agreement with XRD, i.e., 39 nm. Room-temperature coercivity and saturation magnetization of nanoparticles were increased up to 7.5 % of cobalt doping. Low-temperature magnetic measurements of selected sample showed increasing behavior in saturation magnetization, coercivity, effective magnetic moments, and anisotropy constant. An increase in coercivity with decrease in temperature followed theoretical model of Kneller's law, while modified Bloch's model was employed for saturation magnetization in temperature range of 5-300 K.

  8. Single crystal growth of 67%BiFeO3-33%BaTiO3 solution by the floating zone method

    Science.gov (United States)

    Rong, Y.; Zheng, H.; Krogstad, M. J.; Mitchell, J. F.; Phelan, D.

    2018-01-01

    The growth conditions and the resultant grain morphologies and phase purities from floating-zone growth of 67%BiFeO3-33%BaTiO3 (BF-33BT) single crystals are reported. We find two formidable challenges for the growth. First, a low-melting point constituent leads to a pre-melt zone in the feed-rod that adversely affects growth stability. Second, constitutional super-cooling (CSC), which was found to lead to dendritic and columnar features in the grain morphology, necessitates slow traveling rates during growth. Both challenges were addressed by modifications to the floating-zone furnace that steepened the temperature gradient at the melt-solid interfaces. Slow growth was also required to counter the effects of CSC. Single crystals with typical dimensions of hundreds of microns have been obtained which possess high quality and are suitable for detailed structural studies.

  9. Single crystal growth of 67%BiFeO 3 -33%BaTiO 3 solution by the floating zone method

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Y.; Zheng, H.; Krogstad, M. J.; Mitchell, J. F.; Phelan, D.

    2018-01-01

    The growth conditions and the resultant grain morphologies and phase purities from floating-zone growth of 67%BiFeO3-33%BaTiO3 (BF-33BT) single crystals are reported. We find two formidable challenges for the growth. First, a low-melting point constituent leads to a pre-melt zone in the feed-rod that adversely affects growth stability. Second, constitutional super-cooling (CSC), which was found to lead to dendritic and columnar features in the grain morphology, necessitates slow traveling rates during growth. Both challenges were addressed by modifications to the floating-zone furnace that steepened the temperature gradient at the melt-solid interfaces. Slow growth was also required to counter the effects of CSC. Single crystals with typical dimensions of hundreds of microns have been obtained which possess high quality and are suitable for detailed structural studies.

  10. Electrical and piezoelectric properties of BiFeO3 thin films grown on SrxCa1−xRuO3-buffered SrTiO3 substrates

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    (001)-oriented BiFeO 3 (BFO) thin films were grown on Sr xCa 1-xRuO 3- (SCRO; x = 1, 0.67, 0.33, 0) buffered SrTiO 3 (001) substrates using pulsed laser deposition. The microstructural, electrical, ferroelectric, and piezoelectric properties of the thin films were considerably affected by the buffer layers. The interface between the BFO films and the SCRO-buffer layer was found to play a dominant role in determining the electrical and piezoelectric behaviors of the films. We found that films grown on SrRuO 3-buffer layers exhibited minimal electrical leakage while films grown on Sr 0.33Ca 0.67RuO 3-buffer layers had the largest piezoelectric response. The origin of this difference is discussed. © 2012 American Institute of Physics.

  11. Multiferroic BiFeO3 thin films and nanodots grown on highly oriented pyrolytic graphite substrates

    Science.gov (United States)

    Shin, Hyun Wook; Son, Jong Yeog

    2017-12-01

    Multiferroic BiFeO3 (BFO) thin films and nanodots are deposited on highly oriented pyrolytic graphite (HOPG) substrates via a pulsed laser deposition technique, where the HOPG surface has a honeycomb lattice structure made of carbon atoms, similar to graphene. A graphene/BFO/HOPG capacitor exhibited multiferroic properties, namely ferroelectricity (a residual polarization of 26.8 μC/cm2) and ferromagnetism (a residual magnetization of 1.1 × 10-5 emu). The BFO thin film had high domain wall energies and demonstrated switching time of approximately 82 ns. An 8-nm BFO nanodot showed a typical piezoelectric hysteresis loop with an effective residual piezoelectric constant of approximately 110 pm/V and exhibited two clearly separated current curves depending on the ferroelectric polarization direction.

  12. Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin films

    International Nuclear Information System (INIS)

    Guo Yiping; Guo Bing; Dong Wen; Li Hua; Liu Hezhou

    2013-01-01

    The diode and photovoltaic effects of BiFeO 3 and Bi 0.9 Sr 0.1 FeO 3−δ polycrystalline thin films were investigated by poling the films with increased magnitude and alternating direction. It was found that both electromigration of oxygen vacancies and polarization flipping are able to induce switchable diode and photovoltaic effects. For the Bi 0.9 Sr 0.1 FeO 3−δ thin films with high oxygen vacancy concentration, reversibly switchable diode and photovoltaic effects can be observed due to the electromigration of oxygen vacancies under an electric field much lower than its coercive field. However, for the pure BiFeO 3 thin films with lower oxygen vacancy concentration, the reversibly switchable diode and photovoltaic effect is hard to detect until the occurrence of polarization flipping. The switchable diode and photovoltaic effects can be explained well using the concepts of Schottky-like barrier-to-Ohmic contacts resulting from the combination of oxygen vacancies and polarization. The sign of photocurrent could be independent of the direction of polarization when the modulation of the energy band induced by oxygen vacancies is large enough to offset that induced by polarization. The photovoltaic effect induced by the electromigration of oxygen vacancies is unstable due to the diffusion of oxygen vacancies or the recombination of oxygen vacancies with hopping electrons. Our work provides deep insights into the nature of diode and photovoltaic effects in ferroelectric films, and will facilitate the advanced design of switchable devices combining spintronic, electronic, and optical functionalities. (paper)

  13. Control of oxygen octahedral rotation in BiFeO3 films using modulation of SrRuO3 bottom electrode layer

    Science.gov (United States)

    Lee, Sungsu; Jo, Ji Young

    2015-03-01

    Oxygen octahedral rotation of multiferroic BiFeO3 (BFO) has attracted great attention due to changes of electrical and magnetic properties. Coupling of octahedral rotation in BFO-bottom electrode layer interface remains unexplored. Recently, there have been reported the control of octahedral rotation in SrRuO3 (SRO) film on SrTiO3 (001) substrate by coherently controlling the oxygen pressure during growth and interfacial coupling. Here we demonstrate that the octahedral rotation of BFO film is changed using tetragonal a0a0c- tilted-SRO bottom electrodes. In this work, BFO/SRO heterostructure is fabricated to SrTiO3 (001) single crystal substrates by pulsed laser deposition at different oxygen partial pressures. The rotation pattern of FeO6 and the structural symmetry are identified from half-integer reflections using high-resolution X-ray diffraction. The effects depending on octahedral tilting of BFO films on the magnetic and ferroelectric properties will be presented.

  14. Enhanced magnetic behavior, exchange bias effect, and dielectric property of BiFeO3 incorporated in (BiFeO30.50 (Co0.4Zn0.4Cu0.2 Fe2O40.5 nanocomposite

    Directory of Open Access Journals (Sweden)

    K. Mukhopadhyay

    2014-03-01

    Full Text Available Nanoparticles of BiFeO3 (BFO are incorporated in the nanocomposite of (BiFeO30.50 (Co0.4Zn0.4Cu0.2 Fe2O40.5, (BFO-CZCF and these are prepared by chemical route. The formation of pure crystallographic phase of each component (BFO and CZCF in the nanocomposite of BFO-CZCF has been confirmed by Rietveld analysis of the X-ray diffractograms using FULLPROF program. Morphology, average particle size and its distribution, crystallographic phase etc. are obtained from the high-resolution transmission electron microscopy of BFO-CZCF. Magnetic measurements of BFO-CZCF have been carried out to explore the modulation of magnetic behavior of BFO in BFO-CZCF. Interestingly, magnetization of BFO-CZCF has been drastically enhanced compared to that of the pristine BFO. An exchange bias effect is also observed in the M vs. H loops of BFO-CZCF recorded in field cooled and zero field cooled conditions, which suggest that nanoparticles of BFO (AFM are encapsulated by nanoparticles of CZCF (FM in BFO-CZCF. Thermal variation of dielectric constant of BFO-CZCF is recorded in the range of 300 to 1073 K and a ferroelectric to paraelectric transition is observed at ∼728 K. Enhanced magnetic property of BFO would quite interesting for this important multiferroic.

  15. Enhanced Photocurrent in BiFeO3 Materials by Coupling Temperature and Thermo-Phototronic Effects for Self-Powered Ultraviolet Photodetector System.

    Science.gov (United States)

    Qi, Jia; Ma, Nan; Ma, Xiaochen; Adelung, Rainer; Yang, Ya

    2018-04-25

    Ferroelectric materials can be utilized for fabricating photodetectors because of the photovoltaic effect. Enhancing the photovoltaic performance of ferroelectric materials is still a challenge. Here, a self-powered ultraviolet (UV) photodetector is designed based on the ferroelectric BiFeO 3 (BFO) material, exhibiting a high current/voltage response to 365 nm light in heating/cooling states. The photovoltaic performance of the BFO-based device can be well modulated by applying different temperature variations, where the output current and voltage can be enhanced by 60 and 75% in heating and cooling states, respectively. The enhancement mechanism of the photocurrent is associated with both temperature effect and thermo-phototronic effect in the photovoltaic process. Moreover, a 4 × 4 matrix photodetector array has been designed for detecting the 365 nm light distribution in the cooling state by utilizing photovoltage signals. This study clarifies the role of the temperature effect and the thermo-phototronic effect in the photovoltaic process of the BFO material and provides a feasible route for pushing forward practical applications of self-powered UV photodetectors.

  16. Photo catalytic BiFeO3 Nano fibrous Mats for Effective Water Treatment

    International Nuclear Information System (INIS)

    Shaibani, P.M.; Prashanthi, K.; Sohrabi, A.; Thundat, Th.

    2013-01-01

    One-dimensional BiFeO 3 (BFO) nano fibers fabricated by electro spinning of a solution of Nylon 6 /BFO followed by calcination were used for photo catalytic degradation of contaminants in water. The BFO fibers were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-Vis spectroscopy. The SEM images of the as-spun samples demonstrated the successful production of nano fibers and the SEM images of the samples after calcination confirmed the integrity of the continuous BFO nano fibers. XRD analysis indicated the dominant presence of BFO phase throughout the calcinated nano fibers. Photo catalytic activity of the nano fibers and their application in water purification were investigated against 4-chloro phenol (4CP) as a model water contaminant. The results of the UV-Vis spectroscopy show the degradation of the 4CP by means of the photo catalytic activity of the BFO nano fibers. The kinetics of the photodegradation of 4CP is believed to be governed by a pseudo-first-order kinetics model.

  17. Evidence of sharp and diffuse domain walls in BiFeO3 by means of unit-cell-wise strain and polarization maps obtained with high resolution scanning transmission electron microscopy.

    Science.gov (United States)

    Lubk, A; Rossell, M D; Seidel, J; He, Q; Yang, S Y; Chu, Y H; Ramesh, R; Hÿtch, M J; Snoeck, E

    2012-07-27

    Domain walls (DWs) substantially influence a large number of applications involving ferroelectric materials due to their limited mobility when shifted during polarization switching. The discovery of greatly enhanced conduction at BiFeO(3) DWs has highlighted yet another role of DWs as a local material state with unique properties. However, the lack of precise information on the local atomic structure is still hampering microscopical understanding of DW properties. Here, we examine the atomic structure of BiFeO(3) 109° DWs with pm precision by a combination of high-angle annular dark-field scanning transmission electron microscopy and a dedicated structural analysis. By measuring simultaneously local polarization and strain, we provide direct experimental proof for the straight DW structure predicted by ab initio calculations as well as the recently proposed theory of diffuse DWs, thus resolving a long-standing discrepancy between experimentally measured and theoretically predicted DW mobilities.

  18. Resistive switching properties of Ce and Mn co-doped BiFeO3 thin films for nonvolatile memory application

    Directory of Open Access Journals (Sweden)

    Zhenhua Tang

    2013-12-01

    Full Text Available The Ce and Mn co-doped BiFeO3 (BCFMO thin films were synthesized on Pt/Ti/SiO2/Si substrates using a sol-gel method. The unipolar resistive switching (URS and bipolar resistive switching (BRS behaviors were observed in the Pt/BCFMO/Pt device structure, which was attributed to the formation/rupture of metal filaments. The fabricated device exhibits a large ROFF/RON ratio (>80, long retention time (>105 s and low programming voltages (<1.5 V. Analysis of linear fitting current-voltage curves suggests that the space charge limited leakage current (SCLC and Schottky emission were observed as the conduction mechanisms of the devices.

  19. Ferroelectric domain switching dynamics and memristive behaviors in BiFeO3-based magnetoelectric heterojunctions

    Science.gov (United States)

    Huang, Weichuan; Liu, Yukuai; Luo, Zhen; Hou, Chuangming; Zhao, Wenbo; Yin, Yuewei; Li, Xiaoguang

    2018-06-01

    The ferroelectric domain reversal dynamics and the corresponding resistance switching as well as the memristive behaviors in epitaxial BiFeO3 (BFO, ~150 nm) based multiferroic heterojunctions were systematically investigated. The ferroelectric domain reversal dynamics could be described by the nucleation-limited-switching model with the Lorentzian distribution of logarithmic domain-switching times. By engineering the domain states, multi and even continuously tunable resistances states, i.e. memristive states, could be non-volatilely achieved. The resistance switching speed can be as fast as 30 ns in the BFO-based multiferroic heterojunctions with a write voltage of ~20 V. By reducing the thickness of BFO, the La0.6Sr0.4MnO3/BFO (~5 nm)/La0.6Sr0.4MnO3 multiferroic tunnel junction (MFTJ) shows an even a quicker switching speed (20 ns) with a much lower operation voltage (~4 V). Importantly, the MFTJ exhibits a tunable interfacial magnetoelectric coupling related to the ferroelectric domain switching dynamics. These findings enrich the potential applications of multiferroic BFO based devices in high-speed, low-power, and high-density memories as well as future neuromorphic computational architectures.

  20. Structure and some magnetic properties of (BiFeO3x-(BaTiO31−x solid solutions prepared by solid-state sintering

    Directory of Open Access Journals (Sweden)

    Kowal Karol

    2015-03-01

    Full Text Available This paper presents the results of the study on structure and magnetic properties of the perovskite-type (BiFeO3x-(BaTiO31−x solid solutions. The samples differing in the chemical composition (x = 0.9, 0.8, and 0.7 were produced according to the conventional solid-state sintering method from the mixture of powders. Moreover, three different variants of the fabrication process differing in the temperatures and soaking time were applied. The results of X-ray diffraction (XRD, Mössbauer spectroscopy (MS, and vibrating sample magnetometry (VSM were collected and compared for the set of the investigated materials. The structural transformation from rhombohedral to cubic symmetry was observed for the samples with x = 0.7. With increasing of BaTiO3 concentration Mössbauer spectra become broadened reflecting various configurations of atoms around 57Fe probes. Moreover, gradual decreasing of the average hyperfine magnetic field and macroscopic magnetization were observed with x decreasing.

  1. Presence of glassy state and large exchange bias in nanocrystalline BiFeO3

    Science.gov (United States)

    Srivastav, Simant Kumar; Johari, Anima; Patel, S. K. S.; Gajbhiye, N. S.

    2017-11-01

    We investigated the static and dynamic aspects of the magnetic properties for single phase nanocrystalline BiFeO3 with average crystallite size of 35 nm. The frequency dependence of the peak is observed in the real part of ac susceptibility χ‧ac vs T measurement and described well by the Vogel-Fulcher law as well as the power law. These analyses indicated the existence of cluster glass state with significant interaction among the spin clusters and results in cluster-glass like cooperative freezing at low temperature. The influence of temperature and magnetic field cooling on the exchange bias effect is investigated. A training effect is also observed. We have reported a significantly high ZFC & FC exchange bias of 200 Oe & 450 Oe at 300 K and 900 Oe & 2100 Oe at 5 K. The obtained results are interpreted in the framework of core-shell model, where the core of the BFO nanoparticles shows antiferromagnetic behavior and surrounded by CG-like ferromagnetic (FM) shell associated to uncompensated surface spins.

  2. Calcination temperature influenced multiferroic properties of Ca-doped BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Dhir, Gitanjali; Uniyal, Poonam; Verma, N. K.

    2015-01-01

    The influence of Ca-doping and particle size on structural, morphological and magnetic properties of BiFeO 3 nanoparticles has been studied. A sol-gel method was employed for the synthesis of nanoparticles and their particle size was tailored by varying the calcination temperature. Structural analysis revealed a rhombohedral distortion induced by Ca-substitution. The broadening of diffraction peaks with decreasing calcination temperature was indicative of reduction in crystallite size. The morphological analysis revealed the formation of agglomerated nanoparticles having average particle size ranging from 10-15 and 50-55 nm for C4 and C6, respectively. The agglomeration is attributed to high surface energy of nanoparticles. Ferromagnetism has been displayed by all the synthesized nanoparticles. Enhancement of saturation magnetization with Ca-substitution is attributed to suppression of spin cycloid structure by the reduction in size, lattice distortion and creation of oxygen vacancies by the substitution of divalent ion at trivalent site. Further, this value increases as a function of decreasing particle size. Strong particle size effects on magnetic properties of the synthesized nanoparticles are owed to increasing surface to volume ratio. All these observations are indicative of strong dependence of multiferroism on particle size

  3. Investigation of the annealing temperature effect on structural, morphology, dielectric and magnetic properties of BiFeO3 nanoparticles

    Science.gov (United States)

    Ranjbar, M.; Ghazi, M. E.; Izadifard, M.

    2018-06-01

    In this paper we have investigated the annealing temperature effect on the structure, morphology, dielectric and magnetic properties of sol-gel synthesized multiferroic BiFeO3 nanoparticles. X-ray diffraction spectroscopy revealed that all the samples have rhombohedrally distorted perovskite structure and the most pure BFO phase is obtained on the sample annealed at 800 °C. Field emission scanning electron microscopy (FESEM) revealed that increasing annealing temperature would increase the particle size. Decrease in dielectric constant was also observed by increasing annealing temperature. Vibrating sample method (VSM) analysis confirmed that samples annealed at 500-700 °C with particle size below the BFO's spiral spin structure length, have well saturated M-H curve and show ferromagnetic behavior.

  4. Stress induced enhanced polarization in multilayer BiFeO3/BaTiO3 structure with improved energy storage properties

    Directory of Open Access Journals (Sweden)

    Savita Sharma

    2015-10-01

    Full Text Available Present work reports the fabrication of a multilayer (5-layer structure of BiFeO3(BFO/BaTiO3(BTO using spin-coating technique. The crystallographic structure, surface morphology and ferroelectric behavior of multilayer structure in metal-ferroelectric-metal capacitor have been studied. Le-Bail refinement of X-ray diffraction data revealed the formation of polycrystalline pure perovskite phase with induced stress. The values of remnant (Pr and saturation polarization (Ps for BFO/BTO multilayer structure are found to be 38.14 μC/cm2 and 71.54 μC/cm2 respectively, which are much higher than the corresponding values reported for bare BFO thin film. A large value of dielectric constant of 187 has been obtained for multilayer structure with a low leakage current density of 1.09 × 10−7 A/cm2 at applied bias of 10 V. The BFO/BTO multilayer structure favors the enhanced energy storage capacity as compared to bare BFO thin film with improved values of energy-density and charge-discharge efficiency as 121 mJ/cm3 and 59% respectively, suggesting futuristic energy storage applications.

  5. Multiferroic properties of nanocrystalline BiFe1−xNixO3 (x=0.0–0.15) perovskite ceramics

    International Nuclear Information System (INIS)

    Chaudhari, Yogesh; Mahajan, Chandrashekhar M.; Singh, Amrita; Jagtap, Prashant; Chatterjee, Ratnamala; Bendre, Subhash

    2015-01-01

    Ni doped BiFeO 3 (x=0, 0.05, 0.1 and 0.15) nanocrystalline ceramics were synthesized by the solution combustion method (SCM) to obtain optimal multiferroic properties. The effect of Ni doping on structural, morphological, ferroelectric, magnetic and dielectric properties of BiFeO 3 was studied. The structural investigations by using X-ray diffraction (XRD) pattern confirmed that BiFe 1−x Ni x O 3 ceramics have rhombhohedral perovskite structure. The ferroelectric hysteresis measurements for BiFe 1−x Ni x O 3 (x=0, 0.05, 0.1, 0.15) compound at room temperature found to exhibit unsaturated behavior and presents partial reversal of polarization. The magnetic measurements demonstrated an enhancement of ferromagnetic property due to Ni doping in BiFeO 3 when compared with undoped BiFeO 3 . The variation of dielectric constant with temperature in BiFe 0.9 Ni 0.1 O 3 and BiFe 0.85 Ni 0.15 O 3 samples evidenced an apparent dielectric anomaly around 350 °C and 300 °C which corresponds to antiferromagnetic to paramagnetic phase transition of (T N ) of BiFeO 3 . The dependence of room temperature dielectric properties on frequency signifies that both dielectric constant (ε) and dielectric loss (tan δ) are the strong function of frequency. The results show that solution combustion method leads to synthesis of an excellent and reproducible BiFe 1−x Ni x O 3 multiferroic ceramics. - Highlights: • Synthesis of BiFe 1−x Ni x O 3 (x=0, 0.05, 0.1 and 0.15) multiferroic ceramics. • Solution Combustion Method (SCM). • Ferroelectric and dielectric properties of undoped and Ni doped BiFeO 3 ceramics. • High temperature synthesis of BiFe 1−x Ni x O 3 multiferroic ceramics. • First detailed report about SCM synthesized the BiFe 1−x Ni x O 3 ceramics

  6. Composition-driven magnetic and structural phase transitions in Bi1-xPrxFe1-xMnxO3 multiferroics

    Science.gov (United States)

    Khomchenko, V. A.; Ivanov, M. S.; Karpinsky, D. V.; Paixão, J. A.

    2017-09-01

    Magnetic ferroelectrics continue to attract much attention as promising multifunctional materials. Among them, BiFeO3 is distinguished by exceptionally high transition temperatures and, thus, is considered as a prototype room-temperature multiferroic. Since its properties are known to be strongly affected by chemical substitution, recognition of the doping-related factors determining the multiferroic behavior of the material would pave the way towards designing the structures with enhanced magnetoelectric functionality. In this paper, we report on the crystal structure and magnetic and local ferroelectric properties of the Bi1-xPrxFe1-xMnxO3 (x ≤ 0.3) compounds prepared by a solid state reaction method. The polar R3c structure specific to the parent BiFeO3 has been found to be unstable with respect to doping for x ≳ 0.1. Depending on the Pr/Mn concentration, either the antipolar PbZrO3-like or nonpolar PrMnO3-type structure can be observed. It has been shown that the non-ferroelectric compounds are weak ferromagnetic with the remanent/spontaneous magnetization linearly decreasing with an increase in x. The samples containing the polar R3c phase exhibit a mixed antiferromagnetic/weak ferromagnetic behavior. The origin of the magnetic phase separation taking place in the ferroelectric phase is discussed as related to the local, doping-introduced structural heterogeneity contributing to the suppression of the cycloidal antiferromagnetic ordering characteristic of the pure BiFeO3.

  7. Synthesis and application of bismuth ferrite nanosheets supported functionalized carbon nanofiber for enhanced electrochemical detection of toxic organic compound in water samples.

    Science.gov (United States)

    Ramaraj, Sukanya; Mani, Sakthivel; Chen, Shen-Ming; Kokulnathan, Thangavelu; Lou, Bih-Show; Ali, M Ajmal; Hatamleh, A A; Al-Hemaid, Fahad M A

    2018-03-15

    Recently, the multiferroic material has fabulous attention in numerous applications owing to its excellent electronic conductivity, unique mechanical property, and higher electrocatalytic activity, etc. In this paper, we reported that the synthesis of bismuth ferrite (BiFeO 3 ) nanosheets integrated functionalized carbon nanofiber (BiFeO 3 NS/F-CNF) nanocomposite using a simple hydrothermal technique. Herein, the structural changes and crystalline property of prepared BiFeO 3 NS/F-CNF nanocomposite were characterized using Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). From this detailed structural evolution, the formation of nanosheets like BiFeO 3 and its nanocomposite with F-CNF were scrutinized and reported. Furthermore, the as-prepared BiFeO 3 NS/F-CNF nanocomposite modified glassy carbon electrode (GCE) was applied for electrochemical detection of catechol (CC). As expected, BiFeO 3 NS/F-CNF/GCE shows excellent electrocatalytic activity as well as 3.44 (F-CNF/GCE) and 7.92 (BiFeO 3 NS/GCE) fold higher electrochemical redox response for CC sensing. Moreover, the proposed sensor displays a wide linear range from 0.003 to 78.02 µM with a very low detection limit of 0.0015 µM. In addition, we have validated the real-time application of our developed CC sensor in different water samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Optical Diode Effect at Spin-Wave Excitations of the Room-Temperature Multiferroic BiFeO_{3}.

    Science.gov (United States)

    Kézsmárki, I; Nagel, U; Bordács, S; Fishman, R S; Lee, J H; Yi, Hee Taek; Cheong, S-W; Rõõm, T

    2015-09-18

    Multiferroics permit the magnetic control of the electric polarization and the electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting, because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite, direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO_{3} over the gigahertz-terahertz frequency range. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. These findings are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field.

  9. Modifications in the rhombohedral degree of distortion and magnetic properties of Ba-doped BiFeO3 as a function of synthesis methodology

    International Nuclear Information System (INIS)

    Rojas-George, G.; Silva, J.; Castañeda, R.; Lardizábal, D.; Graeve, O.A.; Fuentes, L.; Reyes-Rojas, A.

    2014-01-01

    We present an analysis of crystallographic symmetry and the origin of the pseudo-cubic character of doped BiFeO 3 . Specifically, barium-doped bismuth ferrite, Bi 1−x Ba x FeO 3 (x = 0.05, 0.075, 0.1, 0.125), perovskite-type nanoparticles have been synthesized by implementing five modifications to the sol–gel technique (citric acid-assisted sol–gel method, ethylene glycol method, tartaric acid-assisted sol–gel method, polyvinyl alcohol–ethylene glycol method, and EDTA complexing sol–gel method) and their final pseudo-cubic character is discussed. The effect of the carboxylic groups and hydroxyl groups during synthesis is critical to obtain single phase BBFO. Fourier transform infrared spectroscopy and thermogravimetric analysis is used to study the decomposition and thermal behavior of the precursors and their relation to the final nanoparticle characteristics. X-ray diffraction analysis shows a single phase with symmetry changes for four of the five synthesis methodologies employed. Only the EDTA complexing sol–gel method, where EDTA is used as dissolver and chelating agent, is not satisfactory in all concentration ranges. Rietveld results suggest that the degree of distortion of the rhombohedral symmetry in the crystallized BiFeO 3 powders decreases 12% as a result of progressive substitution of Bi 3+ by Ba 2+ and that there is no shift from rhombohedral to tetragonal symmetry. Magnetization properties of samples with a low-distortion rhombohedral structure show higher magnetic saturation and remanent magnetization than samples with high-distortion rhombohedral structure. - Highlights: • Ba–BiFeO 3 : rhombohedral distortion degree is highly affected by the chemical method. • Rietveld results show no shift in BBFO from rhombohedral to tetragonal symmetry. • The low-distortion rhombohedral structure show higher magnetic saturation. • To stabilize a metal complex is necessary a balance between COOH − and OH − groups

  10. Functional Properties at Domain Walls in BiFeO3: Electrical, Magnetic, and Structural investigations

    Science.gov (United States)

    He, Qing; Yang, C.-H.; Yu, P.; Gajek, M.; Seidel, J.; Ramesh, R.; Wang, F.; Chu, Y.-H.; Martin, L. W.; Spaldin, N.; Rother, A.

    2009-03-01

    BiFeO3 (BFO) is a widely studied robust ferroelectric, antiferromagnetic multiferroic. Conducting-atomic force microscopy studies reveal the presence of enhanced conductivity at certain types of domain walls in BFO. We have completed detailed TEM studies of the physical structure at these domain walls as well as in-depth DFT calculations of the evolution of electronic structure at these domain walls. These studies reveal two major contributions to the observed conduction: the formation of an electrostatic potential at the domain walls as well as a structurally-driven change in the electronic structure (i.e., a lower band gap locally) at the domain walls. We will discuss the use of optical characterization techniques as a way of probing this change in electronic structure at domain walls as well as detailed IV characterization both in atmospheric and UHV environments. Finally, the evolution of magnetism at these domain walls has been studied through the use of photoemission measurements. Initial findings point to a significant change in the magnetic order at these domain walls in BFO.

  11. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption

    Science.gov (United States)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-01

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3

  12. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering

    International Nuclear Information System (INIS)

    Wang, Y.P.; Zhou, L.; Zhang, M.F.; Chen, X.Y.; Liu, J.-M.; Liu, Z.G.

    2004-01-01

    Single-phased ferroelectromagnet BiFeO 3 ceramics with high resistivity were synthesized by a rapid liquid phase sintering technique. Saturated ferroelectric hysteresis loops were observed at room temperature in the ceramics sintered at 880 deg. C for 450 s. The spontaneous polarization, remnant polarization, and the coercive field are 8.9 μC/cm 2 , 4.0 μC/cm 2 , and 39 kV/cm, respectively, under an applied field of 100 kV/cm. It is proposed that the formation of Fe 2+ and an oxygen deficiency leading to the higher leakage can be greatly suppressed by the very high heating rate, short sintering period, and liquid phase sintering technique. The latter was also found effective in increasing the density of the ceramics. The sintering technique developed in this work is expected to be useful in synthesizing other ceramics from multivalent or volatile starting materials

  13. Effect of alkaline earth metal doping on thermal, optical, magnetic and dielectric properties of BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Bhushan, B; Das, D; Basumallick, A; Bandopadhyay, S K; Vasanthacharya, N Y

    2009-01-01

    Substrate-free pure-phase BiFeO 3 (BFO) nanoparticles doped with alkaline earth metals (Ba, Sr and Ca) have been synthesized by a sol-gel route and their thermal, optical, dielectric and magnetic properties are discussed. The characteristic structural phase transitions of BFO nanoparticles are found to occur at much lower temperatures. A reduction of the Neel temperature has been observed in the doped samples in comparison with the pristine one, whereas the band gap shows a reverse trend. Iron was found to be only in the Fe 3+ valence state in all the doped samples. Magnetoelectric coupling is seen in our samples. Weak ferromagnetism is observed at room temperature in all of the doped and undoped BFO nanoparticles with the largest value of coercive field ∼1.78 kOe and saturation magnetization ∼2.38 emu g -1 for Ba and Ca doped BFO nanoparticles, respectively.

  14. Magnetic ordering induced giant optical property change in tetragonal BiFeO3

    Science.gov (United States)

    Tong, Wen-Yi; Ding, Hang-Chen; Gong, Shi Jing; Wan, Xiangang; Duan, Chun-Gang

    2015-12-01

    Magnetic ordering could have significant influence on band structures, spin-dependent transport, and other important properties of materials. Its measurement, especially for the case of antiferromagnetic (AFM) ordering, however, is generally difficult to be achieved. Here we demonstrate the feasibility of magnetic ordering detection using a noncontact and nondestructive optical method. Taking the tetragonal BiFeO3 (BFO) as an example and combining density functional theory calculations with tight-binding models, we find that when BFO changes from C1-type to G-type AFM phase, the top of valance band shifts from the Z point to Γ point, which makes the original direct band gap become indirect. This can be explained by Slater-Koster parameters using the Harrison approach. The impact of magnetic ordering on band dispersion dramatically changes the optical properties. For the linear ones, the energy shift of the optical band gap could be as large as 0.4 eV. As for the nonlinear ones, the change is even larger. The second-harmonic generation coefficient d33 of G-AFM becomes more than 13 times smaller than that of C1-AFM case. Finally, we propose a practical way to distinguish the two AFM phases of BFO using the optical method, which is of great importance in next-generation information storage technologies.

  15. Bulk photovoltaic effect in epitaxial (K, Nb) substituted BiFeO3 thin films

    Science.gov (United States)

    Agarwal, Radhe; Zheng, Fan; Sharma, Yogesh; Hong, Seungbum; Rappe, Andrew; Katiyar, Ram

    We studied the bulk photovoltaic effect in epitaxial (K, Nb) modified BiFeO3 (BKFNO) thin films using theoretical and experimental methods. Epitaxial BKFNO thin films were grown by pulsed laser deposition (PLD). First, we have performed first principles density function theory (DFT) using DFT +U method to calculate electronic band structure, including Hubbard-Ueff (Ueff =U-J) correction into Hamiltonian. The electronic band structure calculations showed a direct band gap at 1.9 eV and a defect level at 1.7 eV (in a 40 atom BKFNO supercell), sufficiently lower in comparison to the experimentally observed values. Furthermore, the piezoforce microscopy (PFM) measurements indicated the presence of striped polydomains in BKFNO thin films. Angle-resolved PFM measurements were also performed to find domain orientation and net polarization directions in these films. The experimental studies of photovoltaic effect in BKNFO films showed a short circuit current of 59 micro amp/cm2 and open circuit voltage of 0.78 V. We compared our experimental results with first principles shift current theory calculations of bulk photovoltaic effect (BPVE).The synergy between theory and experimental results provided a realization of significant role of BPVE in order to understand the photovoltaic mechanism in ferroelectrics.

  16. Polarized neutron reflectivity studies on epitaxial BiFeO3/La0.7Sr0.3MnO3 heterostructure integrated with Si (100

    Directory of Open Access Journals (Sweden)

    S. R. Singamaneni

    2018-05-01

    Full Text Available This work reports polarized neutron reflectivity (PNR measurements performed using the Magnetism Reflectometer at Oak Ridge National Laboratory on epitaxial BiFeO3(BFO/La0.7Sr0.3MnO3(LSMO/SrTiO3(STO/MgO/TiN heterostructure deposited on Si (100 substrates. By measuring the angular dependence of neutrons reflected from the sample, PNR can provide insights on interface magnetic spin structure, chemical composition and magnetic depth profiles with a nanometer resolution. Our first analysis of nuclear scattering length density (NSLD and magnetic scattering length density (MSLD depth profiles measured at 4 K have successfully reproduced most of the expected features of this heterostructure, such as the NSLD for the Si, TiN, MgO, STO, LSMO layers and remanent magnetization (2.28μB/Mn of bulk LSMO. However, the SLD of the BFO is decreased by about 30% from the expected value. When 5 V was applied across the BFO/LSMO interface, we found that the magnetic moment of the LSMO layer could be varied by about 15-20% at 6 K. Several mechanisms such as redistribution of oxygen vacancies, interface strain, charge screening and valence state change at the interface could be at play. Work is in progress to gain an improved in-depth understanding of these effects using MOKE and STEM-Z interface specific measurements.

  17. Polarized neutron reflectivity studies on epitaxial BiFeO3/La0.7Sr0.3MnO3 heterostructure integrated with Si (100)

    Science.gov (United States)

    Singamaneni, S. R.; Prater, J. T.; Glavic, A.; Lauter, V.; Narayan, J.

    2018-05-01

    This work reports polarized neutron reflectivity (PNR) measurements performed using the Magnetism Reflectometer at Oak Ridge National Laboratory on epitaxial BiFeO3(BFO)/La0.7Sr0.3MnO3(LSMO)/SrTiO3(STO)/MgO/TiN heterostructure deposited on Si (100) substrates. By measuring the angular dependence of neutrons reflected from the sample, PNR can provide insights on interface magnetic spin structure, chemical composition and magnetic depth profiles with a nanometer resolution. Our first analysis of nuclear scattering length density (NSLD) and magnetic scattering length density (MSLD) depth profiles measured at 4 K have successfully reproduced most of the expected features of this heterostructure, such as the NSLD for the Si, TiN, MgO, STO, LSMO layers and remanent magnetization (2.28μB/Mn) of bulk LSMO. However, the SLD of the BFO is decreased by about 30% from the expected value. When 5 V was applied across the BFO/LSMO interface, we found that the magnetic moment of the LSMO layer could be varied by about 15-20% at 6 K. Several mechanisms such as redistribution of oxygen vacancies, interface strain, charge screening and valence state change at the interface could be at play. Work is in progress to gain an improved in-depth understanding of these effects using MOKE and STEM-Z interface specific measurements.

  18. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption.

    Science.gov (United States)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-21

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.

  19. Gadolinium substitution induced defect restructuring in multiferroic BiFeO3: case study by positron annihilation spectroscopy

    Science.gov (United States)

    Mukherjee, A.; Banerjee, M.; Basu, S.; Nambissan, P. M. G.; Pal, M.

    2013-12-01

    Positron annihilation spectroscopy (PAS) comprising of the measurements of positron lifetime and coincidence Doppler broadening spectra has been carried out to understand and monitor the evolution of the vacancy-type defects arising from the ionic deficiencies at lattice points of the multiferroic perovskite bismuth ferrite (BiFeO3) doped with 1, 5 and 10 at% gadolinium (Gd3+) ions. Negatively charged defects in the form of Bi3+ monovacancies (V_{Bi}^{3-} ) were present in the undoped nanocrystallites, which strongly trapped positrons. During the successive doping by Gd3+ ions, the positron trapping efficiency decreased while the doped ions combined with the vacancies to form complexes, which became neutral. A fraction of the positrons got annihilated at the crystallite surfaces too, being evident from the very large positron lifetimes obtained and confirming the nano-size-specific characteristics of the samples. Further, the intercrystallite regions provided favourable sites for orthopositronium formation, although in minute concentrations. The dopant ion-complex formation was also depicted clearly by the defect characteristic S-W plot. Also, the large change of electrical resistivity with Gd concentration has been explained nicely by invoking the defect information from the PAS study. The study has demonstrated the usefulness of an excellent method of defect identification in such a novel material system, which is vital information for exploiting them for further technological applications.

  20. Ferroelectric BiFeO3as an Oxide Dye in Highly Tunable Mesoporous All-Oxide Photovoltaic Heterojunctions

    KAUST Repository

    Wang, Lingfei

    2016-10-12

    As potential photovoltaic materials, transition-metal oxides such as BiFeO3 (BFO) are capable of absorbing a substantial portion of solar light and incorporating ferroic orders into solar cells with enhanced performance. But the photovoltaic application of BFO has been hindered by low energy-conversion efficiency due to poor carrier transport and collection. In this work, a new approach of utilizing BFO as a light-absorbing sensitizer is developed to interface with charge-transporting TiO2 nanoparticles. This mesoporous all-oxide architecture, similar to that of dye-sensitized solar cells, can effectively facilitate the extraction of photocarriers. Under the standard AM1.5 (100 mW cm−2) irradiation, the optimized cell shows an open-circuit voltage of 0.67 V, which can be enhanced to 1.0 V by tailoring the bias history. A fill factor of 55% is achieved, which is much higher than those in previous reports on BFO-based photovoltaic devices. The results provide here a new viable approach toward developing highly tunable and stable photovoltaic devices based on ferroelectric transition-metal oxides.

  1. A new wire fabrication processing using high Ga content Cu-Ga compound in V3Ga compound superconducting wire

    International Nuclear Information System (INIS)

    Hishinuma, Yoshimitsu; Nishimura, Arata; Kikuchi, Akihiro; Iijima, Yasuo; Takeuchi, Takao

    2007-01-01

    A superconducting magnet system is also one of the important components in an advanced magnetic confinement fusion reactor. Then it is required to have a higher magnetic field property to confine and maintain steady-sate burning deuterium (D)-tritium (T) fusion plasma in the large interspace during the long term operation. Burning plasma is sure to generate 14 MeV fusion neutrons during deuterium-tritium reaction, and fusion neutrons will be streamed and penetrated to superconducting magnet through large ports with damping neutron energy. Therefore, it is necessary to consider carefully not only superconducting property but also neutron irradiation property in superconducting materials for use in a future fusion reactor, and a 'low activation and high field superconducting magnet' will be required to realize the fusion power plant beyond International Thermonuclear Experimental Reactor (ITER). V-based superconducting material has a much shorter decay time of induced radioactivity compared with the Nb-based materials. We thought that the V 3 Ga compound was one of the most promising materials for the 'low activation and higher field superconductors' for an advanced fusion reactor. However, the present critical current density (J c ) property of V 3 Ga compound wire is insufficient for apply to fusion magnet applications. We investigated a new route PIT process using a high Ga content Cu-Ga compound in order to improve the superconducting property of the V 3 Ga compound wire. (author)

  2. Process for production of a borohydride compound

    Science.gov (United States)

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-19

    A process for production of a borohydride compound M(BH.sub.4).sub.y. The process has three steps. The first step combines a compound of formula (R.sup.1O).sub.yM with aluminum, hydrogen and a metallic catalyst containing at least one metal selected from the group consisting of titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group; M is an alkali metal, Be or Mg; and y is one or two; wherein the catalyst is present at a level of at least 200 ppm based on weight of aluminum. The second step combines the compound of formula M(AlH.sub.3OR.sup.1).sub.y with a borate, boroxine or borazine compound to produce M(BH.sub.4).sub.y and a byproduct mixture containing alkali metal and aluminum aryloxides. The third step separates M(BH.sub.4).sub.y from the byproduct mixture.

  3. Highly textured Sr, Nb co-doped BiFeO3 thin films grown on SrRuO3/Si substrates by rf- sputtering

    International Nuclear Information System (INIS)

    Ostos, C.; Raymond, O.; Siqueiros, J. M.; Suarez-Almodovar, N.; Bueno-Baques, D.; Mestres, L.

    2011-01-01

    In this study, (011)-highly oriented Sr, Nb co-doped BiFeO 3 (BFO) thin films were successfully grown on SrRuO 3 /Si substrates by rf-magnetron sputtering. The presence of parasite magnetic phases was ruled out based on the high resolution x-ray diffraction data. BFO films exhibited a columnar-like grain growth with rms surface roughness values of ≅5.3 nm and average grain sizes of ≅65-70 nm for samples with different thicknesses. Remanent polarization values (2P r ) of 54 μC cm -2 at room temperature were found for the BFO films with a ferroelectric behavior characteristic of an asymmetric device structure. Analysis of the leakage mechanisms for this structure in negative bias suggests Schottky injection and a dominant Poole-Frenkel trap-limited conduction at room temperature. Oxygen vacancies and Fe 3+ /Fe 2+ trap centers are consistent with the surface chemical bonding states analysis from x-ray photoelectron spectroscopy data. The (011)-BFO/SrRuO 3 /Si film structure exhibits a strong magnetic interaction at the interface between the multiferroic film and the substrate layer where an enhanced ferromagnetic response at 5 K was observed. Zero-field cooled (ZFC) and field cooled (FC) magnetization curves of this film system revealed a possible spin glass behavior at spin freezing temperatures below 30 K depending on the BFO film thickness.

  4. Exchange coupling in permalloy/BiFeO3 heterostructures

    Science.gov (United States)

    Heron, John; Wang, Chen; Carlton, David; Nowakowski, Mark; Gajek, Martin; Awschalom, David; Bokor, Jeff; Ralph, Dan; Ramesh, R.

    2010-03-01

    BiFeO3 is a ferroelectric and antiferromagnetic multiferroic with the ferroelectric and antiferromagnetic order parameters coupled at room temperature. This coupling results in the reorientation of the ferroelectric and magnetic domains as applied voltages switch the electric polarization. Previous studies using ferromagnet/BiFeO3 heterostructures have shown that the anisotropy of the ferromagnetic layer can be tuned by the ferroelectric domain structure of the BiFeO3 film [1, 2]. The physical mechanism driving this exchange bias with BiFeO3 is still under investigation. We use patterned permalloy structures, with varying aspect ratios, on BiFeO3 thin films to investigate the physics of this interaction. The results of our studies using MFM, PEEM, and MOKE to understand this mechanism as a means to electric field control of magnetic structures will be presented. [4pt] [1] H. Bea et al., Physical Review Letters 100, 017204 (2008).[0pt] [2] L.W. Martin et al., Nanoletters 8, 2050 (2008).

  5. Multiferroic properties of BiFeO3/Bi4Ti3O12 double-layered thin films fabricated by chemical solution deposition

    International Nuclear Information System (INIS)

    Yi, Seung Woo; Kim, Sang Su; Kim, Jin Won; Jo, Hyun Kyung; Do, Dalhyun; Kim, Won-Jeong

    2009-01-01

    Multiferroic BiFeO 3 /Bi 4 Ti 3 O 12 (BFO/BTO) double-layered film was fabricated on a Pt(111)/Ti/SiO 2 /Si(100) substrate by a chemical solution deposition method. The effect of an interfacial BTO layer on electrical and magnetic properties of BFO was investigated by comparing those of pure BFO and BTO films prepared by the same condition. The X-ray diffraction result showed that no additional phase was formed in the double-layered film, except BFO and BTO phases. The remnant polarization (2P r ) of the double-layered film capacitor was 100 μC/cm 2 at 250 kV/cm, which is much larger than that of the pure BFO film capacitor. The magnetization-magnetic field hysteresis loop revealed weak ferromagnetic response with remnant magnetization (2M r ) of 0.4 kA/m. The values of dielectric constant and dielectric loss of the double-layered film capacitor were 240 and 0.03 at 100 kHz, respectively. Leakage current density measured from the double-layered film capacitor was 6.1 x 10 -7 A/cm 2 at 50 kV/cm, which is lower than the pure BFO and BTO film capacitors.

  6. Rubber compounding and processing

    CSIR Research Space (South Africa)

    John, MJ

    2014-06-01

    Full Text Available This chapter presents an overview on the compounding and processing techniques of natural rubber compounds. The introductory portion deals with different types of rubbers and principles of rubber compounding. The primary and secondary fillers used...

  7. Ferroelectric BiFeO3 as an Oxide Dye in Highly Tunable Mesoporous All-Oxide Photovoltaic Heterojunctions.

    Science.gov (United States)

    Wang, Lingfei; Ma, He; Chang, Lei; Ma, Chun; Yuan, Guoliang; Wang, Junling; Wu, Tom

    2017-01-01

    As potential photovoltaic materials, transition-metal oxides such as BiFeO 3 (BFO) are capable of absorbing a substantial portion of solar light and incorporating ferroic orders into solar cells with enhanced performance. But the photovoltaic application of BFO has been hindered by low energy-conversion efficiency due to poor carrier transport and collection. In this work, a new approach of utilizing BFO as a light-absorbing sensitizer is developed to interface with charge-transporting TiO 2 nanoparticles. This mesoporous all-oxide architecture, similar to that of dye-sensitized solar cells, can effectively facilitate the extraction of photocarriers. Under the standard AM1.5 (100 mW cm -2 ) irradiation, the optimized cell shows an open-circuit voltage of 0.67 V, which can be enhanced to 1.0 V by tailoring the bias history. A fill factor of 55% is achieved, which is much higher than those in previous reports on BFO-based photovoltaic devices. The results provide here a new viable approach toward developing highly tunable and stable photovoltaic devices based on ferroelectric transition-metal oxides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Coexistence of room temperature ferroelectricity and ferrimagnetism in multiferroic BiFeO3-Bi0.5Na0.5TiO3 solid solution

    International Nuclear Information System (INIS)

    Tian, Z.M.; Wang, C.H.; Yuan, S.L.; Wu, M.S.; Ma, Z.Z.; Duan, H.N.; Chen, L.

    2011-01-01

    Highlights: → In this study, the coexistence of ferroelectrics and ferrimagnetism have been observed at room temperature for the (1 - x)BiFeO 3 -xBi 0.5 Na 0.5 TiO 3 (x = 0.37) solid solutions. → X-ray diffraction and Raman spectroscopy measurements show a single-phase perovskite structure with no impurities identified. → A magnetic transition from paramagnetic (PM) to ferrimagnetic (Ferri) ordering is observed for the solution with Curie temperature T C ∼ 330 K. - Abstract: The structure, ferroelectric and magnetic properties of (1 - x)BiFeO 3 -xBi 0.5 Na 0.5 TiO 3 (x = 0.37) solid solution fabricated by a sol-gel method have been investigated. X-ray diffraction and Raman spectroscopy measurements show a single-phase perovskite structure with no impurities identified. Compared with pure BiFeO 3 , the coexistence of ferroelectricity and ferrimagnetism have been observed at room temperature for the solution with remnant polarization P r = 1.41 μC/cm 2 and remnant magnetization M r = 0.054 emu/g. Importantly, a magnetic transition from ferrimagnetic (FM) ordering to paramagnetic (PM) state is observed, with Curie temperature T C ∼ 330 K, being explained in terms of the suppression of cycloid spin configuration by the structural distortion.

  9. Experimental and first principles investigation of the multiferroics BiFeO3 and Bi0.9Ca0.1FeO3: Structure, electronic, optical and magnetic properties

    International Nuclear Information System (INIS)

    Gao, Ning; Quan, Chuye; Ma, Yuhui; Han, Yumin; Wu, Zhenli; Mao, Weiwei

    2016-01-01

    We propose first-principles methods to study the structure, electronic, optical and magnetic properties of BiFeO 3 (BFO) and Bi 0.9 Ca 0.1 FeO 3 (BCFO). The morphology, optical band gap as well as magnetic hysteresis also have been investigated using experimental methods. X-ray diffraction data shows that Bi-site doping with Ca could result in a transition of crystal structure (from single phase rhombohedral (R3c) to two phase coexistence). Changing of Fermi level and decreasing of band gap indicating that the Ca-doped BFO exhibit a typical half-metallic nature. The optical absorption properties are related to the electronic structure and play the key role in determining their band gaps, also we have analyzed the inter-band contribution to the theory of optical properties such as absorption spectra, dielectric constant, energy-loss spectrum, absorption coefficient, optical reflectivity, and refractive index of BCFO. Enhancement of magnetic properties after doping is proved by both experimental and calculated result, which can be explained by size effect and structural distortion.

  10. Phonological Processes in Complex and Compound Words

    Directory of Open Access Journals (Sweden)

    Alieh Kord Zaferanlu Kambuziya

    2016-02-01

    Full Text Available Abstract This research at making a comparison between phonological processes in complex and compound Persian words. Data are gathered from a 40,000-word Persian dictionary. To catch some results, 4,034 complex words and 1,464 compound ones are chosen. To count the data, "excel" software is used. Some results of the research are: 1- "Insertion" is the usual phonological process in complex words. More than half of different insertions belongs to the consonant /g/. Then /y/ and // are in the second and the third order. The consonant /v/ has the least percentage of all. The most percentage of vowel insertion belongs to /e/. The vowels /a/ and /o/ are in the second and third order. Deletion in complex words can only be seen in consonant /t/ and vowel /e/. 2- The most frequent phonological processes in compounds is consonant deletion. In this process, seven different consonants including /t/, //, /m/, /r/, / ǰ/, /d, and /c/. The only deleted vowel is /e/. In both groups of complex and compound, /t/ deletion can be observed. A sequence of three consonants paves the way for the deletion of one of the consonants, if one of the sequences is a sonorant one like /n/, the deletion process rarely happens. 3- In complex words, consonant deletion causes a lighter syllable weight, whereas vowel deletion causes a heavier syllable weight. So, both of the processes lead to bi-moraic weight. 4- The production of bi-moraic syllable in Persian is preferable to Syllable Contact Law. So, Specific Rules have precedence to Universals. 5- Vowel insertion can be seen in both groups of complex and compound words. In complex words, /e/ insertion has the most fundamental part. The vowels /a/ and /o/ are in the second and third place. Whenever there are two sequences of ultra-heavy syllables. By vowel insertion, the first syllable is broken into two light syllables. The compounds that are influenced by vowel insertion, can be and are pronounced without any insertion

  11. On statistical analysis of compound point process

    Czech Academy of Sciences Publication Activity Database

    Volf, Petr

    2006-01-01

    Roč. 35, 2-3 (2006), s. 389-396 ISSN 1026-597X R&D Projects: GA ČR(CZ) GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : counting process * compound process * hazard function * Cox -model Subject RIV: BB - Applied Statistics, Operational Research

  12. INFLUENCE OF INORGANIC COMPOUNDS ON THE PROCESS OF PHOTOCATALYSIS OF BIOLOGICALLY ACTIVE COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Edyta Kudlek

    2017-07-01

    Full Text Available Constant increase in concentration of organic micropollutants in the water environment influences the development of methods for their effective elimination from various matrices released into aquatic ecosystems. One of widely described in literature processes for the decomposition of hardly-biodegradable pollutants is the process of heterogeneous photocatalysis. The paper presents the influence of inorganic substances on the decomposition of polycyclic aromatic hydrocarbons (anthracene and benzo[a]pyrene, industrial admixtures - octylphenol and pharmaceutical compounds - diclofenac in the photocatalysis process conducted in the presence of TiO2. It has been shown that the presence of Cl- ions did not affect the photochemical reaction of the micropollutant decomposition. Whereas, the presence of CO3(2-, SO4(2- and HPO4(2- ions inhibited the decolonization of octylphenol and diclofenac, while the degradation efficiency of anthracene and benzo[a]pyrene was reduced only by the presence of CO3(2- and HCO3- anions. The photooxidation of micropollutants in solutions containing Al(3+ oraz Fe(3+ cations proceeded with a much lower efficiency than that for solution without inorganic compounds. The analysis of the kinetics of the photocatalytic decomposition of selected micropollutants show a decrease in the reaction rate constant and an increase in their half-life due to the blocking of theactive semiconductor centers by inorganic compounds. In addition,the toxicological analysis inducated the generation of micropollutant oxidation by-products, which aggravate the quality of treated aqueous solutions.

  13. Processamento e caracterizações estruturais, microestruturais e ferroelétricas do composto magnetoelétrico BiFeO3-PbTiO3 obtido pelo método de Pechini

    Directory of Open Access Journals (Sweden)

    V. F. Freitas

    Full Text Available Resumo Neste trabalho uma rota alternativa de síntese, o método de Pechini modificado, foi utilizada para obter nanopartículas do composto BiFeO3-PbTiO3 (BFPT. As imagens obtidas por microscopia eletrônica de varredura revelaram tamanhos de partículas inferiores a 120 nm. Análises estruturais apontaram a organização estrutural do composto (formação de estruturas com simetria tetragonal como função da temperatura de síntese. Cálculos da polarização espontânea indicaram a intensidade alcançada no composto BFPT. As análises de densidade eletrônica obtidas pelo método da máxima entropia indicaram a configuração das ligações químicas presentes no composto.

  14. On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties

    Science.gov (United States)

    Lu, J.; Günther, A.; Schrettle, F.; Mayr, F.; Krohns, S.; Lunkenheimer, P.; Pimenov, A.; Travkin, V. D.; Mukhin, A. A.; Loidl, A.

    2010-06-01

    Magnetic dc susceptibility between 1.5 and 800 K, ac susceptibility and magnetization, thermodynamic properties, temperature dependence of radio and audio-wave dielectric constants and conductivity, contact-free dielectric constants at mm-wavelengths, as well as ferroelectric polarization are reported for single crystalline BiFeO3. A well developed anomaly in the magnetic susceptibility signals the onset of antiferromagnetic order close to 635 K. Beside this anomaly no further indications of phase or glass transitions are indicated in the magnetic dc and ac susceptibilities down to the lowest temperatures. The heat capacity has been measured from 2 K up to room temperature and significant contributions from magnon excitations have been detected. From the low-temperature heat capacity an anisotropy gap of the magnon modes of the order of 6 meV has been determined. The dielectric constants measured in standard two-point configuration are dominated by Maxwell-Wagner like effects for temperatures T > 300 K and frequencies below 1 MHz. At lower temperatures the temperature dependence of the dielectric constant and loss reveals no anomalies outside the experimental errors, indicating neither phase transitions nor strong spin phonon coupling. The temperature dependence of the dielectric constant was measured contact free at microwave frequencies. At room temperature the dielectric constant has an intrinsic value of 53. The loss is substantial and strongly frequency dependent indicating the predominance of hopping conductivity. Finally, in small thin samples we were able to measure the ferroelectric polarization between 10 and 200 K. The saturation polarization is of the order of 40 μC/cm2, comparable to reports in literature.

  15. Structural, spectroscopic, and dielectric characterizations of Mn-doped 0.67BiFeO3-0.33BaTiO3 multiferroic ceramics

    KAUST Repository

    Hang, Qiming

    2013-09-07

    0.67BiFeO3-0.33BaTiO3 multiferroic ceramics doped with x mol% MnO2 (x = 2–10) were synthesized by solid-state reaction. The formation of a perovskite phase with rhombohedral symmetry was confirmed by X-ray diffraction (XRD). The average grain sizes were reduced from 0.80 μm to 0.50 μm as increasing the Mn-doped levels. Single crystalline nature of the grains was revealed by high-resolution transmission electron microscopy (HRTEM) images and electron diffraction patterns. Polar nano-sized ferroelectric domains with an average size of 9 nm randomly distributed in the ceramic samples were revealed by TEM images. Ferroelectric domain lamellae (71° ferroelectric domains) with an average width of 5 nm were also observed. Vibrational modes were examined by Raman spectra, where only four Raman peaks at 272 cm−1 (E-4 mode), 496 cm−1 (A 1-4 mode), 639 cm−1, and 1338 cm−1 were observed. The blue shifts in the E-4 and A 1-4 Raman mode frequencies were interpreted by a spring oscillator model. The dieletric constants of the present ceramics as a function of the Mn-doped levels exhibited a V-typed curve. They were in the range of 350–700 measured at 103 Hz, and the corresponding dielectric losses were in range of 0.43–0.96, approaching to 0.09 at 106 Hz.

  16. Structural, spectroscopic, and dielectric characterizations of Mn-doped 0.67BiFeO3-0.33BaTiO3 multiferroic ceramics

    KAUST Repository

    Hang, Qiming; Zhou, Wenke; Zhu, Xinhua; Zhu, Jianmin; Liu, Zhiguo; Al-Kassab, Talaat

    2013-01-01

    0.67BiFeO3-0.33BaTiO3 multiferroic ceramics doped with x mol% MnO2 (x = 2–10) were synthesized by solid-state reaction. The formation of a perovskite phase with rhombohedral symmetry was confirmed by X-ray diffraction (XRD). The average grain sizes were reduced from 0.80 μm to 0.50 μm as increasing the Mn-doped levels. Single crystalline nature of the grains was revealed by high-resolution transmission electron microscopy (HRTEM) images and electron diffraction patterns. Polar nano-sized ferroelectric domains with an average size of 9 nm randomly distributed in the ceramic samples were revealed by TEM images. Ferroelectric domain lamellae (71° ferroelectric domains) with an average width of 5 nm were also observed. Vibrational modes were examined by Raman spectra, where only four Raman peaks at 272 cm−1 (E-4 mode), 496 cm−1 (A 1-4 mode), 639 cm−1, and 1338 cm−1 were observed. The blue shifts in the E-4 and A 1-4 Raman mode frequencies were interpreted by a spring oscillator model. The dieletric constants of the present ceramics as a function of the Mn-doped levels exhibited a V-typed curve. They were in the range of 350–700 measured at 103 Hz, and the corresponding dielectric losses were in range of 0.43–0.96, approaching to 0.09 at 106 Hz.

  17. Excitation of spin waves in BiFeO3 multiferroic film by the slot line transducer

    Science.gov (United States)

    Korneev, V. I.; Popkov, A. F.; Solov'yov, S. V.

    2018-01-01

    Analysis of the efficiency of magnetoelectric excitation of spin-waves in BiFeO3 multiferroic films by a slot line is performed based on the solution of dynamic Ginzburg-Landau equations for the antiferromagnetic vector. The excitation efficiency is determined by the magnitude of the conversion coefficient of the electromagnetic wave to the spin wave by the slot line transducer or in other words, losses on conversion in the slot line. Calculations are made for a homogeneous antiferromagnetic state of the multiferroic in the presence of a sufficiently large magnetic field and for a spatially modulated spin state (SMSS) at zero magnetic field. It is shown that in the case of a homogeneous antiferromagnetic state, the losses on the excitation of spin waves exceed the excitation efficiency in the SMSS state; however, as the frequency approaches the spin excitation gap, it falls and becomes lower than in the SMSS state. Spin wave excitation in the presence of antiferromagnetic cycloid strongly depends on the relation of the slot width of the transducer to the cycloid periodicity and on the magnitude of the shift of the position of the transducer along the cycloid on its period. The usage of multiferroics for delay lines in the considered frequency range from 100 to 600 GHz requires significant reduction in conversion and propagation losses. More promising seems multiferroic usage in phase shifters and switches for this range.

  18. Residual tensile stresses and piezoelectric properties in BiFeO3-Bi(Zn1/2Ti1/2O3-PbTiO3 ternary solid solution perovskite ceramics

    Directory of Open Access Journals (Sweden)

    Weilin Zheng

    2016-08-01

    Full Text Available For low dielectric loss perovskite-structured (1-x-yBiFeO3-xBi(Zn1/2Ti1/2O3-yPbTiO3 (BF-BZT-PT (x = 0.04-0.15 and y = 0.15-0.26 ceramics in rhombohedral/tetragonal coexistent phase, structural phase transitions were studied using differential thermal analyzer combined with temperature-dependent dielectric measurement. Two lattice structural phase transitions are disclosed in various BF-BZT-PT perovskites, which is different from its membership of BiFeO3 exhibiting just one lattice structural phase transition at Curie temperature TC= 830oC. Consequently, residual internal tensile stresses were revealed experimentally through XRD measurements on ceramic pellets and counterpart powders, which are reasonably attributed to special structural phase transition sequence of BF-BZT-PT solid solution perovskites. Low piezoresponse was observed and argued extrinsically resulting from residual tensile stresses pinning ferroelectric polarization switching. Post-annealing and subsequent quenching was found effective for eliminating residual internal stresses in those BZT-less ceramics, and good piezoelectric property of d33 ≥ 28 pC/N obtained for 0.70BF-0.08BZT-0.22PT and 0.05 wt% MnO2-doped 0.70BF-0.04BZT-0.26PT ceramics with TC ≥ 640oC, while it seemed no effective for those BZT-rich BF-BZT-PT ceramics with x = 0.14 and 0.15 studied here.

  19. Photocatalytic Performance of a Novel MOF/BiFeO3 Composite

    Directory of Open Access Journals (Sweden)

    Yunhui Si

    2017-10-01

    Full Text Available In this study, MOF/BiFeO3 composite (MOF, metal-organic framework has been synthesized successfully through a one-pot hydrothermal method. The MOF/BiFeO3 composite samples, pure MOF samples and BiFeO3 samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, and by UV–vis spectrophotometry. The results and analysis reveal that MOF/BiFeO3 composite has better photocatalytic behavior for methylene blue (MB compared to pure MOF and pure BiFeO3. The enhancement of photocatalytic performance should be due to the introduction of MOF change the surface morphology of BiFeO3, which will increase the contact area with MB. This composing strategy of MOF/BiFeO3 composite may bring new insight into the designing of highly efficient photocatalysts.

  20. Microstructure, Piezoelectric, and Ferroelectric Properties of BZT-Modified BiFeO3-BaTiO3 Multiferroic Ceramics with MnO2 and CuO Addition

    Science.gov (United States)

    Guan, Shibo; Yang, Huabin; Chen, Guangcong; Zhang, Rui

    2018-02-01

    A new lead-free piezoelectric ceramic, 0.67BiFeO3-0.33BaTiO3-xBi(Zn0.5Ti0.5) O3 + 0.0035MnO2 + 0.004CuO, was prepared through the solid-state reaction route. The ceramic was sintered in the 950-990°C range. In this paper, the crystal structure of the sample is pure perovskite structure with a pseudo-cubic structure in the range of x = 0-0.05, and does not change greatly with the increase of x. The grain size increases first and then decreases with the increase of x. The addition of Bi(Zn0.5Ti0.5) O3(BZT) promoted the grain growth of the sample. The piezoelectric constant reached the maximum value of d 33 = 188 pC/N, electromechanical coupling coefficient k p = 0.301 and the remanent polarization P r = 61.20 μC/cm2 at x = 0.03. It has a high Curie temperature of T c = 420°C. On the other hand, the depolarization temperature reaches the maximum value, T d = 426°C, at x = 0. A small amount of BZT doping can improve the piezoelectric, dielectric, and ferroelectric properties of the samples. Therefore, this material can be considered as a promising lead-free piezoelectric ceramic material in the application field of high-temperature materials.

  1. Enhancement of the electrical properties of (Eu,Zn) co-doped BiFeO3 thin films prepared by using chemical solution deposition

    Science.gov (United States)

    Kim, Youn-Jang; Kim, Jin Won; Kim, Hae Jin; Kim, Sang Su

    2013-04-01

    We prepared pure BiFeO3 (BFO) and (Bi0.9Eu0.1)(Fe0.975Zn0.025)O3-δ (BEFZO) thin films on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. Improved electrical properties were observed in the co-doped BEFZO thin film. The leakage current density of the BEFZO thin film was three orders of magnitude lower than that of the pure BFO, 3.93 × 10-6 A/cm2 at 100 kV/cm. The remnant polarization (2 P r ) and the coercive electric field (2 E c ) of the BEFZO thin film were 42 µC/cm2 and 898 kV/cm at an applied electric field of 1000 kV/cm and at a frequency of 1 kHz and the values decreased with increasing measurement frequency to 18 µC/cm2 and 866 kV/cm at 10 kHz, respectively. Also, the fatigue endurances were evaluated at peak voltages of 8-10 V after 1.44 × 1010 cycles in the BEFZO thin films and were 70 ˜ 90% of the initial values. We also confirmed that the 2 P r was fairly saturated at measurement frequency about 30 kHz for the BEFZO thin film.

  2. Structure and electrical properties of (La, Zn) Co-doped BiFeO3 thin films prepared by using chemical solution deposition

    Science.gov (United States)

    Kim, Y. J.; Kim, H. J.; Kim, J. W.; Raghavan, C. M.; Kim, S. S.

    2012-08-01

    We prepared pure BiFeO3 (BFO) and (Bi0.9La0.1)(Fe0.975Zn0.025)O3- δ (BLFZO) thin films on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. Improved electrical properties were observed in the co-doped BLFZO thin film. The leakage current density of the BLFZO thin film was four orders of magnitude lower than that of the pure BFO, 4.17 × 10-7 A/cm2 at 100 kV/cm. The remnant polarization (2 P r ) and the coercive electric field (2 E c ) of the BLFZO thin film were 97 µC/cm2 and 903 kV/cm at an applied electric field of 972 kV/cm and at a frequency of 1 kHz, and the values decreased with increasing measurement frequency to 63 µC/cm2 and 679 kV/cm at 10 kHz, respectively. Also, after 1.44 × 1010 cycles, a better fatigue endurance was observed in the BLFZO thin film, which was 90% of its initial value. We also confirmed that the remnant polarization (2 P r ) and the coercive electric field (2 E c ) were fairly saturated above a measurement frequency of 15 kHz for the BLFZO thin film.

  3. Low energy spin dynamics of rare-earth orthoferrites YFeO3 and LaFeO3

    Science.gov (United States)

    Park, Kisoo; Sim, Hasung; Leiner, Jonathan; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Yano, Shinichiro; Gardner, Jason; Park, Je-Geun

    YFeO3 and LaFeO3\\ are members of the rare-earth orthoferrites (RFeO3) family with Pbnm space group. With the strong superexchange interaction between Fe3 + ions, both compounds exhibit the room temperature antiferromagnetic order (TN >600 K) with a slight spin canting. Here we report low-energy magnetic excitation of YFeO3 and LaFeO3 using inelastic neutron scattering measurements, showing evidence of magnon mode splitting and a spin anisotropy gap at the zone center. Spin wave calculations with the spin Hamiltonian including both Dzyaloshinsky-Moriya interaction and single-ion anisotropy accounts for the observed features well. Our results offer insight into the underlying physics of other RFeO3\\ with magnetic rare-earth ions or related Fe3+-based multiferroic perovskites such as BiFeO3. The work at the IBS CCES (South Korea) was supported by the research program of the Institute for Basic Science (IBS-R009-G1).

  4. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    Science.gov (United States)

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  5. Some functional limit theorems for compound Cox processes

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, Victor Yu. [Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow (Russian Federation); Institute of Informatics Problems FRC CSC RAS (Russian Federation); Chertok, A. V. [Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow (Russian Federation); Euphoria Group LLC (Russian Federation); Korchagin, A. Yu. [Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow (Russian Federation); Kossova, E. V. [Higher School of Economics National Research University, Moscow (Russian Federation); Zeifman, Alexander I. [Vologda State University, S.Orlova, 6, Vologda (Russian Federation); Institute of Informatics Problems FRC CSC RAS, ISEDT RAS (Russian Federation)

    2016-06-08

    An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.

  6. Some functional limit theorems for compound Cox processes

    International Nuclear Information System (INIS)

    Korolev, Victor Yu.; Chertok, A. V.; Korchagin, A. Yu.; Kossova, E. V.; Zeifman, Alexander I.

    2016-01-01

    An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.

  7. Process for compound transformation

    KAUST Repository

    Basset, Jean-Marie

    2016-12-29

    Embodiments of the present disclosure provide for methods of using a catalytic system to chemically transform a compound (e.g., a hydrocarbon). In an embodiment, the method does not employ grafting the catalyst prior to catalysis. In particular, embodiments of the present disclosure provide for a process of hydrocarbon (e.g., C1 to C20 hydrocarbon) metathesis (e.g., alkane, olefin, or alkyne metathesis) transformation, where the process can be conducted without employing grafting prior to catalysis.

  8. Development of volatile compounds in processed cheese during storage

    DEFF Research Database (Denmark)

    Sunesen, Lars Oddershede; Lund, Pia; Sørensen, J.

    2002-01-01

    The purpose of this work teas to study tire impact of storage conditions, such as light and temperature, on the development of volatile compounds to processed cheese. Cheese in glass containers was stored at 5, 20 or 37 degreesC in light or darkness for up to 1 yr. Dynamic headspace and gas...... chromatography/mass spectrometry leas used for quantifying 28 volatile organic compounds at eight stages during tree storage period. Through principal component analysis, three important storage parameters could be identified. Principal components 1, 2 and 3 reflected storage tinge, conditions of light...

  9. Enhancement in magnetic and dielectric properties of La and Pr co substituted BiFeO3

    International Nuclear Information System (INIS)

    Srivastava, Amit; Singh, H.K.; Awana, V.P.S.; Srivastava, O.N.

    2013-01-01

    Highlights: ► Significant enhancement in magnetization of BiFeO 3 is found on La and Pr co substitution. ► It is correlated with structural phase transformation and nanosized crystallites. ► Dielectric losses strongly diminish with La and Pr co substitution. -- Abstract: This report underlines the systematic studies of crystalline structure, magnetic and ferroelectric properties of polycrystalline Bi 1−x−y La x Pr y FeO 3 ceramic samples, in which x changes continuously from 0 to 0.2 for y = 0 and y from 0 to 0.2 for x = 0.2. X-ray diffraction (XRD) patterns revealed that La and Pr substitution at Bi site in the ceramic eliminates the usual impurity phases completely. Rietveld refinement of the XRD patterns shows that the crystal structure changes gradually from Rhombohedral (R3c) to Orthorhombic (pbnm) with increasing La and Pr concentration. This transition has significant effects on the multiferroic properties of Bi 1−x−y La x Pr y FeO 3 ceramics. Substantial enhancement in magnetization of Bi 1−x−y La x Pr y FeO 3 has been observed and this is found to be correlated with the evolution of structural phase change with doping of Pr in samples having lanthanum concentration of x = 0.2. This leads to the suppression of helical spin order. However, the enhancement in magnetic behavior also takes place due to nanocrystallite nature of Bi 1−x−y La x Pr y FeO 3 (x = 0.2, y = 0.05–0.2). For the nanocrystallites having sizes lower than 62 nm, which is the period of spin cycloid, this spin configuration will get destroyed resulting in the enhancement of magnetization. The studies of microstructures employing SEM and TEM revealed that Bi 1−x−y La x Pr y FeO 3 consists of nano size grained microstructures. It is also found that dielectric constant and dielectric loss get improved by La and Pr co-substitution. The dielectric constant for x = 0.0, y = 0.0 is 81 which changes to 354 for x = 0.2, y = 0.15 at 100 Hz. Dielectric losses are strongly

  10. Compound process fuel cycle concept

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo

    2005-01-01

    Mass flow of light water reactor spent fuel for a newly proposed nuclear fuel cycle concept 'Compound Process Fuel Cycle' has been studied in order to assess the capacity of the concept for accepting light water reactor spent fuels, taking an example for boiling water reactor mixed oxide spent fuel of 60 GWd/t burn-up and for a fast reactor core of 3 GW thermal output. The acceptable heavy metal of boiling water reactor mixed oxide spent fuel is about 3.7 t/y/reactor while the burn-up of the recycled fuel is about 160 GWd/t and about 1.6 t/y reactor with the recycled fuel burn-up of about 300 GWd/t, in the case of 2 times recycle and 4 times recycle respectively. The compound process fuel cycle concept has such flexibility that it can accept so much light water reactor spent fuels as to suppress the light water reactor spent fuel pile-up if not so high fuel burn-up is expected, and can aim at high fuel burn-up if the light water reactor spent fuel pile-up is not so much. Following distinctive features of the concept have also been revealed. A sort of ideal utilization of boiling water reactor mixed oxide spent fuel might be achieved through this concept, since both plutonium and minor actinide reach equilibrium state beyond 2 times recycle. Changes of the reactivity coefficients during recycles are mild, giving roughly same level of reactivity coefficients as the conventional large scale fast breeder core. Both the radio-activity and the heat generation after 4 year cooling and after 4 times recycle are less than 2.5 times of those of the pre recycle fuel. (author)

  11. Application of Transforms in a Compound Demands Process

    Directory of Open Access Journals (Sweden)

    Ou Tang

    2012-10-01

    Full Text Available The compound distribution is of interest for the study of inventoryproblem, since it provides a more flexible description ofthe stochastic properties of the system compared to many otherapproaches such as renewal processes. However, due to the difficultiesof obtaining analytical results for the compound distribution,such a type of study is usually limited to searching for agood approximation for replacing the complex model. This paperinvestigates the possibility to extend a previous stochastic inventorymodel to cover a compound demand process. Transformmethods again play an imp01tant role in the analysis forcapturing the stochastic prope1ties of the compound distribution.

  12. Optical, ferroelectric and magnetic properties of multiferroelectric BiFeO3-(K0.5Na0.5)0.4(Sr 0.6Ba0.4)0.8Nb2O6 thin films

    KAUST Repository

    Yao, Yingbang

    2014-02-01

    Multiferroic BiFeO3-(K0.5Na0.5) 0.4(Sr0.6Ba0.4)0.8Nb 2O6 (BFO-KNSBN) trilayer thin films, were epitaxially grown on MgO(0 0 1) and SrTiO3(0 0 1) by using pulsed laser deposition (PLD). Their ferroelectric, magnetic, dielectric and optical properties were investigated. It was found that both ferroelectric polarization and dielectric constant of the films were enhanced by introducing KNSBN as a barrier layer. Meanwhile, ferromagnetism of BFO was maintained. More interestingly, a double hysteresis magnetic loop was observed in the KNSBN-BFO-KNSBN trilayer films, where exchange bias and secondary phase in the BFO layer played crucial roles. Interactions between adjacent layers were revealed by temperature-dependent Raman spectroscopic measurements. © 2013 Elsevier B.V. All rights reserved.

  13. Governing processes for reactive nitrogen compounds in the European atmosphere

    Directory of Open Access Journals (Sweden)

    O. Hertel

    2012-12-01

    Full Text Available Reactive nitrogen (Nr compounds have different fates in the atmosphere due to differences in the governing processes of physical transport, deposition and chemical transformation. Nr compounds addressed here include reduced nitrogen (NHx: ammonia (NH3 and its reaction product ammonium (NH4+, oxidized nitrogen (NOy: nitrogen monoxide (NO + nitrogen dioxide (NO2 and their reaction products as well as organic nitrogen compounds (organic N. Pollution abatement strategies need to take into account the differences in the governing processes of these compounds when assessing their impact on ecosystem services, biodiversity, human health and climate. NOx (NO + NO2 emitted from traffic affects human health in urban areas where the presence of buildings increases the residence time in streets. In urban areas this leads to enhanced exposure of the population to NOx concentrations. NOx emissions generally have little impact on nearby ecosystems because of the small dry deposition rates of NOx. These compounds need to be converted into nitric acid (HNO3 before removal through deposition is efficient. HNO3 sticks quickly to any surface and is thereby either dry deposited or incorporated into aerosols as nitrate (NO3. In contrast to NOx compounds, NH3 has potentially high impacts on ecosystems near the main agricultural sources of NH3 because of its large ground-level concentrations along with large dry deposition rates. Aerosol phase NH4+ and NO3 contribute significantly to background PM2.5 and PM10 (mass of aerosols with an aerodynamic diameter of less than 2.5 and 10 μm, respectively with an impact on radiation balance as well as potentially on human

  14. Bis(1,3-dithiole) Compounds

    DEFF Research Database (Denmark)

    Andersen, Jan Rud; Engler, E. M.; Green, D. C.

    1977-01-01

    There is described the preparation of bis-1,3-dithiole compounds (I) which are key synthetic precursors for the preparation of new polymeric metal bis(dithiolene) (i.e., II) and tetrathiafulvalene compounds (i.e., III): (Image Omitted)...

  15. Calorimetric investigations of UPb{sub 3} compound

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Renu, E-mail: arenu@barc.gov.in; Samui, Pradeep; Mukerjee, S.K.

    2016-08-10

    Highlights: • First time reporting of enthalpy increment and heat capacity data of UPb{sub 3} compound. • First time reporting of high temperature calorimetric determination of enthalpy of formation of UPb{sub 3} compound. • Miedema model was used to calculate enthalpies of formation of UPb{sub 3} and UPb. • Thermodynamic table of the compound UPb{sub 3} was generated. - Abstract: Interaction of uranium based metallic fuels and lead coolant can lead to formation of intermetallic compounds of U-Pb system. To understand U-Pb interactions, it is important to know thermodynamic properties of intermetallic compounds present in this system, UPb{sub 3} and UPb. In the present work, enthalpy increment, heat capacity and enthalpy of formation of UPb{sub 3} intermetallic compound were determined. The enthalpy increment was determined by high temperature Calvet calorimeter and heat capacity was determined using DSC. The heat capacity data was used to calculate thermodynamic parameters of the compound as a function of temperature. The enthalpy of formation at 843 K was determined using successive precipitation method, by direct reaction calorimetry. The enthalpy of formation at 843 K, from Pb(l) and U(l), was −28.9 kJ at-mol{sup −1} and after adjusting enthalpy increments of pure elements and compound, the enthalpy of formation of the compound at 298 K, from Pb(s) and U(α) was found to be −20.0 kJ at-mol{sup −1}.

  16. Thermal conductivity of REIn3 compounds

    International Nuclear Information System (INIS)

    Mucha, J

    2006-01-01

    The results of measurements of the thermal conductivity of REIn 3 (RE Pr, Nd, Dy, Ho, Tm) compounds as a function of the temperature in the interval 4-300 K in the absence and in the presence of an external magnetic field of 8 T are presented. Except for PRIn 3 all the compounds are antiferromagnetic. YIn 3 was also measured as a reference compound. The results were analysed in the paramagnetic phase, where an influence of the crystalline electric field on the thermal conductivity was found. Drastic changes in the thermal conductivity were observed and analysed in the vicinity of the Neel temperature and in the antiferromagnetic phases of the compounds. Below the Neel temperature an additional magnon contribution to the thermal conductivity was separated out

  17. Superconductivity in Ti3P-type compounds

    International Nuclear Information System (INIS)

    Wills, J.O.; Hein, R.A.; Waterstrat, R.M.

    1978-01-01

    A study of 12 intermetallic A 3 B compounds which crsytallize in the tetragonal Ti 3 P-type structure has revealed five new superconductors with transition temperatures below 1 K: Zr 3 Si, Zr 3 Ge, Zr 3 P, V 3 P, and Nb 3 Ge (extrapolated from the alloy series Nb-Ge-As). In addition, two compounds, Zr 3 Sb and Ta 3 Ge, having the Ni 3 P structure type are found to be superconducting below 1 K. Within the Ti 3 P-type compounds, those with the lighter ''B'' elements in a given column of the Periodic Table have the higher transition temperatures. Critical-magnetic-field and electrical-resistivity data are reported for the superconducting Ti 2 P-type compound Nb 3 P, which permit one to estimate the Ginzburg-Landau kappa parameter and the electronic-specific-heat coefficient γ. The kappa value of 8.4 indicates that this material is type II, and the γ value of 1.3 mJ/mole K 2 for Nb 3 P is probably related to its low transition temperature relative to many A15 compounds

  18. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    Science.gov (United States)

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  19. Evaluation of phenolic compounds in mate (Ilex paraguariensis) processed by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Furgeri, C.; Nunes, T.C.F.; Fanaro, G.B. [Instituto de Pesquisas Energeticas Nucleares, IPEN-CNEN/SP, Centro de Tecnologia das Radiacoes-Laboratory de Deteccao de Alimentos Irradiados, Av. Professor Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-900 Sao Paulo (Brazil); Souza, M.F.F.; Bastos, D.H.M. [Faculdade de Saude Publica, FSP/USP, Departamento de Nutricao-Av. Dr. Arnaldo, 715, CEP: 01246-904 Sao Paulo (Brazil); Villavicencio, A.L.C.H. [Instituto de Pesquisas Energeticas Nucleares, IPEN-CNEN/SP, Centro de Tecnologia das Radiacoes-Laboratory de Deteccao de Alimentos Irradiados, Av. Professor Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-900 Sao Paulo (Brazil)], E-mail: villavic@ipen.br

    2009-07-15

    The radiation food processing has been demonstrating great effectiveness in the attack of pathogenic agents, while little compromising nutritional value and sensorial properties of foods. The mate (Ilex paraguariensis), widely consumed product in South America, generally in the form of infusions with hot or cold water, calls of chimarrao or terere, it is cited in literature as one of the best sources phenolic compounds. The antioxidants action of these constituent has been related to the protection of the organism against the free radicals, generated in alive, currently responsible for the sprouting of some degenerative illness as cancer, arteriosclerosis, rheumatic arthritis and cardiovascular clutters among others. The objective of that work was to evaluate the action of the processing for gamma radiation in phenolic compounds of terere beverage in the doses of 0, 3, 5, 7 and 10 kGy. The observed results do not demonstrate significant alterations in phenolic compounds of terere beverage processed by gamma radiation.

  20. Evaluation of phenolic compounds in mate (Ilex paraguariensis) processed by gamma radiation

    International Nuclear Information System (INIS)

    Furgeri, C.; Nunes, T.C.F.; Fanaro, G.B.; Souza, M.F.F.; Bastos, D.H.M.; Villavicencio, A.L.C.H.

    2009-01-01

    The radiation food processing has been demonstrating great effectiveness in the attack of pathogenic agents, while little compromising nutritional value and sensorial properties of foods. The mate (Ilex paraguariensis), widely consumed product in South America, generally in the form of infusions with hot or cold water, calls of chimarrao or terere, it is cited in literature as one of the best sources phenolic compounds. The antioxidants action of these constituent has been related to the protection of the organism against the free radicals, generated in alive, currently responsible for the sprouting of some degenerative illness as cancer, arteriosclerosis, rheumatic arthritis and cardiovascular clutters among others. The objective of that work was to evaluate the action of the processing for gamma radiation in phenolic compounds of terere beverage in the doses of 0, 3, 5, 7 and 10 kGy. The observed results do not demonstrate significant alterations in phenolic compounds of terere beverage processed by gamma radiation.

  1. Statistical features of pre-compound processes in nuclear reactions

    International Nuclear Information System (INIS)

    Hussein, M.S.; Rego, R.A.

    1983-04-01

    Several statistical aspects of multistep compound processes are discussed. The connection between the cross-section auto-correlation function and the average number of maxima is emphasized. The restrictions imposed by the non-zero value of the energy step used in measuring the excitation fuction and the experimental error are discussed. Applications are made to the system 25 Mg( 3 He,p) 27 Al. (Author) [pt

  2. Alternative Forms of Compound Fractional Poisson Processes

    Directory of Open Access Journals (Sweden)

    Luisa Beghin

    2012-01-01

    Full Text Available We study here different fractional versions of the compound Poisson process. The fractionality is introduced in the counting process representing the number of jumps as well as in the density of the jumps themselves. The corresponding distributions are obtained explicitly and proved to be solution of fractional equations of order less than one. Only in the final case treated in this paper, where the number of jumps is given by the fractional-difference Poisson process defined in Orsingher and Polito (2012, we have a fractional driving equation, with respect to the time argument, with order greater than one. Moreover, in this case, the compound Poisson process is Markovian and this is also true for the corresponding limiting process. All the processes considered here are proved to be compositions of continuous time random walks with stable processes (or inverse stable subordinators. These subordinating relationships hold, not only in the limit, but also in the finite domain. In some cases the densities satisfy master equations which are the fractional analogues of the well-known Kolmogorov one.

  3. Low-energy spin dynamics of orthoferrites AFeO3 (A  =  Y, La, Bi)

    Science.gov (United States)

    Park, Kisoo; Sim, Hasung; Leiner, Jonathan C.; Yoshida, Yoshiyuki; Jeong, Jaehong; Yano, Shin-ichiro; Gardner, Jason; Bourges, Philippe; Klicpera, Milan; Sechovský, Vladimír; Boehm, Martin; Park, Je-Geun

    2018-06-01

    YFeO3 and LaFeO3 are members of the rare-earth orthoferrites family with Pbnm space group. Using inelastic neutron scattering, the low-energy spin excitations have been measured around the magnetic Brillouin zone center. Splitting of magnon branches and finite magnon gaps (∼2 meV) are observed for both compounds, where the Dzyaloshinsky–Moriya interactions account for most of this gap with some additional contribution from single-ion anisotropy. We also make comparisons with multiferroic BiFeO3 (R3c space group), in which similar behavior was observed. By taking into account all relevant local Dzyaloshinsky–Moriya interactions, our analysis allows for the precise determination of all experimentally observed parameters in the spin-Hamiltonian. We find that different properties of the Pbnm and R3c space group lead to the stabilization of a spin cycloid structure in the latter case but not in the former, which explains the difference in the levels of complexity of magnon band structures for the respective compounds.

  4. Multivariate fractional Poisson processes and compound sums

    OpenAIRE

    Beghin, Luisa; Macci, Claudio

    2015-01-01

    In this paper we present multivariate space-time fractional Poisson processes by considering common random time-changes of a (finite-dimensional) vector of independent classical (non-fractional) Poisson processes. In some cases we also consider compound processes. We obtain some equations in terms of some suitable fractional derivatives and fractional difference operators, which provides the extension of known equations for the univariate processes.

  5. Magnetic properties of Aurivillius lanthanide-bismuth (LnFeO3nBi4Ti3O12 (n = 1,2 layered titanates

    Directory of Open Access Journals (Sweden)

    Tartaj, J.

    2008-06-01

    Full Text Available Bismuth titanates of Aurivillius layer-structure (BiFeO3nBi4Ti3O12, are of great technological interest because of their applications as non-volatile ferroelectric memories and high-temperature piezoelectric materials. The synthesis and crystallographic characterization of a new family of compounds (LnFeO3nBi4Ti3O12 was recently reported, in which the layers consist of LnFeO3 perovskites with a lanthanide Ln3+ substituting diamagnetic Bi3+. We report herein the magnetic properties of bulk samples, with Ln = Nd, Eu, Gd and Tb, and n = 1 and 2. Single-layer materials are paramagnetic, similar to non-substituted bismuth titanate Bi5FeTi3O15, and show crystal field effects due to the crystallographic environment of Eu3+ and Tb3+. Several anomalies are detected in the magnetization M(T of double-layer (LnFeO32Bi4Ti3O12 compounds, related to the strong magnetism of Tb and Gd, since they weakly appear for Nd and they are absent in the VanVleck Eu3+ ion and in the parent Bi6Fe2Ti3O18 compound.Los titanatos de hierro y bismuto con estructura laminar tipo Aurivillius, (BiFeO3nBi4Ti3O12, tienen un gran interés tecnológico debido a sus aplicaciones como memorias ferroeléctricas no volátiles y como piezoeléctrico cerámico de alta temperatura. La síntesis y la caracterización cristalina de una nueva familia de compuestos (LnFeO3nBi4Ti3O12 han sido recientemente reportadas, en la que el catión diamagnético Bi3+ ha sido sustituido por los paramagnéticos Ln3+ en los bloques de perovskita. Se estudian las propiedades magnéticas de muestras cerámicas en volumen con Ln = Nd, Eu, Gd y Tb, y n = 1 y 2. Los materiales con n=1 son paramagnéticos y similares al no sustituido Bi5FeTi3O15, y muestran efectos de campo cristalino debido al entorno cristalino de Eu3+ y Tb3+. Se han detectado algunas anomalías en la magnetización M(T de los compuestos n=2 (LnFeO32Bi4Ti3O12 que están relacionadas con el fuerte magnetismo de Tb y Gd, que aparecen d

  6. Synthesis and magnetic properties of heteronuclear 3d-4f compound

    International Nuclear Information System (INIS)

    Cristovao, B.; Ferenc, W.

    2007-01-01

    A novel heteronuclear 3d-4f compound having formula NdCu 3 L 3 ·13H 2 O (where H 3 L = Schiff base derived from 5-bromosalicylaldehyde and glycylglycine and L 3 = C 11 H 8 N 2 O 4 Br) was obtained. It was characterized by elemental and thermal analyses and magnetic measurements. The Cu(II)-Nd(III) compound is stable up to 323 K. During dehydration process the water molecules are lost in two stages. The magnetic susceptibility data for this complex change with temperature according to the Curie-Weiss law with Θ = -35 K. The magnetic moment values decrease from 5.00μ B at 303 K to 4.38μB at 76 K. (author)

  7. Cascaded processing in written compound word production

    Directory of Open Access Journals (Sweden)

    Raymond eBertram

    2015-04-01

    Full Text Available In this study we investigated the intricate interplay between central linguistic processing and peripheral motor processes during typewriting. Participants had to typewrite two-constituent (noun-noun Finnish compounds in response to picture presentation while their typing behavior was registered. As dependent measures we used writing onset time to assess what processes were completed before writing and inter-key intervals to assess what processes were going on during writing. It was found that writing onset time was determined by whole word frequency rather than constituent frequencies, indicating that compound words are retrieved as whole orthographic units before writing is initiated. In addition, we found that the length of the first syllable also affects writing onset time, indicating that the first syllable is fully prepared before writing commences. The inter-key interval results showed that linguistic planning is not fully ready before writing, but cascades into the motor execution phase. More specifically, inter-key intervals were largest at syllable and morpheme boundaries, supporting the view that additional linguistic planning takes place at these boundaries. Bigram and trigram frequency also affected inter-key intervals with shorter intervals corresponding to higher frequencies. This can be explained by stronger memory traces for frequently co-occurring letter sequences in the motor memory for typewriting. These frequency effects were even larger in the second than in the first constituent, indicating that low-level motor memory starts to become more important during the course of writing compound words. We discuss our results in the light of current models of morphological processing and written word production.

  8. Cascaded processing in written compound word production.

    Science.gov (United States)

    Bertram, Raymond; Tønnessen, Finn Egil; Strömqvist, Sven; Hyönä, Jukka; Niemi, Pekka

    2015-01-01

    In this study we investigated the intricate interplay between central linguistic processing and peripheral motor processes during typewriting. Participants had to typewrite two-constituent (noun-noun) Finnish compounds in response to picture presentation while their typing behavior was registered. As dependent measures we used writing onset time to assess what processes were completed before writing and inter-key intervals to assess what processes were going on during writing. It was found that writing onset time was determined by whole word frequency rather than constituent frequencies, indicating that compound words are retrieved as whole orthographic units before writing is initiated. In addition, we found that the length of the first syllable also affects writing onset time, indicating that the first syllable is fully prepared before writing commences. The inter-key interval results showed that linguistic planning is not fully ready before writing, but cascades into the motor execution phase. More specifically, inter-key intervals were largest at syllable and morpheme boundaries, supporting the view that additional linguistic planning takes place at these boundaries. Bigram and trigram frequency also affected inter-key intervals with shorter intervals corresponding to higher frequencies. This can be explained by stronger memory traces for frequently co-occurring letter sequences in the motor memory for typewriting. These frequency effects were even larger in the second than in the first constituent, indicating that low-level motor memory starts to become more important during the course of writing compound words. We discuss our results in the light of current models of morphological processing and written word production.

  9. Controls on the Environmental Fate of Compounds Controlled by Coupled Hydrologic and Reactive Processes

    Science.gov (United States)

    Hixson, J.; Ward, A. S.; McConville, M.; Remucal, C.

    2017-12-01

    Current understanding of how compounds interact with hydrologic processes or reactive processes have been well established. However, the environmental fate for compounds that interact with hydrologic AND reactive processes is not well known, yet critical in evaluating environmental risk. Evaluations of risk are often simplified to homogenize processes in space and time and to assess processes independently of one another. However, we know spatial heterogeneity and time-variable reactivities complicate predictions of environmental transport and fate, and is further complicated by the interaction of these processes, limiting our ability to accurately predict risk. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.

  10. Quick and enhanced degradation of bisphenol A by activation of potassium peroxymonosulfate to SO4rad - with Mn-doped BiFeO3 nanoparticles as a heterogeneous Fenton-like catalyst

    Science.gov (United States)

    Soltani, Tayyebeh; Tayyebi, Ahmad; Lee, Byeong-Kyu

    2018-05-01

    Mn-doped BiFeO3 magnetic nanoparticles (BFO MNPs), namely BiFe1-xMnxO3 (x = 0.05 and 0.10), were successfully synthesized using a simple and novel sol-gel method and then applied as a highly efficient peroxymonosulfate (KHSO5, PMS) activation catalyst for the fast degradation of bisphenol A (BPA) from aqueous solution. The strong PMS activation ability of 10% Mn-doped BFO MNPs without any metal leaching due to the simultaneous effects of iron and manganese ions in the production of radical sulfate (SO4rad -), caused complete BPA degradation in 15 min, which was much faster than that using combinations with H2O2. TOC was reduced to 33%, 23% and 13% by PMS activated with BFO, 5 and 10% Mn doped BFO, respectively, which are 2.1, 2.6 and 3.15-fold lower than that same nanoparticles activated with H2O2. The photocatalytic mechanism of BPA with the simultaneous effects of iron and manganese ions in Mn-doped BFO was explored. The addition of KBrO3 and NaNO3 salts into Mn-doped BFO/PMS system reduced the complete BPA degradation time to 10 min, whereas Na2CO3 and NaCl salt addition retarded it, because salt addition can generate radical species that are either more or less active than SO4rad -.

  11. [Exposure to metal compounds in occupational galvanic processes].

    Science.gov (United States)

    Surgiewicz, Jolanta; Domański, Wojciech

    2006-01-01

    Occupational galvanic processes are provided in more than 600 small and medium enterprises in Poland. Workers who deal with galvanic coating are exposed to heavy metal compounds: tin, silver, copper and zinc. Some of them are carcinogenic, for example, hexavalent chromium compounds, nickel and cadmium compounds. Research covered several tens of workstations involved in chrome, nickel, zinc, tin, silver, copper and cadmium plating. Compounds of metals present in the air were determined: Cr, Ni, Cd, Sn, Ag--by atomic absorption spectrometry with electrothermal atomization (ET-AAS) and Zn--by atomic absorption spectrometry with flame atomization (F-AAS). The biggest metal concentrations--of silver and copper--were found at workstations of copper, brass, cadmium, nickel and chrome plating, conducted at the same time. Significant concentrations of copper were found at workstations of maintenance bathing and neutralizing of sewage. The concentrations of metals did not exceed Polish MAC values. MAC values were not exceeded for carcinogenic chromium(VI), nickel or cadmium, either. In galvanic processes there was no hazard related to single metals or their compounds, even carcinogenic ones. Combined exposure indicators for metals at each workstation did not exceed 1, either. However, if there are even small quantities of carcinogenic agents, health results should always be taken into consideration.

  12. Characterization and extraction of volatile compounds from pineapple (Ananas comosus L. Merril processing residues

    Directory of Open Access Journals (Sweden)

    Lília Calheiros de Oliveira Barretto

    2013-12-01

    Full Text Available The aim of this study was to extract and identify volatile compounds from pineapple residues generated during concentrated juice processing. Distillates of pineapple residues were obtained using the following techniques: simple hydrodistillation and hydrodistillation by passing nitrogen gas. The volatile compounds present in the distillates were captured by the solid-phase microextraction technique. The volatile compounds were identified in a system of high resolution gas chromatography system coupled with mass spectrometry using a polyethylene glycol polar capillary column as stationary phase. The pineapple residues constituted mostly of esters (35%, followed by ketones (26%, alcohols (18%, aldehydes (9%, acids (3% and other compounds (9%. Odor-active volatile compounds were mainly identified in the distillate obtained using hydrodistillation by passing nitrogen gas, namely decanal, ethyl octanoate, acetic acid, 1-hexanol, and ketones such as γ-hexalactone, γ-octalactone, δ-octalactone, γ-decalactone, and γ-dodecalactone. This suggests that the use of an inert gas and lower temperatures helped maintain higher amounts of flavor compounds. These data indicate that pineapple processing residue contained important volatile compounds which can be extracted and used as aroma enhancing products and have high potential for the production of value-added natural essences.

  13. Minimally processed mixed salad submitted to gamma radiation: effects on bioactive compounds

    International Nuclear Information System (INIS)

    Hirashima, Fabiana K.; Sabato, Susy F.; Lanfer-Marquez, Ursula M.

    2015-01-01

    High consumption of fruits and vegetables has been associated with a lowered incidence of oxidative stress-related diseases due to the presence of bioactive structures. Minimally processed products are a growing segment in food retail establishments because it is associated with practicality and convenience without significantly altering fresh-like characteristics. Low-dose of gamma radiation in combination with minimal processes has shown to be a promising strategy for extending shelf life and maintaining the organoleptic quality of fruits and vegetables. The objective of this study was to evaluate the levels of phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH•) free radical scavenging and Oxygen Radical Absorbance Capacity (ORAC) method in minimally processed mixed salad before and after different radiation doses. Samples of minimally processed mixed salad (with green and red cabbage and carrot) were purchased at local supermarket and irradiated with doses of 0.5, 1.0, 2.0 and 3.0 kGy. Phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by DPPH• and ORAC were analyzed on the same extract prepared with MeOH. The results showed that bioactive compounds levels and antioxidant activity decreased significantly (p<0.05) with an increasing on radiation dose. Gamma-rays may affect these compounds and can cause degradation or oxidation, which can explain the drop on levels. Although the radiation has affected the bioactive contents, the process seems to be interesting to maintaining organoleptic characteristics and provide microbiological security at doses up to 2.0 kGy, according to studies conducted by our research group. (author)

  14. Minimally processed mixed salad submitted to gamma radiation: effects on bioactive compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hirashima, Fabiana K.; Sabato, Susy F., E-mail: fmayumi@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Lanfer-Marquez, Ursula M., E-mail: lanferum@usp.br [Universidade de Sao Paulo (FCF/USP), Sao Paulo, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Alimentos e Nutricao Experimental

    2015-07-01

    High consumption of fruits and vegetables has been associated with a lowered incidence of oxidative stress-related diseases due to the presence of bioactive structures. Minimally processed products are a growing segment in food retail establishments because it is associated with practicality and convenience without significantly altering fresh-like characteristics. Low-dose of gamma radiation in combination with minimal processes has shown to be a promising strategy for extending shelf life and maintaining the organoleptic quality of fruits and vegetables. The objective of this study was to evaluate the levels of phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH•) free radical scavenging and Oxygen Radical Absorbance Capacity (ORAC) method in minimally processed mixed salad before and after different radiation doses. Samples of minimally processed mixed salad (with green and red cabbage and carrot) were purchased at local supermarket and irradiated with doses of 0.5, 1.0, 2.0 and 3.0 kGy. Phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by DPPH• and ORAC were analyzed on the same extract prepared with MeOH. The results showed that bioactive compounds levels and antioxidant activity decreased significantly (p<0.05) with an increasing on radiation dose. Gamma-rays may affect these compounds and can cause degradation or oxidation, which can explain the drop on levels. Although the radiation has affected the bioactive contents, the process seems to be interesting to maintaining organoleptic characteristics and provide microbiological security at doses up to 2.0 kGy, according to studies conducted by our research group. (author)

  15. Identification and Quantification of Volatile Compounds Found in Vinasses from Two Different Processes of Tequila Production

    Directory of Open Access Journals (Sweden)

    Elizabeth Rodríguez-Félix

    2018-02-01

    Full Text Available Vinasses are the main byproducts of ethanol distillation and distilled beverages worldwide and are generated in substantial volumes. Tequila vinasses (TVs could be used as a feedstock for biohydrogen production through a dark fermentative (DF process due to their high content of organic matter. However, TV components have not been previously assayed in order to evaluate if they may dark ferment. This work aimed to identify and quantify volatile compounds (VC in TV and determine if the VC profile depends upon the type of production process (whether the stems were initially cooked or not. TVs were sampled from 3 agave stems with a not-cooking (NC process, and 3 agave stems with a cooking (C process, and volatile compounds were determined by gas chromatography coupled with mass spectrometry (GC–MS. A total of 111 volatile compounds were identified, the TV from the cooking process (C showed the higher presence of furanic compounds (furfural and 5-(hydroxymethyl furfural and organic acids (acetic acid and butyric acid, which have been reported as potential inhibitors for DF. To our knowledge, this is the first description of the VC composition from TVs. This study could serve as a base for further investigations related to vinasses from diverse sources.

  16. Effects of Processing Conditions During Manufacture on Retronasal-Aroma Compounds from a Milk Coffee Drink.

    Science.gov (United States)

    Ikeda, Michio; Akiyama, Masayuki; Hirano, Yuta; Miyazi, Kazuhiro; Kono, Masaya; Imayoshi, Yuriko; Iwabuchi, Hisakatsu; Onodera, Takeshi; Toko, Kiyoshi

    2018-03-01

    To develop a ready-to-drink (RTD) milk coffee retaining the original coffee flavor, the effects of processing conditions during manufacture on retronasal-arma (RA) compounds from the milk coffee were investigated by gas chromatography-mass spectrometry using an RA simulator (RAS). Thirteen of 46 detected compounds in the RAS effluent (RAS compounds) decreased significantly following pH adjustment of coffee (from pH 5.1 to 6.8) and 5 compounds increased. RAS compounds from coffee tended to decrease through the pH adjustment and subsequent sterilization. Significantly higher amounts of 13 RAS compounds were released from the milk coffee produced using a blending-after-sterilization (BAS) process without the pH adjustment than from that using a blending-before-sterilization (BBS) process with the pH adjustment. In BAS-processed milk coffee, significantly lower amounts of 8 high-volatility compounds and 1H-pyrrole were released from coffee containing infusion-sterilized (INF) milk than from coffee containing plate-sterilized (PLT) milk, whereas 3 low-volatility compounds were released significantly more from coffee using PLT milk. Principal component analysis revealed that the effect of the manufacturing process (BAS, BBS, or homemade (blending unsterilized coffee without pH adjustment with sterilized milk)) on milk coffee volatiles was larger than that of the sterilization method (INF or PLT) for milk, and that the sterilization method could result in different RAS volatile characteristics in BAS and homemade processes. In conclusion, a BAS process was found to be superior to a BBS process for the manufacture of an RTD milk coffee that retains volatile characteristics similar to that of a homemade milk coffee. Ready-to-drink (RTD) milk coffee manufactured using the conventional blending-before-sterilization process does not retain its original coffee flavor due to pH adjustment of the coffee during the process. The new blending-after-sterilization (BAS) process

  17. Experience with compound words influences their processing: An eye movement investigation with English compound words.

    Science.gov (United States)

    Juhasz, Barbara J

    2016-11-14

    Recording eye movements provides information on the time-course of word recognition during reading. Juhasz and Rayner [Juhasz, B. J., & Rayner, K. (2003). Investigating the effects of a set of intercorrelated variables on eye fixation durations in reading. Journal of Experimental Psychology: Learning, Memory and Cognition, 29, 1312-1318] examined the impact of five word recognition variables, including familiarity and age-of-acquisition (AoA), on fixation durations. All variables impacted fixation durations, but the time-course differed. However, the study focused on relatively short, morphologically simple words. Eye movements are also informative for examining the processing of morphologically complex words such as compound words. The present study further examined the time-course of lexical and semantic variables during morphological processing. A total of 120 English compound words that varied in familiarity, AoA, semantic transparency, lexeme meaning dominance, sensory experience rating (SER), and imageability were selected. The impact of these variables on fixation durations was examined when length, word frequency, and lexeme frequencies were controlled in a regression model. The most robust effects were found for familiarity and AoA, indicating that a reader's experience with compound words significantly impacts compound recognition. These results provide insight into semantic processing of morphologically complex words during reading.

  18. Fused Heterocyclic Compounds as Potent Indoleamine-2,3-dioxygenase 1 Inhibitors.

    Science.gov (United States)

    Panda, Subhankar; Roy, Ashalata; Deka, Suman Jyoti; Trivedi, Vishal; Manna, Debasis

    2016-12-08

    Uncontrolled metabolism of l-tryptophan (l-Trp) in the immune system has been recognized as a critical cellular process in immune tolerance. Indoleamine 2,3-dioxygenase 1 (IDO1) enzyme plays an important role in the metabolism of a local l-Trp through the kynurenine pathway in the immune systems. In this regard, IDO1 has emerged as a therapeutic target for the treatment of diseases that are associated with immune suppression like chronic infections, cancer, and others. In this study, we synthesized a series of pyridopyrimidine, pyrazolopyranopyrimidine, and dipyrazolopyran derivatives. Further lead optimizations directed to the identification of potent compounds, 4j and 4l (IC 50 = 260 and 151 nM, respectively). These compounds also exhibited IDO1 inhibitory activities in the low nanomolar range in MDA-MB-231 cells with very low cytotoxicity. Stronger selectivity for the IDO1 enzyme (>300-fold) over tryptophan 2,3-dioxygenase (TDO) enzyme was also observed for these compounds. Hence, these fused heterocyclic compounds are attractive candidates for the advanced study of IDO1-dependent cellular function and immunotherapeutic applications.

  19. Rare earth intermetallic compounds produced by a reduction-diffusion process

    International Nuclear Information System (INIS)

    Cech, R.E.

    1975-01-01

    A reduction-diffusion process is given for producing novel rare earth intermetallic compounds, such as cobalt--rare earth intermetallic compounds, especially compounds useful in preparing permanent magnets. A particulate mixture of rare earth metal halide, cobalt and calcium hydride is heated to effect reduction of the rare earth metal halide and to diffuse the resulting rare earth metal into the cobalt to form the intermetallic compound

  20. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    Science.gov (United States)

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  1. Partition behavior of virgin olive oil phenolic compounds in oil-brine mixtures during thermal processing for fish canning.

    Science.gov (United States)

    Sacchi, Raffaele; Paduano, Antonello; Fiore, Francesca; Della Medaglia, Dorotea; Ambrosino, Maria Luisa; Medina, Isabel

    2002-05-08

    The chemical modifications and partitioning toward the brine phase (5% salt) of major phenol compounds of extra virgin olive oil (EVOO) were studied in a model system formed by sealed cans filled with oil-brine mixtures (5:1, v/v) simulating canned-in-oil food systems. Filled cans were processed in an industrial plant using two sterilization conditions commonly used during fish canning. The partitioning of phenolic compounds toward brine induced by thermal processing was studied by reversed-phase high-performance liquid chromatographic analysis of the phenol fraction extracted from oils and brine. Hydroxytyrosol (1), tyrosol (2), and the complex phenolic compounds containing 1 and 2 (i.e., the dialdehydic form of decarboxymethyl oleuropein aglycon 3, the dialdehydic form of decarboxymethyl ligstroside aglycon 4, and the oleuropein aglycon 6) decreased in the oily phase after sterilization with a marked partitioning toward the brine phase. The increase of the total amount of 1 and 2 after processing, as well as the presence of elenolic acid 7 released in brine, revealed the hydrolysis of the ester bond of hydrolyzable phenolic compounds 3, 4, and 6 during thermal processing. Both phenomena (partitioning toward the water phase and hydrolysis) contribute to explain the loss of phenolic compounds exhibited by EVOO used as filling medium in canned foods, as well as the protection of n-3 polyunsaturated fatty acids in canned-in-EVOO fish products.

  2. Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing

    Energy Technology Data Exchange (ETDEWEB)

    Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.

    2002-06-01

    Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gaps exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.

  3. Ultrathin Limit of Exchange Bias Coupling at Oxide Multiferroic/Ferromagnetic Interfaces

    NARCIS (Netherlands)

    Huijben, Mark; Yu, P.; Martin, L.W.; Molegraaf, Hajo; Chu, Y.H.; Holcomb, M.B.; Balke, N.; Rijnders, Augustinus J.H.M.; Ramesh, R.

    2013-01-01

    Exchange bias coupling at the multiferroic- ferromagnetic interface in BiFeO3/La0.7Sr0.3MnO3 heterostructures exhibits a critical thickness for ultrathin BiFeO3 layers of 5 unit cells (2 nm). Linear dichroism measurements demonstrate the dependence on the BiFeO3 layer thickness with a strong

  4. Effect of strain on voltage-controlled magnetism in BiFeO₃-based heterostructures.

    Science.gov (United States)

    Wang, J J; Hu, J M; Yang, T N; Feng, M; Zhang, J X; Chen, L Q; Nan, C W

    2014-04-01

    Voltage-modulated magnetism in magnetic/BiFeO3 heterostructures can be driven by a combination of the intrinsic ferroelectric-antiferromagnetic coupling in BiFeO3 and the antiferromagnetic-ferromagnetic exchange interaction across the heterointerface. However, ferroelectric BiFeO3 film is also ferroelastic, thus it is possible to generate voltage-induced strain in BiFeO3 that could be applied onto the magnetic layer across the heterointerface and modulate magnetism through magnetoelastic coupling. Here, we investigated, using phase-field simulations, the role of strain in voltage-controlled magnetism for these BiFeO3-based heterostructures. It is predicted, under certain condition, coexistence of strain and exchange interaction will result in a pure voltage-driven 180° magnetization reversal in BiFeO3-based heterostructures.

  5. Effect of La3+ substitution on the phase transitions, microstructure and electrical properties of Bi1−xLaxFeO3 ceramics

    International Nuclear Information System (INIS)

    Zhang, Qiang; Zhu, Xiaohong; Xu, Yunhui; Gao, Haobin; Xiao, Yunjun; Liang, Dayun; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan

    2013-01-01

    Highlights: ► Structural properties of Bi 1−x La x FeO 3 ceramics are improved by La 3+ substitution. ► Significant magnetoelectric responses are observed in Bi 1−x La x FeO 3 ceramics. ► T C is lowered while T N is enhanced in the La-doped BiFeO 3 ceramics. ► Much higher dielectric constant is obtained in the La-doped BiFeO 3 ceramics. ► The ferroelectric properties are enhanced in the La-doped BiFeO 3 ceramics. - Abstract: Multiferroic Bi 1−x La x FeO 3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) (represented as B 1−x L x FO) ceramics were prepared using the conventional solid state reaction route. The effects of La 3+ doping on the density, phase structure, morphology, dielectric and ferroelectric properties were investigated. Judging from X-ray diffraction patterns, all the B 1−x L x FO ceramic samples were well crystallized in a pure perovskite phase while the crystal structure changed from rhombohedral to orthorhombic with increasing the La 3+ substitution. SEM observations clearly revealed that the grain size was remarkably decreased by La 3+ doping. As a result, the ferroelectric Curie temperature was lowered in the La-doped ceramics. However, the abnormal dielectric responses near the antiferromagnetic Néel temperature (T N ) demonstrated the existence of remarkable magnetoelectric coupling in the Bi 1−x La x FeO 3 ceramics, and the T N was shown to increase substantially with the increase in La 3+ doping content. It was found that the dielectric permittivity of the ceramics was significantly increased and the dielectric loss was slightly increased with the increase in La 3+ content. The dielectric constant ε r of the Bi 0.85 La 0.15 FeO 3 ceramic at 10 kHz reached as high as 1008, 20 times larger than that for pure BiFeO 3 . In addition, the ferroelectric properties of the B 1−x L x FO ceramics were improved and the remanent polarization was increased by La 3+ doping. This is probably because the A-site doping with more stable La 3+ could

  6. Containerless automated processing of intermetallic compounds and composites

    Science.gov (United States)

    Johnson, D. R.; Joslin, S. M.; Reviere, R. D.; Oliver, B. F.; Noebe, R. D.

    1993-01-01

    An automated containerless processing system has been developed to directionally solidify high temperature materials, intermetallic compounds, and intermetallic/metallic composites. The system incorporates a wide range of ultra-high purity chemical processing conditions. The utilization of image processing for automated control negates the need for temperature measurements for process control. The list of recent systems that have been processed includes Cr, Mo, Mn, Nb, Ni, Ti, V, and Zr containing aluminides. Possible uses of the system, process control approaches, and properties and structures of recently processed intermetallics are reviewed.

  7. Influence of Technological Processes on Biologically Active Compounds of Produced Grapes Juices

    Czech Academy of Sciences Publication Activity Database

    Tříska, Jan; Balík, J.; Strohalm, J.; Novotná, P.; Vrchotová, Naděžda; Lefnerová, D.; Landfeld, A.; Híc, P.; Tománková, E.; Veverka, J.; Houška, M.

    2016-01-01

    Roč. 9, č. 3 (2016), s. 421-429 ISSN 1935-5130 R&D Projects: GA MŠk(CZ) LO1415; GA MZe QJ1210258; GA MZe QI91B094 Institutional support: RVO:67179843 Keywords : Grapevine juices * Thermomaceration * Biologically active compounds * Antioxidative capacity * Total polyphenols * Antimutagenic activity Subject RIV: GM - Food Processing Impact factor: 2.576, year: 2016

  8. A general theory for radioactive processes in rare earth compounds

    International Nuclear Information System (INIS)

    Acevedo, R.; Meruane, T.

    1998-01-01

    The formal theory of radiative processes in centrosymmetric coordination compounds of the Ln X 3+ is a trivalent lanthanide ion and X -1 =Cl -1 , Br -1 ) is put forward based on a symmetry vibronic crystal field-ligand polarisation model. This research considers a truncated basis set for the intermediate states of the central metal ion and have derived general master equations to account for both the overall observed spectral intensities and the measured relative vibronic intensity distributions for parity forbidden but vibronically allowed electronic transitions. In addition, a procedure which includes the closure approximation over the intermediate electronic states is included in order to estimate quantitative crystal field contribution to the total transition dipole moments of various and selected electronic transitions. This formalism is both general and flexible and it may be employed in any electronic excitations involving f N type configurations for the rare earths in centrosymmetric co-ordination compounds in cubic environments and also in doped host crystals belonging to the space group Fm 3m. (author)

  9. Synergic nature of dielectric relaxation process in the layered perovskite halide salts: The case of 1,3- diammoniumpropylenetetrabromocadmate compound

    Science.gov (United States)

    Staśkiewicz, Beata

    2018-06-01

    The negative thermal expansion (NTE) property was a prototype to discuss the origin of difference between classical Debye relaxation process and the non-Debye behavior in the layered perovskite halide salt of chemical formula NH3(CH2)3NH3CdBr4. The analysis has been taken by dielectric relaxation spectroscopy measurements in almost six decades in frequency 5 × 102 ≤ f(ω) ≤ 1.2 × 108 and in the temperature range 315 ≤ T(K) ≤ 390. It was shown that the investigated sample exhibit an antiferrodistortive nature of phase transition between two orthorhombic structural modifications i.e. Pnma (phase I) and Ima2 (phase II) at Tc1(I → II) = 326 K, leading from an antiferroelectric to a paraelectric phase. The involvement of an odd number of carbon atoms in the alkylammonium chains in dielectric properties of examined sample is proved. Higher structural modifications, i.e. Ima2 (phase II) and P21/m (phase III), have shown significant deviations from a regular circle on the Cole-Cole diagram. Presented experimental observations are essentially important for the theoretical explanation of relaxation processes in analyzed organic - inorganic compound crystallizing in a perovskite-like topology and may provide new perspective on the fundamental aspect of relaxation response in "diammonium" series.

  10. A process for producing lignin and volatile compounds from hydrolysis liquor.

    Science.gov (United States)

    Khazraie, Tooran; Zhang, Yiqian; Tarasov, Dmitry; Gao, Weijue; Price, Jacquelyn; DeMartini, Nikolai; Hupa, Leena; Fatehi, Pedram

    2017-01-01

    Hot water hydrolysis process is commercially applied for treating wood chips prior to pulping or wood pellet production, while it produces hydrolysis liquor as a by-product. Since the hydrolysis liquor is dilute, the production of value-added materials from it would be challenging. In this study, acidification was proposed as a viable method to extract (1) furfural and acetic acid from hot water hydrolysis liquor and (2) lignin compounds from the liquor. The thermal properties of the precipitates made from the acidification of hydrolysis liquor confirmed the volatile characteristics of precipitates. Membrane dialysis was effective in removing inorganic salts associated with lignin compounds. The purified lignin compounds had a glass transition temperature (Tg) of 180-190 °C, and were thermally stable. The results confirmed that lignin compounds present in hot water hydrolysis liquor had different characteristics. The acidification of hydrolysis liquor primarily removed the volatile compounds from hydrolysis liquor. Based on these results, a process for producing purified lignin and precipitates of volatile compounds was proposed.

  11. Process for uranium recovery in phosphorus compounds

    International Nuclear Information System (INIS)

    Demarthe, J.M.; Solar, Serge.

    1980-01-01

    Process for uranium recovery in phosphorus compounds with an organic phase containing a dialkylphosphoric acid. A solubilizing agent constituted of an heavy alcohol or a phosphoric acid ester or a tertiary phosphine oxide or octanol-2, is added to the organic phase for solubilization of the uranium and ammonium dialkyl pyrophosphate [fr

  12. Characterization of Volatile Compounds with HS-SPME from Oxidized n-3 PUFA Rich Oils via Rancimat Tests.

    Science.gov (United States)

    Yang, Kai-Min; Cheng, Ming-Ching; Chen, Chih-Wei; Tseng, Chin-Yin; Lin, Li-Yun; Chiang, Po-Yuan

    2017-02-01

    Algae oil and fish oil are n-3 PUFA mainstream commercial products. The various sources for the stability of n-3 PUFA oxidation are influenced by the fatty acid composition, extraction and refined processing. In this study, the oil stability index (OSI) occurs within 2.3 to 7.6 hours with three different n-3 PUFA rich oil. To set the OSI in the Rancimat test as the oil stability limit and observed various degrees of oxidation (0, 25, 50, 75, 100 and 125%). The volatile oxidation compounds were analyzed via headspace-solid phase microextraction (HS-SPME) and GC/MS. We detected 51 volatile compound variations during the oxidation, which were composed of aldehydes, hydrocarbons, cyclic compounds, alcohols, benzene compounds, ketones, furans, ester and pyrrolidine. The off-flavor characteristics can be strongly influenced by the synergy effects of volatile oxidation compounds. Chemometric analysis (PCA and AHC) was applied to identify the sensitive oxidation marker compounds, which included a (E,E)-2,4-heptadienal appropriate marker, via lipid oxidation in the n-3 PUFA rich oil.

  13. Influence of gamma irradiation on phenolic compounds of minimally processed baby carrots

    Energy Technology Data Exchange (ETDEWEB)

    Hirashima, Fabiana K.; Fabbri, Adriana D.T.; Sagretti, Juliana M.A.; Nunes, Thaise C.F.; Sabato, Suzy F., E-mail: fmayumi@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Galvao, Natascha S.; Lanfer-Marquez, Ursula M., E-mail: lanferum@usp.br [Universidade de Sao Paulo (FCF/USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas

    2013-07-01

    Consumption of fresh fruits and vegetables provide several health benefits including risk reduction of oxidative stress-related diseases. These benefits have been associated with bioactive compounds, mainly phenolic compounds. Minimally processed products are a growing segment in food retail establishments due its practicality and convenience without significantly altering fresh-like characteristics. To extend the shelf life of these products, an application of ionizing radiation is an alternative, based on a physical and non-thermal method of preservation. The effect of irradiation on phenolic compounds of minimally processed baby carrots have not been reported in literature yet. The aim of this study was to evaluate the levels of phenolic compounds in baby carrots after the irradiation process. Samples of minimally processed baby carrots were purchased at a local supermarket and irradiated with doses of 0.5 and 1.0 kGy. Phenolic compounds were extracted from shredded carrots with MeOH and analyzed spectrophotometrically by the Folin Ciocalteau method using a gallic acid standard curve. The results showed that the phenolic contents decreased significantly (p<0.05) with increasing radiation dose. In non-irradiated baby carrots (control), the levels of phenolic compounds were about 330 μg eq. gallic acid/g, while irradiated samples with 0.5 kGy, showed an approximately 10% reduction when compared with the control. An irradiation dose of 1.0 kGy caused a loss of 20%. Although the radiation has affected the phenolic content, the process seems to be interesting by maintaining their fresh-like characteristics. (author)

  14. Influence of gamma irradiation on phenolic compounds of minimally processed baby carrots

    International Nuclear Information System (INIS)

    Hirashima, Fabiana K.; Fabbri, Adriana D.T.; Sagretti, Juliana M.A.; Nunes, Thaise C.F.; Sabato, Suzy F.; Galvao, Natascha S.; Lanfer-Marquez, Ursula M.

    2013-01-01

    Consumption of fresh fruits and vegetables provide several health benefits including risk reduction of oxidative stress-related diseases. These benefits have been associated with bioactive compounds, mainly phenolic compounds. Minimally processed products are a growing segment in food retail establishments due its practicality and convenience without significantly altering fresh-like characteristics. To extend the shelf life of these products, an application of ionizing radiation is an alternative, based on a physical and non-thermal method of preservation. The effect of irradiation on phenolic compounds of minimally processed baby carrots have not been reported in literature yet. The aim of this study was to evaluate the levels of phenolic compounds in baby carrots after the irradiation process. Samples of minimally processed baby carrots were purchased at a local supermarket and irradiated with doses of 0.5 and 1.0 kGy. Phenolic compounds were extracted from shredded carrots with MeOH and analyzed spectrophotometrically by the Folin Ciocalteau method using a gallic acid standard curve. The results showed that the phenolic contents decreased significantly (p<0.05) with increasing radiation dose. In non-irradiated baby carrots (control), the levels of phenolic compounds were about 330 μg eq. gallic acid/g, while irradiated samples with 0.5 kGy, showed an approximately 10% reduction when compared with the control. An irradiation dose of 1.0 kGy caused a loss of 20%. Although the radiation has affected the phenolic content, the process seems to be interesting by maintaining their fresh-like characteristics. (author)

  15. First-principles calculations of two cubic fluoropervskite compounds: RbFeF3 and RbNiF3

    International Nuclear Information System (INIS)

    Mubarak, A.A.; Al-Omari, Saleh

    2015-01-01

    We present first-principles calculations of the structural, elastic, electronic, magnetic and optical properties for RbFeF 3 and RbNiF 3 . The full-potential linear augmented plan wave (FP-LAPW) method within the density functional theory was utilized to perform the present calculations. We employed the generalized gradient approximation as exchange-correlation potential. It was found that the calculated analytical lattice parameters agree with previous studies. The analysis of elastic constants showed that the present compounds are elastically stable and anisotropic. Moreover, both compounds are classified as a ductile compound. The calculations of the band structure and density functional theory revealed that the RbFeF 3 compound has a half-metallic behavior while the RbNiF 3 compound has a semiconductor behavior with indirect (M–Γ) band gap. The ferromagnetic behavior was studied for both compounds. The optical properties were calculated for the radiation of up to 40 eV. A beneficial optics technology is predicted as revealed from the optical spectra. - Highlights: • RbFeF 3 and RbNiCl 3 compounds are elastically stable. • RbFeF 3 and RbNiCl 3 compounds are classified as a ductile compound. • The RbFeF 3 compound has a half-metallic behavior while the RbNiF 3 compound has a semiconductor behavior. • The optical properties were calculated for the radiation of up to 40 eV

  16. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods.

    Science.gov (United States)

    Ribas-Agustí, Albert; Martín-Belloso, Olga; Soliva-Fortuny, Robert; Elez-Martínez, Pedro

    2017-06-13

    Phenolic compounds are important constituents of plant-based foods, as their presence is related to protective effects on health. To exert their biological activity, phenolic compounds must be released from the matrix during digestion in an absorbable form (bioaccessible) and finally absorbed and transferred to the bloodstream (bioavailable). Chemical structure and matrix interactions are some food-related factors that hamper phenolic compounds bioaccessibility and bioavailability, and that can be counteracted by food processing. It has been shown that food processing can induce chemical or physical modifications in food that enhance phenolic compounds bioaccessibility and bioavailability. These changes include: (i) chemical modifications into more bioaccessible and bioavailable forms; (ii) cleavage of covalent or hydrogen bonds or hydrophobic forces that attach phenolic compounds to matrix macromolecules; (iii) damaging microstructural barriers such as cell walls that impede the release from the matrix; and (iv) create microstructures that protect phenolic compounds until they are absorbed. Indeed, food processing can produce degradation of phenolic compounds, however, it is possible to counteract it by modulating the operating conditions in favor of increased bioaccessibility and bioavailability. This review compiles the current knowledge on the effects of processing on phenolic compounds bioaccessibility or bioavailability, while suggesting new guidelines in the search of optimal processing conditions as a step forward towards the design of healthier foods.

  17. Simulation of Injection Molding Process Including Mold Filling and Compound Curing

    Directory of Open Access Journals (Sweden)

    Mohamad Reza Erfanian

    2012-12-01

    Full Text Available The present work reports and discusses the results of a 3D simulation of the injection molding process of a rubber compound that includes the mold flling stage and  material curing, using the computer code is developed in “UDF” part of the Fluent 6.3 CAE software. The data obtained from a rheometer (MDR 2000 is used to characterize the rubber material in order to fnd the cure model parameters which exist in curing model. Because of non-newtonian behavior of rubber, in this work the non-newtonian model for viscosity was used and viscosity parameters were computed by mean of viscometry test by RPA. After calculation of the physical and curing properties, vulcanization process was simulated for a complex rubber article with non-uniform thickness by solving the continuity, momentum, energy and curing process equations. Predicted flling and curing time in a complex and 3D rubber part is compared with experimentally measured data which confrmed  the accuracy and applicability of the method.

  18. Investigation of Sm(3) and Eu(3) coordination compounds with pyrazolones by IR spectroscopy method

    International Nuclear Information System (INIS)

    Panyushkin, V.T.; Grishenko, T.V.; Afanas'ev, Yu.A.; Garnovskij, A.D.; Osipov, O.A.

    1978-01-01

    The synthesis is described of the coordination nitrate compounds of Sm(3) and Eu(3) with pyrazolones: 4-aminoantipyrine (A), 1-ethylpyridyl- 3-phenyl-pyrazolone-5(B); 1-(3'-ethylpyridyl)-3(phenylamine-n)-pyrazolone-5(C). It has been determined by the infrared spectroscopy method that exocyclic oxygen atom is the place of coordination bond localization in the pentioned compounds. The infrared spectra analysis of complexes in the 1700-1800 cm -1 region makes it possible to mention bidentate character of NO 3 -groups in the studied complex compounds

  19. Treating contaminated organic compounds using the DETOX process

    International Nuclear Information System (INIS)

    Elsberry, K.; Dhooge, P.M.

    1993-01-01

    Waste matrices containing organic compounds, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. This paper describes the results of bench-scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for designing a prototype waste treatment unit. Apparent reaction rate orders for organic compounds and the dependence of apparent reaction rate on solution composition and the contact area were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. Reaction rate was superior in chloride-based solutions and was proportional to the contact area above about 20 g/kg loading of organic material. Oxidations in 4-L volume, mixed bench-top reactor have given destruction efficiencies of 0.999999+ g/g for common organic compounds. Reaction rates achieved in the mixed bench-top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10 to 100+ g of organic material per L-hr. Results are also presented on the solvation efficiency of DETOX for mercury, cerium, and neodymium, and for removal/destruction of organic compounds sorbed on vermiculite. The next stage of development will be converting the bench-top unit to continuous processing

  20. Nonparametric Bayesian inference for multidimensional compound Poisson processes

    NARCIS (Netherlands)

    Gugushvili, S.; van der Meulen, F.; Spreij, P.

    2015-01-01

    Given a sample from a discretely observed multidimensional compound Poisson process, we study the problem of nonparametric estimation of its jump size density r0 and intensity λ0. We take a nonparametric Bayesian approach to the problem and determine posterior contraction rates in this context,

  1. Synthesis and characterization of an energetic compound Cu(Mtta)2(NO3)2 and effect on thermal decomposition of ammonium perchlorate

    International Nuclear Information System (INIS)

    Yang, Qi; Chen, Sanping; Xie, Gang; Gao, Shengli

    2011-01-01

    Highlights: ► A new energetic compound Cu(Mtta) 2 (NO 3 ) 2 has been synthesized and structural characterized. ► Sensitivity tests reveal that the compound is insensitive to mechanical stimuli. ► Cu(Mtta) 2 (NO 3 ) 2 accelerates the decomposition of Ammonium perchlorate (AP), which is the key component of composite solid propellant. - Abstract: An energetic coordination compound Cu(Mtta) 2 (NO 3 ) 2 has been synthesized by using 1-methyltetrazole (Mtta) as ligand and its structure has been characterized by X-ray single crystal diffraction. The central copper (II) cation was coordinated by four O atoms from two Mtta ligands and two N atoms from two NO 3 − anions to form a six-coordinated and distorted octahedral structure. 2D superamolecular layer structure was formed by the extensive intermolecular hydrogen bonds between Mtta ligands and NO 3 − anions. Thermal decomposition process of the compound was predicted based on DSC and TG-DTG analyses results. The kinetic parameters of the first exothermic process of the compound were studied by the Kissinger's and Ozawa–Doyle's methods. Sensitivity tests revealed that the compound was insensitive to mechanical stimuli. In addition, compound was explored as additive to promote the thermal decomposition of ammonium perchlorate (AP) by differential scanning calorimetry.

  2. Radiation processing of polyolefins and compounds

    International Nuclear Information System (INIS)

    Barlow, A.; Biggs, J.; Maringer, M.

    1977-01-01

    Many properties of polyethylene and its copolymers are enhanced by crosslinking. This can be accomplished through the use of either peroxides or radiation. Crosslinking with peroxides is performed at elevated temperatures generally under pressure; catalyst residues remain in the product which have an adverse effect on electrical and possibly other properties. Radiation crosslinking, on the other hand, is performed under ambient conditions, is essentially free of pollution and offers lower overall production costs due to increased processing speed. A cost analysis of the two crosslinking processes applied to wire and cable coating is included. The advantages of radiation curing can be negated by processing problems which lead to inadequate product properties. Problems are described which may be encountered in developing a flame retardant, radiation curable compound for wire and cable coating. Of particular concern is the generation of a microporous structure which is accentuated by the presence of flame retardant ingredients and the absence of pressure inherent to the peroxide curing process. The procedures involved in solving these problems are briefly described. (author)

  3. their use as Accelerator in Curing Process of Rubber Compounds

    Directory of Open Access Journals (Sweden)

    S. taghvaee

    2007-06-01

    Full Text Available In some special cases, rubber compounds with high amounts of unsaturated elastomer are recommended with organic sulfur donors instead of mineral sulfurs. In this condition, activated sulfur is produced in situ and curingprocess is facilitated without accelerators. Organic sulfur donor compounds have low thermal stability and in the vulcanization temperature produce free and activated sulfurs. The advantages of these compounds are:1. High effectiveness of curing agent in low quantities in rubber compounds manufacturing.2. Producing activated sulfurs in controlled condition and avoiding the over curing of rubber compounds.In this report the novel synthesis of some derivatives of diamino-disulfides which can be applied as sulfur donors in vulcanization of special rubber compounds is introduced. The key process is reaction of sulfurmonochloride with amines in petroleum ether as solvent in low temperature. Dithio-dimorpholine(DTDM, dithio-dipipyridyl (DTDP, dithio-bis dibutylamine (DTBDB and dithio-bisdiisopropyl amine (DTBDI were prepared according to this method. All products thus obtained were characterized by 1H and 13C-NMR spectroscopies. The effects of accelerating and sulfur donoring of all prepared agents were detected in rubber compounds with natural and synthetic rubber bases. All physical, chemical, reological and mechanical properties of rubber compounds based on prepared sulfur donors were characterized.

  4. Process for the manufacture of a superconductor with an intermetallic compound

    International Nuclear Information System (INIS)

    Wilhelm, M.

    1980-01-01

    A superconductor with a superconducting intermetallic compound consisting of at least two elements can be manufactured by producing a conductor preproduct with a first component containing one element of the compound and a second component consisting of a carrier metal and the remaining element or elements of the alloy containing the compound, and by heat treating the conductor preproduct, so that the compound is formed by the reaction of the element of the first compound with the remaining element or elements of the second compound. In such a superconductor, one tries to increase the effective current density and critical current. The invention states that the heat treatment should be carried out in a hydrogen atmosphere. Superconductors produced by this process can be used for superconductor devices whose magnetic fields have a flux density above 10 Tesla. (orig.) [de

  5. Novel Tandem Biotransformation Process for the Biosynthesis of a Novel Compound, 4-(2,3,5,6-Tetramethylpyrazine-1)-4′-Demethylepipodophyllotoxin▿

    Science.gov (United States)

    Tang, Ya-Jie; Zhao, Wei; Li, Hong-Mei

    2011-01-01

    According to the structure of podophyllotoxin and its structure-function relationship, a novel tandem biotransformation process was developed for the directional modification of the podophyllotoxin structure to directionally synthesize a novel compound, 4-(2,3,5,6-tetramethylpyrazine-1)-4′-demethylepipodophyllotoxin (4-TMP-DMEP). In this novel tandem biotransformation process, the starting substrate of podophyllotoxin was biotransformed into 4′-demethylepipodophyllotoxin (product 1) with the demethylation of the methoxyl group at the 4′ position by Gibberella fujikuroi SH-f13, which was screened out from Shennongjia prime forest humus soil (Hubei, China). 4′-Demethylepipodophyllotoxin (product 1) was then biotransformed into 4′-demethylpodophyllotoxone (product 2) with the oxidation of the hydroxyl group at the 4 position by Alternaria alternata S-f6, which was screened out from the gathered Dysosma versipellis plants in the Wuhan Botanical Garden, Chinese Academy of Sciences. Finally, 4′-demethylpodophyllotoxone (product 2) and ligustrazine were linked with a transamination reaction to synthesize the target product 4-TMP-DMEP (product 3) by Alternaria alternata S-f6. Compared with podophyllotoxin (i.e., a 50% effective concentration [EC50] of 529 μM), the EC50 of 4-TMP-DMEP against the tumor cell line BGC-823 (i.e., 0.11 μM) was significantly reduced by 5,199 times. Simultaneously, the EC50 of 4-TMP-DMEP against the normal human proximal tubular epithelial cell line HK-2 (i.e., 0.40 μM) was 66 times higher than that of podophyllotoxin (i.e., 0.006 μM). Furthermore, compared with podophyllotoxin (i.e., log P = 0.34), the water solubility of 4-TMP-DMEP (i.e., log P = 0.66) was significantly enhanced by 94%. For the first time, the novel compound 4-TMP-DMEP with superior antitumor activity was directionally synthesized from podophyllotoxin by the novel tandem biotransformation process developed in this work. PMID:21398491

  6. Magnetic and ferroelectric characteristics of Gd 3 and Ti 4 co-doped ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Bulletin of Materials Science; Volume 39; Issue 2. Magnetic and ferroelectric characteristics of Gd3+ and ... X-ray powder diffraction (XRD) results confirmed the presence of a significant amount of Bi2Fe4O9 impurity phase in the undoped BiFeO3 sample. Mössbauer spectroscopy studies ...

  7. Effect of the pasteurization process on the contents of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3'-diindolylmethane in fermented cabbage.

    Science.gov (United States)

    Ciska, Ewa; Honke, Joanna

    2012-04-11

    The aim of the study was to investigate the effect of the pasteurization process on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3'-diindolylmethane in fermented cabbage. Pasteurization was run at a temperature of 80 °C for 5-30 min. Significant changes were only observed in contents of ascorbigen and 3,3'-diindolylmethane. The total content of the compounds analyzed in cabbage pasteurized for 10-30 min was found to be decreased by ca. 20%, and the losses were due to thermal degradation of the predominating ascorbigen. Pasteurization was found not to exert any considerable effect on contents of indole-3-acetonitrile and indole-3-carbinol in cabbage nor did it affect contents of the compounds analyzed in juice.

  8. Post-process intensification of photographic silver images, using radioactive compounds

    International Nuclear Information System (INIS)

    1979-01-01

    A method of post-process intensification of silver images on a developed and fixed photographic film or plate is described, comprising the steps of (a) converting silver of the developed film or plate to a radioactive compound by contracting the film or plate with an aqueous alkaline solution of an organo-S 35 compound which reacts selectively with silver in a photographic film or plate; (b) placing the film or plate treated in step (a) in direct contact with a receiver film which is sensitive to beta radiation whereby the receiver film is exposed by radiation from the radioactive compound; and (c) developing and fixing the resulting intensified receiver film. (author)

  9. Process for the preparation of protected 3-amino-1,2-dihydroxypropane acetal and derivatives thereof

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, R.I.; Wang, G.

    2000-03-21

    This application describes a process for producing protected 3-amino-1,2-dihydroxypropane acetal, particularly in chiral forms, for use as an intermediate in the preparation of various 3-carbon compounds which are chiral. In particular, the present invention relates to the process for preparation of 3-amino-1,2-dihydroxypropane isopropylidene acetal. The protected 3-amino-1,2-dihydroxypropane acetal is a key intermediate to the preparation of chiral 3-carbon compounds which in turn are intermediates to various pharmaceuticals.

  10. Optimization of Processing Technology of Compound Dandelion Wine

    Directory of Open Access Journals (Sweden)

    Wu Jixuan

    2016-01-01

    Full Text Available Exploring dandelion food has been the concern in fields of the food processing and pharmaceutical industry for playing exact curative effect on high-fat-diet induced hepatic steatosis and diuretic activity. Few dandelion foods including drinks and microencapsulation were explored and unilateral dandelion wine were less carried out for its bitter flavour. In tis paper, to optimize the processing technologies of fermented compound wine from dandelion root, the orthogonal experiment design method was used to composite dandelion root powder with glutinous rice and schisandra fruit and optimize the fermenting parameters. Four factors with dandelion content, schisandra content, acidity and sugar content were discussed. The acidity factor was firstly confirmed as 7.0 g/L. The other three factors were confirmed by a series experiments as dandelion 0.55%, schisandra 0.5%, sugar 22%. With nine step processing of mixing substrate, stirring with water, cooking rice, amylase saccharification, pectinase hydrolysis, adjusting juice, fermenting with yeast, fitering, aging, sterilization, a light yellow wine with the special taste with flavour of dandelion, schisandra and rice and less bitter, few index were determined as 14.7% alcohol, 6.85 g/L acidity. A dandelion fermented compound wine with suitable flavour and sanitarian function was developed for enriching the dandelion food.

  11. Different magnetic behaviour of the Kondo compounds Al3Ce and Al11Ce3

    International Nuclear Information System (INIS)

    Benoit, A.; Flouquet, J.; Palleau, J.; Buevoz, J.L.

    1979-08-01

    Neutron diffraction experiments on the Al 3 Ce and Al 11 Ce 3 compounds have been performed on the multidetector of the I.L.L. high flux reactor. No magnetic structure has been detected on the Al 3 Ce compound down to 20 mK. This confirms the non magnetic ground state of Al 3 Ce. For Al 11 Ce 3 , two magnetic structures have been observed: a ferromagnetic one at 4.2 K and an antiferromagnetic one at 2 K. The antiferromagnetic structure, which corresponds to a propagation vector (0,0,1/3), implies a strong reduction of the magnetic moment of determined sites; this reflects the Kondo character of the compounds

  12. Thermochemical investigations on intermetallic UMe3 compounds (Me=Ru,Rh,Pd)

    International Nuclear Information System (INIS)

    Wijbenga, G.

    1981-10-01

    The subject of this thesis is the determination of the thermodynamic properties of the intermetallic compounds of uranium with the light platinum metals, ruthenium, rhodium and palladium. These intermetallics are formed as very stable compounds during fission in nuclear fuel by the reaction of the fission products Ru, Rh and Pd with the matrix. Methods for the preparation of URu 3 , URh 3 and UPd 3 , experiments showing the chemical reactivities of these compounds, and studies of the stoichiometry of hexagonal UPd 3 by X-ray diffraction of solubility experiments of UN and palladium in UPd 3 , are described. Thermodynamic properties of the UMe 3 compounds have been obtained using several experimental thermodynamic techniques: fluorine bomb calorimetry, low-temperature cryogenic calorimetry, high-temperature drop calorimetry and EMF measurements of reversible cells. (Auth.)

  13. Ultrafast microwave hydrothermal synthesis and characterization of Bi1−xLaxFeO3 micronized particles

    International Nuclear Information System (INIS)

    Ponzoni, C.; Cannio, M.; Boccaccini, D.N.; Bahl, C.R.H.; Agersted, K.; Leonelli, C.

    2015-01-01

    In this work a microwave assisted hydrothermal method is applied to successfully synthesize lanthanum doped bismuth ferrites (BLFO, Bi 1−x La x FeO 3 where x = 0, 0.15, 0.30 and 0.45). The growth mechanism of the Bi 1−x La x FeO 3 crystallites is discussed in detail. The existence of the single-phase perovskite structure for all the doped samples is confirmed by the X-ray powder diffraction patterns. A peak shift, observed at lower angle with increasing La doping concentration, indicates that the BiFeO 3 lattice is doped. The results of TG/DTA show a shift in the transition temperature from 805 °C to 815 °C as function of the La-doping for all the doped powders. At higher levels of La doping, i.e. x = 0.30 and 0.45, significant weight losses occur above 860 °C suggesting a change in the physical and chemical properties. Finally, magnetic measurements are carried out at room temperature for pure BiFeO 3 and Bi 0.85 La 0.15 FeO 3 . The results indicate that the materials are both weakly ferromagnetic, with no significant hysteresis in the curves. - Graphical abstract: Display Omitted - Highlights: • MW hydrothermal method applied to synthesize Bi 1−x La x FeO 3 , x = 0, 0.15, 0.30, 0.45. • A single-phase perovskite structure for all the samples was confirmed by XRD. • A T c shift in La doped BiFeO 3 DTA was observed as function of the La-doping. • Magnetic measurements indicate that the materials are weakly ferromagnetic

  14. Development of the multistep compound process calculation code

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan)

    1998-03-01

    A program `cmc` has been developed to calculate the multistep compound (MSC) process by Feshback-Kerman-Koonin. A radial overlap integral in the transition matrix element is calculated microscopically, and comparisons are made for neutron induced {sup 93}Nb reactions. Strengths of the two-body interaction V{sub 0} are estimated from the total MSC cross sections. (author)

  15. Crystal structure and thermochemical properties of a novel coordination compound sodium pyruvate C3H3O3Na(s)

    International Nuclear Information System (INIS)

    Gao, Zhen-Fei; Di, You-Ying; Liu, Su-Zhou; Lu, Dong-Fei; Dou, Jian-Min

    2014-01-01

    Graphical abstract: A novel coordination compound sodium pyruvate C 3 H 3 O 3 Na(s) is synthesised. Elemental analysis and X-ray crystallography are used to characterise the composition and crystal structure of the compound. The lattice potential energy and ionic volume of the anion are obtained from crystallographic data. The standard molar enthalpy of formation of the compound is calculated by an isoperibol solution-reaction calorimeter. Molar enthalpies of dissolution of the compound at various molalities are measured at T = 298.15 K. According to Pitzer’s theory, molar enthalpy of dissolution of the title compound at infinite dilution is calculated. The values of relative apparent molar enthalpies and relative partial molar enthalpies of the solvent and the compound at different concentrations m/(mol · kg −1 ) are derived. - Highlights: • The sodium pyruvate was synthesised and crystal structure was determined. • The enthalpy change of the synthesis reaction was obtained. • Standard molar enthalpy of formation was obtained. • Molar enthalpy of dissolution at infinite dilution was calculated. - Abstract: A novel coordination compound sodium pyruvate C 3 H 3 O 3 Na(s) is synthesised by a liquid phase reaction. The compound has an obvious bioactivity and can be used as the biological carbon source and the chemical identification of primary and secondary alcohols. It can be also used to determinate transaminase. Elemental analysis and X-ray crystallography are used to characterise the composition and crystal structure of the compound. Single crystal X-ray analysis reveals that the compound is formed by one CH 3 COCOO − anion and one Na + cation. An obvious feature of the crystal structure is the formation of the five-membered chelate ring by the coordination of O1 of carboxylate and O3 of keto form with Na + cation, and it is good for the stability of the compound in structure. The lattice potential energy and ionic volume of the anion are obtained

  16. Crystallographic study of the intermediate compounds SbZn, Sb3Zn4 and Sb2Zn3

    International Nuclear Information System (INIS)

    Adjadj, Fouzia; Belbacha, El-djemai; Bouharkat, Malek; Kerboub, Abdellah

    2006-01-01

    The processes of development of semiconductor ceramics made up of bismuth, antimony and zinc often require during their preparation to know the nature of the involved phases. For that, it is always essential to refer to the diagrams of balance between phases of the binary systems or ternary. We presented in this work the study by X-rays diffraction relating to the intermediate compounds SbZn, Sb 3 Zn 4 and Sb 2 Zn 3 . The analysis by X-rays is often useful to give supplement the results of the other experimental methods

  17. High-temperature thermopower of some REIn3 compounds

    International Nuclear Information System (INIS)

    Kletowski, Z.; Resel, R.

    1995-01-01

    The temperature dependences of the thermopower of six REIn 3 compounds (RE=La, Pr, Gd, Dy, Er and Lu) were measured in the temperature range up to 1000 K. The observed changes in the slopes of the temperature versus thermopower curves for all the investigated compounds are interpreted as originating from a special shape of the density of states (DOS) near the Fermi energy, E F . ((orig.))

  18. Antiferromagnetic ordering of Er2NiSi3 compound

    International Nuclear Information System (INIS)

    Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.

    2014-01-01

    Ternary intermetallics of the stoichiometric composition R 2 TX 3 , where, R = rare earth element, T = d-electron transition metal and X= p-electron element, crystallizes in hexagonal A1B 2 type crystal structure with space group P6/mmm. We report here the synthesis and basic magnetic properties of the compound Er 2 NiSi 3 . Paramagnetic to antiferromagnetic phase change occurs below 5.4 K for this compound. (author)

  19. Magnetic properties of Nd3(Fe,Mo)29 compound and its nitride

    International Nuclear Information System (INIS)

    Pan Hongge

    1998-01-01

    The iron-rich ternary intermetallic compound Nd 3 (Fe,Mo) 29 with the Nd 3 (Fe,Ti) 29 -type monoclinic structure and its nitride were prepared. After nitrogenation, the nitride retains the structure of the parent compound, but the unit-cell volume of the nitride is 5.9% greater than that of the parent compound. The Curie temperature of Nd 3 (Fe,Mo) 29 nitride is 70.9% higher than that of the parent compound and the saturation magnetization of the nitride is about 6.6% (at 4.2 K) and 23.7% (at 300 K) higher than that of the parent compound. The anisotropy of the nitride is similar to that of parent compound, which exhibits plane anisotropy. (orig.)

  20. Development of melting and casting process for Nb-Al intermetallic compounds and mechanical properties

    International Nuclear Information System (INIS)

    Kamata, Kinya; Degawa, Toru; Nagashima, Yoshinori

    1993-01-01

    The shaping methods of Nb-Al intermetallic compounds, especially melting and casting, have considerably different characteristics as compared with those for other metals and alloys. The authors have investigated melting and casting processes for Nb-Al compounds to develop precision casting processes for these intermetallics. Fundamental properties of Nb-Al compound castings have been also investigated for high temperature structural use in this work. An advanced Induction Skull Melting (ISM) furnace has been developed and the advantages of ISM have been recognized as a result of this study. The mechanical properties, such as hardness and compression strength, are dependent upon the Al content in Nb-Al binary compounds

  1. Generation of Maillard compounds from inulin during the thermal processing of Agave tequilana Weber Var. azul.

    Science.gov (United States)

    Mancilla-Margalli, Norma A; López, Mercedes G

    2002-02-13

    During the cooking process of Agave tequilana Weber var. azul to produce tequila, besides the hydrolysis of inulin to generate fermentable sugars, many volatiles, mainly Maillard compounds, are produced, most of which may have a significant impact on the overall flavor of tequila. Exudates (agave juice) from a tequila company were collected periodically, and color, Brix, fructose concentration, and reducing sugars were determined as inulin breakdown took place. Maillard compounds were obtained by extraction with CH(2)Cl(2), and the extracts were analyzed by GC-MS. Increments in color, Brix, and reducing sugars were observed as a function of time, but a decrease in fructose concentration was found. Many Maillard compounds were identified in the exudates, including furans, pyrans, aldehydes, and nitrogen and sulfur compounds. The most abundant Maillard compounds were methyl-2-furoate, 2,3-dihydroxy-3,5-dihydro-6-methyl-4(H)-pyran-4-one, and 5-(hydroxymethyl)furfural. In addition, a series of short- and long-chain fatty acids was also found. A large number of the volatiles in A. tequilana Weber var. azul were also detected in tequila extracts, and most of these have been reported as a powerful odorants, responsible for the unique tequila flavor.

  2. First-principles calculations of two cubic fluoropervskite compounds: RbFeF3 and RbNiF3

    Science.gov (United States)

    Mubarak, A. A.; Al-Omari, Saleh

    2015-05-01

    We present first-principles calculations of the structural, elastic, electronic, magnetic and optical properties for RbFeF3 and RbNiF3. The full-potential linear augmented plan wave (FP-LAPW) method within the density functional theory was utilized to perform the present calculations. We employed the generalized gradient approximation as exchange-correlation potential. It was found that the calculated analytical lattice parameters agree with previous studies. The analysis of elastic constants showed that the present compounds are elastically stable and anisotropic. Moreover, both compounds are classified as a ductile compound. The calculations of the band structure and density functional theory revealed that the RbFeF3 compound has a half-metallic behavior while the RbNiF3 compound has a semiconductor behavior with indirect (M-Γ) band gap. The ferromagnetic behavior was studied for both compounds. The optical properties were calculated for the radiation of up to 40 eV. A beneficial optics technology is predicted as revealed from the optical spectra.

  3. Building Asphalt Pavement with SBS-based Compound Added Using a Dry Process in Greenland

    DEFF Research Database (Denmark)

    Lee, Hosin; Kim, Yongjoo; Geisler, Nivi

    2009-01-01

    PMA where it is formulated to melt and blend with asphalt quickly during a batch mixing process. The main objectives of this study are to (1) build asphalt pavement using asphalt mixtures with SBS-based compound added using a “dry” process at the batch plant and (2) evaluate its performance under......-based compound seemed to affect the asphalt mix to become more flexible under the heavy loads. By adding SBS-based compound to asphalt mixtures using a “dry” process, it is expected that the pavement would become more resistant to rutting than a typical asphalt mixture used in Greenland while enduring its arctic...

  4. Low-temperature field evaporation of Nb3Sn compound

    International Nuclear Information System (INIS)

    Ksenofontov, V.A.; Kul'ko, V.B.; Kutsenko, P.A.

    1986-01-01

    Investigation results on field evaporation of superconducting Nb 3 Sn compound wth A15 lattice are presented. Compound evaporation is shown to proceed in two stages. Evaporation field and ionic composition of evaporating material are determined. It is found out that in strong electric fields compound surface represents niobium skeleton, wich does not form regular image. Comparison of ion-microscopic and calculated images formed by low-temperature field evaporation indicates to possibility of sample surface reconstruction after preferable tin evaporation

  5. State diagram of U-Al-Si as a basis for analysis of the processes in nuclear fuel compositions based on U(Al, Si)3 and U3Si compounds

    International Nuclear Information System (INIS)

    Chebotarev, N.T.; Konovalov, L.N.; Zhmak, V.A.; Chebotarev, Ya.N.

    1996-01-01

    Results of studies into the Al-UAl 3 -USi 3 -Si of the U-Al-Si ternary system are presented. It is established that phase equilibrium between the intermetallic compound U(Al, Si) 3 and the aluminium-silicon alloys may be presented in form of conodes on the isothermal cross-section of the state diagram. It is shown that the U(Al, Si) 3 intermetallic compound, containing up to 6.5 at.% silicon, interacts both with liquid and solid aluminium with the U(Al, Si) 4 phase formation [ru

  6. Handbook of compound semiconductors growth, processing, characterization, and devices

    CERN Document Server

    Holloway, Paul H

    1996-01-01

    This book reviews the recent advances and current technologies used to produce microelectronic and optoelectronic devices from compound semiconductors. It provides a complete overview of the technologies necessary to grow bulk single-crystal substrates, grow hetero-or homoepitaxial films, and process advanced devices such as HBT's, QW diode lasers, etc.

  7. Solid-phase synthesis of compounds of europium and terbium with nitrogen-containing heterocyclic compounds under mechanical activation

    International Nuclear Information System (INIS)

    Kalinovskaya, I.V.; Karasev, V.E.

    2000-01-01

    Effect of solvents and parameters of mechanical treatment on basic regularities of synthesis of rare earth compounds with nitrogen-containing heterocyclic compounds is studied. It is shown that interaction on europium (3) and terbium (3) nitrates with nitrogen-containing heterocyclic compounds leads to formation of compounds of Ln(NO 3 )·2D composition, where Ln=Eu, Tb; D=2,2-dipyridyl, 1,10-phenanthroline, diphenylguanidine. Effect of conditions of mechanical treatment and different additions on process and yield of products is studied. Compounds prepared are characterized by the methods of chemical element analysis, IR spectroscopy and luminescent spectroscopy [ru

  8. Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds.

    Science.gov (United States)

    Carciochi, Ramiro Ariel; Galván-D'Alessandro, Leandro; Vandendriessche, Pierre; Chollet, Sylvie

    2016-12-01

    Quinoa (Chenopodium quinoa) seed has gained a great interest in the last years, mainly due to its nutritional properties and its content of antioxidant substances with health-promoting properties in humans. In this work, the effect of germination time and fermentation on the levels of antioxidant compounds (ascorbic acid, tocopherol isomers and phenolic compounds) and antioxidant activity of quinoa seeds was evaluated. Fermentation was carried out naturally by the microorganisms present in the seeds or by inoculation with two Saccharomyces cerevisiae strains (used for baking and brewing). Ascorbic acid and total tocopherols were significantly increased (p ≤ 0.05) after 72 h of germination process in comparison with raw quinoa seeds, whilst fermentation caused a decrease in both types of compounds. Phenolic compounds and antioxidant capacity were improved using both bioprocesses, being this effect more noticeable for germination process (101 % of increase after three days of germination). Germination and fermentation proved to be desirable procedures for producing enriched ingredients with health-promoting antioxidant compounds in a natural way.

  9. SYNTHESIS OF 3,4-DIMETHOXY ISOAMYL CINNAMIC AS THE SUNSCREEN COMPOUND FROM CLOVE OIL AND FUSEL OIL

    Directory of Open Access Journals (Sweden)

    Tutik Dwi Wahyuningsih

    2010-06-01

    Full Text Available Synthesis of sunscreen compound 3,4-dimethoxy isoamyl cinnamic from clove oil and fusel oil has been done. The majoring component of clove oil that is eugenol has been isolated, followed with several chemical processes i.e. isomerization into isoeugenol, oxidation of the product to change into vanillin, then modification vanillin into veratraldehyde. From the fusel oil, we isolate isoamyl alcohol and modified by acetylation into isoamyl acetic. The final product could be produce by Claissen's condensation of isoamyl acetic and veratraldehyde to give 3,4-dimethoxy isoamyl cinnamic. All of the processes are followed with structure characterization using GC, IR, GC-MS and 1H-NMR spectroscopy. The result shown that compound has 46.98% purity and potent as the UV-B sunscreen's type (lmax = 313 nm. In-vitro sunscreen's activity of the compound was tested by UV-Vis spectrophotometry and resulting a maximum Sun Protection Factor value (SPFin-vitro at low concentration, 10.25 mg/mL.   Keywords: UV absorber, sunscreen, clove oil, cinnamic esther.

  10. Characterization of chemical compounds for dosimetry of the radiation in industrial processes

    International Nuclear Information System (INIS)

    Galante, Ana Maria Sisti

    1999-01-01

    Different chemical compounds have been studied to optimize dosimetric systems in irradiation processes. In this study 2,3,5 Triphenyl -2H- Tetrazolium Chloride, Brilliant Cresyl Blue, Bromocresol Green and Potassium Nitrate were investigated for their merits or faults, for 60 Co gamma field, in order to verify if can be considered as dosimeters. Fricke solution was used as reference dosimeter to determine absorption dose rates at the gamma facilities.Only Bromocresol Green and Potassium Nitrate are recommended for dosimetry purposes since the main characteristics were achieved. The other two compounds could be used in dosimetry with changes in their formulation. Bromocresol Green and potassium Nitrate are reproducible and radiation sensitive for absorbed doses from 300 Gy to 150 kGy Bromocresol Green was used in liquid form and Potassium Nitrate was prepared in solid pellets form. Spectrophotometry in the visible region was used as the main detection technique, which allows relating optical absorption, before and after irradiation, with the absorbed dose. The maximum absorption wavelength for each compound was observed at 450-460nm for bromocresol Green and 546nm for Potassium Nitrate. Dose calibration curves are linear for both compounds in all dose intervals. When irradiated with accelerated electrons, with energies between o,9 MeV and 1,5MeV, optical absorption intensification, of about 2,6 times, was observed when comparing results for Potassium Nitrate, with those for gamma rays. All the evaluations are presented in this work. (author)

  11. Moessbauer study of the YFe3 compound

    International Nuclear Information System (INIS)

    Fisher, W.G.; Kuzmin, R.N.; Vardapetyan, R.P.

    1975-01-01

    Nuclear Gamma Recoilless Resonance measurement was carried out on iron sites in the YFe 3 compound at 80 and 295 K to obtain information on the iron sublattice in the absence of rare-earth magnetic moment. The results of the measurement are reported. (Z.S.)

  12. Various processes occurring in strong interactions between heavy ions: Compound nucleus formation, incomplete fusion, and quasifission

    International Nuclear Information System (INIS)

    Lefort, M.

    1975-01-01

    This paper deals with the problem of various deep processes occurring when two complex nuclei enter in collision. It is suggested that very deep inelastic processes may lead to either a compound nucleus or a composite system which shortly decays into two fission fragments (quasifission process). Particularly for heavy projectiles and targets, the predominant Coulomb potential inhibits the compound nucleus formation for low l waves. Then a critical angular momentum can be defined as the limit below which both processes (quasifission and compound nucleus formation) occur. For the heaviest nuclei, nearly all l waves below l) contribute to the quasifission phenomenon

  13. Hazard rate model and statistical analysis of a compound point process

    Czech Academy of Sciences Publication Activity Database

    Volf, Petr

    2005-01-01

    Roč. 41, č. 6 (2005), s. 773-786 ISSN 0023-5954 R&D Projects: GA ČR(CZ) GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : couting process * compound process * Cox regression model * intensity Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.343, year: 2005

  14. Elastic properties of distorted triangular lattice KNiCl3-family compounds

    International Nuclear Information System (INIS)

    Nishiwaki, Yoichi; Hasegawa, Takumi; Machida, Kenichi; Takeuchi, Yoshio

    2006-01-01

    In order to discuss the condensation of the K 4 -mode in KNiCl 3 -family compounds, the temperature dependences of the elastic compliances of KNiCl 3 , RbMnBr 3 , RbFeBr 3 , and RbCoBr 3 were measured. In each compound, the temperature dependence of the elastic compliances s 33 showed a sharp discontinuity at the point of structural phase transition from a prototype P6 3 /mmc structure. The structural phase transitions of the KNiCl 3 -family compounds are induced by the condensation of the K 4 -mode at the Brilluoin zone boundary in the P6 3 /mmc structure. When the K 4 -mode is regarded as an order parameter η, the Landau free energy includes coupling term η 2 T 3 , where T 3 is an external stress. The experimental results were interpreted satisfactorily on the basis of a phenomenological Landau theory. (author)

  15. Low-Toxicity Diindol-3-ylmethanes as Potent Antifouling Compounds.

    Science.gov (United States)

    Wang, Kai-Ling; Xu, Ying; Lu, Liang; Li, Yongxin; Han, Zhuang; Zhang, Jun; Shao, Chang-Lun; Wang, Chang-Yun; Qian, Pei-Yuan

    2015-10-01

    In the present study, eight natural products that belonged to di(1H-indol-3-yl)methane (DIM) family were isolated from Pseudovibrio denitrificans UST4-50 and tested for their antifouling activity against larval settlement (including both attachment and metamorphosis) of the barnacle Balanus (=Amphibalanus) amphitrite and the bryozoan Bugula neritina. All diindol-3-ylmethanes (DIMs) showed moderate to strong inhibitory effects against larval settlement of B. amphitrite with EC50 values ranging from 18.57 to 1.86 μM and could be considered as low-toxicity antifouling compounds since their LC50/EC50 ratios were larger than 15. Furthermore, the DIM- and 4-(di(1H-indol-3-yl)methyl)phenol (DIM-Ph-4-OH)-treated larvae completed normal settlement when they were transferred to clean seawater after being exposed to those compounds for 24 h. DIM also showed comparable antifouling performance to the commercial antifouling biocide Sea-Nine 211(™) in the field test over a period of 5 months, which further confirmed that DIMs can be considered as promising candidates of environmentally friendly antifouling compounds.

  16. Fabrication and thermal characterization of amorphous and nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti compound

    Energy Technology Data Exchange (ETDEWEB)

    Tavoosi, Majid, E-mail: ma.tavoosi@gmail.com

    2017-01-15

    In this study, the fabrication and structural characterization of amorphous/nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti phase has been performed. In this regards, milling and annealing processes were applied on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} (at. %) powder mixture for different periods of time. The prepared samples were characterized using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM) and differential scanning calorimetery (DSC). According to the results, supersaturated solid solution, nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti (with average crystallite size of about 7 nm) and amorphous phases indicated three different microstructures which can be formed in Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} system during milling process. The formed supersaturated solid solution and amorphous phases were unstable and transformed to Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound during annealing process. It is shown that, Al{sub 9}FeNi phase in Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound can decompose into Al{sub 3}Ni, Al{sub 13}Fe{sub 4} and liquid phases during a reversible peritectic reaction at 809 °C. - Highlights: • We study the effect of milling process on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} alloy. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} supersaturated solid solution phase. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} amorphous phase. • We study the thermal behaviour of Al{sub 9}FeNi/Al{sub 3}Ti compound.

  17. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang; Liu, Wenchao; Mak, C. L.

    2012-01-01

    . This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased

  18. Obtaining and characterizing the binary compound Zr3Pt

    International Nuclear Information System (INIS)

    Tanoni, Diego; Arico, Sergio F; Alonso, Paula R

    2006-01-01

    The equilibrium phases in the Zr - Pt binary system are not fully defined. Experiences carried out from 0% to 50% at. Pt in the equilibrium diagram of Zr-Pt phases in 2001 revealed the presence of the intermetallic compounds Zr 2 Pt, Zr 5 Pt 3 , ZrPt (already previously identified by other authors) and a compound of 25% composition at Pt with an unidentified crystalline structure. This experimental work aims to fill out the information on this compound by characterizing its crystallography. An alloy was produced in the binary system Zr-Pt with a composition close to the stoichiometry by casting in an arc furnace, and was studied by optic and electronic metallography. The identification and crystallographic characterization of the phase is based on measurements of composition in electronic microwave and on analysis of spectrums obtained by X-ray diffraction. The results are presented, showing the presence in the cast structure of the solid solution zircon phases (hexagonal) and of the inter-metallic compound Zr 5 Pt 3 . These two phases were identified in the X-ray diffraction diagrams as well as the presence of other reflections that are associated with the inter-metallic Zr 3 Pt. The measurements of composition consistently reveal the presence of a phase of 25%at Pt composition. The structure's morphology shown in metallographies reveals the occurrence of a eutectic type transformation during cooling. We conclude that the formation of the phase sought in a composition 25 % at Pt should occur at temperatures below the eutectic transformation, and could be a peritectoid formation as was previously proposed. Therefore, the sample needs to be homogenized with thermal treatments that favor the formation and stabilization of the compound (CW)

  19. Changes in guava (Psidium guajava L. var. Paluma nectar volatile compounds concentration due to thermal processing and storage

    Directory of Open Access Journals (Sweden)

    Maria Ivaneide Coutinho Correa

    2010-12-01

    Full Text Available Guava nectars were formulated for approximately 10, 12, or 14 ºBrix, with 40% guava pulp. Sodium benzoate, 500 mg.kg-1 was used as preservative. The Brix value was adjusted with saturated sucrose syrup. The guava nectar was pasteurized (85 ºC/42 seconds in tubular heat exchanger and then hot filled in 500 mL white glass bottles. The products were stored either at room temperature (25 ± 5 ºC or refrigerated (5 ± 2 ºC under fluorescent light exposure and analyzed on the day after processing (time zero and also 40, 80, and 120 days of storage. Eight compounds were identified and quantified by Gas Chromatography (GC -Mass Spectrometry (MS: hexanal, (E-hex-2-enal, 1-hexenol, (Z-hex-3-enol, (Z-hex-3-enyl acetate, phenyl-3-propyl acetate, cinnamyl acetate, and acetic acid. There was no significant effect of thermal treatment on the volatile compound concentrations, except for a significant decrease (p = 0.0001 in hexanal and (Z-hex-3-enyl acetate (p = 0.0029. As for the storage time, there was a much greater decrease in the esters contents, such as (Z-hex-3-enyl and phenyl-3-propyl acetates. Cinnamyl acetate had the greatest decrease over storage time. Refrigeration was better than room temperature for guava nectar volatile compounds stability over storage time, mainly for esters compounds, which are important for the product aroma and flavor

  20. Covering vertically aligned carbon nanotubes with a multiferroic compound

    KAUST Repository

    Mahajan, Amit; Rodriguez, Brian J.; Saravanan, K. Venkata; Ramana, E. Venkata; Da Costa, Pedro M. F. J.; Vilarinho, Paula M.

    2014-01-01

    This work highlights the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were fabricated in-situ deposited on the surface of VA-MWCNTs by RF (radio frequency) magnetron sputtering. For in situ deposition temperature of 400 °C and deposition time up to 2 h, BFO films cover the MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by piezo force microscopy. G type antiferromagnetic ordering with weak ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe.

  1. Covering vertically aligned carbon nanotubes with a multiferroic compound

    KAUST Repository

    Mahajan, Amit

    2014-10-30

    This work highlights the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were fabricated in-situ deposited on the surface of VA-MWCNTs by RF (radio frequency) magnetron sputtering. For in situ deposition temperature of 400 °C and deposition time up to 2 h, BFO films cover the MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by piezo force microscopy. G type antiferromagnetic ordering with weak ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe.

  2. Combined piezoresponse force microscopyand Raman scattering investigation of domainboundaries in BiFeO.sub.3./sub. ceramics

    Czech Academy of Sciences Publication Activity Database

    Borodavka, Fedir; Pokorný, Jan; Hlinka, Jiří

    2016-01-01

    Roč. 89, 7-8 (2016), 746-751 ISSN 0141-1594 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : phase transition * BiFeO 3 * Raman scattering * piezoresponse force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.060, year: 2016

  3. Power characteristics of the metal compounds formation process during the friction stir welding

    Directory of Open Access Journals (Sweden)

    Rzaev Radmir

    2017-01-01

    Full Text Available An influence of the power characteristics on the formation process of the uniform metals compound during the welding with friction stirringis being examined in this article.A dependency between the machine-tool engine power input and the instrument tilt during the FSW for the aluminum alloy AD31, copper alloy M1, titanium alloy OT4-1 and steel St-3 low-alloyed has been explored. A question of the stabilization of power consumption process while the establishment of superplastic condition of welded metal during the FSW has also been reviewed. A dependency revealed between the power characteristics, the geometry of the formation, the rotation speeds, the longitudinal displacement of the tool and its dimensions for fixed values of the parameters during the FSW.

  4. Coordination compounds of cobalt (3), chromium (3) and vanadium (3) with s-methylthiosemicarbazone of salicylic aldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Leovats, V.M.; Gehrbehlehu, N.V.; Tsanich, V.D. (AN Moldavskoj SSR, Kishinev. Inst. Khimii)

    1982-04-01

    Coordination compounds of trivalent cobalt, chromium and vanadium with S-methylthiosemicarbazone of salicylic aldehyde H/sub 2/L of (Co(HL)/sub 2/)XxnH/sub 2/O (X=Cl, Br, I, NO/sub 3/, ClO/sub 4/), (CoL(NH/sub 3/)/sub 3/)NO/sub 3/, (Co(HL)/sub 2/)/sub 2/(Co(NCS)/sub 4/)x2H/sub 2/O, (CoCl(DH)/sub 2/(H/sub 2/L))xH/sub 2/O, (Cr(HL)/sub 2/)XxnH/sub 2/O (X=Cl, NO/sub 3/), (V(HL)/sub 2/)Clx1/2H/sub 2/O, (M(HL)L)xnH/sub 2/O (M=Co, Cr, V) compositions are synthesized and investigated. It is shown, that H/sub 2/L behaves as a tridentate ligand at the expense of (O, N, N) set of donor atoms. The effective magnetic moment of the compounds is calculated.

  5. Pr and Gd co-doped bismuth ferrite thin films with enhanced ...

    Indian Academy of Sciences (India)

    in Pr content, the crystal structures of BPGFO thin films retain rhombohedral (R3c) symmetry accompanied by structure distortion. ... Pr and Gd co-modified BiFeO3 thin film; ferroelectric properties; sol-gel. 1. Introduction. In recent years, great attention has been paid to single- phase BiFeO3 (BFO) multiferroic materials ...

  6. Sample-size resonance, ferromagnetic resonance and magneto-permittivity resonance in multiferroic nano-BiFeO3/paraffin composites at room temperature

    International Nuclear Information System (INIS)

    Wang, Lei; Li, Zhenyu; Jiang, Jia; An, Taiyu; Qin, Hongwei; Hu, Jifan

    2017-01-01

    In the present work, we demonstrate that ferromagnetic resonance and magneto-permittivity resonance can be observed in appropriate microwave frequencies at room temperature for multiferroic nano-BiFeO 3 /paraffin composite sample with an appropriate sample-thickness (such as 2 mm). Ferromagnetic resonance originates from the room-temperature weak ferromagnetism of nano-BiFeO 3 . The observed magneto-permittivity resonance in multiferroic nano-BiFeO 3 is connected with the dynamic magnetoelectric coupling through Dzyaloshinskii–Moriya (DM) magnetoelectric interaction or the combination of magnetostriction and piezoelectric effects. In addition, we experimentally observed the resonance of negative imaginary permeability for nano BiFeO 3 /paraffin toroidal samples with longer sample thicknesses D=3.7 and 4.9 mm. Such resonance of negative imaginary permeability belongs to sample-size resonance. - Highlights: • Nano-BiFeO 3 /paraffin composite shows a ferromagnetic resonance. • Nano-BiFeO 3 /paraffin composite shows a magneto-permittivity resonance. • Resonance of negative imaginary permeability in BiFeO 3 is a sample-size resonance. • Nano-BiFeO 3 /paraffin composite with large thickness shows a sample-size resonance.

  7. Homogeneous Discrete Time Alternating Compound Renewal Process: A Disability Insurance Application

    Directory of Open Access Journals (Sweden)

    Guglielmo D’Amico

    2015-01-01

    Full Text Available Discrete time alternating renewal process is a very simple tool that permits solving many real life problems. This paper, after the presentation of this tool, introduces the compound environment in the alternating process giving a systematization to this important tool. The claim costs for a temporary disability insurance contract are presented. The algorithm and an example of application are also provided.

  8. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes.

    Science.gov (United States)

    Guerra, P; Kim, M; Shah, A; Alaee, M; Smyth, S A

    2014-03-01

    The presence of pharmaceuticals and personal care products (PPCPs) in the aquatic environment as a result of wastewater effluent discharge is a concern in many countries. In order to expand our understanding on the occurrence and fate of PPCPs during wastewater treatment processes, 62 antibiotic, analgesic/anti-inflammatory, and antifungal compounds were analyzed in 72 liquid and 24 biosolid samples from six wastewater treatment plants (WWTPs) during the summer and winter seasons of 2010-2012. This is the first scientific study to compare five different wastewater treatment processes: facultative and aerated lagoons, chemically-enhanced primary treatment, secondary activated sludge, and advanced biological nutrient removal. PPCPs were detected in all WWTP influents at median concentrations of 1.5 to 92,000 ng/L, with no seasonal differences. PPCPs were also found in all final effluents at median levels ranging from 3.6 to 4,200 ng/L with higher values during winter (pRemoval efficiencies ranged between -450% and 120%, depending on the compound, WWTP type, and season. Mass balance showed that the fate of analgesic/anti-inflammatory compounds was predominantly biodegradation during biological treatment, while antibiotics and antifungal compounds were more likely to sorb to sludge. However, some PPCPs remained soluble and were detected in effluent samples. Overall, this study highlighted the occurrence and behavior of a large set of PPCPs and determined how their removal is affected by environmental/operational factors in different WWTPs. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  9. Powder metallurgical processing of magnetostrictive materials based on rare earth-iron intermetallic compounds

    International Nuclear Information System (INIS)

    Malekzadeh, M.

    1978-01-01

    Procedures are described for fabrication of high density rare earth-iron magnetostrictive compounds by powder metallurgical techniques. The fabrication involves a sequence of steps which includes preparing the pre-alloyed compounds, pulverizing them into a fine powder, compacting in suitable sizes and shapes, and sintering. Samples prepared by these procedures are carefully characterized by scanning electron microscopy, x-ray diffraction, dilatometry, and magnetic measurements. Process steps are found to exert important influences upon densities, microstructure and magnetic properties attained after densification. Investigations on a number of these process steps, including milling time and medium, sintering, and magnetic powder alignment are described

  10. Chemomics-based marker compounds mining and mimetic processing for exploring chemical mechanisms in traditional processing of herbal medicines, a continuous study on Rehmanniae Radix.

    Science.gov (United States)

    Zhou, Li; Xu, Jin-Di; Zhou, Shan-Shan; Shen, Hong; Mao, Qian; Kong, Ming; Zou, Ye-Ting; Xu, Ya-Yun; Xu, Jun; Li, Song-Lin

    2017-12-29

    Exploring processing chemistry, in particular the chemical transformation mechanisms involved, is a key step to elucidate the scientific basis in traditional processing of herbal medicines. Previously, taking Rehmanniae Radix (RR) as a case study, the holistic chemome (secondary metabolome and glycome) difference between raw and processed RR was revealed by integrating hyphenated chromatographic techniques-based targeted glycomics and untargeted metabolomics. Nevertheless, the complex chemical transformation mechanisms underpinning the holistic chemome variation in RR processing remain to be extensively clarified. As a continuous study, here a novel strategy by combining chemomics-based marker compounds mining and mimetic processing is proposed for further exploring the chemical mechanisms involved in herbal processing. First, the differential marker compounds between raw and processed herbs were rapidly discovered by untargeted chemomics-based mining approach through multivariate statistical analysis of the chemome data obtained by integrated metabolomics and glycomics analysis. Second, the marker compounds were mimetically processed under the simulated physicochemical conditions as in the herb processing, and the final reaction products were chemically characterized by targeted chemomics-based mining approach. Third, the main chemical transformation mechanisms involved were clarified by linking up the original marker compounds and their mimetic processing products. Using this strategy, a set of differential marker compounds including saccharides, glycosides and furfurals in raw and processed RR was rapidly found, and the major chemical mechanisms involved in RR processing were elucidated as stepwise transformations of saccharides (polysaccharides, oligosaccharides and monosaccharides) and glycosides (iridoid glycosides and phenethylalcohol glycosides) into furfurals (glycosylated/non-glycosylated hydroxymethylfurfurals) by deglycosylation and/or dehydration. The

  11. Structural, magnetic and transport properties of Mn3.1Sn0.9 and Mn3.1Sn0.9N compounds

    International Nuclear Information System (INIS)

    Feng, W.J.; Li, D.; Ren, W.J.; Li, Y.B.; Li, W.F.; Li, J.; Zhang, Y.Q.; Zhang, Z.D.

    2007-01-01

    The cubic anti-perovskite Mn 3.1 Sn 0.9 N compound is prepared via nitrogenation of the hexagonal Mn 3.1 Sn 0.9 compound. A magnetic phase diagram of Mn 3.1 Sn 0.9 compound is constructed by analysis of data of its magnetic properties. For Mn 3.1 Sn 0.9 N compound, parasitic ferromagnetism exists in the temperature range of 5-370 K, besides a spin-reorientation at about 280 K. Mn 3.1 Sn 0.9 compound exhibits a metallic conducting behavior, while Mn 3.1 Sn 0.9 N displays a metal-nonmetal transition due to the electron localization caused by the static disorder. The differences of the physical properties between the both compounds, are discussed, in terms of the correlation of the hexagonal DO 19 and the cubic anti-perovskite structures, the reduction of the distances between Mn atoms, and the spin-pairing or charge transfer effect due to the electron donation by N 2p to Mn 3d states after introduction of N atoms into the interstitial sites of Mn 3.1 Sn 0.9 compound

  12. Aroma compounds in sweet whey powder.

    Science.gov (United States)

    Mahajan, S S; Goddik, L; Qian, M C

    2004-12-01

    Aroma compounds in sweet whey powder were investigated in this study. Volatiles were isolated by solvent extraction followed by solvent-assisted flavor evaporation. Fractionation was used to separate acidic from nonacidic volatiles. Gas chromatography/mass spectrometry and gas chromatography/olfactometry were used for the identification of aroma compounds. Osme methodology was applied to assess the relative importance of each aroma compound. The most aroma-intense free fatty acids detected were acetic, propanoic, butanoic, hexanoic, heptanoic, octanoic, decanoic, dodecanoic, and 9-decenoic acids. The most aroma-intense nonacidic compounds detected were hexanal, heptanal, nonanal, phenylacetaldehyde, 1-octen-3-one, methional, 2,6-dimethylpyrazine, 2,5-dimethylpyrazine, 2,3-dimethylpyrazine, 2,3,5-trimethylpyrazine, furfuryl alcohol, p-cresol, 2-acetylpyrrole, maltol, furaneol, and several lactones. This study suggested that the aroma of whey powder could comprise compounds originating from milk, compounds generated by the starter culture during cheese making, and compounds formed during the manufacturing process of whey powder.

  13. Process for uranium separation and preparation of UO4.2NH3.2HF

    International Nuclear Information System (INIS)

    Dokuzoguz, H.Z.

    1976-01-01

    A process for treating the aqueous effluents that are produced in converting gaseous UF 6 (uranium hexafluoride) into solid UO 2 (uranium dioxide) by way of an intermediate (NH 4 ) 4 UO 2 (CO 3 ) 3 (''AUC'' Compound) is disclosed. These effluents, which contain large amounts of NH 4 + , CO 3 2- , F - , and a small amount of U are mixed with H 2 SO 4 (sulfuric acid) in order to expel CO 2 (carbon dioxide) and thereby reduce the carbonate concentration. The uranium is precipitated through treatment with H 2 O 2 (hydrogen peroxide) and the fluoride is easily recovered in the form of CaF 2 (calcium fluoride) by contacting the process liquid with CaO (calcium oxide). The presence of SO 4 2- (sulfate) in the process liquid during CaO contacting seems to prevent the development of a difficult-to-filter colloid. The process also provides for NH 3 recovery and recycling. Liquids discharged from the process, moreover, are essentially free of environmental pollutants. The waste treatment products, i.e., CO 2 , NH 3 , and U are economically recovered and recycled back into the UF 6 → UO 2 conversion process. The process, moreover, recovers the uranium as a precipitate in the second stage. This precipitate is a new inorganic chemical compound UO 4 .2NH 3 .2HF [uranyl peroxide-2-ammonia-2-(hydrogen fluoride)

  14. Mn(III)-initiated facile oxygenation of heterocyclic 1,3-dicarbonyl compounds.

    Science.gov (United States)

    Rahman, Md Taifur; Haque, Md Aminul; Igarashi, Hikaru; Nishino, Hiroshi

    2011-11-16

    The Mn(III)-initiated aerobic oxidation of heterocyclic 1,3-dicarbonyl compounds, such as 4-alkyl-1,2-diphenylpyrazolidine-3,5-diones, 1,3-dialkylpyrrolidine-2,4-diones, 3-alkyl-1,5-dimethylbarbituric acids, and 3-butyl-4-hydroxy-2-quinolinone gave excellent to good yields of the corresponding hydroperoxides, which were gradually degraded by exposure to the metal initiator after the reaction to afford the corresponding alcohols. The synthesis of 30 heterocyclic 1,3-dicarbonyl compounds, the corresponding hydroperoxides and the 10 alcohols, their characterization, and the limitations of the procedure are described. In addition, the mechanism of the hydroperoxidation and the redox decomposition of the hydroperoxides are discussed.

  15. Enhanced thermoelectric properties of N-type polycrystalline In4Se3-x compounds via thermally induced Se deficiency

    Science.gov (United States)

    Zhao, Ran; Shu, Yu-Tian; Guo, Fu

    2014-03-01

    In4Se3-x compound is considered as a potential thermoelectric material due to its comparably low thermal conductivity among all existing ones. While most studies investigated In4Se3-x thermoelectric properties by controlling selennium or other dopants concentrations, in the current study, it was found that even for a fixed initial In/Se ratio, the resulting In/Se ratio varied significantly with different thermal processing histories (i.e., melting and annealing), which also resulted in varied thermoelectric properties as well as fracture surface morphologies of In4Se3-x polycrystalline specimens. Single phase polycrystalline In4Se3-x compounds were synthesized by combining a sequence of melting, annealing, pulverizing, and spark plasma sintering. The extension of previous thermal history was observed to significantly improve the electrical conductivity (about 121%) and figure of merit (about 53%) of In4Se3-x polycrystalline compounds. The extended thermal history resulted in the increase of Se deficiency (x) from 0.39 to 0.53. This thermally induced Se deficiency was observed to associate with increasing carrier mobility but decreasing concentration, which differs from the general trend observed for the initially adjusted Se deficiency at room temperature. Unusually large dispersed grains with nanosize layers were observed in specimens with the longest thermal history. The mechanism(s) by which previous thermal processing enhances carrier mobility and affect microstructural evolution are briefly discussed.

  16. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches.

    Science.gov (United States)

    Li, Mi; Zhuge, Fei; Zhu, Xiaojian; Yin, Kuibo; Wang, Jinzhi; Liu, Yiwei; He, Congli; Chen, Bin; Li, Run-Wei

    2010-10-22

    The resistive switching (RS) characteristics of a Bi(0.95)La(0.05)FeO(3) (La-BFO) film sandwiched between a Pt bottom electrode and top electrodes (TEs) made of Al, Ag, Cu, and Au have been studied. Devices with TEs made of Ag and Cu showed stable bipolar RS behaviors, whereas those with TEs made of Al and Au exhibited unstable bipolar RS. The Ag/La-BFO/Pt structure showed an on/off ratio of 10(2), a retention time > 10(5) s, and programming voltages TEs under a bias voltage. The maximum current before the reset process (on-to-off switching) was found to increase linearly with the current compliance applied during the set process (off-to-on switching).

  17. Effect of processing and storage time on the contents of organosulfur compounds in pickled blanched garlic.

    Science.gov (United States)

    Beato, Victor Manuel; Sánchez, Antonio Higinio; de Castro, Antonio; Montaño, Alfredo

    2012-04-04

    The influence of processing, with and without fermentation, on the contents of organosulfur compounds, namely, γ-glutamyl peptides, S-alk(en)yl-L-cysteine sulfoxides (ACSOs), and S-allyl-L-cysteine (SAC), in pickled blanched garlic was evaluated. For each processing type, the effect of the preservation method and storage time was also analyzed. Blanching in hot water (90 °C for 5 min) hardly affected the individual organosulfur compound content. The fermentation and packing steps negatively affected the levels of all compounds except for SAC. The content of this compound increased during storage at room temperature whereas γ-glutamyl peptides and ACSOs were degraded to various extents. The pasteurization treatment itself had no significant effect on the concentrations of organosulfur compounds. Use of the corresponding fermentation brine in the case of the fermented product in conjunction with refrigerated storage was found to be the best method to preserve the levels of organosulfur compounds in pickled garlic stored for up to one year.

  18. Magnetic and structural properties of yellow europium oxide compound and Eu(OH)3

    International Nuclear Information System (INIS)

    Lee, Dongwook; Seo, Jiwon; Valladares, Luis de los Santos; Avalos Quispe, O.; Barnes, Crispin H.W.

    2015-01-01

    A new material based on a yellow europium oxide compound was prepared from europium oxide in a high vacuum environment. The structural and magnetic properties of the material were investigated. Owing to the absence of a crystal structure, the material exhibited a disordered magnetic behavior. In a reaction with deionized (DI) water without applied heat, the compound assumed a white color as soon as the DI water reached the powder, and the structure became polycrystalline Eu(OH) 3 . The magnetic properties, such as the thermal hysteresis, disappeared after the reaction with DI water, and the magnetic susceptibility of the yellow oxide compound weakened. The magnetic properties of Eu(OH) 3 were also examined. Although Eu 3+ is present in Eu(OH) 3 , a high magnetic moment due to the crystal field effect was observed. - Graphical abstract: (top left) Optical image of the yellow europium oxide compound. (top right) Optical image of the product of DI water and yellow europium oxide. (bottom) Magnetization curves as a function of temperature measured in various magnetic field. - Highlights: • We prepared a new material based on a yellow europium oxide compound from europium oxide. • We characterized the magnetic properties of the material which exhibits a disordered magnetic behavior such as thermal hysteresis. • The compound turned white (Eu(OH) 3 ) as soon as the DI water reached the powder. • The thermal hysteresis disappeared after the reaction with DI water and the magnetic susceptibility of the yellow oxide compound weakened

  19. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends.

    Science.gov (United States)

    Ventura, Sónia P M; E Silva, Francisca A; Quental, Maria V; Mondal, Dibyendu; Freire, Mara G; Coutinho, João A P

    2017-05-24

    Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid-liquid extractions, IL-based liquid-liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations.

  20. Magnetic behavior of binary intermetallic compound YPd{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Abhishek [S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Mazumdar, Chandan [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)], E-mail: chandan.mazumdar@saha.ac.in; Ranganathan, R. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2009-05-12

    We report the results of detailed magnetic studies on binary rare-earth-transition metal compound YPd{sub 3}. The results of temperature and magnetic field dependent DC-magnetic measurements along with the results of powder X-ray diffraction measurement and electrical transport have been discussed. The X-ray data suggest a well-defined ordered crystal lattice, free from any detectable impurity phase. Magnetization data exhibits predominant diamagnetic character at higher fields. However, the compound exhibits anomalous behavior at low fields.

  1. Consumer attitude and purchase intention towards processed meat products with natural compounds and a reduced level of nitrite.

    Science.gov (United States)

    Hung, Yung; de Kok, Theo M; Verbeke, Wim

    2016-11-01

    This study investigates consumer attitude and purchase intention towards processed meat products with added natural compounds and a reduced level of nitrite. The rationale for such innovation relates to nitrite's negative health image as a chemical additive among consumers, versus the perception of compounds from fruits and vegetables as being natural and healthy. Cross-sectional data were collected through online questionnaires on knowledge about, interest in, attitude and intentions towards such new type of processed meat products in Belgium, The Netherlands, Italy and Germany (n=2057). Consumers generally had limited knowledge about nitrite being added to meat products. Yet, they expressed favourable attitudes and purchase intentions towards the new processed meat products. Purchase intention associated positively with: attitude; preference for natural over chemical additives; perceived harmfulness of chemical additives; risk importance; domain specific innovativeness; awareness of nitrite added; education; general health interest; and processed meat consumption frequency. Consumers from Italy and Germany had a lower level of purchase intention compared to Belgium. Four consumer segments were identified based on attitude and purchase intention: 'enthusiasts' (39.3% of the sample), 'accepters' (11.9%), 'half-hearted' (42.3%) and 'uninterested' (6.6%). This study provides valuable insight for further product development and effective tailoring of marketing communication strategies of innovative processed meat products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Circular Cationic Compounds B3Rgn+ of Triangular Ion B3 Trapping Rare Gases

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ruiwen; LI Anyong; LI Zhuozhe

    2017-01-01

    The circular cationic compounds B3Rgn+(n=1-3,Rg=He-Rn) formed by the electron-deficient aromatic ion B3+ trapping rare gases were studied theoretically.The formed B-Rg bond has large bonding energy in the range of 60--209 kJ/mol,its length is close to the stun of covalent radii of B and Rg,for Ar-Rn.The analyses based on the natural bond orbitals and electron density topology show that the B-Rg bonds for Ar-Rn have strong covalent character.The geometric structures,binding energy,bond nature and thermodynamic stability of the boron-rare gas compounds show that these species for Ar-Rn may be experimentally available.Several different theoretical studies have demonstrated that these triangular cations are aromatic.

  3. Readily-accessible oxidation of d0 organozirconium compounds: The electronic structure of (η5-C5H5)3ZrX compounds

    International Nuclear Information System (INIS)

    Strittmatter, R.J.; Bursten, B.E.; Rhodes, L.F.; Morris, D.E.; Rogers, R.D.

    1990-01-01

    In an effort to obtain a comparison between organotransition metal and organoactinide complexes, a series of Cp 3 ZrX compounds have been synthesized. A single crystal X-ray crystallographic study of Cp 3 ZrCl reveals that all three Cp ligands are bound in an η 5 fashion. Electrochemical investigations of this series show a first oxidation of these d 0 compounds approximately one volt less positive than the d 0 Cp 2 ZrX 2 compounds and approximately one-half volt less positive than the d 0 f 0 Cp 3 ThCl compound. These results will be presented along with a discussion of the electronic structure of this series, as determined by Xα-SW and Fenske-Hall calculations

  4. Pressure dependence of magnetic ordering temperatures of rare earth-Sn/sub 3/ compounds

    Energy Technology Data Exchange (ETDEWEB)

    Foner, S [Massachusetts Inst. of Tech., Cambridge (USA). Francis Bitter National Magnet Lab.

    1979-12-01

    Measurements of the hydrostatic pressure dependence of the Neel temperatures, Tsub(N), are reported for PrSn/sub 3/, NdSn/sub 3/, GdSn/sub 3/ and CeIn/sub 3/. Tsub(N) is found to increase with applied pressure for PrSn/sub 3/ and NdSn/sub 3/, whereas Tsub(N) is pressure independent within experimental error for GdSn/sub 3/ and CeIn/sub 3/. Slightly Sn-deficient RESn/sub 3/ (RE = rare earth) compounds are found consistently to be weakly ferromagnetic. The physical properties of the RESn/sub 3/ compounds exhibit analogies with the corresponding properties of dilute superconducting (LaRE)Sn/sub 3/ alloys. The high pressure data for PrSn/sub 3/ and CeIn/sub 3/ are qualitatively consistent with a 'Kondo necklace' model for magnetically ordered RE compounds with unstable 4f shells.

  5. Pressure dependence of magnetic ordering temperatures of rare earth - Sn/sub 3/ compounds

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, L E [Virginia Univ., Charlottesville (USA). Dept. of Physics; Guertin, R P; Foner, S

    1979-12-01

    Measurements of the hydrostatic pressure dependence of the Neel temperatures, Tsub(N), are reported for PrSn/sub 3/, NdSn/sub 3/, GdSn/sub 3/ and CeIn/sub 3/. Tsub(N) is found to increase with applied pressure for PrSn/sub 3/ and NdSn/sub 3/, whereas Tsub(N) is pressure independent within experimental error for GdSn/sub 3/ and CeIn/sub 3/. Slightly Sn-deficient RESn/sub 3/ (RE=rare earth) compounds are found consistently to be weakly ferromagnetic. The physical properties of the RESn/sub 3/ compounds exhibit analogies with the corresponding properties of dilute superconducting (LaRE)Sn/sub 3/ alloys. The high pressure data for PrSn/sub 3/ and CeIn/sub 3/ are qualitatively consistent with a 'Kondo necklace' model for magnetically ordered RE compounds with unstable 4f shells.

  6. An alkaline tin(II) halide compound Na{sub 3}Sn{sub 2}F{sub 6}Cl: Synthesis, structure, and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Pifu [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Luo, Siyang [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Huang, Qian; Yang, Yi [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Jiang, Xingxing [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liang, Fei [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Chen, Chuangtian [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Lin, Zheshuai, E-mail: zslin@mail.ipc.ac.cn [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China)

    2017-04-15

    A new alkali tin(II) halide compound, Na{sub 3}Sn{sub 2}F{sub 6}Cl, is synthesized by hydrothermal method. This compound crystallizes trigonally in space group of R-3c (167), and processes a zero-dimensional (0D) structure consisted of Na{sup +} cations, Cl{sup −} anions and the isolated [SnF{sub 3}]{sup -} trigonal pyramids in which the stereochemically active 5s{sup 2} lone pair electrons are attached to the Sn{sup 2+} cations. Interestingly, the [SnF{sub 3}]{sup −} trigonal pyramids are parallel arranged in the a-b plane, while oppositely arranged in line with rotation along the c- axis. Moreover, the energy bandgap, thermal stability and electronic structure of Na{sub 3}Sn{sub 2}F{sub 6}Cl are characterized and the results reveal that this compound has and indirect bandgap of 3.88 eV and is stable under 270 °C. - Graphical abstract: A zero-dimensional alkaline tin halide compound, Na{sub 3}Sn{sub 2}F{sub 6}Cl, is synthesized by hydrothermal method. Interestingly, both the anions and cations coordinating polyhedra exhibit order arranged with the [SnF{sub 3}]{sup -} trigonal pyramids rotating along the c- axis.

  7. Mn(III-Initiated Facile Oxygenation of Heterocyclic 1,3-Dicarbonyl Compounds

    Directory of Open Access Journals (Sweden)

    Md. Aminul Haque

    2011-11-01

    Full Text Available The Mn(III-initiated aerobic oxidation of heterocyclic 1,3-dicarbonyl compounds, such as 4-alkyl-1,2-diphenylpyrazolidine-3,5-diones, 1,3-dialkylpyrrolidine-2,4-diones, 3-alkyl-1,5-dimethylbarbituric acids, and 3-butyl-4-hydroxy-2-quinolinone gave excellent to good yields of the corresponding hydroperoxides, which were gradually degraded by exposure to the metal initiator after the reaction to afford the corresponding alcohols. The synthesis of 30 heterocyclic 1,3-dicarbonyl compounds, the corresponding hydroperoxides and the 10 alcohols, their characterization, and the limitations of the procedure are described. In addition, the mechanism of the hydroperoxidation and the redox decomposition of the hydroperoxides are discussed.

  8. Preparation of Ti3Al intermetallic compound by spark plasma sintering

    Science.gov (United States)

    Ito, Tsutomu; Fukui, Takahiro

    2018-04-01

    Sintered compacts of single phase Ti3Al intermetallic compound, which have excellent potential as refractory materials, were prepared by spark plasma sintering (SPS). A raw powder of Ti3Al intermetallic compound with an average powder diameter of 176 ± 56 μm was used in this study; this large powder diameter is disadvantageous for sintering because of the small surface area. The samples were prepared at sintering temperatures (Ts) of 1088, 1203, and 1323 K, sintering stresses (σs) of 16, 32, and 48 MPa, and a sintering time (ts) of 10 min. The calculated relative densities based on the apparent density of Ti3Al provided by the supplier were approximately 100% under all sintering conditions. From the experimental results, it was evident that SPS is an effective technique for dense sintering of Ti3Al intermetallic compounds in a short time interval. In this report, the sintering characteristics of Ti3Al intermetallic compacts are briefly discussed and compared with those of pure titanium compacts.

  9. The fate of atmospheric phosgene and the stratospheric chlorine loadings of its parent compounds: CCl4, C2Cl4, C2HCL3, CH3CCl3, and CHCl3

    Science.gov (United States)

    Kindler, T. P.; Chameides, W. L.; Wine, P. H.; Cunnold, D. M.; Alyea, F. N.; Franklin, J. A.

    1995-01-01

    A study of the tropospheric and stratospheric cycles of phosgene is carried out to determine its fate and ultimate role in controlling the ozone depletion potentials of its parent compounds. Tropospheric phosgene is produced from the OH-initiated oxidation of C2Cl4, CH3CCl3, CHCl3, and C2HCl3. Simulations using a two-dimensional model indicate that these processes produce about 90 pptv/yr of tropospheric phosgene with an average concentration of about 18 pptv, in reasonable agreement with observations. We estimate a residence time of about 70 days for tropospheric phosgene, with the vast majority being removed by hydrolysis in cloudwater. Only about 0.4% of the phosgene produced in the troposphere avoids wet removal and is transported to the stratosphere, where its chlorine can be released to participate in the catalytic destruction of ozone. Stratospheric phosgene is produced from the photochemical degradation of CCl4, C2Cl4, CHCl3, and CH3CCl3 and is removed by photolysis and downward transport to the troposphere. Model calculations, in good agreement with observations, indicate that these processes produce a peak stratospheric concentration of about 25-30 pptv at an altitude of about 25 km. In contrast to tropospheric phosgene, stratospheric phosgene is found to have a lifetime against photochemical removal of the order of years. As a result, a significant portion of the phosgene that is produced in the stratosphere is ultimately returned to the troposphere, where it is rapidly removed by clouds. This phenomenon effectively decreases the amount of reactive chlorine injected into the stratosphere and available for ozone depletion from phosgene's parent compounds. A similar phenomenon due to the downward transport of stratospheric COFCl produced from CFC-11 is estimated to cause a 7% decrease in the amount of reactive chlorine injected into the stratosphere from this compound. Our results are potentially sensitive to a variety of parameters, most notably the rate

  10. Bioactive compounds in edible flowers processed by radiation

    International Nuclear Information System (INIS)

    Koike, Amanda Cristina Ramos

    2015-01-01

    Edible flowers are increasingly being used in culinary preparations, being also recognized for their potential valuable effects in human health, which require new approaches to improve their conservation and safety. These highly perishable products should be grown without using any pesticide. Irradiation treatment might be the answer to these problems, ensuring food quality, increasing shelf-life and disinfestation of foods. Irradiation treatment might be the answer to these problems, to ensure food quality, to increase shelf-life and disinfestation of foods. Tropaeolum majus L. (nasturtium) and Viola tricolor L. (johnny-jump-up) flowers are widely used in culinary preparations, being also acknowledged for their antioxidant properties and high content of phenolics. The purpose of this study was to evaluate the dose-dependent effects of gamma and electron beam irradiation (doses of 0, 0.5, 0.8 and 1 kGy) on the antioxidant activity, phenolic compounds, physical aspects and antiproliferative potential of edible flowers. Kaempferol-O-hexoside-O-hexoside was the most abundant compound in all samples of Tropaeolum majus flower while pelargonidin-3-O-sophoroside was the major anthocyanin. In general, irradiated samples gave higher antioxidant activity, probably due to their higher amounts of phenolic compounds, which were also favored by the 1.0 kGy dose, regardless of the source . The Viola tricolor samples displayed flavonols as the most abundant phenolic compounds, particularly those derived from quercetin. In general, gamma-irradiated samples, independently of the applied dose, showed higher amounts in phenolic compounds, which were also favored by the 1.0 kGy dose, regardless of the source. The antioxidant activity was also higher among irradiated samples. The two species of edible flowers have not provided the samples did not show potential antiproliferative and cytotoxicity. Accordingly, the applied irradiation treatments seemed to represent a feasible technology

  11. An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing.

    Science.gov (United States)

    Mahn, Andrea; Reyes, Alejandro

    2012-12-01

    Broccoli offers many heath-promoting properties owing to its content of antioxidant and anticarcinogenic compounds. The concentration and bioavailability of polyphenols, glucosinolates, sulforaphane and selenium depend on plant biochemistry, cultivation strategy and type of processing. In this article, the main biochemical properties of broccoli are reviewed regarding their health-promoting effects. Additionally, the way these properties are affected by processing is discussed. Steaming and drying result in an apparent increment of sulforaphane content as well as antioxidant activity, most likely due to an increase of the extractability of antioxidants and sulforaphane. Freezing and boiling diminish polyphenols concentration, mainly due to volatilization and leaching into the cooking water. In view of these results, the optimization of broccoli processing in order to maximize the content of bioactive compounds should be possible. The effect of processing on selenium compounds has been poorly studied so far, and therefore this topic should be investigated in the future. Finally, the effect of operating conditions in different drying processes on the content of bioactive compounds in broccoli should be investigated in a greater depth.

  12. Resistivity and magnetoresistance studies of Nb3Ir and V3Sb compounds

    International Nuclear Information System (INIS)

    Ghosh, M.; Barman, A.; Das, A.; Meikap, A.K.; De, S.K.; Chatterjee, S.

    1997-01-01

    We have performed measurements of electrical resistivity and magnetoresistivity of the compounds Nb 3 Ir and V 3 Sb in the temperature range 1.8 K ≤ T ≤ 300 K in absence as well as in presence of a magnetic field up to 7.7 T. At high temperature the resistivity shows a linear behaviour whereas the low temperature resistivity shows a T 2 behaviour. The data are fitted to several theories in order to explain the anomalous behaviour of the resistivity. The simple s-d scattering model is not adequate to offer a proper explanation for the positive magnetoresistance. The enhancement of the coefficient A of the T 2 term and the deviation from the quadratic field dependence of the resistivity may be due to the anisotropy in the compounds. (orig.)

  13. Pyridine group assisted addition of diazo-compounds to imines in the 3-CC reaction of 2-aminopyridines, aldehydes, and diazo-compounds.

    Science.gov (United States)

    Gulevich, Anton V; Helan, Victoria; Wink, Donald J; Gevorgyan, Vladimir

    2013-02-15

    A novel three-component coupling (3-CC) reaction of 2-aminoazines, aromatic aldehydes, and diazo-compounds producing polyfunctional β-amino-α-diazo-compounds has been developed. The reaction features an unprecedented heterocycle-assisted addition of a diazo-compound to an imine. The obtained diazoesters were efficiently converted into valuable heterocycles as well as β-amino acid derivatives.

  14. [Analysis of variation of monoterpene glycosides and polyhydroxy compounds in paeoniae radix alba during preliminary processing].

    Science.gov (United States)

    Xu, Yuan; Liu, Pei; Yan, Hui; Qian, Da-Wei; Duan, Jin-Ao

    2014-05-01

    To investigate variation of monoterpene glycosides and polyhydroxy compounds in Paeoniae Radix Alba dried by different processing methods. The crude drugs were processed sequentially as washed, removed the head, tail, fine roots and dried. The samples were divided into eight groups by whether peeled and decocted or not. Each group was dried by 35, 45, 60, 80,100, 120 degrees C, sun-dried and shade-dried. HPLC-PDA method was adopted to determine the content of monoterpene glycosides compounds (paeoniflorin alibiflorin, oxypaeoniflorin and benzoylpaeoniflorin), polyhydroxy compounds (catechin and gallic acid) and benzoic acid. Chromatographic conditions: Phecad C18 column (250 mm x 4.6 mm, 5 microm). A principal component analysis (PCA) method was used subsequently to get data processed. The retained content of seven constituents decreased in those peeled crude drug, and after cooked, monoterpene glycosides and polyhydroxy compounds increased while the benzoic acid decreased. It was believed that rele- vant enzymes were inactivated while being cooked so that drying temperature showed little influence on the biotransformation. Contents of effective ingredients in Paeoniae Radix Alba are influenced by drying processing. The preferable method shows to be that crude drug should be cooked before being peeled and dried. As a matter of processing convtence, it is suggested to be peeled and sliced before being dried.

  15. First-principles-based Landau-Devonshire potential for BiFeO.sub.3./sub.

    Czech Academy of Sciences Publication Activity Database

    Márton, Pavel; Klíč, Antonín; Pasciak, Marek; Hlinka, Jiří

    2017-01-01

    Roč. 96, č. 17 (2017), s. 1-5, č. článku 174110. ISSN 2469-9950 R&D Projects: GA ČR GA15-04121S Grant - others:GA MŠk(CZ) LM2015042 Institutional support: RVO:68378271 Keywords : Landau-Devonshire potential * first-principles calculations * BiFeO3 * Energy-sampling technique Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  16. Transmission of 3H-compounds corresponding to the senescence signal in soybean

    International Nuclear Information System (INIS)

    Nooden, L.D.; Finkelstein, D.; Wetzel, P.

    1987-01-01

    To detect compounds transmitted from the pods to the leaves, the pods of explants at various stages were injected with 3 H-acetate and incubated for 24 hr. To avoid 3 H contamination, the leaf blades, pods, and stem were each vented separately with air (pods, leaves) or water (stem). The leaf blades were extracted with MeOH/CHCl 3 /formic acid/H 2 O (12:2:1:2 v/v), and after reduction to an aqueous phase, the 3 H was partitioned. Most 3 H entered the acid ether (50%) and aqueous (30%) phases with much less in the neutral and basic phases. The most 3 H was transmitted during mid and late podfill when the pods induce senescence. When chromatographed on TLC (silica gel) with n-BuOH/HAc/H 2 O) (450:112:188 v/v), the acid ether phase gave one sharp peak of 3 H, while the aqueous phase produced a broad peak. Most (80%) of the former peak, which corresponded to IAA and ABA, could be resolved from these compounds by reverse phase HPLC on a C 8 column with a MeOH/gradient. Thus, some compounds are transmitted from the pods to the leaves during induction of monocarpic senescence, and at least the acid ether-soluble compounds are of limited heterogeneity

  17. Character Decomposition and Transposition Processes in Chinese Compound Words Modulates Attentional Blink.

    Science.gov (United States)

    Cao, Hongwen; Gao, Min; Yan, Hongmei

    2016-01-01

    The attentional blink (AB) is the phenomenon in which the identification of the second of two targets (T2) is attenuated if it is presented less than 500 ms after the first target (T1). Although the AB is eliminated in canonical word conditions, it remains unclear whether the character order in compound words affects the magnitude of the AB. Morpheme decomposition and transposition of Chinese two-character compound words can provide an effective means to examine AB priming and to assess combinations of the component representations inherent to visual word identification. In the present study, we examined the processing of consecutive targets in a rapid serial visual presentation (RSVP) paradigm using Chinese two-character compound words in which the two characters were transposed to form meaningful words or meaningless combinations (reversible, transposed, or canonical words). We found that when two Chinese characters that form a compound word, regardless of their order, are presented in an RSVP sequence, the likelihood of an AB for the second character is greatly reduced or eliminated compared to when the two characters constitute separate words rather than a compound word. Moreover, the order of the report for the two characters is more likely to be reversed when the normal order of the two characters in a compound word is reversed, especially when the interval between the presentation of the two characters is extremely short. These findings are more consistent with the cognitive strategy hypothesis than the resource-limited hypothesis during character decomposition and transposition of Chinese two-character compound words. These results suggest that compound characters are perceived as a unit, rather than two separate words. The data further suggest that readers could easily understand the text with character transpositions in compound words during Chinese reading.

  18. Pyridine Group-Assisted Addition of Diazo-Compounds to Imines in the 3-CC Reaction of 2-Aminopyridines, Aldehydes, and Diazo-Compounds

    Science.gov (United States)

    Gulevich, Anton V.; Helan, Victoria; Wink, Donald J.

    2013-01-01

    A novel three-component (3-CC) coupling reaction of 2-aminoazines, aromatic aldehydes and diazo-compounds producing polyfunctional β-amino-α-diazo-compounds has been developed. The reaction features an unprecedented heterocycle-assisted addition of a diazo-compound to an imine. The obtained diazoesters were efficiently converted into valuable heterocycles, as well as to β-amino acid derivatives. PMID:23373731

  19. Thermal Expansion of Ni3Al Intermetallic Compound: Experiment and Simulation

    International Nuclear Information System (INIS)

    Wang Hai-Peng; Lü Peng; Zhou Kai; Wei Bing-Bo

    2016-01-01

    The thermal expansion of Ni 3 Al intermetallic compound is determined by a thermal dilatometer and simulated by the molecular dynamics method. The results of the linear thermal expansion coefficients are presented from 200 K up to the maximum temperature of 1600 K. The single phase of Ni 3 Al intermetallic compound is confirmed by x-ray diffraction together with DSC melting and solidification peaks, from which the solidus and the liquidus temperatures are obtained to be 1660 and 1695 K, respectively. The measured linear thermal expansion coefficient increases from 1.5 × 10 −5 to 2.7 × 10 −5 K −1 in the experimental temperature range, in good agreement with the data obtained by the molecular dynamics simulation, just a slight difference from the temperature dependence coefficient. Furthermore, the atomic structure and position are presented to reveal the atom distribution change during thermal expansion of Ni 3 Al compound. (paper)

  20. 3D Printing of Polymer-Bonded Rare-Earth Magnets With a Variable Magnetic Compound Fraction for a Predefined Stray Field.

    Science.gov (United States)

    Huber, Christian; Abert, Claas; Bruckner, Florian; Groenefeld, Martin; Schuschnigg, Stephan; Teliban, Iulian; Vogler, Christoph; Wautischer, Gregor; Windl, Roman; Suess, Dieter

    2017-08-25

    Additive manufacturing of polymer-bonded magnets is a recently developed technique, for single-unit production, and for structures that have been impossible to manufacture previously. Also, new possibilities to create a specific stray field around the magnet are triggered. The current work presents a method to 3D print polymer-bonded magnets with a variable magnetic compound fraction distribution. This means the saturation magnetization can be adjusted during the printing process to obtain a required external field of the manufactured magnets. A low-cost, end-user 3D printer with a mixing extruder is used to mix permanent magnetic filaments with pure polyamide (PA12) filaments. The magnetic filaments are compounded, extruded, and characterized for the printing process. To deduce the quality of the manufactured magnets with a variable magnetic compound fraction, an inverse stray field framework is developed. The effectiveness of the printing process and the simulation method is shown. It can also be used to manufacture magnets that produce a predefined stray field in a given region. This opens new possibilities for magnetic sensor applications. This setup and simulation framework allows the design and manufacturing of polymer-bonded permanent magnets, which are impossible to create with conventional methods.

  1. Industrial processing effects on phenolic compounds in sour cherry (Prunus cerasus L.) fruit

    NARCIS (Netherlands)

    Toydemir, G.; Capanoglu, E.; Gomez-Roldan, M.V.; Vos, de R.C.H.; Boyacioglu, D.; Hall, R.D.; Beekwilder, M.J.

    2013-01-01

    The processed juice (or nectar) of the sour cherry, Prunus cerasus L., is widely consumed in the Balkan region and Turkey. Sour cherry is known to be rich in polyphenolic compounds, such as anthocyanins and procyanidins. In this work, the effects of processing of sour cherry fruit to nectar on

  2. Centrifugal Fragmentation of a Dinuclear System in the Process of Its Evolution to the Compound Nucleus

    CERN Document Server

    Volkov, V V

    2005-01-01

    The physical content of centrifugal fragmentation is discussed. It is a specific nuclear process which is realized in the evolution of a dinuclear system into a compound nucleus at large angular momenta and large mass asymmetry of the system. The dinuclear system concept which describes the process of the compound nucleus formation in heavy ion reactions predicts the possibility of centrifugal fragmentation. Experimental data giving evidence of the realization of this nuclear process are given. A possible scheme of the centrifugal fragmentation model is discussed.

  3. Centrifugal fragmentation of a dinuclear system in the process of its evolution to the compound nucleus

    International Nuclear Information System (INIS)

    Volkov, V.V.

    2005-01-01

    The physical content of centrifugal fragmentation is discussed. It is a specific nuclear process which is realized in the evolution of a dinuclear system into a compound nucleus at large angular momenta and large mass asymmetry of the system. The dinuclear system concept which describes the process of the compound nucleus formation in heavy ion reactions predicts the possibility of centrifugal fragmentation. Experimental data giving evidence of the realization of this nuclear process are given. A possible scheme of the centrifugal fragmentation model is discussed

  4. Magnetic and transport properties of EuNi(Si1-xGex)3 compounds

    International Nuclear Information System (INIS)

    Uchima, K; Takaesu, Y; Akamine, H; Kakihana, M; Tomori, K; Uejo, T; Teruya, A; Nakamura, A; Hedo, M; Nakama, T; Yagasaki, K; Matsubayashi, K; Uwatoko, Y

    2014-01-01

    The magnetization M, electrical resistivity ρ, thermopower S and specific heat C of EuNi(Si 1-x Ge x ) 3 compounds have been measured at temperatures from 2 to 300 K. For the compounds of EuNi(Si 1-x Ge x ) 3 , we obtained an effective magnetic moment of μ eff ∼ 7.7 μ B , which is close to the divalent Eu value of μ eff =7.94 μ B . All compounds of EuNi(Si 1-x Ge x ) 3 order antiferromagnetically. The Néel temperature T N decreases monotonously with increasing the Ge concentration x from T N =49 K for EuNiSi 3 to T N =14 K for EuNiGe 3 . In the low temperature region below T N , anomalies corresponding to an additional magnetic phase transition into ferromagnetic state for compounds with x < 0.3, and into another antiferromagnetic for x > 0.3 were observed. The Curie temperature T C rapidly decreases with increasing x and vanishes at x ≈ 0.3. It is found that the magnetic phase transition temperatures of T N and T C in EuNi(Si 1-x Ge x ) 3 are strongly connected with the change of volume induced by the atomic substitution of Si by Ge

  5. Development of a fast and flexible generic process for the reduction of nitro compounds

    DEFF Research Database (Denmark)

    Haas-Santo, K.; Vankayala, B.; Dittmeyer, R.

    slurry catalyst was designed that can be adapted for reduction of a range of nitro compounds. The generic process provides the possibilities of swapping out a reactor or work up technology as required. The equipments of the generic process should be also able to operate at wider range of operational......The hydrogenation of aromatic nitro substrates is a frequently used reaction in the multi-step fabrication of active pharmaceutical ingredients (APIs). Today most pharmaceutical production processes are performed in batch mode. In the frame of the C2-campaign speed is an important factor during...... the production of a multitude of possible API’s. A generic reactor set-up able to be adapted for the transformation of a specific substrate would reduce the development time and thereby the campaign time significantly. In the frame of the EU-project F3-Factory such a flexible and continuous reaction system...

  6. Bitropic D3 Dopamine Receptor Selective Compounds as Potential Antipsychotics.

    Science.gov (United States)

    Luedtke, Robert R; Rangel-Barajas, Claudia; Malik, Mahinder; Reichert, David E; Mach, R H

    2015-01-01

    Neuropsychiatric disorders represent a substantial social and health care issue. The National Institutes of Health estimates that greater than 2 million adults suffer from neuropsychiatric disorders in the USA. These individuals experience symptoms that can include auditory hallucinations, delusions, unrealistic beliefs and cognitive dysfunction. Although antipsychotic medications are available, suboptimal therapeutic responses are observed for approximately one-third of patients. Therefore, there is still a need to explore new pharmacotherapeutic strategies for the treatment of neuropsychiatric disorders. Many of the medications that are used clinically to treat neuropsychiatric disorders have a pharmacological profile that includes being an antagonist at D2-like (D2, D3 and D4) dopamine receptor subtypes. However, dopamine receptor subtypes are involved in a variety of neuronal circuits that include movement coordination, cognition, emotion, affect, memory and the regulation of prolactin. Consequently, antagonism at D2-like receptors can also contribute to some of the adverse side effects associated with the long-term use of antipsychotics including the a) adverse extrapyramidal symptoms associated with the use of typical antipsychotics and b) metabolic side effects (weight gain, hyperglycemia, increased risk of diabetes mellitus, dyslipidemia and gynecomastia) associated with atypical antipsychotic use. Preclinical studies suggest that D3 versus D2 dopamine receptor selective compounds might represent an alternative strategy for the treatment of the symptoms of schizophrenia. In this review we discuss a) how bitropic Nphenylpiperazine D3 dopamine receptor selective compounds have been developed by modification of the primary (orthosteric) and secondary (allosteric or modulatory) pharmacophores to optimize D3 receptor affinity and D2/D3 binding selectivity ratios and b) the functional selectivity of these compounds. Examples of how these compounds might be

  7. Synthesis of α-amino-1,3-dicarbonyl compounds via Ugi flow chemistry reaction: access to functionalized 1,2,3-triazoles.

    Science.gov (United States)

    Vasconcelos, Stanley N S; Fornari, Evelin; Caracelli, Ignez; Stefani, Hélio A

    2017-11-01

    The Ugi multicomponent reaction has been used as an important synthetic route to obtain compounds with potential biological activity. We present the rapid and efficient synthesis of [Formula: see text]-amino-1,3-dicarbonyl compounds in moderate to good yields via Ugi flow chemistry reactions performed with a continuous flow reactor. Such [Formula: see text]-amino-1,3-dicarbonyl compounds can act as precursors for the production of [Formula: see text]-amino acids via hydrolysis of the ethyl ester group as well as building blocks for the synthesis of novel compounds with the 1,2,3-triazole ring. The [Formula: see text]-amino acid derivatives of the Ugi flow chemistry reaction products were then used for dipeptide synthesis.

  8. Orientation distribution in Bi2Te3-based compound prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Kim, K.T.; Kim, Y.H.; Lim, C.H.; Cho, D.C.; Lee, Y.S.; Lee, C.H.

    2005-01-01

    P-type Bi 0.5 Sb 1.5 Te 3 compounds doped with 3wt.% Te were fabricated by spark plasma sintering after mixing large powders(P L ) and small powders(P S ). We could obtained the highest figure of merit(Z C ) of 2.89 x 10 -3 /K in sintered compound mixed to P L :P S =80:20. This resulted from the increase of orientation by large powders(P S ) and the reduce of pores by small powders. The figure of merit(Z C ) of the sintered compound using only small powders(P S ) showed lower value of 2.67 x 10 -3 /K compared with that of sintered compound mixed to P L :P S =80:20 due to the increase of electrical resistivity. (orig.)

  9. Influence of Element Substitution on Corrosion Behavior of Bi2Te3-Based Compounds

    Science.gov (United States)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2018-02-01

    Atmospheric water may condense on the surface of Bi2Te3-based compounds constituting the Peltier module, depending on the operating environment used. In the stage of disposal, Bi2Te3-based compounds may come into contact with water in waste disposal sites. There are very few publications about the influence of condensed water on Peltier modules. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudo binary system compounds are used as p-type material or n-type material, respectively. The lattice distortion will be induced in the crystal of Bi2Te3-based compounds by element substitution due to the reduction in their thermal conductivity. However, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds with practical compositions has been investigated. Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 was prepared by the vertical Bridgman method. The electrochemical properties at room temperature were evaluated by cyclic voltammetry in a standard three-electrode cell. The working electrolyte was a naturally aerated 0.6 or 3.0 mass% NaCl solution. From the tendency for corrosion potential for all the samples, the corrosion sensitivity of ternary compounds was slightly higher than that of binary compounds. From the trend of current density, it was found that Bi0.5Sb1.5Te3 had a corrosion resistance intermediate between Bi2Te3 and Sb2Te3. On the other hand, corrosion resistance was affected despite a small amount of Se substitution, and the corrosion resistance of Bi2Te2.85Se0.15 was close to or lower than that of Bi2Se3. From the observation results of the corrosion products, the trends of morphology and composition of corrosion products for Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 were consistent with those of Sb2Te3 or Bi2Se3, respectively. From the results of x-ray photoelectron spectroscopy for the electrolyte after testing, the possibility that a

  10. Influence of Element Substitution on Corrosion Behavior of Bi2Te3-Based Compounds

    Science.gov (United States)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2018-06-01

    Atmospheric water may condense on the surface of Bi2Te3-based compounds constituting the Peltier module, depending on the operating environment used. In the stage of disposal, Bi2Te3-based compounds may come into contact with water in waste disposal sites. There are very few publications about the influence of condensed water on Peltier modules. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudo binary system compounds are used as p-type material or n-type material, respectively. The lattice distortion will be induced in the crystal of Bi2Te3-based compounds by element substitution due to the reduction in their thermal conductivity. However, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds with practical compositions has been investigated. Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 was prepared by the vertical Bridgman method. The electrochemical properties at room temperature were evaluated by cyclic voltammetry in a standard three-electrode cell. The working electrolyte was a naturally aerated 0.6 or 3.0 mass% NaCl solution. From the tendency for corrosion potential for all the samples, the corrosion sensitivity of ternary compounds was slightly higher than that of binary compounds. From the trend of current density, it was found that Bi0.5Sb1.5Te3 had a corrosion resistance intermediate between Bi2Te3 and Sb2Te3. On the other hand, corrosion resistance was affected despite a small amount of Se substitution, and the corrosion resistance of Bi2Te2.85Se0.15 was close to or lower than that of Bi2Se3. From the observation results of the corrosion products, the trends of morphology and composition of corrosion products for Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 were consistent with those of Sb2Te3 or Bi2Se3, respectively. From the results of x-ray photoelectron spectroscopy for the electrolyte after testing, the possibility that a

  11. Process for removal of sulfur compounds from fuel gases

    Science.gov (United States)

    Moore, Raymond H.; Stegen, Gary E.

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  12. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: gas@cdtn.br, e-mail: pls@cdtn.br, e-mail: fcp@cdtn.br, e-mail: lcmb@cdtn.br, e-mail: pabloag@cdtn.br

    2009-07-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  13. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    International Nuclear Information System (INIS)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade

    2009-01-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  14. Magnetic and structural properties of yellow europium oxide compound and Eu(OH){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongwook, E-mail: dongwookleedl324@gmail.com [Cavendish Laboratory, University of Cambridge, J. J Thomson Av., Cambridge CB3 0HE (United Kingdom); Seo, Jiwon, E-mail: jiwonseo@yonsei.ac.kr [Department of Physics and IPAP, Yonsei University, Seoul 120-749 (Korea, Republic of); Valladares, Luis de los Santos [Cavendish Laboratory, University of Cambridge, J. J Thomson Av., Cambridge CB3 0HE (United Kingdom); Avalos Quispe, O. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima, Perú (Peru); Barnes, Crispin H.W. [Cavendish Laboratory, University of Cambridge, J. J Thomson Av., Cambridge CB3 0HE (United Kingdom)

    2015-08-15

    A new material based on a yellow europium oxide compound was prepared from europium oxide in a high vacuum environment. The structural and magnetic properties of the material were investigated. Owing to the absence of a crystal structure, the material exhibited a disordered magnetic behavior. In a reaction with deionized (DI) water without applied heat, the compound assumed a white color as soon as the DI water reached the powder, and the structure became polycrystalline Eu(OH){sub 3}. The magnetic properties, such as the thermal hysteresis, disappeared after the reaction with DI water, and the magnetic susceptibility of the yellow oxide compound weakened. The magnetic properties of Eu(OH){sub 3} were also examined. Although Eu{sup 3+} is present in Eu(OH){sub 3}, a high magnetic moment due to the crystal field effect was observed. - Graphical abstract: (top left) Optical image of the yellow europium oxide compound. (top right) Optical image of the product of DI water and yellow europium oxide. (bottom) Magnetization curves as a function of temperature measured in various magnetic field. - Highlights: • We prepared a new material based on a yellow europium oxide compound from europium oxide. • We characterized the magnetic properties of the material which exhibits a disordered magnetic behavior such as thermal hysteresis. • The compound turned white (Eu(OH){sub 3}) as soon as the DI water reached the powder. • The thermal hysteresis disappeared after the reaction with DI water and the magnetic susceptibility of the yellow oxide compound weakened.

  15. NpX3 compounds under high pressure

    International Nuclear Information System (INIS)

    Zwirner, S.; Kalvius, G.M.

    1993-01-01

    The systematics of hyperfine interactions and the ordering temperature T ord in isostructural NpX 3 compounds (X=Al, Si, Ga, Ge, ln, Sn) are briefly reviewed. NpSn 3 has been viewed as a Kondo lattice system, similar to CeAl 2 , NpIn 3 shows a modulated magnetic structure including low moment and nonmagnetic contributions at ambient pressure and 4.2 K. Preliminary results of recent 237 Np Moessbauer studies on NpIn 3 at ambient pressure and various temperatures and at 4.0(8) GPa and 4.2 K are reported. At 4.0(8) GPa, T ord rises from 17 to 22 K, the low-moment contributions of the modulated structure are reduced and the non-magnetic site is lost below T ord . The variation of the hyperfine parameters and of T ord with pressure is similar to the behavior observed in NpSn 3 . (orig.)

  16. Solar light-driven photocatalysis using mixed-phase bismuth ferrite (BiFeO3/Bi25FeO40) nanoparticles for remediation of dye-contaminated water: kinetics and comparison with artificial UV and visible light-mediated photocatalysis.

    Science.gov (United States)

    Kalikeri, Shankramma; Shetty Kodialbail, Vidya

    2018-05-01

    Mixed-phase bismuth ferrite (BFO) nanoparticles were prepared by co-precipitation method using potassium hydroxide as the precipitant. X-ray diffractogram (XRD) of the particles showed the formation of mixed-phase BFO nanoparticles containing BiFeO 3 /Bi 25 FeO 40 phases with the crystallite size of 70 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the formation of quasi-spherical particles. The BFO nanoparticles were uniform sized with narrow size range and with the average hydrodynamic diameter of 76 nm. The band gap energy of 2.2 eV showed its ability to absorb light even in the visible range. Water contaminated with Acid Yellow (AY-17) and Reactive Blue (RB-19) dye was treated by photocatalysis under UV, visible, and solar light irradiation using the BFO nanoparticles. The BFO nanoparticles showed maximum photocatalytical activity under solar light as compared to UV and visible irradiations, and photocatalysis was favored under acidic pH. Complete degradation of AY-17 dyes and around 95% degradation of RB-19 could be achieved under solar light at pH 5. The kinetics of degradation followed the Langmuir-Hinshelhood kinetic model showing that the heterogeneous photocatalysis is adsorption controlled. The findings of this work prove the synthesized BFO nanoparticles as promising photocatalysts for the treatment of dye-contaminated industrial wastewater.

  17. Synthesis, crystal structure and biological activity of a novel 1,2,3-thidiazole compound

    International Nuclear Information System (INIS)

    Ke, W.

    2013-01-01

    A new 1,2,3-thiadiazole compound was synthesized and characterized by 1H NMR, MS and HRMS. The crystal structure of the title compound (C/sub 12/H/sub 11/ClN/sub 2/O/sub 4/S/sub 2/, Mr = 346.80) has been determined by single-crystal X-ray diffraction. The crystal is of triclinic, space group P-1 with a = 8.4425(17) A, b = 8.9801(18) A, c = 9.859(2) A, alpha = 84.36(3) degree, beta = 86.71(3)degree, lambda = 83.25(3) degree, V = 737.9(3)A3, Z 2, F(000) = 356, Dc = 1.561 g/cm/sup 3/, mu = 0.557 mm-1, the final R1 0.0380 and wR2 = 0.0982 for 2160 observed reflections with I > 2sigma(I). A total of 12585 reflections were collected, of which 2601 were independent (Rint 0.0364). The herbicidal activity of title compound was determined, the results showed the title compound displayed excellent herbicidal activity against Brassica campestris. (author)

  18. Governing processes for reactive nitrogen compounds in the European atmosphere

    DEFF Research Database (Denmark)

    Hertel, Ole; Skjøth, Carsten Ambelas; Reis, S.

    2012-01-01

    +)), oxidized nitrogen (NOy: nitrogen monoxide (NO) + nitrogen dioxide (NO2) and their reaction products) as well as organic nitrogen compounds (organic N). Pollution abatement strategies need to take into account the differences in the governing processes of these compounds when assessing their impact...... on ecosystem services, biodiversity, human health and climate. NOx (NO+NO2) emitted from traffic affects human health in urban areas where the presence of buildings increases the residence time in streets. In urban areas this leads to enhanced exposure of the population to NOx concentrations. NOx emissions.......5 and PM10 (mass of aerosols with an aerodynamic diameter of less than 2.5 and 10 mu m, respectively) with an impact on radiation balance as well as potentially on human health. Little is known quantitatively and qualitatively about organic N in the atmosphere, other than that it contributes a significant...

  19. Kinetic particularities of strained alicyclic compounds formation in catalytic methanol to hydrocarbon transformation process

    OpenAIRE

    Doluda V.; Brovko R.; Giniatullina N.; Sulman M.

    2017-01-01

    The catalytic transformation of methanol into hydrocarbons is a complex chemical process, accompanied by chain parallel chemical transformation reactions. The most valuable products of the methanol to hydrocarbons catalytic transformation reaction are the strained hydrocarbons — cyclopropane derivatives. These compounds can be used as a high-energy fuel, and also as a valuable chemical raw material. However, the yield of strained compounds in methanol to hydrocarbons catalytic transformation ...

  20. Addition compounds between lanthanide (III) and yttrium (III) and methanesulfonates (MS) and 3-picoline-N-oxide (3-pic NO)

    International Nuclear Information System (INIS)

    Zinner, L.B.

    1984-01-01

    The preparation and characterization of addition compounds between lanthanide methanesulfonates and 3-picoline-N-oxide of general formula Ln (MS) 3 .2(3-pic No), Ln being La, Yb and Y, were carried out. The techniques employed for characterization were: elemental analysis, X-ray diffraction, infrared absorption spectroscopy, electrolytic conductance in methanol, melting ranges and emission spectrum of the Eu (III) compound. (Author) [pt

  1. Process for removing heavy metal compounds from heavy crude oil

    Science.gov (United States)

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  2. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    Science.gov (United States)

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  3. Half-metallicity in a BiFeO3/La2/3Sr1/3MnO3 superlattice: A first-principles study

    KAUST Repository

    Jiwuer, Jilili

    2013-06-01

    We present first-principles results for the electronic, magnetic, and optical properties of the heterostructure as obtained by spin-polarized calculations using density functional theory. The electronic states of the heterostructure are compared to those of the bulk compounds. Structural relaxation turns out to have only a minor impact on the chemical bonding, even though the oxygen octahedra in develop some distortions due to the interface strain. While a small charge transfer affects the heterointerfaces, our results demonstrate that the half-metallic character of is fully maintained. © EPLA, 2013.

  4. Rapid synthesis of single-phase bismuth ferrite by microwave-assisted hydrothermal method

    International Nuclear Information System (INIS)

    Cao, Wenqian; Chen, Zhi; Gao, Tong; Zhou, Dantong; Leng, Xiaonan; Niu, Feng; Zhu, Yuxiang; Qin, Laishun; Wang, Jiangying; Huang, Yuexiang

    2016-01-01

    This paper describes on the fast synthesis of bismuth ferrite by the simple microwave-assisted hydrothermal method. The phase transformation and the preferred growth facets during the synthetic process have been investigated by X-ray diffraction. Bismuth ferrite can be quickly prepared by microwave hydrothermal method by simply controlling the reaction time, which is further confirmed by Fourier Transform infrared spectroscopy and magnetic measurement. - Graphical abstract: Single-phase BiFeO_3 could be realized at a shortest reaction time of 65 min. The reaction time has strong influences on the phase transformation and the preferred growth facets. - Highlights: • Rapid synthesis (65 min) of BiFeO_3 by microwave-assisted hydrothermal method. • Reaction time has influence on the purity and preferred growth facets. • FTIR and magnetic measurement further confirm the pure phase.

  5. Evolution of Volatile Compounds during the Distillation of Cognac Spirit.

    Science.gov (United States)

    Awad, Pierre; Athès, Violaine; Decloux, Martine Esteban; Ferrari, Gérald; Snakkers, Guillaume; Raguenaud, Patrick; Giampaoli, Pierre

    2017-09-06

    Cognac wine spirit has a complex composition in volatile compounds which contributes to its organoleptic profile. This work focused on the batch distillation process and, in particular, on volatile compounds specifically produced by chemical reactions during the distillation of Cognac wine spirit, traditionally conducted in two steps with charentais pot stills. The aim of this study was to characterize these volatile compounds formed during distillation. Sampling has been performed on the distillates and inside the boiler during a typical Cognac distillation. The analysis of these samples allowed us to perform a mass balance and to point out several types of volatile compounds whose quantities strongly increased during the distillation process. These compounds were distinguished by their chemical family. It has been found that the first distillation step was decisive for the formation of volatile compounds. Moreover, 2 esters, 3 aldehydes, 12 norisoprenoids, and 3 terpenes were shown to be generated during the process. These results suggest that some volatile compounds found in Cognac spirit are formed during distillation due to chemical reactions induced by high temperature. These findings give important indications to professional distillers in order to enhance the product's quality.

  6. Process engineering versus product engineering - A case study on volatile organic compounds removal

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Vilela, T.; Pereira, P.

    2005-01-01

    Three solutions for removing the dangerous volatile organic compound (VOC) xylene from an industrial coating process are presented and compared. Two of them are based on classical process engineering principles, i.e., development of separation-cleaning methods such as incineration and adsorption...... to the problem-need specified in the beginning of the project, but producing a novel formulation (chemical product design) represents a method that results to a completely xylene-free process which is environmentally and economically more interesting than those generated via the more traditional process...

  7. Influence of partial replacement of NaCl with KCl on profiles of volatile compounds in dry-cured bacon during processing.

    Science.gov (United States)

    Wu, Haizhou; Zhuang, Hong; Zhang, Yingyang; Tang, Jing; Yu, Xiang; Long, Men; Wang, Jiamei; Zhang, Jianhao

    2015-04-01

    This study investigated the influence of partial substitution of NaCl with KCl on the formation of volatile compounds in bacons during processing using a purge and trap dynamic headspace GC/MS system. Three substitutions were 0% KCl (I), 40% KCl (II), and 70% KCl (III). The profiles of the volatile compounds significantly changed during processing, particularly during the drying/ripening. At the end of process, the bacons from substitution III formed significantly higher levels of lipid-derived volatiles, such as straight chain aldehydes, hydrocarbons than bacons from substitution I and II, whereas the latter formed higher levels of volatiles from amino acid degradation such as 3-methylbutanal. There were very few differences in volatile formation between 0% and 40% KCl application. These results suggest that K(+) substitution of Na(+) by more than 40% may significantly change profiles of volatiles in finished dry-cured bacons and therefore would result in changes in the product aroma and/or flavour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Processing and properties of PCL/cotton linter compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Elieber Barros; Franca, Danyelle Campos; Morais, Dayanne Diniz de Souza; Araujo, Edcleide Maria [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais; Rosa, Morsyleide de Freitas; Morais, Joao Paulo Saraiva [Embrapa Tropical Agroindustia, Fortaleza, CE (Brazil); Wellen, Renate Maria Ramos, E-mail: wellen.renate@gmail.com [Universidade Federal da Paraiaba (UFPB), Joao Pessoa, PB (Brazil)

    2017-03-15

    Biodegradable compounds of poly(ε-caprolactone) (PCL)/ cotton linter were melting mixed with filling content ranging from 1% to 5% w/w. Cotton linter is an important byproduct of textile industry; in this work it was used in raw state and after acid hydrolysis. According to the results of torque rheometry no decaying of viscosity took place during compounding, evidencing absence of breaking down in molecular weight. The thermal stability increased by 20% as observed in HDT for PCL/cotton nanolinter compounds. Adding cotton linter to PCL did not change its crystalline character as showed by XRD; however an increase in degree of crystallinity was observed by means of DSC. From mechanical tests in tension was observed an increase in ductility of PCL, and from mechanical tests in flexion an increase in elastic modulus upon addition of cotton linter, whereas impact strength presented lower values for PCL/cotton linter and PCL/cotton nanolinter compounds. SEM images showed that PCL presents plastic fracture and cotton linter has an interlacing fibril structure with high L/D ratio, which are in agreement with matrix/fibril morphology observed for PCL/cotton linter compounds. PCL/cotton linter compounds made in this work cost less than neat PCL matrix and presented improved properties making feasible its commercial use. (author)

  9. TbxBi1-xFeO3 nanoparticulate multiferroics fabricated by micro-emulsion technique: Structural elucidation and magnetic behavior evaluation

    KAUST Repository

    Anwar, Zobia

    2014-04-01

    Tb-doped BiFeO3 multiferroics nanoparticles fabricated via micro-emulsion route were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The fully characterized TbxBi1-xFeO3 nanoparticles were then subjected to magnetic behavior evaluation for various technological applications. The thermogravimetric analysis (TGA) conducted in the range 25-1000 C predicted the temperature (~960 C) for phase formation. XRD estimated the crystallite size 30-47 nm, while the particles size estimated by SEM was found (80-120 nm). The XRD data confirmed the rhombohedral (space group R3c) phase with average cell volume 182.66 Å3 (for BiFeO 3). Various other physical parameters like bulk density, X-ray density and porosity were also determined from the XRD data and found in agreement with theoretical predictions. The magnetic studies showed that as Bi3+ was substituted by Tb3+, all magnetic parameters were altered. The maximum saturation magnetization (Ms) (0.6691 emug -1) was exhibited by Tb0.02Bi0.98FeO 3 while the Tb0.00Bi1.00Fe1.00O 3 showed the maximum (549 Oe) coercivity. The evaluated magnetic behavior categorized these materials as soft magnetic materials that may be useful for fabricating advanced technological applications. © 2013 Elsevier B.V.

  10. Bioactive compounds in pindo palm (Butia capitata) juice and in pomace resulting of the extraction process.

    Science.gov (United States)

    Jachna, Tiphaine J; Hermes, Vanessa S; Flôres, Simone H; Rios, Alessandro O

    2016-03-15

    Pindo palm (Butia capitata, Becc. 1916) is a tropical fruit native to South America and is relatively rich in bioactive compounds. It is often consumed as juice. The aim of this study was, first, to identify the degradation of these compounds by pasteurization and by cold storage (4 °C) of pindo palm juice. Physicochemical properties and concentrations of phenolic compounds, carotenoids and vitamin C have been evaluated on fresh and pasteurized juices. Moreover, another objective was to characterize the nutritional composition and the bioactive compounds of pindo palm pomace, the by-product of juice processing. The results demonstrated a degradation of carotenoids with pasteurization and a degradation of vitamin C with both pasteurization and cold storage of juices. Furthermore, the evaluation of pindo palm pomace showed that it is relatively rich in total phenols (20.06 g gallic acid equivalents kg(-1) dry matter) and in β-carotene (0.22 g kg(-1) dry matter). Thus, from the nutrition viewpoint, it does not seem interesting to pasteurize juice. On the other hand, extraction of carotenoids and phenolic compounds from the pomace appears to be a relevant process. © 2015 Society of Chemical Industry.

  11. Compounds in dictionary-based Cross-language information retrieval_revised

    Directory of Open Access Journals (Sweden)

    2002-01-01

    Full Text Available Compound words form an important part of natural language. From the cross-lingual information retrieval (CLIR point of view it is important that many natural languages are highly productive with compounds, and translation resources cannot include entries for all compounds. Also, compounds are often content bearing words in a sentence. In Swedish, German and Finnish roughly one tenth of the words in a text prepared for information retrieval purposes are compounds. Important research questions concerning compound handling in dictionary-based cross-language information retrieval are 1 compound splitting into components, 2 normalisation of components, 3 translation of components and 4 query structuring for compounds and their components in the target language. The impact of compound processing on the performance of the cross-language information retrieval process is evaluated in this study and the results indicate that the effect is clearly positive.

  12. Phase formation, structure and dielectric properties of ceramics (Na0.5Bi0.5TiO3–(K0.5Na0.5NbO3–BiFeO3

    Directory of Open Access Journals (Sweden)

    G. M. Kaleva

    2016-03-01

    Full Text Available Influence of BiFeO3 (BF on phase formation, unit cell parameters, microstructure, dielectric and ferroelectric properties of solid solutions close to the morphotropic phase boundary in the (Na0.5Bi0.5TiO3–(K0.5Na0.5NbO3 system additionally modified by the low-melting KCl additives has been studied. The formation of pure perovskite structure samples decrease in the unit cell parameters and increase in the TC value stimulated by the BF addition have been revealed. It was proved that modification of compositions by small amounts of the BF and KCl additives leads to improvement of dielectric parameters.

  13. Synthesis, Processing, and Thermoelectric Properties of Germanium-Antimony-Tellurium Based Compounds and Alloys

    Science.gov (United States)

    Williams, Jared Brett

    Society has become increasingly more aware of the negative impacts which nonrenewable energy sources have on the environment, and therefore the search for new and more efficient means of energy production has become an important research endeavor. Thermoelectric modules possess the unique ability to convert wasted heat into useful electrical energy via solid state processes, which could vastly improve the efficiency of a number of applications. The materials which accomplish this are typically comprised of semiconductors which exhibit high electrical conductivity, Seebeck coefficient, and thermal resistivity. Together these properties give us a gauge for the overall efficiency of the thermal to electrical energy conversion. Phase change materials are a class of materials primarily used for optical data storage in CDs, DVDs, and Blu-Ray discs. Today's state of the art phase change materials are based on alloys of GeTe and Sb2Te3. These materials have also been found to exhibit high thermoelectric efficiencies. These high efficiencies stem from their complex crystal structure and degenerate semiconducting nature. The purpose of this work was to study and engineer the thermoelectric properties of various alloys and compounds which belong to this family of materials. Specifically studied were the compounds Ge4SbTe5 and Ge17Sb2Te20. In each case various synthesis and processing strategies were implemented to increase the thermoelectric performance and better understand the fundamental electrical and thermal properties. Finally various proposals for future work on these materials are presented, all of which are based on the findings described herein.

  14. Galvanomagnetic properties of atomically disordered compounds YBa2Cu3O7

    International Nuclear Information System (INIS)

    Kar'kin, A.E.; Goshchitskij, B.N.

    2001-01-01

    To clarify the peculiarities of the metal-dielectric transition (MDT) in the HTSC type compounds one investigated into the galvanomagnetic properties of YBa 2 Cu 3 O 7 polycrystalline specimens irradiated by fast neutrons under 80 K temperature with F = 2x10 19 cm -2 fluence and subsequent to their exposure to the isochronal annealings within 150-390 K temperature range. It was determined that temperature dependences of R H Hall coefficient and of MR magnetic resistances of YBa 2 Cu 3 O 7 polycrystalline compounds disordered by fast neutrons retained the anomalous properties peculiar to the HTSC type disordered compounds in spite of the fact that conductivity was not a metallic one. This behavior is explained by the fact that in the disordered compounds there are two co-existing electron phases with conductivity as to the localized and the metallic states. Concentration of metallic phase is lower than threshold of passing, that is why, conductivity of this system is of dielectric type while R H and MR have temperature dependences similar to metallic phase that are renormalized by magnitude [ru

  15. Processing of volatile organic compounds by microwave plasmas

    International Nuclear Information System (INIS)

    Mizeraczyk, J.; Jasinski, M.; Dors, M.; Zakrzewski, Z.

    2011-01-01

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the nonthermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguidebased surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguidebased nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzletype MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented. (author)

  16. Processing of volatile organic compounds by microwave plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mizeraczyk, J. [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland); Department of Marine Electronics, Gdynia Martime University, Gdynia (Poland); Jasinski, M.; Dors, M.; Zakrzewski, Z. [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland)

    2011-07-01

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the nonthermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguidebased surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguidebased nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzletype MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented. (author)

  17. NIR to visible upconversion in Er3+/Yb3+ co-doped CaYAl3O7 phosphor obtained by solution combustion process

    International Nuclear Information System (INIS)

    Singh, Vijay; Rai, Vineet Kumar; Al-Shamery, Katharina; Nordmann, Joerg; Haase, Markus

    2011-01-01

    Using the combustion synthesis, CaYAl 3 O 7 :Er 3+ phosphor powders co-doped with Yb 3+ have been prepared at low temperatures (550 o C) in a few minutes. Formation of the compound was confirmed by X-ray powder diffraction. Near-infrared to visible upconversion fluorescence emission in the Er 3+ doped CaYAl 3 O 7 phosphor powder has been observed. The effect of co-doping with triply ionized ytterbium in the CaYAl 3 O 7 :Er 3+ phosphor has been studied and the process involved is discussed. - Highlights: → The green emitting up-conversion CaYAl 3 O 7 :Er 3+ phosphor powders co-doped with Yb 3+ have been prepared by easy combustion method. → The combustion method is a simple, energy saving, fast and economical viable process. → The luminescence intensity in the co-doped phosphor is enhanced by several times compared to that of the singly (Er 3+ ) doped phosphor.

  18. No fluorinated compounds in the uranium conversion process: risk analysis and proposition of pictograms

    International Nuclear Information System (INIS)

    Jeronimo, Adroaldo Clovis; Oliveira, Wagner dos Santos

    2012-01-01

    The plants comprising the chemical conversion of uranium, which are part of the nuclear fuel cycle, present some risks, among others, because are associated with the non-fluorinated compounds handled in these processes. This study is the analysis of the risks associated with these compounds, i e, the non-fluorinated reactants and products, handled in different chemical processing plants, which include the production of uranium hexafluoride, while emphasizing the responsibilities and actions that fit to the chemical engineer with regard to minimizing risks during the various stages. The work is based on the experience gained during the development and mastery of the technology of production of uranium hexafluoride, the IPEN/ CNEN-SP, during the '80s, with the support of COPESP -Navy of Brazil. (author)

  19. Ionothermal synthesis and structural transformation targeted by ion exchange in metal-1,3,5-benzenetricarboxylate compounds

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qing-Qing [Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Liu, Bing [College of Chemistry and Chemical Engineering, Shaanxi University of Sciences and Technology, Xi’an 710021, Shaanxi (China); Xu, Ling, E-mail: xuling@snnu.edu.cn [Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); Jiao, Huan, E-mail: jiaohuan@snnu.edu.cn [Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi (China)

    2017-03-15

    Ionothermal reactions of 1,3,5-benzenetricarboxylate acid (H{sub 3}BTC) and Ni(NO{sub 3}){sub 2}, Co(NO{sub 3}){sub 2} and Cu(NO{sub 3}){sub 2} gave two discrete 32-membered ring-like allomers, [M{sub 2}(HBTC){sub 2}(NH{sub 2}CONH{sub 2}){sub 2}(H{sub 2}O){sub 4}]·3H{sub 2}O (M=Ni(1), Co(2)) and one layered [Cu{sub 2}(BTC)Cl(H{sub 2}O){sub 4}] (3). The weak interactions in 1 can be deconstructed to some degree in ion exchange by exploring the factors of divalent and trivalent metal species, metal concentration and soaking time, which are demonstrated by PXRD and N{sub 2} absorption. Cu{sup 2+} has the highest N{sub 2} adsorbance when soaking with 1, and 1 can keep structure stable when Cu{sup 2+} below 0.16 mol L{sup −1} and the soaking time within 24d. As Cu{sup 2+} beyond 0.16 mol L{sup −1} and the soaking time beyond 24d, the structure of compound 1 starts to transform with the crystal morphology from clear pale green to opaque blue. Ionothermal reactions of compound 1 with different Cu{sup 2+} amounts obtained Ni{sup 2+}-Cu{sup 2+} hetero complexes, whose PXRD patterns are similar to that of 3 and EDS indicates Cu{sup 2+}% increases with Cu{sup 2+} additions and close to 100% as Cu{sup 2+} being 1.6 mmol. It suggests that 3 is a controlled product and Cu{sup 2+} can transform discrete compound 1 into 2D compound 3. - Graphical abstract: Three compounds were synthesized through ionothermal reactions. The weak interactions in compound 1 can be deconstructed by ion exchange and discrete compound 1 can be transformed into layered compound 3. - Highlights: • Two discrete ring-like and one layered compounds were ionothermally synthesized. • Metal species, metal concentration and soaking time deconstruct the H-bondings in 1. • 1 can be transformed to 3 through ionothermal reaction, otherwise forbidden.

  20. Asymptotic behavior of local times of compound Poisson processes with drift in the infinite variance case

    NARCIS (Netherlands)

    Lambert, A.; Simatos, F.

    2015-01-01

    Consider compound Poisson processes with negative drift and no negative jumps, which converge to some spectrally positive Lévy process with nonzero Lévy measure. In this paper, we study the asymptotic behavior of the local time process, in the spatial variable, of these processes killed at two

  1. Asymptotic behavior of local times of compound Poisson processes with drift in the infinite variance case

    NARCIS (Netherlands)

    Lambert, A.; Simatos, F.

    2012-01-01

    Consider compound Poisson processes with negative drift and no negative jumps, which converge to some spectrally positive L\\'evy process with non-zero L\\'evy measure. In this paper we study the asymptotic behavior of the local time process, in the spatial variable, of these processes killed at two

  2. Neutron diffraction studies on cobalt substituted BiFeO3

    Science.gov (United States)

    Ray, J.; Biswal, A. K.; Acharya, S.; Babu, P. D.; Siruguri, V.; Vishwakarma, P. N.

    2013-02-01

    A dilute concentration of single phase Cobalt substituted Bismuth ferrite, BiFe1-XCoXO3; (x=0, 0.02) is prepared by sol-gel auto combustion method. Room temperature neutron diffraction patterns show no change in the crystal and magnetic structure upon cobalt doping. The calculation of magnetic moments shows 3.848 μB for Fe+ and 2.85 μB for Co3+. The cobalt is found to be in intermediate spin state.

  3. Effects of crystallite structure and interface band alignment on the photocatalytic property of bismuth ferrite/ (N-doped) graphene composites

    International Nuclear Information System (INIS)

    Li, Pai; Chen, Qiang; Lin, Yinyin; Chang, Gang; He, Yunbin

    2016-01-01

    Bismuth ferrite/graphene (N-doped graphene) photocatalysts are successfully prepared by a facile and effective two-step hydrothermal method. Bismuth ferrite/graphene shows superior photocatalytic activity compared with bismuth ferrite/N-doped graphene and pure BiFeO 3 . X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy analyses indicate that Bi 25 FeO 40 crystalline phase is obtained with the addition of graphene, while BiFeO 3 is formed under the same hydrothermal conditions in the presence of N-doped graphene. Core-level and valence-band X-ray photoelectron spectroscopy analyses reveal a downward band bending of bismuth ferrite (∼0.5 eV) at the interface of the bismuth ferrite/(N-doped) graphene composites, which facilitates the electron transfer from bismuth ferrite to (N-doped) graphene and suppresses the recombination of photo-generated electron–hole pairs. This downward bending band alignment at the interface supposes to be the main mechanism underlying the enhanced photocatalytic activity of the bismuth ferrite/graphene composites that are currently of great interest in the photocatalysis field. - Highlights: • Bismuth ferrite/(N-doped) graphene composites were prepared by a hydrothermal method. • Bi 25 FeO 40 and BiFeO 3 were obtained with presence of graphene and N-graphene, respectively. • Bi 25 FeO 40 /graphene shows superior photocatalytic activity over BiFeO 3 and BiFeO 3 /N-graphene. • A downward band bending (∼0.5 eV) of bismuth ferrite exists at the composites interface. • The downward band bending supposes to be the mechanism for the enhanced photocatalytic activity.

  4. Bioactive Compound Content and Cytotoxic Effect on Human Cancer Cells of Fresh and Processed Yellow Tomatoes

    Directory of Open Access Journals (Sweden)

    Assunta Raiola

    2015-12-01

    Full Text Available Tomato, as a fresh or processed product, has a high nutritional value due to its content of bioactive components such as phenolic compounds. Few studies describe the effect of processing on antioxidant content and the cancer cell growth inhibition activity. In this study we determined the phenolic and ascorbic acid content of three yellow tomato varieties, before and after thermal processing. Moreover, we determined the antioxidative power and tested the effects of tomato extracts on three human cancer cell lines. We found that the amount of phenolic acids (chlorogenic acid and caffeic acid decreased in all the samples after processing, whereas the flavonoid content increased after the heat treatment in two samples. A cytotoxic effect of tomato extracts was observed only after processing. This result well correlates with the flavonoid content after processing and clearly indicates that processed yellow tomatoes have a high content of bioactive compounds endowed with cytotoxicity towards cancer cells, thus opening the way to obtain tomato-based functional foods.

  5. Mixed valence and metamagnetism in a metal flux grown compound Eu2Pt3Si5

    International Nuclear Information System (INIS)

    Sarkar, Sumanta; Subbarao, Udumula; Joseph, Boby; Peter, Sebastian C.

    2015-01-01

    A new compound Eu 2 Pt 3 Si 5 with plate shaped morphology has been grown from excess In flux. The compound crystallizes in the orthorhombic U 2 Co 3 Si 5 structure type, Ibam space group and the lattice parameters are a=10.007(2) Å, b=11.666(2) Å and c=6.0011(12) Å. The crystal structure of this compound can be conceived as inter-twinned chains of [Pt 2 Si 2 ] and [PtSi 3 ] tetrahedra connected along [100] direction to give rise to a complex three dimensional [Pt 3 Si 5 ] network. Temperature dependent magnetic susceptibility data suggests that Eu 2 Pt 3 Si 5 undergoes a strong antiferromagnetic ordering (T N =19 K) followed by a weak ferromagnetic transition (T C =5.5 K). The effective magnetic moment/Eu obtained from susceptibility data is 6.78 μ B accounts mixed valent Eu with almost 85% divalent Eu, which is supported by X-ray absorption near edge spectroscopy. The compound undergoes a metamagnetic transition under applied magnetic field through a probable spin flop mechanism. - Graphical abstract: Eu 2 Pt 3 Si 5 , a new member in the U 2 Co 3 Si 5 (Ibam) family undergoes metamagnetic transition at high magnetic field and Eu is in mixed valence state. - Highlights: • A new compound Eu 2 Pt 3 Si 5 has been synthesized using indium as an inactive metal flux. • The compound undergoes metamagnetic transition at higher field. • Eu in this compound resides in a mixed valence state

  6. Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huan [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Luo, Guang-Qian; Hu, Hong-Yun [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Qiang; Yang, Jia-Kuan [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yao, Hong, E-mail: hyao@hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer NH{sub 3}, SO{sub 2}, H{sub 2}S and COS are emitted during different sludge conditioning processes. Black-Right-Pointing-Pointer H{sub 2}S and SO{sub 2} generation increase in the acidic environment created by H{sub 2}SO{sub 4}. Black-Right-Pointing-Pointer Fenton peroxidation facilitates the formation of COS. Black-Right-Pointing-Pointer CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. Black-Right-Pointing-Pointer CaO leads to the conversion of free ammonia or protonated amine to volatile NH{sub 3}. - Abstract: Chemical conditioners are often used to enhance sewage sludge dewaterability through altering sludge properties and flocs structure, both affect odorous compounds emissions not only during sludge conditioning but also in subsequent sludge disposal. This study was to investigate emission characteristics of ammonia (NH{sub 3}), sulfur dioxide (SO{sub 2}), hydrogen sulfide (H{sub 2}S) and carbonyl sulfide (COS) generated from sewage sludge conditioned by three representative conditioners, i.e., organic polymers, iron salts and skeleton builders, F-S (Fenton's reagent and skeleton builders) composite conditioner. The results demonstrate that polyacrylamide (PAM) has an insignificant effect on emission characteristics of nitrogen- and sulfur-containing odorous compounds, because the properties, sulfur and nitrogen speciations are similar in PAM-conditioned sludge and raw sludge (RS). Significant increases of SO{sub 2} and H{sub 2}S emissions in the H{sub 2}SO{sub 4} conditioning process were observed due to the accelerated decomposition of sulfur-containing amino acids in acidic environment. Fenton peroxidation facilitates the formation of COS. CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. However, under strong alkaline conditions, free ammonia or protonated amine in sludge can be easily converted to volatile ammonia, resulting in a significant

  7. Changes in Volatile Compounds of Chinese Luzhou-Flavor Liquor during the Fermentation and Distillation Process.

    Science.gov (United States)

    Ding, Xiaofei; Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2015-11-01

    The aim of this study was to investigate the dynamic of volatile compounds in the Zaopei during the fermentation and distillation process by headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GCMS). Physicochemical properties analysis of Zaopei (fermented grains [FG], fermented grains mixed with sorghum [FGS], streamed grains [SG], and streamed grains mixed with Daqu [SGD]) showed distinct changes. A total number of 66 volatile compounds in the Zaopei were identified, in which butanoic acid, hexanoic acid, ethyl hexanoate, ethyl lactate, ethyl octanoate, hexyl hexanoate, ethyl hydrocinnamate, ethyl oleate, ethyl hexadecanoate, and ethyl linoleate were considered to be the dominant compounds due to their high concentrations. FG had the highest volatile compounds (112.43 mg/kg), which significantly decreased by 17.05% in the FGS, 67.12% in the SG, and 73.75% in the SGD. Furthermore, about 61.49% of volatile compounds of FGS were evaporated into raw liquor, whereas head, heart, and tail liquor accounted for 29.84%, 39.49%, and 30.67%, respectively. Each volatile class generally presented a decreasing trend, except for furans. Especially, the percentage of esters was 55.51% to 67.41% in the Zaopei, and reached 92.60% to 97.67% in the raw liquor. Principal component analysis based ordination of volatile compounds data segregated FGS and SGD samples. In addition, radar diagrams of the odor activity values suggested that intense flavor of fruit was weakened most from FG to SGD. The dynamic of volatile compounds in the Zaopei during the fermentation and distillation process was tested by SPME-GCMS. The result of this study demonstrated that both volatile compounds of Zaopei and thermal reaction during distillation simply determined the unique feature of raw liquor. This study was conducted based on the real products from liquor manufactory, so it is practicable that the method can be used in an industry setting. © 2015 Institute of Food

  8. Changes in Phenolic Compounds and Phytotoxicity of the Spanish-Style Green Olive Processing Wastewaters by Aspergillus niger B60.

    Science.gov (United States)

    Papadaki, Eugenia; Tsimidou, Maria Z; Mantzouridou, Fani Th

    2018-05-16

    This study systematically investigated the degradation kinetics and changes in the composition of phenolic compounds in Spanish-style Chalkidiki green olive processing wastewaters (TOPWs) during treatment using Aspergillus niger B60. The fungal growth and phenol degradation kinetics were described sufficiently by the Logistic and Edward models, respectively. The maximum specific growth rate (2.626 1/d) and the maximum degradation rate (0.690 1/h) were observed at 1500 mg/L of total polar phenols, indicating the applicability of the process in TOPWs with a high concentration of phenolic compounds. Hydroxytyrosol and the other simple phenols were depleted after 3-8 days. The newly formed secoiridoid derivatives identified by HPLC-DAD-FLD and LC-MS are likely produced by oleoside and oleuropein aglycon via the action of fungal β-glucosidase and esterase. The treated streams were found to be less phytotoxic with reduced chemical oxygen demand by up to 76%. Findings will provide useful information for the subsequent treatment of residual contaminants.

  9. Centrifugal fragmentation of a dinuclear system in the process of its evolution toward a compound nucleus

    International Nuclear Information System (INIS)

    Volkov, V. V.

    2007-01-01

    The centrifugal fragmentation of a dinuclear system in the process of evolution toward a compound nucleus is examined. If the angular momentum in the collision of primary nuclei is quite high, centrifugal forces become dominant at the final stage of the evolution of the dinuclear system formed, causing the decay of this dinuclear system to two strongly asymmetric nuclear fragments. Experimental data in which this specific nuclear process manifests itself are presented. Centrifugal fragmentation makes it possible to reveal the cluster facet of the evolution of a dinuclear system toward a compound nucleus. The possibility of this fragmentation process is a logical consequence of the concept of a dinuclear system for the complete fusion of nuclei

  10. Thermoelectric properties of quaternary (Bi,Sb)2(Te,Se)3 compound

    International Nuclear Information System (INIS)

    Lu, Pengfei; Li, Yiluan; Wu, Chengjie; Yu, Zhongyuan; Cao, Huawei; Zhang, Xianlong; Cai, Ningning; Zhong, Xuxia; Wang, Shumin

    2014-01-01

    Highlights: • Sb and Se spin–orbit coupling play a key role in the band structure. • Substituted Bi/Sb and Te/Se have a limited impact on the transport coefficients. • n-Type doping will be preferred for quaternary (Bi,Sb) 2 (Te,Se) 3 compound. -- Abstract: The quaternary (Bi,Sb) 2 (Te,Se) 3 compounds are investigated using first-principles study and Boltzmann transport theory. The energy band structure and density of states are studied in detail. The electronic transport coefficients are then calculated as a function of chemical potential. The figure of merit ZT is obtained assuming a constant relaxation time and an averaged thermal conductivity. Our theoretical result agrees well with previous experimental data

  11. Synthesis and antiproliferative activity of novel polynuclear heterocyclic compounds derived from 2,3-diaminophenazine.

    Science.gov (United States)

    Mahran, Asma M; Ragab, Sherif Sh; Hashem, Ahmed I; Ali, Mamdouh M; Nada, Afaf A

    2015-01-27

    2,3-Diaminophenazine 1 was used as a precursor for the preparation of some novel phenazine derivatives such as imidazo[4,5-b]phenazine-2-thione 2, its methylthio 3, ethyl 1-aryl-3H-[1,2,4]triazolo[2,3-a]imidazo[4,5-b]phenazines 8a-c, ethyl (2Z)-[3-aminophenazin-2-yl)amino](phenylhydrazono)ethanoate 9, pyrazino[2,3-b]phenazine derivatives 10, 12, 15-17, [1,4]diazepino[2,3-b]phenazine derivatives 13, 14, 2,3-dibenzoylaminophenazine 18, 1H-Imidazo[4,5-b]phenazine derivatives 20, 23a-c, 24, 25 and 4-[(E)-(3-amino phenazin-2-yl)diazenyl] derivatives 27-29. All compounds were tested as inhibitors of the proliferation of human lung carcinoma and colorectal cancer cell lines through inhibition of Tyrosine Kinases. Most of compounds exert good activity against the two cancer cell lines. Five compounds (1, 2, 3, 25 and 28) were found to possess the same activity as the standard drug Cisplatin. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Magnetic properties and magnetocaloric effect of HoCo3B2 compound

    Science.gov (United States)

    Zheng, X. Q.; Xu, J. W.; Zhang, H.; Zhang, J. Y.; Wang, S. G.; Zhang, Y.; Xu, Z. Y.; Wang, L. C.; Shen, B. G.

    2018-05-01

    A sample of HoCo3B2 compound was synthesized, and the magnetic and MCE properties were investigated. Compound shows a change corresponding to R-R (R = rare earth) sublattice magnetic order transition and the transition temperature is determined to be 11.8 K (TC). The characteristic of Arrott plots with positive slope around TC was observed, indicating a second-order phase transition. Based on isothermal magnetization data, together with Maxwell's relationship, the magnetic entropy change (-ΔSM) was calculated. The maximum -ΔSM reaches 7.8, 12.7 and 14.4 J/kg K for field range of 0-2 T, 0-5 T and 0-7 T, respectively. Accordingly, the value of RC (refrigerant capacity) is 99, 289 and 432 J/kg for above field ranges. The large MCE of HoCo3B2 compound indicates its potential application for magnetic refrigeration in low temperature range.

  13. Influence of grain size and upper critical magnetic field on global pinning force of bronze-processed Nb/sub 3/Sn compound

    International Nuclear Information System (INIS)

    Ochiai, S.; Osamura, K.

    1986-01-01

    In order to know the dependency of global pinning force of Nb/sub 3/Sn compound on grain size and upper critical magnetic field, the global pinning force was measured at 3-15 T using bronze-processed multifilamentary composites. The grain size and upper critical magnetic field were varied by two types of annealing treatment: one is the isothermal annealing at 873, 973 and 1073 K up to 1730 ks and another is the two-stage annealing (low temperature annealing to form fine grains at 873 K for 1730 ks + high temperature annealing to raise upper critical magnetic field at 1073 K up to 18 ks). In the case of isothermal annealing treatment, both of grain size and upper critical magnetic field increased with increasing annealing temperature and time except for the annealing treatments at high temperature for prolonged times. In the case of two-stage annealing, both of them increased with second stage annealing time. The increase in grain size led to decrease in the pinning force but the increase in upper critical magnetic field to increase in it. From the analysis of the present data based on the Suenaga's speculation concerning with the density of pinning site and the Kramer's equation, it was suggested that the pinning force is, to a first approximation, proportional to the product of inverse grain size and (1-h)/sup 2/h/sup 1/2/ where h is the reduced magnetic field

  14. Manufacture of barium hexaferrite (BaO3.98Fe2O3) from iron oxide waste of grinding process by using calcination process

    Science.gov (United States)

    Idayanti, N.; Dedi; Kristiantoro, T.; Mulyadi, D.; Sudrajat, N.; Alam, G. F. N.

    2018-03-01

    The utilization of iron oxide waste of grinding process as raw materials for making barium hexaferrite has been completed by powder metallurgy method. The iron oxide waste was purified by roasting at 800 °C temperature for 3 hours. The method used varying calcination temperature at 1000, 1100, 1200, and 1250 °C for 3 hours. The starting iron oxide waste (Fe2O3) and barium carbonate (BaCO3) were prepared by mol ratio of Fe2O3:BaCO3 from the formula BaO3.98Fe2O3. Some additives such as calcium oxide (CaO), silicon dioxide (SiO2), and polyvinyl alcohol (PVA) were added after calcination process. The samples were formed at the pressure of 2 ton/cm2 and sintered at the temperature of 1250 °C for 1 hour. The formation of barium hexaferrite compounds after calcination is determined by X-Ray diffraction. The magnetic properties were observed by Permagraph-Magnet Physik with the optimum characteristic at calcination temperature of 1250 °C with the induction of remanence (Br) = 1.38 kG, coercivity (HcJ) = 4.533 kOe, product energy maximum (BHmax) = 1.086 MGOe, and density = 4.33 g/cm3.

  15. Crystal growth of the intermetallic compound Nd{sub 2}PdSi{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y. [IFW Dresden, Leibniz-Institut fuer Festkoerper- und Werkstoffforschung, Helmholtzstr. 20, 01171 Dresden (Germany); State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Loeser, W.; Blum, C.G.F.; Buechner, B. [IFW Dresden, Leibniz-Institut fuer Festkoerper- und Werkstoffforschung, Helmholtzstr. 20, 01171 Dresden (Germany); Tang, F. [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Liu, L. [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2011-02-15

    Nd{sub 2}PdSi{sub 3} single crystals were grown by a vertical floating zone method with radiation heating at a zone traveling rate of 3 mm/h. The compound exhibits congruent melting behavior at a liquidus temperature of about 1790 C. The actual crystal composition (35.3 {+-} 0.5) at.% Nd, (16.2 {+-} 0.5) at.% Pd, and (48.5 {+-} 0.5) at.% Si is slightly depleted in Pd and Si with respect to the nominal stoichiometry. Therefore, the gradual accumulation of these elements in the traveling zone led to a decrease of the operating temperature during the growth process. Single crystalline samples exhibit a large anisotropy due to the crystal electric field effect and order ferromagnetically below the Curie temperature T{sub C}=15.1 K. The [001] orientation was identified as the magnetic easy axis at low temperatures. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Thermodynamics of coproportionation reactions of homogeneous samarium (3) and yttrium (3) nitrates solvates with neutral organic phosphorus compounds

    International Nuclear Information System (INIS)

    Pyartman, A.K.

    1995-01-01

    Reaction heats of homogeneous samarium (3) and yttrium (3) nitrate solvates coproportionation with neutral organophosphoric compounds (tri-n.-butylphosphate, diisooctylmethylphosphonate, diisoamylmethylphosphonate) at T=298.15 K in hexane have been measured by thermochemical method. It has been ascertained that enthalpies of coproportionation reactions practically do not depend on the nature, concentration of rare earth metal (3) nitrate solvates in hexane, nature of neutral organophosphoric compound and constitute 1.1±-.2 kJ/mol. The Gibbs free energy of coproportionation reactions is -5.43 kJ/mol, while entropy of the reactions in 14.5±0.7 J/mol·K. 8 refs., 1 tab

  17. Multi-view 3D echocardiography compounding based on feature consistency

    Science.gov (United States)

    Yao, Cheng; Simpson, John M.; Schaeffter, Tobias; Penney, Graeme P.

    2011-09-01

    Echocardiography (echo) is a widely available method to obtain images of the heart; however, echo can suffer due to the presence of artefacts, high noise and a restricted field of view. One method to overcome these limitations is to use multiple images, using the 'best' parts from each image to produce a higher quality 'compounded' image. This paper describes our compounding algorithm which specifically aims to reduce the effect of echo artefacts as well as improving the signal-to-noise ratio, contrast and extending the field of view. Our method weights image information based on a local feature coherence/consistency between all the overlapping images. Validation has been carried out using phantom, volunteer and patient datasets consisting of up to ten multi-view 3D images. Multiple sets of phantom images were acquired, some directly from the phantom surface, and others by imaging through hard and soft tissue mimicking material to degrade the image quality. Our compounding method is compared to the original, uncompounded echocardiography images, and to two basic statistical compounding methods (mean and maximum). Results show that our method is able to take a set of ten images, degraded by soft and hard tissue artefacts, and produce a compounded image of equivalent quality to images acquired directly from the phantom. Our method on phantom, volunteer and patient data achieves almost the same signal-to-noise improvement as the mean method, while simultaneously almost achieving the same contrast improvement as the maximum method. We show a statistically significant improvement in image quality by using an increased number of images (ten compared to five), and visual inspection studies by three clinicians showed very strong preference for our compounded volumes in terms of overall high image quality, large field of view, high endocardial border definition and low cavity noise.

  18. Multi-view 3D echocardiography compounding based on feature consistency

    International Nuclear Information System (INIS)

    Yao Cheng; Schaeffter, Tobias; Penney, Graeme P; Simpson, John M

    2011-01-01

    Echocardiography (echo) is a widely available method to obtain images of the heart; however, echo can suffer due to the presence of artefacts, high noise and a restricted field of view. One method to overcome these limitations is to use multiple images, using the 'best' parts from each image to produce a higher quality 'compounded' image. This paper describes our compounding algorithm which specifically aims to reduce the effect of echo artefacts as well as improving the signal-to-noise ratio, contrast and extending the field of view. Our method weights image information based on a local feature coherence/consistency between all the overlapping images. Validation has been carried out using phantom, volunteer and patient datasets consisting of up to ten multi-view 3D images. Multiple sets of phantom images were acquired, some directly from the phantom surface, and others by imaging through hard and soft tissue mimicking material to degrade the image quality. Our compounding method is compared to the original, uncompounded echocardiography images, and to two basic statistical compounding methods (mean and maximum). Results show that our method is able to take a set of ten images, degraded by soft and hard tissue artefacts, and produce a compounded image of equivalent quality to images acquired directly from the phantom. Our method on phantom, volunteer and patient data achieves almost the same signal-to-noise improvement as the mean method, while simultaneously almost achieving the same contrast improvement as the maximum method. We show a statistically significant improvement in image quality by using an increased number of images (ten compared to five), and visual inspection studies by three clinicians showed very strong preference for our compounded volumes in terms of overall high image quality, large field of view, high endocardial border definition and low cavity noise.

  19. Magnetic properties and magnetocaloric effect of HoCo3B2 compound

    Directory of Open Access Journals (Sweden)

    X. Q. Zheng

    2018-05-01

    Full Text Available A sample of HoCo3B2 compound was synthesized, and the magnetic and MCE properties were investigated. Compound shows a change corresponding to R-R (R = rare earth sublattice magnetic order transition and the transition temperature is determined to be 11.8 K (TC. The characteristic of Arrott plots with positive slope around TC was observed, indicating a second-order phase transition. Based on isothermal magnetization data, together with Maxwell’s relationship, the magnetic entropy change (-ΔSM was calculated. The maximum -ΔSM reaches 7.8, 12.7 and 14.4 J/kg K for field range of 0-2 T, 0-5 T and 0-7 T, respectively. Accordingly, the value of RC (refrigerant capacity is 99, 289 and 432 J/kg for above field ranges. The large MCE of HoCo3B2 compound indicates its potential application for magnetic refrigeration in low temperature range.

  20. Identification of characteristic aroma compounds in raw and thermally processed African giant snail (Achatina fulica).

    Science.gov (United States)

    Lasekan, Ola; Muniady, Megala; Lin, Mee; Dabaj, Fatma

    2018-04-24

    Food flavor appreciation is one of the first signals along with food appearance and texture encountered by consumers during eating of food. Also, it is well known that flavor can strongly influence consumer's acceptability judgment. The increase in the consumption of snail meat across the world calls for the need to research into the aroma compounds responsible for the distinctive aroma notes of processed snail meat. The odorants responsible for the unique aroma notes in thermally processed giant African snail meats were evaluated by means of aroma extract dilution analysis (AEDA), gas chromatography-olfactometry (GC-O) and odor activity values (OAVs) respectively. Results revealed significant differences in the aroma profiles of the raw and thermally processed snail meats. Whilst the aroma profile of the raw snail meat was dominated with the floral-like β-ionone and β-iso-methyl ionone, sweaty/cheesy-like butanoic acid, and the mushroom-like 1-octen-3-one, the boiled and fried samples were dominated with the thermally generated odorants like 2-methylpyrazine, 2,5-dimethylpyrazine, 2-acetylthiazole and 2-acetylpyridine. Finally, results have shown that sotolon, 2-acetyl-1-pyrroline, 2-furanmethanethiol, 2-methylbutanal, 1-octen-3-one, octanal, furanone, 2-methoxyphenol, 2-acetylpyridine, 2-acetylthiazole, and 2-methylpyrazine contributed to the overall aroma of the thermally processed snail meat.

  1. Synthesis of a new compound - Sr2CuO2CO3

    International Nuclear Information System (INIS)

    Fomichev, D.V.; Khardanov, A.L.; Antipov, E.V.; Kovba, L.M.

    1990-01-01

    A new compound of Sr 2 CuO 2 CO 3 composition, being an intermediate product of solid phase synthesis in air in SrCo 3 -CuO system at T 2 CuO 2 CO 3 have low resistance at room temperature and semiconductor type conductivity

  2. Electronic and magnetic properties of R0.5A0.5MnO3 compounds (R=Gd, Dy, Ho, Er; A=Sr, Ca)

    International Nuclear Information System (INIS)

    Terai, T.; Sasaki, T.; Kakeshita, T.; Fukuda, T.; Saburi, T.; Kitagawa, H.; Kindo, K.; Honda, M.

    2000-01-01

    Electronic and magnetic properties of the perovskitelike compounds of R 0.5 A 0.5 MnO 3 (R=Gd, Dy, Ho, Er; A=Sr, Ca) have been studied by measuring lattice parameter, electrical resistivity, magnetic susceptibility, and magnetization. All the Sr-doped compounds show a transition from a paramagnetic insulator to a spin-glass-like insulator at T g , even though the manganite La 0.5 Ca 0.5 MnO 3 , with nearly the same tolerance factor t, have been shown by others, to have different transitions. On the other hand, all the Ca-doped compounds show a charge-ordering transition at T CO and show a transition from a paramagnetic insulator to a canted antiferromagnetic insulator and/or a spin-glass-like insulator at T CA below T CO . These transition temperatures decrease with decreasing t. In the compound of Gd 0.5 Ca 0.5 MnO 3 , the collapse of the charge ordering has been observed under a pulsed high magnetic field of 45 T at 4.2 K. On the other hand, in the compound of Gd 0.5 Sr 0.5 MnO 3 , the magnetization process depends on the strength of magnetic field. These electronic and magnetic properties depend not only on the tolerance factor but also the variance (second moment) of the A-site ion radii distribution

  3. Magnetism in ordered metallic perovskite compound GdPd3BxC1-x

    International Nuclear Information System (INIS)

    Pandey, Abhishek; Mazumdar, Chandan; Ranganathan, R.; Dattagupta, S.

    2009-01-01

    We report results of dc-magnetization, ac-susceptibility and magnetoresistance measurements on crystalline metallic-perovskite compounds GdPd 3 B x C 1-x (x=0.25, 0.50, 0.75 and 1.00) and the parent cubic compound GdPd 3 . The interest in these materials stems from the observation of negative temperature coefficient of resistance and negative thermal expansion in some of the members of this series. In the present study, we show that by substitution of non-magnetic elements, boron and carbon, the nature of the magnetic interaction can be varied from dominating ferromagnetic to antiferromagnetic and finally to a canted magnetic structure without altering the crystal symmetry of the compounds. The variation of magnetic interaction by modifying the lattice parameter resembles Ruderman-Kittel-Kasuya-Yosida (RKKY) oscillations.

  4. Acoustic Sample Deposition MALDI-MS (ASD-MALDI-MS): A Novel Process Flow for Quality Control Screening of Compound Libraries.

    Science.gov (United States)

    Chin, Jefferson; Wood, Elizabeth; Peters, Grace S; Drexler, Dieter M

    2016-02-01

    In the early stages of drug discovery, high-throughput screening (HTS) of compound libraries against pharmaceutical targets is a common method to identify potential lead molecules. For these HTS campaigns to be efficient and successful, continuous quality control of the compound collection is necessary and crucial. However, the large number of compound samples and the limited sample amount pose unique challenges. Presented here is a proof-of-concept study for a novel process flow for the quality control screening of small-molecule compound libraries that consumes only minimal amounts of samples and affords compound-specific molecular data. This process employs an acoustic sample deposition (ASD) technique for the offline sample preparation by depositing nanoliter volumes in an array format onto microscope glass slides followed by matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) analysis. An initial study of a 384-compound array employing the ASD-MALDI-MS workflow resulted in a 75% first-pass positive identification rate with an analysis time of <1 s per sample. © 2015 Society for Laboratory Automation and Screening.

  5. Synthesis and structure of coordination compounds of N-heteroaromatic angular anthraquinones with gallium(3) and jndium(3) chlorides

    International Nuclear Information System (INIS)

    Zajtsev, B.E.; Rudnitskaya, O.V.; Zajtseva, V.A.; Molodkin, A.K.; Gorelik, M.V.

    1979-01-01

    Synthesized for the first time are complex compounds GaCl 3 and InCl 3 with α-pyridine anthraquinone (L') and pyrazine anthraquinone (L'') of the composition GaCl 3 xL 1 ; 1.5GaCl 3 xL''x1.5H 2 O; GaCl 3 xL 1 xHCl; InCl 3 x2L'x2HCl. Usjng the methods of electronic and infrared spectroscopy it has been shown that in a case of InCl 3 complex with L' In atom forms coordination bond with nitrogen atom of pyridine cycle and with carbonyl oxygen with six-member cycle closing. It has been shown that L' is included in the composition of the compounds, obtained in acid medium as the second sphere cation of pyridinium anthraquinone: [InCl 5 ]sup(2-) (L'H + ) 2 , where L'H + - cation of pyridinium anthraquinone

  6. Synthesis and fundamental properties of stable Ph(3)SnSiH(3) and Ph(3)SnGeH(3) hydrides: model compounds for the design of Si-Ge-Sn photonic alloys.

    Science.gov (United States)

    Tice, Jesse B; Chizmeshya, Andrew V G; Groy, Thomas L; Kouvetakis, John

    2009-07-06

    The compounds Ph(3)SnSiH(3) and Ph(3)SnGeH(3) (Ph = C(6)H(5)) have been synthesized as colorless solids containing Sn-MH(3) (M = Si, Ge) moieties that are stable in air despite the presence of multiple and highly reactive Si-H and Ge-H bonds. These molecules are of interest since they represent potential model compounds for the design of new classes of IR semiconductors in the Si-Ge-Sn system. Their unexpected stability and high solubility also makes them a safe, convenient, and potentially useful delivery source of -SiH(3) and -GeH(3) ligands in molecular synthesis. The structure and composition of both compounds has been determined by chemical analysis and a range of spectroscopic methods including multinuclear NMR. Single crystal X-ray structures were determined and indicated that both compounds condense in a Z = 2 triclinic (P1) space group with lattice parameters (a = 9.7754(4) A, b = 9.8008(4) A, c = 10.4093(5) A, alpha = 73.35(10)(o), beta = 65.39(10)(o), gamma = 73.18(10)(o)) for Ph(3)SnSiH(3) and (a = 9.7927(2) A, b = 9.8005(2) A, c = 10.4224(2) A, alpha = 74.01(3)(o), beta = 65.48(3)(o), gamma = 73.43(3)(o)) for Ph(3)SnGeH(3). First principles density functional theory simulations are used to corroborate the molecular structures of Ph(3)SnSiH(3) and Ph(3)SnGeH(3), gain valuable insight into the relative stability of the two compounds, and provide correlations between the Si-Sn and Ge-Sn bonds in the molecules and those in tetrahedral Si-Ge-Sn solids.

  7. Anti-Pseudomonas aeruginosa compound, 1,2,3,4-tetrahydro-1,3,5-triazine derivative, exerts its action by primarily targeting MreB.

    Science.gov (United States)

    Yamachika, Shinichiro; Sugihara, Chika; Tsuji, Hayato; Muramatsu, Yasunori; Kamai, Yasuki; Yamashita, Makoto

    2012-01-01

    In order to find new anti-Pseudomonas agents, we carried out whole-cell based P. aeruginosa growth assay, and identified 1,2,3,4-tetrahydro-1,3,5-triazine (Compound A). This compound showed anti-Pseudomonas activity against wild as well as pumpless strain equally at a same concentration. Also, this compound was structurally very similar to A22, which is known to inhibit the bacterial actin-like protein MreB. By the analysis of resistant strains, the primary target of this compound in P. aeruginosa was definitely confirmed to be MreB. In addition, these compounds showed a bacteriostatic effect, and induced the morphology changes in P. aeruginosa from rod shape to sphere shape, which leads to be clinically favorable in terms of susceptibility to phagocytosis and release of endotoxin. These results display that Compound A is a very attractive compound which shows anti-P. aeruginosa activity based on inhibition of MreB without being affected by efflux pumps, and could provide a new step toward development of new promising anti-Pseudomonas agents, MreB inhibitors.

  8. Electronic and magnetic properties of rare earth-Sn3 compounds for 119Sn Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sanchez, J.P.; Friedt, J.M.; Shenoy, G.K.; Percheron, A.; Achard, J.C.

    1975-01-01

    The electronic and magnetic properties of RESn 3 compounds (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Yb) have been investigated using the 23.8keV Moessbauer resonance of 119 Sn. The isomer shifts and quadrupole interactions are nearly the same in all compounds. The transferred magnetic fields and their orientation with respect to the principal electric field gradient axis at various Sn sites in the magnetically ordered state of RESn 3 (RE=Pr, Nd, Sm, Eu, Gd) have been utilized to get information about the magnetic structure. An evaluation of the transferred fields in PrSn 3 and NdSn 3 shows that the spin density at the Sn nucleus is nearly the same in both compounds [fr

  9. Effect of different types of processing on the total phenolic compound content, antioxidant capacity, and saponin content of Chenopodium quinoa Willd grains.

    Science.gov (United States)

    Nickel, Júlia; Spanier, Luciana Pio; Botelho, Fabiana Torma; Gularte, Márcia Arocha; Helbig, Elizabete

    2016-10-15

    The effects of five processing forms on the content of phenolic compounds, antioxidant capacity, and saponin content in quinoa grains were evaluated. The processes included washing, washing followed by hydration, cooking (with or without pressure), and toasting. The highest content of phenolic compounds was obtained after cooking under pressure; however, these compounds also increased with grain washing. The toasting process caused the greatest loss. The antioxidant capacity of the grains was similarly affected by the processing techniques. According to the amount of saponins, the grains were classified as bitter. Washing caused a reduction in these compounds, but the levels remained unchanged after cooking (with and without) pressure and toasting; however, they significantly increased after hydration. Cooking, especially with pressure, had greater effects than the other processes, and potentiated the functional properties of quinoa grains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Formation of the low-resistivity compound Cu_3Ge by low-temperature treatment in an atomic hydrogen flux

    International Nuclear Information System (INIS)

    Erofeev, E. V.; Kazimirov, A. I.; Fedin, I. V.; Kagadei, V. A.

    2016-01-01

    The systematic features of the formation of the low-resistivity compound Cu_3Ge by low-temperature treatment of a Cu/Ge two-layer system in an atomic hydrogen flux are studied. The Cu/Ge two-layer system is deposited onto an i-GaAs substrate. Treatment of the Cu/Ge/i-GaAs system, in which the layer thicknesses are, correspondingly, 122 and 78 nm, in atomic hydrogen with a flux density of 10"1"5 at cm"2 s"–"1 for 2.5–10 min at room temperature induces the interdiffusion of Cu and Ge, with the formation of a polycrystalline film containing the stoichiometric Cu_3Ge phase. The film consists of vertically oriented grains 100–150 nm in size and exhibits a minimum resistivity of 4.5 µΩ cm. Variations in the time of treatment of the Cu/Ge/i-GaAs samples in atomic hydrogen affect the Cu and Ge depth distribution, the phase composition of the films, and their resistivity. Experimental observation of the synthesis of the Cu_3Ge compound at room temperature suggests that treatment in atomic hydrogen has a stimulating effect on both the diffusion of Cu and Ge and the chemical reaction of Cu_3Ge-compound formation. These processes can be activated by the energy released upon the recombination of hydrogen atoms adsorbed at the surface of the Cu/Ge/i-GaAs sample.

  11. Cloud processing of organic compounds: Secondary organic aerosol and nitrosamine formation

    Science.gov (United States)

    Hutchings, James W., III

    Cloud processing of atmospheric organic compounds has been investigated through field studies, laboratory experiments, and numerical modeling. Observational cloud chemistry studies were performed in northern Arizona and fog studies in central Pennsylvania. At both locations, the cloud and fogs showed low acidity due to neutralization by soil dust components (Arizona) and ammonia (Pennsylvania). The field observations showed substantial concentrations (20-5500 ng•L -1) of volatile organic compounds (VOC) in the cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase with half lives of approximately three hours. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction kinetics decreased with increasing organic carbon content, resulting in half lives of approximately 7 hours. The secondary organic aerosol (SUA) mass formation potential of cloud processing of BTEX was evaluated. SOA mass formation by cloud processing of BTEX, while strongly dependent on the atmospheric conditions, could contribute up to 9% of the ambient atmospheric aerosol mass, although typically ˜1% appears realistic. Field observations also showed the occurrence of N-nitrosodimethylamine (NDMA), a potent carcinogen, in fogs and clouds (100-340 ng•L -1). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase within cloud droplets. While NDMA was produced in the cloud droplets, the low yields (NDMA with partitioning to droplet must be the source of aqueous

  12. Pitting Corrosion of Ni3(Si,Ti Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti intermetallic compound was investigated as function of chloride concentration by using electrochemical method and scanning electron microscope in sodium chloride solutions at 293 K.  In addition, the pitting corrosion of type C276 alloy was also studied under the same experimental condition for comparison.  The pitting potential obtained for the intermetallic compound decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti were lower than those of C276 alloy, which means that the pitting corrosion resistance of C276 alloy was higher than that of Ni3(Si,Ti.

  13. Microsomal cytochrome P450-3A4 (CYP3A4) nanobiosensor for the determination of 2,4-dichlorophenol-An endocrine disruptor compound

    International Nuclear Information System (INIS)

    Hendricks, Nicolette R.; Waryo, Tesfaye T.; Arotiba, Omotayo; Jahed, Nazeem; Baker, Priscilla G.L.; Iwuoha, Emmanuel I.

    2009-01-01

    Cytochrome P450-3A4 (CYP3A4) is a monooxygenase enzyme that plays a major role in the detoxification of bioactive compounds and hydrophobic xenobiotics (e.g. medicines, drugs, environmental pollutants, food supplements and steroids). Physiologically the monooxygenation reactions of this class II, microsomal, b-type heme enzyme, usually requires cytochrome P450 reductase, NADPH. A novel CYP3A4 biosensor system that essentially simplified the enzymatic redox processes by allowing electron transfer between the electrode and the enzyme redox centre to occur, without any need for the physiological redox partners, was developed for the detection of 2,4-dichlorophenol (2,4-DCP), a priority environmental pollutant and an endocrine disruptor. The biosensor, GC/Naf-Co(Sep) 3+ /CYP3A4/Naf, was constructed by encapsulating CYP3A4 in a Nafion-cobalt (III) sepulchrate (Naf-Co(Sep) 3+ ) composite film on a glassy carbon (GC) electrode. The responses of the biosensor to 2,4-dichlorophenol, erythromycin (CYP3A4 native substrate) and ketoconazole (CYP 3A4 natural inhibitor) were studied by cyclic and square wave voltammetric techniques. The detection limit (DL) of the biosensor for 2,4-dichlorophenol was 0.043 μg L -1 , which is by an order of magnitude lower than the EU limit (0.3 μg L -1 ) for any pesticide compound in ground water. The biosensor's DL is lower than the U.S. Environmental Protection Agency's drinking water equivalent level (DWEL) value for 2,4-DCP, which is 2 μg L -1

  14. Phenolic compounds removal from mimosa tannin model water and olive mill wastewater by energy-efficient electrocoagulation process

    Directory of Open Access Journals (Sweden)

    Marijana Kraljić Roković

    2014-12-01

    Full Text Available The objective of this work was to study the influence of NaCl concentration, time, and current density on the removal efficiency of phenolic compounds by electrocoagulation process, as well as to compare the specific energy consumption (SEC of these processes under different experimental conditions. Electrocoagulation was carried out on two different samples of water: model water of mimosa tannin and olive mill wastewater (OMW. Low carbon steel electrodes were used in the experiments. The properties of the treated effluent were determined using UV/Vis spectroscopy and by measuring total organic carbon (TOC. Percentage of removal increased with time, current density, and NaCl concentration. SEC value increased with increased time and current density but it was decreased significantly by NaCl additions (0-29 g L-1. It was found that electro­coagulation treatment of effluents containing phenolic compounds involves complex formation between ferrous/ferric and phenolic compounds present in treated effluent, which has significant impact on the efficiency of the process.

  15. Study of bioactive compounds in spices (Syzygium aromaticum L, Cinnamomum zeylanicum Blume and Myristica fragrans Houtt) processed by ionizing radiation

    International Nuclear Information System (INIS)

    Duarte, Renato Cesar

    2014-01-01

    Spices and aromatic herbs are divided into leaves, flowers, bud, seeds bark or dry roots from different plants and it is possible to define them as products of highly flavored vegetal origin that volatize easily when incorporated in small quantities to food products and contribute to its aroma, flavor, color or even to its preservation. Nowadays, people look for its functional properties, bioactive compounds and sensory qualities. A big problem is the reduction of the quantity of these compounds throughout the production chain from the harvest process, storage and distribution. For a long time researchers and industries have concentrated on perfecting the processes of the production chain seeking to guarantee the sanitary and food safety, preserving foodstuffs for a long period and an increase in its lifespan without drastically altering its properties. Due to homemade products and the lack of compliance with good practices in its production chain, the spices can contain a high amount of microbiology causing serious complications to the health of the consumer and the radiation processing is often used for reduce these problems. With this finding, the objectives of this work were: Analyze the oil antifungal properties of spices irradiated with average doses (2.5; 5; 7.5 and 10 kGy); Study the average doses (5 and 10 kGy) and high dose (20 and 30 kGy) effects of gamma radiation 60 Co in the bioactive compounds of the spices - cloves, cinnamon and nutmeg; Identify the oils compounds; Identify the volatile compounds in the headspace of the oils and the in natura spices. Identify the compounds of the nonvolatile part of the nutmeg; Identify the chiral compounds of the cinnamon. Comparing the control samples (not irradiated) with the processed at the described doses, regarding the oil antifungal properties it was possible to verify the efficiency and later that the irradiation did not interfered in its efficiency; Regarding to the others tests in this work, the compounds

  16. Exposure assessment and engineering control strategies for airborne nanoparticles: an application to emissions from nanocomposite compounding processes

    International Nuclear Information System (INIS)

    Tsai, Candace S.-J.; White, David; Rodriguez, Henoc; Munoz, Christian E.; Huang, Cheng-Yu; Tsai, Chuen-Jinn; Barry, Carol; Ellenbecker, Michael J.

    2012-01-01

    In this study, nanoalumina and nanoclay particles were compounded separately with ethylene vinyl acetate (EVA) polymer to produce nanocomposites using a twin-screw extruder to investigate exposure and effective controls. Nanoparticle exposures from compounding processes were elevated under some circumstances and were affected by many factors including inadequate ventilation, surrounding air flow, feeder type, feeding method, and nanoparticle type. Engineering controls such as improved ventilation and enclosure of releasing sources were applied to the process equipment to evaluate the effectiveness of control. The nanoparticle loading device was modified by installing a ventilated enclosure surrounding the loading chamber. Exposures were studied using designed controls for comparison which include three scenarios: (1) no isolation; (2) enclosed sources; and (3) enclosed sources and improved ventilation. Particle number concentrations for diameters from 5 to 20,000 nm measured by the Fast Mobility Particle Sizer and aerodynamic particle sizer were studied. Aerosol particles were sampled on transmission electron microscope grids to characterize particle composition and morphology. Measurements and samples were taken at the near- and far-field areas relative to releasing sources. Airborne particle concentrations were reduced significantly when using the feeder enclosure, and the concentrations were below the baseline when two sources were enclosed, and the ventilation was improved when using either nanoalumina or nanoclay as fillers.

  17. The Phenolic Compound from Kalanchoe blossfeldiana (Crassulaceae Leaf and Its Antiplasmodial Activity against Plasmodium falciparum 3D7

    Directory of Open Access Journals (Sweden)

    Yenny Febriani Yun

    2016-08-01

    Full Text Available Various species of Kalanchoe plants have been widely used as raw materials in traditional medicines. This study was the continuation of the researches on secondary metabolites from Indonesia Kalanchoe plants, focused on Kalanchoe blossfeldiana. Fresh K. blossfeldiana leaf was extracted with methanol at room temperature to obtain the concentrated extract. The concentrated methanol extract was dissolved in water and then partitioned successively with n-hexane and ethyl acetate. The methanol, n-hexane, ethyl acetate extracts were tested using antiplasmodial assay against Plasmodium falciparum 3D7. The IC50 of methanol, n-hexane, and ethyl acetate extract were 13.002; 2.807, and 11 nM, respectively. Ethyl acetate extract was separated by the combination of chromatography on silica and ODS. This process produced the yellow solid. The chemical structure of the compound was determined based on UV, IR, MS, 1H-NMR, and 13C-NMR analyses and the comparison of data obtained from the literature and identified as phenolic compound, namely 3,3',4',5,7-pentahydroxyflavone or quercetin (1, and displayed antiplasmodial activity with IC50 3.97x10-2 nM.

  18. Synthesis of heterocyclic compounds through palladium-catalyzed C-H cyclization processes.

    Science.gov (United States)

    Inamoto, Kiyofumi

    2013-01-01

    Herein, we describe our development of synthetic methods for heterocyclic compounds based on the palladium-catalyzed carbon-hydrogen bond (C-H) functionalization/intramolecular carbon-heteroatom (nitrogen or sulfur) bond formation process. By this C-H cyclization method, we efficiently prepared various N-heterocycles, including indazoles, indoles, and 2-quinolinones, as well as S-heterocycles such as benzothiazoles and benzo[b]thiophenes. Yields are typically good to high and good functional-group tolerance is observed for each process, thereby indicating that the method provides a novel, highly applicable synthetic route to the abovementioned biologically important heterocyclic frameworks. As an application of this approach, an auto-tandem-type, one-pot process involving the oxidative Heck reaction and subsequent C-H cyclization using cinnamamides and arylboronic acids as starting materials in the presence of a palladium catalyst was also developed for the rapid construction of the 2-quinolinone nucleus.

  19. Isotopically modified compounds

    International Nuclear Information System (INIS)

    Kuruc, J.

    2009-01-01

    In this chapter the nomenclature of isotopically modified compounds in Slovak language is described. This chapter consists of following parts: (1) Isotopically substituted compounds; (2) Specifically isotopically labelled compounds; (3) Selectively isotopically labelled compounds; (4) Non-selectively isotopically labelled compounds; (5) Isotopically deficient compounds.

  20. Taste-active compound levels in Korean native chicken meat: The effects of bird age and the cooking process.

    Science.gov (United States)

    Jayasena, Dinesh D; Jung, Samooel; Kim, Hyun Joo; Yong, Hae In; Nam, Ki Chang; Jo, Cheorun

    2015-08-01

    The effects of bird age and the cooking process on the levels of several taste-active compounds, including inosine 5'-monophosphate (IMP), glutamic acid, cysteine, reducing sugars, as well as oleic, linoleic, arachidonic, and docosahexaenoic acids (DHA), in the breast and leg meats from a certified meat-type commercial Korean native chicken (KNC) strain (Woorimatdag) were investigated. KNC cocks were raised under similar standard conditions at a commercial chicken farm, and breast and leg meats from birds of various ages (10, 11, 12, 13, and 14 wk; 10 birds/age group) were obtained. After raw and cooked meat samples were prepared, they were analyzed for the aforementioned taste-active compounds. Compared to the leg meat, KNC breast meat had higher levels of IMP, arachidonic acid, and DHA, but lower levels of the other taste-active compounds (P cooking process (P cooking process. This information could be useful for selection and breeding programs, and for popularizing native chicken meat. © 2015 Poultry Science Association Inc.

  1. Ce2Co3Ge5: a new U2Co3Si5 - type valance fluctuating compound

    International Nuclear Information System (INIS)

    Layek, Samar; Hossain, Zakir

    2010-01-01

    Poly crystalline sample of Ce 2 Co 3 Ge 5 have been prepared by arc melting and consequently annealing at 1100 deg C. Rietveld refinement of XRD shows that it crystallize in the orthorhombic U 2 Co 3 Si 5 structure (space group Ibam) with crystal parameters a= 9.802A, b= 11.777A and c= 5.941A and unit cell volume V= 684.8 A 3 The unit cell volume of Ce 2 Co 3 Ge 5 is seen clearly to deviate from that expected on the basis of lanthanide contraction. From susceptibility measurement, effective magnetic moment of this compound μ eff = 0.95 μ B which is lower than magnetic moment free for Ce 3+ ions (2.54 μB) but higher than that of non-magnetic Ce 4+ state (0 μ B ). All these results clearly indicated Ce 2 Co 3 Ge 5 to be a mixed valance compound. (author)

  2. Effects of high hydrostatic pressure and thermal processing on bioactive compounds, antioxidant activity, and volatile profile of mulberry juice.

    Science.gov (United States)

    Wang, Fan; Du, Bao-Lei; Cui, Zheng-Wei; Xu, Li-Ping; Li, Chun-Yang

    2017-03-01

    The aim of this study was to investigate the effects of high hydrostatic pressure and thermal processing on microbiological quality, bioactive compounds, antioxidant activity, and volatile profile of mulberry juice. High hydrostatic pressure processing at 500 MPa for 10 min reduced the total viable count from 4.38 log cfu/ml to nondetectable level and completely inactivated yeasts and molds in raw mulberry juice, ensuring the microbiological safety as thermal processing at 85 ℃ for 15 min. High hydrostatic pressure processing maintained significantly (p hydrostatic pressure processing enhanced the volatile compound concentrations of mulberry juice while thermal processing reduced them in comparison with the control. These results suggested that high hydrostatic pressure processing could be an alternative to conventional thermal processing for production of high-quality mulberry juice.

  3. Single crystals of the anisotropic Kagome staircase compounds Ni3V2O8 and Co3V2O8

    OpenAIRE

    Balakrishnan, G.; Petrenko, O. A.; Lees, M. R.; Paul, D. McK.

    2004-01-01

    Compounds with a Kagome type lattice are known to exhibit magnetic frustration. Large single crystals of two compounds Ni3V2O8 and Co3V2O8, which are variants of a Kagome net lattice, have been grown successfully by the floating zone technique using an optical image furnace. The single crystals are of high quality and exhibit intriguing magnetic properties.

  4. Microstructure and growth mechanism of tin whiskers on RESn3 compounds

    International Nuclear Information System (INIS)

    Li Caifu; Liu Zhiquan

    2013-01-01

    Graphical abstract: Large amount of intact tin whiskers were firstly prepared without post handling, and their microstructures were investigated systematically with TEM. A growth model was proposed to explain the observed growth characteristics from Sn–RE alloys. - Abstract: An exclusive method was developed to prepare intact tin whiskers as transmission electron microscope specimens, and with this technique in situ observation of tin whisker growth from RESn 3 (RE = Nd, La, Ce) film specimen was first achieved. Electron irradiation was discovered to have an effect on the growth of a tin whisker through its root. Large quantities of tin whiskers with diameters from 20 nm to 10 μm and lengths ranging from 50 nm to 500 μm were formed at a growth rate of 0.1–1.8 nm s −1 on the surface of RESn 3 compounds. Most (>85%) of these tin whiskers have preferred growth directions of 〈1 0 0〉, 〈0 0 1〉, 〈1 0 1〉 and 〈1 0 3〉, as determined by statistics. This kind of tin whisker is single-crystal β-Sn even if it has growth striations, steps and kinks, and no dislocations or twin or grain boundaries were observed within the whisker body. RESn 3 compounds undergo selective oxidation during whisker growth, and the oxidation provides continuous tin atoms for tin whisker growth until they are exhausted. The driving force for whisker growth is the compressive stress resulting from the restriction of the massive volume expansion (38–43%) during the oxidation by the surface RE(OH) 3 layer. Tin atoms diffuse and flow to feed the continuous growth of tin whiskers under a compressive stress gradient formed from the extrusion of tin atoms/clusters at weak points on the surface RE(OH) 3 layers. A growth model was proposed to discuss the characteristics and growth mechanism of tin whiskers from RESn 3 compounds.

  5. Potent Inhibition of Feline Coronaviruses with Peptidyl Compounds Targeting Coronavirus 3C-like Protease

    Science.gov (United States)

    Kim, Yunjeong; Mandadapu, Sivakoteswara Rao; Groutas, William C.; Chang, Kyeong-Ok

    2012-01-01

    Feline coronavirus infection is common among domestic and exotic felid species and usually associated with mild or asymptomatic enteritis; however, feline infectious peritonitis (FIP) is a fatal disease of cats that is caused by systemic infection with a feline infectious peritonitis virus (FIPV), a variant of feline enteric coronavirus (FECV). Currently, there is no specific treatment approved for FIP despite the importance of FIP as the leading infectious cause of death in young cats. During the replication process, coronavirus produces viral polyproteins that are processed into mature proteins by viral proteases, the main protease (3C-like [3CL] protease) and the papain-like protease. Since the cleavages of viral polyproteins are an essential step for virus replication, blockage of viral protease is an attractive target for therapeutic intervention. Previously, we reported the generation of broad-spectrum peptidyl inhibitors against viruses that possess a 3C or 3CL protease. In this study, we further evaluated the antiviral effects of the peptidyl inhibitors against feline coronaviruses, and investigated the interaction between our protease inhibitor and a cathepsin B inhibitor, an entry blocker, against feline coronaviruses in cell culture. Herein we report that our compounds behave as reversible, competitive inhibitors of 3CL protease, potently inhibited the replication of feline coronaviruses (EC50 in a nanomolar range) and, furthermore, the combination of cathepsin B and 3CL protease inhibitors led to a strong synergistic interaction against feline coronaviruses in cell culture systems. PMID:23219425

  6. The orthorhombic fluorite related compounds Ln/sub 3/RuO/sub 7/, Ln=Nd, Sm and Eu

    International Nuclear Information System (INIS)

    Van Berkel, F.P.F.; Ijdo, D.J.W.

    1986-01-01

    Fluorite-related Ru(V) compound with composition Ln/sub 3/RuO/sub 7/ have been found. These compounds with space group Cmcm adopt a superstructure of the cubic fluorite structure with a/sub orth/=2a/sub c/, b/sub orth/=c/sub orth/=a/sub c/√2. These compounds have the same structure as La/sub 3/NbO/sub 7/

  7. Rubber/clay nanocomposites by combined latex compounding and melt mixing: A masterbatch process

    International Nuclear Information System (INIS)

    Tan, Jinghua; Wang, Xiaoping; Luo, Yuanfang; Jia, Demin

    2012-01-01

    Highlights: → Rubber/Ca-montmorillonite nanocomposites were prepared by the masterbatch process. → Latex compounding method is efficient to improve the Ca-montmorillonite dispersion. → Exfoliated structure was obtained in the masterbatch by latex compounding method. → Intercalated and exfoliated structures were achieved in the vulcanizate. → The properties of vulcanizate are improved by the addition of Ca-montmorillonite. -- Abstract: Rubber/Ca-montmorillonite (Ca-MMT) nanocomposites with well exfoliated Ca-MMT layers were prepared by combination of latex compounding and melt mixing. Firstly, a high Ca-MMT content masterbatch was co-coagulated by natural rubber (NR) latex and modified Ca-MMT aqueous suspension through latex compounding. The masterbatch was added in the system of styrene butadiene rubber (SBR) and epoxidized natural rubber (ENR) by melt mixing subsequently. The X-ray diffraction (XRD) and transmission electronic microscopy (TEM) results showed that intercalated and exfoliated nanocomposites were obtained by the masterbatch technique. The effects of modified Ca-MMT introduction into the rubber matrix, via the masterbatch technique, on the properties of the resulting composites were studied. It was found that the vulcanization was hindered by the incorporation of modified Ca-MMT, while mechanical performances, thermal stability and aging resistance were improved. The increasingly glass transition temperature and the storage modulus with the loading of modified Ca-MMT were measured by dynamic mechanical analysis (DMA).

  8. Crystal structure of CsTb(PO3)4 compound

    International Nuclear Information System (INIS)

    Palkina, K.K.; Maksimova, S.I.; Kuznetsov, V.G.; Chibiskova, N.T.

    1978-01-01

    The X-ray structural study of compounds of the CsLn(PO 3 ) 4 series has been made. Found is the presence of two structural types for CsPr(PO 3 ) 4 (cubic and monoclinic modifications), one type for CsNd(PO 3 ) 4 (cubic modification) and for CsTb(PO 3 ) 4 (monoclinic modification). For the CsTb(PO 3 ) 4 monocrystal the lattice parameters are determined: a=7.032 +- 0.001; b=8.705 +- 0.001; c=9.051 +- 0.001 A; α=90 deg, β=90 deg, γ=100 deg, Z=2, V=545.68 A 3 , dsub(exp)=3.70 g/cm 3 . The structure character is presented as infinite chains of (PO 4 ) tetrahedrons, stretched along the ''C'' period. Tb and Cs atoms are rounded by 8 atoms of oxygen. Tb polyhedron are irregular octaapexes or strongly deformed tetragonal antiprisms. Tb-Tb shortest distance is 6.59 A

  9. Scaffold Hopping Toward Agomelatine: Novel 3, 4-Dihydroisoquinoline Compounds as Potential Antidepressant Agents

    Science.gov (United States)

    Yang, Yang; Ang, Wei; Long, Haiyue; Chang, Ying; Li, Zicheng; Zhou, Liangxue; Yang, Tao; Deng, Yong; Luo, Youfu

    2016-10-01

    A scaffold-hopping strategy toward Agomelatine based on in silico screening and knowledge analysis was employed to design novel antidepressant agents. A series of 3, 4-dihydroisoquinoline compounds were selected for chemical synthesis and biological assessment. Three compounds (6a-1, 6a-2, 6a-9) demonstrated protective effects on corticosterone-induced lesion of PC12 cells. Compound 6a-1 also displayed low inhibitory effects on the growth of HEK293 and L02 normal cells and it was further evaluated for its potential antidepressant effects in vivo. The forced swim test (FST) results revealed that compound 6a-1 remarkably reduced the immobility time of rats and the open field test (OFT) results indicated a better general locomotor activity of the rats treated with compound 6a-1 than those with Agomelatine or Fluoxetine. Mechanism studies implied that compound 6a-1 can significantly reduce PC12 cell apoptosis by up-regulation of GSH and down-regulation of ROS in corticosterone-induced lesion of PC12 cells. Meanwhile, the down-regulation of calcium ion concentration and up-regulation of BDNF level in PC12 cells may account for the neuroprotective effects. Furthermore, compound 6a-1 can increase cell survival and cell proliferation, promote cell maturation in the rat hippocampus after chronic treatment. The acute toxicity data in vivo indicated compound 6a-1 exhibited less hepatotoxicity than Agomelatine.

  10. Thermal Expansion Anomaly and Spontaneous Magnetostriction of Y2Fe14Al3 Compound

    International Nuclear Information System (INIS)

    Yan-Ming, Hao; Xin-Yuan, Jiang; Chun-Jing, Gao; Yan-Zhao, Wu; Yan-Yan, Zhang

    2009-01-01

    The structure and magnetic properties of Y 2 Fe 14 Al 3 compound are investigated by means of x-ray diffraction and magnetization measurements. The Y 2 Fe 14 Al 3 compound has a hexagonal Th 2 Ni 17 -type structure. Negative thermal expansion is found in Y 2 Fe 14 Al 3 compound in the temperature range from 403 to 491K by x-ray dilatometry. The coefficient of the average thermal expansion is α-bar = –2.54 × 10 −5 K −1 . The spontaneous magnetostrictive deformations from 283 to 470K are calculated by means of the differences between the experimental values of the lattice parameters and the corresponding values extrapolated from the paramagnetic range. The result shows that the spontaneous volume magnetostrictive deformation ω S decreases from 5.74 × 10 −3 to nearly zero with temperature increasing from 283 to 470 K, the spontaneous linear magnetostrictive deformation λ c along the c-axis is larger than the spontaneous linear magnetostrictive deformation λ a in basal-plane in the same temperature below 350 K

  11. Antioxidant Phenolic Compounds of Cassava (Manihot esculenta from Hainan

    Directory of Open Access Journals (Sweden)

    Haofu Dai

    2011-12-01

    Full Text Available An activity-directed fractionation and purification process was used to isolate antioxidant components from cassava stems produced in Hainan. The ethyl acetate and n-butanol fractions showed greater DPPH˙and ABTS·+ scavenging activities than other fractions. The ethyl acetate fraction was subjected to column chromatography, to yield ten phenolic compounds: Coniferaldehyde (1, isovanillin (2, 6-deoxyjacareubin (3, scopoletin (4, syringaldehyde (5, pinoresinol (6, p-coumaric acid (7, ficusol (8, balanophonin (9 and ethamivan (10, which possess significant antioxidant activities. The relative order of DPPH· scavenging capacity for these compounds was ascorbic acid (reference > 6 > 1 > 8 > 10 > 9 > 3 > 4 > 7 > 5 > 2, and that of ABTS·+ scavenging capacity was 5 > 7 > 1 > 10 > 4 > 6 > 8 > 2 > Trolox (reference compound > 3 > 9. The results showed that these phenolic compounds contributed to the antioxidant activity of cassava.

  12. Microsomal cytochrome P450-3A4 (CYP3A4) nanobiosensor for the determination of 2,4-dichlorophenol-An endocrine disruptor compound

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Nicolette R.; Waryo, Tesfaye T.; Arotiba, Omotayo; Jahed, Nazeem; Baker, Priscilla G.L. [SensorLab, Department of Chemistry, University of Western Cape, Moderddam Road, Bellville, Cape Town 7535 (South Africa); Iwuoha, Emmanuel I. [SensorLab, Department of Chemistry, University of Western Cape, Moderddam Road, Bellville, Cape Town 7535 (South Africa)], E-mail: eiwuoha@uwc.ac.za

    2009-02-28

    Cytochrome P450-3A4 (CYP3A4) is a monooxygenase enzyme that plays a major role in the detoxification of bioactive compounds and hydrophobic xenobiotics (e.g. medicines, drugs, environmental pollutants, food supplements and steroids). Physiologically the monooxygenation reactions of this class II, microsomal, b-type heme enzyme, usually requires cytochrome P450 reductase, NADPH. A novel CYP3A4 biosensor system that essentially simplified the enzymatic redox processes by allowing electron transfer between the electrode and the enzyme redox centre to occur, without any need for the physiological redox partners, was developed for the detection of 2,4-dichlorophenol (2,4-DCP), a priority environmental pollutant and an endocrine disruptor. The biosensor, GC/Naf-Co(Sep){sup 3+}/CYP3A4/Naf, was constructed by encapsulating CYP3A4 in a Nafion-cobalt (III) sepulchrate (Naf-Co(Sep){sup 3+}) composite film on a glassy carbon (GC) electrode. The responses of the biosensor to 2,4-dichlorophenol, erythromycin (CYP3A4 native substrate) and ketoconazole (CYP 3A4 natural inhibitor) were studied by cyclic and square wave voltammetric techniques. The detection limit (DL) of the biosensor for 2,4-dichlorophenol was 0.043 {mu}g L{sup -1}, which is by an order of magnitude lower than the EU limit (0.3 {mu}g L{sup -1}) for any pesticide compound in ground water. The biosensor's DL is lower than the U.S. Environmental Protection Agency's drinking water equivalent level (DWEL) value for 2,4-DCP, which is 2 {mu}g L{sup -1}.

  13. Identification of a powerful aroma compound in munster and camembert cheeses: ethyl 3-mercaptopropionate.

    Science.gov (United States)

    Sourabié, Alain M; Spinnler, Henry-Eric; Bonnarme, Pascal; Saint-Eve, Anne; Landaud, Sophie

    2008-06-25

    With the view to investigate the presence of thiols in cheese, the use of different methods of preparation and extraction with an organomercuric compound ( p-hydroxymercuribenzoate) enabled the isolation of a new compound. The analysis of cheese extracts by gas chromatography coupled with pulse flame photometry, mass spectrometry, and olfactometry detections led to the identification of ethyl 3-mercaptopropionate in Munster and Camembert cheeses. This compound, described at low concentrations as having pleasant, fruity, grapy, rhubarb, and empyreumatic characters, has previously been reported in wine and Concord grape but was never mentioned before in cheese. A possible route for the formation of this compound in relation with the catabolism of sulfur amino acids is proposed.

  14. Targeting aquaporin function: potent inhibition of aquaglyceroporin-3 by a gold-based compound.

    Directory of Open Access Journals (Sweden)

    Ana Paula Martins

    Full Text Available Aquaporins (AQPs are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III complexes screened on human red blood cells (hRBC and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50 = 0.8±0.08 µM in hRBC. Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.

  15. Diacetyl and 2,3-pentanedione in breathing zone and area air during large-scale commercial coffee roasting, blending and grinding processes.

    Science.gov (United States)

    McCoy, Michael J; Hoppe Parr, Kimberly A; Anderson, Kim E; Cornish, Jim; Haapala, Matti; Greivell, John

    2017-01-01

    Recently described scientific literature has identified the airborne presence of 2,3-butanedione (diacetyl) and 2,3-pentanedione at concentrations approaching or potentially exceeding the current American Conference of Industrial Hygienists' (ACGIH) Threshold Limit Values (TLVs) at commercial coffee roasting and production facilities. Newly established National Institutes of Occupational Safety and Health (NIOSH) Recommended Exposure Limits for diacetyl and 2,3-pentanedione are even more conservative. Chronic exposure to these alpha-diketones at elevated airborne concentrations has been associated with lung damage, specifically bronchiolitis obliterans, most notably in industrial food processing facilities. Workers at a large commercial coffee roaster were monitored for both eight-hour and task-based, short-term, 15-min sample durations for airborne concentrations of these alpha-diketones during specific work processes, including the coffee bean roasting, blending and grinding processes, during two separate 8-h work periods. Additionally, the authors performed real-time Fourier transform infrared spectroscopy (FTIR) analysis of the workers' breathing zone as well as the area workplace air for the presence of organic compounds to determine the sources, as well as quantitate and identify various organic compounds proximal to the roasting and grinding processes. Real-time FTIR measurements provided both the identification and quantitation of diacetyl and 2,3-pentanedione, as well as other organic compounds generated during coffee bean roasting and grinding operations. Airborne concentrations of diacetyl in the workers' breathing zone, as eight-hour time-weighted averages were less than the ACGIH TLVs for diacetyl, while concentrations of 2,3-pentanedione were below the limit of detection in all samples. Short-term breathing zone samples revealed airborne concentrations for diacetyl that exceeded the ACGIH short-term exposure limit of 0.02 parts per million (ppm) in

  16. Total recovery of the waste of two-phase olive oil processing: isolation of added-value compounds.

    Science.gov (United States)

    Fernández-Bolaños, Juan; Rodríguez, Guillermo; Gómez, Esther; Guillén, Rafael; Jiménez, Ana; Heredia, Antonia; Rodríguez, Rocío

    2004-09-22

    A process for the value addition of solid waste from two-phase olive oil extraction or "alperujo" that includes a hydrothermal treatment has been suggested. In this treatment an autohydrolysis process occurs and the solid olive byproduct is partially solubilized. From this water-soluble fraction can be obtained besides the antioxidant hydroxytyrosol several other compounds of high added value. In this paper three different samples of alperujo were characterized and subjected to a hydrothermal treatment with and without acid catalyst. The main soluble compounds after the hydrolysis were represented by monosaccharides xylose, arabinose, and glucose; oligosaccharides, mannitol and products of sugar destruction. Oligosaccharides were separated by size exclusion chromatography. It was possible to get highly purified mannitol by applying a simple purification method.

  17. A study on magnetoelastic properties of Tb3 (Fe28-xCox) V1.0 (x=0, 3, 6) compounds

    International Nuclear Information System (INIS)

    Gholizadeh, A.; Tajabor, N.; Pourarian, F.

    2012-01-01

    In this work, The magnetoelastic properties of polycrystalline samples of Tb 3 (Fe 28-x Co x ) V 1.0 (x=0, 3, 6) intermetallic compounds are investigated by means of linear thermal expansion and magnetostriction measurements in the temperature range of 77-515 K under applied magnetic fields up to 1.5 T. The linear thermal expansion increases with the Co content. The well-defined anomalies observed in the linear thermal expansion coefficients for Tb 3 (Fe 28-x Co x ) V 1.0 (x=0, 3, 6) compounds are associated with the magnetic ordering temperature for x=0 and spin reorientation temperatures for x=3, 6. Below transition temperatures, the value of the longitudinal magnetostriction (λ Pa ) at 1.6 T increases with Co content.

  18. Application of advanced oxidation process by electron beam irradiation in the organic compounds degradation present in industrial effluents

    International Nuclear Information System (INIS)

    Duarte, Celina Lopes

    1999-01-01

    The inefficacy of conventional methods to destroy toxic organic compounds present in industrial effluent has taken the search for new technologies of treatment. he water irradiation is the most efficient process to generate radicals that mineralise these compounds. A study to evaluate the Advanced Oxidation Process by electron beam irradiation to treat industrial effluent with high toxic organic compounds concentration was carried out. Experiments were conducted using a Radiation Dynamics Electron Beam Accelerator with 1,5 MeV energy and 37 power. The effluent samples from a big industrial complex were irradiated using the IPEN's Liquid Effluent Irradiation Pilot Plant and the effluent samples from five steps of a Governmental Wastewater Treatment Plant from SABESP - ETE Suzano (industrial Receiver Unit, Coarse Bar Screens, Medium Bar Screens, Primary Sedimentation and Final Effluent), were irradiated in a batch system. The electron beam irradiation showed be efficient on destroying the organic compounds delivered in these effluents mainly chloroform, dichloroethane, methyl isobutyl ketone, benzene, toluene, xylene, phenol and in the decoloring of dyes present in some samples. To remove 90% of the most organic compounds was necessary a 20 kGy dose for industry's ETE, 20 kGy for IRU, CBS and MBS and 10 kGy to 20 kGy for PS and FE. (author)

  19. Processing and Properties of PCL/Cotton Linter Compounds

    OpenAIRE

    Bezerra,Elieber Barros; França,Danyelle Campos; Morais,Dayanne Diniz de Souza; Rosa,Morsyleide de Freitas; Morais,João Paulo Saraiva; Araújo,Edcleide Maria; Wellen,Renate Maria Ramos

    2017-01-01

    Biodegradable compounds of poly(ε-caprolactone) (PCL)/ cotton linter were melting mixed with filling content ranging from 1% to 5% w/w. Cotton linter is an important byproduct of textile industry; in this work it was used in raw state and after acid hydrolysis. According to the results of torque rheometry no decaying of viscosity took place during compounding, evidencing absence of breaking down in molecular weight. The thermal stability increased by 20% as observed in HDT for PCL/cotton...

  20. Reversal of the sign of giant magnetoresistance upon boron filling in RPd{sub 3} compounds (R=Tb,Er)

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Abhishek [S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata-700098 (India); Mazumdar, Chandan; Ranganathan, R, E-mail: abhishek.phy@gmail.co, E-mail: chandan.mazumar@saha.ac.i, E-mail: r.ranganathan@saha.ac.i [Experimental Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata-700064 (India)

    2010-01-01

    We report the study of magnetic and transport properties of binary intermetallic compounds RPd{sub 3} (R: Tb and Er) and boron-filled perovskite compounds RPd{sub 3}B. Our results suggest that the magnetic and transport behavior of boron-filled compositions is substantially different compared to that of undoped compounds. For example, TbPd{sub 3} and ErPd{sub 3} exhibit negative magnetoresistance, while boron-filled TbPd{sub 3}B and ErPd{sub 3}B shows positive magnetoresistance. In addition, our results also suggest that there exists a strong correlation between magnetic and electrical-transport behavior of these systems.

  1. Diacetyl and 2,3-pentanedione in breathing zone and area air during large-scale commercial coffee roasting, blending and grinding processes

    Directory of Open Access Journals (Sweden)

    Michael J. McCoy

    Full Text Available Recently described scientific literature has identified the airborne presence of 2,3-butanedione (diacetyl and 2,3-pentanedione at concentrations approaching or potentially exceeding the current American Conference of Industrial Hygienists’ (ACGIH Threshold Limit Values (TLVs at commercial coffee roasting and production facilities. Newly established National Institutes of Occupational Safety and Health (NIOSH Recommended Exposure Limits for diacetyl and 2,3-pentanedione are even more conservative. Chronic exposure to these alpha-diketones at elevated airborne concentrations has been associated with lung damage, specifically bronchiolitis obliterans, most notably in industrial food processing facilities.Workers at a large commercial coffee roaster were monitored for both eight-hour and task-based, short-term, 15-min sample durations for airborne concentrations of these alpha-diketones during specific work processes, including the coffee bean roasting, blending and grinding processes, during two separate 8-h work periods. Additionally, the authors performed real-time Fourier transform infrared spectroscopy (FTIR analysis of the workers’ breathing zone as well as the area workplace air for the presence of organic compounds to determine the sources, as well as quantitate and identify various organic compounds proximal to the roasting and grinding processes. Real-time FTIR measurements provided both the identification and quantitation of diacetyl and 2,3-pentanedione, as well as other organic compounds generated during coffee bean roasting and grinding operations.Airborne concentrations of diacetyl in the workers’ breathing zone, as eight-hour time-weighted averages were less than the ACGIH TLVs for diacetyl, while concentrations of 2,3-pentanedione were below the limit of detection in all samples. Short-term breathing zone samples revealed airborne concentrations for diacetyl that exceeded the ACGIH short-term exposure limit of 0

  2. Conventional and inverse magnetocaloric effect in Pr2CuSi3 and Gd2CuSi3 compounds

    International Nuclear Information System (INIS)

    Wang, Fang; Yuan, Feng-ying; Wang, Jin-zhi; Feng, Tang-fu; Hu, Guo-qi

    2014-01-01

    Highlights: • Two phase transitions in a narrow temperature range were observed and studied. • Both typical and inverse magnetocaloric effect were observed and discussed. • The inverse magnetocaloric effect was attributed to the spin-glass behavior. - Abstract: Magnetic properties and magnetocaloric effect (MCE) in Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds were investigated systematically. Both Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds experienced two phase transitions in a relatively narrow temperature range: first a paramagnet (PM)–ferromagnet (FM) second-order phase transition at 12 and 26 K and then a FM–spin glass (SG) transition at 6 K and 7.5 K, respectively. The magnetic entropy change (ΔS M ) was calculated based on Maxwell relation using the collected magnetization data. The maximum of ΔS M for Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds was 7.6 and 5 J kg −1 K −1 , respectively, at the applied filed change of 0–5 T. The shape of the temperature dependence of ΔS M (ΔS M –T) curve was obviously different from that of the conventional magnetic materials undergoing only one typical phase transition. In the left half part of ΔS M –T curve, ΔS M is not very sensitive to the applied field and they tend to intersect with the decrease of temperature. Both typical conventional and inverse MCE behavior were observed in Gd 2 CuSi 3 , which would be originated from the two transition features at the low temperatures

  3. Spatially Resolved Large Magnetization in Ultrathin BiFeO3

    KAUST Repository

    Guo, Er-Jia; Petrie, Jonathan R.; Roldan, Manuel A.; Li, Qian; Desautels, Ryan D.; Charlton, Timothy; Herklotz, Andreas; Nichols, John; van Lierop, Johan; Freeland, John W.; Kalinin, Sergei V.; Lee, Ho Nyung; Fitzsimmons, Michael R.

    2017-01-01

    . The results show the enhanced net magnetic moment in BFO from the LSMO/BFO interface extends 3-4 unit cells into BFO. The interior part of a thicker BFO layer has a much smaller magnetization, suggesting it still keeps the small canted AFM state. The results

  4. Magnetic behaviour of a new compound, Eu{sub 2}CuSi{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Subham; Mallik, R; Sampathkumaran, E V [Tata Institute of Fundamental Research, Mumbai (India)

    1999-07-01

    As a part of our program to synthesize new ternary Eu compounds, we report here the formation of Eu{sub 2}CuSi{sub 3} for the first time and its magnetic behaviour by magnetic susceptibility, electrical-resistivity and heat-capacity measurements. This compound is found to crystallize in an AlB{sub 2}-derived hexagonal structure. The results establish that Eu ions are divalent, undergoing long-range ferromagnetic-ordering below 38 K. (author)

  5. Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions

    DEFF Research Database (Denmark)

    Roselló-Soto, Elena; Galanakis, Charis M.; Brnčić, Mladen

    2015-01-01

    Ultrasound treatment is an alternative affordable, effective and reproducible method for the improved recovery of bioactive compounds from various processing streams. The objective of this review is to discuss the impact of ultrasound-assisted extraction on the recovery of polyphenols, carotenoid...

  6. TCP (truncated compound Poisson) process for multiplicity distributions in high energy collisions

    International Nuclear Information System (INIS)

    Srivastave, P.P.

    1990-01-01

    On using the Poisson distribution truncated at zero for intermediate cluster decay in a compound Poisson process, the authors obtain TCP distribution which describes quite well the multiplicity distributions in high energy collisions. A detailed comparison is made between TCP and NB for UA5 data. The reduced moments up to the fifth agree very well with the observed ones. The TCP curves are narrower than NB at high multiplicity tail, look narrower at very high energy and develop shoulders and oscillations which become increasingly pronounced as the energy grows. At lower energies the distributions, of the data for fixed intervals of rapidity for UA5 data and for the data (at low energy) for e + e - annihilation and pion-proton, proton-proton and muon-proton scattering. A discussion of compound Poisson distribution, expression of reduced moments and Poisson transforms are also given. The TCP curves and curves of the reduced moments for different values of the parameters are also presented

  7. High field magnetization process of (Sm, Nd)2Fe17Ny compounds

    International Nuclear Information System (INIS)

    Yu, M.J.; Tang, N.; Liu, Y.L.; Tegus, O.; Lu, Y.; Kuang, J.P.; Yang, F.M.; Li, X.; Zhou, G.F.; Boer, F.R. de

    1992-01-01

    The crystal structure and high-field magnetization process of (Sm 1-x Nd x ) 2 Fe 17 N y compounds (x = 0.0, 0.1, ..., 1.0, 2 1-x Nd x ) 2 Fe 17 N y compounds were found to crystallize in the rhombohedral Th 2 Zn 17 structure. As x increases, the Curie temperature decreases. The anisotropy fields and easy magnetization direction were investigated from 1.5 K to room temperature by means of high-field magnetization measurements and AC-susceptibility measurements, combined with X-ray diffraction on random and magnetically aligned powder samples. The anisotropy field decreases with increasing x and approaches a minimum value at about x = 0.6, then increases again. A tentative spin phase diagram for the (Sm 1-x Nd x ) 2 Fe 17 N y series is presented. At room temperature, the easy magnetization direction remains along the c-axis up to x = 0.6. (orig.)

  8. Evolution of the corrosion process of AA 2024-T3 in an alkaline NaCl solution with sodium dodecylbenzenesulfonate and lanthanum chloride inhibitors

    International Nuclear Information System (INIS)

    Zhou, Biner; Wang, Yishan; Zuo, Yu

    2015-01-01

    Highlights: • Inhibition effect of LaCl 3 and SDBS for AA 2024 in NaCl solution (pH 10) was studied. • At the beginning the active polarization behavior of the alloy changed to passivation. • The passive behavior gradually disappeared with time and pitting happened at S-phases. • The compounded inhibitors showed good inhibition but cannot totally inhibit pitting. • The adsorption of SDBS played the key role for inhibition to the corrosion process. - Abstract: The evolution of the corrosion process of AA 2024-T3 in 0.58 g L −1 NaCl solution (pH 10) with sodium dodecylbenzenesulfonate (SDBS) and lanthanum chloride inhibitors was studied with electrochemical and surface analysis methods. With the addition of the compounded LaCl 3 and SDBS inhibitors, in the early stage the polarization behavior of AA 2024-T3 changed from active corrosion to passivation, and both the general corrosion and pitting corrosion were inhibited. However, with the immersion time extended, the passive behavior gradually disappeared and pitting happened at the Cu-rich phases. After 24 h immersion, the compounded inhibitors still showed good inhibition for general corrosion, but the polarization curve again presented the characteristic similar to active polarization. The compounded inhibitors also inhibited the pitting corrosion to some extent. The acting mechanism of the inhibitors SDBS and La 3 Cl on the corrosion process of AA 2024-T3 in the test solution was discussed.

  9. A biorefinery concept for simultaneous recovery of cellulosic ethanol and phenolic compounds from oil palm fronds: Process optimization

    International Nuclear Information System (INIS)

    Ofori-Boateng, Cynthia; Lee, Keat Teong; Saad, Bahruddin

    2014-01-01

    Highlights: • Biorefinery concept for simultaneous recovery of cellulose and phenolic compounds. • Sono-assisted organosolv/H 2 O 2 pretreatment was used to isolate palm fronds cellulose. • Optimum conditions for pretreatment: 60 °C, 40 min, 1:20 g/ml, 3% NaOH concentration. • Optimum conditions yielded 55.3% cellulose, 20.1 g/l glucose and 0.769 g/g ethanol. • Pretreatment liquor contained 4.691 mg GAE/g phenolics. - Abstract: In this study, process optimization of an ultrasonic-assisted organosolv/liquid oxidative pretreatment (SOP) of oil palm fronds (OPFs) for the simultaneous recovery of cellulose, bioethanol and biochemicals (i.e. phenolic compounds) in a biorefinery concept was carried out. The effects of time (30–60 min.), temperature (40–80 °C), NaOH concentration (1–5%) and sample:solvent ratio (1:10–1:50 g/ml) on cellulose content, bioethanol yield and total phenolics contents (TPC) after SOP were investigated. At optimum conditions of pretreatment (i.e. 60 °C, 40 min, 3% w/v aq. NaOH and 1:20 g/ml sample to solvent ratio), the recovered cellulose (55.30%) which served as substrate for enzymatic hydrolysis and subsequent fermentation yielded about 20.1 g/l glucose, 11.3 g/l xylose and 9.3 g/l bioethanol (yield of 0.769 g/g). The pretreatment liquor (mostly regarded as wastes) obtained at the optimum pretreatment conditions contained about 4.691 mg gallic acid equivalent (GAE)/g OPFs of TPC, 0.297 mg vanillic acid (VA)/g OPFs, 1.591 mg gallic acid (GA)/g OPFs and 0.331 mg quercetin (QU)/g OPFs. The pretreatment liquor was again analyzed to possess high antiradical scavenging activity (about 97.2%) compared to the synthetic antioxidant, 3,5-di-tert-butyl-4-hydroxytoluene (BHT) (80.7%) at 100 ppm. Thus one sustainable way of managing wastes in biorefinery is the recovery of multi-bioproducts (e.g. bioethanol and biochemicals) during the pretreatment process

  10. Ordering of Nb3Sn layer formed in the bronze process

    International Nuclear Information System (INIS)

    Agarwal, S.K.; Nagpal, K.C.; Narlikar, A.G.

    1986-01-01

    The work reported here suggests that the ordering of superconducting Nb 3 Sn compound layers formed in the bronze process is much more intriguing than previously assumed. Various possible mechanisms of ordering of the layers have been examined in conjunction with the observed data on short duration annealed samples. The analysis suggests the ordering to be governed by a sequential operation of both Ist and IInd order kinetics, and seems to fall in line with the studies on disordered bulk samples annealed for long durations. (author)

  11. The compositional study of nitrogen and oxygen compounds in products of heavy oil primary and secondary upgrading processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chmielowiec, J.

    1986-02-01

    The primary objective was to characterize nitrogen and oxygen compound types in the upgraded products derived from Athabasca bitumen. Nitrogen compounds, depending on their nature and concentrations, in charge stocks to catalytic processess (hydro-processes and reforming) can severely limit or poison the catalyst activity. Oxygen compounds are corrosive (especially naphthenic acids) and can promote gum formation as part of the deterioration of the hydrocarbons in the petroleum product. A secondary objective was to evaluate the advantages and limitations of in-house mass spectrometry and infrared spectroscopy methods for analyzing specific classes of polar compounds in naphthas, middle distillates, and gas oils. An analytical procedure that was based on the discrimination of polar compound classes using liquid chromatography followed by mass spectrometric analysis was tested. The chemical intelligence on the fractions obtained from Athabasca bitumen and its upgrading products has been advanced by determining structural characteristics of the nitrogen and oxygen components. This report describes the determination of the distributions of nitrogen and oxygen compounds in samples from various process streams. This procedure is capable of providing information useful for evaluating hydrodenitrogenation and hydrodeoxygenation reactions.

  12. A phosphine mediated sequential annulation process of 2-tosylaminochalcones with MBH carbonates to construct functionalized aza-benzobicyclo[4.3.0] derivatives.

    Science.gov (United States)

    Zhang, Qinglong; Zhu, Yannan; Jin, Hongxing; Huang, You

    2017-04-04

    A novel phosphine mediated sequential annulation process to construct functionalized aza-benzobicyclo[4.3.0] derivatives has been developed involving a one-pot sequential catalytic and stoichiometric process, which generates a series of benzobicyclo[4.3.0] compounds containing one quaternary center with up to 94% yield and 20 : 1 dr value. In this reaction, MBH carbonates act as 1,2,3-C 3 synthons.

  13. Lindley frailty model for a class of compound Poisson processes

    Science.gov (United States)

    Kadilar, Gamze Özel; Ata, Nihal

    2013-10-01

    The Lindley distribution gain importance in survival analysis for the similarity of exponential distribution and allowance for the different shapes of hazard function. Frailty models provide an alternative to proportional hazards model where misspecified or omitted covariates are described by an unobservable random variable. Despite of the distribution of the frailty is generally assumed to be continuous, it is appropriate to consider discrete frailty distributions In some circumstances. In this paper, frailty models with discrete compound Poisson process for the Lindley distributed failure time are introduced. Survival functions are derived and maximum likelihood estimation procedures for the parameters are studied. Then, the fit of the models to the earthquake data set of Turkey are examined.

  14. Chemical and sensory quality of processed carrot puree as influenced by stress-induced phenolic compounds.

    Science.gov (United States)

    Talcott, S T; Howard, L R

    1999-04-01

    Physicochemical analysis of processed strained product was performed on 10 carrot genotypes grown in Texas (TX) and Georgia (GA). Carrots from GA experienced hail damage during growth, resulting in damage to their tops. Measurements included pH, moisture, soluble phenolics, total carotenoids, sugars, organic acids, and isocoumarin (6-MM). Sensory analysis was conducted using a trained panel to evaluate relationships between chemical and sensory attributes of the genotypes and in carrots spiked with increasing levels of 6-MM. Preharvest stress conditions in GA carrots seemed to elicit a phytoalexic response, producing compounds that impacted the perception of bitter and sour flavors. Spiking 6-MM into strained carrots demonstrated the role bitter compounds have in lowering sweetness scores while increasing the perception of sour flavor. Screening fresh carrots for the phytoalexin 6-MM has the potential to significantly improve the sensory quality of processed products.

  15. Microfabricated ommatidia using a laser induced self-writing process for high resolution artificial compound eye optical systems.

    Science.gov (United States)

    Jung, Hyukjin; Jeong, Ki-Hun

    2009-08-17

    A microfabricated compound eye, comparable to a natural compound eye shows a spherical arrangement of integrated optical units called artificial ommatidia. Each consists of a self-aligned microlens and waveguide. The increase of waveguide length is imperative to obtain high resolution images through an artificial compound eye for wide field-of - view imaging as well as fast motion detection. This work presents an effective method for increasing the waveguide length of artificial ommatidium using a laser induced self-writing process in a photosensitive polymer resin. The numerical and experimental results show the uniform formation of waveguides and the increment of waveguide length over 850 microm. (c) 2009 Optical Society of America

  16. Magnetic and magnetocaloric properties of HoCr0.75Fe0.25O3 compound

    Science.gov (United States)

    Kotnana, Ganesh; Babu, P. D.; Jammalamadaka, S. Narayana

    2018-05-01

    We report on the magnetic and magnetocaloric properties of HoCr0.75Fe0.25O3 compound around the Néel temperature (TN), which is due to Cr3+ ordering. Susceptibility (χ) vs. temperature (T) graph of HoCr0.75Fe0.25O3 compound infer two transitions due to the ordering of Cr3+ moments (TN ˜ 155 K) and Ho3+ moments (TNHo ˜ 8 K). Magnetic entropy (-ΔSM) value of 1.14 J kg-1 K-1 around 157.5 K with a magnetic field (H) of 90 kOe is attributed to antiferromagnetic (AFM) ordering of Cr3+ moments. A maximum value of adiabatic temperature (ΔTad) ˜ 0.41 K around TN is obtained and is found to increases with applied magnetic field. Negative slope for H/M vs. M2 graph is evident for HoCr0.75Fe0.25O3 compound below TN, which indicates the first order phase transition. Quantified values of -ΔSM and ΔTad open the way to explore rare earth orthochromites for the MCE properties and refrigeration applications.

  17. Optimization of Malaxation Process using Major Aroma Compounds in Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Serife Cevik

    Full Text Available ABSTRACT Optimization of major aroma compounds in olive oils produced from fruits at three maturity stages wasstudied. A central composite design was used for the optimization of malaxation conditions of temperature and times, each at five levels with 13 runs including five central points. The responses of interest were trans-2-hexenal and hexanal, which were investigated and their contents were optimized. A full quadratic second order regression model including the linear, quadratic, and two factor interaction effects was proposed to explain the variation in the contents of target compounds depending on the malaxation conditions. Adequacies of models were evaluated by checking regression coefficients for each model. Models were found to work with high success for trans-2-hexenal prediction for oils from fruits at both purple and black stages, whereas the model for hexanalwas only in black stage oil. Their regression coefficients were higher than 0.86. Influences of time and temperature for the malaxation process were found to be significant for the transition of major aroma compounds from the fruit matrix to olive oil. The optimum conditions of temperature and time pairs to maximize trans-2-hexenal and hexanal was found to be 23°C/31 minutes for black olive and to maximize only trans-2-hexenal was also 29°C/41 minutes for purple olive.

  18. Luminescence and energy transfer processes in rare earth compounds

    International Nuclear Information System (INIS)

    Vliet, J.P.M. van.

    1989-01-01

    In this thesis some studies are presented of the luminescence and energy transfer in compounds containing Eu 3+ , Pr 3+ and Gd 3+ ions. Ch. 2 deals with the energy migration in the system Gd 1 - xEu x(IO 3) 3. In ch 3 the luminescence properties of the Pr 3+ ion in the system La 1 - xPr xMgAl 1 10 1 9 are reported. Ch. 4 discusses the luminescence properties of alkali europium double tungstates and molybdates AEuW 20 8 and AEuMo 20 * (A + = alkali metal atom). The luminiscence and energy migration characteristics of the isostructural system LiGd 1 - xEu xF 4 and Gd 1 - xEu xNbO 4 are reported in ch. 5. In ch. 6 the mechanism of energy migration in (La,Gd)AlO 3 and (Gd,Eu)AlO 3 is discussed. Ch. 7 deals with the system Na 5(Gd,Eu) (WO 4) 4. In ch. 8 the luminescence and energy transfer properties of two europium tellurite anti-glass phases are reported. The two phases are Eu 1 . 7 9TeO x, which has a pseudotetragonal structure, and Eu 1 . 0 6TeO x, which has a monoclinic, ordered structure. (author). 201 refs.; 39 figs.; 8 tabs

  19. Extraction and purification of high added value compounds from by-products of the winemaking chain using alternative/nonconventional processes/technologies.

    Science.gov (United States)

    Yammine, Sami; Brianceau, Sylène; Manteau, Sébastien; Turk, Mohammad; Ghidossi, Rémy; Vorobiev, Eugène; Mietton-Peuchot, Martine

    2018-05-24

    Grape byproducts are today considered as a cheap source of valuable compounds since existent technologies allow the recovery of target compounds and their recycling. The goal of the current article is to explore the different recovery stages used by both conventional and alternative techniques and processes. Alternative pre-treatments techniques reviewed are: ultrasounds, pulsed electric fields and high voltage discharges. In addition, nonconventional solvent extraction under high pressure, specifically, supercritical fluid extraction and subcritical water extraction are discussed. Finally alternative purification technologies, for example membrane processing were also examined. The intent is to describe the mechanisms involved by these alternative technologies and to summarize the work done on the improvement of the extraction process of phenolic compounds from winery by-products. With a focus on the developmental stage of each technology, highlighting the research need and challenges to be overcome for an industrial implementation of these unitary operations in the overall extraction process. A critical comparison of conventional and alternative techniques will be reviewed for ethe pre-treatment of raw material, the diffusion of polyphenols and the purification of these high added value compounds. This review intends to give the reader some key answers (costs, advantages, drawbacks) to help in the choice of alternative technologies for extraction purposes.

  20. Chemical-genetic profile analysis of five inhibitory compounds in yeast.

    Science.gov (United States)

    Alamgir, Md; Erukova, Veronika; Jessulat, Matthew; Azizi, Ali; Golshani, Ashkan

    2010-08-06

    Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s). Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast Saccharomyces cerevisiae. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays. Chemical-genetic profiles provide insight into the molecular mechanism(s) of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes TAE2, TAE3 and TAE4 for translation associated elements 2-4.

  1. Speckle reduction process based on digital filtering and wavelet compounding in optical coherence tomography for dermatology

    Science.gov (United States)

    Gómez Valverde, Juan J.; Ortuño, Juan E.; Guerra, Pedro; Hermann, Boris; Zabihian, Behrooz; Rubio-Guivernau, José L.; Santos, Andrés.; Drexler, Wolfgang; Ledesma-Carbayo, Maria J.

    2015-07-01

    Optical Coherence Tomography (OCT) has shown a great potential as a complementary imaging tool in the diagnosis of skin diseases. Speckle noise is the most prominent artifact present in OCT images and could limit the interpretation and detection capabilities. In this work we propose a new speckle reduction process and compare it with various denoising filters with high edge-preserving potential, using several sets of dermatological OCT B-scans. To validate the performance we used a custom-designed spectral domain OCT and two different data set groups. The first group consisted in five datasets of a single B-scan captured N times (with N<20), the second were five 3D volumes of 25 Bscans. As quality metrics we used signal to noise (SNR), contrast to noise (CNR) and equivalent number of looks (ENL) ratios. Our results show that a process based on a combination of a 2D enhanced sigma digital filter and a wavelet compounding method achieves the best results in terms of the improvement of the quality metrics. In the first group of individual B-scans we achieved improvements in SNR, CNR and ENL of 16.87 dB, 2.19 and 328 respectively; for the 3D volume datasets the improvements were 15.65 dB, 3.44 and 1148. Our results suggest that the proposed enhancement process may significantly reduce speckle, increasing SNR, CNR and ENL and reducing the number of extra acquisitions of the same frame.

  2. Semiconducting compounds and devices incorporating same

    Science.gov (United States)

    Marks, Tobin J.; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2016-01-19

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  3. Electrical properties and conduction mechanism of [C2H5NH3]2CuCl4 compound

    Science.gov (United States)

    Mohamed, C. Ben; Karoui, K.; Jomni, F.; Guidara, K.; Rhaiem, A. Ben

    2015-02-01

    The [(C2H5)NH3]2CuCl4 compound was prepared and characterized by several technique: the X-ray powder diffraction confirms the purity of the synthetized compound, the differential scanning calorimetric show several phase transitions at 236 K, 330 K, 357 K and 371 K, the dialectical properties confirms the ferroelectric-paraelectric phase transition at 238 K, which is reported by V. Kapustianyk et al. (2007) [1]. The two semi-circles observed in the complex impedance identify the presence of the grain interior and grain boundary contributions to the electrical response in this material. The equivalent circuit is modeled by a combination series of two parallel RP-CPE circuits. The temperature dependence of the alternative current conductivity (σg) and direct current conductivity (σdc) confirm the observed transitions in the calorimetric study. The (AC) electrical conduction in [(C2H5)NH3]2CuCl4 was studied by two processes that can be attributed to a hopping transport mechanism: the non-overlapping small polaron tunneling (NSPT) model in phase III and the correlated barrier hopping (CBH) model in phases I, II, IV, V and VI.

  4. The covalent effect on the energy levels of d3 ions in tetragonal compounds

    International Nuclear Information System (INIS)

    Li, Dong-Yang; Du, Mao-Lu

    2015-01-01

    For d 3 ions in covalent compounds with tetragonal symmetry, this paper presents a complete energy matrix, in which the different covalence of t 2 and e orbitals is considered not only in the electrostatic repulsions part of energy matrix elements but also in the crystal-field potential part of energy matrix elements. With taking and no taking the crystal field parameter B 00 0 into account, the effect of covalence on the energy levels of d 3 ions system were investigated, respectively. The investigation shows that it is very necessary for considering the different covalence of t 2 and e orbitals in both electrostatic repulsions part and crystal-field potential part when the optical properties of d 3 ions in strong covalent compounds with tetragonal symmetry is investigated. On the other hand, the crystal field parameter B 00 0 has a significant effect on the energy levels, and should be considered in investigations of d 3 ions in strong covalent compounds with tetragonal symmetry. Application to calculating the energy levels for Co 2+ in CdGa 2 Se 4 , the calculated results are in agreement with the experiment data

  5. Linde Rectiscol{reg_sign} process. The most economic and experienced wash process for removal of sulfur compounds and CO{sub 2} from gasification gases

    Energy Technology Data Exchange (ETDEWEB)

    Kaballo, H.-P.; Kerestceciogly, U. [Linde AG, Hoellriegelskreuth (Germany). Linde Engineering Division

    2006-07-01

    The Recitsol{reg_sign} wash process is a well-proven process for the removal of H{sub 2}S/COS and CO{sub 2} from coal, asphalt, pitch or oil derived synthesis gas. It is a physical gas wash system using methanol as solvent at operating temperatures below water freezing point, to produce a synthesis gas with less than 0.1 vppm of total sulfur. The CO{sub 2} content can be adjusted in a range from several mol-percent down to a few ppm, as is required by the specified application. Its main advantages are the use of cheap and readily available methanol as solvent, the very flexible process configuration, and rather low utility consumption figures compared with other wash processes, like PEGE based process or chemical washes. A modern concept of a Rectisol{reg_sign} unit is described, to treat shifted and un-shifted gases in just one plant: shifted gas was used for hydrotreating in a refinery. Unshifted gas was used as fuel gas for power generation in an IGCC. CO{sub 2} of the unshifted feed gas was removed only partly, because the remaining CO{sub 2} was fed as inert gas together with the fuel gas to an IGCC. All sulfur compounds of both feed gases were concentrated in one single stream with a high H{sub 2}S concentration. Impurities like NH{sub 3}, HCN or metal carbonyls were eliminated nearly quantitatively. 4 refs., 4 figs., 3 tabs.

  6. Diazo Compounds as Highly Tunable Reactants in 1,3-Dipolar Cycloaddition Reactions with Cycloalkynes†

    Science.gov (United States)

    McGrath, Nicholas A.

    2012-01-01

    Diazo compounds, which can be accessed directly from azides by deimidogenation, are shown to be extremely versatile dipoles in 1,3-dipolar cycloaddition reactions with a cyclooctyne. The reactivity of a diazo compound can be much greater or much less than its azide analog, and is enhanced markedly in polar-protic solvents. These reactivities are predictable from frontier molecular orbital energies. The most reactive diazo compound exhibited the highest known second-order rate constant to date for a dipolar cycloaddition with a cycloalkyne. These data provide a new modality for effecting chemoselective reactions in a biological context. PMID:23227302

  7. Lipid oxidation in baked products: impact of formula and process on the generation of volatile compounds.

    Science.gov (United States)

    Maire, Murielle; Rega, Barbara; Cuvelier, Marie-Elisabeth; Soto, Paola; Giampaoli, Pierre

    2013-12-15

    This paper investigates the effect of ingredients on the reactions occurring during the making of sponge cake and leading to the generation of volatile compounds related to flavour quality. To obtain systems sensitive to lipid oxidation (LO), a formulation design was applied varying the composition of fatty matter and eggs. Oxidation of polyunsaturated fatty acids (PUFA) and formation of related volatile compounds were followed at the different steps of cake-making. Optimised dynamic Solid Phase Micro Extraction was applied to selectively extract either volatile or semi-volatile compounds directly from the baking vapours. We show for the first time that in the case of alveolar baked products, lipid oxidation occurs very early during the step of dough preparation and to a minor extent during the baking process. The generation of lipid oxidation compounds depends on PUFA content and on the presence of endogenous antioxidants in the raw matter. Egg yolk seemed to play a double role on reactivity: protecting unsaturated lipids from oxidation and being necessary to generate a broad class of compounds of the Maillard reaction during baking and linked to the typical flavour of sponge cake. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Origin of d{sup 0} half-metallic characteristic in DO{sub 3}-type XO{sub 3} (X=Li, Na, K and Rb) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaotian [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China); Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Cheng, Zhenxiang, E-mail: cheng@uow.edu.au [Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Wang, Jianli [Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Rozale, Habib [Condensed Matter and Sustainable Development Laboratory, Physics Department, University of Sidi-Bel-Abbès, 22000 Sidi-Bel-Abbès (Algeria); Yang, Juntao [School of Science, Hubei University of Automotive Technology, Shiyan Hubei 442002 (China); Yu, Zheyin [Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500 (Australia); Liu, Guodong, E-mail: gdliu1978@126.com [School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-08-15

    Plane-wave pseudo-potential methods based on density functional theory are employed to investigate the electronic structures, magnetic properties of newly designed DO{sub 3}-type XO{sub 3} (X=Li, Na, K and Rb) compounds. Result shows they are d{sup 0} HM ferromagnets with total magnetic moment of 5.00 μ{sub B}. Importantly, the d{sup 0} HM characteristic is originated from the polarization of the p-orbitals of O atoms in these hypothetical compounds. The structure stability in the aspects of cohesion energy and formation energy of these four compounds have been tested. The spin-flip gaps of the four XO{sub 3} compounds are quite large (>1.00 eV). Furthermore, the d{sup 0} HM behavior can be maintained in a wide range of lattice constants. - Highlights: • In an attempt to combine the properties of DO{sub 3}-type and d{sup 0} HMFs, XO{sub 3} have been designed. • The electronic structures and magnetism of the XO{sub 3} have been studied. • The effect of uniform strain on the spin polarization ratio have been tested. • The origin of the d{sup 0} HM character have been explained. • Total energy calculation and structure stability have been performed.

  9. First-principles study of the amorphous In3SbTe2 phase change compound

    Science.gov (United States)

    Los, Jan H.; Kühne, Thomas D.; Gabardi, Silvia; Bernasconi, Marco

    2013-11-01

    Ab initio molecular dynamics simulations based on density functional theory were performed to generate amorphous models of the phase change compound In3SbTe2 by quenching from the melt. In-Sb and In-Te are the most abundant bonds with only a minor fraction of Sb-Te bonds. The bonding geometry in the amorphous phase is, however, strongly dependent on the density in the range 6.448-5.75 g/cm3 that we investigated. While at high density the bonding geometry of In atoms is mostly octahedral-like as in the cubic crystalline phase of the ternary compound In3SbTe2, at low density we observed a sizable fraction of tetrahedral-like geometries similar to those present in the crystalline phase of the two binary compounds InTe and InSb that the ternary system can be thought to be made of. We show that the different ratio between octahedral-like and tetrahedral-like bonding geometries has fingerprints in the optical and vibrational spectra.

  10. Sustainable production of valuable compound 3-succinoyl-pyridine by genetically engineering Pseudomonas putida using the tobacco waste.

    Science.gov (United States)

    Wang, Weiwei; Xu, Ping; Tang, Hongzhi

    2015-11-17

    Treatment of solid and liquid tobacco wastes with high nicotine content remains a longstanding challenge. Here, we explored an environmentally friendly approach to replace tobacco waste disposal with resource recovery by genetically engineering Pseudomonas putida. The biosynthesis of 3-succinoyl-pyridine (SP), a precursor in the production of hypotensive agents, from the tobacco waste was developed using whole cells of the engineered Pseudomonas strain, S16dspm. Under optimal conditions in fed-batch biotransformation, the final concentrations of product SP reached 9.8 g/L and 8.9 g/L from aqueous nicotine solution and crude suspension of the tobacco waste, respectively. In addition, the crystal compound SP produced from aqueous nicotine of the tobacco waste in batch biotransformation was of high purity and its isolation yield on nicotine was 54.2%. This study shows a promising route for processing environmental wastes as raw materials in order to produce valuable compounds.

  11. Multiple external hazards compound level 3 PSA methods research of nuclear power plant

    Science.gov (United States)

    Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina

    2017-01-01

    2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.

  12. Antioxidant Phenolic Compounds from Pu-erh Tea

    Directory of Open Access Journals (Sweden)

    Shu Shan Du

    2012-11-01

    Full Text Available Eight compounds were isolated from the water extract of Pu-erh tea and their structures were elucidated by NMR and MS as gallic acid (1, (+-catechin (2, (−-epicatechin (3, (−-epicatechin-3-O-gallate (4, (−-epigallocatechin-3-O-gallate (5, (−-epiafzelechin- 3-O-gallate (6, kaempferol (7, and quercetin (8. Their in vitro antioxidant activities were assessed by the DPPH and ABTS scavenging methods with microplate assays. The relative order of DPPH scavenging capacity for these compounds was compound 8 > compound 7 > compound 1 > compound 6 > compound 4 ≈ compound 5 > compound 2 > VC (reference > compound 3, and that of ABTS scavenging capacity was compound 1 > compound 2 > compound 7 ≈ compound 8 > compound 6 > compound 5 > compound 4 > VC (reference > compound 3. The results showed that these phenolic compounds contributed to the antioxidant activity of Pu-erh tea.

  13. Surface passivation process of compound semiconductor material using UV photosulfidation

    Science.gov (United States)

    Ashby, Carol I. H.

    1995-01-01

    A method for passivating compound semiconductor surfaces by photolytically disrupting molecular sulfur vapor with ultraviolet radiation to form reactive sulfur which then reacts with and passivates the surface of compound semiconductors.

  14. Ba9V3Se15: a novel compound with spin chains

    Science.gov (United States)

    Zhang, Jun; Liu, Min; Wang, Xiancheng; Zhao, Kan; Duan, Lei; Li, Wenmin; Zhao, Jianfa; Cao, Lipeng; Dai, Guangyang; Deng, Zheng; Feng, Shaomin; Zhang, Sijia; Liu, Qingqing; Yang, Yi-feng; Jin, Changqing

    2018-05-01

    In this work, a novel compound Ba9V3Se15 with one-dimensional (1D) spin chains was synthesized under high-pressure and high-temperature conditions. It was systematically characterized via structural, magnetic, thermodynamic and transport measurements. Ba9V3Se15 crystallizes into a hexagonal structure with a space group of P-6c2 (188) and the lattice constants of a  =  b  =  9.5745(7) Å and c  =  18.7814(4) Å. The crystal structure consists of face-sharing octahedral VSe6 chains along c axis, which are trimeric and arranged in a triangular lattice in ab-plane. Ba9V3Se15 is a semiconductor and undergoes complex magnetic transitions. In the zero-field-cooled (ZFC) process with magnetic field of 10 Oe, Ba9V3Se15 sequentially undergoes ferrimagnetic and spin cluster glass transition at 2.5 K and 3.3 K, respectively. When the magnetic field exceeds 50 Oe, only the ferrimagnetic transition can be observed. Above the transition temperature, the specific heat contains a significant magnetic contribution that is proportional to T 1/2. The calculation suggests that the nearest neighbor (NN) intra-chain antiferromagnetic exchange J 1 is much larger than the next nearest neighbor (NNN) intra-chain ferromagnetic exchange J 2. Therefore, Ba9V3Se15 can be regarded as an effective ferromagnetic chains with effective spin-1/2 by the formation of the V(2)(↓) V(1)(↑) V(2)(↓) cluster.

  15. Characterization of aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.).

    Science.gov (United States)

    Cho, In Hee; Kim, Se Young; Choi, Hyung-Kyoon; Kim, Young-Suk

    2006-08-23

    The characteristic aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.) were investigated by gas chromatography-olfactometry using aroma extract dilution analysis. 1-Octen-3-one (mushroom-like) was the major aroma-active compound in raw pine-mushrooms; this compound had the highest flavor dilution factor, followed by ethyl 2-methylbutyrate (floral and sweet), linalool (citrus-like), methional (boiled potato-like), 3-octanol (mushroom-like and buttery), 1-octen-3-ol (mushroom-like), (E)-2-octen-1-ol (mushroom-like), and 3-octanone (mushroom-like and buttery). By contrast, methional, 2-acetylthiazole (roasted), an unknown compound (chocolate-like), 3-hydroxy-2-butanone (buttery), and phenylacetaldehyde (floral and sweet), which could be formed by diverse thermal reactions during the cooking process, together with C8 compounds, were identified as the major aroma-active compounds in cooked pine-mushrooms.

  16. Technology and optical characterization of luminophore coordination compounds Eu(o-MBA)3Phen and NC PEPC/Eu(o-MBA)3Phen

    Science.gov (United States)

    Bordian, Olga; Verlan, Victor; Culeac, Ion; Iovu, Mihail; Zubareva, Vera

    2016-12-01

    Were obtained a new nanocomposite (NC) based on poly N-epoxy prolyl carbazol (PEPC) and the coordination compound luminophore Eu(o-MBA)3Phen, where o-MBA is o- methylbenzoic acid and Phen - phenanthroline. Nanocrystals of Eu(o-MBA)3Phen with the dimensions 50 nm were uniformly incorporated into the PEPC polymer matrix with various concentrations. The absorption spectra of coordination compounds and thin layers of NC PEPC/Eu(o-MBA)3Phen revealed 1 intensive absorption bands at 2.02 eV. Photoluminescence (PL) spectra showed an intense red luminescence at 578 - 699 nm, which is assigned to the transitions 4D0->7Fi (i= 0,1,2 3 4) in the 4f-shell of the Eu3+ ion.

  17. High resolution study of Kβ' and Kβ1,3 X-ray emission lines from Mn-compounds

    International Nuclear Information System (INIS)

    Limandri, S.; Ceppi, S.; Tirao, G.; Stutz, G.; Sanchez, C.G.; Riveros, J.A.

    2010-01-01

    High-resolution Kβ emission spectra of several manganese compounds were measured in order to characterize the dependence of the Kβ' and Kβ 1,3 features, on the chemical environment. High resolution spectra were obtained using a non-conventional spectrometer based on quasi-back-diffraction geometry at National Synchrotron Light Laboratory (LNLS). It was found that the energy of the Kβ' satellite structure relative to the main Kβ 1,3 line decreases linearly with the formal oxidation state for Mn-O systems. A noticeable dispersion of the relative Kβ' energy for different Mn 2+ compounds could be observed. The dependence of the Kβ' satellite line on the net charge and the effective 3d spin in Mn 2+ compounds was investigated. Calculations of the net charge and the effective 3d spin were performed within the density-functional theory using the package SIESTA. A direct relation between this dispersion and the effective Mn 3d spin was found.

  18. Ultrasound assisted extraction of bioactive compounds

    Directory of Open Access Journals (Sweden)

    Helena Drmić

    2010-01-01

    Full Text Available Many novel and innovative techniques are nowadays researched and explored in order to replace or improve classical, thermal processing technologies. One of newer technique is technique of minimal food processing, under what we assume ultrasound processing. Ultrasound technology can be very useful for minimal food processing because transmission of acoustic energy through product is fast and complete, which allows reduction in total processing time, and therefore lower energy consumption. Industrial processing is growing more and more waste products, and in desire of preservation of global recourses and energy efficiency, several ways of active compounds extraction techniques are now explored. The goal is to implement novel extraction techniques in food and pharmaceutical industry as well in medicine. Ultrasound assisted extraction of bioactive compounds offers increase in yield, and reduction or total avoiding of solvent usage. Increase in temperature of treatment is controlled and restricted, thereby preserving extracted bioactive compounds. In this paper, several methods of ultrasound assisted extraction of bioactive compounds from plant materials are shown. Ultrasound can improve classic mechanisms of extraction, and thereby offer novel possibilities of commercial extraction of desired compounds. Application of sonochemistry (ultrasound chemistry is providing better yield in desired compounds and reduction in treatment time.

  19. 3M"T"M neutron quench. Compounds with substantial water solubility and boron content

    International Nuclear Information System (INIS)

    Cook, Kevin S.; Blake, Alex B.; Neef, C. Jody

    2014-01-01

    Of the two naturally occurring isotopes of boron ("1"1B 80%, "1"0B 20%), "1"0B is a good neutron absorber with a thermal neutron absorption cross section of ∼3800 barns. The ability to absorb thermal neutrons while producing benign reaction products makes boron an ideal atom to aid in the control and arrest of the fission reaction in nuclear power reactors. In current practice, boric acid and sodium pentaborate are commonly used as neutron absorbers in the water regime of active and passive safety systems. 3M"T"M Neutron Quench compounds have been developed to be applied in situations where criticality control needs exceed normal control methods. In this type of situation these compounds have several advantages over commonly used neutron absorbers like boric acid: Boron Content; compounds contain up to 80 wt% boron compared to 16 wt% for boric acid and sodium pentaborate. Solubility; >16 g B/100 g solution compared to 0.6 g B/100 g solution for boric acid at 25°C. pH neutrality; compounds demonstrate pH neutrality even in concentrated solutions. Thermal Stability; Compounds are stable as solids at temperatures greater than 500°C. Corrosiveness; Electrochemical corrosion rate studies have indicated that these compounds are significantly less corrosive than boric acid. Use of 3M"T"M Neutron Quench can lead to reduction in emergency shutdown pool size, reduce or remove the necessity for pool heating and heat tracing of lines, allow for more rapid introduction of the absorber in emergency situations or be used in other applications where significant neutron control is necessary. (author)

  20. Microanalysis on CuInSe2 compound synthesized by mechanochemical processing

    International Nuclear Information System (INIS)

    Wu Sumei; Xue Yuzhi; Zhang Zhihua

    2010-01-01

    CuInSe 2 (CIS) compound has been synthesized by mechanochemical processing (MCP) with different process parameters. The effect of milling time and different molar ratios of Cu:In:Se was investigated. The obtained materials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) for evaluating their crystal structure, grain size, morphology and composition. Field emission transmission electron microscopy (FETEM) was used to detect the smog particles produced during the milling. The results revealed that the obtained powder was chalcopyrite CuInSe 2 and the particle size was smaller than 5 μm after milling for 60 min. The EDS analysis indicated that the smog was volatile selenium. The composition of the products deviated from those of starting materials after MCP. The mechanism about mechanically induced self-propagating reaction which occurred during milling copper, indium and selenium powders was also discussed.

  1. The effect of Li2CO3 substitution on synthesis of LiBOB compounds as salt of electrolyte battery lithium ion

    Science.gov (United States)

    Lestariningsih, Titik; Wigayati, Etty Marty; Sabrina, Qolby; Prihandoko, Bambang; Priyono, Slamet

    2018-04-01

    Development of the synthesis of LiB(C2O4)2 compounds continues to evolve along with the need for electrolyte salts to support the research of the manufacture of lithium ion batteries. A study had been conducted on the effect of Li2CO3 substitution on the synthesis of LiB(C2O4)2 or LiBOB compounds. LiBOB was a major candidate to replace LiPF6 as a highly toxic lithium battery electrolyte and harmful to human health. Synthesis of Lithium bis(oxalato) borate used powder metallurgy method. The raw materials used are H2C2O4.2H2O, Li2CO3 or LiOH and H2BO3 from Merck Germany products. The materials are mixed with 2: 1: 1 mol ratio until homogeneous. The synthesis of LiBOB refers to previous research, where the heating process was done gradually. The first stage heating is carried out at 120°C for 4 hours, then the next stage heating is carried out at 240°C for 7 hours. The sample variation in this study was to distinguish the lithium source from Li2CO3 and LiOH. Characterization was done by XRD to know the phase formed, FTIR to confirm that functional group of LiB(C2O4)2 compound, SEM to know the morphological structure, and TG/DTA to know the thermal properties. The results of the analysis shows that LiBOB synthesis using Lithium source from Li2CO3 has succeeded to form LiBOB compound with more LiBOB phase composition is 59.1% and 40.9% LiBOB hydrate phase, SEM morphology shows powder consist of elongated round particle porous and similar to LiBOB commercial and show higher thermal stability.

  2. Structural, Dielectric, and Electrical Properties of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3

    Science.gov (United States)

    Panda, Niranjan; Pattanayak, Samita; Choudhary, R. N. P.

    2015-12-01

    Polycrystalline samples of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3 (BPFZTO) with x = 0.0, 0.2, 0.3, and 0.4 were prepared by high-temperature solid-state reaction. Preliminary structural analysis of calcined powders of the materials by use of x-ray powder diffraction confirmed formation of single-phase systems with the tetragonal structure. Room-temperature scanning electron micrographs of the samples revealed uniform distribution of grains of low porosity and different dimensions on the surface of the samples. The frequency-temperature dependence of dielectric and electric properties was studied by use of dielectric and complex impedance spectroscopy over a wide range of frequency (1 kHz to 1 MHz) at different temperatures (25-500°C). The dielectric constant of BiFeO3 (BFO) was enhanced by substitution with Pb(Zr0.5Ti0.5)O3 (PZT) whereas the dielectric loss of the BPFZTO compounds decreased with increasing PZT content. A significant contribution of both grains and grain boundaries to the electrical response of the materials was observed. The frequency-dependence of the ac conductivity of BPFZTO followed Jonscher's power law. Negative temperature coefficient of resistance behavior was observed for all the BPFZTO samples. Conductivity by thermally excited charge carriers and oxygen vacancies in the materials was believed to be of the Arrhenius-type.

  3. Hydrogen production with short contact time. Catalytic partial oxidation of hydrocarbons and oxygenated compounds: Recent advances in pilot- and bench-scale testing and process design

    Energy Technology Data Exchange (ETDEWEB)

    Guarinoni, A.; Ponzo, R.; Basini, L. [ENI Refining and Marketing Div., San Donato Milanese (Italy)

    2010-12-30

    ENI R and D has been active for fifteen years in the development of Short Contact Time - Catalytic Partial Oxidation (SCT-CPO) technologies for producing Hydrogen/Synthesis Gas. From the beginning the experimental work addressed either at defining the fundamental principles or the technical and economical potential of the technology. Good experimental responses, technical solutions' simplicity and flexibility, favourable techno-economical evaluations promoted the progressive widening of the field of the investigations. From Natural Gas (NG) the range of ''processable'' Hydrocarbons extended to Liquefied Petroleum Gas (LPG) and Gasoils, including those characterised by high levels of unsaturated and sulphurated molecules and, lately, to other compounds with biological origin. The extensive work led to the definition of different technological solutions, grouped as follows: Technology 1: Air Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 2: Enriched Air/Oxygen Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 3: Enriched Air/Oxygen Blown SCT-CPO of Liquid Hydrocarbons and/or Compounds with biological origin Recently, the licence rights on a non-exclusive basis for the commercialisation of SCT-CPO based processes for H{sub 2}/Synthesis gas production from light hydrocarbons with production capacity lower than 5,000 Nm{sup 3}/h of H{sub 2} or 7,500 Nm3/h of syngas have been assigned to two external companies. In parallel, development of medium- and large-scale plant solutions is progressing within the ENI group framework. These last activities are addressed to the utilisation of SCT-CPO for matching the variable Hydrogen demand in several contexts of oil refining operation. This paper will report on the current status of SCT-CPO with a focus on experimental results obtained, either at pilot- and bench- scale level. (orig.)

  4. Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science

    OpenAIRE

    Li, Shilong; Yin, Chuancun; Zhao, Xia; Dai, Hongshuai

    2017-01-01

    Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important integral technique is employed. And a conception called the critical value is introduced to investigat...

  5. Antimicrobial compounds as side products from the agricultural processing industry

    NARCIS (Netherlands)

    Sumthong, Pattarawadee

    2007-01-01

    Antimicrobial compounds have many applications, in medicines, food, agriculture, livestock, textiles, paints, and wood protectants. Microorganisms resistant to most antibiotics are rapidly spreading. Consequently there is an urgent and continuous need for novel antimicrobial compounds. Most

  6. Characterization of rhenium compounds obtained by electrochemical synthesis after aging process

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Uscategui, Alejandro, E-mail: avargasuscat@ing.uchile.cl [Departamento de Ingeniería de Minas, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile); Mosquera, Edgar [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile); López-Encarnación, Juan M. [Department of Mathematics-Physics and Department of Chemistry, University of Puerto Rico at Cayey, 205 Ave. Antonio R. Barceló, Cayey, PR 00736, USA. (Puerto Rico); Chornik, Boris [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada Av. 2008, Santiago (Chile); Katiyar, Ram S. [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico San Juan, San Juan, PR 00931-3343 (United States); Cifuentes, Luis [Departamento de Ingeniería de Minas, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile)

    2014-12-15

    The proper identification of the molecular nature of the aged rhenium compound obtained by means of electrodeposition from an alkaline aqueous electrolyte was determined. Chemical, structural and vibrational experimental characterization of the aged Re compound showed agreement with quantum-computations, thereby allowing the unambiguous identification of the Re compound as H(ReO{sub 4})H{sub 2}O. - Graphical abstract: Rhenium oxides were electrodeposited on a copper surface and after environmental aging was formed the H(ReO{sub 4})H{sub 2}O compound. The characterization of the synthesized material was made through the comparison of experimental evidence with quantum mechanical computations carried out by means of density functional theory (DFT). - Highlights: • Aged rhenium compound obtained by means of electrodeposition was studied. • The study was made by combining experimental and DFT-computational information. • The aged electrodeposited material is consistent with the H(ReO{sub 4})H{sub 2}O compound.

  7. Thermoelectric properties of quaternary (Bi,Sb){sub 2}(Te,Se){sub 3} compound

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Pengfei, E-mail: photon.bupt@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Li, Yiluan; Wu, Chengjie; Yu, Zhongyuan; Cao, Huawei; Zhang, Xianlong; Cai, Ningning; Zhong, Xuxia [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2014-01-25

    Highlights: • Sb and Se spin–orbit coupling play a key role in the band structure. • Substituted Bi/Sb and Te/Se have a limited impact on the transport coefficients. • n-Type doping will be preferred for quaternary (Bi,Sb){sub 2}(Te,Se){sub 3} compound. -- Abstract: The quaternary (Bi,Sb){sub 2}(Te,Se){sub 3} compounds are investigated using first-principles study and Boltzmann transport theory. The energy band structure and density of states are studied in detail. The electronic transport coefficients are then calculated as a function of chemical potential. The figure of merit ZT is obtained assuming a constant relaxation time and an averaged thermal conductivity. Our theoretical result agrees well with previous experimental data.

  8. Processing ‘Ataulfo’ Mango into Juice Preserves the Bioavailability and Antioxidant Capacity of Its Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Ana Elena Quirós-Sauceda

    2017-09-01

    Full Text Available The health-promoting effects of phenolic compounds depend on their bioaccessibility from the food matrix and their consequent bioavailability. We carried out a randomized crossover pilot clinical trial to evaluate the matrix effect (raw flesh and juice of ‘Ataulfo’ mango on the bioavailability of its phenolic compounds. Twelve healthy male subjects consumed a dose of mango flesh or juice. Blood was collected for six hours after consumption, and urine for 24 h. Plasma and urine phenolics were analyzed by electrochemical detection coupled to high performance liquid chromatography (HPLC-ECD. Five compounds were identified and quantified in plasma. Six phenolic compounds, plus a microbial metabolite (pyrogallol were quantified in urine, suggesting colonic metabolism. The maximum plasma concentration (Cmax occurred 2–4 h after consumption; excretion rates were maximum at 8–24 h. Mango flesh contributed to greater protocatechuic acid absorption (49%, mango juice contributed to higher chlorogenic acid absorption (62%. Our data suggests that the bioavailability and antioxidant capacity of mango phenolics is preserved, and may be increased when the flesh is processed into juice.

  9. Study of the behavior of the compound Mg2Ni0.5Co0.5 front to hydriding process

    International Nuclear Information System (INIS)

    Martinez, C; Ordonez, S; Serafini, D; Guzman, D; Bustos, O

    2012-01-01

    This paper study the behavior of the compound Mg 2 Ni 0,5 Co 0,5 during the hydriding process. Elemental powders of Mg, Ni and Co, with an atomic ratio of 2:0,5:0,5 were mechanically alloyed using a high energy mill SPEX 8000D for 36h. The amorphous and crystalline structure of the samples was characterized through X-ray diffraction The hydriding process was performed by the volumetric technique Sievert at 90 o C and a pressure of 20 bar H 2 . The desorption process was evaluated by differential scanning calorimetry. Based on the results we can conclude that the amorphous structure absorbs more hydrogen, reaching a maximum of 3.6 wt% H2, besides the incorporation of cobalt act as catalyst for the absorption of H2 obtaining values higher than those reported in the Mg-Ni system amorphous state. The desorption process is influenced by the type of structure that presents the alloy

  10. Chemical-genetic profile analysis of five inhibitory compounds in yeast

    Directory of Open Access Journals (Sweden)

    Alamgir Md

    2010-08-01

    Full Text Available Abstract Background Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s. Results Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast Saccharomyces cerevisiae. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays. Conclusion Chemical-genetic profiles provide insight into the molecular mechanism(s of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes TAE2, TAE3 and TAE4 for translation associated elements 2-4.

  11. Synthesis of novel 3-cyclohexylpropanoic acid-derived nitrogen heterocyclic compounds and their evaluation for tuberculostatic activity.

    Science.gov (United States)

    Gobis, Katarzyna; Foks, Henryk; Bojanowski, Krzysztof; Augustynowicz-Kopeć, Ewa; Napiórkowska, Agnieszka

    2012-01-01

    A series of novel 3-cyclohexylpropanoic acid derivatives and 3-cyclohexylpropanoic acid-derived nitrogen heterocyclic compounds (1-8) have been synthesized and evaluated for tuberculostatic activity. Compounds 1a, 1c, 1e and 1f bearing benzimidazole or benzimidazole-like systems showed the most potent tuberculostatic activity against Mycobacterium tuberculosis strains with MIC values ranging from 1.5 to 12.5μg/mL. More importantly 1a (6-chloro-2-(2-cyclohexylethyl)-4-nitro-1H-benzo[d]imidazole) and 1f (2-(2-cyclohexylethyl)-1H-imidazo[4,5-b]phenazine) appeared selective for M. tuberculosis as compared with eukaryotic cells (human fibroblasts), and other antimicrobial strains. These compounds may thus represent a novel, selective class of antitubercular agents. Additionally compound 1a stimulated type I collagen output by fibroblasts, in vitro. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Magnetic properties of Sm2Co17-xCrx (0 ≤ x ≤ 3.0) compounds

    International Nuclear Information System (INIS)

    Fuquan, B.; Wang, J.L.; Tegus, O.; Dagula, W.; Tang, N.; Wang, W.Q.; Yang, F.M.; Brueck, E.; Boer, F.R. de; Buschow, K.H.J.

    2004-01-01

    The structural and magnetic properties of Sm 2 Co 17-x Cr x (0≤x≤3.0) compounds have been investigated by means of X-ray diffraction and magnetization measurements. The powder X-ray diffraction patterns show that all samples crystallize as a single phase with the rhombohedral Th 2 Zn 17 -type structure. The lattice parameters a and V increase monotonically with increasing Cr content, but the lattice parameter c increases very slowly with increasing Cr content. The X-ray diffraction patterns of the aligned powder of the samples have confirmed that all the compounds investigated have uniaxial anisotropy. The Curie temperature of the compounds decreases rapidly the spontaneous magnetization M 0 , the anisotropy field B a , and the anisotropy constant K 1 of Sm 2 Co 17-x Cr x (0≤x≤3.0) compounds decrease strongly with increasing Cr content

  13. Semiconducting III-V compounds

    CERN Document Server

    Hilsum, C; Henisch, Heinz R

    1961-01-01

    Semiconducting III-V Compounds deals with the properties of III-V compounds as a family of semiconducting crystals and relates these compounds to the monatomic semiconductors silicon and germanium. Emphasis is placed on physical processes that are peculiar to III-V compounds, particularly those that combine boron, aluminum, gallium, and indium with phosphorus, arsenic, and antimony (for example, indium antimonide, indium arsenide, gallium antimonide, and gallium arsenide).Comprised of eight chapters, this book begins with an assessment of the crystal structure and binding of III-V compounds, f

  14. Depletion of compounds from thin oil films in seawater

    International Nuclear Information System (INIS)

    Brakstad, O.G.; Faksness, L.G.; Melbye, A.G.

    2002-01-01

    When oil is spilled on water, the oil compounds distribute between droplets and water-soluble phases in the water column. Some small organic acids, phenols, BTEX, and aromatic compounds will dissolve completely, but larger polycyclic aromatic hydrocarbons (PAH) and alkanes will remain in the droplet fraction. The biodegradation of droplets occurs at the oil-water interface. A method for immobilizing the oil films onto hydrophobic surfaces was developed in order to obtain a stable oil surface during the biodegradation period. A test system was also established to determine the depletion of oil compounds from the oil phase, including both abiotic and biotic processes. Three North Sea oils were used in the study. Two were paraffinic oils rich in n-alkanes and aromatic compounds, and one was asphalthenic which was richer in branched alkanes and PAH. The biodegradation period was 2 months at 13 degrees C. Samples from the water and thin film on the fabric was analyzed for carbon 10 and carbon 36 by gas chromatography-flame ionization detection. Semi-volatile organic compounds were analyzed using gas chromatography-mass spectrometry. Results indicated that the depletion process for alkanes was completely caused by biodegradation, while aromatic compounds were depleted by abiotic dissolution as well as by biodegradation. The system has potential for determining oil depletion processes under controlled surface-to-volume conditions, such as thin oil films and dispersed oil droplets. In addition, the system can be used to determine the depletion process in flow-through systems. 13 refs., 3 tabs., 9 figs

  15. Analysis of hydrogen, carbon, sulfur and volatile compounds in (U3Si2 - Al) nuclear fuel

    International Nuclear Information System (INIS)

    Moura, Sergio C.; Redigolo, Marcelo M.; Amaral, Priscila O.; Leao, Claudio; Oliveira, Glaucia A.C. de; Bustillos, Oscar V.

    2015-01-01

    Uranium silicide U 3 Si 2 is used as nuclear fuel in the research nuclear reactor IEA-R1 at IPEN/CNEN, Sao Paulo, Brazil. The U 3 Si 2 is dispersed in aluminum reaching high densities of uranium in the nucleus of the fuel, up to 4.8 gU cm -3 . This nuclear fuel must comply with a quality control, which includes analysis of hydrogen, carbon and sulfur for the U 3 Si 2 and volatile compound for the aluminum. Hydrogen, carbon and sulfur are analyzed by the method of Radio Frequency gas extraction combustion coupled with Infrared detector. Volatile compounds are analyzed by the method of heated gas extraction coupled with gravimetric measurement. These methods are recommended by the American Society for Testing Materials (ASTM) for nuclear materials. The average carbon and sulfur measurements are 30 μg g -1 and 3 μg g -1 , respectively, and 40 μg g -1 for volatile compounds. The hydrogen analyzer is a TCHEN 600 LECO, carbon and sulfur analyzer is a CS 244 LECO and the volatile compounds analyzer is a home-made apparatus that use a resistant furnace, a gas pipe measurement and a glove-box with controlled atmosphere where an analytical balance has been installed, this analyzer was made at IPEN laboratory. (author)

  16. X-Ray Absorption Near-Edge Structure (XANES) of Calcium L3,2 Edges of Various Calcium Compounds and X-Ray Excited Optical Luminescence (XEOL) Studies of Luminescent Calcium Compounds

    International Nuclear Information System (INIS)

    Ko, J. Y. Peter; Zhou Xingtai; Sham, T.-K.; Heigl, Franziskus; Regier, Tom; Blyth, Robert

    2007-01-01

    X-ray absorption at calcium L3,2 edges of various calcium compounds were measured using a high resolution Spherical Grating Monochromator (SGM) at the Canadian Light Source (CLS). We observe that each compound has its unique fine structure of L3,2 edges. This uniqueness is due to differences in local structure of compounds. We also performed (X-ray Excited Optical Luminescence) XEOL of selected luminescent calcium compounds to investigate their optical properties. XEOL is a photon-in-photon-out technique in which the optical luminescence that is excited by tunable x-rays from a synchrotron light source is monitored. Depending on excitation energy of the x-ray, relative intensities of luminescence peaks vary. Recent findings of the results will be presented here

  17. Evaluation of the combination effect of different antiviral compounds against HIV in vitro

    DEFF Research Database (Denmark)

    Sørensen, A M; Nielsen, C; Mathiesen, Lars Reinhardt

    1993-01-01

    by combining many evaluated antiviral agents with AZT. We observed a difference in the degree of synergism depending on the evaluated compound; the results indicate that compounds with the same target in the viral replicative cycle (ddI: 2',3'-dideoxyinosine, didanosine; d4T: 2',3'-dideoxy-2......3'-azido-3'deoxythymidine (AZT), a clinically used anti-HIV compound, was evaluated for antiviral effect on HIV infection in combination with other antiviral compounds in vitro. Interactions were evaluated by the median-effect principle and the isobologram technique. Synergistic effect was obtained...... with the adhesion/penetration process of virus (ConA: Concanavalin A; DS: dextran sulfate) were most potent with AZT when used in rather high concentrations. At this moment in the HIV epidemic, these observations suggest that combinations of antiviral compounds should be evaluated in clinical trials, with the major...

  18. Vacuum energy referred Ti3+/4+ donor/acceptor states in insulating and semiconducting inorganic compounds

    International Nuclear Information System (INIS)

    Rogers, E.G.; Dorenbos, P.

    2014-01-01

    Optical spectroscopy data has been collected on the energy needed for electron transfer from the valence band to Ti 4+ in about 40 different insulating and II–VI and III–V semiconducting compounds. It provides a measure for the location of the Ti 3+ 3d 1 ground state level above the valence band. This is combined with the vacuum referred binding energy (VRBE) of valence band electrons as obtained with the chemical shift model based on lanthanide impurity spectroscopy. It provides the VRBE of an electron in the Ti 3+ ground state level. This work will first show that the energy of electron transfer to Ti 4+ is about the same as that to Eu 3+ irrespective of the type of compound. Next it will be shown that the VRBE of the Ti 3+ 3d 1 ground state is always near −4 eV. An approximately ±1 eV spread around that value is attributed to the crystal field splitting of the Ti 3+ 3d-levels. - Highlights: • Data on the energy of charge transfer (CT) to Ti 4+ in 38 compounds was collected. • A correlation between the Ti 4+ and Eu 3+ CT energies has been established. • The chemical shift model has been applied to Ti impurity states. • The Ti 3+ ground state binding energy is always around −4±1 eV

  19. Profile of the Phenolic Compounds of Rosa rugosa Petals

    Directory of Open Access Journals (Sweden)

    Andrzej Cendrowski

    2017-01-01

    Full Text Available Rosa rugosa petals are a rich source of phenolic compounds, which determined their antioxidant properties. The aim of this study was to determine the polyphenolic composition of not processed petals of Rosa rugosa collected from the commodity crops and to determine the variability of the contained therein polyphenols between harvesting seasons. Twenty polyphenols were identified by UPLC-ESI-MS. The main fraction of polyphenols was ellagitannins, which are 69 to 74% of the total polyphenols of the petals. In the petals of Rosa rugosa, four anthocyanins have been identified: cyanidin 3,5-di-O-glucoside, peonidin 3-O-sophoroside, peonidin 3,5-di-O-glucoside, and peonidin 3-O-glucoside, of which the predominant peonidin 3,5-di-O-glucoside represented approx. 85% of all the determined anthocyanin compounds. It was found that the petals of Rosa rugosa are a valuable source of bioactive compounds and can be considered as a healthy valuable resource.

  20. On the (R,s,Q) Inventory Model when Demand is Modelled as a Compound Process

    NARCIS (Netherlands)

    Janssen, F.B.S.L.P.; Heuts, R.M.J.; de Kok, T.

    1996-01-01

    In this paper we present an approximation method to compute the reorder point s in a (R; s; Q) inventory model with a service level restriction, where demand is modelled as a compound Bernoulli process, that is, with a xed probability there is positive demand during a time unit, otherwise demand is

  1. Post processing of protein-compound docking for fragment-based drug discovery (FBDD): in-silico structure-based drug screening and ligand-binding pose prediction.

    Science.gov (United States)

    Fukunishi, Yoshifumi

    2010-01-01

    For fragment-based drug development, both hit (active) compound prediction and docking-pose (protein-ligand complex structure) prediction of the hit compound are important, since chemical modification (fragment linking, fragment evolution) subsequent to the hit discovery must be performed based on the protein-ligand complex structure. However, the naïve protein-compound docking calculation shows poor accuracy in terms of docking-pose prediction. Thus, post-processing of the protein-compound docking is necessary. Recently, several methods for the post-processing of protein-compound docking have been proposed. In FBDD, the compounds are smaller than those for conventional drug screening. This makes it difficult to perform the protein-compound docking calculation. A method to avoid this problem has been reported. Protein-ligand binding free energy estimation is useful to reduce the procedures involved in the chemical modification of the hit fragment. Several prediction methods have been proposed for high-accuracy estimation of protein-ligand binding free energy. This paper summarizes the various computational methods proposed for docking-pose prediction and their usefulness in FBDD.

  2. Structure and Hyperfine Interactions in Aurivillius Bi9Ti3Fe5O27 Conventionally Sintered Compound

    International Nuclear Information System (INIS)

    Mazurek, M.; Lisinska-Czekaj, A.; Surowiec, Z.; Jartych, E.; Czekaj, D.

    2011-01-01

    The structure and hyperfine interactions in the Bi 9 Ti 3 Fe 5 O 27 Aurivillius compound were studied using X-ray diffraction and Moessbauer spectroscopy. Samples were prepared by the conventional solid-state sintering method at various temperatures. An X-ray diffraction analysis proved that the sintered compounds formed single phases at temperature above 993 K. Moessbauer measurements have been carried out at room and liquid nitrogen temperatures. Room-temperature Moessbauer spectrum of the Bi 9 Ti 3 Fe 5 O 27 compound confirmed its paramagnetic properties. However, low temperature measurements revealed the additional paramagnetic phase besides the antiferromagnetic one. (authors)

  3. The content of polyphenolic compounds in cocoa beans (Theobroma cacao L.), depending on variety, growing region, and processing operations: a review.

    Science.gov (United States)

    Oracz, Joanna; Zyzelewicz, Dorota; Nebesny, Ewa

    2015-01-01

    Polyphenols form the largest group of compounds among natural antioxidants, which largely affect the overall antioxidant and anti-free radical activity of cocoa beans. The qualitative and quantitative composition of individual fractions of polyphenolic compounds, even within one species, is very diverse and depends on many factors, mainly on the area of cocoa trees cultivation, bean maturity, climatic conditions during growth, and the harvest season and storage time after harvest. Thermal processing of cocoa beans and cocoa derivative products at relatively high temperatures may in addition to favorable physicochemical, microbiological, and organoleptic changes result in a decrease of polyphenols concentration. Technological processing of cocoa beans negatively affects the content of polyphenolic compounds.

  4. New liquid crystals in the series of 1, 3, 5-triazine compounds ...

    African Journals Online (AJOL)

    The Series of compounds were prepared by nucleophilic addition of the primary amino nucleophile to 1,3,5-triazine electrophilic ring via alkyl spacers in presence of potassium carbonate as hydrochloride acceptor. Differencial scanning calorimetry (DSC), polarizing optical microscopy and x-ray diffraction confirmed Smectic ...

  5. Synchrotron X-ray studies of epitaxial ferroelectric thin films and nanostructures

    Science.gov (United States)

    Klug, Jeffrey A.

    The study of ferroelectric thin films is a field of considerable scientific and technological interest. In this dissertation synchrotron x-ray techniques were applied to examine the effects of lateral confinement and epitaxial strain in ferroelectric thin films and nanostructures. Three materials systems were investigated: laterally confined epitaxial BiFeO3 nanostructures on SrTiO3 (001), ultra-thin commensurate SrTiO 3 films on Si (001), and coherently strained films of BaTiO3 on DyScO3 (110). Epitaxial films of BiFeO3 were deposited by radio frequency magnetron sputtering on SrRuO3 coated SrTiO 3 (001) substrates. Laterally confined nanostructures were fabricated using focused ion-beam processing and subsequently characterized with focused beam x-ray nanodiffraction measurements with unprecedented spatial resolution. Results from a series of rectangular nanostructures with lateral dimensions between 500 nm and 1 mum and a comparably-sized region of the unpatterned BiFeO3 film revealed qualitatively similar distributions of local strain and lattice rotation with a 2-3 times larger magnitude of variation observed in those of the nanostructures compared to the unpatterned film. This indicates that lateral confinement leads to enhanced variation in the local strain and lattice rotation fields in epitaxial BiFeO3 nanostructures. A commensurate 2 nm thick film of SrTiO3 on Si was characterized by the x-ray standing wave (XSW) technique to determine the Sr and Ti cation positions in the strained unit cell in order to verify strain-induced ferroelectricity in SrTiO3/Si. A Si (004) XSW measurement at 10°C indicated that the average Ti displacement from the midpoint between Sr planes was consistent in magnitude to that predicted by a density functional theory (DFT) calculated ferroelectric structure. The Ti displacement determined from a 35°C measurement better matched a DFT-predicted nonpolar structure. The thin film extension of the XSW technique was employed to

  6. Mineralization of volatile organic compounds (VOCs) over the catalyst CuO-Co3O4-CeO2 and its applications in industrial odor control

    KAUST Repository

    Somekawa, Shouichi; Hagiwara, Toshiya; Fujii, Kyoko; Kojima, Masayuki; Shinoda, Tsutomu; Takanabe, Kazuhiro; Domen, Kazunari

    2011-01-01

    Volatile organic compounds (VOCs) present at ppm levels were decomposed over the catalyst CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45 in mol) in an attempt to scale up for industrial odor control. In addition to enhancing the catalytic activity, CuO-Co3O4 and CeO2 helped, respectively, to maintain the strength of the pelleted catalysts and inhibit their sintering. Using toluene as a VOC model compound, kinetic analysis of the total oxidation to carbon dioxide was conducted. The odor emitted from paint-drying processes could be eliminated effectively using CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45) pelleted catalysts (188 ml) in a large-scale system. © 2011 Elsevier B.V. All rights reserved.

  7. Mineralization of volatile organic compounds (VOCs) over the catalyst CuO-Co3O4-CeO2 and its applications in industrial odor control

    KAUST Repository

    Somekawa, Shouichi

    2011-12-01

    Volatile organic compounds (VOCs) present at ppm levels were decomposed over the catalyst CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45 in mol) in an attempt to scale up for industrial odor control. In addition to enhancing the catalytic activity, CuO-Co3O4 and CeO2 helped, respectively, to maintain the strength of the pelleted catalysts and inhibit their sintering. Using toluene as a VOC model compound, kinetic analysis of the total oxidation to carbon dioxide was conducted. The odor emitted from paint-drying processes could be eliminated effectively using CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45) pelleted catalysts (188 ml) in a large-scale system. © 2011 Elsevier B.V. All rights reserved.

  8. Extraterrestrial Organic Compounds in Meteorites

    Science.gov (United States)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

    2003-01-01

    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  9. Relaxor behaviour and dielectric properties of BiFeO3 doped Ba ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Ba1−Bi(Ti0.9Zr0.1)1−FeO3 ( = 0–0.075) ceramics are prepared using a conventional solid state reaction method. X-ray diffraction shows the presence of a single phase. Addition of Bi3+ and Fe3+ strongly influences the crystal structure and dielectric properties of the ceramics. The evolution from a ...

  10. Theoretical simulations of the structural stabilities, elastic, thermodynamic and electronic properties of Pt3Sc and Pt3Y compounds

    Science.gov (United States)

    Boulechfar, R.; Khenioui, Y.; Drablia, S.; Meradji, H.; Abu-Jafar, M.; Omran, S. Bin; Khenata, R.; Ghemid, S.

    2018-05-01

    Ab-initio calculations based on density functional theory have been performed to study the structural, electronic, thermodynamic and mechanical properties of intermetallic compounds Pt3Sc and Pt3Y using the full-potential linearized augmented plane wave(FP-LAPW) method. The total energy calculations performed for L12, D022 and D024 structures confirm the experimental phase stability. Using the generalized gradient approximation (GGA), the values of enthalpies formation are -1.23 eV/atom and -1.18 eV/atom for Pt3Sc and Pt3Y, respectively. The densities of states (DOS) spectra show the existence of a pseudo-gap at the Fermi level for both compounds which indicate the strong spd hybridization and directing covalent bonding. Furthermore, the density of states at the Fermi level N(EF), the electronic specific heat coefficient (γele) and the number of bonding electrons per atom are predicted in addition to the elastic constants (C11, C12 and C44). The shear modulus (GH), Young's modulus (E), Poisson's ratio (ν), anisotropy factor (A), ratio of B/GH and Cauchy pressure (C12-C44) are also estimated. These parameters show that the Pt3Sc and Pt3Y are ductile compounds. The thermodynamic properties were calculated using the quasi-harmonic Debye model to account for their lattice vibrations. In addition, the influence of the temperature and pressure was analyzed on the heat capacities (Cp and Cv), thermal expansion coefficient (α), Debye temperature (θD) and Grüneisen parameter (γ).

  11. Characterization of Key Aroma Compounds in Raw and Thermally Processed Prawns and Thermally Processed Lobsters by Application of Aroma Extract Dilution Analysis.

    Science.gov (United States)

    Mall, Veronika; Schieberle, Peter

    2016-08-24

    Application of aroma extract dilution analysis (AEDA) to an aroma distillate of blanched prawn meat (Litopenaeus vannamei) (BPM) revealed 40 odorants in the flavor dilution (FD) factor range from 4 to 1024. The highest FD factors were assigned to 2-acetyl-1-pyrroline, 3-(methylthio)propanal, (Z)-1,5-octadien-3-one, trans-4,5-epoxy-(E)-2-decenal, (E)-3-heptenoic acid, and 2-aminoacetophenone. To understand the influence of different processing conditions on odorant formation, fried prawn meat was investigated by means of AEDA in the same way, revealing 31 odorants with FD factors between 4 and 2048. Also, the highest FD factors were determined for 2-acetyl-1-pyrroline, 3-(methylthio)propanal, and (Z)-1,5-octadien-3-one, followed by 4-hydroxy-2,5-dimethyl-3(2H)-furanone, (E)-3-heptenoic acid, and 2-aminoacetophenone. As a source of the typical marine, sea breeze-like odor attribute of the seafood, 2,4,6-tribromoanisole was identified in raw prawn meat as one of the contributors. Additionally, the aroma of blanched prawn meat was compared to that of blanched Norway and American lobster meat, respectively (Nephrops norvegicus and Homarus americanus). Identification experiments revealed the same set of odorants, however, with differing FD factors. In particular, 3-hydroxy-4,5-dimethyl-2(5H)-furanone was found as the key aroma compound in blanched Norway lobster, whereas American lobster contained 3-methylindole with a high FD factor.

  12. Spin reorientation and magnetic anisotropy in Y2Co17-xCr x (x 1.17-3.0) compounds

    International Nuclear Information System (INIS)

    Fuquan, B.; Tegus, O.; Dagula, W.; Brueck, E.; Boer, F.R. de; Buschow, K.H.J.

    2005-01-01

    Spin reorientation transitions and magnetic anisotropy in Y 2 Co 17-x Cr x (x = 1.17-3.0) compounds have been investigated by means of X-ray diffraction and magnetization measurements. The powder X-ray diffraction patterns show that most samples crystallize as a single phase with the rhombohedral Th 2 Zn 17 -type structure. However, in the compound Y 2 Co 14 Cr 3 the Th 2 Zn 17 phase coexist with the hexagonal Th 2 Ni 17 -type phase. The lattice parameters a and c hardly change and the unit cell volume V increases slightly with increasing Cr content. The X-ray diffraction patterns of the aligned powder of the samples have confirmed that at room temperature the compound with x = 1.17 has planar anisotropy, but the compounds with x = 1.76, 2.34 and 3.00 have uniaxial anisotropy. Spin reorientation phenomena occur in all of the compounds. With increasing Cr content, the Curie temperature, the spin reorientation temperature, the spontaneous magnetization, and the anisotropy constant K 2 of the Y 2 Co 17-x Cr x (x = 1.17-3.0) compounds decrease strongly while the anisotropy constant K 1 increases in the range of x from 1.17 to 2.34 and then decreases in the range of x from 2.34 to 3.00

  13. 78 FR 62451 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of 2,3,3,3...

    Science.gov (United States)

    2013-10-22

    ... Alternatives Policy (SNAP) program (CAA Sec. 612; 40 CFR 82 subpart G). The SNAP program has issued a final... incentive for industry to use negligibly reactive compounds in place of more highly reactive compounds that are regulated as VOCs. The EPA lists compounds that it has determined to be negligibly reactive in its...

  14. Comprehensive and Facile Synthesis of Some Functionalized Bis-Heterocyclic Compounds Containing a Thieno[2,3-b]thiophene Motif

    Science.gov (United States)

    Mabkhot, Yahia N.; Barakat, Assem; Al-Majid, Abdullah M.; Alshahrani, Saeed A.

    2012-01-01

    A comprehensive and facile method for the synthesis of new functionalized bis-heterocyclic compounds containing a thieno[2,3-b]thiophene motif is described. The hitherto unknown bis-pyrazolothieno[2,3-b]thiophene derivatives 2a–c, bis-pyridazin othieno[2,3-b]thiophene derivatives 4, bis-pyridinothieno[2,3-b]thiophene derivatives 6a,b, and to an analogous bis-pyridinothieno[2,3-b]thiophene nitrile derivatives 7 are obtained. Additionally, the novel bis-pyradazinonothieno[2,3-b]thiophene derivatives 9, and nicotinic acid derivatives 10, 11 are obtained via bis-dienamide 8. The structures of all newly synthesized compounds have been elucidated by 1H, 13C NMR, GCMS, and IR spectrometry. These compounds represent a new class of sulfur and Nitrogen containing heterocycles that should also be of interest as new materials. PMID:22408452

  15. Investigations on the properties of pure and rare earth modified bismuth ferrite ceramics

    International Nuclear Information System (INIS)

    Kazhugasalamoorthy, S.; Jegatheesan, P.; Mohandoss, R.; Giridharan, N.V.; Karthikeyan, B.; Joseyphus, R. Justin; Dhanuskodi, S.

    2010-01-01

    Pure BiFeO 3 (BFO) and La-modified BiFeO 3 (Bi 1-x La x FeO 3 with x = 0.2 and 0.4) ceramic powders were synthesized at relatively low temperature by ferrioxalate precursor method. Pure compositions did not yield phase pure powders and contain secondary phases. At the same time, La-modification at different concentration levels in BFO promoted the formation of perovskite phase with the elimination of secondary phases and phase pure ceramic powders were obtained for the composition Bi 1-x La x FeO 3 with x = 0.4. Further, the effect of lanthanum substitution on the morphology, electrical and magnetic properties was also investigated.

  16. Magnetoelectric properties of Co-doped BiFeO3 nanoparticles

    Science.gov (United States)

    Shrimali, V. G.; Rathod, K. N.; Dhruv, Davit; Zankat, Alpa; Sagapariya, Khushal; Solanki, Sapana; Solanki, P. S.; Shah, N. A.; Kataria, B. R.

    2018-05-01

    The magnetoelectric (ME) properties of sol-gel grown BiFe0.95Co0.05O3 (BFCO) nanoceramics, with different sizes, were investigated at room-temperature. X-ray diffraction (XRD) measurement was performed to investigate structural properties of the samples understudy. Magnetic field-dependent dielectric permittivity has been systematically investigated in the frequency range of 20 Hz to 1 MHz. To ensure the origin of magnetodielectric response, the magnetoimpedance (MI) spectroscopy was adopted using equivalent circuit model. The a.c. conductivity was found to obey the Jonscher’s universal power law. The modifications in spiral spin structure in the BFCO nanoparticles with size less than ˜62 nm significantly affect the ME coupling parameters.

  17. [Hyp-Au-Sn9(Hyp)3-Au-Sn9(Hyp)3-Au-Hyp]-: the longest intermetalloid chain compound of tin.

    Science.gov (United States)

    Binder, Mareike; Schrenk, Claudio; Block, Theresa; Pöttgen, Rainer; Schnepf, Andreas

    2017-10-12

    The reaction of the metalloid tin cluster [Sn 10 (Hyp) 4 ] 2- with (Ph 3 P)Au-SHyp (Hyp = Si(SiMe 3 ) 3 ) gave an intermetalloid cluster [Au 3 Sn 18 (Hyp) 8 ] - 1, which is the longest intermetalloid chain compound of tin to date. 1 shows a structural resemblance to binary AuSn phases, which is expected for intermetalloid clusters.

  18. Optical and electrical properties of thin films of bismuth ferric oxide

    International Nuclear Information System (INIS)

    Cardona R, D.

    2014-01-01

    The bismuth ferric oxide (BFO) has caused great attention in recent years because of their multi ferric properties, making it very attractive for different technological applications. In this paper simultaneous ablation of two white (Bi and Fe 2 O 3 ) was used in a reactive atmosphere (containing oxygen) to deposit thin films of BFO. The composition of the films is changed by controlling the plasma parameters such as the average kinetic energy of the ions (E p) and the plasma density (Np). The effects caused by excess of Bi and Fe in atomic structure and the optical and electrical properties of the films BiFeO 3 in terms of plasma parameters were studied. The X-ray diffraction patterns of BFO samples with excess of bismuth above 2% at. They exhibited small changes in structure leading to improved levels of leakage currents compared to levels of the film with a stoichiometry close to BiFeO 3 composition. These samples showed a secondary phase (Bi 2 5FeO 4 0 selenite type) that led to the increase in the values of band gap and resistivity as well as the improvement of the piezoelectric properties. On the other hand, the films with iron excess showed as secondary phase compounds of iron oxide (α - γ-Fe 2 O 3 ) that caused increments in the conductivity and decrease in the values of band gap. The results are discussed in terms of the excesses of Bi and Fe which were correlated with the plasma parameters. (Author)

  19. Preparation and electrical characterization of the compound CuAgGeSe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Villarreal, M A; Chalbaud, L M de; Fernandez, B J; Velasquez-Velasquez, A; Pirela, M, E-mail: mavu@ula.v, E-mail: clio@ula.v [Laboratorio de Temperaturas Bajas, Centro de Estudios en Semiconductores, Departamento de Fisica, Universidad de Los Andes, Apartado de Correos No 1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of)

    2009-05-01

    This work reports the synthesis and electrical characterization of the compound CuAgGeSe{sub 3}. This material was synthesized by direct melting of the constituent elements, in their stoiochiometric ratio inside an evacuated quartz ampoule. The chemical analysis (EDX) confirmed the 1:1:1:3 stoichiometric ratios for the compound. The differential thermal analysis showed the existence of a principal phase that melts at 558 deg. C and a second phase at 636{sup 0}C. The X-ray powder diffraction analysis indicated that the compound crystallizes in the monoclinic system, space group Cc, with unit cell parameters: a = 6.776(0) A, b = 11.901(5) A, c = 6.772(0) and beta = 108.2(0){sup 0}. The study of the electrical properties was realized in the temperature range from 80 to 300 K and under a magnetic field of 14 kG. Employing the Mott transition model, we were able to obtain the temperature dependence of the resistivity and we estimated that the activation energy is 25.3 meV in the low temperatures region. The mobility temperature dependence is analyzed by taking into account the scattering of charge carriers by acoustic phonons, polar optic phonons and thermally activated hopping. From the analysis, the activation energy is estimated to be around 38 meV and the characteristic temperature of the phonons is estimated to be around 400 K.

  20. Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba.

    Science.gov (United States)

    Li, Dewen; Chen, Ying; Shi, Yi; He, Xingyuan; Chen, Xin

    2009-04-01

    In natural environment with ambient air, ginkgo trees emitted volatile organic compounds 0.18 microg g(-1) h(-1) in July, and 0.92 microg g(-1) h(-1) in September. Isoprene and limonene were the most abundant detected compounds. In September, alpha-pinene accounted for 22.5% of the total. Elevated CO(2) concentration in OTCs increased isoprene emission significantly in July (pemission was enhanced in July and decreased in September by elevated CO(2). Exposed to elevated O(3) increased the isoprene and monoterpenes emissions in July and September, and the total volatile organic compounds emission rates were 0.48 microg g(-1) h(-1) (in July) and 2.24 microg g(-1) h(-1) (in September), respectively. The combination of elevated CO(2) and O(3) did not have any effect on biogenic volatile organic compounds emissions, except increases of isoprene and Delta3-carene in September.